WorldWideScience

Sample records for alloy shrapnel rapidly

  1. Rapidly solidified titanium alloys by melt overflow

    Science.gov (United States)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  2. Debris and shrapnel mitigation procedure for NIF experiments

    International Nuclear Information System (INIS)

    All experiments at the National Ignition Facility (NIF) will produce debris and shrapnel from vaporized, melted, or fragmented target/diagnostics components. For some experiments mitigation is needed to reduce the impact of debris and shrapnel on optics and diagnostics. The final optics, e.g., wedge focus lens, are protected by two layers of debris shields. There are 192 relatively thin (1-3 mm) disposable debris shields (DDS's) located in front of an equal number of thicker (10 mm) main debris shields (MDS's). The rate of deposition of debris on DDS's affects their replacement rate and hence has an impact on operations. Shrapnel (molten and solid) can have an impact on both types of debris shields. There is a benefit to better understanding these impacts and appropriate mitigation. Our experiments on the Omega laser showed that shrapnel from Ta pinhole foils could be redirected by tilting the foils. Other mitigation steps include changing location or material of the component identified as the shrapnel source. Decisions on the best method to reduce the impact of debris and shrapnel are based on results from a number of advanced simulation codes. These codes are validated by a series of dedicated experiments. One of the 3D codes, NIF's ALE-AMR, is being developed with the primary focus being a predictive capability for debris/shrapnel generation. Target experiments are planned next year on NIF using 96 beams. Evaluations of debris and shrapnel for hohlraum and capsule campaigns are presented

  3. Debris and Shrapnel Mitigation Procedure for NIF Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D; Koniges, A; Landen, O; Masters, N; Fisher, A; Jones, O; Suratwala, T; Suter, L

    2007-09-04

    All experiments at the National Ignition Facility (NIF) will produce debris and shrapnel from vaporized, melted, or fragmented target/diagnostics components. For some experiments mitigation is needed to reduce the impact of debris and shrapnel on optics and diagnostics. The final optics, e.g., wedge focus lens, are protected by two layers of debris shields. There are 192 relatively thin (1-3 mm) disposable debris shields (DDS's) located in front of an equal number of thicker (10 mm) main debris shields (MDS's). The rate of deposition of debris on DDS's affects their replacement rate and hence has an impact on operations. Shrapnel (molten and solid) can have an impact on both types of debris shields. There is a benefit to better understanding these impacts and appropriate mitigation. Our experiments on the Omega laser showed that shrapnel from Ta pinhole foils could be redirected by tilting the foils. Other mitigation steps include changing location or material of the component identified as the shrapnel source. Decisions on the best method to reduce the impact of debris and shrapnel are based on results from a number of advanced simulation codes. These codes are validated by a series of dedicated experiments. One of the 3D codes, NIF's ALE-AMR, is being developed with the primary focus being a predictive capability for debris/shrapnel generation. Target experiments are planned next year on NIF using 96 beams. Evaluations of debris and shrapnel for hohlraum and capsule campaigns are presented.

  4. Spatially Resolved X-ray Spectroscopy of Vela Shrapnel A

    CERN Document Server

    Katsuda, S

    2006-01-01

    We present the detailed X-ray spectroscopy of Vela shrapnel A with the XMM-Newton satellite. Vela shrapnel A is one of several protrusions identified as bullets from Vela supernova explosion. The XMM-Newton image shows that shrapnel A consists of a bright knot and a faint trailing wake. We extracted spectra from various regions, finding a prominent Si Ly$_\\alpha$ emission line in all the spectra. All the spectra are well represented by the non-equilibrium ionization (NEI) model. The abundances are estimated to be O$\\sim$0.3, Ne$\\sim$0.9, Mg$\\sim$0.8, Si$\\sim$3, Fe$\\sim$0.8 times their solar values. The non-solar abundance ratio between O and Si indicates that shrapnel A originates from a deep layer of a progenitor star. We found that the relative abundances between heavy elements are almost uniform in shrapnel A, which suggests that the ejecta from supernova explosion are well mixed with swept-up interstellar medium.

  5. Experiments for the Validation of Debris and Shrapnel Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Koniges, A E; Andrew, J; Eder, D; Kalantar, D; Masters, N; Fisher, A; Anderson, R; Gunney, B; Brown, B; Sain, K; Tobin, A M; Debonnel, C; Gielle, A; Combis, P; Jadaud, J P; Meyers, M; Jarmakani, H

    2007-08-29

    The debris and shrapnel generated by laser targets are important factors in the operation of a large laser facility such as NIF, LMJ, and Orion. Past experience has shown that it is possible for such target debris to render diagnostics inoperable and also to penetrate or damage optical protection (debris) shields. We are developing the tools to allow evaluation of target configurations in order to better mitigate the generation and impact of debris, including development of dedicated modeling codes. In order to validate these predictive simulations, we briefly describe a series of experiments aimed at determining the amount of debris and/or shrapnel produced in controlled situations. We use glass and aerogel to capture generated debris/shrapnel. The experimental targets include hohlraums (halfraums) and thin foils in a variety of geometries. Post-shot analysis includes scanning electron microscopy and x-ray tomography. We show the results of some of these experiments and discuss modeling efforts.

  6. Modelling debris and shrapnel generation in inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Modelling and mitigation of damage are crucial for safe and economical operation of high-power laser facilities. Experiments at the National Ignition Facility use a variety of targets with a range of laser energies spanning more than two orders of magnitude (∼14 kJ to ∼1.9 MJ). Low-energy inertial confinement fusion experiments are used to study early-time x-ray load symmetry on the capsule, shock timing, and other physics issues. For these experiments, a significant portion of the target is not completely vaporized and late-time (hundreds of ns) simulations are required to study the generation of debris and shrapnel from these targets. Damage to optics and diagnostics from shrapnel is a major concern for low-energy experiments. We provide the first full-target simulations of entire cryogenic targets, including the Al thermal mechanical package and Si cooling rings. We use a 3D multi-physics multi-material hydrodynamics code, ALE-AMR, for these late-time simulations. The mass, velocity, and spatial distribution of shrapnel are calculated for three experiments with laser energies ranging from 14 to 250 kJ. We calculate damage risk to optics and diagnostics for these three experiments. For the lowest energy re-emit experiment, we provide a detailed analysis of the effects of shrapnel impacts on optics and diagnostics and compare with observations of damage sites. (paper)

  7. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    D K Misra; R S Tiwari; O N Srivastava

    2003-08-01

    X-ray diffraction, transmission electron microscopy and differential scanning calorimetry were carried out to study the transformation from amorphous to icosahedral/crystalline phases in the rapidly quenched Al50Cu45Ti5 and Al45Cu45Ti10 alloys. In the present investigation, we have studied the formation and stability of amorphous phase in Al50Cu45Ti5 and Al45Cu45Ti10 rapidly quenched alloys. The DSC curve shows a broad complex type of exothermic overlapping peaks (288–550°C) for Al50Cu45Ti5 and a well defined peak around 373°C for Al45Cu45Ti10 alloy. In the case of Al50Cu45Ti5 alloy amorphous to icosahedral phase transformation has been observed after annealing at 280°C for 73 h. Large dendritic growth of icosahedral phase along with -Al phase has been found. Annealing of Al50Cu45Ti5 alloy at 400°C for 8 h results in formation of Al3Ti type phase. Al45Cu45Ti10 amorphous alloy is more stable in comparison to Al50Cu45Ti5 alloy and after annealing at 400°C for 8 h it also transforms to Al3Ti type phase. However, this alloy does not show amorphous to icosahedral phase transformation.

  8. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  9. Undercooled and rapidly quenched Ni-Mo alloys

    Science.gov (United States)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at. pct Mo. Although the microstructures observed by undercooling and melt spinning were similar, the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  10. Superior metallic alloys through rapid solidification processing (RSP) by design

    Energy Technology Data Exchange (ETDEWEB)

    Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  11. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  12. Rapid solidification of undercooled Al-Cu-Si eutectic alloys

    Institute of Scientific and Technical Information of China (English)

    RUAN Ying; WEI BingBo

    2009-01-01

    Under the conventional solidification condition,a liquid aluminium alloy can be hardly undercooled because of oxidation.In this work,rapid solidification of an undercooled liquid Al,80.4Cu,13.6Si,6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating.The re-lationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt.The maximum undercooling is 147 K (0.18 TE).The undercooled ternary eutectic is composed of α(Al) solid solution,(Si) semiconductor and β(CuAl,2) intermetallic compound.In the (Al+Si+θ) ternary eutectic,(Si) faceted phase grows independently,while (Al) and θ non-faceted phases grow coopera-tively in the lamellar mode.When undercooling is small,only (Al) solid solution forms as the leading phase.Once undercooling exceeds 73 K,(Si) phase nucleates firstly and grows as the primary phase.The alloy microstructure consists of primary (Al) dendrite,(Al+9) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling,while at large undercooling primary (Si) block,(Al+θ) pseudo-binary eutectic and (Al+Si+θ) ternary eutectic coexist.As undercooling increases,the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases.

  13. Dynamic powder compaction of rapidly solidified Path A alloy with increased carbon and titanium content

    International Nuclear Information System (INIS)

    The objective of this study is to show the potential of the dynamic powder compaction technique to consolidate rapidly solidified Path A alloys and to develop microstructures with improved irradiation performance in the fusion environment. Samples of rapidly solidified and dynamically compacted Path A alloy with increased carbon and titanium content have been included in alloy development irradiation experiments

  14. Dilatometer study of rapidly solidified aluminium-silicon based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Varga, B [University TRANSILVANIA, B-dul Eroilor nr. 29, 500036, Brasov (Romania); Fazakas, E; Hargitai, H [Inst. for Materials Science and Technology, Bay Z. Foundation, Fehervari ut, 130., H-1116 Budapest (Hungary); Varga, L K, E-mail: varga@szfki.h

    2009-01-01

    Aluminum-Silicon alloys are sought in a large number of automotive and aerospace applications due to their low coefficient of thermal expansion and high wear resistance. The present study focused on structural transformations as a function of the temperature of rapidly solidified hypereutectic Al{sub 100-x}Si{sub x} (x = 12, 22 and 40) alloys. Different structures out of equilibrium have been obtained after casting in sand, graphite and copper moulds and by melt spinning. The retained Si content in supersaturated alpha Al and the precipitation of Si is discussed in the light of the dilatometer studies [1, 2, 3] complemented by metallographic microscopy, XRD and DSC [4] measurements. A Kissinger analysis was used to determine the activation energy for the precipitation of supersaturated Si content.

  15. Formation Processes of Nanocomposite Strengthening Particles in Rapidly Quenched Al-Sc-Zr Alloys

    OpenAIRE

    A.V. Kotko; Nosenko, V. K.; O.A. Molebny; T.O. Monastyrska; A.L. Berezina

    2012-01-01

    Decomposition processes of supersaturated solid solution of aluminium alloys alloyed with Sc and Zr have been studied in the work. The binary hypereutectic Al-Sc alloys, hyperperitectic Al-Zr alloys and ternary Al-Sc-Zr alloys were chosen. Alloys were obtained by the melt-spinning. Melts were quenched from temperatures of Т = 1000 C and Т = 1400 ºC. The study of the structure of rapidly solidifyed binary Al alloys alloyed with Sc and Zr showed that the crystallization of anomalously supersat...

  16. Development of rapidly solidified Al-Y-Ni-based alloys

    International Nuclear Information System (INIS)

    The present study is concerned with the effect of alloying additions (e.g. Co, Nb, Pd, La and Y) to the glass forming ability (GFA) of Al-Y-Ni alloys. Rapidly solidified ribbons of the following systems have been prepared by melt-spinning process: Al88Ni x/2Pd x/2Y12-x (x = 2, 5, 10), Al88Ni1Co1Y10-xLa x (x = 0, 5, 10), Al88Ni1Nb1Y10, and Al86Ni4-xCo xY10 (x = 1, 2, 3). Characterisation of the melt spun alloys was carried out through a combination of X-ray diffractometry, differential scanning calorimetry, and transmission electron microscopy. GFA in Al88Ni1TM1Y10 (where TM = Co, Nb, Pd) increases in the following order: Nb 88-Ni-Pd-Y systems the optimum quantity of yttrium is 10 at.%. A complete substitution of Y with La, or aluminium with 2 at.% of (Co,Ni) decreases the glass forming ability in Al88Ni1Co1Y10 but increases thermal stability of the residual amorphous phase. Partial replacement of Y with La significantly improves the thermal stability of the amorphous phase in Al-Ni-Co-Y

  17. Laser welding of an advanced rapidly-solidified titanium alloy

    Science.gov (United States)

    Baeslack, W. A., III; Chiang, S.; Albright, C. A.

    1990-06-01

    The laser weldability of a complex RS titanium alloy containing yttrium is investigated by evaluating comparatively the microstructures, mechanical properties, and fracture characteristics of the base metal and the rapidly solidified weld fusion zone. To prevent atmospheric contamination the specimen was enclosed in a helium-purged plastic bag during the welding process. After welding, the coupons were sectioned transverse to the laser beam direction of traverse, epoxy mounted, polished down to 0.05 micron SiO2 and etched with Kroll's reagent for examination utilizing light and SEM and energy-dispersive X-ray analysis. Results indicate that laser welding is effective in producing a fine fusion zone dispersoid structure in the RS Ti composite.

  18. Transient spinodal decomposition during annealing of rapidly solidified Al-10Sr alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Rapidly solidified Al-10Sr alloy ribbons were prepared using a single roller melt spinning technique. The annealing process of the rapidly solidified Al-10Sr alloy has been carried out using differential scanning calorimetry (DSC). The microstructure of as-annealed Al-10Sr alloy has been characterized by transmission electron microscopy (TEM). The equilibrium Al4Sr phase is dominant in the as-annealed alloy. Besides the Al4Sr phase, an AlSr phase is also found in the alloy isothermally annealed at 873 K for 90 min. Furthermore, a modulated nanostructure was observed in the alloy isothermally annealed at 873 K for 90 min. With further prolonged annealing time, however, the AlSr phase disappears in the as-annealed alloy. The dependence of particle size and growth rate on annealing time as well as the modulated structure shows that the occurrence of the AlSr phase may be due to the spinodal decomposition.

  19. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  20. Assessment and mitigation of radiation, EMP, debris and shrapnel impacts at megajoule-class laser facilities

    International Nuclear Information System (INIS)

    The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debris and shrapnel modelling.

  1. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  2. PROCESS CAPABILITY STUDY OF A RAPID CASTING SOLUTION FOR ALUMINIUM ALLOYS USING THREE-DIMENSIONAL PRINTING

    Directory of Open Access Journals (Sweden)

    R. Singh

    2011-12-01

    Full Text Available In the present work, the best shell wall thickness of a mould cavity was investigated in a process capability study of a rapid casting solution for aluminium alloys using three-dimensional printing (3DP. Starting from the identification of a component/benchmark, an aluminium-alloy casting prototype was produced with different shell wall thicknesses by three dimensional printing. The results of the study suggest that, at the best shell wall thickness (5 mm for aluminium alloys, the rapid casting solution using a 3DP process lies within the ±3.999 sigma (σ limit.

  3. Rapid precision casting for complex thin-walled aluminum alloy parts

    OpenAIRE

    Xuanpu DONG; Naiyu HUANG; Zitian FAN

    2004-01-01

    Based on Vacuum Differential Pressure Casting (VDPC) precision forming technology and the Selective Laser Sintering (SLS) Rapid Prototyping (RP) technology, a rapid manufacturing method called Rapid Precision Casting (RPC) process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but a...

  4. Microstructure and thermal stability behavior of a rapidly solidified Al-Ti-Fe-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in %) alloy was prepared by melt spinning. Asquenched and as-annealed microstructures were studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HREM) and energy dispersive spectrum (EDS) analysis.The microhardness of the alloy at different annealing temperatures was measured. The results obtained indicate that the microhardness of the rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr alloy does not vary with different annealing temperatures.The as-quenched microstructure of the alloy includes two kinds of dispersed primary phases: Al3Ti and Al13(Cr, Fe)2. After annealing at 400 ℃ for 10 h, the stable phase Al13Fe4 appears in the microstructure.

  5. Dynamic powder compaction of rapidly solidified Path A alloy with increased carbon and titanium content

    International Nuclear Information System (INIS)

    Different techniques for consolidation of rapidly solidified alloys which are available or are under study at the present time include conventional consolidation techniques (hot extrusion, HIP,...), high velociy consolidation of atomized partially solidified particulates and dynamic powder compaction (DPC). This report describes the results of dynamic compaction of Path A alloy with increased carbon and titanium content. The microstructure of the as-compated alloy is highly complex, evidencing an extreme degree of deformation. TEM revealed very high dislocation and twin density reflecting high hardness of the as-compacted alloy. Annealing studies revealed that recovery and recrystallization processes in dynamically compacted alloy are slower than in conventionally treated materials. High dislocation density appears to be an intrinsic property of the dynamic compaction process and it may be potentially useful in developing materials for irradiation performance. Other potential applications of dynamic compaction include preparation of graded materials and ceramic materials

  6. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  7. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    International Nuclear Information System (INIS)

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants

  8. INTERNAL FRICTION DAMPING IN A RAPIDLY SOLIDIFIED Al-Fe-Ce POWDER METALLURGY ALLOY

    OpenAIRE

    Winholtz, R.; Weins, W.

    1985-01-01

    The low frequency internal friction behavior of a rapidly solidified Al-8.6Fe-3.8Ce powder metallurgy alloy was investigated over the temperature range of 77 K to 700 K and frequency range of .6 to 1.5 Hz. The alloy has a large high temperature background damping curve as well as a small internal friction peak at about 475 K with an activation energy of 150 KJ/mole (36 kcal/mole) which is believed to be related to a grain boundary relaxation phenomenon. Aging of this alloy for up to 100 hours...

  9. Superplastic deformation behavior of a rapidly solidified Al-Li alloy

    International Nuclear Information System (INIS)

    This study aims at investigating the superplastic behavior of a rapidly solidified Al-3Li-1Cu-0.5Mg-0.5Zr (mass%) alloy. Although rapidly solidified Al-Li alloys have the very fine grain structure desirable for improved superplasticity, unfavorable oxide morphology often prevents them from being superplastic. The results of superplastic deformation indicated that the proper thermo-mechanical treatment (TMT) of the alloy resulted in a much improved superplastic ductility, e.g. elongation of approximately 530%. In the case of testing at 520 C, optimum strain rate of forming was 4 x 10-2 s-1, which was one or two orders of magnitude higher than that of ingot cast Al-Li alloys. Such a high strain rate was thought to be quite advantageous for the practical application of superplastic deformation of the alloy. It could also be seen that the microstructure of the deformed alloy was similar to that of the as-received or the TMT treated alloy since continuous recrystallization was accomplished by subgrain growth and the growth of primary grains was prevented by fine β' (Al3Zr) particles. (orig.)

  10. Microstructural evolution during containerless rapid solidification of Co-Si alloys

    Institute of Scientific and Technical Information of China (English)

    姚文静; 魏炳波

    2003-01-01

    The Co-12%Si hypoeutectic, Co-12.52%Si eutectic and Co-13%Si hypereutectic alloys are rapidly solidified in a containerless environment in a drop tube. Undercoolings up to 207K (0.14TE) are obtained, which play a dominant role in dendritic and eutectic growth. The coupled zone around Co-12.52%Si eutectic alloy has been calculated, which covers a composition range from 11.6 to 12.7%Si. A microstructural transition from lamellar eutectic to divorced eutectic occurs to Co-12.52%Si eutectic droplets with increasing undercooling. The lamellar eutectic structure of the Co-12.52%Si alloy consists of εCo and Co3Si phases at small undercooling. The CoaSi phase cannot decompose completely into εCo and αCo2Si phases. As undercooling becomes larger, the Co3Si phase grows very rapidly from the highly undercooled alloy melt to form a divorced eutectic. The structural morphology of the Co-12%Si alloy droplets transforms from εCo primary phase plus lamellar eutectic to anomalous eutectic, whereas the microstructure of Co-13%Si alloy droplets solution is the primary nucleation phase. In the highly undercooled alloy melts, the growth of εCo and Co3Si phases is controlled by solutal diffusion.

  11. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    International Nuclear Information System (INIS)

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered

  12. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  13. Influence Analysis of Shell Material and Charge on Shrapnel Lethal Power

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available To compare the shrapnel lethal power with different shell material and charge, LS-DYNA was used to numerically simulate four kinds of shrapnel lethal power. The shell material was 58SiMn, 50SiMnVB or 40Cr, whereas the charge was RL-F. And the shell material was 58SiMn, whereas the charge was TNT. The shell rupture process and lethal power test were analyzed. The results show that, the lethal power of RL-F charge increase by 25%, 45%, 14% compared with the TNT charge, whereas the shell material was 58SiMn, 50SiMnVB, 40Cr. And then the guarantee range and lethal power can be improved by using the high explosive and changing shell material, whereas the projectile shape coefficient is invariable.

  14. Phase structures and morphologies of rapidly solidified intermetallic alloys in Nb-Ti-Al ternary system

    International Nuclear Information System (INIS)

    In order to evaluate the potential of applying RSP (rapid solidification processing) to the intermetallic alloys in the Nb-Ti-Al ternary system, the phase structures and morphologies of splat quenched alloys among TiAl, Ti3Al, γ1 and TiAl3, NbAl3 phases were investigated by optical microscopy, transmission electron microscopy and X-ray and electron diffraction. A phase constitution map under a rapid solidified state is given. The modification of microstructures, formation of metastable phases, solubility extension and change in solidification path are presented and discussed. Some comparisons are made with the results of previous workers

  15. COMPARISON OF STATISTICALLY CONTROLLED RAPID CASTING SOLUTIONS OF ZINC ALLOYS USING THREE DIMENSIONAL PRINTING

    Directory of Open Access Journals (Sweden)

    R. Singh

    2011-06-01

    Full Text Available In the present work, the most cost effective/best shell wall thickness of mould cavities has been compared with other available shell wall thicknesses for statistically controlled rapid casting solutions of zinc alloy. Starting from the identification of component/ benchmark, technological prototypes were produced at different shell thicknesses with three dimensional printing. The results of the study suggest that at the best shell wall thickness (7 mm for zinc alloys, the rapid casting solution is statistically controlled, which is not observed for all shell wall thicknesses of mould cavities prepared with three dimensional printing.

  16. Rapidly solidified hypereutectic Al-Si alloys prepared by powder hot extrusion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperature and elevated temperature were investigated by SEM fractography. Compared with KS282 casting material, the tensile strength of rapidly solidified Al-Si alloy is greatly improved due to silicon particles refining while its density and coefficient of thermal expansion are lower than those of KS282. The wear resistance of RS AlSi is better than that of KS282.

  17. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    Science.gov (United States)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  18. Formation Processes of Nanocomposite Strengthening Particles in Rapidly Quenched Al-Sc-Zr Alloys

    Directory of Open Access Journals (Sweden)

    A.V. Kotko

    2012-03-01

    Full Text Available Decomposition processes of supersaturated solid solution of aluminium alloys alloyed with Sc and Zr have been studied in the work. The binary hypereutectic Al-Sc alloys, hyperperitectic Al-Zr alloys and ternary Al-Sc-Zr alloys were chosen. Alloys were obtained by the melt-spinning. Melts were quenched from temperatures of Т = 1000 C and Т = 1400 ºC. The study of the structure of rapidly solidifyed binary Al alloys alloyed with Sc and Zr showed that the crystallization of anomalously supersaturated solid solution (Tquen. = 1400 ºC or the crystallization with the formation of "fan" structure (Tquen. = 1000 ºC are possible depending on the quenching temperature of the melt. The decomposition of anomalously supersaturated solid solution is continuous, with the precipitation of nano-sized spherical Al3X (X-Sc, Zr particles of L12-ordered phase which is isomorphous to matrix. It was found that the loss of thermal stability of Al-Sc alloys is due to the loss of coherence of the strengthening Al3Sc phase. In Al-Zr alloys the loss of strength is due to the formation of a stable tetragonal DO23-ordered A13Zr phase. After co-alloying of Al by Sc and Zr a bimodal grained structure was observed for the hypereutectic ternary alloy (Tquen. = 400ºC. Nano-sized grains of 50-60 nm were present on the boundaries of 1-2 µm large-sized grains. TEM shows the formation of nanocomposite Al3Zr/Al3Sc particles. The formation of Al3Zr shell changes the nature of the interfacial fit of the particle with the matrix and slows down the decomposition during the coalescence. Ternary Al-Sc-Zr alloys have significantly higher thermal stability during aging as compared to binary Al-Sc and Al-Zr alloys. Decomposition processes of supersaturated solid solution of aluminium alloys alloyed with Sc and Zr have been studied in the work. The binary hypereutectic Al-Sc alloys, hyperperitectic Al-Zr alloys and ternary Al-Sc-Zr alloys were chosen. Alloys were

  19. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. PMID:25491147

  20. Rapid Solidification Effects on the Development of an HCP Matrix in a Co-20Cr Alloy

    Science.gov (United States)

    Ramirez-Ledesma, A. L.; Lopez, H. F.; Juarez-Islas, J. A.

    2016-06-01

    In the present work, it is experimentally found that rapid solidification enhances significantly the γ-FCC → ɛ-HCP transformation by generating a high density of ɛ-martensite embryo nucleating defects in a Co-20Cr alloy. Conclusive evidence based on X-ray diffraction determinations combined with SEM and TEM observations indicates that the formation of athermal ɛ-martensite is strongly influenced by rapid solidification conditions ( i.e., up to 89.6 vol pct).

  1. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218. ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloys * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  2. Evolution of icosahedral clusters during the rapid solidification of liquid TiAl alloy

    International Nuclear Information System (INIS)

    The evolution characteristics of icosahedral clusters during the rapid solidification of TiAl alloy under different cooling rates are investigated based on molecular dynamics simulations. The short-range order structural properties of liquid and amorphous TiAl alloy are analyzed by several structural characterization methods. It is found that the cooling rate plays a key role during the evolution of icosahedral clusters and has significant effect on the glass transition temperature. Simultaneously, the medium-range order structural evolutions are described in detail by quantitative method and visualization technology during the rapid solidification. The results reveal that the medium-range order icosahedral clusters have good structural stability and configural continuity during the rapid cooling process. Furthermore, the icosahedral structures have significant improvements with decreasing cooling rate. The structures block the crystal nucleation and improve the glass forming ability of supercooled liquid.

  3. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al5Fe2, Al13F4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  4. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy.

    Science.gov (United States)

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. PMID:25686961

  5. Effects of partial crystallinity and quenched-in defects on corrosion of a rapidly solidified Ti–Cu alloy

    Indian Academy of Sciences (India)

    R S Dutta; G K Dey

    2003-08-01

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. partial crystallinity, air pockets and compositional difference in the ribbons of rapidly solidified Ti42.9-Cu57.1 alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly solidified Ti42.9-Cu57.1 alloy ribbons, electrochemical behaviour of alloy ribbons has been investigated in the acidic chloride environments at room temperature by taking into consideration each side of the alloy ribbon separately. The alloy displayed passivity followed by pitting corrosion. In the as-solidified condition, air pockets appear to be the most detrimental defect from the viewpoint of corrosion resistance of the alloy ribbons.

  6. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  7. Rapid solidification and phase stability evaluation of Ti-Si-B alloys

    International Nuclear Information System (INIS)

    Research highlights: → Rapid solidification of Ti-rich Ti-Si-B alloys promoted significant refinement of the microstructures. → Amorphous and amorphous with embedded nanocrystals have been observed after rapid solidification from specific alloy compositions. → The values of the crystallization temperature (Tx) of the alloys were in the 509-647 deg. C temperature range. → After Differential Scanning Calorimetry and High Temperature X-ray diffraction with synchrotron radiation, the alloys showed crystalline and basically formed by two or three of the following phases: αTi, Ti6Si2B; Ti5Si3; Ti3Si and TiB. → It has been shown the stability of the Ti3Si and Ti6Si2B phases at 700 deg. C and the proposition of an isothermal section at this temperature. - Abstract: Ti-rich Ti-Si-B alloys can be considered for structural applications at high temperatures (max. 700 deg. C), however, phase equilibria data is reported only for T = 1250 deg. C. Thus, in this work the phase stability of this system has been evaluated at 700 deg. C. In order to attain equilibrium conditions in shorter time, rapid solidified samples have been prepared and carefully characterized. The microstructural characterization of the produced materials were based on X-ray diffraction (XRD), scanning electron microscopy (SEM-BSE), high resolution transmission electron microscopy (HRTEM), High Temperature X-ray diffraction with Synchrotron radiation (XRDSR) and Differential Scanning Calorimetry (DSC). Amorphous and amorphous with embedded nanocrystals have been observed after rapid solidification from specific alloy compositions. The values of the crystallization temperature (Tx) of the alloys were in the 509-647 deg. C temperature range. After Differential Scanning Calorimetry and High Temperature X-ray Diffraction with Synchrotron radiation, the alloys showed crystalline and basically formed by two or three of the following phases: αTi, Ti6Si2B; Ti5Si3; Ti3Si and TiB. It has been shown the

  8. Model for calculation of microstructural development in rapidly directionally solidified immiscible alloys

    Institute of Scientific and Technical Information of China (English)

    赵九洲

    2002-01-01

    A model has been developed for the calculation of the microstructural evolution in a rapidly directionally solidified immiscible alloy. Numerical solutions have been performed for Al-Pb immiscible alloys. The results demonstrate that at a higher solidification velocity a constitutional supercooling region appears in front of the solid/liquid interface and the liquid-liquid decomposition takes place in this region. A higher solidification velocity leads to a higher nucleation rate and, therefore, a higher number density of the minority phase droplets. As a result, the average radius of droplets in the melt at the solid/liquid interface decreases with the solidification velocity.

  9. Analysis of damaging effects of laser-plasma accelerated shrapnels on protecting glass shield

    International Nuclear Information System (INIS)

    Analysis of the damage caused by laser plasma accelerated fragments of metal target was performed. Measured as well as calculated parameters of craters and shrapnel found in BK7 glass blast-shield are presented. Method applied for the measurement of parameters of craters is described. Potential damage of optical elements by the so-called striking cores (high-velocity stable objects arising due to collapse of cones or some other target parts toward their axes) that can be generated in IFE related experiments is evaluated. (authors)

  10. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  11. Glass-forming ability of Al-Co alloy under rapid annealing

    Science.gov (United States)

    Liu, Chengyan; Wang, Fei; Rao, Fengfei; Hou, Yasen; Wang, Songyou; Sun, Qiang; Jia, Yu

    2013-04-01

    By using molecular dynamics method, transition of Al-Co alloy from liquid to amorphous structure has been investigated theoretically. The structure parameters, pair distribution functions (PDF), bond-angle distribution functions, and Voronoi polyhedra analysis are adopted as indicators of the evolution of clusters in Al-Co alloy during the rapid cooling processes. We found that below transition temperature, the second peak of PDF curves splits into two pronounced subpeaks, while at all temperature the PDF curves gradually converge to unity at large distance. This indicates that the amorphous alloy exhibits local ordering structure and has no long-range ordering. Besides, the bond-angle distribution function predicts that the degrees in the vicinity of 63.4 and 113.4 are dominated in the system during the processes of rapid annealing, which represent that the icosahedral structures are dominant. Together with the cluster structures observed in simulation, Voronoi polyhedra analysis shows that the most popular polyhedron is full icosahedron with the Voronoi index , which is always predominant in bulk metallic glass (MG) formers with excellent glass forming ability. Our studies indicated that doping of cobalt atoms in the Al-based alloy should have a better capacity of forming MG.

  12. Elevated temperature mechanical properties of a rapidly solidified A1-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Dispersion strengthened Al alloys based on the Al-Fe-V-Si quartenary system have recently been developed using rapid solidification techniques. Rapid solidification techniques which resulted in the above mentioned alloys have also been used to manufacture another commercial alloy, FVS 1212, with 37 volume % of dispersoid. The alloy has shown excellent resistance to coarsening at high temperatures and to creep deformation. Elevated temperature exposure of FVS 1212, for times up to 100 hours, resulted in a significant loss in room temperature mechanical properties only beyond 500 degrees C while 1000 hours at 425 degrees C did not result in any degradation of mechanical but no detailed study of the tensile behavior of FVS 1212 at slow strain rates and elevated temperatures has been reported to date. This paper reports that the present study was undertaken to investigate the tensile behavior of FVS 1212 from room temperature to 400 degrees C at strain rates of 6.56 x 10-5/sec and 6.56 x 10-6/sec. The study focussed on dynamic strain aging effects and strain hardening behavior, while the effect of strain rate on the flow behavior at elevated temperatures was also evaluated

  13. Electronic properties and superconductivity of rapidly quenched Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chevrier, J.; Pavuna, D.; Cyrot-Lackmann, F.

    1987-12-15

    We present detailed studies of electronic properties of Al-Si alloys prepared in a nonequilibrium state by means of rapid solidification. The quenched alloys exhibit an enhanced superconducting transition temperature up to 6.2 K in an Al--Si 30 at. % alloy as well as an increased thermal slope of resistivity. Using differential scanning calorimetry, a large enthalpy variation (..delta..H = 4.1 kJ/mole for Al--Si 30 at. %) has been measured during the irreversible transition from the non- equilibrium state to the equilibrium one. This is mainly attributed to the energy difference between the metallic state of silicon atoms trapped in fcc aluminum matrix during quenching and the usual covalent state of silicon precipitates in an equilibrium state. This large energy difference is presented as the origin of a lattice instability which softens the phonon spectrum and gives rise to a stronger electron-phonon coupling. This appears to be a characteristic property of nonequilibrium Al-Si solid solutions, which is associated with the metallic state of silicon atoms. An interpretation of the T/sub c/ enhancement is proposed for both Al-Si and Al-Ge alloys based on the phonon softening in these nonequilibrium crystalline alloys.

  14. 57Fe NMR study of amorphous and rapidly quenched crystalline Fe-B alloys

    Science.gov (United States)

    Pokatilov, V. S.

    2009-01-01

    Amorphous and crystalline Fe-B alloys (5-25 at % B) were studied using pulsed 57Fe nuclear magneticr esonance at 4.2 K. The alloy samples were prepared from a mixture of the 57Fe and 10B isotopes by rapid quenching from the melt. In the microcrystalline Fe-(5-12 at %) B alloys, the resonance frequencies were measured for local states of 57Fe nuclei in the tetragonal and orthorhombic Fe3B phases and also in α-Fe. The resonance frequencies characteristic of 57Fe nuclei in α-Fe crystallites with substitutional impurity boron atoms in the nearest neighborhood were also revealed. In the resonance frequency distribution P( f) in the amorphous Fe-(18-25) at % B alloys, there are frequencies corresponding to local Fe atom states with short-range order of the tetragonal and orthorhombic Fe3B phases. As the boron content decreases below 18 at %, the P( f) distributions are shifted to higher frequencies corresponding to 57Fe NMR for atoms exhibiting a short-range order of the α-Fe type. The local magnetic structure of the amorphous Fe-B alloys is also considered.

  15. Structure and properties of rapidly solidified Al-Cr-Fe-Si powder alloys

    Czech Academy of Sciences Publication Activity Database

    Bártová, Barbora; Vojtěch, D.; Verner, J.; Gemperle, Antonín; Studnička, Václav

    2005-01-01

    Roč. 387, 1-2 (2005), s. 193-200. ISSN 0925-8388 Grant ostatní: VŠCHT(CZ) GA106/00/0571 Institutional research plan: CEZ:AV0Z10100520 Keywords : aluminium -based alloy * rapid solidification * quasi-ctrystalline phase * powder metalurgy * hardening Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.370, year: 2005

  16. Microstructure and mechanical properties of biomedical alloys produced by Rapid Manufacturing techniques

    OpenAIRE

    Facchini, Luca

    2010-01-01

    Rapid Manufacturing (RM) technologies as Electron Beam Melting (EBM) and Selective Laser Melting (SLM) are able to produce fully dense parts from pre-alloyed powders in a layer-wise way. Moreover, they are able to create tailored surfaces with interconnected porosity. Applied to biomedical prostheses, such porosity can favour cell adhesion and osteointegration. The most important intrinsic characteristic of RM techniques is the large undercooling the parts undergo during the process. This ...

  17. Grain growth in Al alloy conductors as a result of rapid annealing

    Science.gov (United States)

    Towner, Janet M.; van de Ven, Evert P.; Hopkins, Craig G.

    1984-01-01

    Aluminum and aluminum alloy thin films were rapidly annealed using high intensity visible light. Under suitable conditions, substantial grain growth was achieved in the Al-Cu and Al-Si-Cu conductors and this grain growth had a beneficial effect on electromigration. Unfortunately, this growth did not occur uniformily across the wafer. A second phenomenon, which resulted from thermal cycling, was the solid phase reduction of SiO2 by the overlying Al film.

  18. Microstructures and Mechanical Properties of Rapidly Solidified Mg-Al-Zn-MM Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mg-Al-Zn-MM (misch metal) alloy powders were manufactured by inert gas atomization and the characteristics of alloy powders were investigated. In spite of the low fluidity and easy oxidation of the magnesium melt, the spherical powder was made successfully with the improved three piece nozzle systems of gas atomization unit.It was found that most of the solidified powders with particles size of less than 50 μm in diameter were single crystal and the solidification structure of rapidly solidified powders showed a typical dendritic morphology because of supercooling prior to nucleation. The spacing of secondary denrite arms was deceasing as the size of powders was decreasing. The rapidly solidified powders were consolidated by vacuum hot extrusion and the effects of misch metal addition to AZ91 on mechanical properties of extruded bars were also examined. During extrusion of the rapidly solidified powders, their dendritic structure was broken into fragments and remained as grains of about 3μm in size. The Mg-Al-Ce intermetallic compounds formed in the interdendritic regions of powders were finely broken, too. The tensile strength and ductility obtained in as-extruded Mg-9 wt pct Al-1 wt pct Zn-3 wt pct MM alloy were σT.S. =383 MPa and ε=10.6%, respectively. All of these improvements on mechanical properties were resulted from the refined microstructure and second-phase dispersions.

  19. Effects of rapid quenching on structure and cycle stability of La-Mg-Ni-Co type hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    DONG Xiaoping; Lü Fanxiu; ZHANG Yanghuan; YANG Liying; FENG Meng; WANG Xinlin

    2006-01-01

    In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investigated. The obtained results show that the La2Mg(Ni0.85Co0.15)9M0.1 (M=B, Cr) alloy electrodes are composed of (La, Mg)Ni3 phase, LaNi5 phase and a small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast MB alloy, and the Ni2B phase in the alloy nearly disappears after rapid quenching. Rapid quenching technology can slightly improve the cycling life of the alloy. When the quenching rate increases from 0 m·s -1 (As-cast is defined as quenching rate of 0 m·s-1 ) to 30 m·s -1 , the cycle lives of the MB, M Cr alloys enhance from 86 and 87 cycles to 106 and 119 cycles, respectively. On the other hand, the average capacity decay rates of the MB, M Cr alloys decrease from 1.7172 and 1.7178 mAh·g-1·cycle-1 to 1.5751 and 1.3060 mAh·g-1·cycle-1 after 86 charge-discharges cycling, respectively.

  20. Rapid and direct determination of percentage tungsten in tantalum-10% tungsten alloy by Wavelength Dispersive X-Ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    A method for rapid and direct determination of percentage tungsten in tungsten-tantalum alloy by Wavelength Dispersive X-Ray Fluorescence Spectrometry has been developed for the routine determination of tungsten in tantalum-10% tungsten alloy samples. A RSD of < 1% is obtained in the technique. (author)

  1. Half-metallic Ni{sub 2}MnSn Heusler alloy prepared by rapid quenching

    Energy Technology Data Exchange (ETDEWEB)

    Nazmunnahar, M. [Departamento de Física de Materiales, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián (Spain); Ryba, T. [Faculty of Science, UPJS, Park Angelinum 9, 04154 Košice (Slovakia); Val, J.J. del; Ipatov, M.; González, J. [Departamento de Física de Materiales, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián (Spain); Hašková, V.; Szabó, P.; Samuely, P. [Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences & P.J.Šafárik University, Watsonova 47, SK-04001 Košice (Slovakia); Kravcak, J. [Department of Physics, FEEI, Technical University of Kosice, Kosice (Slovakia); Vargova, Z. [Faculty of Science, UPJS, Park Angelinum 9, 04154 Košice (Slovakia); Varga, R., E-mail: rvarga@upjs.sk [Faculty of Science, UPJS, Park Angelinum 9, 04154 Košice (Slovakia)

    2015-07-15

    We have employed melt-spinning method to produce Ni{sub 2}MnSn-based half-metallic Heusler alloy. It allows fast and simple production of large amount of materials in a single production step avoiding high temperature post-production annealing. Microstructural, magnetic and spin polarization study of Ni{sub 2}MnSn ribbon is used for characterization. SEM analysis reveals the polycrystalline structure with the columnar crystals grown perpendicularly to the ribbon plane. A single-phase austenite with L2{sub 1} structure was confirmed by X-ray. Magnetic measurements shows the ordinary ferromagnetic behavior with Curie temperature 344 K and magnetic moment 4.08 µ{sub B}/f.u. Particular crystal structure leads to the well defined anisotropy having an easy plane in the ribbon's plane. Finally, the spin polarization parameter P{sub 0} estimated by Point-Contact Andreev-reflection Spectroscopy is varying in the range 40–70% for Ni{sub 2}MnSn which is comparable with other values reported earlier for other Heusler alloys. - Highlights: • Rapid quenching method was employed to produce half-metallic Ni{sub 2}MnSn Heusler alloy. • Single crystalline L2{sub 1} phase with well-defined anisotropy direction was obtained. • Ni{sub 2}MnSn prepared by rapid quenching method exhibit high spin polarization up to 70%.

  2. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions

    International Nuclear Information System (INIS)

    In this study, the formation mechanism of polyhedron clusters in Cu50Ag50 binary alloy system consisting of 50 000 atoms has been investigated by using molecular dynamics simulations based on embedded atom method (EAM) during the rapid cooling processes. The cluster-type index method (CTIM) has been used to describe the evaluation properties of clusters and the structural development has been investigated by using radial distribution function (RDF). The simulation results show that the amorphous phase is formed by the main bonded pairs of 1551, 1541 and 1431 in the system, and ideal icosahedral (icos) cluster (12 0 12 0) and other basic polyhedron clusters, such as defective icos, Frank–Kasper, Bernal polyhedron, play a critical role under the rapid cooling conditions. The results of our simulations that have been disclosed show that high cooling rate favors the icos and defective icos clusters for model alloy system. - Highlights: • The different polyhedron types are determined of model alloy system for different cooling rates. • FK and Bernal polyhedrons have been increased with increasing cooling rate. • HA pair analysis method has been analyzed in order to detect icosahedral order

  3. Microstructure Properties of Rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Ahmed

    2014-01-01

    Full Text Available The Rietveld X-ray diffraction analysis was applied to analyze the weight fraction of precipitation phases and microstructure characterizations of rapidly solidified Al-8Zn-4Mg-xCu, x = 1, 4, 8, and 10 alloys (in wt.%, prepared by melt spun technique. A good agreement between observed and calculated diffraction pattern was obtained and the conventional Rietveld factors (Rp, Rwp, and GOF converged to satisfactory values. Solid solubilities of Zn, Mg, and Cu in α-Al were extended to high values. Besides, metastable Al0.71Zn0.29, intermetallic Al2CuMg, Al2Cu, and CuMgZn phases have been observed for x = 4, 8, and 10 Cu alloys. The crystal structure and microstructure characterizations exhibit strong Cu content dependence.

  4. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  5. Liquid phase separation of Cu-Cr alloys during rapid cooling

    Institute of Scientific and Technical Information of China (English)

    SUN Zhan-bo; WANG You-hong; GUO Juan

    2006-01-01

    The ribbons of Cu-Cr alloys with high Cr content (15%-35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmission electron microscopy. The results reveal that a representative liquid phase separation microstructures are observed in Cu75Cr25 ribbons solidified at a cooling rate of about 104 K/s. The liquid phase separation is not restrained when the cooling rate is enhanced to about 107 K/s. However, the size of Cr particles solidified from Cr-rich liquid or Cr-rich regions in alloy melts could be refined by increasing the cooling rates. The size of Cr particles increases with increasing Cr contents when the ribbons contain 15% to 35%Cr.

  6. Design and Analysis of Test Schemes of Static Postponing Time on Shrapnels Used to Riot Control

    Institute of Scientific and Technical Information of China (English)

    SHAN Yong-hai; MIN Bi-bo; SUN Guo-ju

    2006-01-01

    The test scheme of static postponing time given in our actual national military test standard on shrapnels used to control riot is a nine-point test scheme on the combined action of three kinds of temperatures and three kinds of pressures,the consumed ammunitions are more excessive. Statistic analysis and tentative checkout about a lot of test data are done,feasibility gists are put forward for optimizing of the test design scheme. The optimizing design and data analysis of test scheme of the item are done by managing uniformity design theory, two scientific and reasonable six-point test schemes are confirmed. The feasibility and reliability of the optimizing design schemes put forward above are proved ulteriorly by test validating. The gained schemes not only have good design uniformity and little ammunition wastage and meet the test demand, but also have better forecast ability for the result data of other points using the mathematic models from the actual test points.

  7. Undercooling and rapid solidification of Nb-Si eutectic alloys studied by long drop tube

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ren; DONG Shu-yong; WEI Bing-chen; LI Wei-huo

    2006-01-01

    Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 m drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.

  8. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhao, Shuang; Pan, Hucheng; Song, Kai [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-09-01

    In this study, biodegradable Mg–Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg–1Sn alloy was almost equiaxed grain, while the Mg–Sn alloys with higher Sn content (Sn ≥ 3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg–Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg{sub 2}Sn phase, and the amount of Mg{sub 2}Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg–Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg–1Sn and Mg–3Sn alloys were promising to be used as biodegradable implants. - Highlights: • Biodegradable Mg–Sn implant alloys were prepared by sub-rapid solidification. • Secondary dendrite arm spacing of alloys decreased with increasing Sn content. • Corrosion rates of alloys increased significantly with increasing Sn content. • Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells.

  9. High undercooling and rapid dendritic growth of Cu-Sb alloy in drop tube

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 TL) is obtained in experiment. Theoretic analysis indicated that, because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is (T0 = 474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.

  10. Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion

    International Nuclear Information System (INIS)

    Research highlights: → The strength of fine-grained WHAs is as high as 1570 MPa after rapid hot extrusion. → Plastic deformation of fine-grained WHAs during rapid hot extrusion is uniform. → Slight dynamic recovery-recrystallization process occurred during hot extrusion. → Fine grains and reserved numerous dislocations contribute to the high strength. - Abstract: One-pass rapid hot extrusion of fine-grained 93W-4.9Ni-2.1Fe-0.03Y (wt.%) alloy with an average grain size of ∼10 μm was performed at 1150 deg. C with an extrusion speed of ∼100 mm/s and an extrusion ratio of ∼3.33:1. Microstructure and mechanical properties of the as-extruded alloy were investigated. The results show that the tungsten particles of the as-extruded alloy are severely elongated along the extrusion direction and the aspect ratios of these elongated particles are 5-8. Three crystallographic textures {0 0 1}, {1 1 1} and {1 1 0} arose after rapid hot extrusion and the total volume fraction of these texture components was approximately 30%. Many lath-shaped subgrains with a small misorientation and low density dislocations could be observed in tungsten phase and γ-(Ni, Fe) phase respectively. These microstructure characteristics indicate that slight dynamic recovery-recrystallization process occurred during rapid hot extrusion. In contrast to as-sintered alloy, the as-extruded alloy possessed much higher ultimate tensile strength and hardness (HRC) but a relatively lower ductility (1570 MPa vs. 995 MPa; HRC48 vs. HRC29 and 6.5% vs. 24%). In addition, the fracture morphology shows that the predominant failure mode for the as-extruded alloy is cleavage failure of the tungsten particles, while the ductile rupture of the γ-(Ni, Fe) phase that can be frequently observed in the as-sintered alloy nearly disappeared after rapid hot extrusion.

  11. Rapid purification of hydrogen isotope gas by palladium alloy membrane separator

    International Nuclear Information System (INIS)

    Efficient and rapid purification of hydrogen isotopes is one of the core technologies of deuterium-tritium fuel cycle in fusion reactor. Applying this technology during operation, not only can a large amount of unreacted (also called unburned) deuterium/tritium gas be cyclic utilized, but the environmental release amount of tritium can also be controlled efficiently. In this paper, a fast purification of hydrogen isotope gas was carried out via a device employing spiral palladium-yttrium alloy tube as its core component. The result indicated that under different temperatures and pressures, the overall leakage rate was down to less than 1.5 x 10-9 Pa.m3.s-1, the recovery rate for hydrogen isotopes of low content was up to more than 99%, and the daily processing capacity had approximately a tenfold increase to 20 ml comparing with the conventional straight palladium alloy tube. The fundamental solution was achieved on the rapid removal of tiny amount of 3He gas in a large batch of hydrogen isotope gas thus the significant increase was also acquired on the purification capacity for hydrogen isotopes. (author)

  12. Microstructure and Mechanical Properties of a Novel Rapidly Solidified, High-Temperature Al-Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Mathaudhu, Suveen; Choi, Jung-Pyung; Roosendaal, Timothy J.; Pitman, Stan G.

    2016-02-12

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe11.4Si1.8V1.6Mn0.9 (wt. %), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1-0.25µm whereas branching in the shot material was 0.5-1.0µm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300°C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2MPa at room temperature and 298.0MPa at 300°C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures.

  13. Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys

    Science.gov (United States)

    Kamal, Mustafa; El-Bediwi, A.; Lashin, A. R.; El-Zarka, A. H.

    2016-05-01

    In this paper, we study the room-temperature indentation creep and the mechanical properties of Sn-Sb-Pb-Cu alloys. Rapid solidification from melt using the melt-spinning technique is applied to prepare all the alloys. The experimental results show that the magnitude of the creep displacement increases with the increase in both time and applied load, and the stress exponent increases with the increase in the copper content in the alloys which happens primarily due to the existence of the intermetallic compounds SbSn and Cu6Sn5. The calculated values of the stress exponent are in the range of 2.82 to 5.16, which are in good agreement with the values reported for the Sn-Sb-Pb-Cu alloys. We have also studied and analyzed the structure, elastic modulus, and internal friction of the Sn-Sb-Pb-Cu alloys.

  14. Redistribution associate impurity by annealing of rapidly solidified Al-Fe alloys studied by means of rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    The associate antimony-impurity distribution in rapidly solidified Al-Fe alloy foils has been investigated. It was determinate by Rutherford backscattering spectroscopy technique that the antimony distribution in Al-Fe alloys is irregular. The antimony concentration at the foil surface (0.04 μm) is increased reaching 0.2 at. % by annealing at 140 0C - 500 0C temperature range

  15. Rapidly quenched TiNiCo alloys with shape memory effect: 1. Martensitic transformations and mechanical properties

    International Nuclear Information System (INIS)

    Using a rapid quenching from the molten state the shape memory alloys of TiNi-TiCo quasibinary system are synthesized. Methods of X-ray diffraction analysis, measurements of resistivity and magnetic susceptibility, mechanical testing in the temperature range of 4.2-400 K are applied to study phase transformations, lattice parameters, long-range order parameters and physicomechanical properties of the alloys depending on cobalt concentration. Experiments on thermal cycling allow to reveal a spontaneous reverse shape memory effect, associated with B2-austenite texture, the latter, in its turn, is responsible for crystallographic orientation of martensitic transformations in the alloys on cooling, deformation and subsequent thermal cycling

  16. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes

    International Nuclear Information System (INIS)

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg–6%Nd–2%Y–0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. - Highlights: • Here we have evaluated the corrosion resistance of a novel Mg alloy (EW62). • Rapid solidification reduces the hydrogen gas evolution and hydrogen embrittlement. • Rapid solidification increases the stress corrosion cracking resistance of EW62. • Improvement is due to enrichment with supersaturated Nd in the external oxide film. • Rapidly solidified and extruded EW62 may serve as a biodegradable medical implant

  17. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, O.; Aghion, E. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Goldman, J., E-mail: jgoldman@mtu.edu [Biomedical Engineering Department, Michigan Technological University, Houghton, MI, 49931 (United States)

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg–6%Nd–2%Y–0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd{sub 2}O{sub 3} content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. - Highlights: • Here we have evaluated the corrosion resistance of a novel Mg alloy (EW62). • Rapid solidification reduces the hydrogen gas evolution and hydrogen embrittlement. • Rapid solidification increases the stress corrosion cracking resistance of EW62. • Improvement is due to enrichment with supersaturated Nd in the external oxide film. • Rapidly solidified and extruded EW62 may serve as a biodegradable medical implant.

  18. Recrystallisation in a cold drawn low cost beta titanium alloy during rapid resistance heating

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2519 (Australia); Vu, Viet Q.; Saleh, Ahmed A. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Markovsky, Pavlo E.; Ivasishin, Orest M. [Institute for Metal Physics, National Academy of Sciences Ukraine, UA-03142 Kiev (Ukraine); Davies, Christopher H.J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria 3800 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2519 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-02-05

    Highlights: • First EBSD study of cold drawn and rapid annealed LCB-Ti. • Maps are deconstructed into deformed, recovered, newly nucleated and growing grains. • Specific interfacial areas calculate apparent growth rates and activation energy. • The solute drag effect during grain growth is quantified. • Discontinuous and continuous recrystallization varies with cold drawing reduction. -- Abstract: The microstructure and micro-texture evolution in an 80% and 90% cold drawn LCB-Ti alloy subjected to rapid annealing was analysed via electron back-scattering diffraction. The partially recrystallised microstructures were deconstructed into four fractions comprising deformed, recovered, newly nucleated and growing grains. The specific interfacial areas of the various recrystallisation fronts were used to estimate the activation energy for boundary migration. It is inferred that diffusion controlled boundary migration is operational during rapid heating as the apparent activation energies for the deformed–recrystallised interfaces are close to the activation energy for the self-diffusion of β-Ti. Compared to the newly nucleated grains, the increase in the apparent activation energy of the growing grains suggests solute drag effects during the growth stage. The recrystallisation micro-textures of both cold drawn reductions exhibit varying extents of high and low energy discontinuous recrystallisation and continuous recrystallisation.

  19. Recrystallisation in a cold drawn low cost beta titanium alloy during rapid resistance heating

    International Nuclear Information System (INIS)

    Highlights: • First EBSD study of cold drawn and rapid annealed LCB-Ti. • Maps are deconstructed into deformed, recovered, newly nucleated and growing grains. • Specific interfacial areas calculate apparent growth rates and activation energy. • The solute drag effect during grain growth is quantified. • Discontinuous and continuous recrystallization varies with cold drawing reduction. -- Abstract: The microstructure and micro-texture evolution in an 80% and 90% cold drawn LCB-Ti alloy subjected to rapid annealing was analysed via electron back-scattering diffraction. The partially recrystallised microstructures were deconstructed into four fractions comprising deformed, recovered, newly nucleated and growing grains. The specific interfacial areas of the various recrystallisation fronts were used to estimate the activation energy for boundary migration. It is inferred that diffusion controlled boundary migration is operational during rapid heating as the apparent activation energies for the deformed–recrystallised interfaces are close to the activation energy for the self-diffusion of β-Ti. Compared to the newly nucleated grains, the increase in the apparent activation energy of the growing grains suggests solute drag effects during the growth stage. The recrystallisation micro-textures of both cold drawn reductions exhibit varying extents of high and low energy discontinuous recrystallisation and continuous recrystallisation

  20. Energy-storage Welding Connection Characteristics of Rapid Solidification AZ91D Mg Alloy Ribbons

    Institute of Scientific and Technical Information of China (English)

    Jinfeng XU; Qiuya ZHAI; Sen YUAN

    2004-01-01

    Energy-storage welding connection characteristics of rapidly solidified AZ91D Mg alloy ribbons with 40~70 μm thickness are investigated using a microtype energy-storage welding machine. The microstructure and performance of the connection joints are analyzed and studied. The research results indicate that energy-storage welding is able to realize the spot welding connection of AZ9lD Mg alloy ribbons. The welding nugget consists of developed α-Mg equiaxed grains with the sizes of 1.2~2.7 μm and intergranular distributed β-Mg17Al12 compounds. The thickness of bond zone is about 4 μm and the solidification microstructure is characterized by the fine equiaxed grains with the sizes of 0.8~1.2μm, and grain boundary has become coarsening. The columnar crystal in HAZ also becomes slightly coarsening and the grain boundary has broadened,however, there is no obvious change in its primitive morphology and crystallographic direction. When welding energy is about 2.0 J, the welding joints with higher shear strength and smaller electrical resistivity are obtained.

  1. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    DAI FuPing; CAO ChongDe; WEI BingBo

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) droplets with the same size.

  2. Phase-field modelling of rapid solidification in alloy systems: Spontaneous grain refinement effects

    Science.gov (United States)

    Mullis, A. M.

    2012-07-01

    Phase-field modelling of rapid alloy solidification, in which the rejection of latent heat from the growing solid cannot be ignored, has lagged significantly behind the modelling of conventional casting practises which can be approximated as isothermal. This is in large part due to the fact that if realistic materials properties are adopted the ratio of the thermal to solute diffusivity (the Lewis number) is typically 103 - 104, leading to severe multi-scale problems. However, use of state-of-the-art numerical techniques such as local mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver allow these difficulties to be overcome. Here we describe how the application of this model, formulated in the thin-interface limit, can help to explain the long-standing phenomenon of spontaneous grain refinement in deeply undercooled melts. We find that at intermediate undercoolings the operating point parameter, σ*, may collapse to zero, resulting in the growth of non-dendritic morphologies such as doublons and 'dendritic seaweed'. Further increases in undercooling then lead to the re-establishment of stable dendritic growth. We postulate that remelting of such seaweed structures gives rise to the low undercooling instance of grain refinement observed in alloys.

  3. Phase-field modelling of rapid solidification in alloy systems: Spontaneous grain refinement effects

    International Nuclear Information System (INIS)

    Phase-field modelling of rapid alloy solidification, in which the rejection of latent heat from the growing solid cannot be ignored, has lagged significantly behind the modelling of conventional casting practises which can be approximated as isothermal. This is in large part due to the fact that if realistic materials properties are adopted the ratio of the thermal to solute diffusivity (the Lewis number) is typically 103 - 104, leading to severe multi-scale problems. However, use of state-of-the-art numerical techniques such as local mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver allow these difficulties to be overcome. Here we describe how the application of this model, formulated in the thin-interface limit, can help to explain the long-standing phenomenon of spontaneous grain refinement in deeply undercooled melts. We find that at intermediate undercoolings the operating point parameter, σ*, may collapse to zero, resulting in the growth of non-dendritic morphologies such as doublons and 'dendritic seaweed'. Further increases in undercooling then lead to the re-establishment of stable dendritic growth. We postulate that remelting of such seaweed structures gives rise to the low undercooling instance of grain refinement observed in alloys.

  4. Containerless processing and rapid solidification of Nb-Si alloys of hypereutectic composition

    Science.gov (United States)

    Hofmeister, W. H.; Bayuzick, R. J.; Robinson, M. B.; Bertero, G. A.

    1991-01-01

    A combination of bulk undercooling in an electromagnetic levitation apparatus and splat quenching between two copper plates is used to process Nb-Si alloys in order to maximize rapid solidification conditions and minimize the effects of recalescence, with emphasis on the solidification of characteristics of alloys in the 21 to 27 at. pct Si range of composition. SEM and TEM as well as X-ray diffraction are used to characterize the microstructures of the processed samples. In the range of compositions studied, the splat-quenched drops always formed the tetragonal Nb3Si phase directly from the liquid. Drops solidified in the coil were characterized by the presence of the primary intermetallic Nb5Si3 and the absence of both peritectic Nb3Si and the equilibrium eutectic. In these cases, a metastable alpha-Nb + beta-Nb5Si3 eutectic formed. The results are discussed in terms of possible metastable configurations of the Nb-Si phase diagram as well as concepts of nucleation and growth kinetics applied to the Nb3Si and Nb5Si3 intermetallics.

  5. Effect of Rapid Quenching on Electrochemical Properties of AB5 and AB3.5-Type Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Ping; Zheng Xueping; An Fuqiang; Islam S. Humail; Qu Xuanhui

    2007-01-01

    Effect of rapid quenching on the electrochemical properties of AB5 and AB3.5-type hydrogen storage alloys was studied. The results indicated that the discharge capacities of the rapid quenching MmNi3.55 Co0.75 Mn0.4Al0.3 alloys decrease under 25 and -35℃ with the increase of the quenching rate. Comparatively, the decrease extent of the quenching alloys at -35℃ is lower than that at 25℃. The result on the study of the cycle life indicated that the quenching process was favorable to improve the cycle stabilities of the MmNi3.55Co0.75-Mn0.4Al0.3alloys under 25 and -35℃. Whereas, the effect of the quenching process on the La0.7Mg0.3(Ni0.85Co0.15)3.5 alloy was different at 25℃ from at -35℃. Under 25℃, the cycle life of the alloy was obviously improved by the quenching process, however, the quenching process did not improve but decreased slightly the cycle life at -35℃.

  6. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercool- ings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  7. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid

  8. Magnetic and transport properties of Cu{sub 2}MnAl Heusler alloy prepared by rapidly quenched method

    Energy Technology Data Exchange (ETDEWEB)

    Bo Bang [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Nguyen Huy Dan [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam)]. E-mail: dannh@ims.vast.ac.vn; Nguyen Anh Tuan [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Nguyen Xuan Phuc [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam)

    2007-03-15

    The Cu{sub 2}MnAl alloy was prepared by rapidly quenched (suction-casting and melt-spinning) methods with various thicknesses of 20, 40 and 1000 {mu}m. The X-ray diffraction (XRD) patterns of the fabricated samples show a single phase of Cu{sub 2}MnAl. All the samples reveal soft magnetic behavior with coercivity below 1.6 kA/m and Curie temperature of about 600 K. Resistance of the alloy behaves as a linear function of applied magnetic field. Magnetoresistance (MR) ratio depends on the thickness of the samples and achieves {approx}0.8% at the field of 240 kA/m for the sample with thickness of 20 {mu}m. The variation of the properties of the alloy can be interpreted by the difference of energy band structure caused by defects in the alloy.

  9. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhao, Shuang; Pan, Hucheng; Song, Kai; Tang, Aitao

    2015-09-01

    In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants. PMID:26046288

  10. Mechanical properties of equal channel angular pressed powder extrudates of a rapidly solidified hypereutectic Al-20 wt% Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Chae [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of); Hong, Soon-Jik [Division of Advanced Engineering, Kongju National University, Kongju, 314-701 (Korea, Republic of); Korean Atomic Energy Research Institute, Yuseoung, Daejeon 305-353 (Korea, Republic of); Hong, Sun Ig [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of); Kim, Hyoung Seop [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of)], E-Mail: hskim@cnu.ac.kr

    2007-03-25

    The processing and mechanical properties of rapidly solidified and consolidated hypereutectic Al-20 wt% Si alloys were studied. A bulk form of rapidly solidified Al-20 wt% Si alloy was prepared by extruding gas atomized powders having a powder size of 106-145 {mu}m. Powder extrudates were subsequently equal channel angular pressed up to eight repetitive route C passes to refine matrix microstructure and Si particles by imposing severe plastic deformation. The microstructures of the gas atomized powders, extrudates and equal channel angular pressed samples were investigated via a scanning electron microscope. The mechanical properties of the bulk samples were measured by compressive tests. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength of the Al-20 wt% Si alloy without deteriorating ductility in a range of experimental strain of up to 30%.

  11. The effects of rapid solidification on microstructure and hydrogen sorption properties of binary BCC Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Suwarno, S., E-mail: S.Suwarno@uu.nl [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Solberg, J.K. [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Maehlen, J.P. [Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller (Norway); Krogh, B. [Statoil ASA Research Centre, Rotvoll, NO-7005, Trondheim (Norway); Yartys, V.A. [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller (Norway)

    2014-01-05

    Highlights: • Effect of quenching rate and Ti/V ratio on the phase-structural composition. • Grain size refinement in the rapidly solidified Ti–V alloys. • Hydrogen storage properties of rapidly solidified binary Ti–V. • Mechanism of phase transformations in the hydrides of the RS Ti–V alloys. -- Abstract: The main purpose of the present work was to study the effect of rapid solidification (RS) on the microstructure and hydrogen storage properties of body centred cubic (BCC) Ti rich Ti–V alloys (Ti{sub 1−x}V{sub x}, x = 0.1–0.3). Ribbons were prepared by melt spinning at spinner rotation velocities of 1000–3000 rpm. Ribbon morphology and microstructure were found to depend on the vanadium content and spinner velocity. For Ti{sub 0.8}V{sub 0.2}, the relation between the ribbon thickness and velocity can be expressed as a power law function, indicating that, during solidification of the Ti–V ribbons, heat transfer at the interface between spinner and ribbon controls the heat extraction. Temperature desorption spectroscopy (TDS) and in situ synchrotron (SR-XRD) studies of the RS alloys showed that hydrogen desorption from the RS alloy hydrides occurred at lower temperatures than from the as cast alloys. RS caused a microscale chemical element separation in the alloys, which depends on the vanadium content and the spinner velocity. In addition, ribbon recalescence was observed to cause nanoscale chemical redistribution trough spinodal decomposition. These two last features were proposed to be the reasons for the observed thermal destabilisation.

  12. Metastable phase separation and rapid solidification of undercooled Co-Cu alloy under different conditions

    Institute of Scientific and Technical Information of China (English)

    Cao Chong-De

    2006-01-01

    The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing,electromagnetic levitation (EML) and drop tube techniques.It is found that the liquid phase separation process and the solidification microstructures intensively depend on the experimental processing parameters,such as undercooling level,cooling rate,gravity level,liquid surface tension and the wetting state of crucible.Large undercooling and surface tension difference of the two liquids tend to facilitate further separation and cause severe macrosegregation.On the other hand,rapid cooling and low gravity effectively suppress the coalescence of the minority phase.Severe macrosegregation patterns are formed in the bulk samples processed by both DTA and EML.In contrast,disperse structures with fine spherical Cu-rich spheres homogeneously distributed in the matrix of Co-rich phase have been obtained in drop tube.

  13. [Bullet and shrapnel injuries in the face and neck regions. Current aspects of wound ballistics].

    Science.gov (United States)

    Hauer, T; Huschitt, N; Kulla, M; Kneubuehl, B; Willy, C

    2011-08-01

    A basic understanding of the ballistic behaviour of projectiles or fragments after entering the human body is essential for the head and neck surgeon in the military environment in order to anticipate the diagnostic and therapeutic consequences of this type of injury. Although a large number of factors influence the missile in flight and after penetration of the body, the most important factor is the amount of energy transmitted to the tissue. Long guns (rifles or shotguns) have a much higher muzzle energy compared to handguns, explaining why the remote effects beyond the bullet track play a major role. While most full metal jacket bullets release their energy after 12-20 cm (depending on the calibre), soft point bullets release their energy immediately after entry into the human body. This results in a major difference in extremity wounds, but not so much in injuries with long bullet paths (e.g. diagonal shots). Shrapnel wounds are usually produced with similarly high kinetic energy to those caused by hand- and long guns. However, fragments tend to dissipate the entire amount of energy within the body, which increases the degree of tissue disruption. Of all relevant injuries in the head and neck region, soft tissue injuries make up the largest proportion (60%), while injuries to the face are seen three times more often than injuries to the neck. Concomitant intracranial or spinal injury is seen in 30% of cases. Due to high levels of wound contamination, the infection rate is approximately 15%, often associated with a complicated and/or multiresistant spectrum of germs. PMID:21833833

  14. Analysis of the damaging effect of laser-plasma accelerated shrapnels on the optical shield

    International Nuclear Information System (INIS)

    The practical implementation of the laser ignited thermonuclear fusion brings also the whole variety of technical challenges which have to be solved in foreseeable future in order to implement new scale fusion facilities operating in high-rep regime (and not only for them). One of these tasks represent a problem related to the shielding of the final optics and other vulnerable equipment placed inside the interaction chamber[1,2,3] in the case when solid targets (hohlraums, fast ignition targets with cones, and others) are irradiated by high-energy lasers, producing plasma and vapors which can split target into fragments and accelerate the non-evaporated parts to velocities a few folds of km/s and even more (achieving a hyper-velocities over 10 km/s, corresponding to the velocities of the space-debris micro-particles). This way accelerated particles (generally in range from few tens or hundred milligrams to several micrograms) can reach energies capable to destroy a glass plate made of Fused Silica, BK7, or similar kinds of crown glasses up to several millimeters thickness. This may result in serious damage or even destruction of the diagnostic and optical components located in the path of the shrapnel or other objects with similar possible damaging effect[3]. In this contribution a recent analysis of the laser-plasma accelerated fragments originated from Cu target irradiated by the Prague Asterix Laser System (PALS) first harmonics (1315 nm) with pulse duration 350 ps and energy 605 J, as well as the examination of the parameters of target fragments and the level of the damage of the final optical shield will be presented. (author)

  15. Characterization of Rapidly Solidified Al-27 Si Hypereutectic Alloy: Effect of Solidification Condition

    Science.gov (United States)

    Cai, Zhiyong; Wang, Richu; Zhang, Chun; Peng, Chaoqun; Xie, Lichuan; Wang, Linqian

    2015-03-01

    Rapidly solidified Al-27wt.%Si hypereutectic alloy was fabricated by gas atomization, and its characterization as a function of particle size was investigated. A relationship between the particle size and solidification condition was established to understand the microstructural characteristics. While the irregular primary Si phase transformed to quasi-spherical shape, and its size decreased gradually with the particle size, the primary Si morphology similar to that in ingot metallurgy sample was found from the deep-etched images. In the fine powder, the eutectic Si phase formed a network structure densely distributed in the matrix, while a tangled dendritic formed at the surface. From the distribution of the Si phase, it is suggested that the microstructure inhomogeneity increased as the particle size decreases. The structural distortion of the Al matrix was observed from x-ray diffraction patterns and differential scanning calorimetry curves. From the calculated results, an undercooling of 33 K (or interface velocity of 8 mm/s) was sufficient to suppress the primary Si to less than 2 μm in the present composition. The microhardness increased significantly while the particle size decreases. The microstructure and properties of the bulk material consolidated by hot pressing of the powders obtained were also conducted.

  16. Rapid spectrophotometric determination of palladium in titanium alloys with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol.

    Science.gov (United States)

    Po, C Y; Nan, Z

    1986-12-01

    A rapid spectrophotometric method for the determination of Pd in titanium alloys is proposed. It is based on the reaction of 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol with Pd(II) in a sulphuric acid medium in the presence of ethanol. Beer's law is obeyed up to 40 mug of Pd. The molar absorptivity is 4.5 x 10(4) 1.mole(-1).cm(-1). The standard deviation is 0.3 mug of Pd and the coefficient of variation varies from 0.8 to 3.3%. The elements ordinarily present in such alloys do not interfere. High selectivity is achieved by using fluoroboric acid as masking agent. Improvements in the method of sample decomposition also contribute to the rapidity of the method. PMID:18964235

  17. Rapidly solidified shape-memory TiNiCo alloys: 2. Microstructure

    International Nuclear Information System (INIS)

    In a wide temperature range the first studies of microstructure and phase composition in shape memory TiNi-TiCo alloys produced by ultra high-speed melt spinning (HSMS) are carried out using methods of transmission electron microscopy and electron diffraction analysis. In the initial high temperature state the alloys are revealed to be homogeneous B2-TiNi base solid solutions. On cooling the alloys experience two-stage martensitic transformation B2→R→B19'. It is shown that HSMS alloys possess high mechanical properties and exhibit single and reversible shape memory effects

  18. Phase composition, structure and magnetic behaviour of low neodymium rapid-quenched Nd-Fe-B alloys

    Czech Academy of Sciences Publication Activity Database

    Ćosović, V.; Žák, Tomáš; Talijan, N.; Grujić, A.; Stajić-Trošić, J.

    2008-01-01

    Roč. 456, 1-2 (2008), s. 251-256. ISSN 0925-8388 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : multiphase Nd(Pr)-Fe-B alloys * rapid solidification * magnetic measurements * Mossbauer spectroscopy * X-ray diffraction * Nanocrystalline composite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  19. MICROSTRUCTURE OF Mg-6.4Zn-1.1Y ALLOY FABRICATED BY RAPID SOLIDIFICATION AND RECIPROCATING EXTRUSION

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhang; C.J. Xu; X.F. Guo

    2008-01-01

    In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60 um were obtained by a melt spinning single-roller device, and the flakes were then processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-1.1Y alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in a-Mg solute solution, and impede the formation of Mg3 Y2 Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3 YZn6 quasicrystal formed directly from the melt. The mierostrueture of the flakes consists of the a-Mg solid solution and icosahedral Mg3 YZn6 quasierystal. Dense rods can be made from the flakes by two-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3 YZn6 compounds are precipitated and distributed uniformly, whereas the rods possess fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: amagnesium solid solution as matrix and fine icosahedral Mg3 YZn6 quasicrystal which disperses uniformly in the matrix.

  20. Aging phenomena of rapidly solidified Al-4mass%Cu-Cr alloys

    International Nuclear Information System (INIS)

    The Al-4mass%Cu-(0--4.5)mass%Cr alloys were prepared by chill-casting, and their heat-resisting properties were examined. The amount of solute Cr quenched in Al-4%Cu alloy was about 1.5% at maximum. Resistance to over-aging was markedly increased with increasing amount of solute Cr, when the alloys were subjected to usual heat-treatments: that is, homogenization at 793K after chill-casting, water-quenching, aging at 473K and subsequent over-aging at 623K. This phenomenon would mainly be attributed to the fact that theta' formed during pre-aging became very stable both in the amount and the size, as the amount of solute Cr increased. The chill-cast Al-4%Cu-2%Cr alloy was thought to be superior to commercial heat-resisting 2219 alloy. The over-aged structures of Cr contained alloys were in detail discussed, in comparison with those of Mn contained alloys. (author)

  1. Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing

    Science.gov (United States)

    Morsdorf, L.; Pradeep, K. G.; Herzer, G.; Kovács, A.; Dunin-Borkowski, R. E.; Povstugar, I.; Konygin, G.; Choi, P.; Raabe, D.

    2016-03-01

    Nucleation of soft magnetic Fe3Si nanocrystals in Cu-free Fe74.5Si15.5Nb3B7 alloy, upon rapid (10 s) and conventional (30 min) annealing, was investigated using x-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and atom probe tomography. By employing rapid annealing, preferential nucleation of Fe3Si nanocrystals was achieved, whereas otherwise there is simultaneous nucleation of both Fe3Si and undesired Fe-B compound phases. Analysis revealed that the enhanced Nb diffusivity, achieved during rapid annealing, facilitates homogeneous nucleation of Fe3Si nanocrystals while shifting the secondary Fe-B crystallization to higher temperatures resulting in pure soft magnetic nanocrystallization with very low coercivities of ˜10 A/m.

  2. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  3. Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro

    International Nuclear Information System (INIS)

    Tungsten alloys (WA) have been introduced in an attempt to find safer alternatives to depleted uranium and lead munitions. However, it is known that at least one alloy, 91% tungsten-6% nickel-3% cobalt (WNC-91-6-3), causes rhabdomyosarcomas when fragments are implanted in rat muscle. This raises concerns that shrapnel, if not surgically removable, may result in similar tumours in humans. There is therefore a clear need to develop rapid and robust in vitro methods to characterise the toxicity of different WAs in order to identify those that are most likely to be harmful to human health and to guide development of new materials in the future. In the current study we have developed a rapid visual in vitro assay to detect toxicity mediated by individual WA particles in cultured L6-C11 rat muscle cells. Using a variety of techniques (histology, comet assay, caspase-3 activity, oxidation of 2'7'-dichlorofluorescin to measure the production of reactive oxygen species and whole-genome microarrays) we show that, in agreement with the in vivo rat carcinogenicity studies, WNC-91-6-3 was the most toxic of the alloys tested. On dissolution, it produces large amounts of reactive oxygen species, causes significant amounts of DNA damage, inhibits caspase-3, triggers a severe hypoxic response and kills the cells in the immediate vicinity of the alloy particles within 24 h. By combining these in vitro data we offer a mechanistic explanation of the effect of this alloy in vivo and show that in vitro tests are a viable alternative for assessing new alloys in the future.

  4. Tensile behavior of rapidly solidified Al-Li-Zr and Al-Li-Cu-Mg-Zr alloys at 293 and 77 K

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.S. [Gyeongsang National Univ., Chinju (Korea, Republic of). Div. of Materials Science and Engineering; Shin, K.S. [Seoul National Univ. (Korea, Republic of). School for Materials Science and Engineering; Kim, N.J. [POSTECH, Pohang (Korea, Republic of). Center for Advanced Aerospace Materials

    1999-08-01

    It has been found that the tensile ductility of some Al-Li alloys increases significantly with decreasing temperature. Although this inverse temperature dependence has often been observed in some non-Li-containing Al alloys, such as Al 2219, the magnitude of improvement in tensile ductility is generally much higher in Li-containing Al alloys. Several hypothetical mechanisms have been proposed to explain the increase in tensile ductility at cryogenic temperatures for Al-Li alloys. At present, the studies on the cryogenic mechanical properties o Li-containing Al alloys are largely limited to ingot-melted alloys, and the data are not readily available for powder metallurgy (PM) processed Al-Li alloys. The refined microstructure of PM processed Al-Li alloys would minimize the extrinsic delamination effects on the tensile properties and, as a result, these may serve as better materials for studying the mechanism(s) for the improved cryogenic tensile properties in Al-Li alloys. The objective of the present study, therefore, was to examine the tensile properties of rapidly solidified (RS)/PM processed Al-Li alloys and to identify the mechanism of the increase in tensile ductility at cryogenic temperatures.

  5. The effects of plasma physics target shrapnel and debris plumes arising from early operations of the Orion laser

    Science.gov (United States)

    Andrew, J.; Egan, D.; Miller, S.; Pearce, A.; Penman, R.; Scott, D.

    2014-10-01

    When lasers are used to produce high temperature, high density plasmas from solid targets it is inevitable that the targets are turned into a variety of products [gas, liquid, solid, sub-atomic particles and electromagnetic radiation] that are distributed around the surfaces of the vacuum chamber used to field such experiments. These by products are produced in plumes of debris and shrapnel that depend on the irradiation conditions, target materials and target geometry. We have monitored the distribution of such plumes by witness plates and used microscopy, photography and spectrophotometry to determine the physical state of material in the plumes and the spatial distribution from various target geometries. The impact of this material on the operations of laser optics and plasma physics diagnostics is discussed.

  6. Crystalline structure changing of rolled AZ61 magnesium alloy in rapid heating

    International Nuclear Information System (INIS)

    Plastic forming for magnesium alloy requires warm working. However, warm working causes micro-structure change or strength decreasing to mechanical characteristics grant material by work hardened, or grain refinement. To study warm working conditions, it is important to find out β phase (β-Mg17Al12) transition of magnesium alloy and crystal grain growth in heating process. In this report, rolled AZ61 magnesium alloy crystalline structure changing in heating process were in-situ measured by synchrotron radiation. As results, crystal grain growth of α-magnesium, and β-Mg17Al12 solution was not found under holding temperature 400degC till 50 seconds. Furthermore, temperature rising rate 2degC/sec or over is necessary at time. (author)

  7. Integrated Design and Rapid Development of Refractory Metal Based Alloys for Fossil Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; King, P.E.; Gao, M.C.

    2008-07-01

    One common barrier in the development of new technologies for future energy generating systems is insufficiency of existing materials at high temperatures (>1150oC) and aggressive atmospheres (e.g., steam, oxygen, CO2). To overcome this barrier, integrated design methodology will be applied to the development of refractory metal based alloys. The integrated design utilizes the multi-scale computational methods to design materials for requirements of processing and performance. This report summarizes the integrated design approach to the alloy development and project accomplishments in FY 2008.

  8. Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials

    Czech Academy of Sciences Publication Activity Database

    Pei, Z.; Friák, Martin; Sandlöbes, S.; Nazarov, R.; Svendsen, B.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 17, č. 9 (2015), Art. n. 093009. ISSN 1367-2630 Institutional support: RVO:68081723 Keywords : magnesium * alloys * ductile * ternary * rare-earth * ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.558, year: 2014

  9. Cooling curve and microchemical phase analysis of rapidly quenched magnesium AM60B and AE44 alloys

    Directory of Open Access Journals (Sweden)

    A.J. Gesing

    2013-06-01

    Full Text Available Purpose: Development of the understanding of the effect of the solidification rate with the alloy microstructures for the structural AM60B and the creep resistant AE44 Mg casting alloys.Design/methodology/approach: Tubular macro test samples of magnesium alloys AM60B and AE44 were melted and quenched at maximum instantaneous cooling rates ranging from -5°C/s to -500°C/s in the Universal Metallurgical Simulator and Analyzer (UMSA Technology Platform while recording the temperature-time traces. Such rapid cooling rates are typical in water-cooled dies used in high pressure die casting (HPDC. Characteristic reactions on these curves corresponding to the formation of individual phases during solidification were quantified based on cooling curve analysis combined with metallographic and micro-chemical analysis, with the aid of literature data.Findings: The results indicate that these phases, their size and location in the microstructure, their chemistry and their relative proportions all change in response to the increase in the cooling rate. The results are drastically different for the two alloy systems studied. Solidification of AM60B alloy yields small, equiaxed a-Mg rosettes whose size is mostly independent of the cooling rate. These rosettes nucleate heterogeneously on Al8Mn5 phases that are first to form, and are surrounded by the eutectic structure of Mg and Mg17Al12. In contrast, the AE44 has very large a-Mg grains at all cooling rates. These grains are filled with Al11RE3 platelets or dendrites. Results suggest that the Al11Re3 phase is completely ineffective in heterogeneous nucleation of a-Mg grains. Originality/value: In this research the authors significantly extended the thermal analysis methodology. The specific results obtained on the structural and creep-resistant Mg casting alloys are of significant value to the development of automotive light metal structures and power train components as well as further development of

  10. Effects of Rapid Solidification Process and 0.1 wt.% Pr Addition on Properties of Sn-9Zn Alloy and Cu/Solder/Cu Joints

    Science.gov (United States)

    Zhao, Guoji; Jing, Yanxia; Sheng, Guangmin; Chen, Jianhua

    2016-05-01

    Effects of 0.1 wt.% Pr addition and rapid solidification process on Sn-9Zn solder alloy were investigated. Solder characteristics of the as-solidified and rapidly solidified Sn-9Zn-0.1Pr alloys were analyzed in comparison with those of the as-solidified Sn-9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using these solders were comparatively studied. By comparison with the as-solidified Sn-9Zn alloy, the wettability of the solder was obviously improved with 0.1 wt.% Pr addition, and the melting behavior of the solder was promoted due to the rapid solidification process. The corrosion resistance of Sn-9Zn-0.1Pr alloy was improved due to the refined microstructure resulting from 0.1 wt.% Pr addition and rapid solidification. The growth of IMCs at the interface of Sn-9Zn-0.1Pr/Cu joints was depressed in some degree. Rapid solidification process promoted the interfacial reaction during soldering and improved the bonding strength of joints.

  11. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified

    International Nuclear Information System (INIS)

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  12. Effect of rapid solidification and heat treatment on Co-20 wt. %Cr alloy for biomedical applications

    International Nuclear Information System (INIS)

    A series of cobalt-base alloys with different chromium contents (20, 25, 30, 35, 40 and 44 wt. %) were melted into an induction furnace with argon atmosphere and casted into a chill cooper mold. The characterization of samples was carried out with a scanning electron microscope in order to evaluate the effect of chromium additions on microstructure. The resulting microstructure consisted mainly of columnar dendrites with randomly distributed precipitates in primary and secondary dendrite arms. X-ray diffraction patterns in as-cast samples identified the presence of both ε-hcp and the metastable α-fcc cobalt solid solution. As the Cr-content increased, the amount of both interdendrite segregation and precipitates increased too. From the Co-Cr alloys under study, the Co-20 wt. % Cr alloy showed a microstructure nearly free of interdendrite segregation and precipitation therefore was subject to an additional heat treatment to improve elongation from 2.6%, in the as-cast condition to 25.5% in the as-heat treated condition

  13. RAPID NONDESTRUCTIVE TESTING OF HEAT-TREATMENT QUALITY OF 2014 ALUMINIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Since there is a single-valued reverse "C" shape relation between the displayed values of low frequency WJF-38 type micro-computer-based automatic metal material separator and the hardness of 2014 aluminium alloy after solid solution treatments at different temperatures and natural aging, moreover, the parts without sufficient solid solution, the over-burnt parts and the hardening crack parts respectively appear at the top and bottom of the reverse "C" shape relationship curve, the hardness of the 2014 aluminium alloy can be quantitatively determined by the WJF-38 instrument. Its Brinell hardness, Rockwell hardness and Vickers hardness values can be directly displayed. The parts without sufficient solid solution, the over-burnt parts and the hardening cracked parts can also be accurately separated by using the WJF-38 instrument. Furthermore,there is also a reverse "C" shape relation between the hardness of 2014 aluminium alloy after artificial aging treatment and the displayed value of the WJF-38 instrument. The precision of the hardness tested by the WJF-38 instrument is about HRB ± 1.3, and the separating speed can reach 1500 parts per hour.

  14. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  15. Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials

    Science.gov (United States)

    Pei, Zongrui; Friák, Martin; Sandlöbes, Stefanie; Nazarov, Roman; Svendsen, Bob; Raabe, Dierk; Neugebauer, Jörg

    2015-09-01

    In order to identify a method allowing for a fast solute assessment without lengthy ab initio calculations, we analyze correlations and anti-correlation between the {{{I}}}1 stacking fault energies ({{{I}}}1SFEs), which were shown to be related to the macroscopic ductility in Mg alloys, and five material parameters of 18 different elemental solutes. Our analysis reveals that the atomic volume V of pure solutes, their electronegativity ν and bulk modulus B are either linearly or logarithmically related to the {{{I}}}1 SFE. Comparing the impact of solutes with that of yttrium (that increases the ductility in Mg) we propose a single numerical quantity (called yttrium similarity index, YSI) that is based on these inter-relations. Subsequently, we evaluate this new figure of merit for 76 elements from the periodic table of elements in search for solutes reducing the {{{I}}}1 SFE. Limiting ourselves first to binary Mg alloys, we hardly find any alternative solutes providing similar {{{I}}}1{SFE} reduction as that due to rare-earth (RE) additions. Therefore, we extended our search to ternary Mg alloys. Assuming that the physical properties of solute combinations can be represented by their average values, 2850 solute combinations were checked and 133 solute pairs (not including any RE elements) have been found to have a YSI larger than 0.85. Quantum-mechanical calculations have been subsequently performed for 11 solute pairs with YSIs higher than 0.95 and they were all found to reduce the {{{I}}}1{SFE} in excellent agreement with the predictions based on the YSI.

  16. Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating

    International Nuclear Information System (INIS)

    The crystallization of Fe73Nb3Cu1Si16B7 alloy during microwave heating was investigated in situ using synchrotron radiation powder diffraction. The phase transformation comprises a primary nanocrystallization stage and a final microcrystallization step. We provide evidence for a strong enhancement of the transformation kinetics. Microwave heating occurs as a result of both ohmic and magnetic losses induced by eddy currents, which defines a volumetric microwave induction heating process. Nanocrystallization is completed within 5 s, while full crystallization is achieved in less than 10 s

  17. Numerical calculation on temperature field of FGH95 alloy droplet during rapid solidification

    Institute of Scientific and Technical Information of China (English)

    Huanming Chen; Benfu Hu

    2003-01-01

    The temperature field of FGH95 alloy droplet atomized by plasma rotating electrode processing (PREP) during solidifica-tion has been calculated through numerical analysis based on equivalent sensible heat capacity method. And thus the relational cul-ves among temperature gradient of solid-liquid interface, moving velocity of solid-liquid interface and solid fraction during solidifi-cation have been presented. The results indicate that the relation between average temperature gradient of solid-liquid interface anddroplet size, and the relation between average moving velocity of solid-liquid interface and droplet size can be expressed during solidification.

  18. Effect of iron and cerium additions on rapidly solidified Al-TM-Ce alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Pližingrová, Eva

    2013-01-01

    Roč. 47, č. 6 (2013), s. 757-761. ISSN 1580-2949 Institutional support: RVO:61388980 Keywords : rapid solidification * aluminium * quasicrystals Subject RIV: CA - Inorganic Chemistry Impact factor: 0.555, year: 2013

  19. Interfacial morphology development and solute trapping behavior during rapid solidification of an Al–Li–Cu alloy

    International Nuclear Information System (INIS)

    An aluminum–lithium–copper alloy was rapidly solidified via the electrospark deposition process. High-resolution scanning electron microscopy (HR-SEM), time-of-flight secondary-ion-mass-spectroscopy (TOF-SIMS) and atom probe tomography (APT) were employed to investigate the distribution of solute within the deposited materials. The TOF-SIMS data revealed evidence that solute trapping of lithium occurred during solidification, while SEM and APT revealed the presence of fine copper-rich cells within the microstructure (∼30–60 nm in width). This morphology correlated directly with the microstructural morphology predicted by the Kurz–Giovanola–Trivedi (KGT) model for microstructural development during rapid solidification. The KGT model, which can be used to describe the planar–cellular transition within a microstructure, then predicted a solidification front velocity of ∼1 m s−1 being realized during electrospark deposition solidification. This SFV corroborated the chemical mapping data, and therefore supported the solute trapping hypothesis, as the continuous growth model for solute trapping as developed by Aziz and Kaplan (Acta Metallurgica 1988; 36:2335) predicts significant trapping of lithium at a SFV of 1 m s−1. Finally APT revealed the presence of Al3Li phase upon the copper-rich cell walls. It was then determined that the Al3Li was not formed during solidification, as predicted by a time-dependent nucleation model for phase prediction during rapid solidification, and therefore is the result of a subsequent aging process

  20. Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    Directory of Open Access Journals (Sweden)

    Felix Jiménez-Villacorta

    2014-01-01

    Full Text Available Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF ε-phase to the target ferromagnetic (FM L10 τ-phase are investigated. The as-solidified material exhibits a majority hexagonal ε-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature TB~95 K (Hex~13 kOe at 10 K, ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature Tanneal ≈ 568 K (295 °C promotes the nucleation of the metastable L10 τ-MnAl phase at the expense of the parent ε-phase, donating an increasingly hard ferromagnetic character. The onset of the ε→τ transformation occurs at a temperature that is ~100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.

  1. Half-metallic Ni2MnSn Heusler alloy prepared by rapid quenching

    Science.gov (United States)

    Nazmunnahar, M.; Ryba, T.; del Val, J. J.; Ipatov, M.; González, J.; Hašková, V.; Szabó, P.; Samuely, P.; Kravcak, J.; Vargova, Z.; Varga, R.

    2015-07-01

    We have employed melt-spinning method to produce Ni2MnSn-based half-metallic Heusler alloy. It allows fast and simple production of large amount of materials in a single production step avoiding high temperature post-production annealing. Microstructural, magnetic and spin polarization study of Ni2MnSn ribbon is used for characterization. SEM analysis reveals the polycrystalline structure with the columnar crystals grown perpendicularly to the ribbon plane. A single-phase austenite with L21 structure was confirmed by X-ray. Magnetic measurements shows the ordinary ferromagnetic behavior with Curie temperature 344 K and magnetic moment 4.08 μB/f.u. Particular crystal structure leads to the well defined anisotropy having an easy plane in the ribbon's plane. Finally, the spin polarization parameter P0 estimated by Point-Contact Andreev-reflection Spectroscopy is varying in the range 40-70% for Ni2MnSn which is comparable with other values reported earlier for other Heusler alloys.

  2. Microstructural characterization of the -TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique

    Indian Academy of Sciences (India)

    D Srivastava

    2002-12-01

    A direct laser fabrication technique (DLF) has been used to fabricate near net shape samples of a -TiAl alloy using gas atomized Ti48A148Mn2Nb2 alloy powder as a feed stock material. The microstructures of these Ti48Al48Mn2Nb2 laser treated samples have been characterized using optical, scanning (SEM) and transmission electron microscopy (TEM), both immediately after laser fabrication and after heat treatments. The microstructural studies have shown that the microstructure is heterogeneous in nature and extremely fine in comparison with the conventionally processed material. The process parameters such as laser power and laser scanning speed greatly influence the morphology and the microstructure of the laser treated samples. Heat treatments for a number of process conditions have been carried out to examine the stability of the microstructure which remains stable up to 973 K and rapid grain coarsening occurs at 1273 K. A fully recrystallized and uniform microstructure is obtained after annealing at 1073 K for 24 h and compositional heterogeneity present in the laser-fabricated samples is eliminated. Annealing in the phase field followed by air cooling and annealing in (2 + ) phase region gives rise to a homogeneous and uniform microstructure. However, the microstructure is much coarser than the microstructure of the DLF samples.

  3. NUCLEATION BEHAVIOR OF Al8Fe4Nd PHASE IN RAPIDLY SOLIDIFIED AI-Fe-V-Si-Nd ALLOY

    Institute of Scientific and Technical Information of China (English)

    H. Pang; Z.H. Jin; J.N. Deng; M.G. Zeng

    2002-01-01

    The microstructure of Al-Fe- V-Si-Nd alloy prepared by rapid solidification (RS) pro-cessing was studied by X-ray diffraction (XRD), transmission electron microscopy(TEM) and high resolution electron microscopy (HREM). The phase selection of thealloy during solidification and the nucleation behavior of Al8Fe4Nd phase were ana-lyzed witinin the framework of time-dependent nucleation theory. The incubation timefor Al8Fe4Nd phase was found shorter and the nucleation rate higher than those ofα-Al. The results indicate the nucleation of Al8Fe4Nd phase is heterogeneous and thedispersoids of Al8Fe4Nd form as primary particles from the liquid, which is consistentwith experimental observation.

  4. One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature

    International Nuclear Information System (INIS)

    In this paper, we presented a seed-mediated approach for rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature in 1 h. In the synthesis, CdSe seeds were first formed by the reaction of NaHSe and Cd2+, and then alloyed quantum dots (CdSe-CdS) were rapidly produced by releasing of sulfide ions from 3-mercaptopropionic acid as sulfide source with microwave irradiation. The alloyed quantum dots synthesized had good optical properties, the quantum yield was up to 25%, and the full width at half maximum of the emission spectrum peak was about 28 nm. The as-prepared alloyed CdSe-CdS QDs were characterized by XRD, XPS and ICP-AES in order to explore the structure and component of the alloyed nanocrystals and the reaction mechanism. We speculate that the alloyed CdSe-CdS quantum dots may exist a gradient internal structure according to our preliminary results

  5. Microstructure and Microhardness Evolutions of High Fe Containing Near-Eutectic Al-Si Rapidly Solidified Alloy

    Directory of Open Access Journals (Sweden)

    Emad M. Ahmed

    2014-01-01

    Full Text Available Al-11 wt.% Si-11 wt.% Fe (11.29 at.% Si-5.6 at.% Fe melt was rapidly solidified into ribbons and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, and microhardness technique. The Rietveld X-ray diffraction analysis was applied successfully to analyze microstructure and phase precipitations. On the basis of the aluminum peak shifts measured in the XRD scans, a solid solubility extension value of 1 at.% Si in α-Al was determined. SEM investigations confirmed presence of a spherical shape α-phase particles in addition to needle and spherical shape β-phase particles with contents of 1.1 wt.% and 10.1 wt.% as deduced by XRD analysis. During prolonged annealing process at 350°C/25 h, α-phase disappeared, β-phase content increased to 30 wt.%, and Si presence becomes more evident as deduced by XRD analysis. EDS analysis confirmed that these β particles observed in the as-melt spun alloy are of lower Fe content comparing to those usually observed in the as-cast counter-part alloy. Besides, the length distribution of needle shape β-particles has been shortened to be diverse from 1 to 5 μm. The as-melt spun ribbons exhibited enhancement of hardness to 277 HV and further increased during heat treatment (150°C/12 h to 450 HV. This improvement of microstructure and hardness are the influence of microstructural refinement and modification obtained during the rapid solidification process.

  6. Constitutional studies of molybdenum-ruthenium alloys using ultra-rapidly solidified samples

    International Nuclear Information System (INIS)

    Phase relationships in the system Mo-Ru in the temperature range 700-1200 C have been investigated using ultra rapidly solidified samples. The finely divided microstructures provided by this technique were found to achieve equilibrium on annealing much more rapidly. Optical microscopy, X-ray diffraction methods and scanning electron microscopy were used for phase characterization. The existence of Mo5Ru3 was confirmed at 1200 C and no intermediate phase was found below 1115 C. The solubility limits of the molybdenum-rich and ruthenium-rich terminal solid solutions were established. (orig.)

  7. Rapid air film continuous casting of aluminum alloy using static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu QU; Huixue JIANG; Gaosong WANG; Qingfeng ZHU; Xiangjie WANG; Jianzhong CUI

    2009-01-01

    The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.

  8. Grain refining effect of magnetic field on Mg2Ni0.8Mn0.2 hydrogen storage alloys during rapid quenching

    International Nuclear Information System (INIS)

    The effect of static magnetic field treatment for synthesis of Mg2Ni0.8Mn0.2 alloys during rapid quenching was investigated in this paper. X-ray diffraction (XRD) and scanning electron microscope (SEM) results show that the transversal static magnetic field can effectively refine the grain size, producing nanocrystalline inside. This distinct phenomenon is probably attributed to the Lorentz force suppressing the crystallization of the hydrogen storage alloys and the thermoelectric effect. Mainly due to the grain refinement, the discharge capacity of Mg2Ni0.8Mn0.2 alloy is raised from 79 to about 200 mA h g−1. It is confirmed that Mg2Ni0.8Mn0.2 alloy by magnetic field assisted approach possesses enhanced electrochemical kinetics and relatively high corrosion resistance against the alkaline solution, thus resulting in higher electrochemical properties

  9. Influence of cooling rate and cerium addition on rapidly solidified Al-TM alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Klementová, Mariana; Šerák, J.; Mudrová, M.; Valdaufová, J.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 1-7. ISSN 0023-432X Institutional research plan: CEZ:AV0Z40320502 Keywords : rapid solidification * Al-TM * microstructure * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2010

  10. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Science.gov (United States)

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  11. Rapid Directional Solidification with Ultra-High Temperature Gradient and Cellular Spacing Selection of Cu-Mn Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growthdirection of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperaturegradient and rapid directional solidification. The experimental results show that the growth direction of microstructure isstrongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realizedon the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradientand growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center ofthe molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings underthe laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum,λ minimum, λmin, and average primary spacing,λ, as functions of growth rate, Vb, can be given by, λ =12.54V b-0.61,λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model forrapid cellular/dendritic growth, and a good agreement is found.

  12. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Directory of Open Access Journals (Sweden)

    Christian Schröder

    2015-01-01

    Full Text Available Retropatellar complications after total knee arthroplasty (TKA such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics.

  13. Rapid eutectic growth in undercooled Al-Ge alloy under free fall condition

    Institute of Scientific and Technical Information of China (English)

    刘向荣; 曹崇德; 魏炳波

    2003-01-01

    Eutectic growth in Al-51.6%wt Ge alloy has been investigated during free fall in a drop tube. With decreasing undercooling △T, the microstructural evolution has shown a transition from lamellar eutectic to anomalous eutectic.A maximum cooling rate of 4.2×104K/s and undercooling of up to 240K (0.35TE) are obtained in the experiment.The eutectic coupled zone is calculated on the basis of current eutectic and dendritic growth theories, which covers a composition range from 48%-59% Ge and leans towards the Ge-rich side. The two critical undercoolings for the eutectic transition are △T1*=101K and △T2*=178K. When △T ≤△T1*, the microstructure for Al-51.6% Ge eutectic shows lamellar eutectic. If △T ≥△T2*, the microstructure shows anomalous eutectic. In the intermediate range of △T1* <△T <△T2*, the microstructure is the mixture of the above two types of eutectics.

  14. Microstructure and composition in rapidly quenched NdFeB-based hard magnet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.D.; Krishnan, K.M. [National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States); Lewis, L.H.; Zhu, Y.; Welch, D.O. [Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    1996-04-01

    A detailed study of the microstructure and composition in hot-pressed (MQ-2) and die-upset (MQ-3) magnet alloys based on the Nd{sub 2}Fe{sub 14}B composition, utilizing high resolution and analytical transmission electron microscopy, is reported. The initial magnetic properties of the two samples show different behaviors, which are attributed to the difference in the anisotropy of the grain structure and the grain boundaries. The hot-pressed sample shows faceted grains of the 2-14-1 phase, while die-upset sample shows plate-like grains, together with larger equiaxed grains that contain a speckling of precipitates in the grain interior. The grain structure and composition remain rather similar in the two samples. The grain boundary phase averages {approximately}1{endash}{approx_gt}10 nm in width. The thicker grain boundaries are Nd-rich, while the thinner grain boundaries in the hot-pressed sample exhibit an Fe-rich composition near that of the NdFe{sub 3} phase. Nd-rich phases are found at the grain boundary junctions of both samples, with the Nd:Fe ratio near 7:3 in the die-upset sample, and up to 3:2 in the hot-pressed sample. The significance of the microstructure and the grain boundary phases on the magnetic behavior in the two samples is discussed. {copyright} {ital 1996 American Institute of Physics.}

  15. Microstructure and composition in rapidly-quenched NdFeB-based hard magnet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.D.; Krishnan, K.M. [Lawrence Berkeley Lab., CA (United States); Lewis, L.H.; Zhu, Y.; Welch, D.O. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

    1995-09-01

    A detailed study of the microstructure and composition in hot-pressed (MQ-2) and die-upset (MQ-3) magnet alloys based on the Nd{sub 2}Fe{sub 14}B composition, utilizing high resolution and analytical transmission electron microscopy (TEM), is reported. The initial magnetic properties of the two samples show different behaviors, which are attributed to the difference in the anisotropy of the grain structure and the grain boundaries. The hot-pressed sample shows faceted grains of the 2-14-1 phase, while die-upset sample shows plate-like grains, together with larger equiaxed grains that contain a speckling of precipitates in the grain interior. The grain structure and composition remain rather similar in the two samples. The grain boundary phase averages approximately one nanometer to more than ten nanometers in width. The thicker grain boundaries are Nd-rich, while the thinner grain boundaries in the hot-pressed sample exhibit an Fe-rich composition near that of the NdFe{sub 3} phase. Nd-rich phases are found at the grain boundary junctions of both samples, with the Nd:Fe ratio near 7:3 in the die-upset sample, and up to 3:2 in the hot-pressed sample. The significance of the microstructure and the grain boundary phases on the magnetic behavior in the two samples is discussed.

  16. Microstructure and composition in rapidly quenched NdFeB-based hard magnet alloys

    International Nuclear Information System (INIS)

    A detailed study of the microstructure and composition in hot-pressed (MQ-2) and die-upset (MQ-3) magnet alloys based on the Nd2Fe14B composition, utilizing high resolution and analytical transmission electron microscopy, is reported. The initial magnetic properties of the two samples show different behaviors, which are attributed to the difference in the anisotropy of the grain structure and the grain boundaries. The hot-pressed sample shows faceted grains of the 2-14-1 phase, while die-upset sample shows plate-like grains, together with larger equiaxed grains that contain a speckling of precipitates in the grain interior. The grain structure and composition remain rather similar in the two samples. The grain boundary phase averages ∼1 endash approx-gt 10 nm in width. The thicker grain boundaries are Nd-rich, while the thinner grain boundaries in the hot-pressed sample exhibit an Fe-rich composition near that of the NdFe3 phase. Nd-rich phases are found at the grain boundary junctions of both samples, with the Nd:Fe ratio near 7:3 in the die-upset sample, and up to 3:2 in the hot-pressed sample. The significance of the microstructure and the grain boundary phases on the magnetic behavior in the two samples is discussed. copyright 1996 American Institute of Physics

  17. Morphology and microstructure of rapidly solidified tin-lead alloy powders

    Institute of Scientific and Technical Information of China (English)

    Xiang Qingchun; Zhang Wei; Qiu Keqiang; Qu Yingdong; Li Rongde

    2014-01-01

    Sn60Pb40 al oy powders were fabricated using the planar flow casting (PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the al oy powders. The microstructures of Sn60Pb40 al oy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated αsolid solution and β solid solution. The microstructures of smal size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamel ar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of smal size powders are transformed, which become composed of large crumby α phase and eutectic (α+β), while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic (α+β). By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 al oy powders.

  18. Rapid Growth of Nanostructured Diamond Film on Silicon and Ti–6Al–4V Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2014-01-01

    Full Text Available Nanostructured diamond (NSD films were grown on silicon and Ti–6Al–4V alloy substrates by microwave plasma chemical vapor deposition (MPCVD. NSD Growth rates of 5 µm/h on silicon, and 4 µm/h on Ti–6Al–4V were achieved. In a chemistry of H2/CH4/N2, varying ratios of CH4/H2 and N2/CH4 were employed in this research and their effect on the resulting diamond films were studied by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. As a result of modifying the stock cooling stage of CVD system, we were able to utilize plasma with high power densities in our NSD growth experiments, enabling us to achieve high growth rates. Substrate temperature and N2/CH4 ratio have been found to be key factors in determining the diamond film quality. NSD films grown as part of this study were shown to contain 85% to 90% sp3 bonded carbon.

  19. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  20. Crystallization process in rapidly solidified Al-Nd-Ni amorphous alloy prepared by melt spinning

    Institute of Scientific and Technical Information of China (English)

    肖于德; 黎文献; 马正青

    2004-01-01

    Rapidly solidified ribbons of Al90 Nd7 Ni3 metallic glasses were prepared by using melt spinning. Crystal lization process of the totally amorphous ribbons was investigated by differential scanning calorimetry and X-ray diffraction analysis, under continuous heating regime. The results show that, under continuous heating regime, the metallic glass devitrifies via two main stages: primary crystallization, resulting in two-phase mixture of α(Al) plus residual amorphous phase, and secondary crystallization, corresponding to some inter-metallic phases appearing,successively including Al11 Nd3, Al3 Ni, and some unknown phases, in the Al amorphous/crystal matrix. Four peaks appear on the continuous heating DSC curves. Their peak temperatures are respectively 470.8, 570.8, 585.6, and731.6 K at infinitesimal heating rate, and their activation energies of the respective phase transformation are 183.0,294.7, 232.5 and 269.1 kJ/mol. The values of Avrami exponent of the four reactions decrease with increasing relative transformation degree. At the earlier stage of phase transformation, the values of n are larger than 4, and at the later stage the values of n become close to some value from 0.5 to 2.0.

  1. Pseudoaneurysm of the internal carotid artery after shrapnel injury in World War II. Demonstration by CT angiography with 3D MIP reconstruction

    International Nuclear Information System (INIS)

    A case of pseudoaneurysm of the left internal carotid artery (ICA) after shrapnel injury is demonstrated by intra-arterial digital subtraction angiography (DSA) and computed tomography angiography (CTA) with subtraction technique. Although the pseudoaneurysm was well demonstrated by intra-arterial DSA, CTA was the only modality to demonstrate the three-dimensional shape of the perfused part of pseudoaneurysm and the aneurysmal neck, which affected the therapeutic strategy. The CTA technique is useful in the assessment of large pseudoaneurysms and for therapeutic planning. (orig.)

  2. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: alberto.sandoval@inin.gob.mx; asandovalj@correo.unam.mx; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)

    2009-09-15

    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  3. Rapid spectrophotometric determination of zirconium (IV) with 2,2',3,4-tetrahydroxy-3'-sulpho-5'-chloroazobenzene in alloys

    International Nuclear Information System (INIS)

    New o,o'-monoazo reagents have been synthesized using pyrogallol and 2-aminophenol-6-sulphonic acid or its derivatives. Spectrophotometric properties of the complexes formed by the reaction of synthesized monoazo reagents with Zr4+ have been investigated. According to the results it is found that the most sensitive and selective ligand for the Zr4+ is 2,2'3,4-tetrahydroxy-3'-sulpho-5'-chloroazobenzene (tetrahydroxyazon SCl) and it was used for the direct spectrophotometric determination of Zr4+ ion. Tetrahydroxyazon SCl reagent forms a red complex with Zr4+ ion in acidic media up to pH 6. The complex formation is fast and its absorbance reaches to a level immediately where remains constant for more than three days. The metal (M):ligand (L) ratio of the formed complex is 1:1 and the optimal wavelength of the complex is 496 nm. Under optimum conditions Zr4+ ion acts in accordance with the Beer law at an ion concentration range of 0.08-3.20 μg/mL. The molar absorptivity was found as 34500 Lmol-1cm-1. The determination of Zr4+ was not interfered by Cu2+, Cd2+, Pb2+, Ni2+, Cr3+, Zn2+, Bi3+, U6+, Th4+, Al3+ Be2+, Co2+, Mn2+, Hg2+, halides, phosphates, sulfates, thiocyanides, urea, tartrate, ascorbic acid etc. This method is highly sensitive, selective, very rapid and a simple technique. It has been successfully applied to the determination of Zr4+ ion in an aluminum based certified alloys. (author)

  4. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    Science.gov (United States)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  5. INFLUENCE OF RAPID QUENCHING AND SAMPLE TREATMENT ON THE STRUCTURE OF MELT SPUN Al-Si ALLOYS

    OpenAIRE

    Chevrier, Joël; Sainfort, P.; Germi, P.; Pavuna, D.

    1985-01-01

    We have studied the structural characteristics of the range of melt spun Al-Si alloys. We find that the dominant feature is the existence of sursaturated Si in f.c.c. Al grains which well explains the metastability of these systems as well as related thermal and electronic properties.

  6. Structure and properties of a rapidly solidified Al-Li-Mn-Zr Alloy for high-temperature applications: Part I. inert gas atomization processing

    Science.gov (United States)

    Ruhr, Michael; Baram, Joseph

    1991-10-01

    A new Al-Li alloy containing 2.3 wt pct Li, 6.5 wt pct Mn, and 0.65 wt pet Zr, for high-temperature applications, has been processed by a rapid solidification (RS) technique (as powders by inert gas atomization) and then thermomechanically treated by hot isostatic pressing (hipping) and hot extrusion. As-received and thermomechanically treated powders (of various size fractions) were characterized by X-ray diffraction and scanning and transmission electron microscopy (SEM and TEM, respectively). Phase analyses in the as-processed materials revealed the presence of two Mn phases (Al4Mn and Al6Mn), one Zr phase (Al3Zr), two Li phases (the stable AlLi and the metastable Al3Li), and the αAl solid solution with high excess in Mn solubility (up to close the nominal composition in the as-atomized powders). Extruded pieces were solutionized at 370 °C and 530 °C for various soaking times (2 to 24 hours). A variety of aging treatments was practiced to check for the optimal (for tensile properties) aging procedure, which was found to be the following: solutioning at 370 °C for 2 hours and water quenching + 1 pct mechanical stretching + one step aging at 120 °C for 3 hours. The mechanical properties, at room and elevated temperatures, of the “hipped” and hot extruded powders are compared following the optimal solutioning and aging treatments. The results indicate that Mn is indeed a favorable alloying element for rapidly solidified Al-Li alloys to retain about 85 to 95 pct of the room-temperature tensile properties even at 250 °C, though room-temperature strength is not satisfactory in itself. However, specific moduli are by 20 to 25 pet higher than those of the 2024 series duralumin-type alloys. Ductilities at room temperatures are in the low 1 to 2.5 pct range and show no improvement over other Al-Li alloys.

  7. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  8. Effect of component substitution on the magnetic properties of Zr2Co11 phase and rapidly quenched Zr2Co11 - based alloys

    International Nuclear Information System (INIS)

    Magnetic properties of homogenized ingots and rapidly quenched ribbons of (Zr1-xMx)16.4Co83.6 with M=Ti, Nb, Y, Gd and Zr16.4(Co1-yM*y)83.6 with M*= Mn, Fe, Ni, Cu, Al, Ga, Si are studied. The phase composition of the alloys is determined with the help of thermomagnetic analysis and, in specific cases, with the use of X-ray diffraction analysis and electron microscopical data. It is ascertained that a part of zirconium in a phase Zr2Co11 can be replaced by titanium and niobium. The solubility of rare earth elements is noted to be not revealed. Cobalt is partially replaced by Al, Cu, Ga, Si, Ni and Fe in a 2:11 phase, and Mn stabilizes the structure of a Laves phase with unexpectedly strong ferromagnetic properties. For magnetic hardness of the rapidly quenched alloys the introduction of Ti is appeared to be most beneficial. This element enhances noticeably the coercive force and hysteresis loop rectangularity and, as it takes place, it does not change practically magnetic properties of a 2:11 phase but suppresses the formation of dendrites on its crystallization. A small increase of the coercive force is also observed on addition of Cu and Al

  9. Microstructure Evolution in a Rapidly Solidified Cu85Fe15 Alloy Undercooled into the Metastable Miscibility Gap

    Institute of Scientific and Technical Information of China (English)

    Jie HE; Jiuzhou ZHAO

    2005-01-01

    A model has been developed to describe the microstructure evolution in the atomized droplets of Cu-Fe alloy during cooling through the metastable miscibility gap. Calculations have been performed for Cu85Fe15 alloy to investigate the process of liquid-liquid phase transformation. The numerical results indicate that the minority phase droplets are nucleated in a temperature region around the peak of the supersaturation. The average radius of the Fe-rich droplets decreases and the number density of the minority phase droplets increases with decreasing the atomized droplet size.The simulated results were compared with the experimental ones. The kinetic process of the liquid-liquid phase transformation was discussed in detail.

  10. Rapid Microwave Digestion Procedures for the Elemental Analysis of Alloy and Slag Samples of Smelted Ocean Bed Polymetallic Nodules

    OpenAIRE

    Kumari Smita; Saurabh Kumar Singh; Brajesh Kumar

    2013-01-01

    The use of microwave digester for digestion of alloy and slag samples of smelted ocean bed polymetallic nodules has permitted the complete digestion of samples, thereby replacing the tedious classical methods of digestion of samples. The digestion procedure includes two acid-closed digestions of samples in a microwave oven. Owing to the hazardous nature of perchloric acid, it was not used in developed digestion procedure. Digested sample solutions were analyzed for concentrations of various r...

  11. Structure and properties of a rapidly solidified Al-Li-Mn-Zr alloy for high-temperature applications: Part II. spray atomization and deposition processing

    Science.gov (United States)

    Baram, Joseph

    1991-10-01

    A new Al-Li alloy containing 2.3 wt pct Li, 6.5 wt pct Mn, and 0.65 wt pet Zr for high-temperature applications has been processed by a rapid solidification (RS) technique (as compacts by spray atomization and deposition) and then thermomechanically treated by hot extrusion. As-received and thermomechanically treated deposits were characterized by X-ray diffraction and scanning electron microscopy (SEM). Phase analyses in the as-processed materials revealed the presence of two Mn phases (Al4Mn and Al6Mn), one Zr phase (Al3Zr), two Li phases (the stable AlLi and the metastable Al3Li), and the aAl solid solution with high excess in Mn solubility (up to close the nominal composition in the as-atomized powders). As-deposited and extruded pieces were given heating treatments at 430 °C and 530 °C. A two-step aging treatment was practiced, to check for the optimal (for tensile properties) aging procedure, which was found to be the following: solutioning at 430 °C for 1 hour and water quenching + a first-step aging at 120 °C for 12 hours + a second-step aging at 175 °C for 15 hours. The mechanical properties, at room and elevated temperatures, of the hot extruded deposits are compared, following the optimal solutioning and aging treatments. The room-temperature (RT) strength of the proposed alloy is distinctly better for the as-deposited specimens (highest yield strength, 320 MPa) than for the as-atomized (highest yield strength, 215 MPa), though less than 65 pct of the RT strength is conserved at 250 °C. Ultimate strengths are quite comparable (in the 420 to 470 MPa range). Ductilities at RTs are in the low 1.5 to 2.5 pct range and show no improvement over other Al-Li alloys.

  12. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

    Science.gov (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.

    2016-03-01

    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  13. Rapid Microwave Digestion Procedures for the Elemental Analysis of Alloy and Slag Samples of Smelted Ocean Bed Polymetallic Nodules

    Directory of Open Access Journals (Sweden)

    Kumari Smita

    2013-01-01

    Full Text Available The use of microwave digester for digestion of alloy and slag samples of smelted ocean bed polymetallic nodules has permitted the complete digestion of samples, thereby replacing the tedious classical methods of digestion of samples. The digestion procedure includes two acid-closed digestions of samples in a microwave oven. Owing to the hazardous nature of perchloric acid, it was not used in developed digestion procedure. Digested sample solutions were analyzed for concentrations of various radicals and the effectiveness of the developed digestion methodology was tested using certified reference materials. It was found that the developed method is giving results comparable with that obtained from conventionally digested samples. In this digestion procedure, time required for digestion of samples was reduced to about 1 hour only from 8-9 hours of conventional digestion.

  14. Neuron-like gold-palladium alloy nanostructures: Rapid synthesis and applications in electrocatalysis and surface-enhanced Raman scattering.

    Science.gov (United States)

    Li, Shan-Shan; Song, Pei; Wang, Ai-Jun; Feng, Jiu-Ju

    2016-11-15

    Neuron-like gold-palladium (AuPd) alloy nanostructures were synthesized by simultaneous reduction of AuCl4(-) and PdCl4(2-) with ascorbic acid, using N-methylimidazole as the structure-director and stabilizing agent. The synthesis method was simple and seedless, without any template or polymer. The architectures strongly depended on the concentration of N-methylimidazole, reaction temperature and time, and hence the formation mechanism was described in detail. The as-obtained architectures exhibited superior electrocatalytic activity for ethanol oxidation and surface-enhanced Raman scattering (SERS) responses, owing to their unique nanostructures with high density of steps, edges, and corners on their branches, along with the synergetic functions between Au and Pd. PMID:27491003

  15. Rapid Determination of Uranium in Water Samples by Adsorptive Cathodic Stripping Voltammetry Using a Tin-Bismuth Alloy Electrode

    International Nuclear Information System (INIS)

    In this work, the tin-bismuth alloy electrode (SnBiE) was used for U(VI) concentration determination for the first time. Compared to the conventional solid electrode (glassy carbon electrode and bismuth bulk electrode), the SnBiE possesses a higher hydrogen overpotential, which indicates that the tin-bismuth alloy can considerably extend the application of potentially available electrode detection systems. Combining with electrochemical behavior analysis and spectrometric measurements as well as theoretical calculation methods, the geometric structures of uranium-cupferron (N-nitrosophenylhydroxylamine) complexes have been revealed and a more detailed electrode mechanism has been proposed. The electroanalysis results show that the optimal sensitivity could be obtained by using diphenylguanidine as the auxiliary reagent. The calibration plot for U(VI) quantification was linear from 0.5 nM to 30 nM with a correlation coefficient of 0.999. In the meanwhile, a detection limit of 0.24 nM was obtained in connection with an accumulation time of 30 s, which is comparable with that of mercury analogues. The practical applications of SnBiE have been tentatively performed for the determination of UO22+ in real water samples and the results were well consistent with those by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). A very simple, convenient and cheap approach was established for the determination of UO22+ in natural water samples containing surfactants without the otherwise necessity of sample pretreatment, which drastically reduce the analysis time

  16. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Toru Okabe

    2011-10-01

    Full Text Available This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23 specimens fabricated by a laser beam melting (LBM and an electron beam melting (EBM system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought was used as a control. The mechanical properties, corrosion properties and grindability (wear properties were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05. The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  17. Influence of quench rates on the properties of rapidly solidified FeNbCuSiB alloy

    Indian Academy of Sciences (India)

    A K Panda; I Chattoraj; S Basu; A Mitra

    2002-11-01

    FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more amorphous structure exhibiting superior soft magnetic properties with improved corrosion resistance.

  18. Effect of magnetic field on the microstructure and electrochemical performance of rapidly quenched La0.1Nd0.075Mg0.04Ni0.65Co0.12 alloy

    International Nuclear Information System (INIS)

    Highlights: • La0.1Nd0.075Mg0.04Ni0.65Co0.12 alloy is rapidly quenched in a 0.18 T static magnetic field. • The multiphase structures of as-treated alloys remain unchanged. • Grain refinement is achieved with the aid of magnetic field. • Magnetic field favors the formation of La2Ni7 phase. • The as-prepared alloy exhibits improved electrochemical performance. - Abstract: Rare earth–Mg–Ni-based (RE–Mg–Ni-based) La0.1Nd0.075Mg0.04Ni0.65Co0.12 hydrogen storage alloys were rapidly quenched with and without exerting a 0.18 T static magnetic field and investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) studies and various electrochemical measurements. The results show that all samples hold a two-phase structure consisting of La2Ni7 phase and LaNi5 phase, suggesting that the structure remains unchanged after treatment. Grain refinement, homogeneous composition and increase in La2Ni7 phase abundance are achieved when magnetic field is applied. In comparison to quenched alloys, higher discharge capacities are obtained for the alloys prepared with the aid of magnetic field mainly due to the larger La2Ni7 phase abundance. Cycling stability is improved with increasing quenching rate probably owing to better anti-pulverization ability resulted from refined grain size. Ameliorated electrochemical kinetics of the magnetic field assisted rapidly quenched alloys has been confirmed by potential-step measurements and electrochemical impedance spectroscopy (EIS) tests in accordance with the enhanced electrochemical properties

  19. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    OpenAIRE

    Christian Schröder; Arnd Steinbrück; Tatjana Müller; Matthias Woiczinski; Yan Chevalier; Patrick Weber; Müller, Peter E.; Volkmar Jansson

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prosthese...

  20. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiCx and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti3Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  1. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    Science.gov (United States)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective

  2. Effect of process parameters on properties of Al-Si alloys cast by Rapid Slurry Formation (RSF) technique

    International Nuclear Information System (INIS)

    Rapid slurry formation is a semi-solid metal forming technique, which is based on a so-called solid enthalpy exchange material (EEM). It is a fascinating technology offering the opportunity to manufacture net-shaped metal components of complex geometry in a single forming operation. At the same time, high mechanical properties can be achieved due to the unique microstructure and flow behaviour. The major process parameters used in the RSF process are rotation speed of the EEM, melt superheat, amount of EEM added (determining fs), and holding time. The process parameters can be well controlled with clear effects on the microstructure. There is a lack of theoretical modelling of the morphological evolution in these two-phase slurries.

  3. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting

    Science.gov (United States)

    Liang, Yanhui; Sun, Xuping; Asiri, Abdullah M.; He, Yuquan

    2016-03-01

    It is highly attractive, but still remains challenging, to develop noble metal-free bifunctional electrocatalysts efficient for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. In this letter, we describe the rapid electroless deposition of amorphous Ni-B nanoparticle film on Ni foam (Ni-B/Ni foam) by alternative dipping of Ni foam into Ni precursor and reducing solutions. This Ni-B/Ni foam acts as an efficient and durable 3D catalytic electrode for water splitting, affording 100 mA cm-2 at 360 mV overpotential for the OER and 20 mA cm-2 at 125 mV overpotential for the HER in 1.0 M KOH, and its two-electrode electrolyzer demands a cell voltage of 1.69 V to afford 15 mA cm-2 water-splitting current. Moreover, the catalyst loading can be easily tuned and this alternately dipping deposition technique works universally for other conductive substrates.

  4. A coupling of rapid crystallization and plastic consolidation as a method for mass scale production of bulk submicrocrystalline aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dybiec, Henryk [Department of Structure and Mechanics of Solids US and T AGH, al. Mickiewicza 30, 30 059 Krakow (Poland)

    2010-05-15

    Rapid crystallization is a well-known method for production of ultrafine-grained metallic materials using the overcooling effect. Unfortunately, this method provides material in dispersed form with very limited dimensions of individual particles, which must be consolidated to bulk form for engineering use. To prevent destabilization of ultrafine-grain structure of polycrystalline particles the consolidation process should to be quick enough and must be conducted at reasonably low temperatures. Such reasons suggest the process of plastic consolidation. In this process plastic deformation of individual particles develops new surfaces in status nascendi, which is able to create strong bonds between collectively deformed particles of dispersed materials and converts the powder to the bulk form. The plastic consolidation by isothermal extrusion is the agglomeration process of plastically deformable particles without involving diffusion effects. Bulk materials with no measurable porosity are the product of this process, in which the character of interaction among individual particles of powder shows similar character to interaction at grain boundaries in polycrystalline metals. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Effect of adding Ge on rapid whisker growth of Sn-3Ag-0.5Cu-0.5Ce alloy

    International Nuclear Information System (INIS)

    Although solders doped with rare earth elements have been reported to show many beneficial effects, tin whisker growth has been observed to grow at an extremely high rate on the surface of such novel solder alloys. This study shows that adding 0.5 wt.% Ge into a Sn-3Ag-0.5Cu-0.5Ce alloy effectively decreased whisker growth. This inhibition effect is attributed to alleviation of oxidation in the CeSn3 intermetallic phase in this alloy as a result of Ge-alloying. Compressive stress in this case is insufficient to extrude tin atoms out of the solder to form whiskers.

  6. Effect of adding Ge on rapid whisker growth of Sn-3Ag-0.5Cu-0.5Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, T.-H. [Institute of Materials Science and Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (China)], E-mail: tunghan@ntu.edu.tw; Chi, C.-C. [Institute of Materials Science and Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (China)], E-mail: f93527062@ntu.edu.tw

    2009-07-08

    Although solders doped with rare earth elements have been reported to show many beneficial effects, tin whisker growth has been observed to grow at an extremely high rate on the surface of such novel solder alloys. This study shows that adding 0.5 wt.% Ge into a Sn-3Ag-0.5Cu-0.5Ce alloy effectively decreased whisker growth. This inhibition effect is attributed to alleviation of oxidation in the CeSn{sub 3} intermetallic phase in this alloy as a result of Ge-alloying. Compressive stress in this case is insufficient to extrude tin atoms out of the solder to form whiskers.

  7. Improving the structure, magnetic properties and thermal stability of rapidly quenched TbCu{sub 7}-type SmCo{sub 6.4}Si{sub 0.3}Zr{sub 0.3} alloy by carbon addition

    Energy Technology Data Exchange (ETDEWEB)

    Feng, D.Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zheng, Z.G.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, G.Q. [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2014-08-01

    The effects of carbon addition on the structure and magnetic properties of rapidly quenched TbCu{sub 7}-type SmCo{sub 6.4}Si{sub 0.3}Zr{sub 0.3} alloy have been investigated. The alloys with a small amount of C addition (x≤0.2) showed single Sm(Co,M){sub 7} phase, while ZrC phase appeared in the alloys with x=0.3 and 0.4. With the increase of C content, the grain size decreased from approximately 850 nm for x=0.1 to approximately 300 nm for x=0.4. The coercivity H{sub c} and maximum magnetic energy product (BH){sub max} increased with the C content from x=0 to 0.2 and then decreased with excessive C addition. The optimal magnetic properties of H{sub c}=1577 kA/m, J{sub r}=0.53 T and (BH){sub max}=52.1 kJ/m{sup 3} were achieved for SmCo{sub 6.4}Si{sub 0.3}Zr{sub 0.3}C{sub 0.2} alloy with a grain size of 600–700 nm, which is close to the single domain size of TbCu{sub 7}-type Sm(Co,Zr){sub 7} alloy. Furthermore, C addition also improved the thermal stability by reducing the absolute values of temperature coefficients of remanence and coercivity.

  8. Anomalous electrical conductivity in rapidly crystallized Cu{sub 100−x}Zr{sub x} (x = 50–66.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uporov, S.A., E-mail: segga@bk.ru [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Estemirova, S.Kh. [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Ural Federal University, Mira str. 19, 620002 Ekaterinburg (Russian Federation); Chtchelkatchev, N.M. [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Ryltsev, R.E. [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Ural Federal University, Mira str. 19, 620002 Ekaterinburg (Russian Federation)

    2015-10-25

    Cu{sub 100−x}Zr{sub x} (x = 50, 54, 60 and 66.6) polycrystalline alloys were prepared by arc-melting. The crystal structure of the ingots has been examined by X-ray diffraction. Non-equilibrium martensitic phases with monoclinic structure were detected in all the alloys except Cu{sub 33.4}Zr{sub 66.6}. Temperature dependencies of electrical resistivity in the temperature range of T = 4–300 K have been experimentally obtained as well as room temperature values of Hall coefficients and thermal conductivity. Electrical resistivity demonstrates anomalous behavior. At the temperatures lower than 20 K, their temperature dependencies are non-monotonous with pronounced minima. At elevated temperatures they have sufficiently non-linear character which cannot be described within framework of the standard Bloch–Grüneisen model. We show that experimental resistivity dependencies may be perfectly fitted by generalized Bloch–Grüneisen model with variable Debye temperature. We found that both the electrical resistivity and the Hall coefficients reveal metallic-type conductivity in the Cu–Zr alloys. The estimated values of both the charge carrier mobility and the phonon contribution to thermal and electric conductivity indicate the strong lattice defects and structure disorder. - Highlights: • Cu{sub 100−x} Zr{sub x} (x = 50, 54, 60, 66.6) polycrystalline alloys were prepared by arc-melting. • Existence of various martensitic monoclinic structures was revealed in the alloys. • The electrical resistivity of the samples exhibits Kondo-like behavior below 20 K. • The electrical resistivity of the alloys has non-linear behavior at elevated temperatures. • Generalized Bloch–Grüneisen model is proposed to fit experimental resistivity data.

  9. Assessment of the creep response of new powder metallurgy - rapid solidification Al-Si-Ni-Cr and Al-Si-Cu-Fe alloys

    Czech Academy of Sciences Publication Activity Database

    Evangelista, E.; Kloc, Luboš; Spigarelli, S.; Cerri, E.

    217-222, - (1996), s. 1423-1428. ISSN 0255-5476. [International Conference on Aluminium Alloys, their Physical and Mechanical Properties /5./. Grenoble, 01.07.1996-05.07.1996] Grant ostatní: ERB-CIPA-CT(XE) 93-0675

  10. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.

    Science.gov (United States)

    Ishizaki, Takahiro; Saito, Naobumi

    2010-06-15

    We have developed a facile, simple, time-saving method of creating a superhydrophobic surface on a magnesium alloy by a simple immersion process at room temperature. First, a crystalline CeO(2) film was vertically formed on the magnesium alloy by immersion in a cerium nitrate aqueous solution for 20 min. The density of the crystals vertically with respect to the magnesium alloy increased with increasing immersion time. Next, the film were covered with fluoroalkylsilane (FAS: CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3)) molecules within 30 min by immersion in a toluene solution containing FAS and tetrakis(trimethylsiloxy)titanium (TTST: (CH(3))(3)SiO)(4)Ti). TTST was used as a catalyst to promote the hydrolysis and/or polymerization of FAS molecules. The FAS-coated CeO(2) film had a static contact angle of more than 150 degrees, that is, a superhydrophobic property. The shortest processing time for the fabrication of the superhydrophobic surface was 40 min. The contact angle hysteresis decreased with an increase in the immersion time in the cerium nitrate aqueous solution. The chemical stability of the superhydrophobic surface on magnesium alloy AZ31 was investigated. The average static water contact angles of the superhydrophobic surfaces after immersion in the solutions at pH 4, 7, and 10 for 24 h were found to be 139.7 +/- 2, 140.0 +/- 2, and 145.7 +/- 2 degrees, respectively. In addition, the chemical stability of the superhydrophobic surface in the solutions at pH ranging from 1 to 14 was also examined. The superhydrophobic surfaces had static contact angles of more than 142 degrees in the solutions at pH ranging from 1 to 14, showing that our superhydrophobic surface had a high chemical stability. Moreover, the corrosion resistance of the superhydrophobic surface on the magnesium alloy was investigated using electrochemical measurements. PMID:20377219

  11. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  12. Alloys in energy development

    International Nuclear Information System (INIS)

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems

  13. Interface structure and bonding in abrasion circle friction stir spot welding: A novel approach for rapid welding aluminium alloy to steel automotive sheet

    International Nuclear Information System (INIS)

    Highlights: ► High quality Al–steel dissimilar joints were produced within a short dwell time. ► This approach provides a new way to clear metal surfaces during welding. ► No continuous brittle IMC layer developing at the interface. - Abstract: Aluminium alloy 6111-T4 and steel DC04 1 mm sheets have been successfully welded with a cycle time <1 s by “Abrasion circle friction spot welding”, a novel approach to joining dissimilar materials. This was achieved by using a probe tool translated through a circular path to abrade the steel sheet. It is shown that successful welds can be produced between these two weld members with a cycle time of less than one second, that exhibit very high failure loads and a nugget pullout fracture mode desired by industry. Transmission electron microscopy investigation of the joint interface revealed no intermetallic reaction layer. The weld formation mechanisms are discussed.

  14. Rapid solidification of Ni{sub 50}Nb{sub 28}Zr{sub 22} glass former alloy through suction-casting; Solidificacao rapida da liga formadora de fase amorfa Ni{sub 50}Nb{sub 28}Zr{sub 22} atraves de fundicao em coquilha por succao

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S., E-mail: issao16@gmail.co [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni{sub 50}Nb{sub 28}Zr{sub 22}d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference ({Delta}e). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 {mu}m analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  15. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    Science.gov (United States)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  16. Interface structure and bonding in abrasion circle friction stir spot welding: A novel approach for rapid welding aluminium alloy to steel automotive sheet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.C., E-mail: yingchun.chen@manchester.ac.uk [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester, M13 9PL (United Kingdom); Gholinia, A., E-mail: ali.gholinia@manchester.ac.uk [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester, M13 9PL (United Kingdom); Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester, M13 9PL (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer High quality Al-steel dissimilar joints were produced within a short dwell time. Black-Right-Pointing-Pointer This approach provides a new way to clear metal surfaces during welding. Black-Right-Pointing-Pointer No continuous brittle IMC layer developing at the interface. - Abstract: Aluminium alloy 6111-T4 and steel DC04 1 mm sheets have been successfully welded with a cycle time <1 s by 'Abrasion circle friction spot welding', a novel approach to joining dissimilar materials. This was achieved by using a probe tool translated through a circular path to abrade the steel sheet. It is shown that successful welds can be produced between these two weld members with a cycle time of less than one second, that exhibit very high failure loads and a nugget pullout fracture mode desired by industry. Transmission electron microscopy investigation of the joint interface revealed no intermetallic reaction layer. The weld formation mechanisms are discussed.

  17. Characteristics of Nanophase WC and WC-3 wt% (Ni, Co, and Fe Alloys Using a Rapid Sintering Process for the Application of Friction Stir Processing Tools

    Directory of Open Access Journals (Sweden)

    Daeup Kim

    2015-01-01

    Full Text Available Microstructures and mechanical characteristics of tungsten carbide- (WC- based alloys, that is, WC, WC-3 wt% Ni, WC-3 wt% Co, and WC-3 wt% Fe, fabricated using a spark plasma sintering (SPS method for the application of friction stir processing tools were evaluated. The sintered bodies with a diameter of 66 mm showed relative densities of up to 99% with an average particle size of 0.26~0.41 μm under a pressure condition of 60 MPa with an electric current for 35 min without noticeable grain growth during sintering. Even though no phase changes were observed after the ball milling process the phases of W2C and WC1-x appeared in all sintered samples after sintering. The Vickers hardness and fracture toughness of the WC, WC-3 wt% Ni, WC-3 wt% Co, and WC-3 wt% Fe samples ranged from 2,240 kg mm2 to 2,730 kg mm2 and from 6.3 MPa·m1/2 to 9.1 MPa·m1/2, respectively.

  18. Study of rapid stress annealed nano-crystalline Fe74.5Cu1Nb3Si15.5B6 alloy

    International Nuclear Information System (INIS)

    Rapid stress annealing induced changes in structural and magnetic properties in Fe74.5Cu1Nb3Si15.5B6 are reported. Obtained results suggest changes in spin texture with preferred orientation along ribbon axis. Fraction of A site in the DO3 lattice occupied by Si atoms, increases, with increase of applied stress during annealing. Volume fraction of the nanograins up to 60% (exhibiting quite similar mean grain diameter ∼9 nm) is observed. Lattice parameter values suggest that Si content in the nanocrystalline phase is between 14% and 19% and increase of lattice parameter suggests the elongation of the unit cell. Studied stress annealed samples exhibit soft magnetic behavior (coercive field ranging between 4 and 8 Am-1). Stress annealing reduces permeability whereas anisotropy field increases almost linearly exhibiting the induction of uniaxial and perpendicular to the ribbon axis anisotropy. Obtained stress-induced-anisotropy constant values range between 50 and 2,140 Jm-3.

  19. Heredity of icosahedrons:a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys%二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数∗

    Institute of Scientific and Technical Information of China (English)

    邓永和; 大东; 彭超; 韦彦丁; 赵瑞; 彭平

    2016-01-01

    采用分子动力学方法模拟研究了液态Cu56Zr44合金在不同冷速γ与压力P下的快速凝固过程,并通过基于Honeycutt-Andersen键型指数的扩展团簇类型指数法对其微结构演变特性进行了分析。结果表明:快凝玻璃合金的局域原子组态主要是(1212/1551)规则二十面体、以及(128/15512/15412/1431)与(122/14418/15512/1661)缺陷二十面体。通过原子轨迹的逆向跟踪分析发现:从过冷液体中遗传下来的二十面体对快凝合金的玻璃形成能力(GFA)具有重要影响,不仅其可遗传分数Fi=N i300 K←Tg/NTg与GFA密切相关,而且其遗传起始温度(Tonset)与合金约化玻璃转变温度Trg=Tg/Tm也存在很好的对应关系。%To explore the origin of glassy transition and glass-forming abilities (GFAs) of transition metal-transition metal alloys from the microstructural point of view, a series of molecular dynamics simulation for the rapid solidification processes of liquid Cu56Zr44alloys at various cooling rates γ and pressures P are performed by using a LAMPS program. On the basis of Honeycutt-Andersen bond-type index (ijkl), we propose an extended cluster-type index (Z, n/(ijkl)) method to characterize and analyze the microstructures of the alloy melts as well as their evolution in the rapid solidification. It is found that the majority of local atomic configurations in the rapidly solidified alloy are (12 12/1551) icosahedra, as well as (12 8/1551 2/1541 2/1431) and (12 2/1441 8/1551 2/1661) defective icosahedra, but no relationship can be seen between their number N(300 K) and the glassy transition temperature Tg of rapidly solidified Cu56Zr44alloys. By an inverse tracking of atom trajectories from low temperatures to high temperatures the configuration heredity of icosahedral clusters in liquid is discovered to be an intrinsic feature of rapidly solidified alloys; the onset of heredity merely emerges in the super-cooled liquid rather than the initial alloy

  20. Precipitation of coherent FeRh nanoparticles with highly suppressed magnetostructural transition temperatures in rapidly solidified (FeRh)5Cu95 alloys

    Science.gov (United States)

    Barua, Radhika; Jiang, Xiujuan; Shield, Jeff; Heiman, Don; Lewis, Laura

    2012-02-01

    Magnetostructural phase transitions have the capability of delivering large functional effects in response to small excursions in magnetic field, temperature and strain; this potential might be amplified in nanostructured systems by virtue of large surface:volume ratios. Nanoprecipitates (˜10nm) of FeRh, a well-known magnetostructural material, were studied with structural and magnetic probes in a rapidly solidified phase-separated system of (FeRh)5Cu95. Magnetization studies indicate a dramatic reduction in the magnetostructural phase transition temperature (Tt) of the nanoscaled FeRh phase relative to the bulk value (δT=Tt,Bulk - Tt,Nano = 220 K). Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) reveals a coherent orientational relationship between the FeRh (aFeRh = 3.09 å)and Cu (aCu = 3.78 å) phases. At the matrix/precipitate interface a constrained misfit strain of ɛ = 0.18 is observed. The reduction of the magnetostructural phase transition temperature and evolution of the magnetic properties with system annealing is analyzed in the context of the strain between the FeRh nanoparticles and the Cu matrix.

  1. Crystallization and soft magnetic properties of rapidly solidified Fe73.5Nb3Cu1Si22.5-XBX (X=5, 9, 10, 11.25, 19) alloys

    International Nuclear Information System (INIS)

    The metalloids Si and B in the melt-spun Fe73.5Nb3Cu1Si22.5-XBX (X=5, 9, 10, 11.25, 19) alloys play a major role in their crystallization and magnetic behaviour. In the present work, the effect of nanocrystallization on the transport properties was studied using thermal variation of electrical resistivity. An X-ray diffractogram study showed that the formation of different phases was controlled by the metalloid content in the alloy. Nanocrystalline α-Fe(Si) and/or Fe3Si particles were formed in all the measured alloys except the alloy with 19 at% boron where α-Fe phase appeared. The lattice parameter as well as Si content within α-Fe(Si) was also found to depend on the metalloid content of the alloy. The Debye temperature was derived from thermal electrical resistivity study and was found to depend on the metalloid content of the alloys. However, Curie temperature of these alloys was not strongly dependent on the metalloid. The formation of α-Fe(Si) and/or Fe3Si nanoparticles was responsible for the superior soft magnetic properties of the 9 at% boron alloy annealed around 800 K. The early appearance of boride phases, which have high magnetocrystalline anisotropy, was the cause of deterioration in soft magnetic properties in X=5, 10, 11.25 and 19 alloys

  2. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  3. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  4. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  5. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  6. 快速凝固Al-21Si-0.8Mg-1.5Cu合金时效析出行为%Aging precipitation behavior of rapidly solidified Al-21Si-0.8Mg-1.5Cu alloy

    Institute of Scientific and Technical Information of China (English)

    王爱琴; 谢敬佩; 王文焱; 李继文; 李洛利

    2013-01-01

    利用单辊旋转甩带法制备快速凝固过共晶Al-21Si-0.8Mg-1.5Cu合金条带,并对其进行时效处理,采用扫描电镜、透射电镜及XRD技术对快速凝固组织特征进行了表征,研究了时效温度对合金组织及硬度的影响.结果表明:在快速凝固条件下,试验合金中初生硅相的形核和析出受到抑制,α相领先析出,合金元素Cu、Mg全部固溶在过饱和α-Al固溶体中;大量的Si过饱和固溶于α中,其余部分以羽毛针列状共晶形式析出,形成微纳米级亚稳的亚共晶结构.时效处理时,随着时效温度的升高,硅元素从基体中脱溶析出并逐渐聚集长大,形成微小颗粒弥散基体之上;试验合金的显微硬度也发生了变化,出现时效硬化现象.%A rapidly solidified hypereutectic Al-21Si-0. 8Mg-l. 5Cu alloys strip was prepared by single roller melt-spinning method. The resultant strip was aged at different temperatures for 4 h. Microstructure of the rapidly solidified alloy was characterized by means of scanning electron microscopy ( SEM) , transmission electric microscopy ( TEM ) and XRD. The effects of aging temperature on the microstructure and microhardness of the experimental alloy were investigated. The results show that the nucleation and growth of primary silicon are suppressed, meanwhile, α-Al phase is nucleated, which is prior to eutectic under rapidly solidification. All alloying elements Cu and Mg are supersaturated in a-Al solid solution. Most of Si is supersaturated in α-Al, the rest precipitated by feather-needles-like eutectic silicon micro-nanocrystals. The metastable hypoeutectic structure is formed. During aging process, silicon element is precipitated from the matrix and gradually aggregated up to form small particles distributed in the matrix as the increase of aging temperature. The hardness of experimental alloy is changed, and age-harden phenomenon occurs.

  7. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  8. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and a...... low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state are...... discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  9. Rapid solidification of candidate ferritic steels

    International Nuclear Information System (INIS)

    HT-9 and 9Cr-1Mo steels were rapidly solidified by the liquid dynamic compaction process and 2-1/4Cr-1Mo steel was prepared by the ultrasonic gas atomization process. The consolidation was performed in the ferritic temperature range in order to minimize segregation. These alloys will be tested at ORNL using 1/3 CVN test specimens and the results will be compared with those for conventially processed alloys

  10. China’s Aluminum Alloy Die Castings Industry has Promising Prospects

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Engine aluminum alloy engine block die casting experienced rapid development in recent years. Domestic enterprises introduced large die casting machine automatic production lines, and developed large aluminum alloy die cast-

  11. The structure, anisotropy and coercivity of rapidly quenched TbCu{sub 7}-type SmCo{sub 7−x}Zr{sub x} alloys and the effects of post-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Feng, D.Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zheng, Z.G.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, G.Q. [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2013-12-15

    The effects of wheel speed, Zr content, post-ball milling process and heat treatment on the structure, anisotropy, magnetic properties and phase transition of the melt-spun SmCo{sub 7−x}Zr{sub x} alloys were investigated. The crystallographic c-axis is parallel to the ribbon plane for the ribbons prepared at low speeds of 5 and 15 m/s, and this orientation is reduced at higher speeds. The out-of-plane coercivity of SmCo{sub 6.8}Zr{sub 0.2} ribbon increases from 123 kA/m for 5 m/s to 1076 kA/m for 60 m/s. Zr doping improves the hard magnetic properties and the in-plane coercivity of SmCo{sub 7−x}Zr{sub x} alloys increases with the Zr content from 592 kA/m for x=0.1 to 1376 kA/m for x=0.4. The Rietveld refinements and theoretical analysis reveal that Zr atoms occupy the 2e site. The coercivity mechanisms are different for the alloys with various Zr contents. The ball milling process could enhance the coercivity and remanence of the ribbons due to the grain refinement and the precipitation of Co phase. Heat treatment can further modify the magnetic properties of the alloys. SmCo{sub 6.7}Zr{sub 0.3} alloy heat treated at 400 °C has the high maximum energy product (BH){sub max} of 64.5 kJ/m{sup 3}, where the coercivity was enhanced to 1560 kA/m by 650 °C heat treatment. In addition, the SmCo{sub 7−x}Zr{sub x} alloys exhibit excellent hard magnetic properties at elevated temperatures. - Highlights: • Wheel speed affects anisotropy and grain size, therefore the magnetic properties. • Zr addition is beneficial for the formation of 1:7 phase and enhances coercivity. • Ball milling process could enhance the magnetic properties of the ribbon. • SmCo{sub 6.7}Zr{sub 0.3} begins to decompose into SmCo{sub 5} and Sm{sub 2}Co{sub 17} at 750 °C. • SmCo{sub 7−x}Zr{sub x} has excellent properties and thermal stability at elevated temperature.

  12. Cyclic and Linear Polarization of Yttrium-Containing Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Lian, T; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys are produced by rapid solidification from the melt. These alloys may possess unique mechanical and corrosion resistant properties. The chemical composition of the alloy may influence the cooling rate that is necessary for the alloys to be completely vitreous. At the same time, the corrosion resistance of the amorphous alloys may also depend on their chemical composition. This paper examines the anodic behavior of iron-based amorphous alloys containing three different concentrations (1, 3 and 5 atomic %) of yttrium (Y) in several electrolyte solutions. Results from polarization resistance potentiodynamic polarization show that when the alloy contains 5% atomic Y, the corrosion resistance decreases.

  13. Rapid synthesis and thermoelectric properties of In0.1Co4sb11Te0.8Ge0.2 alloys via high temperature and high pressure

    International Nuclear Information System (INIS)

    In0.1Co4sb11Te0.8Ge0.2 skutterudite alloys were synthesized by high temperature and high pressure (HTHP) method, and the effect of the In filling and Te, Ge co-doping atoms on thermoelectric properties was investigated under different pressures. The synthetic time was sharply reduced from a few days to 30 min. A fairly good ZT value of 1.12 at 773 K was obtained due to both the remarkably enhanced power factor and the low thermal conductivity

  14. Vanadium alloys: development strategy

    International Nuclear Information System (INIS)

    A strategy for the development of vanadium alloys for use in radiation environments is outlined. An attractive reference alloy (V-15Cr-5Ti) has been identified. The critical issues in developing vanadium base alloys are summarized

  15. Design of experiment (DOE) study of biodegradable magnesium alloy synthesized by mechanical alloying using fractional factorial design

    Science.gov (United States)

    Salleh, Emee Marina; Ramakrishnan, Sivakumar; Hussain, Zuhailawati

    2014-06-01

    The biodegradable nature of magnesium (Mg) makes it a most highlighted and attractive to be used as implant materials. However, rapid corrosion rate of Mg alloys especially in electrolytic aqueous environment limits its performance. In this study, Mg alloy was mechanically milled by incorporating manganese (Mn) as alloying element. An attempt was made to study both effect of mechanical alloying and subsequent consolidation processes on the bulk properties of Mg-Mn alloys. 2k-2 factorial design was employed to determine the significant factors in producing Mg alloy which has properties closes to that of human bones. The design considered six factors (i.e. milling time, milling speed, weight percentage of Mn, compaction pressure, sintering temperature and sintering time). Density and hardness were chosen as the responses for assessing the most significant parameters that affected the bulk properties of Mg-Mn alloys. The experimental variables were evaluated using ANOVA and regression model. The main parameter investigated was compaction pressure.

  16. Surface wave patterns on acoustically levitated viscous liquid alloys

    Science.gov (United States)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  17. Structure and mechanical properties of an AlCr.sub.6./sub.Fe.sub.2./sub.Ti.sub.1./sub. alloy produced by rapid solidification powder metallurgy method

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Novák, P.; Šittner, Petr; Pilch, Jan; Drahokoupil, Jan; Kolařík, K.

    2010-01-01

    Roč. 101, č. 2 (2010), 307-309. ISSN 1862-5282 R&D Projects: GA AV ČR(CZ) IAA200100627; GA AV ČR KAN300100801 Institutional research plan: CEZ:AV0Z10100520 Keywords : aluminium * rapid solidification * hot-extrusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.860, year: 2010

  18. Nanoprecipitation in a beta-titanium alloy

    International Nuclear Information System (INIS)

    Highlights: • In-situ SANS has been applied to study precipitation in β -Ti alloy. • Rate of precipitation is far more rapid in the cold-rolled alloy than non cold-rolled. • The rapid precipitation dramatically improves the alloy hardness. • Extensive ω phase is present after 400 °C/16 h heat-treatment. • SANS modelling and TEM-EDX shows the precipitates are Ti rich. - Abstract: This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in β-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal ω can be induced by cold-rolling Gum metal, a β-Ti alloy. During thermal exposure at 400°C, isothermal ω particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6nm after thermal exposures up to 16h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the β matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy

  19. Nanoprecipitation in a beta-titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, James, E-mail: j.coakley06@imperial.ac.uk [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom); Vorontsov, Vassili A. [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom); Littrell, Kenneth C. [Oak Ridge National Laboratory, Chemical and Engineering Materials Division, Oak Ridge, TN 37831 (United States); Heenan, Richard K. [Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England (United Kingdom); Ohnuma, Masato [Laboratory of Quantum Beam System Engineering, Hokkaido University, Sapporo 060-0808 (Japan); Jones, Nicholas G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England (United Kingdom); Dye, David [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom)

    2015-02-25

    Highlights: • In-situ SANS has been applied to study precipitation in β -Ti alloy. • Rate of precipitation is far more rapid in the cold-rolled alloy than non cold-rolled. • The rapid precipitation dramatically improves the alloy hardness. • Extensive ω phase is present after 400 °C/16 h heat-treatment. • SANS modelling and TEM-EDX shows the precipitates are Ti rich. - Abstract: This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in β-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal ω can be induced by cold-rolling Gum metal, a β-Ti alloy. During thermal exposure at 400°C, isothermal ω particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6nm after thermal exposures up to 16h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the β matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy.

  20. Alloy development for irradiation performance in fusion reactors. Annual report, September 1978-September 1979

    International Nuclear Information System (INIS)

    This report is the first annual report of research activities directed toward the development of improved performance alloys for such severe environments as the fusion reactor fist wall. Major project efforts are directed toward definition of alloy performance requirements, alloy design, alloy production and alloy performance evaluation. Rapid solidification from the melt is being used to manipulate alloy microstructure and to produce the desired design properties. Integrated testing and modeling procedures have been developed to minimize testing requirements. Progress during the first project year and future plans are summarized in this annual report

  1. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  2. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    International Nuclear Information System (INIS)

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin2ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling

  3. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  4. Microstructure and corrosion behavior of Mg-Zn-Ag alloys

    International Nuclear Information System (INIS)

    The majority of Mg components currently in use in the automotive and electronic industries are produced by conventional casting processes. However, there is a strong need to develop new high strength wrought alloys for wide-spread application of Mg alloys in near future. In the present study, new Mg-Zn-Ag alloys were developed and characterized. In order to evaluate the effects of Ag addition on the mechanical properties of the extruded Mg-Zn alloys, the age hardening response and mechanical properties were examined with different amounts of alloying element. The microstructures of the specimens were examined with optical microscopy and transmission electron microscopy. The grain sizes of the alloys in as-extruded condition were markedly reduced with the addition of Ag. The hardness was found to increase more rapidly in the alloys with double aging treatment compared to those with single aging treatment. The peak hardness was also found to be higher in the alloys with double aging treatment. In all heat treatment conditions, the hardnesses of the Mg-Zn-Ag alloys were found to be higher than those of the Mg-Zn alloys. Moreover, the addition of Ag to the Mg-Zn alloys increased the corrosion rate measured by immersion test

  5. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  6. Environmental Studies on Titanium Aluminide Alloys

    Science.gov (United States)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  7. Water atomised aluminium alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Neikov, O.D.; Vasilieva, G.I.; Sameljuk, A.V.; Krajnikov, A.V

    2004-10-10

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions.

  8. Water atomised aluminium alloy powders

    International Nuclear Information System (INIS)

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions

  9. Controlled microstructure formation by rapid solidification and subsequent oxidation of the metallic precursor alloy Y-Ba-Cu to Y1Ba2Cu3O7-x in a continuous process

    International Nuclear Information System (INIS)

    Objective of this project was the investigation of the microstructure formation in high temperature superconductors during solidification. Directional solidification experiments using a seeding technique yielded highly textured samples of both Y1Ba2Cu3O7-x and Bi2Sr2Ca1Cu2O8 superconductors. Current densities determined via transport current measurements exhibit a less pronounced field dependence compared to untextured material. Rapid solidification of the Bi2Sr2Ca1Cu2O8 superconductors enables a controlled precipitation of a well solid as also gaseous precipitates. Magnetic characterization of these samples implies and improved flux pinning at elevated temperatures. (orig.). 23 refs., 22 figs

  10. Alloyed steel

    International Nuclear Information System (INIS)

    The composition and properties are listed of alloyed steel for use in the manufacture of steam generators, collectors, spacers, emergency tanks, and other components of nuclear power plants. The steel consists of 0.08 to 0.11% w.w. C, 0.6 to 1.4% w.w. Mn, 0.35 to 0.6% w.w. Mo, 0.02 to 0.07% w.w. Al, 0.17 to 0.37% w.w. Si, 1.7 to 2.7% w.w. Ni, 0.03 to 0.07% w.w. V, 0.005 to 0.012% w.w. N, and the rest is Fe. The said steel showed a sufficiently low transition temperature between brittle and tough structures, a greater depth of hardenability, and better weldability than similar steels. (B.S.)

  11. Crystallization of amorphous Zr-Be alloys

    Science.gov (United States)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  12. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  13. Rapid prototyping technologies in prosthetic dentistry

    OpenAIRE

    YILDIRIM, Arş. Gör. Dt. Melike Pınar; BAYINDIR, Prof. Dr. Funda

    2013-01-01

    Emerged as the concept of rapid prototyping technology, nowadays, is seen as the future of quick and direct production. This technology found applications with metal framework of fixed partial dentures, framework of removable partial dentures, facial protheses and titanium implants in prosthetic dentistry. The virtual image of the restoration is tranferred to the computer and the laser beam is sintered the selected areas on the alloy powders and the restoration is produced layer by layer at s...

  14. Rapid directional solidification in Sn-Cu lead-free solder

    Institute of Scientific and Technical Information of China (English)

    Jun Shen; Yongchang Liu; Houxiu Gao

    2006-01-01

    An experimental study on the microstructures of a rapid directionally solidified metallo-eutectic Sn-Cu alloy was carried out.This material is an important alloy that is used as a lead-free solder. The results showed that the kinetic undercooling due to the rapid solidification process led to the formation of a pseudoeutectic zone, whereas the hypereutectic reaction produced the regular lamellar structure in the hypereutectic Sn-1.0Cu alloy. The corresponding arm spacing in the obtained lamellar phases decreased gradually with the increase of the applied cooling rate, which corresponded well with the prediction of a rapid directional solidification model.

  15. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  16. Terbium base alloy

    International Nuclear Information System (INIS)

    Composition of terbium-5-7 % gadolinium alloy with high magnetostriction sensitivity (180x10-8 Oe) is suggested. The alloy is designed for usage under cryogenic temperature within 500-1500 Oe fields. Magnetostriction sensitivity of the suggested alloy is by 2-2.5 times higher, than that of well-known before one. 1 tab

  17. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  18. Solidification microstructure formation in HK40 and HH40 alloys

    Science.gov (United States)

    Ding, Xian-fei; Liu, Dong-fang; Guo, Pei-liang; Zheng, Yun-rong; Feng, Qiang

    2016-04-01

    The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatPro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ → L + γ + M7C3 → γ + M7C3 → γ + M7C3 + M23C6→ γ + M23C6 and L → L + δ → L + δ + γ→ L + δ + γ + M23C6 δ + γ + M23C6, respectively. The solidification mode was determined to be the austenitic mode (A mode) in HK40 alloy and the ferritic-austenitic solidification mode (FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr23C6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.

  19. Unexpected magnetic behavior in amorphous Co90Sc10 alloy

    International Nuclear Information System (INIS)

    An amorphous alloy Co90Sc10 has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co90Sc10 appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co90Sc10 alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co90Sc10 alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co

  20. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  1. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  2. Spontaneously Passivating Amorphous Fe-Cr-Mo-Metalloid Alloys in 6 N HCl at Room Temperature and 80℃

    OpenAIRE

    Kobayashi, Ken-ichi; Hashimoto, Koji; MASUMOTO, Tsuyoshi

    1980-01-01

    Amorphous iron-base alloys capable of passivating spontaneously in 6 N HCl at 80℃ were prepared by rapid quenching of molten alloys. The corrosion resistance and passivating ability of the alloys increased with increasing chromium and molybdenum contents. The critical concentrations of chromium and molybdenum in the alloys necessary for spontaneous passivation in 6 N HCl at room temperature and 80℃ were established. These concentrations were greatly affected by coexisting metalloids. The pass...

  3. Simulation of formation and evolution of nano-clusters during rapid solidification of liquid Ca70Mg30 alloy%液态Ca70Mg30合金快速凝固过程中纳米团簇结构形成演变特性模拟

    Institute of Scientific and Technical Information of China (English)

    周丽丽; 刘让苏; 田泽安

    2013-01-01

    A molecular dynamics simulation study was performed to investigate the formation and evolution mechanisms of nano-clusters during the rapid solidification of liquid Ca70Mg30 alloy. The cluster-type index method (CTIM) was adopted to describe microstructure evolutions of nano-clusters during solidification. Results indicate that amorphous structure is mainly formed with three bond-types of 1551, 1541 and 1431 at the cooling rate of 5×1011 K/s, and glass transition temperature Tg is about 530 K;the icosahedron cluster of (12 0 12 0) plays a key role in formation of amorphous structure, and smaller Mg atoms are much more probable to be central atoms of icosahedron clusters; and nano-clusters are mainly formed by combining medium-size clusters. Interestingly, it was also found that formation and evolution processes of the nano-cluster display a three-stage feature which is analogous to crystallization process of amorphous alloy.%采用分子动力学方法对液态Ca70Mg30合金快速凝固过程中纳米团簇结构的形成和演变特性进行模拟。采用原子团类型指数法(CTIM)对凝固过程中纳米团簇结构的演变进行分析。结果表明:系统在5×1011 K/s的冷速条件下形成以1551、1541和1431为主的非晶态结构,非晶转变温度约为530 K;(120120)二十面体基本原子团对系统非晶结构的形成起到决定性的作用,并且原子半径较小的Mg原子更容易占据二十面体基本原子团中心原子的位置;同时,纳米团簇主要是通过中等尺寸团簇的合并而形成,纳米级大团簇的形成演变过程呈现出类似于非晶晶化过程的3个阶段式的变化。

  4. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  5. Efficient Ab initio Modeling of Random Multicomponent Alloys

    Science.gov (United States)

    Jiang, Chao; Uberuaga, Blas P.

    2016-03-01

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

  6. Study of the pyrophoric characteristics of uranium-iron alloys

    International Nuclear Information System (INIS)

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 μm and 1000 μm diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  7. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  8. The DynAlloy Visualizer

    OpenAIRE

    Bendersky, Pablo; Galeotti, Juan Pablo; Garbervetsky, Diego

    2014-01-01

    We present an extension to the DynAlloy tool to navigate DynAlloy counterexamples: the DynAlloy Visualizer. The user interface mimics the functionality of a programming language debugger. Without this tool, a DynAlloy user is forced to deal with the internals of the Alloy intermediate representation in order to debug a flaw in her model.

  9. Shape Memory Alloys (Part II: Classification, Production and Application

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    breakdown at low stress levels. The technologies for production of shape memory alloys are induction melting, vacuum melting, vacuum arc melting, following hot and cold working (forging, rolling, wire drawing. In addition, rapid solidification methods, like melt spinning and continuous casting have been developed. These methods are characterized by high cooling rates. High cooling rates allow very short time for diffusion processes and may lead to extremely fine microstructure, better homogeneity etc. SMAs have found applications in many areas due to their thermomechanical and thermoelectrical properties (biomedical applications, engineering industry, electrical industry. In this paper, a review of shape memory alloys, properties and applications of mentioned materials is presented.

  10. Effects of Deformation on Microstructure of Cu-Zn-Ni Alloy

    OpenAIRE

    ALDIRMAZ, Emine; CELIK, Harun; AKSOY, Ilhan

    2012-01-01

    The thermal and mechanical effects on microstructure of Cu-12.44%Zn-4.75%Ni (wt%) alloy were investigated. The effects mechanical on both rapidly cooled sample and slowly cooled sample obtained from Cu-Zn-Ni alloy were investigated by using scanning electron microscopy (SEM), X-ray diffraction techniques (XRD). The thermal energy changes of in the alloy were examined by means of differential scanning calorimetry (DSC). As a result of SEM observations, annealing twins structures are observed i...

  11. Superplasticity in titanium alloys

    OpenAIRE

    J. Sieniawski; Motyka, M.

    2007-01-01

    Purpose: The paper reports characteristic of superplasticity phenomenon in titanium alloys and possibility of its applications.Design/methodology/approach: The main objective of the paper is to show features of superplastic forming of titanium alloys and current research trends aiming at widespread application of this technology.Findings: In the paper characteristic of selected superplastic titanium alloys was presented. The effect of microstructural parameters on superplasticity was consider...

  12. Stress corrosion cracking of nickel-molybdenum alloys

    International Nuclear Information System (INIS)

    Intergranular stress corrosion cracking (SCC) of alloy B-2 (UNS N10665) can occur in dilute acids at low temperatures if there is short range ordering and Ni4Mo in its metallurgical structure. Certain chemistries of alloy B-2 are particularly susceptible to the rapid kinetics of the Ni4Mo transformation, which can occur within minutes of exposure to temperatures of 650--750 C such as during welding. The severity of ordering is dependent on alloy chemistry and thermomechanical processing conditions, and can result in reduced ductility at 700 C, and subsequently to SCC. SCC in the heat-affected zones of welds of fabricated equipment of alloy B-2 have been found to be associated with the presence of Ni4Mo and a short-range ordered structure. Laboratory tests confirmed that only a partially-ordered structure is needed for alloy B-2 to be highly susceptible to SCC in dilute sulfuric acid. A strong correlation was found between degree of ordering, and both susceptibility to SCC and reduced ductility at 700 C. Development of alloy B-3 (UNS N10675) overcomes this thermal instability of alloy B-2, and provides enhanced resistance to SCC in the as-welded condition. In addition to TEM evidence and ductility measurements at 700 C, a stress-corrosion cracking test in boiling 5 wt.% sulfuric acid has also been found useful in evaluating the susceptibility of Ni-Mo alloys to ordering, and to Ni4Mo formation

  13. Interaction of alumina with liquid Pb83Li17 alloy

    International Nuclear Information System (INIS)

    Highlights: • The role of oxygen in the interaction of alumina with Pb83Li17 alloy was studied. • Li of Pb83Li17 alloy undergoes oxidation even in flowing high pure argon atmosphere. • It was seen that alumina reacts with Pb83Li17 alloy at 550 °C to form LiAlO2 compound. • The reaction is rapid in the presence of oxygen and happens more slowly in the presence of flowing argon. - Abstract: Eutectic lead lithium (Pb83Li17) alloy is being considered a coolant, neutron multiplier and tritium breeder for International Thermonuclear Experimental Reactor (ITER) and Fusion Power Reactors (FPR). In order to reduce the magneto-hydrodynamic drag (MHD) and to prevent corrosion of structural materials due to the flow of lead lithium (Pb83Li17) alloy, alumina (Al2O3) is proposed as a candidate ceramic coating material. Interaction of liquid Pb83Li17 alloy with Al2O3 at the operating temperature of these reactors is therefore an important issue. The present paper deals with the characterization of Pb83Li17 alloy and its interaction with Al2O3 at the reactor operating temperature. The interaction was studied using EPMA, XRD and thermal analysis technique. The result indicates that alumina can interact with Pb83Li17 alloy at 550 °C even in high purity argon atmosphere. The role of oxygen in the interaction process has also been discussed

  14. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  15. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  16. On the resistivity of metal-tellurium alloys for low concentrations of tellurium

    International Nuclear Information System (INIS)

    The resistivity and thermoelectric power of metal-tellurium liquid alloys have been discussed for the case of small tellurium concentration. Nearly free electron model of conduction band has been used. The rapid increase of resistivity in transition metal-tellurium alloys has been predicted. (author)

  17. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  18. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  19. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  20. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  1. Brazing with plated alloys

    International Nuclear Information System (INIS)

    The use of braze alloy preforms on complex geometry components is at times a very difficult task requiring extensive handling of the parts or even tack welding of the preform to ensure that it is held in place. One method of overcoming these difficulties is the use of plated braze alloys (i.e., filler metals) applied directly to the braze region. Plating helps to avoid the potential for contamination resulting from handling and also ensures that the braze alloy is located properly. Examples are discussed in which an electroplated silver-copper alloy is used as an alternative to the BAg8 preforms and electroless nickel is used as a replacement for an amorphous Ni-P braze alloy foil. A toroidal cooling plate with helical flow channels was fabricated from oxygen-free high conductivity (OFHC) and brazed using the electroplated silver-copper alloy. The silver-copper braze alloy was applied to the copper substrate in a laminated fashion of alternating layers of silver and copper, which in combination approximated the eutectic composition (72% Ag-28% Cu by weight). Examination of the brazed assemblies indicated that in both cases the advantages of using plated braze alloys are numerous. These advantages include decreased labor, improved cleanliness and exactness of braze alloy placement. The primary disadvantage was an increased tendency for solidification defects presumably resulting from contaminants in the plating baths. This last observation is presently being examined in greater detail. The end results is that the assemblies brazed with the plated alloys were acceptable for the intended application and that the use of plating facilitated the successful assembly of these components

  2. Creep crack growth behavior of several structural alloys

    Science.gov (United States)

    Sadananda, K.; Shahinian, P.

    1983-07-01

    Creep crack growth behavior of several high temperature alloys, Inconel 600, Inconel 625, Inconel X-750, Hastelloy X, Nimonic PE-16, Incoloy 800, and Haynes 25 (HS-25) was examined at 540, 650, 760, and 870 °C. Crack growth rates were analyzed in terms of both linear elastic stress intensity factor and J*-integral parameter. Among the alloys Inconel 600 and Hastelloy X did not show any observable crack growth. Instead, they deformed at a rapid rate resulting in severe blunting of the crack tip. The other alloys, Inconel 625, Inconel X-750, Incoloy 800, HS-25, and PE-16 showed crack growth at one or two temperatures and deformed continuously at other temperatures. Crack growth rates of the above alloys in terms ofJ* parameter were compared with the growth rates of other alloys published in the literature. Alloys such as Inconel X-750, Alloy 718, and IN-100 show very high growth rates as a result of their sensitivity to an air environment. Based on detailed fracture surface analysis, it is proposed that creep crack growth occurs by the nucleation and growth of wedge-type cracks at triple point junctions due to grain boundary sliding or by the formation and growth of cavities at the boundaries. Crack growth in the above alloys occurs only in some critical range of strain rates or temperatures. Since the service conditions for these alloys usually fall within this critical range, knowledge and understanding of creep crack growth behavior of the structural alloys are important.

  3. Rapidly solidified aluminium for optical applications

    OpenAIRE

    Gubbels, G.P.H.; Venrooy, B.W.H.; Bosch, A.J.; Senden, R

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as nickel plated surfaces, but the RSA6061 has the advantage that no additional production steps are needed and that no bi-metallic bending or delamination can occur in a thermally changing environmen...

  4. Complex metallic alloys as new materials for additive manufacturing

    International Nuclear Information System (INIS)

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal–matrix composites or of polymer–matrix composites with improved properties. Functional parts using these alloys are now commercialized. (review)

  5. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  6. The oxidation/sulfidation behavior of Fe-Cr-Ni-Nb alloys at elevated temperatures

    International Nuclear Information System (INIS)

    Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20% Cr is required for service at temperatures up to 10000C, although the presence of sulfur inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined with particular emphasis on the effects of alloy Cr content (12 and 25% Cr) and the addition of a reactive oxide-forming element (1-6% Nb). Niobium is shown to promote protective oxidation behavior on the 12% Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen-sulfur-containing environments. The results for isothermal corrosion tests are presented and discussed with reference to published information

  7. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  8. Refractory alloy component fabrication

    International Nuclear Information System (INIS)

    Purpose of this report is to describe joining procedures, primarily welding techniques, which were developed to construct reliable refractory alloy components and systems for advanced space power systems. Two systems, the Nb-1Zr Brayton Cycle Heat Receiver and the T-111 Alloy Potassium Boiler Development Program, are used to illustrate typical systems and components. Particular emphasis is given to specific problems which were eliminated during the development efforts. Finally, some thoughts on application of more recent joining technology are presented. 78 figures

  9. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei; Skriver, Hans Lomholt; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    2003-01-01

    cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....

  10. Dry face milling of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    Ahmed Hassan; Zhenqiang Yao

    2004-01-01

    In machining titanium alloys, cutting tools generally wear out very rapidly because of the high cutting temperature resulted from the low thermal conductivity and density of the work material. In order to increase the tool life, it is necessary to suppress the cutting heat as much as possible by applying an abundant amount of coolant, but this will entail serious techno-environmental and biological problems. To study the performance and avoid these limitations, a PVD-coated insert was used to the dry face mill of (α +β) titanium alloys. As a result it was found that the inserts exhibit an excellent cutting performance at low cutting speeds and feed rates, and there is no significant difference in the dominant insert failure mode between the wet and dry cutting in discontinuous cutting.

  11. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  12. Computational Materials Program for Alloy Design

    Science.gov (United States)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  13. Texture in low-alloyed uranium alloys

    International Nuclear Information System (INIS)

    The dependence of the preferred orientation of cast and heat-treated polycrystalline adjusted uranium and uranium -0.1 w/o chromium alloys on the production process was studied. The importance of obtaining material free of preferred orientation is explained, and a survey of the regular methods to determine preferred orientation is given. Dilatometry, tensile testing and x-ray diffraction were used to determine the extent of the directionality of these alloys. Data processing showed that these methods are insufficient in a case of a material without any plastic forming, because of unreproducibility of results. Two parameters are defined from the results of Schlz's method diffraction test. These parameters are shown theoretically and experimentally (by extreme-case samples) to give the deviation from isotropy. Application of these parameters to the examined samples showes that cast material has preferred orientation, though it is not systematic. This preferred orientation was reduced by adequate heat treatments

  14. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO2 dissolves in Nb2O5 to form 6HfO-Nb2O5. This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 24000F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 24000F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  15. Titanium alloys. Advances in alloys, processes, products and applications

    OpenAIRE

    Blenkinsop, P.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in "older" alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments ...

  16. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan; Schiøtz, Jakob

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  17. Rapid Tooling via Stereolithography

    OpenAIRE

    Montgomery, Eva

    2006-01-01

    Approximately three years ago, composite stereolithography (SL) resins were introduced to the marketplace, offering performance features beyond what traditional SL resins could offer. In particular, the high heat deflection temperatures and high stiffness of these highly filled resins have opened the door to several new rapid prototyping (RP) applications, including wind tunnel test modelling and, more recently, rapid tooling.

  18. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  19. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  20. Rapid Heat Treatment of Aluminum High-Pressure Diecastings

    Science.gov (United States)

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.

    2009-07-01

    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  1. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  2. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    OpenAIRE

    Berat Barıs BULDUM; Aydın SIK; Iskender OZKUL

    2013-01-01

    Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attra...

  3. Productive Machining of Titanium Alloys

    OpenAIRE

    Čejka, Libor

    2013-01-01

    This diploma thesis is focused on a productive machining of titanium alloys. At the beginning it deals about titanium and its alloys. It describes chip generation mechanism, tool blunting and surface quality. Further it contains modern strategies of efficient titanium alloys machining. Then it analyzes contemporary manufacturing technology of hinge made of titanium alloy Ti-6Al-4V in Frentech Aerospace s.r.o. company, and at the end finds possibility of savings by inovation of roughing process.

  4. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D.L.; Xie, W.J.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2012-10-15

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition. (orig.)

  5. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Science.gov (United States)

    Geng, D. L.; Xie, W. J.; Wei, B.

    2012-10-01

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition.

  6. Coating with overlay metallic-cermet alloy systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  7. Interfacial Microstructure and Mechanical Properties of Al Alloy/Mg Alloy Laminated Composite Plates Fabricated by Equal Channel Angular Processing

    Institute of Scientific and Technical Information of China (English)

    LI Guorui; ZHAO Dong; ZHAO Yaojiang; ZHOU Bin; WANG Hongxia

    2016-01-01

    KAl (7075) alloy /Mg (AZ31) alloy laminated composite plates were successfully fabricated by the equal channel angular processing (ECAP) by using route A for 1, 2, and 3 passes at 573 K, respectively. After fabrication, the 1-pass ECAPed laminated composite plates were annealed at different temperatures. The microstructure evolution, phase constituent, and bonding strength near the joining interface of Al (7075) alloy /Mg (AZ31) alloy laminated composites plates were evaluated with scanning electron microscopy, X-ray diffraction, and shear tests. The experimental results indicated that a 20 μm diffusion layer was observed at the joining interface of Al (7075) alloy /Mg (AZ31) alloy laminated composites plates fabricated by the 1-pass ECAP, which mainly included Al3Mg2 and Mg17Al12 phases. With the increase of passes, the increase of diffusion layer thickness was not obvious and the form of crack in these processes led to the decrease of bonding strength. For 1-pass ECAPed composites, the thickness of diffusion layer remained unchanged after annealed at 473 K, while the bonding strength reached its maximum value 29.12 MPa. However, after elevating heat treatment temperature to 573 K, the thickness of diffusion layer increased rapidly, and thus the bonding strength decreased.

  8. On the probable mechanism of thermal remagnetization of rapidly quenched highly anisotropic magnets

    International Nuclear Information System (INIS)

    Within the framework of the theory of micromagnetism using numerical calculations and the model of a multilayer stochastic system in a unidimensional approximation a study is made into the phenomenon of thermal magnetization of structurally isotropic disperse alloys of high anisotropy magnetic, in particular, of SmCo5 and Nd2Fe14B alloys. The theoretical study shows that the thermal magnetization observed in disperse structurally isotropic rapidly quenched alloys of high anisotropy magnetics can be explained by exchange interaction along crystal boundaries only

  9. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  10. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 5000C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 1500C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  11. Welding of refractory alloys

    International Nuclear Information System (INIS)

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  12. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  13. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  14. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  15. Machining of Titanium Alloys

    OpenAIRE

    Karásek, Jan

    2008-01-01

    The main goal of this work is the analysis of manufacturing costs for the component of wheel´s blower. Followed by setting up the size of specific cutting force for milling operation of the titanium alloy Ti-Al6-Mo2-Cr2-Fe-Si, the used tool was a milling cutter which is made out of sintered carbide with conical and spherical face. The final values which are at intervals of 1500 to 1800 MPa were compared with the values of the Sandvik Coromant firm kc = 1690 MPa, for titanium alloy with the st...

  16. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  17. Soldering of aluminium alloys

    International Nuclear Information System (INIS)

    A literature survey about soldering in general and aluminium alloys soldering in particular is presented. The existing methods of soldering aluminium alloys are described. These include soldering with flux, soldering after preliminary plating, vacuum brazipressure and temperature (NTP), sample age calculation based on 14C half life of 5570 and 5730 years, age correction for NTP, dendrochronological corrections and the relative radiocarbon concentration. All results are given with one standard deviation. Input data test (Chauvenet's criterion), gas purity test, standard deviation test and test of the data processor are also included in the program. (author)

  18. SAP Sector Develops Rapidly

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Stable demand growth internationally Super absorbent polymers (SAP) feature high water absorption, high water retention, rapid water absorption, great expanding power,strong thickening, strong anchoring and excellent elasticity.

  19. Rapid Lead Screening Test

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Lab Tests Rapid Lead Screening Test Share Tweet Linkedin Pin it More ... reducing the need for a follow-up visit. Lead Risk Links Centers for Disease Control and Prevention ( ...

  20. Atomic absorption analysis of serial titanium alloys

    International Nuclear Information System (INIS)

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  1. Unexpected magnetic behavior in amorphous Co{sub 90}Sc{sub 10} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, M., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@utsi.edu; Gleiter, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Sakurai, Y.; Itou, M. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Sayo, Hyogo (Japan); Peng, G.; Fang, Y. N.; Feng, T. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Institute of Materials Science, Technische Universität Darmstadt (TUD), Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Kamali, S., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@utsi.edu [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States)

    2015-09-28

    An amorphous alloy Co{sub 90}Sc{sub 10} has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co{sub 90}Sc{sub 10} appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co{sub 90}Sc{sub 10} alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co{sub 90}Sc{sub 10} alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  2. Pemilihan Bahan Alloy Untuk Konstruksi Gigitiruan

    OpenAIRE

    Medila Dahlan

    2008-01-01

    Pada kedokteran gigi bahan alloy sangat banyak digunakan dalam segala bidang. Dalam pembuatan konstruksi gigitiman biasanya digunakan alloy emas, alloy kobalt kromium, alloy nikei kromium dan alloy stainless steel sebagai komponen gigitiman kerangka logam serta pembuatan mahkota dan jembatan. Pemilihan bahan alloy dapat dilakukan berdasarkan sifat yang dimiiiki oleh masing-masing bahan alloy sehingga akan didapat hasil konstmksi gigitiruan yang memuaskan. Pada pemakaiannya didaiam mulut...

  3. Hydrogen embrittlement of vanadium alloys

    International Nuclear Information System (INIS)

    The mechanical properties of several vanadium alloys were measured with the hydrogen concentration high up to 113 mg/kg. The results showed that the alloys with low mechanical strength had better properties against hydrogen embrittlement. Oxygen in the alloy, especially that in the alloys with high strength, could enhance the hydrogen embrittlement. Mechanism analysis was given to show that the brittle fracture was mainly caused by intergranular failure. The effects of oxygen concentration and the strength of the alloy were both resulted from their contributions to the grain strength and the grain boundary strength

  4. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  5. Creep performance and microstructure of the iron alloy Alloy 800 HT

    International Nuclear Information System (INIS)

    The examination of the high-temperature properties of the alloy Alloy 800HT has shown that both the creep performance and the microstructure of the material can be purposefully set by the initial heat treatment. At the high temperatures applied, (700-900 C), a rapid softening process sets in induced by carbide precipitation, stabilization, and coarsening. This softening process causes creep velocities strongly accelerating as a function of duration of the heat treatment prior to the creep test. The identified cause of the softening effect is a change in particle size that could be verified by SEM and TEM. It is shown that two different carbide precipitate size classes are responsible for the softening effect. While the precipitates dectable by TEM become effective primarily via interactions with dislocations, the carbide precipitates detectable only by SEM contribute to a hardening of the grain boundaries and the matrix.(orig./CB)

  6. Influence of constitutional liquation on corrosion behaviour of aluminium alloy 2017A

    International Nuclear Information System (INIS)

    The purpose of this work was to investigate microstructural aspects of constitutional liquation in the aluminium alloy 2017A and to determine its effect on corrosion behaviour of this alloy. Non-equilibrium melting of the alloy in the naturally aged condition was provoked by rapid heating above the eutectic temperature and immediate cooling in air. Corrosion testing was performed by exposure to a marine onshore atmosphere. The microstructure examinations were carried out using light microscopy, scanning electron microscopy, X-ray energy dispersion and X-ray diffraction analysis. It was found that, due to rapid heating rate, coarse θ (Al2Cu) particles were melted by constitutional liquation and this way introduced strong susceptibility of 2017A alloy to intergranular corrosion.

  7. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  8. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  9. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  10. High strength ferritic alloy

    International Nuclear Information System (INIS)

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  11. Ferrimagnetism in MnxV1-x alloys

    International Nuclear Information System (INIS)

    Full text: The magnetic properties of MnV alloys near the equiatomic concentration have been investigated using magnetic susceptibility and neutron powder diffraction. Rapidly cooled body centred cubic alloys near the equiatomic concentration are confirmed as very weakly ferrimagnetic with average local moment of the order of 0.05 μB per atom and average ordered moments of order 0.02 μB per atom. The degree of atomic and magnetic order can be greatly enhanced by annealing these alloys supporting the view that the ordered moments are associated with CsCl type atomic short range order. Evidence is presented that the moment is not associated with impurities or any of the multitude of magnetically ordered mixed manganese vanadium oxides

  12. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  13. Hydrogenation of deformable aluminum alloy semiproducts during water quenching and artificial aging

    Science.gov (United States)

    Antipin, V. P.; Tul'Pakova, R. V.

    2007-10-01

    The surface layers of rods made of magnesium-containing aluminum alloys are shown to undergo strong hydrogenation during water quenching. Hydrogenation is detected during vacuum heating after artificial aging (D16 alloy) or long-term storage (V95, AK4-1ch alloys). Very high hydrogen concentrations in the surface layers of semiproducts that appear in regions with a minimum cooling rate during quenching are likely to cause bubble formation on the surface of the heat-treated semiproducts. Compared to the V95 alloy, hydrogen dissolved in the AK4-1ch alloy rods behaves differently during air annealing. Specifically, hydrogen is rapidly absorbed by the degassed rods and is slowly extracted from the saturated rods. This behavior is most likely to be caused by hydrogen-ion entrapment by FeNiAl9 intermetallic particles.

  14. Alloy development for irradiation performance in fusion reactors. Annual report, September 1979-September 1980

    International Nuclear Information System (INIS)

    This report summarizes the research and development work performed during the second year of an M.I.T. project directed toward the development of improved structural alloys for the fusion reactor first wall application. Several new alloys have been produced by rapid solidification. Emphasis in alloy design and production has been placed on producing austenitic Type 316SS with fine dispersions of TiC and Al2O3 particles. Results of mechanical and microstructural tests are presented. A number of neutron irradiations have been initiated on samples fabricated from alloys produced in this project. A dual beam, heavy ion and helium ion, irradiation was completed using several alloys and a range of temperatures, damage rates and total doses. Modeling of irradiation phenomena has been continued with emphasis in the last year upon understanding the effect of recoil resolution on relatively stable second phase particles. Work continued to fully characterize the microstructure of several ZrB2 doped stainless steels

  15. Surface alloying of Cu with Ti by double glow discharge process

    Institute of Scientific and Technical Information of China (English)

    袁庆龙; 池成忠; 苏永安; 徐重; 唐宾

    2004-01-01

    The surface of pure copper alloyed with Ti using double glow discharge process was investigated. The morphology, structure and forming mechanism of the Cu-Ti alloying layer were analyzed. The microhardness and wear resistance of the Cu-Ti alloying layer were measured, and compared with those of pure copper. The results indicate that the surface of copper activated by Ar and Ti ions bombardment is favorable to absorption and diffusion of Ti element. In current experimental temperature, as the Ti content increases, the liquid phase occurs between the deposited layer and diffused layer, which makes the Ti ions and atoms easy to dissolve and the thickness of Cu-Ti alloying layer increase rapidly. After cooling, the structure of the alloying layer is composed of CuTi, Cu4 Ti and Cu(Ti) solid solution. The solid solution strengthening and precipitation strengthening effects of Ti result in high surface hardness and wear resistance.

  16. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  17. Morphological evolutions of cast and melt-spun Mg97Zn1Y2 alloys during deformation and heat-treating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mg97Zn1Y2 alloy has been studied as an elevated temperature creep resistant Mg-based alloy for nearly ten years. While,the strength of the cast Mg97Zn1Y2 alloy with long-period stacking(LPS) structure is lower than that of the commercial AZ91 alloy at room temperature. The microstructure evolutions in Mg97Zn1Y2 (molar fraction, %) alloys with LPS phase, processed by rolling and annealing the as-cast alloy and rapidly solidifying/melt-spinning and age treating at different temperatures respectively, were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), and laser optical microscopy(LOM), scanning electron microscopy (SEM), and transmission electron microscopy(TEM). The evolutionary direction of microstructure prescribed by thermodynamics in the Mg97Zn1Y2 alloy is reflected from experimental data of the as-cast alloy; and the actual evolution paths selected by kinetics are depicted in detail in the as-spun alloy and rolled alloy. The strong influences of thermodynamic nonequilibrium mechanism, which entails the factual complexity of microstructures typically during rapid solidification and deformation processing for strengthening the creep resistant magnesium alloy, are presented.

  18. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  19. Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling

    OpenAIRE

    Daniel Rodrigo Leiva; Hevlin Cristina de Almeida Costa; Jacques Huot; Tiago Santos Pinheiro; Alberto Moreira Jorge Junior; Tomaz Toshimi Ishikawa; Walter José Botta Filho

    2012-01-01

    Severe plastic deformation routes (SPD) have been shown to be attractive for short time preparation of magnesium alloys for hydrogen storage, generating refined microstructures and interesting hydrogen storage properties when compared to the same materials processed by high-energy ball milling (HEBM), but with the benefit of higher air resistance. In this study, we present results of a new processing route for Mg alloys for hydrogen storage: rapid solidification followed by cold work. A Mg97N...

  20. Nanocrystallization of Coarse Primary Phases in Al- and Mg-Based Alloys Induced by HCPEB Treatment

    OpenAIRE

    Gao Bo; He Jidong; Tu Ganfeng; Hu Liang

    2013-01-01

    This paper reports on a phenomenon associated with high-current pulsed electron beam (HCPEB) treatment: surface nanocrystallization of coarse primary phase in hypereutectic Al17.5Si and quasicrystal alloys after multiple pulses of HCPEB irradiation. The HCPEB treatment induces superfast heating and diffusion of alloying elements and heterogeneous nucleation in a melting solution, followed by rapid solidification and cooling of the material surfaces. Consequently, nanostructured surface layers...

  1. Rapid small lot manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  2. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on relativistic multiparticle processes in the central rapidity region at asymptotically high energies, a new experimental study of charged K→3π decays, pre-Cherenkov radiation as a phenomenon of 'light barrier', stable S=-2 H dibaryon found in Dubna, calculation of Green functions and gluon top in some unambiguous gauges, a method of a fast selection of inelastic nucleus-nucleus collisions for the CMS experiment and the manifestation of jet quenching in differential distributions of the total transverse energy in nucleus-nucleus collisions

  3. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  4. Oxidation induced phase transformations and lifetime limits of chromia forming nickel base alloy 625

    OpenAIRE

    Chyrkin, Anton

    2011-01-01

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of delta-Ni3Nb and (Ni,Mo,Si)6C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900–1000°C in oxidatio...

  5. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically

  6. Study of U - Pu - Fe alloys (Masurca critical experiment)

    International Nuclear Information System (INIS)

    Three compositions have been studied: 73.5 U - 25 Pu - 1.5 Fe (weight %) 74 U - 25 Pu - 1 Fe 74.5 U - 25 Pu - 0.5 Fe Elaboration and Casting are easy. After two weeks in air 74.5 U - 25 Pu - 0.5 Fe alloys are reduced in powder. As-cast alloys containing 1 and 1,5% Fe are kept undamaged during several months. A rapid oxidisation of the alloys is however observed when the samples undergo the phase transformation (at 595 deg. C and 590 deg. C respectively). Ignition tests in the presence of air show that the oxidisation starts at about 250 deg. C and that the reaction does not spread. Ignition is not observed during heating from 20 to 660 deg. C. The transformation temperature, the melting temperature and the thermal expansion coefficients have been determined by dilatometry. Below the transformation temperature, the principal phases are U-Pu zeta and (U, Pu)6Fe. Thermal conductibility, Young modulus, density and heat of fusion have been measured. Compatibility tests show that between U-Pu-Fe and stainless steel a phase of (U, Pu)6Fe type is formed. The 74 U - 25 Pu - 1% Fe alloy seems to behave better than 73.5 U - 25 Pu - 1.5% Fe alloy because the (U, Pu)6Fe layer is two or three times smaller. Finally, the thermal stability has been studied with the 74 U - 25 Pu - 1% Fe alloy. A dilatometric anomaly (very weak expansion) occurs when the sample is heated above transformation temperature and cooled. But there is no anomaly by thermal cycling from 50 deg. C to 400 deg. C and there is no deterioration of alloys by heat treatments at 100 deg. C, 200 deg. C, 300 deg. C during 5 months under vacuum. (authors)

  7. Modeling corrosion behavior of gas tungsten arc welded titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pitting corrosion characteristics of pulse TIG welded Ti-6Al-4V titanium alloy in marine environment were explained.Besides the rapid advance of titanium metallurgy, this is also due to the successful solution of problems associated with the development of titanium alloy welding. The preferred welding process of titanium alloy is frequently gas tungsten arc(GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The benefit of the process is utilized to obtain better quality titanium weldments. Four factors, five levels, central composite, rotatable design matrix are used to optimize the required number of experiments. The mathematical models have been developed by response surface method(RSM). The results reveal that the titanium alloy can form a protective scale in marine environment and is resistant to pitting corrosion. Experimental results are provided to illustrate the proposed approach.

  8. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    The diameter (df) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  9. Rapid Drying Concrete

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    One of the essential problems that are faced during construction is the drying of concrete and the presence of moisture which affects floor coverings that need to be placed. The rapid-drying characteristic in Aridusâ concrete allows for the quick reduction of moisture vapor that travels through the concrete pores of the concrete.

  10. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains five separate reports on neutron sources, nuclear models using hydrodynamic concepts, the calculation of sorption gas dynamics (adsorption isotherms) of non-dissociative molecules, time-of-flight and pulse shape analysis results with solid scintillation detectors and theoretical work on radial excitations of light mesons. 13 figs., 6 tables

  11. Navigate the Digital Rapids

    Science.gov (United States)

    Lindsay, Julie; Davis, Vicki

    2010-01-01

    How can teachers teach digital citizenship when the digital landscape is changing so rapidly? How can teachers teach proper online social interactions when the students are outside their classroom and thus outside their control? Will encouraging students to engage in global collaborative environments land teachers in hot water? These are the…

  12. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  13. The potential of rapid cooling spark plasma sintering for metallic materials

    Directory of Open Access Journals (Sweden)

    Faming Zhang

    2013-05-01

    Full Text Available Spark plasma sintering (SPS is a remarkable technique for consolidating a large variety of advanced materials with rapid heating rates. However, adjusting the cooling rates has so far faced limitations. This communication discusses the potentials of SPS integrated with a novel gas quenching system that can allow metallic materials to be sintered and rapidly quenched directly after the sintering step, saving energy and costs. Results on numerical simulations of rapid cooling-SPS and the mechanical properties and microstructures of Ti6Al4V alloy are discussed; exhibiting the feasibility of this rapid cooling SPS technique and the major implications for the field of SPS and metallic powder consolidation.

  14. Phase, microstructure and properties evolution of fine-grained W–Mo–Ni–Fe alloy during spark plasma sintering

    International Nuclear Information System (INIS)

    Highlights: ► Fine-grained W–Mo–Ni–Fe alloy was fabricated by HEBM assisted SPS technology. ► The HEBM-SPS technology degraded the sintering temperature of W–Mo–Ni–Fe alloy. ► The microstructure of W–Mo–Ni–Fe alloy consists of four different phases. ► The intergranular fracture is dominant for most fine-grained W–Mo–Ni–Fe alloy. -- Abstract: Fine-grained tungsten (W) heavy alloy containing molybdenum (Mo) with W particle sizes of less than 5 μm were fabricated by spark plasma sintering (SPS) pre-milling W–2Mo–7Ni–3Fe powder at a lower temperature of 1000–1250 °C. Phase, microstructure and mechanical properties evolution of W–Mo–Ni–Fe alloy during spark plasma sintering were studied in detail. As increasing sintering temperature, the hardness of the alloy decreased rapidly. However, bending strength of the alloy demonstrated a fall–rise–fall trend, and the maximum strength was obtained at 1150 °C. The W–2Mo–7Ni–3Fe alloy microstructure was composed of white W-grain, gray W-rich structure, black γ-(Ni, Fe, W, Mo) binding phase, and deep-gray W-rich structure. The intergranular fracture along the W/W grain boundary is the main fracture modes of W–2Mo–7Ni–3Fe alloy.

  15. Rare earth ferrosilicon alloy

    International Nuclear Information System (INIS)

    In order to obtain RE ferrosilicon alloy with good quality and competitive price, it is essential that proper choice of raw materials, processing technology and equipments should be made based on the characteristics of Bai-Yun-Ebo mineral deposits. Experimental work and actual production practice indicate that pyrometallurgical method is suitable for the extraction and isolation of the rare earths and comprehensive utilization of the metal values contained in the feed material is capable of reducing cost of production of RE ferrosilicon alloy. In the Bai-Yun-Ebo deposit, the fluorite type medium lean ore (with respect to iron content) makes a reserve of considerable size. The average content of the chief constituents are given

  16. The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid

    OpenAIRE

    B. Salami; Afshar, A.; Mazaheri, A.

    2014-01-01

    In recent years, magnesium and its alloys are considered as biodegradable implants. However magnesium implants may rapidly corrode before the natural healing process of the tissue is completed. In this investigation, micro arc oxidation process has been studied for avoiding primary corrosion of the magnesium alloy in simulated body fluid. Anodized coating was formed on AZ31 alloy in nontoxic silicate-alkaline solution at constant current. The effects of silicate concentration and conductivity...

  17. High speed twin roll casting of 6061 alloy strips

    OpenAIRE

    T. Haga; H. Sakaguchi; Watari, H; S. Kumai

    2008-01-01

    Purpose: of this paper is to clear the possibility of high speed roll casting of thin strips of two aluminum alloys:6061 and recycled 6061. Mechanical properties of the roll cast 6061 and recycled 6061 strips were investigated inthe frame of this purpose.Design/methodology/approach: Methods used in the present study were high speed twin roll caster and lowtemperature casting. These methods were used to realize rapid solidification and increase the casting speed.Findings: are that 6061 and rec...

  18. Laser synthesis of germanium tin alloys on virtual germanium

    OpenAIRE

    Stefanov, S; Conde, J. C.; Chiussi, S; De Benedetti, A.; Serra, C.; Werner, J.; Oehme, M.; Schulze, J.; Buca, D.; Holländer, B; Mantl, S.

    2012-01-01

    Synthesis of heteroepitaxial germanium tin (GeSn) alloys using excimer laser processing of a thin 4 nm Sn layer on Ge has been demonstrated and studied. Laser induced rapid heating, subsequent melting, and re-solidification processes at extremely high cooling rates have been experimentally achieved and also simulated numerically to optimize the processing parameters. "In situ" measured sample reflectivity with nanosecond time resolution was used as feedback for the simulations and directly co...

  19. Hydrostatic pressure experiments with granular Co-Cu alloys

    Czech Academy of Sciences Publication Activity Database

    Lachowicz, H. K.; Závěta, Karel

    2002-01-01

    Roč. 335, - (2002), s. 9-15. ISSN 0925-8388 R&D Projects: GA ČR GA202/01/0780 Grant ostatní: ICA1-CT-2000(XX) 70018PAS Institutional research plan: CEZ:AV0Z1010914 Keywords : nanostructured materials * transition metal alloys * rapid solidification * magnetic measurements * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2002

  20. Thermodynamic Database for Zirconium Alloys

    OpenAIRE

    Jerlerud Pérez, Rosa

    2006-01-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason for using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is useful to support material desi...

  1. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  2. Structure of ordered alloys

    International Nuclear Information System (INIS)

    Recent progress in studying ordered alloys by lattice fringe imaging is reviewed. Firstly the optimum experimental conditions for producing images suitable for interpretation are outlined. Secondly lattice and conventional imaging are compared and the advantages of the former for obtaining atomic level detail and compositional estimates are described. Finally some important results from this program are discussed, particularly the evidence for a microdomain model of short-range order and the fine structure of various ordered lattice defects

  3. Generation reason and corrosion characteristic of cavity of tinplate alloy layer

    Institute of Scientific and Technical Information of China (English)

    黄久贵; 李宁; 周德瑞

    2004-01-01

    The surface morphology of alloy layer of tinplate was studied by means of scanning electron microscopy.By using the layer on layer debonding technology of glow discharge spectrum, the contents of C and O at the boundary of alloy layer and black plate were analyzed. And the corrosion characteristic of cavity of tinplate alloy layer was studied on-line and in-situ by means of electrochemical atomic force microscope. The corrosion depth of cavity of alloy layer in-situ after different corrosion time was measured. The results show that the cavity of alloy layer is a critical factor causing rapid decline of corrosion resistance of tinplate, and the formation of cavity of alloy layer is due to incorrect pretreatment of black plate before electrotinning. The cavity of alloy layer is the internal factor causing pitting corrosion of tinplate when the tinplate is applied to food packaging material. And the dynamic equation of pitting corrosion generated in the cavity of alloy layer conforms to logarithm law.

  4. Laser-assisted development of titanium alloys: the search for new biomedical materials

    Science.gov (United States)

    Almeida, Amelia; Gupta, Dheeraj; Vilar, Rui

    2011-02-01

    Ti-alloys used in prosthetic applications are mostly alloys initially developed for aeronautical applications, so their behavior was not optimized for medical use. A need remains to design new alloys for biomedical applications, where requirements such as biocompatibility, in-body durability, specific manufacturing ability, and cost effectiveness are considered. Materials for this application must present excellent biocompatibility, ductility, toughness and wear and corrosion resistance, a large laser processing window and low sensitivity to changes in the processing parameters. Laser deposition has been investigated in order to access its applicability to laser based manufactured implants. In this study, variable powder feed rate laser cladding has been used as a method for the combinatorial investigation of new alloy systems that offers a unique possibility for the rapid and exhaustive preparation of a whole range of alloys with compositions variable along a single clad track. This method was used as to produce composition gradient Ti-Mo alloys. Mo has been used since it is among the few elements biocompatible, non-toxic β-Ti phase stabilizers. Alloy tracks with compositions in the range 0-19 wt.%Mo were produced and characterized in detail as a function of composition using microscale testing procedures for screening of compositions with promising properties. Microstructural analysis showed that alloys with Mo content above 8% are fully formed of β phase grains. However, these β grains present a cellular substructure that is associated to a Ti and Mo segregation pattern that occurs during solidification. Ultramicroindentation tests carried out to evaluate the alloys' hardness and Young's modulus showed that Ti-13%Mo alloys presented the lowest hardness and Young's modulus (70 GPa) closer to that of bone than common Ti alloys, thus showing great potential for implant applications.

  5. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  6. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  8. Amorphous yttrium-iron alloys

    International Nuclear Information System (INIS)

    The magnetic properties of amorphous yttrium-iron alloys Ysub(1-x)Fesub(x) have been studied over a wide concentration range 0.32 2Fe17 alloys, lead in the amorphous state to spin-glass behaviour and asperomagnetic order. The dominant positive interactions produce short-range ferromagnetic correlations which persist up to room temperature. However magnetic saturation cannot be achieved for any of the alloys in applied fields of up to 180 kOe, indicating that strong negative interactions are also present. Exchange interactions become increasingly positive with increasing x, and the magnetic properties of iron-rich alloys approach those of a normal ferromagnet. (author)

  9. Titanium and titanium alloy forgings

    International Nuclear Information System (INIS)

    The specification covers nine grades of annealed titanium and titanium alloy forgings as follows: Grade F-1, F-2, F-3, and F-4 unalloyed titanium; Grade F-5 titanium alloy (6% aluminum, 4% vanadium); Grade F-6 titanium alloy (5% aluminum, 2.5% tin); Grade F-7 and F-11 unalloyed titanium plus palladium; Grade F-12 titanium alloy (0.3% molybdenum, 0.8% nickel). The specification includes ordering information, manufacture, chemical requirements, mechanical requirements, nondestructive tests, dimensions and permissible variations, finish, certification, packaging, and marking

  10. As-quenched microstructure and tempering behavior of rapidly solidified tungsten steels

    International Nuclear Information System (INIS)

    Rapidly solidified (RS) iron-tungsten-carbon-alloys ranging from 6 to 23 pct tungsten with a constant W:C atomic ratio of 2:1, and Tl high speed tool steel exhibit a change in microstructure and hardness as the tungsten and carbon content is increased. The change in morphology was from lath martensite in the lower tungsten alloys, to a solidification structure of /delta/-ferrite cells surrounded by austenite and M/sub 6/C carbide in the higher tungsten alloys. The tempering behaviors of RS Fe-6.2 wt pct W-0.21 wt pct C, Fe-23 wt pct W-0.75 wt pct C and Tl high speed tool steel were examined and compared to conventional solution-treated and quenched alloys. A discussion is also included on the microstructural dependence on cooling rate. 24 refs

  11. Erraticity of rapidity gaps

    International Nuclear Information System (INIS)

    The use of rapidity gaps is proposed as a measure of the spatial pattern of an event. When the event multiplicity is low, the gaps between neighboring particles carry far more information about an event than multiplicity spikes, which may occur very rarely. Two moments of the gap distribution are suggested for characterizing an event. The fluctuations of those moments from event to event are then quantified by an entropy-like measure, which serves to describe erraticity. We use ECOMB to simulate the exclusive rapidity distribution of each event, from which the erraticity measures are calculated. The dependences of those measures on the order q of the moments provide single-parameter characterizations of erraticity. (c) 2000 The American Physical Society

  12. Rapidly processable radiographic material

    International Nuclear Information System (INIS)

    A new rapidly processable radiographic silver halide material is described for use in mammography and non-destructive testing of industrial materials. The radiographic material is used for direct exposure to penetrating radiation without the use of fluorescent-intensifying screens. It consists of a transparent support with a layer of hydrophilic colloid silver halide emulsion on one or both sides. Examples of the preparation of three different silver halide emulsions are given including the use of different chemical sensitizers. These new radiographic materials have good resistance to the formation of pressure marks in rapid processing apparatus and they have improved sensitivity for direct exposure to penetrating radiation compared to conventional radiographic emulsions. (U.K.)

  13. Rapid Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  14. Rapid Prototyping for Robotics

    OpenAIRE

    Ebert-Uphoff, Imme; Gosselin, Clement M.; Rosen, David W.; Laliberte, Thierry

    2005-01-01

    The rapid prototyping framework presented in this chapter provides fast, simple and inexpensivemethods for the design and fabrication of prototypes of robotic mechanisms.As evidenced by the examples presented above, the prototypes can be of great help togain more insight into the functionality of the mechanisms, as well as to convey theconcepts to others, especially to non-technical people. Furthermore, physical prototypescan be used to validate geometric and kinematic properties such as mech...

  15. Planning rapid transit networks

    OpenAIRE

    G Laporte; Mesa, J. A.; Ortega, F.A.; Perea Rojas Marcos, Federico

    2011-01-01

    Rapid transit construction projects are major endeavours that require long-term planning by several players, including politicians, urban planners, engineers, management consultants, and citizen groups. Traditionally, operations research methods have not played a major role at the planning level but several tools developed in recent years can assist the decision process and help produce tentative network designs that can be submitted to the planners for further evaluation. This article review...

  16. Rapid Manufactured Textiles

    OpenAIRE

    Bingham, Guy; Hague, Richard; Tuck, Christopher John; Long, Andrew; Crookston, Jonathan Josiah; Sherburn, Martin

    2006-01-01

    Abstract Rapid Manufacturing (RM) is increasingly becoming a viable manufacturing process due to dramatic advantages that are achievable in the area of design complexity. Through the exploration of the design freedom afforded by RM, this paper introduces the concept and novel research area of RM textiles. The paper highlights the design and manufacturing possibilities applied to textiles when considering additive manufacturing techniques, the current limitations of conventional Com...

  17. Rapid frequency scan EPR.

    Science.gov (United States)

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  18. Tiber Personal Rapid Transit

    Directory of Open Access Journals (Sweden)

    Diego Carlo D'agostino

    2011-02-01

    Full Text Available The project “Tiber Personal Rapid Transit” have been presented by the author at the Rome City Vision Competition1 2010, an ideas competition, which challenges architects, engineers, designers, students and creatives individuals to develop visionary urban proposals with the intention of stimulating and supporting the contemporary city, in this case Rome. The Tiber PRT proposal tries to answer the competition questions with the definition of a provocative idea: a Personal Rapid transit System on the Tiber river banks. The project is located in the central section of the Tiber river and aims at the renewal of the river banks with the insertion of a Personal Rapid Transit infrastructure. The project area include the riverbank of Tiber from Rome Transtevere RFI station to Piazza del Popolo, an area where main touristic and leisure attractions are located. The intervention area is actually no used by the city users and residents and constitute itself a strong barrier in the heart of the historic city.

  19. Oxidation behavior of multiphase Mo5SiB2 (T2)-based alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two Mo5SiB2 (T2)-based alloys with nominal compositions of Mo-12.5Si-25B and Mo-14Si-28B (molar fraction, %)were prepared in an arc-melting furnace, and their oxidation kinetics from 1 000 to 1 300 ℃ were studied. The microstructures of the alloys were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM) with energy dispersive spectroscopy (EDS). The oxide scales of both alloys oxidized at 1 200 ℃ for 10 min, 2 h and 100 h were investigated by surface XRD and cross-sectional SEM-EDS. The results show that the matrix of both alloys consists of T2. The dispersions of Mo-12.5Si-25B alloy are Mo and Mo3Si, and the dispersions of Mo-14Si-28B alloy are Mo5Si3 (T1) and MoB. The cyclic oxidation kinetics data exhibit initial rapid mass loss followed by slow mass loss. The mass loss of Mo-12.5Si-25B alloy is much faster than that of Mo-14Si-28B alloy at 1 200 and 1 300 ℃. For 10 min exposure, both alloys form irregular and porous thin scale. For 2 h exposure, Mo-12.5Si-25B alloy forms irregular thin scale and the scale contains large cracks, and Mo-14Si-28B alloy forms sound and continuous scale. For 100 h exposure, Mo-12.5Si-25B and Mo-14Si-28B alloys form sound and continuous scale about 50-75 μm and 40-45 μm in thickness, respectively. The better oxidation resistance of Mo-14Si-28B alloy is due to a sound and continuous B-SiO2 layer formation in the early stage of oxidation.

  20. Development of Combinatorial Methods for Alloy Design and Optimization

    International Nuclear Information System (INIS)

    The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very powerful technique for

  1. Electron Theory in Alloy Design

    CERN Document Server

    Pettifor, DG

    1992-01-01

    Presents recent developments in electron theory which have impacted upon the search for novel alloys with improved mechanical or magnetic properties. The ten chapters outline the ability of electron theory to make quantitative predictions (such as heats of formation, planar fault energies, shear moduli and magnetic anisotropy), and to provide simplifying concepts for understanding trends in alloy behaviour.

  2. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  3. Glass formation in eutectic alloys

    International Nuclear Information System (INIS)

    We have analyzed the glass forming ability around eutectic composition in terms of the competitive growth/formation of primary dendrites, eutectic and glass. It is concluded that the glass forming ability of a eutectic alloy system depends on the type of the eutectics, i.e. symmetric or asymmetric eutectic coupled zone. For the alloy systems with symmetric eutectic coupled zone, the best glass forming alloys should be at or very close to the eutectic composition. For the alloys with asymmetric eutectic coupled zone, which is associated with the irregular eutectic, the best glass forming alloys should be at off-eutectic compositions, probably towards the side of the faceted phase with a high entropy in the phase diagram. (orig.)

  4. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on the measurement of charge radii for Ti nuclei, spectroscopy of 13Be, concentrations of hadrons and quark-gluon plasma in mixed phase, experimental results on one-spin pion asymmetry in the d↑ + A → π±(900) + X process, new results on cumulative pion and proton production in p-D collisions, investigation of charge exchange reactions, the study of the tensor analyzing power in cumulative particle production on a deuteron beam and an evidence for the excited states of the S = -2 stable light dibaryon. 32 figs., 6 tabs

  5. Rapid Frequency Scan EPR

    OpenAIRE

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded...

  6. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on optimized lambda-parametrization for the QCD running coupling constant in spacelike and timelike regions, the new limit of the probability of muonium-antimuonium conversion in SPINP-JINR experiment, a highly charged ion source with double electron-ion trap (DEITIS), integral cross sections of the hypertriton interaction with nuclei at high energies, a positron emission tomograph on the basis of composite scintillator, a study of the high mass dimuon production in heavy ion collisions with CMS and antimatter production in relativistic nuclear collisions. 25 figs., 5 tabs

  7. Rapidly Progressing Chagas Cardiomyopathy.

    Science.gov (United States)

    Hollowed, John; McCullough, Matthew; Sanchez, Daniel; Traina, Mahmoud; Hernandez, Salvador; Murillo, Efrain

    2016-04-01

    Chagas disease, caused by the parasiteTrypanosoma cruzi, can cause a potentially life-threatening cardiomyopathy in approximately 10-40% of afflicted individuals. The decline in cardiac function characteristically progresses over the course of many years. We report a case of Chagas disease in which the patient experienced an atypical rapid deterioration to severe cardiomyopathy over the course of 16 months. This case argues the need for increased routine surveillance for patients with confirmedT. cruziinfection, who are determined to be at high-risk for worsening cardiomyopathy. PMID:26856912

  8. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains eight separate records on pole contributions in the semileptonic D → P(V) + l + ν bar 1 decays and resolute progress in constrained minimization problem, on the self-similarity properties of light nuclei collisions, a method of data representation and experimental results of the fragmentation reactions investigation, special properties of the refrigeration of the accelerator Nuclotron, the evolution of the Nucleon structure in light nuclei, anisotropy of fission fragments for the reaction 16O+208Pb and a study of exposure dose power of induced gamma-radiation for extended lead target activated by high-energy protons

  9. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on additional conditions on eigenvectors in solving inverse problem for two-dimensional Schroedinger equation, on an absolute calibration of deuteron beam polarization at LHE, determination of the vector component of the polarization of the JINR synchrophasotron deuteron beam, wavelet-analysis: criterion of reliable signal selection, on asymptotics in inclusive production of antinuclei and nuclear fragments, use of neutron activation analysis at the IBR-2 reactor for atmospheric monitoring and impulse method for temperature measurement of silicon detectors

  10. Rapidly progressive tabetic neurosyphilis

    Institute of Scientific and Technical Information of China (English)

    赖伟红; 薛华忠; 韩国柱

    2003-01-01

    Since the sexually transmitted diseases were recognized as a public health problem in China during the early 1980's, the incidence of syphilis has gradually increased. Though there have been case reports of clinical variants of neurosyphilis, including syphilitic cerebrospinal meningitis or meningomyelitis and meningovascular syphilis, occurring in different regions of China,1-3 tabes dorsalis or tabetic neurosyphilis has not yet been reported in China. Here, we report a young man with rapidly progressive tabetic neurosyphilis admitted to our hospital in October 1999.

  11. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains five separate reports on analytic QCD running coupling with finite IR behaviour and universal α bar s(0) value, quark condensate in the interacting pion- nucleon medium at finite temperature and baryon number density, γ-π0 discrimination with a shower maximum detector using neural networks for the solenoidal tracker at RHIC, off-specular neutron reflection from magnetic media with nondiagonal reflectivity matrices and molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster. 21 fig., 1 tab

  12. Metamorphosis quality preparing of alloy Ti64 in laboratory conditions

    Directory of Open Access Journals (Sweden)

    M. Žitňanský

    2007-01-01

    Full Text Available Purpose: The aim of our research was the developing of the method for preparing titanium alloy (Ti64 ELI byremold in laboratory conditions on our research workplace. As a reason for writing the paper is to inform thetechnical society.Design/methodology/approach: The objectives were achieved by using differently sources heating of remoldedtitanium alloy Ti64 ELI, by using of differently conditions by vacuum melting and pouring in to ceramics orcopper moulds. As main method used for our research was remolding, purification, casting in the vacuumand than special heat treating by HIP processes. The quality of microstructure was investigated by electronmicroscopy and tested by Charpy impact test. The mean aim was to get microcastings of very intricate shapesand with very high quality of casting material. Through application four differently conditions of remolding wehave found that in our workplace we have good ability to prepare the microcastings with very good quality,which is the main conclusion.Findings: For expectation it is possible by using such a process for production special microcastings from Ti64ELI alloy. The mean idea of this paper will have practical implications.Research limitations/implications: In this time as a limitation is a little small capacity of plasma burner.Practical implications: The result of this paper should be made some changes in practice e.g. as savings ofturning and lastly the using of Rapid Prototyping method.Originality/value: The original value of our paper is the testimony above quality of alloy Ti64 ELI as cast. Thequality of alloy Ti64 ELI as cast is comparable with certified Ti64 ELI from abroad. The reach a destination ofoutcome in our laboratory conditions is a perspective method for production of microcastings from alloy Ti64.

  13. Alloyed pleasures: Multimetallic cocktails

    OpenAIRE

    Ranganathan, S

    2003-01-01

    The English language insists on unalloyed pleasures, thereby implying that the sensation of pleasure must be pure and not admixed with other emotions. Exactly the opposite rules in metallurgy, where pure metals have few uses and can always be improved upon by alloying. It is true that the civilizational journey of mankind began with the discovery of native metals such as gold and copper as pure metals. In fact this love at first sight of gold several millennia ago has persisted till this day ...

  14. Heating uranium alloy billets

    International Nuclear Information System (INIS)

    Data were obtained for the surface heat transfer coefficient of uranium and the alloys of uranium-0.75 wt percent titanium, uranium-6 wt percent niobium, and uranium-7.5 wt percent niobium-2.5 wt percent zirconium. Samples were heated to 8500C in both a molten salt bath and an argon-purged air furnace, then the samples were cooled in air. Surface heat transfer coefficients were calculated from the experimental data for both heating and cooling of the metals. 4 fig, 4 tables

  15. Influence of alloy composition on the hardening of silver-tin dental amalgam.

    Science.gov (United States)

    Abbott, J R; Miller, D R; Netherway, D J

    1986-01-01

    The objective of the investigation was to examine the reactions of mercury with silver-tin alloys with compositions spanning the phase fields beta, (beta + gamma), gamma, and (gamma + Sn). The experimental methods employed include the application of light microscopy, scanning electron microscopy, and electron probe microanalysis. These techniques were used to investigate the mechanisms of reaction and to identify the nature and morphology of the reaction products formed on bulk specimens of the alloys. The progress and characteristics of the reactions that occur during hardening of amalgams prepared from powders of these alloys were monitored using a high-sensitivity dilatometer. These results were correlated with direct observations on the development of the microstructures. The reaction of mercury with the beta-phase alloy occurred rapidly and resulted in a very marked and rapid expansion during the initial stages of hardening. gamma-Phase alloys, on the other hand, reacted more slowly and contracted markedly during hardening. The behavior of amalgams made from alloys with compositions lying between these two extremes appeared to be explicable in terms of the characteristics of the separate phases from which they were constituted. PMID:3782188

  16. Inactivation of norovirus on dry copper alloy surfaces.

    Directory of Open Access Journals (Sweden)

    Sarah L Warnes

    Full Text Available Noroviruses (family Caliciviridae are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS determined that Cu(II and especially Cu(I ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked, which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen.

  17. 有序度对Ni4Mo合金在氢气中脆性的影响%Effect of Ordering on Embrittlement of Ni4Mo Alloy in Hydrogen Gas

    Institute of Scientific and Technical Information of China (English)

    程晓英; 李慧改

    2005-01-01

    The fracture behavior of disordered and ordered Ni4 Mo alloy was investigated by tensile tests in hydrogen gas or during hydrogen charging. The results show that the ductility of the disordered alloy decreased slightly with the hydrogen pressure increasing, while that of the ordered alloy decreased rapidly with the hydrogen pressure increasing. However, the ductility of both disordered and ordered alloys reduced similarly seriously with the charging current density increasing. Therefore, the mechanism of order-induced embrittlement of Ni4 Mo alloy in hydrogen gas is supposed to be that atomic order accelerates the kinetics of the catalytic reaction for the dissociation of molecular H2 into atomic H.

  18. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Highlights: • Nanocrystalline Mg55Cu40Ni5 alloy were synthesized by mechanical alloying. • α-Cu(Mg,Ni), MgO and Mg0.85Cu0.15 phases were formed after 50 h of MA. • Crystallite size decreased during mechanical alloying and it was determined ∼15 nm. • DSC traces of the nanostructured Mg55Cu40Ni5 alloy exhibited three exothermic peaks. - Abstract: In this investigation, nanocrystalline Mg55Cu40Ni5 alloy has been synthesized from the elemental powders by mechanical alloying (MA). Microstructural evolution, morphological changes and thermal behaviour of the mechanically alloyed powders at different stages of milling have been examined by a combination of differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray detection ((SEM/EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite size of Mg55Cu40Ni5 alloy estimated with broadening of XRD peaks by Williamson–Hall and Debye Scherrer formulas. In order to confirm the crystallite size obtained by XRD, the microstructure of the mechanically alloyed powder was also monitored by TEM. The results showed that after 50 h of milling time nanostructured α-Cu(Mg,Ni) solid solution, MgO and Mg0.85Cu0.15 phases whose crystallite sizes are below 20 nm were obtained. According to SEM/EDX results, the elemental powder particles which were initially of different size, shape, and distribution became uniform, confirming the compositional homogeneity of the Mg55Cu40Ni5 alloy and particle size decreased rapidly with increasing milling time

  19. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Kursun, Celal, E-mail: celalkursun@ksu.edu.tr; Gogebakan, Musa

    2015-01-15

    Highlights: • Nanocrystalline Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy were synthesized by mechanical alloying. • α-Cu(Mg,Ni), MgO and Mg{sub 0.85}Cu{sub 0.15} phases were formed after 50 h of MA. • Crystallite size decreased during mechanical alloying and it was determined ∼15 nm. • DSC traces of the nanostructured Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy exhibited three exothermic peaks. - Abstract: In this investigation, nanocrystalline Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy has been synthesized from the elemental powders by mechanical alloying (MA). Microstructural evolution, morphological changes and thermal behaviour of the mechanically alloyed powders at different stages of milling have been examined by a combination of differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray detection ((SEM/EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite size of Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy estimated with broadening of XRD peaks by Williamson–Hall and Debye Scherrer formulas. In order to confirm the crystallite size obtained by XRD, the microstructure of the mechanically alloyed powder was also monitored by TEM. The results showed that after 50 h of milling time nanostructured α-Cu(Mg,Ni) solid solution, MgO and Mg{sub 0.85}Cu{sub 0.15} phases whose crystallite sizes are below 20 nm were obtained. According to SEM/EDX results, the elemental powder particles which were initially of different size, shape, and distribution became uniform, confirming the compositional homogeneity of the Mg{sub 55}Cu{sub 40}Ni{sub 5} alloy and particle size decreased rapidly with increasing milling time.

  20. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  1. Plasma deposition of amorphous metal alloys

    International Nuclear Information System (INIS)

    Rapid solidification, sputtering and electroless chemical deposition have been used to produce amorphous metal alloys which possess excellent corrosion and abrasion resistance. This paper discusses a new technique for obtaining amorphous metal alloy coatings. Plasma decomposition of Ni(CO)4 and PH3 in argon and hydrogen carrier gases [Ni(CO4/PH3--8/1] yielded films that were black and silver, respectively, in appearance. Both films were amorphous as determined by transmission electron microscopy. Films deposited using a hydrogen carrier gas were three orders of magnitude more conductive than those deposited using an argon carrier gas. Analysis of both films using electron microprobe analysis and inductively-coupled plasma spectroscopy showed an enrichment of P in the films over the P content in the plasma gas mixtures. Reducing the P content of the plasma gas mixture [Ni(CO)4/PH3--17/11 yielded crystalline films with no P enrichment. The grain size in these films was --60Δ as determined by x-ray line-broadening

  2. The Rapid Transient Surveyor

    CERN Document Server

    Baranec, Christoph; Wright, Shelley A; Tonry, John; Tully, R Brent; Szapudi, István; Takamiya, Marianne; Hunter, Lisa; Riddle, Reed; Chen, Shaojie; Chun, Mark

    2016-01-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of ~4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z < 0.1 universe. RTS will comprise an upgraded version of the Robo-AO laser AO system and will respond quickly to target-of-opportunity events, minimizing the time between discovery and characterization. RTS will acquire simultaneous-multicolor images with a...

  3. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  4. Strain-softening behavior of an Fe-6.5 wt%Si alloy during warm deformation and its applications

    International Nuclear Information System (INIS)

    Research highlights: → An Fe-6.5 wt%Si alloy exhibits strain-softening behavior after large deformation. → The decrease of the order degree is responsible for the strain-softening behavior. → The strain-softening behavior of Fe-6.5 wt%Si alloy can be applied in cold rolling. → An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm is fabricated by cold rolling. - Abstract: An Fe-6.5 wt%Si alloy with columnar grains was compressed at a temperature below its recrystallization temperature. The Vickers hardness and structure of the alloy before and after deformation were investigated. The results showed that with an increase in the degree of deformation, Vickers hardness of the alloy initially increased rapidly and then decreased slowly, indicating that the alloy had a strain-softening behavior after a large deformation. Meanwhile, the work-hardening exponent of the alloy decreased significantly. Transmission electron microscopy confirmed that the decrease of the order degree was responsible for the strain-softening behavior of the deformed alloy. Applying its softening behavior, the Fe-6.5 wt%Si alloy with columnar grains was rolled at 400 deg. C and then at room temperature. An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm was fabricated. The surface of the strip was bright and had no obvious edge cracks.

  5. Stable palladium alloys for diffusion of hydrogen

    Science.gov (United States)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  6. Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, I.M.; Iorio, L.E.; Rumpf, T.; Scheers, P.V.T. [MINTEK, Randburg (South Africa). Phys. Metall. Div.; Potgieter, J.H. [PPC, P.O. Box 40073, Cleveland 2022 (South Africa)

    1998-01-30

    The oxidation and corrosion properties of alloys based on Fe-40Cr and Fe-35Cr-5Al were studied using gravimetric and potentiodynamic techniques. The properties were modified by microalloying with ruthenium and rare-earth metals (REM). A high resistance to breakaway oxidation was characteristic of all the high chromium alloys assessed. Good oxidation resistance in the Fe-35Cr-5Al alloys was found to be contingent on (i) the rapid establishment of a stable protective aluminium oxide layer in the early stages, and (ii) the development of a secondary chromium oxide layer for long-term stability. Microalloying with 0.2 wt.% Ru promoted the formation of a chromium-rich layer at the substrate interface. The consequence of this differed in each case. In the Fe-35Cr-5Al alloy, the result was improved oxidation resistance, accompanied by segregation of the Ru to the aluminium oxide layer. In the Fe-40Cr alloy, the Ru addition was associated with an initially higher oxidation rate and an increased tendency to spalling. REMs, added as 0.05 wt.% mischmetal to the Fe-35Cr-5Al alloy, also lowered the oxidation rate, as expected. Relative to the Fe-40Cr composition, the substitution of 5 wt.% Al for 5 wt.% Cr had a negligible effect on the aqueous corrosion resistance in 10% H{sub 2}SO{sub 4}, but led to inferior pitting resistance in a 3.5% NaCl solution. As previously shown with stainless steels based on Fe-40Cr, small additions of ruthenium can also enhance the corrosion and pitting resistance of Fe-35Cr-5Al. (orig.) 29 refs.

  7. Optical processes in dilute nitrides Semiconductors; Alloys

    CERN Document Server

    Potter, R J

    2003-01-01

    This thesis is concerned with the narrow bandgap semiconductor alloys known as dilute nitrides. The initial part of this project was concerned with characterisation of chemical beam epitaxy (CBE) grown samples so that growth techniques could be refined. Early samples show evidence of structural/compositional disorder resulting from the large miscibility gap induced by nitrogen. Non-equilibrium growth was employed to overcome this, eventually resulting in improved material. In the second part of this project, steady-state and time-resolved photoluminescence, along with photomodulated reflectance were employed to investigate the optical properties of molecular beam epitaxy (MBE) grown GalnNAs, GaNAs and InGaAs quantum wells (QWs). Low temperature results show evidence of carrier localization, which was interpreted in terms of structural/compositional fluctuations induced by the nitrogen incorporation. Poor photoluminescence efficiency and rapid decay of emission kinetics indicate the presence of strong non-radi...

  8. Laser perforation of aluminum alloy sheet

    Science.gov (United States)

    Migliore, Leonard; Nazary, George

    2010-02-01

    Recent advances in the design of gain modules for diode-pumped solid-state lasers have allowed the manufacture of high-powered Q-switched products. The high available pulse energy and good mode quality enable highly efficient harmonic conversion, enabling the generation of several hundred watts of average power at a wavelength of 532nm. Among the applications for which this class of product may be suited is the rapid drilling of small-diameter holes in aluminum sheet. To investigate this application, plates of several aluminum alloys were drilled under a variety of conditions. The drilled plates were sectioned and subjected to analysis by optical metallography. The initial results indicate ways in which the process may be optimized.

  9. Cyclic deformation of metals and alloys

    International Nuclear Information System (INIS)

    Phenomena associated with rapid hardening or softening caused by cyclic straining in the early stages of fatigue life of metals and alloys are reviewed. The factors which control these phenomena are described and also the dislocation structures which are associated with them. In so far as the mechanisms of cyclic deformation are understood these too are described and a number of parallels between cyclic and unidirectional deformation are pointed out. A similar approach is then taken for materials which contain second phases for strength. Note that these studies apply to cycling at ambient temperatures or below. High-temperature cyclic deformation is beyond the scope of this review. An engineering method of predicting cyclic stress-strain response from tensile testing data is examined in the light of the fundamental knowledge described, and is shown to be severely limited. A method of improving such prediction by introducing additional microstructural information which is readily available is suggested. 117 references

  10. Study of high impedance magnetic alloy core

    International Nuclear Information System (INIS)

    J-PARC 3 GeV Rapid Cycling Synchrotron (RCS) and Main Ring (MR) employ RF cavities loaded with Magnetic Alloy (MA) cores to generate a high field gradient. The MA core shunt impedance Rp is a key parameter to increase the beam power. To achieve the high shunt impedance Rp, we increased the filling factor by a strong winding tension. As a result, the shunt impedance Rp was reduced in despite of the filling factor increase because the strong winding tension deteriorates the MA core magnetic properties significantly. On the other hand, the MA core with thin ribbons and the MA core that is magnetized by the rotation process show the high permeability in the accelerating frequency region, and those MA cores show the high shunt impedance Rp consequently. (author)

  11. Effect of cooling rate on microstructure and compressive performance of AZ91 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; FENG Hui; QIU Ke-qiang; CHEN Li-jia; LIU Zheng

    2006-01-01

    Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of the solid solution phase increases and the fraction of secondary phase Mg17Al12 decreases. The almost single solid solution phase can be obtained with using liquid nitrogen as a coolant. The compressive strengths of the rapid solidified AZ91 magnesium alloys are higher than those of normal cast alloy, and decrease with increasing cooling rate. After artificial aging treatment for 14 h at 168 ℃, the compressive strength of the rapidly solidified AZ91 magnesium alloy cooled in liquid nitrogen increases from 253.5 to 335.3 MPa, while the compressive yield strength increases from 138.1 to 225.91 MPa. The improvement in the compressive strength of the rapidly solidified AZ91magnesium alloys can be attributed to the hardening effect from fine secondary phase.

  12. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132464

  13. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132470

  14. Oxidation resistant alloys, method for producing oxidation resistant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  15. Mechanical alloying of aluminium-lithium-magnesium alloy powders

    International Nuclear Information System (INIS)

    The production of high-purity aluminium-lithium-magnesium alloy powders, by mechanical alloying through grinding in a vibratory mill under high vacuum at room temperature, is described in details. The source materials for the grinding mixture were: aluminium-lithium alloy powder obtained by thermal vacuum-dehydrogenization of AlLiH4 hydride; magnesium metal powder; and chemically deoxidized aluminium metal powder. The implications which arose from the high reactivity of the component elements are discussed, and the measures taken to overcome them are described. The procedures used for the chemical analysis and powder characterization are given. (orig.)

  16. Retention and release of tritium in aluminum clad, Al-Li alloys

    International Nuclear Information System (INIS)

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6Li(n,α)3He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  17. Influence of Procedure Parameters on Rheological Property of Semi-Solid AZ91D Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Jiang Yunxi; Xie Shuisheng; Li Xinggang; Li Lei

    2004-01-01

    Semi-solid AZ91D magnesium alloy was investigated in isothermal steady-state condition. The influence of stirring technological parameters such as stirring temperature and shear rate to apparent viscosity of semi-solid alloy slurry was discussed. Apparent viscosity increases with stirring temperature decreases at the same shear rate. At the same stirring temperature, apparent viscosity decreases rapidly at first with shear rate increases, and then apparent viscosity decreases slowly with shear rate increases, when shear rate reaches a certain value, apparent viscosity appears tiny increase. According to the experimental data, the relation between solid volume fraction and apparent viscosity of semi-solid AZ9l D alloy at shear rate 238 s- 1 is fitted by regression method, it supplies useful data to the numerical simulation of semi-solid AZ91D alloy die casting process.

  18. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  19. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  20. Study on the solidification microstructure in AZ91D Mg alloy after laser surface melting

    International Nuclear Information System (INIS)

    Laser surface melting (LSM) is known to enhance the wear and corrosion resistance of Mg alloys, but its effect on microstructural evolution of Mg alloys is not well understood. An effort has been made to study the effect of rapid solidification following LSM on the microstructural evolution of AZ91D Mg alloy. The results of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy indicated that the solidification microstructure in the laser-melted zone was mainly cellular/dendrite structure of primarily α-Mg phase and continuous network of β-Mg17Al12 phase. Numerical prediction of the laser-melted zone suggested that cooling rates increased strongly from the bottom to the top surface in the irradiated regions. An attempt has been made to correlate dendrite cell sizes of the solidification microstructure with the cooling rates in the laser-treated AZ91D Mg alloy.

  1. Texture development in Al-high Mg alloys during recrystallization and grain growth

    Energy Technology Data Exchange (ETDEWEB)

    Endou, S.; Inagaki, H. [Shonan Inst. of Tech., Fujisawashi (Japan)

    2001-07-01

    Al-high Mg alloys containing Mg more than 6% were cold rolled 95% and annealed at temperatures between 275 and 450 C. Textures developed in these alloys were investigated with the orientation distribution function analysis. It was found that the heating rate to the annealing temperature strongly influenced the annealing textures of these alloys. Annealing with the slow heating rate resulted in the development of {l_brace}100{r_brace} left angle 001 right angle, whereas annealing with the rapid heating rate enhanced the development of {l_brace}100{r_brace} left angle 013 right angle and {l_brace}103{r_brace} left angle 321 right angle. This is because the orientation distribution established at complete recrystallization had strong influences on the texture development during subsequent grain growth. Annealing textures in the Al-9% Mg alloy were always random, since its rolling textures were random (orig.)

  2. Nanocrystallization of Coarse Primary Phases in Al- and Mg-Based Alloys Induced by HCPEB Treatment

    Directory of Open Access Journals (Sweden)

    Gao Bo

    2013-01-01

    Full Text Available This paper reports on a phenomenon associated with high-current pulsed electron beam (HCPEB treatment: surface nanocrystallization of coarse primary phase in hypereutectic Al17.5Si and quasicrystal alloys after multiple pulses of HCPEB irradiation. The HCPEB treatment induces superfast heating and diffusion of alloying elements and heterogeneous nucleation in a melting solution, followed by rapid solidification and cooling of the material surfaces. Consequently, nanostructured surface layers can be achieved easily. Nano-Si phase and nano-quasicrystal phase formation on the modified surface layer of hypereutectic Al17.5Si alloy and quasicrystal alloy (Mg37Zn60Y3 show a potential for surface nanocrystallization of materials with enhanced properties by HCPEB treatment.

  3. Effects of Nb content and annealing parameter on corrosion in Zr-Sn-Nb alloys

    International Nuclear Information System (INIS)

    To investigate the effects of Nb content and annealing parameter on corrosion resistance in Zr-Sn-Nb alloys, corrosion tests have been carried under 400 deg C steam and 360 deg C LiOH water conditions. As the annealing parameter increased, the weight gain was rapidly decreased in Zr-0.8Sn-0.1Nb and Zr-0.8Sn-0.2Nb alloys but increased in Zr-0.8Sn-0.4Nb and Zr-0.8Sn- 0.8Nb alloys in both corrosion conditions. As the Nb content increased, the weight gain decreased up to 0.4 % Nb content and then slightly increased in content by more than 0.4 %. The lower Nb-contained alloys (Zr-0.8Sn-0.1Nb and Zr-0.8Sn-0.2Nb alloys) was even more sensitive to corrosion resistance by the annealing parameter than the higher Nb-contained alloys (Zr-0.8Sn-0.4Nb and Zr-0.8Sn-0.8Nb). When the Zr-0.8Sn-0.4Nb and Zr-0.8Sn-0.8Nb alloys were inversely annealed with the same annealing parameter, the effect of the annealing parameter on corrosion showed the same trend as normal annealed specimens

  4. Positron annihilation and tribological studies of nano-embedded Al alloys

    Indian Academy of Sciences (India)

    Jerzy Dryzek; Krzysztof Siemek; Krzysztof Ziewiec; Henk Schut

    2015-09-01

    Positron annihilation studies of aluminium alloys with nanodispersions of insoluble elements, i.e., In, Sn, Pb and Au were reported. The alloys were obtained using a rapid solidification process. For all alloys, except that with Au, the average diameter of nanoparticles in aluminium matrix was 100 nm, and variance of the size distribution was above 50 nm. Positron annihilation studies reveal the presence of monovacancies or divacancies, which were located at the interface between nanoparticles and the matrix. In the as-cast reference pure aluminium sample as well as the aluminium and gold alloy dislocations were identified as well. The isothermal annealing of the obtained alloys and measurement of the annihilation characteristic, i.e., S-parameter, allow us to determine the activation energy of grain boundary migration, which for the alloys was higher by the factor of four than for the reference sample. The measurements of friction parameters for the alloys confirmed the results reported by the other authors that, the friction coefficient was lower by the factor of about two and the specific wear rate was by the factor of about fifty higher than the reference sample. The present study confirmed the attractive positron affinity of the nanoparticles of In, Sn, Pb and Au compared to aluminium matrix.

  5. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  6. Mechanical property and conductivity changes in several copper alloys after 13.5 dpa neutron irradiation

    International Nuclear Information System (INIS)

    A scoping experiment in which 25 different copper materials of 17 alloy compositions were irradiated to approx.13.5 dpa approx.4000C in a fast reactor is described. The materials include rapidly solidified (RS) alloys, with and without oxide dispersion strengthening, as well as conventionally processed alloys. Immersion density (swelling), electrical conductivity (which can be related to thermal conductivity), and yield stress and ductility by miniature disk bend testing have been measured before and after irradiation. It was found, in general, that the Rs alloys are stable under irradiation to 13.5 dpa, showing small conductivity changes and little or no swelling. Reduction of strength and ductility, in post-irradiation tests at the irradiation temperature, are not generally observed. Some conventionally processed alloys also performed well, although irradiation softening and swelling of several percent were observed in some cases, and pure copper swelled in excess of 5%. It is concluded that a number of copper alloys should receive further study, and that higher dose irradiations will be required to establish the limits of swelling suppression in these alloys

  7. Rapid Refresh (RAP) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  8. Rapid prototyping and time compression

    OpenAIRE

    Chatwin, Chris

    2000-01-01

    Rapid Prototyping - manufacture by layering processes: Stereolithography Selective Layer Sintering (SLS) Laminated Object Manufacture (LOM) Solid Ground Curing Small batch programmable rapid manufacture with lasers Micro-Engineering – Prototyping and Manufacture Additive - fabrication Subtractive – machining

  9. Rapid Refresh (RAP) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  10. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on effects arising from charged particles overcoming of the light velocity barrier, deformable templates for circle recognition, scintillation detectors for precise time measurements, atomic form factors and incoherent scattering functions of atoms and ions with the number of electrons N ≤ 10, experimental set-up ANOMALON for measurement of relativistic nuclear fragmentation cross sections, superconducting dipole magnet for ALICE dimuon arm spectrometer, analysis of transverse mass dependence of Bose-Einstein correlation radii using the DELPHI data, low-energy theorem in softly broken supersymmetry and study of the characteristics of particles in reactions π-, p, d, He, C + C with the total disintegration on carbon nucleus

  11. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on the identification of events with a secondary vertex in the experiment EXCHARM, the zero degree calorimeter for CERN WA-98 experiment, a new approach to increase the resource of installation elements for super-high energy physics, a method of the in-flight production of exotic systems in the charge-exchange reactions, the neutron activation analysis for monitoring northern terrestrial ecosystems, a search for 28O and study of the neutron-rich nuclei near the neutron closure N=20, a search for new neutron-rich nuclei with a 70A MeV 48Ca beam. 33 figs., 4 tabs

  12. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on measurements of the total cross section difference ΔσL(np) at 1.59, 1.79, and 2.20 GeV, to the estimation of angular distributions of double charged spectator fragments in nucleus-nucleus interactions at superhigh energies, simulation dE/dx analysis results for silicon inner tracking system of ALICE set-up at LHC accelerator, high-multiplicity processes, triggering of high-multiplicity events using calorimetry, ORBIT-3.0 - a computer code for simulation and correction of the closed orbit and first turn in synchrotrons and determination of memory performance

  13. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on Lorentz transformations with superluminal velocities, photo chromic effect in HTSC films, the investigation of hypernuclei in the Nuclotron accelerator, a new hadron jets finding algorithm in the four-dimensional velocity space, investigations of neutral particle production by relativistic nuclei on the LHE 90-channel γ-spectrometer (results and perspectives), coherent meson production in the dp → 3HeX reaction, the relativistic projectile nuclei fragmentation and A-dependence of nucleon Fermi-momenta, energy spectra of γ-quanta from d-propane interactions at momentum Pd = 1.25 GeV/c per nucleon. 86 refs., 26 figs., 4 tabs

  14. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains six separate records on test of a threshold aerogel Cherenkov counter on cosmic particles, first results of study of transversal dimension of region of cumulative particles production in d + C and d + Cu reactions for energy 2 GeV/nucleon, the evidence of σ[0+(0++0)] meson at a mass of Mπ+π- = 750 ± 5 MeV/c2 observed in π+π- combinations from the reaction np → npπ+π- at an incident momentum of Pn (5.20 ± 0.16 GeV/c, inclusive spectra of protons and π- mesons emitted in 4HeC and 12CC interactions with total disintegration of nuclei, heavy quark-antiquark pair production by double pomeron exchange in pp and AA collisions on the CMS and global features of nucleus-nucleus collisions in ultrarelativistic domain

  15. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  16. Rapid Diagnosis of Malaria

    Directory of Open Access Journals (Sweden)

    Clinton K. Murray

    2009-01-01

    Full Text Available Malaria's global impact is expansive and includes the extremes of the healthcare system ranging from international travelers returning to nonendemic regions with tertiary referral medical care to residents in hyperendemic regions without access to medical care. Implementation of prompt and accurate diagnosis is needed to curb the expanding global impact of malaria associated with ever-increasing antimalarial drug resistance. Traditionally, malaria is diagnosed using clinical criteria and/or light microscopy even though both strategies are clearly inadequate in many healthcare settings. Hand held immunochromatographic rapid diagnostic tests (RDTs have been recognized as an ideal alternative method for diagnosing malaria. Numerous malaria RDTs have been developed and are widely available; however, an assortment of issues related to these products have become apparent. This review provides a summary of RDT including effectiveness and strategies to select the ideal RDT in varying healthcare settings.

  17. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on investigation of the tensor analyzing power Ayy in the reaction A(d polarized, p)X at large transverse momenta of proton, double-differential ionization cross section calculations for fast collisions of ions and atoms, a study of the two-photon interactions tagged at an average 2> of 90 GeV2, cluster and single-particle distributions in nucleus-nucleus interactions, the Coulomb interaction of charged pions in CC-and CTa-collisions at 4.2 A GeV/c, influence of nitrogen and oxygen gas admixtures on the response of the DELPHI HCAL and MUS detectors and an automation of physics research on base of open standards

  18. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, DUBNA, contains eight separate records on symmetry in modern physics (dedicated to the 100th anniversary of the birth of academician V.A.Fock), the double φ-meson production investigation on the Serpukhov accelerator, two-leptonic η-meson decays and SUSY without R parity, charge form factors and alpha-cluster internal structure of 12C, increasing of muon-track reconstruction efficiency in ME1/1 Dubna prototype for the CMS/LHC, study of photon-structure function F2γ in the reaction e+e- → e+e- + hadrons at LEP2, jets reconstruction possibility in pAu and AuAu interactions at STAR RHIC and high-vacuum nondispersable gas absorber

  19. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains twelve separate records on pseudoscalar form factor from inverse pion electroproduction and the first radial pion excitation, chiral and parity anomalies at finite temperature and density, the canonical form of an elastoplastic model of nuclear fusion, the peculiarities of the reactions of heavy and superheavy element synthesis within the dinuclear system concept, a study of the photon structure function F2γ in the reaction e+e-→e+e- + hadrons at LEP1 and LEP2, tritons for the study of the charge-exchange reactions with the LHE streamer chamber: status and some possibilities, nonlinear dynamics in nuclotron, current transformers and optical diagnostic monitor of nuclotron beam, the design features of the LHE JINR nuclotron internal target stations, a system of graphics digitization (SGD), numeric simulation of thermal treatment of metal surface by means of high current ion beam

  20. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains eleven separate reports on the character of metastable states of the antiprotonic helium, next-to-next-to-leading order QCD analysis of combined data for xF3 structure function and higher-twist contribution, powerful neutron beams from accelerators, accounting of nucleon correlations for study of momentum distributions in nuclei, overlap functions in nuclear correlation methods and direct nucleon removal processes, molecular alterations underlying the spontaneous and γ-ray-induced point mutations at the white locus of Drosophila Melanogaster, superheavy elements' existence in nature, study of deep subbarrier reactions on a Pb target, numerical optimization of actively screened SC magnetic coil geometries, narrow resonances in the system of two π--mesons, a new method of analysis of intermediate energy neutron spectra. 28 figs., 8 tabs

  1. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on yields of the rare-earth neutron-deficient isotopes in the reactions of Mo isotopes with 40Ca ions, observations of slow components of solitonic-type wave structure excited by e-beam in massive copper sample, development and investigation of low-mass multilayer drift chambers (MDC-2) for inner part of the HADES spectrometer, temperature measurement of the uranium sample irradiated with secondary neutrons, edge effects in multiwire proportional chambers, the influence of the dielectric frame, an object-oriented framework for the hadronic Monte-Carlo event generators and uranium-238 as a source for electronuclear power production. 32 figs., 3 tabs

  2. Higgsstrahlung at forward rapidities

    CERN Document Server

    Pasechnik, Roman; Potashnikova, Irina

    2014-01-01

    We discuss the inclusive and single diffractive heavy flavor (top and bottom) production in association with the Higgs boson at forward rapidities in proton-proton collisions at the LHC. The calculations are performed in the framework of the phenomenological dipole approach, which automatically accounts for the absorptive corrections induced by soft interactions, i.e. for the gap survival effects at the amplitude level. Major differential observables including the realistic ATLAS detector constraints are considered. The forward inclusive and diffractive Higgsstrahlung processes are generated essentially by excitation of the valence or sea quarks in the proton. The single diffractive Higgsstrahlung off top quarks is found to dominate compared to the loop-induced mechanism at sufficiently large Higgs boson transverse momenta. The Higgsstrahlung processes offer a direct and precise measurement of Higgs-top and, possibly, Higgs-bottom Yukawa couplings at the LHC, as well as the studies of the intrinsic heavy flav...

  3. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on the method to calculate the hole spectral function, a proposal on the measurements of spin correlation in the reaction dp → pd, a suggestion on measurement of the observable in deuteron breakup with polarized proton target, experimental data on an evidence for collective phenomenon in heavy ion collisions at 4.2 A GeV/c, MC simulation of zero degree calorimeter for investigation of Pb-Pb interaction in WA-98 experiment, an algorithm for identifying events in the experiment DISTO and determination of the spatial position of sensitive wires in the drift tubes. 34 figs., 1 tab

  4. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains ten separate reports on in-medium effects in K+ scattering versus Glauber model with noneikonal corrections, the possibility of relativistic space-time particle scattering description, study of the hadronic jet reconstruction algorithms in π-p and π-C interactions at 40 GeV/c, investigation of processes of total disintegration of nuclei in nucleus-nucleus collisions with impulse 4.2 A GeV/c, simulation and analysis of neutron energy spectra from irradiation channels of the reactor IBR-2, slag formation and poisoning problems in electronuclear reactor, internal target station at the Nuclotron, measurements of proportional mode characteristics of plastic drift tubes, silicon two-coordinate detector with separable pad-strip readout, investigation of the fusion-fission reaction 208Pb + 16O at subbarrier energies. 60 figs., 13 tabs

  5. Rapid automated nuclear chemistry

    International Nuclear Information System (INIS)

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC

  6. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains five separate records on tensor and vector analysing power Ayy and Ay in the 12C(d,p)X and 12C(d,d)X reactions at initial deuteron momentum of 9 GeV/c and emission angle of 85 mrad, tensor analysing power T20 in inelastic (d,d') X scattering at 00 on 1H and 12C from 4.5 to 9.0 GeV/c, monitoring of the tensor polarization of high energy deuteron beams, the influence of inhomogeneities in scintillating fibre electromagnetic calorimeter on its energy resolution and cold quark-gluon plasma

  7. Rapid automated nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.A.

    1979-05-31

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC.

  8. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on quasi-classical description of one-nucleon transfer reactions with heavy ions, elastic and inelastic scattering in the high energy approximation, experimental study of fission and evaporation cross sections for 6 He + 209 Bi reaction, d↑ + 12 C → p + X at Θp = 0o in the region of high internal momenta in the deuteron, the Nuclotron internal targets, actively screened superconducting magnets, using of polarized target in backward elastic dp scattering, application of transputers in the data acquisition system of the INESS-ALPHA spectrometer, narrow dibaryon resonances with isotopic spin I=2. 93 refs., 27 figs., 4 tabs

  9. Rapid shallow breathing index.

    Science.gov (United States)

    Karthika, Manjush; Al Enezi, Farhan A; Pillai, Lalitha V; Arabi, Yaseen M

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  10. A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al-Cu-Sn alloy

    Science.gov (United States)

    Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.

    2015-07-01

    The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.

  11. Single-aging characteristics of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; YIN Zhi-min; SHEN Kai; LI Jie; HUANG ji-wu

    2007-01-01

    The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η' phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.

  12. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.

    Science.gov (United States)

    Drynda, Andreas; Seibt, Juliane; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2013-01-01

    The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years. It has been shown, that iron, or iron based alloys have slow degradation kinetics whereas magnesium-based systems exhibit rapid degradation rates. Recently we have developed fluoride coated binary magnesium-calcium alloys with reduced degradation kinetics. These alloys exhibit good biocompatibility and no major adverse effects toward smooth muscle and endothelial cells in in vitro experiments. In this study, these alloys were investigated in a subcutaneous mouse model. Fluoride coated (fc) magnesium, as well as MgCa0.4%, MgCa0.6%, MgCa0.8%, MgCa1.0%, and a commercially available WE43 alloy were implanted in form of (fc) cylindrical plates into the subcutaneous tissue of NMRI mice. After a 3 and 6 months follow-up, the (fc) alloy plates were examined by histomorphometric techniques to assess their degradation rate in vivo. Our data indicate that all (fc) alloys showed a significant corrosion. For both time points the (fc) MgCa alloys showed a higher corrosion rate in comparison to the (fc) WE43 reference alloy. Significant adverse effects were not observed. Fluoride coating of magnesium-based alloys can be a suitable way to reduce degradation rates. However, the (fc) MgCa alloys did not exhibit decreased degradation kinetics in comparison to the (fc) WE43 alloy in a subcutaneous mouse model. PMID:22767427

  13. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  14. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  15. Description of the capacity degradation mechanism in LaNi{sub 5}-based alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spodaryk, Mariana, E-mail: poshtamary@ukr.net [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Shcherbakova, Larisa; Sameljuk, Anatoly [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Wichser, Adrian; Zakaznova-Herzog, Valentina; Holzer, Marco; Braem, Beat [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Khyzhun, Oleg [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Mauron, Philippe; Remhof, Arndt [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Solonin, Yurii [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Züttel, Andreas [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Ecole polytechnique fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne (Switzerland)

    2015-02-05

    Highlights: • Morphology of gas atomised powders depends on the alloy composition. • Co substituted alloy electrodes exhibit slow activation and slow degradation. • The corrosion mechanism depends on the alloy composition and solubility of metals. - Abstract: The mechanism of the capacity degradation of LaNi{sub 5}-based alloy electrodes was investigated with a special focus on the influence of the alloy and surface composition, as well as the unique structure obtained by gas atomisation. The electrochemical properties, especially the cycle life curve (i.e. the capacity as a function of the cycle number of LaNi{sub 4.5}Al{sub 0.5}, LaNi{sub 2.5}Co{sub 2.4}Al{sub 0.1}, (La + Mm)Ni{sub 3.5}Co{sub 0.7}Al{sub 0.35}Mn{sub 0.4}Zr{sub 0.05}, and MmNi{sub 4.3}Al{sub 0.2}Mn{sub 0.5} alloy electrodes), was analysed and modelled. The capacity degradation upon cycling is determined by the chemical state of the alloy elements and the solubility of their oxides. The cycle life curves for the alloy electrodes without Co exhibited a rapid activation (3–4 cycles to reach maximum capacity), as well as rapid degradation (130–180 cycles for 50% maximum discharge capacity). LaNi{sub 2.5}Co{sub 2.4}Al{sub 0.1} and (La + Mm)Ni{sub 3.5}Co{sub 0.7}Al{sub 0.35}Mn{sub 0.4}Zr{sub 0.05} alloy electrodes activated after 7–10 cycles and showed very stable discharge behaviour (more than 400 cycles). The Co-containing alloy electrodes primarily lose the cycle stability because of mechanical decrepitation, whereas the alloys without Co suffer from selective dissolution of the unstable elements in the potential window, which was shown by our model of alloy degradation and confirmed by means of SEM, WDX, and ICP-OES data.

  16. Improvement factors for steam generator tubing alloys

    International Nuclear Information System (INIS)

    Predictions of reliability gains associated with the use of advanced alloys have been made in the past through the use of improvement factors. Improvement factors for thermally treated Alloy 600 (Alloy 600TT) and thermally treated Alloy 690 (Alloy 690TT) steam generator tubing were previously developed and have been used in the most recent revision of the EPRI Secondary Water Chemistry Guidelines. However, due to the long expected failure times relative to field experience, field-experience-based estimates of these improvement factors continue to be overly conservative (as shown by the absence of wide spread in-service cracking of these materials). A recent study updated the previously developed improvement factors associated with the use of advanced alloys. This paper will discuss the development of relative improvement factors for Alloy 600TT, Alloy 690TT, and Alloy 800 nuclear grade (Alloy 800NG) with respect to mill annealed Alloy 600 (Alloy 600MA) steam generator tubing. The various uses which are appropriate for these improvement factors will be discussed. This presentation focuses on primary side tube degradation (PWSCC), although this project also addressed secondary side tube degradation (ODSCC). The following four techniques were used to assess the performance of the Alloy 600TT, Alloy 690TT, and Alloy 800NG relative to that of Alloy 600MA: Field data on tube degradation were evaluated using statistical techniques, based on plant population Weibull/Weibayes analyses, similar to those employed in the past and reviewed by industry experts as part of the EPRI guidelines revision process. This paper presents updated improvement factors based on further accumulation of operating experience with Alloy 600TT, Alloy 800NG, and Alloy 690TT; Field data on tube degradation were evaluated using alternative statistical techniques which are not as overly conservative as those used in the past; Field data on tube plug cracking were evaluated to compare the performance

  17. The magnitude of heat treatment induced residual stresses and the thermal stress relief of aluminium alloys

    OpenAIRE

    Robinson, J S; Tanner, D.A

    2002-01-01

    To produce useful strengthening, precipitation hardenable aluminium alloys rely on rapid quenching from the solution heat treatment temperature to suppress the formation of coarse equilibrium second phases. An unavoidable consequence of the rapid quenching of thick sections is the severe thermal gradients that quickly develop in the material. The attendant inhomogeneous plastic flow can then result in the establishment of residual stresses. Established procedures exist to minim...

  18. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  19. Study of the pyrophoric characteristics of uranium-iron alloys; Etude du caractere pyrophorique des alliages uranium fer

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, X

    2000-02-23

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 {mu}m and 1000 {mu}m diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  20. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  1. Characterization of copper base alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    The micro and nano structure of mechanical alloys of Cu-Al, Cu-V and Cu-Ti obtained by reactive milling, using an Attritor mill, was analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). In order to study the evolution of the alloys during the manufacturing process and during the period of service, the DSC and XRD were done before the mechanical milling, after 30 hours of milling and after hot extrusion of the alloyed powders. Using the Williamson-Hall and Klug-Alexander methods the size of the crystallites and the density of the dislocations in the prepared alloys were evaluated. In all the milled powder cases, the grain and crystallite size was found to be nanometric, the dispersoids were also nanometric and there was texture in the copper planes (220), in the cases of the milled Cu- Ti and Cu-V powders (au)

  2. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  3. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  4. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™)

    Science.gov (United States)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.

    2016-07-01

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS™; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS™ system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  5. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™)

    Science.gov (United States)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.

    2016-04-01

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS™; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS™ system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  6. Influence of Zr on the microstructure of RS Al-18wt%Ni alloy

    Czech Academy of Sciences Publication Activity Database

    Bártová, B.; Gemperle, Antonín; Gemperlová, Juliana; Vojtěch, D.

    Antverpy: Belgian Society for Microscopy, 2004, s. 613-613. [European Microscopy Congress (EMC) 2004 /13./. Antverpy (BE), 22.08.2004-27.08.2004] Institutional research plan: CEZ:AV0Z1010914 Keywords : rapid solidification * Al-Ni-Zr * microcrystalline alloys Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Deformation behaviour of rapidly solidified and bulk Zr based metallic glasses by ball impression testing

    International Nuclear Information System (INIS)

    In this study the deformation characteristics of rapidly solidified Zr-Ni alloys and Zr56.26Al9.7Cu17.46Ni13.58Nb3 bulk metallic glass are compared in terms of shear band formation behaviour. The rapidly solidified alloys have been melt spun under conditions which have yielded partly crystalline and fully amorphous ribbons. The deformation of rapidly solidified alloys was carried out in tension and bending where as that of the bulk glass has been examined by ball indentation. The structure of the defects responsible for deformation viz, the shear bands has been investigated by conventional and high resolution transmission electron microscopy in order to understand the structure of the shear bands. A comparison of the structure of the shear bands of the two types of alloys has been carried out. The role of the crystalline particles on the deformation behaviour and their interaction with the shear bands has been examined in case of both types of materials using transmission electron microscopy. The effect of the shear bands on the crystallization process in either types of material has also been examined. (author)

  8. The Rapid Transient Surveyor

    Science.gov (United States)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and factor of ~9, crucial for efficient near-infrared spectroscopy.RTS will allow us to map the dark matter distribution in the z < 0.1 local universe with ten times better accuracy and precision than previous experiments. ATLAS will discover several thousand SNIae per year, measuring SNIa peak brightness, and decline rates, while RTS will measure reddening by dust, confirm SN type and confirm redshifts of the host galaxies. This unique combination of automated detection and characterization of astrophysical

  9. Dislocation Formation in Alloys

    Science.gov (United States)

    Minami, Akihiko; Onuki, Akira

    2006-05-01

    An interaction between dislocations and phase transitions is studied by a phase field model both in two and three dimensional systems. Our theory is a simple extension of the traditional linear elastic theory, and the elastic energy is a periodic function of local strains which is reflecting the periodicity of crystals. We find that the dislocations are spontaneously formed by quenching. Dislocations are formed from the interface of binary alloys, and slips are preferentially gliding into the soft metals. In three dimensional systems, formation of dislocations under applied strain is studied in two phase state. We find that the dislocation loops are created from the surface of hard metals. We also studied the phase separation above the coexisting temperature which is called as the Cottrell atmosphere. Clouds of metals cannot catch up with the motion of dislocations at highly strained state.

  10. Contribution to the knowledge of the Cu–Sn–Zn system for compositions close to brass alloys

    OpenAIRE

    Vilarinho, Cândida; Soares, Delfim; Castro, F.

    2004-01-01

    The effect of tin content in the equilibrium phases of the Cu–Zn-based alloys, within the range of chemical compositions with interest to brass producers is described. For this purpose, ternary alloys with copper contents between 55.4 and 67.5 wt.% and tin contents up to 5.30 wt.% have been studied. The chemical composition of each alloy has been determined by X-ray fluorescence spectrometry (XRF). Isothermal homogenization, followed by rapid cooling, has been employed to determine the ...

  11. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  12. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  13. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses

    International Nuclear Information System (INIS)

    Highlights: • Damage recovery of Ti alloy occurred in the electropulsing treatment (EPT). • Rapid recrystallization of Ti alloy by accelerated atoms diffusion under EPT. • Hybrid effects of EPT were completed in fast and low temperature process. • Ductility and follow-up formability of the materials are greatly improved by EPT. • Internal and external compressive stress of healing microcracks was compared. - Abstract: The effect of electropulsing treatment (EPT) on the microstructure improvement and damage recovery of cold-tension Ti–6Al–4V alloy strips was investigated. The results showed that the ductility and subsequent formability of the titanium alloy were improved noticeably by EPT, which originated from the rapid recrystallization and microcracks healing at a relative low temperature. Cold-rolling was introduced as a comparison, which brought in similar damage pressing but worsens materials ductility by work hardening. The rapid recrystallization process of Ti–6Al–4V alloy under EPT was attributed to the enhancement of nucleation rate and atomic diffusion resulting from the coupling of the thermal and athermal effects. Thermal compressive effect and pinch effect of electropulses were utilized to discuss the damage healing. Therefore, it is supposed that EPT provides a highly-efficiency and energy-saving method for enhancing ductility of titanium alloy by improving microstructure and recovering damage

  14. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoxin; Li, Xiaopei; Song, Guolin; Tang, Guoyi, E-mail: tanggy@mail.sz.tsinghua.edu.cn

    2014-12-15

    Highlights: • Damage recovery of Ti alloy occurred in the electropulsing treatment (EPT). • Rapid recrystallization of Ti alloy by accelerated atoms diffusion under EPT. • Hybrid effects of EPT were completed in fast and low temperature process. • Ductility and follow-up formability of the materials are greatly improved by EPT. • Internal and external compressive stress of healing microcracks was compared. - Abstract: The effect of electropulsing treatment (EPT) on the microstructure improvement and damage recovery of cold-tension Ti–6Al–4V alloy strips was investigated. The results showed that the ductility and subsequent formability of the titanium alloy were improved noticeably by EPT, which originated from the rapid recrystallization and microcracks healing at a relative low temperature. Cold-rolling was introduced as a comparison, which brought in similar damage pressing but worsens materials ductility by work hardening. The rapid recrystallization process of Ti–6Al–4V alloy under EPT was attributed to the enhancement of nucleation rate and atomic diffusion resulting from the coupling of the thermal and athermal effects. Thermal compressive effect and pinch effect of electropulses were utilized to discuss the damage healing. Therefore, it is supposed that EPT provides a highly-efficiency and energy-saving method for enhancing ductility of titanium alloy by improving microstructure and recovering damage.

  15. JINR rapid communications

    International Nuclear Information System (INIS)

    The present collection of rapid communications from JINR, Dubna, contains twelve separate reports on an estimation of the possibility of fusion reactions in water molecules, an analysis of pion spectra of the charge-exchange reaction Mg(t, 3He), the results of simulation of e+e-pair production and detection in the ALICE experiment, the data on the edge effects in multiwire proportional chambers, standard and nonstandard applications of wavelet analysis, the design and study of light readout system for scintillator shower maximum detector for the endcap electromagnetic calorimeter for the STAR experiment at RHIC, a study of multiparticle azimuthal correlations in high energy interactions, coherent multifragmentation of relativistic nuclei, superposition of neutrino eigenstates and neutrino oscillation, simulation results and suggestions for possible design of gaseous shower maximum detector for the endcap electromagnetic calorimeter for the STAR experiment at RHIC, determination of the sizes of the pion emission region in np-interactions at Pn=(5.2±0.16)GeV/c using the interference correlation method for identical particles, inelasticity of nucleus-nucleus collisions in the CMS experiment. 65 figs., 19 tabs

  16. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  17. Rapid Evaporation of microbubbles

    Science.gov (United States)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  18. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  19. Friction surfacing of aluminium alloys

    OpenAIRE

    Pereira, Diogo Jorge O. A.

    2012-01-01

    Friction surfacing is a solid state joining process that has attracted much interest in the past decades. This technology allows joining dissimilar metallic materials while avoiding the brittle intermetallic formations, involving temperatures bellow melting point and producing like forged metal structures. Much research using different steels has been made but the same does not happen with aluminium alloys, specially using different aluminium alloys. Friction surface coatings using cons...

  20. Analysis of metals and alloys for improved material compatibility

    International Nuclear Information System (INIS)

    Various metals and alloys are used in boilers and heat exchangers. Chemical and physical reactions occurring in the boiler may lead to destruction of materials of construction or to the formation of scales and sludge. Many of the problems associated with boilers can be minimised by suitable material selection. Analytical techniques play a vital role in this task. The use of conventional wet chemical methods are well established and yield accurate results for the assay of major constituents. The use of atomic absorption spectrophotometry has led to the development of elegant procedures for a convenient and rapid estimation of minor constituents without any need for separation of matrix elements. The various procedures developed at Analytical Chemistry Division for trace analysis metals and alloys are described in this paper with special reference to the analysis of steel and other nuclear materials. (author)

  1. Precipitation in an AA6111 aluminium alloy and cosmetic corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom); Zhou, X. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: xiaorong.zhou@manchester.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom); Hashimoto, T. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom); Scamans, G.M. [Innoval Technology, Beaumont Close, Banbury, Oxon OX16 1TQ (United Kingdom); Afseth, A. [Novelis Technology and Management, 8212 Neuhausen (Switzerland)

    2007-01-15

    The near-surface deformed layer on AA6111 automotive closure sheet alloy, generated by mechanical grinding during rectification, has an ultrafine grain microstructure, of 50-150 nm diameter, and a sharp transition with the underlying bulk alloy microstructure. Grinding and heat treatment to simulate rectification and paint baking processes result in the nucleation and growth of {approx}20 nm diameter precipitates at grain boundaries within the near-surface deformed layer. High-resolution transmission electron microscopy has shown Q phase precipitates in the deformed layer, giving dramatically increased corrosion susceptibility compared with the bulk microstructure, and this is responsible for the rapid-onset filiform corrosion. Transmission electron microscopy of the corrosion attack showed directly that the mode of corrosion was intergranular and that the Q phase precipitates were preserved after the passage of the corrosion front.

  2. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    Science.gov (United States)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  3. Precipitation in an AA6111 aluminium alloy and cosmetic corrosion

    International Nuclear Information System (INIS)

    The near-surface deformed layer on AA6111 automotive closure sheet alloy, generated by mechanical grinding during rectification, has an ultrafine grain microstructure, of 50-150 nm diameter, and a sharp transition with the underlying bulk alloy microstructure. Grinding and heat treatment to simulate rectification and paint baking processes result in the nucleation and growth of ∼20 nm diameter precipitates at grain boundaries within the near-surface deformed layer. High-resolution transmission electron microscopy has shown Q phase precipitates in the deformed layer, giving dramatically increased corrosion susceptibility compared with the bulk microstructure, and this is responsible for the rapid-onset filiform corrosion. Transmission electron microscopy of the corrosion attack showed directly that the mode of corrosion was intergranular and that the Q phase precipitates were preserved after the passage of the corrosion front

  4. TEM microstructure investigations of aluminium alloys used for laser alloying

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2012-12-01

    Full Text Available Purpose: In this paper there are presented results of Transmission Electron Microscope investigation concerning the structure of the AlSi7Cu4 cast aluminium alloy using for alloying and remelting with the high power diode laser (HPDL. There are also presented the results of the thermo-derivative analysis performed using the UMSA (Universal Metallurgical Simulator and Analyser device, allowing to determine the specific points of the solidifying alloy, what is helpful for phase determination occurred in this alloy. In this work especially the changes of the precipitation type, size and shape were determined.Design/methodology/approach: The investigations were performed using electron microscopy for the microstructure and phases determination. By mind of the transmission electron microscopy, especially selected area diffraction method appliance it was possible to determine the phases occurred in the alloy in the as cast state. The morphology and size of the Mg2Si was also possible to determine as well the lattice parameters for this phase.Findings: : The reason of this work was also to present the laser treatment technology, which will be used for further alloying and remelting with ceramic powders – especially carbides and oxides. Particularly the overview will be directed on the laser power to achieve good layer hardness for protection of this hot work tool steel from losing their work stability and to make the tool surface more resistant to action in external conditions. The structure of the surface laser tray changes in a way, that there are very high roughness of the surface zone and the flatness or geometry changes in an important manner, crucial for further investigation.Research limitations/implications: The aluminium samples were examined metallographically using transmission electron microscope with different image techniques.Practical implications: Developing of new technology with appliance of Al alloys, High Power Diode Laser and

  5. Characterization of rapidly and naturally quenched skeletal iron catalysts for FT synthesis

    Institute of Scientific and Technical Information of China (English)

    YAN Shi-run; QIAO Ming-hua; ZHU Yuan-long; FAN Kang-nian

    2004-01-01

    The slurry phase is a promising system for Fischer-Tropsch (FT) synthesis. Since the liquid medium efficiently removes the heat of reaction so that the steady-state reaction is easily achieved. High catalytic activity is maintained due to removal of waxy products from the catalyst surface by the action of solvent. In addition, CO-rich syngas from coal gasification can be directly used in FT synthesis which may increase the thermal efficiency of the indirect coal liquefaction. One of the important problems to be solved for slurry phase FT is the catalyst attrition and separation from wax residue. Fused iron and Raney iron were found to have high attrition resistance and easy to separate from wax in slurry phase FT synthesis, but their activity is relatively low. Amorphous alloys made by rapid quenching techniques have drawn increasing interest due to their superior mechanical,chemical and magnetic properties compared to the thermodynamically stable crystalline alloys of the same compositions. It is reported that rapidly quenched skeletal Ni catalyst showed higher catalytic activity than Raney Ni in selective hydrogenation of unsaturated organic functional groups.In this paper, Fe50Al50 (by weight) alloys with different quenching rates, rapid quenching (RQ) and natural quenching (NQ) were prepared for FT synthesis. The phase composition of alloys was characterized by XRD. The physical properties, thermal-stability and adsorption properties of skeletal Fe that was prepared by leaching aluminum of the corresponding alloy with aqueous solution of NaOH were also studied by BET, in situ XRD and H2- and CO-TPD. It is found from XRD patterns of the alloys that RQ Fe50Al50 is composed of orthorhombic phase, and NQ Fe50Al50 alloy is mainly composed of monoclinic phase. Meanwhile, diffraction peaks of the RQ alloy are seriously broadened. After leaching aluminum by aqueous solution of NaOH at the same conditions,skeletal Fe from the RQ alloy give the higher specific surface

  6. Microstructural studies on Alloy 693

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R.; Dutta, R.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, P., E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Mater. Sci., Indian Institute of Technology Bombay, Mumbai 400 072 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni{sub 3}Al precipitates distributed within austenitic matrix. M{sub 6}C primary carbide, M{sub 23}C{sub 6} type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni{sub 3}Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  7. Computer-aided Reverse Engineering for Rapid Replacement of Parts

    Directory of Open Access Journals (Sweden)

    D.K. Pal

    2006-04-01

    Full Text Available Indigenous product development using conventional means involves a relatively long leadtime and cost, especially for replacing worn out and broken parts. This paper presentsmethodologies and technologies for computer-aided reverse engineering, illustrated by a reallifecase study of an aluminium alloy separator body of a hydraulic filter assembly for the specialarmy vehicle. It involved reconstruction of part geometry using 3-D scanning, materialidentification using spectrometry, casting process optimisation using simulation software, andfabrication of prototype and tooling using rapid prototyping systems. It was found that thefabrication of wax patterns directly from reverse-engineered CAD data in a suitable rapidprototyping system (such as thermojet, followed by conventional investment casting, gives areliable and economic route for rapid development of one-off intricate parts for the replacementpurpose.

  8. Diamond grooving of rapidly solidified optical aluminium

    Science.gov (United States)

    Abou-El-Hossein, Khaled; Hsu, Wei-Yao; Ghobashy, Sameh; Cheng, Yuan-Chieh; Mkoko, Zwelinzima

    2015-10-01

    Traditional optical aluminium grades such as Al 6061 are intensively used for making optical components for applications ranging from mould insert fabrication to laser machine making. However, because of their irregular microstructure and relative inhomogeneity of material properties at micro scale, traditional optical aluminium may exhibit some difficulties when ultra-high precision diamond turned. Inhomogeneity and micro-variation in the material properties combined with uneven and coarse microstructure may cause unacceptable surface finish and accelerated tool wear, especially in grooving operation when the diamond tool edge is fully immersed in the material surface. Recently, new grades of optical aluminium that are featured by their ultra-fine microstructure and improved material properties have been developed to overcome the problem of high tool wear rates. The new aluminium grades have been developed using rapid solidification process which results in extremely small grain sizes combined with improved mechanical properties. The current study is concerned with investigating the performance of single-point diamond turning when grooving two grades of rapidly solidified aluminium (RSA) grades: RSA905 which is a high-alloyed aluminium grade and RSA443 which has a high silicon content. In this study, two series of experiments employed to create radial microgrooves on the two RSA grades. The surface roughness obtained on the groove surface is measured when different combinations of cutting parameters are used. Cutting speed is varied while feed rate and depth of cut were kept constant. The results show that groove surface roughness produced on RSA443 is higher than that obtained on RSA905. Also, the paper reports on the effect of cutting speed on surface roughness for each RSA grade.

  9. Properties of thermally stable PM Al-Cr based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)], E-mail: Dalibor.Vojtech@vscht.cz; Verner, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Serak, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Simancik, F. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Balog, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Nagy, J. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia)

    2007-06-15

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 {mu}m was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized {alpha}(Al) grains (the average grain size of 640 nm) and Al{sub 13}Cr{sub 2} spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium.

  10. Properties of thermally stable PM Al-Cr based alloy

    International Nuclear Information System (INIS)

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 μm was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized α(Al) grains (the average grain size of 640 nm) and Al13Cr2 spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium

  11. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  12. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion a...... hydrogen uptake points of view, to the above-mentioned alloys. This alloy is of particular interest because the addition of MgO leads to no neutron penalty and the dispersion-strengthening entails the possibility of tailoring an alloy with the desired mechanical properties....

  13. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  14. Inducing anisotropy in bulk Nd–Fe–Co–Al–B nanocrystalline alloys by quenching in magnetic field

    International Nuclear Information System (INIS)

    We have observed magnetic anisotropy in bulk Nd55−xCoxFe30Al10B5 (x=10, 15 and 20) alloys prepared by copper mold suction casting method with a presence of external magnetic field (quenching field) μ0H=0.25 T. By changing direction of the measuring field from perpendicular to parallel one in comparison with that of the quenching field, coercive force of the alloys slightly decreases while remanent magnetization and squareness of hysteresis loop increase more clearly. It is also found that the higher Co-concentration in the alloys the larger magnetic anisotropy is induced. The structure analyses manifest nanocrystalline particles embedded in residual amorphous matrix of the alloys. The size of the particles is in range of 10–30 nm and their crystalline phases consist of Nd2(Fe,Co)14B, Nd3Co, Nd3Al, NdAl2 and Nd. - Highlights: ► Inducing anisotropy in bulk nanocrystalline alloys by quenching in magnetic field. ► Magnitude of the induced anisotropy is enhanced by Co-concentration. ► Nd2(Fe,Co)14B stick-like nanograins is main factor for anisotropy of the alloys. ► Bulk Nd–Co–Fe–Al–B nanocrystalline alloys fabricated by rapid solidification. ► High coercivities up to 1.6 T achieved in bulk Nd–Co–Fe–Al–B nanocrystalline alloys.

  15. Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution.

    Science.gov (United States)

    Li, J; Li, S J; Hao, Y L; Huang, H H; Bai, Y; Hao, Y Q; Guo, Z; Xue, J Q; Yang, R

    2014-06-01

    The use of nanostructuring to improve the stability of passive thin films on biomaterials can enhance their effectiveness in corrosion resistance and reduce the release of ions. The thickness of the ultrathin films that cover Ti and Ti alloys (only several nanometers) has prevented researchers from establishing systematic methods for their characterization. This study employed a multifunctional biomedical titanium alloy Ti-24Nb-4Zr-8Sn (wt.%) as a model material. Coarse-grained (CG) and nanostructured (NS) alloys were analyzed in 0.9% NaCl solution at 37°C. To reveal the details of the passive film, a method of sample preparation producing a passive layer suitable for transmission electron microscope analysis was developed. Electrochemical corrosion behavior was evaluated by potentiodynamic polarization tests and Mott-Schottky measurements. Surface depth chemical profile and morphology evolution were performed by X-ray photoelectron spectroscopy and in situ atomic force microscopy, respectively. A mechanism was proposed on the basis of the point defect model to compare the corrosion resistance of the passive film on NS and CG alloys. Results showed that the protective amorphous film on NS alloy is thicker, denser and more homogeneous with fewer defects than that on CG alloy. The film on NS alloy contains more oxygen and corrosion-resistant elements (Ti and Nb), as well as their suboxides, compared with the film on CG alloy. These characteristics can be attributed to the rapid, uniform growth of the passive film facilitated by nanostructuring. PMID:24583159

  16. Research of heat treatment of low-Co AB5 type hydrogen storage alloys for MH-Ni batteries

    Institute of Scientific and Technical Information of China (English)

    GUO Jinghong; CHEN Demin; LIU Guozhong; YANG Ke; MA Jun

    2003-01-01

    The effects of low-Co AB5 type hydrogen storage alloys prepared by quenching and annealing on the performances of MH-Ni batteries were investigated, and the characteristics of the low-Co AB5 type hydrogen storage alloys were compared with those of the high-Co AB5 type hydrogen storage alloy as well. The results showed that the faster the cooling of the low-Co hydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and the longer cycle life of the battery are, but the electrochemical discharge capacity and high-rate discharge ability are reduced. The high-rate discharge ability and charge retention of MH-Ni batteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to those for the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, but a little inferior in the cycle life.

  17. Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior.

    Science.gov (United States)

    Shangguan, Yongming; Wan, Peng; Tan, Lili; Fan, Xinmin; Qin, Ling; Yang, Ke

    2016-11-01

    Magnesium-based metals are considered as promising biodegradable orthopedic implant materials due to their potentials of enhancing bone healing and reconstruction, and in vivo absorbable characteristic without second operation for removal. However, the rapid corrosion has limited their clinical applications. Ca-P coating by electrodeposition has been supposed to be effective to control the degradation rate and enhance the bioactivity. In this work, a brushite coating was fabricated on the Mg-Sr alloy by pulse electrodeposition (PED) to evaluate its efficacy for orthopedic application. Interestingly, an inner corrosion layer was observed between the PED coating and the alloy substrate. Meanwhile the results of in vitro immersion and electrochemical tests showed that the corrosion resistance of the coated alloy was undermined in comparison with the uncoated alloy. It was deduced that the existence of this corrosion layer was attributed to the worse corrosion performance of the alloy. The mechanism on formation of the inner corrosion layer and its influence on consequent degradation were analyzed. It can be concluded that the electrodeposition coating should be not suitable for those magnesium alloys with poor corrosion resistance such as the Mg-Sr alloy. More importantly, it should be noted that the process of coating formation combined with the nature of substrate alloy is important to evaluate the efficacy of coating for biodegradable Mg-based implants application. PMID:27450886

  18. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    Science.gov (United States)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  19. Microstructural Development in Al-Si Powder During Rapid Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Amber Lynn Genau

    2004-12-19

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  20. Rapid Robot Design Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies will create a comprehensive software infrastructure for rapid validation of robotic designs. The software will support push-button validation...

  1. Rapid Robot Design Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies will create a comprehensive software infrastructure for rapid validation of robot designs. The software will support push-button validation...

  2. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. PMID:25792409

  3. Determination of yttrium in complex alloys using microwave dissolution and ICP-AES

    International Nuclear Information System (INIS)

    Yttrium additions to Ni-Cr-Al alloy systems have been shown to improve high temperature cyclic oxidation behavior. In support of similar investigations, a rapid and sensitive method for quantitating yttrium in high temperature nickel base alloys was developed. The yttrium content of Ni-Cr-Al-Y, Fe-Cr-Al-Y, and Co-Cr-Al-Y alloys are routinely determined aqua regia for dissolution and ICP-AES for analysis. Using microwave dissolution, sample preparation time of these alloys has been reduced substantially. The objective of this work was to develop a microwave dissolution procedure not requiring time consuming evaporations without compromising sensitivity and accuracy. Two approaches were taken to evaluate the effect of hydrofluoric concentration on the determination of yttrium by ICP-AES. The first approach uses synthetic yttrium standards to study yttrium emission stability as a function of time. The second approach studies the effectiveness of boron in complexing free fluoride and thereby allowing yttrium to remain in solution longer. The result of this work is a rapid, precise method for analyzing yttrium in complex nickel base alloys with a lower limit of quantitation of approximately 10 ppm

  4. Effect Of Cooling Rate On Thermal And Mechanical Properties Of Cu-%24.2Mn Alloy

    International Nuclear Information System (INIS)

    In this research, different heat and mechanical treatments have been applied to the Cu-%24.2Mn and some samples have been obtained from this alloy. On these samples, phase transformations have been formed by thermal and mechanical effect. Morphological, mechanical and crystallographic properties of the phase transformations have been examined by using different physical methods. Austenite phase has been obtained in the samples which have been applied slow and rapid cooling according to the SEM analysis. It has been observed that the grain size obtained by the rapid cooling is smaller than the grain size obtained by the slow cooling. Therefore, it has been concluded that the cooling process differences, changes the grain size of the alloy. Compression stress has been applied to the alloy in order to search the deformation effect on the austenite phase transformation. The structural features of the phase transformations have been examined. Slip lines and martensite structural were observed on the surface of the alloys after the deformation. Changes in phase structure of the alloy are also examined by means of XRD technique.

  5. Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys

    International Nuclear Information System (INIS)

    Highlights: • A copper content of ∼0.6 wt% may be overaged when the quench-rate is not too rapid. • Crack arrest markings spacings could be related to the hydrogen diffusivity. • XPS showed that the oxide of AA7075 was slightly more hydrated than on AA7079. - Abstract: Stress corrosion cracking (SCC) of two lower-copper Al–Zn–Mg–Cu alloys, AA7079 and AA7022 (0.6–0.9 wt% Cu), and a higher-copper AA7075 (1.5 wt% Cu) alloy are reported. In aqueous chloride, copper content of grain boundary precipitates is believed to be controlling, whereas in moist air it appears that the hydrogen diffusivity could be evident from the rate of crack growth between crack arrest markings. In moist air, the rate of hydrogen entry may control crack growth rates. X-ray photoelectron spectroscopy showed that the oxide formed in ambient conditions (e.g. ∼50% RH) was more hydrated on the AA7075-T651 than AA7079-T651

  6. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy J.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  7. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    Science.gov (United States)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  8. Demand for PC Increases Rapidly

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ PC (polycarbonate) is an engineering thermoplastic with excellent comprehensive properties. It has the advantages of great strength, high toughness, good heat resistance,light weight, excellent workability and stable color and is therefore extensively used in several sectors:automotive, electronic/electric,construction, office equipment,packaging, sports ware, medical/health care and household utensils.PC can also be used to make PC copolymers or alloyed with other monomers or resins to improve its properties.

  9. Increase in structural stability by control of precipitation in alloys derived from Inconel 718

    International Nuclear Information System (INIS)

    The alloys studied are derived from Inconel 718 by increasing the ratio R=(Ti+Al)/Nb, which favor precipitation of the γ'-Ni3(Ti,Al) phase during aging at the expense of the metastable γ''-Ni3Nb phase responsible for considerable hardening of the reference alloy. It was possible in this way to define a region of the composition space R and S (S=Ti+Al+Nb) such that any alloy of this region gives rise to an original precipitation where the particles consist of γ' phase cubes plated on all six faces with the γ'' phase. These compact morphology precipitates show great stability of nature, size and shape at steady temperatures up to around 700 deg C, unlike Inconel 718 where the growth of the γ'' plates and their subsequent conversion to the stable β-Ni3Nb phase cause the alloy to age rapidly above 600 deg C. A comparison of the mechanical properties of Inconel 718 and one of the compact morphology precipitation alloys shows that for the derived alloy these properties can be as good or better after the aging treatment (hardness, tensile strength, short-term creep, low-cycle fatigue) and distinctly improved after long maintenance at temperatures of 700 deg C or above (hardness, long-term creep)

  10. Database on Performance of Neutron Irradiated FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States); Littrell, Ken [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  11. The influence of partitioning on the growth of intragranular α in near-β Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tong, E-mail: tong.li@sydney.edu.au [Australian Centre for Microscopy and Microanalysis and School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ahmed, Mansur [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Sha, Gang [Australian Centre for Microscopy and Microanalysis and School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Shi, Rongpei [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Casillas, Gilberto [Electron Microscopy Centre, University of Wollongong, NSW 2519 (Australia); Yen, Hung-Wei [Australian Centre for Microscopy and Microanalysis and School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wang, Yunzhi [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Pereloma, Elena V. [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Electron Microscopy Centre, University of Wollongong, NSW 2519 (Australia); Cairney, Julie M., E-mail: julie.cairney@sydney.edu.au [Australian Centre for Microscopy and Microanalysis and School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)

    2015-09-15

    Highlights: • In the early stage of α formation, Al is not an effective α stabiliser. • High build-up of slow diffusing elements observed at the tip of intragranular α. • Low/no pile-up at the broad face of intragranular α. • Mo segregates at the tip, which possibly impedes the diffusion of V from α to β. • The lengthening kinetic drops dramatically due to the solute segregation effect. - Abstract: We report on partitioning of alloying elements during the formation of fine intragranular α plates in a Ti-55521 alloy after thermo-mechanical processing (TMP) and isothermal ageing at 923 K. The microstructures were characterised using atom probe tomography and high-resolution transmission electron microscopy. The partitioning of Mo, V and Al are strongly affected by their diffusivities and their mutual interaction. This leads to a deviation of the measured contents of alloying elements in the two phases from the predicted equilibrium values. The alloying elements at the broad faces and tips of α plates were found to exhibit different pile-up and segregation behaviours, which is thought to affect the lengthening and thickening kinetics of the α plates. As a result, the aspect ratio of α plates decreased rapidly with increasing ageing time. This study suggests that careful selection of alloying elements could be an effective way in controlling the growth anisotropy of α plates and thus α + β microstructures in near-β Ti alloys.

  12. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    Science.gov (United States)

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity. PMID:24913424

  13. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  14. Effect of Cerium on Gas Evolution Behavior of Pb-Ca-Sn Alloy

    Institute of Scientific and Technical Information of China (English)

    Lin Guanfa; Zhou Genshu; Li Dangguo; Zheng Maosheng

    2006-01-01

    The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS).Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage.Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy.The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode.The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction.All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy.It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery.

  15. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    Science.gov (United States)

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding. PMID:24700670

  16. Corrosion Behavior of Alloy 22 in Oxalic Acid and Sodium Chloride Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Whalen, M T; King, K J; Hust, G A; Wong, L L; Estill, J C; Rebak, R B

    2003-06-24

    Nickel based Alloy 22 (NO6022) is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in oxalic acid solution and to compare its behavior to sodium chloride (NaCl) solutions. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion rate of Alloy 22 in oxalic acid solutions increased rapidly as the temperature and the acid concentration increased. Extrapolation studies show that even at a concentration of 10{sup -4}M oxalic acid, the corrosion rate of Alloy 22 would be higher in oxalic acid than in 1 M NaCl solution. Alloy 22 was not susceptible to localized corrosion in oxalic acid solutions. Cyclic polarization tests in 1 M NaCl showed that Alloy 22 was susceptible to crevice corrosion at 90 C but was not susceptible at 60 C.

  17. The influence of partitioning on the growth of intragranular α in near-β Ti alloys

    International Nuclear Information System (INIS)

    Highlights: • In the early stage of α formation, Al is not an effective α stabiliser. • High build-up of slow diffusing elements observed at the tip of intragranular α. • Low/no pile-up at the broad face of intragranular α. • Mo segregates at the tip, which possibly impedes the diffusion of V from α to β. • The lengthening kinetic drops dramatically due to the solute segregation effect. - Abstract: We report on partitioning of alloying elements during the formation of fine intragranular α plates in a Ti-55521 alloy after thermo-mechanical processing (TMP) and isothermal ageing at 923 K. The microstructures were characterised using atom probe tomography and high-resolution transmission electron microscopy. The partitioning of Mo, V and Al are strongly affected by their diffusivities and their mutual interaction. This leads to a deviation of the measured contents of alloying elements in the two phases from the predicted equilibrium values. The alloying elements at the broad faces and tips of α plates were found to exhibit different pile-up and segregation behaviours, which is thought to affect the lengthening and thickening kinetics of the α plates. As a result, the aspect ratio of α plates decreased rapidly with increasing ageing time. This study suggests that careful selection of alloying elements could be an effective way in controlling the growth anisotropy of α plates and thus α + β microstructures in near-β Ti alloys

  18. Compensative alloying of Cr-Si low-alloyed steels

    International Nuclear Information System (INIS)

    The principle of choosing alloy elements in order to suppress the embrittlement of solid solution strengthening is proposed. In the case of Cr-Si low-alloyed steels, the effects of compensative alloying are studied. The ultimate tensile strength and impact toughness of Cr-Si steels microalloyed with Mo, V, and Ti are determined to prove the aspects. The structure of these steels is studied using optical and transmission electron microscopy techniques after applying the optimum heat treatment. The kinetics of phase transformation after quenching and tempering have been examined by means of measurements of specific electrical resistance and magnetic parameters. It is shown that at the Si-content of about 1 wt% high values of tensile strength and impact toughness are simultaneously obtained. It is established by calculations that, for the indicated steel, long-range distortions of the crystal lattice become close to zero at the Si-content of about 1 wt%.

  19. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle. PMID:26023135

  20. Machining of high alloy steels and heat resistant alloys

    International Nuclear Information System (INIS)

    The peculiarities of machining high alloy steels and heat resistant alloys on the base of nickel by cutting are described. The factors worsening the machining of heat resistant materials, namely, the low heat conductivity, strong reverting and high wearing capability, are pointed out. The resign and materials of cutting instruments, providing for high quality machining of heat resistant steels and alloys, are considered. The necessity of regulating thermal processes during cutting with cutting fluids and other coolants (e.g. air with a negative temperature) is noted. The recommended modes of cutting are presented. The efficiency of the conveyer-type method for sawing products and forged intermediate articles is demonstrated by the example of 5KhNM steel

  1. The comparison of corrosion resistance between Baosteel's alloy 690 tube and foreign alloy 690 tube

    International Nuclear Information System (INIS)

    Alloy 690 having excellent corrosion resistance is widely used for SG tubes. The intergranular corrosion and pitting corrosion resistance of Baosteel's alloy 690 tube, Country A alloy 690 tube and Country B alloy 690 tube have been analysed by comparison. It shows that: The intergranular corrosion of Baosteel's alloy 690 tube tested complied with ASTM G28 Standard could satisfy the technical requirement. However.some of Baosteel's alloy 690 tube in intergranular corrosion resistance had less performance than Country A. In addition, pitting corrosion tested with ASTM G48 Standard shown the Baosteel's alloy 690 tube better than Country B. (authors)

  2. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  3. Carbon Alloys-Multi-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Eiichi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)], E-mail: yasuda.e.aa.@m.titech.ac.jp; Enami, Takashi; Hoteida, Nobuyuki [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Lanticse-Diaz, L.J. [University of the Philippines (Philippines); Tanabe, Yasuhiro [Nagoya University (Japan); Akatsu, Takashi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2008-02-25

    Last decade after our proposal of the 'Carbon Alloys' concept, many different kinds of Carbon Alloys, such as carbon nanotubes, carbon nanofibers, graphene sheet with magnetism, semi-conducting BCN compounds, graphite intercalation compounds, exfoliated carbon fiber, etc. have been found and developed. To extend the concept further, it is important to make it into intelligent materials by incorporating multiple functions. One example of the multi-functionalization is the development of homo-atomic Carbon Alloys from glassy carbon (GC) that exhibits high electrical conductivity and low gas permeability after treatment at critical conditions. Glassy carbon underwent metamorphosis to graphite spheres at HIP condition, and improved resistance to oxidation after alloying with Ta. The other one is shape utilization of the nano-sized carbon by understanding the effect of its large surfaces or interfaces in nanotechnology treatment. Recently carbon nanofiber was produced by polymer blend technology (PB) which was proposed by Prof. A. Oya during the Carbon Alloy project and progressed into intelligent carbon nanofiber (CNF) materials. CNF is combined into the polymer composites which is a candidate material for the bipolar separator in fuel cell. The superior properties, i.e., high electrical conductivity, high modulus, high strength, etc., of the CNF is being utilized in the preparation of this polymer composite.

  4. Quasicrystal-reinforced Mg alloys

    International Nuclear Information System (INIS)

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. (review)

  5. The developing strategy of Chinese magnesium and magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZUO; Tie-yong; DU; Wen-bo

    2005-01-01

    The status and developing strategy of Chinese magnesium industry are summarized in the present paper. The output and export of Chinese magnesium ingot have rapidly increased in the recent ten years, but the magnesium products with high value, such as the wrought magnesium alloys, and their applications are insufficient. Chinese magnesium industry should develop toward the direction of large scale, specialization and collectivization in the future. The enterprises should enhance the level of management and reinforce the international competing ability with the help of governmental policies.

  6. Design optimization of shape memory alloy structures

    OpenAIRE

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory alloys are e.g. miniaturized medical instruments with embedded actuation, as well as microsystem components. However, designing effective shape memory alloy structures is a challenging task, due t...

  7. In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    . Consequently, it is revealed that the Ti–33Mg alloy film evaluated in this study is suitable for biomedical applications. - Highlights: • Biocompatibility of Ti–Mg alloys fabricated by magnetron sputtering was investigated. • The dissolution amounts of Ti are below or near the detection limit of ICP-OES. • The dissolution amounts of Mg increase rapidly in the Ti–55Mg alloy and Mg films. • Calcium phosphate is precipitated on the surfaces of the Ti–33Mg and Ti–55Mg alloys. • Ti–33Mg alloy film exhibits high corrosion resistance and good biocompatibility

  8. In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hieda, Junko, E-mail: hieda@imr.tohoku.ac.jp; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    . Consequently, it is revealed that the Ti–33Mg alloy film evaluated in this study is suitable for biomedical applications. - Highlights: • Biocompatibility of Ti–Mg alloys fabricated by magnetron sputtering was investigated. • The dissolution amounts of Ti are below or near the detection limit of ICP-OES. • The dissolution amounts of Mg increase rapidly in the Ti–55Mg alloy and Mg films. • Calcium phosphate is precipitated on the surfaces of the Ti–33Mg and Ti–55Mg alloys. • Ti–33Mg alloy film exhibits high corrosion resistance and good biocompatibility.

  9. Understanding the Origins of Intergranular Corrosion in Copper-Containing Al-Mg-Si Alloys

    Science.gov (United States)

    Kairy, Shravan K.; Alam, Talukder; Rometsch, Paul A.; Davies, Chris H. J.; Banerjee, Raj; Birbilis, Nick

    2016-03-01

    A definitive understanding of the mechanism of intergranular corrosion (IGC) in under-aged (UA) Cu-containing Al-Mg-Si alloys has not been clear to date. The grain boundary microstructure and chemistry in an UA Cu-containing Al-Mg-Si alloy were characterized by coupling atom probe tomography and scanning transmission electron microscopy. The rapid formation of an ultra-thin wetting Cu layer and discrete Q-phase (Al4Cu2Mg8Si7) precipitates along the grain boundaries, and a precipitate-free zone adjacent to the grain boundaries in the UA condition contribute to IGC.

  10. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy

    Indian Academy of Sciences (India)

    J K Yu; Y H Wang; G Z Xing; Q Qiao; B Liu; Z J Chu; C L Li; F You

    2015-02-01

    The undercooling of Ni–W– P ternary alloy coating melt was investigated by in situ differential scanning calorimeter (DSC) with the flux processing technique. The results showed that the highest undercooling of Ni–W–P ternary alloy with 359 K was obtained as the thermal treatment temperature of themelt being 1679 K and the cooling rate being 50 K min-1. When cooling rate is fixed, the change of undercooling depends on the melt processing temperature, and the undercooling will increase rapidly at the first stage. The effects of thermal treatment temperature and cooling rates on the undercooling were discussed.

  11. Determination of lithium in lithium-aluminium alloy by capillary electrophoresis

    International Nuclear Information System (INIS)

    A simple and rapid method for the determination of lithium in lithium-aluminium alloy using capillary electrophoresis (CE) is developed. The method separates Li from other metal ions and it does not require prior separation of aluminium, which is major constituent of the alloy. Separation of Li was achieved using BGE of 20mM Imidazole (pH 2) with an applied voltage of 20kV. The precision of the method is better than 10% at 0.5 ppm of Li and LOD is 0.12 ppm. (author)

  12. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar

    2005-01-01

    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  13. A new hardware and software developed for copper alloy analyser type XRFA-5

    International Nuclear Information System (INIS)

    In the production of copper alloys a large amount of waste of unknown origin and composition is melted, and rapid analysis of the melt is important. A copper alloy analyzer based on the energy-dispersive x-ray fluorescence was developed in ATOMKI earlier for copper smelting plants in Hungary. The equipment has recently been upgraded by its connection to IBM PC/AT computer. A digital signal processor and analyzer module, a new software tool for the automatic determination of eight elements, and a stand-alone analyzer program DISIP was developed. The upgraded analyzer type XRFA-5.01 is presented briefly. (R.P.) 3 refs

  14. Grain refinement efficiency of a new oxide-containing master alloy for aluminium casting alloys

    OpenAIRE

    Sreekumar, VM; Babu, NH; Eskin, DG; Fan, ZY

    2014-01-01

    In this study, grain refinement efficiency of a new oxide master alloy based on MgAl2O4 was demonstrated on an A357 alloy. The grain size of the reference alloy was reduced by 50-60% with the addition of the master alloy and introduction of ultrasonic cavitation. A higher addition of master alloy was found to be not benificial in further reducing the grain size.

  15. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation

    Science.gov (United States)

    Xiao, Meiling; Feng, Ligang; Zhu, Jianbing; Liu, Changpeng; Xing, Wei

    2015-05-01

    A rapid strategy to synthesize a highly active PtRu alloy nano-sponge catalyst system for methanol electro-oxidation is presented. The greatly increased Pt utilization, anti-CO poisoning ability and electronic effect resulting from the porous nano-sponge structure could account for the performance improvement.

  16. Furnace and rapid thermal crystallization of amorphous GexSi1-x and Si for thin film transistors

    NARCIS (Netherlands)

    Rem, J.B.; Leuw, de M.C.V.; Holleman, J.; Verweij, J.F.

    1997-01-01

    The crystallization behavior of polycrystalline silicon (Si) and germanium-silicon alloys (GexSi1−x) from SiH4 and GeH4, where x is in the range of 0-0.32, has been investigated for thin film transistor (TFT) applications. Furnace anneals as well as rapid thermal anneal (RTA) and combinations of the

  17. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  18. Materials data handbook, aluminum alloy 6061

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1969-01-01

    Comprehensive compilation of technical data on aluminum alloy 6061 is presented in handbook form. The text includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent information required for the design and fabrication of components and equipment utilizing this alloy.

  19. Filler metal development for hastelloy alloy XR

    International Nuclear Information System (INIS)

    A method of alloy designing has been proposed and validated to develop the filler metal for Hastelloy alloy XR(nuclear reactor grade of Hastelloy alloy X), which is the candidate material for high temperature structure of High-Temperature Engineering Test Reactor (HTTR). In the filler metal development for Hastelloy alloy XR, materials of two heats were melted and fabricated with special emphasis placed on manufacturing process. One is the trial products (alloy termed 'C') designed by using multiple regression analysis in the range of the chemical composition specified as Hastelloy alloy X. The other is filler metal (alloy termed 'D') with optimum boron content in the same chemical composition as Hastelloy alloy XR. The results of the tests on several key items may be summarized as follows: (1) Weldments with alloy'C' showed higher strength and ductility at elevated temperatures than those of alloy'D'. (2) Weldments with alloy'D' had more excellent strength characteristics at elevated temperatures than those of the other conventional filler metals. (3) As for weldability, the crater cracks were slightly observed in the FISCO cracking test, but those were out of the problem in the degree of cracking from the viewpoint of practical application. The results of qualification tests on weldability showed good performance for all welding conditions of the present experiments. On the other hand, the mechanism of hot cracking initiation and the controlling factors in hot cracking susceptibility with relation to boron content have been clarified for Hastelloy alloy XR base metal. (author)

  20. Characterization and Catalytic Properties of a Rapidly Quenched Ni-RE-P-AL Catalyst

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Ni-RE-P-AL catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-AL alloy was characterized by means of ICP,BET,XRD,ZPS and TEM.The results show that the rapidly quenched Ni-RE-P-AL alloy contained less crystalline AL3Ni than AL-Ni alloy.After alkaline extraction,most of Al in the Ni-RE-P-AL alloy was leached out and the resulted Ni-RE-P-AL catalyst presented a spone structure similar to Raney Ni.Although Crystalline Ni is the major phase in the Ni-RE-P-AL catalyst and Raney Ni,amorphous Ni-P phase has been detected in the Ni-RE-P-AL catalyst.Studies on catalytic hydrogenation of toluene,phenyl ethylene,acetylene benzene,nitrobenzene,cyclohexanone and adiponitrile in liquid phase showed that the activity and selectivity of this Ni-RE-P-AL catalyst are superior to those of Raney Ni,especially at low temperatures.The amorphous phase is considered to be responsible for its superior catalytic properties.