WorldWideScience

Sample records for alloy seamless tubes

  1. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors

    International Nuclear Information System (INIS)

    Sabol, G.P.; Barry, R.F.

    1987-01-01

    A process is described for forming seamless tubing of a material selected from zirconium, zirconium alloys, titanium, and titanium alloys, from welded precursor tubing of the material, having a heterogeneous structure resulting from the welding thereof. The process consists of: heating successive axial segments of the welded tubing, completely through the wall thereof, including the weld, to uniformly transform the heterogeneous, as welded, material into the beta phase; quenching the beta phase tubing segments, the heating and quenching effected sufficiently rapid enough to produce a fine sized beta grain structure completely throughout the precursor tubing, including the weld, and to prevent growth of beta grains within the material larger than 200 micrometers in diameter; and subsequently uniformly deforming the quenched precursor tubing by cold reduction steps to produce a seamless tubing of final size and shape

  2. Manufacture of seamless stainless steel tubings and related equipment

    International Nuclear Information System (INIS)

    Wali, D.K.; Chaudhary, S.

    1997-01-01

    Production of seamless tubes for special application is one of the important production activities of Nuclear Fuel Complex (NFC), Hyderabad. NFC had set up facility of Hot Extrusion Press and Cold Pilger Mills with related finishing and inspection equipment for manufacturing quality seamless tubes of zirconium alloy for application in nuclear power reactors in early 70''s. Being aware that the demand for seamless tube in a developing economy gradually increases till it reaches around 30 to 40% of the total requirement of tubes and pipes and also of the fact that manufacturing technology developed for production of zircaloy seamless tubes for nuclear application, can easily be harnessed and spinned off for production of seamless tubes in materials generally difficult to hot roll (in other than extrusion process), NFC augmented its seamless tube manufacturing facility by adding, a vertical piercing press, series of induction furnaces and large size pilger mills to meet existing market demand of power sector, engineering, fertilisers and petro chemical industries and any other specialised applications

  3. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Phanibabu, C.; Bhaskara Rao, C.V.; Kalidas, R.; Ganguly, C.

    2002-01-01

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average f r value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  4. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  5. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    Science.gov (United States)

    Saibaba, N.

    2008-12-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.

  6. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    International Nuclear Information System (INIS)

    Saibaba, N.

    2008-01-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties

  7. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Kadonaga, Toshiki; Kikuma, Seiji.

    1982-01-01

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloyF were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids,F the high temperature strength and oxidation resistance are reported. (Kako, I.)

  8. Development and performance of resistive seamless straw-tube gas chambers

    International Nuclear Information System (INIS)

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-01-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220μm is achieved, and an anode position resolution of 112μm is also obtained

  9. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  10. Hydroforming SRF Three-cell Cavity from Seamless Niobium Tube

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masashi [KEK, Tsukuba; Dohmae, Takeshi [KEK, Tsukuba; Hocker, Andy [Fermilab; Inoue, Hitoshi [KEK, Tsukuba; Park, Gunn-Tae [KEK, Tsukuba; Tajima, Tsuyoshi [Los Alamos; Umemori, Kensei [KEK, Tsukuba

    2016-06-01

    We are developing the manufacturing method for superconducting radio frequency (SRF) cavities by using a hydroforming instead of using conventional electron beam welding. We expect higher reliability and reduced cost with hydroforming. For successful hydroforming, high-purity seamless niobium tubes with good formability as well as advancing the hydroforming technique are necessary. Using a seamless niobium tube from ATI Wah Chang, we were able to successfully hydroform a 1.3 GHz three-cell TESLA-like cavity and obtained an Eacc of 32 MV/m. A barrel polishing process was omitted after the hydroforming. The vertical test was carried out with very rough inside surface. We got amazing and interesting result.

  11. 77 FR 67336 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Science.gov (United States)

    2012-11-09

    ... Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania: Final Results of Antidumping... alloy seamless standard, line and pressure pipe from Romania. The period of review is August 1, 2010..., line and pressure pipe from Romania. See Certain Small Diameter Carbon and Alloy Seamless Standard...

  12. 75 FR 69125 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Science.gov (United States)

    2010-11-10

    ... with material injury by reason of imports from China of certain seamless carbon and alloy steel standard, line, and pressure pipe (``seamless SLP pipe''), provided for in subheadings 7304.19.10, 7304.19... Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China Determination On the basis of...

  13. 78 FR 41369 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Science.gov (United States)

    2013-07-10

    ... Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania: Preliminary Results of..., line and pressure pipe (small diameter seamless pipe) from Romania. The period of review (POR) is... and Alloy Seamless Standard, Line and Pressure Pipe from Romania,'' dated concurrently with this...

  14. Development of on-line wall thickness gauge for small size seamless tube. Shokei seamless netsukan nikuatsukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, T; Konya, N; Oka, H; Kasuya, T [Kawasaki Steel Corp., Tokyo (Japan)

    1991-03-01

    In order to heighten the accuracy of small size seamless tube wall thickness, hot wall thickness gauge was developed to be installed, immediately behind the finishing/rolling mill, for the on-line measurement, of which the method was by the parallel-beam transmissivity of gamma-ray. The measurement unit, aiming at flexible manufacturing system (FMS), is completely automated in correcting the accuracy, changing the sizes, etc. The damping characteristics of gamma-ray beam can be expressed by a characteristic function, taking the outside diameter and wall thickness of subject tube as parameters. The functional calculation, as based on measurement of transmitted quantity of gamma-ray through the three-dimensional steel material, changes, depending upon the outside diameter, wall thickness and material specification of subject tube. System was so applied as to calculate it therefore on a case-by-case basis. Though in the vicinity of tube end, the transmitted quantity of gamma-ray is largely influenced by the horizontal dislocation, that influence is slack in the middle part of tube. Therefore, the cross sectional division was made dense and sparse in the end part and middle part, respectively of tube, which division could diminish the error from several percent to less than 0.1%. The static noise was compressed by the optimized digital filter. That gauge is presently applied for the operational administration of small size seamless tube rolling. 2 refs., 11 figs., 2 tabs.

  15. 76 FR 60083 - Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan and Romania

    Science.gov (United States)

    2011-09-28

    ... Alloy Seamless Standard, Line, and Pressure Pipe From Japan and Romania Determinations On the basis of... pressure pipe from Japan and Romania would be likely to lead to continuation or recurrence of material... regarding small- diameter carbon and alloy seamless standard, line, and pressure pipe from Romania...

  16. 77 FR 21734 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Romania...

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-485-805] Certain Small Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Romania: Extension of Time Limit for... diameter carbon and alloy seamless standard, line and pressure pipe from Romania for the period August 1...

  17. 78 FR 63164 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Science.gov (United States)

    2013-10-23

    ... Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania: Final Results of Antidumping... carbon and alloy seamless standard, line and pressure pipe from Romania. For the final results we... pressure pipe from Romania.\\1\\ We invited interested parties to comment on the Preliminary Results. We...

  18. 75 FR 33330 - Seamless Refined Copper Pipe and Tube From China and Mexico

    Science.gov (United States)

    2010-06-11

    ... Copper Pipe and Tube From China and Mexico AGENCY: International Trade Commission. ACTION: Scheduling of... imports of seamless refined copper pipe and tube from China and Mexico are being sold in the United States... industry in the United States is materially retarded, by reason of less-than-fair-value imports from China...

  19. Process Monitoring and Fault Diagnosis for Piercing Production of Seamless Tube

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available With the development of modernization, the application of seamless tube becomes widespread. As the first process of seamless tube, piercing is vital for the quality of the tube. The solid round billet will be transformed into a hollow shell after the piercing process. The defects of hollow shell cannot be cleared in the following process, so a monitoring model for the quality of the hollow shell is important. But the piercing process is very complicated, and a mechanism model is difficult to build between the qualities of the hollow shell and measurement variables. Furthermore, an intelligent model is needed. We established two piercing process monitoring and fault diagnosis models based on the multiway principal component analysis (MPCA model and the multistage MPCA model, respectively, and furthermore we made a comparison between these two concepts. We took three ways to divide the period based on process, K-means, and GA, respectively. Simulation experiments have shown that the multistate MPCA method has advantage over the MPCA method and the model based on the genetic algorithm (GA can monitor the process effectively and detect the faults.

  20. 77 FR 73422 - Seamless Refined Copper Pipe and Tube From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-12-10

    ... Refined Copper Pipe and Tube From Mexico and the People's Republic of China: Antidumping Duty Orders and... and Tube From Mexico: Preliminary Results of Antidumping Duty Administrative Review; 2010-2011 AGENCY... on seamless refined copper pipe and tube from Mexico. The review covers two producers/ exporters of...

  1. 75 FR 8677 - Seamless Refined Copper Pipe and Tube From the People's Republic of China and Mexico...

    Science.gov (United States)

    2010-02-25

    ... Copper Pipe and Tube From the People's Republic of China and Mexico: Postponement of Preliminary...: Karine Gziryan (the People's Republic of China) or Joy Zhang (Mexico), AD/CVD Operations, Offices 4 and 3... Tube from the People's Republic of China and Mexico. See Seamless Refined Copper Pipe and Tube from the...

  2. 75 FR 71070 - Seamless Refined Copper Pipe and Tube From Mexico and the People's Republic of China: Antidumping...

    Science.gov (United States)

    2010-11-22

    ... Copper Pipe and Tube From Mexico and the People's Republic of China: Antidumping Duty Orders and Amended... pipe and tube'') from Mexico and the People's Republic of China (``PRC''). In addition, the Department... copper pipe and tube from Mexico and the PRC.\\2\\ \\2\\ See Seamless Refined Copper Pipe and Tube from China...

  3. 78 FR 69820 - Seamless Refined Copper Pipe and Tube From the People's Republic of China: Preliminary Results...

    Science.gov (United States)

    2013-11-21

    ...\\ \\1\\ See Seamless Refined Copper Pipe and Tube From Mexico and the People's Republic of China... and Tube From the People's Republic of China: Preliminary Results and Partial Rescission of... China (``PRC''), covering the period November 1, 2011 through October 31, 2012. The Department has...

  4. Evolution of microstructure in stainless martensitic steel for seamless tubing

    Science.gov (United States)

    Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.

    2017-12-01

    Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.

  5. Generation and use of process maps for hot extrusion of seamless tubes for nuclear applications

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: Hot extrusion is known as significant bulk deformation step in manufacturing of seamless tube production. Elevated temperature deformation carried out above the recrystallization temperature would enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature and strain rate (Ram speed). Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. Zirconium alloys and special nuclear grade austenitic stainless steels are two important groups of materials used as structural and core components in thermal and fast reactors world wide respectively. The properties of former alloy are very sensitive to the thermo mechanical fabrication steps initiated with hot extrusion due to their anisotropic deformation behaviour. However, nuclear grade austenitic stainless steels have many variants from their commercial grades in terms of micro and macro alloy chemistry. Factors such as these significantly affect the workability of the materials and require proper selection of extrusion parameters especially working temperature and extrusion speed plays a key role in the quality of the product. Modern developments in processing technology envisage the application of processing maps based on dynamic material model for selection of hot extrusion parameters. The present paper is aimed at bringing out significance of the map in selection of working domain with respect to the industrial process conditions for both groups of nuclear materials mentioned earlier. Developed process maps of certain alloys suggest use of extremely slow strain rate and low temperature extrusion which can not be achieved during bulk processing due to design of equipment and heat transfer constraints in industrial scale production. Attempts are made to highlight

  6. 75 FR 26273 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Science.gov (United States)

    2010-05-11

    ...)] Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China AGENCY: United States... materially injured or threatened with material injury, or the establishment of an industry in the United States is materially retarded, by reason of subsidized and less-than-fair-value imports from China of...

  7. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  8. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  9. Process Monitoring and Fault Diagnosis for Shell Rolling Production of Seamless Tube

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2015-01-01

    Full Text Available Continuous rolling production process of seamless tube has many characteristics, including multiperiod and strong nonlinearity, and quickly changing dynamic characteristics. It is difficult to build its mechanism model. In this paper we divide production data into several subperiods by K-means clustering algorithm combined with production process; then we establish a continuous rolling production monitoring and fault diagnosis model based on multistage MPCA method. Simulation experiments show that the rolling production process monitoring and fault diagnosis model based on multistage MPCA method is effective, and it has a good real-time performance, high reliability, and precision.

  10. 75 FR 29972 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe from the People's...

    Science.gov (United States)

    2010-05-28

    ... Determination of Sales at Less Than Fair Value AGENCY: Import Administration, International Trade Administration... sales at less than fair value in the antidumping duty investigation of certain seamless carbon and alloy... Determination of Sales at Less Than Fair Value, Affirmative Preliminary Determination of Critical Circumstances...

  11. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  12. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  13. 78 FR 35251 - Seamless Refined Copper Pipe and Tube From the People's Republic of China: Final Results and...

    Science.gov (United States)

    2013-06-12

    ... of the order, the products covered are all seamless circular refined copper pipes and tubes.\\6\\ The..., 2011). The Department announced a refinement to its assessment practice in non-market economy cases.\\12... for the PRC- wide entity. \\12\\ See Non-Market Economy Antidumping Proceedings: Assessment of...

  14. 76 FR 47555 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Japan...

    Science.gov (United States)

    2011-08-05

    ... Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels exceed those allowed for ASTM A-106. Seamless pressure pipes sold in the United..., or pressure pipe applications. B. Finished and unfinished oil country tubular goods (``OCTG''), if...

  15. Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiyuan [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Zhang, Zicheng, E-mail: zhangzicheng2004@126.com [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Manabe, Ken-ichi [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Li, Yanmei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, 44130 Lafayette, LA 70504-4130 (United States)

    2014-08-15

    Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier under tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.

  16. 75 FR 69052 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's...

    Science.gov (United States)

    2010-11-10

    ... threatened with material injury by reason of imports of seamless pipe from the PRC. According to section 736... that determination is based on the threat of material injury and is not accompanied by a finding that... Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of China: Amended Final...

  17. 77 FR 27428 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Science.gov (United States)

    2012-05-10

    ... (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels exceed those allowed for ASTM A-106. Seamless pressure pipes sold in the United States are..., or pressure pipe applications. B. Finished and unfinished oil country tubular goods (``OCTG''), if...

  18. 76 FR 66688 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Science.gov (United States)

    2011-10-27

    ... (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels exceed those allowed for ASTM A-106. Seamless pressure pipes sold in the United States are..., or pressure pipe applications. B. Finished and unfinished oil country tubular goods (``OCTG''), if...

  19. Properties and application study of Inconel alloy tube made in China

    International Nuclear Information System (INIS)

    Yang Xiang; Su Xingwan; Wen Yan

    1997-01-01

    The mech-physical properties and the corrosion resistance properties of the SG tube of Inconel alloy made in China under any conditions are briefly presented, and the test and research for bending and expending the tubes have been performed. In the process of corrosion experiments the Inconel alloy tubes were compared with that of the same kind of materials made in foreign countries. The Inconel alloy tubes have better stress corrosion resistance cracking prosperities than Inconel 600 and Incoloy 800 when they were in the solutions which contained high concentrated chlorine ion and alkali at high temperature

  20. Study on manufacturing technology of fuel guide tube using HANA alloys

    International Nuclear Information System (INIS)

    Kim, Hyungil; Jung, Yangil; Park, Dongjun; Park, Jeongyong; Kim, Ilhyun; Choi, Byungkwon; Jeong, Yonghwan; Park, Sangyoon

    2013-04-01

    This research was focused on the study for the manufacturing technology of HANA alloys to crease the corrosion resistance of 30% as well as the to improve the strength of 10% when compared to the commercial zirconium alloys. The new manufacturing concept having higher corrosion resistance and strength than commercial alloy performance can be obtained in this research. This result was transferred to the KNF and, that will be commercialized. This research result can be summarized like this; Ο Parameter study to increase formability of HANA alloy tube - Study on alloy element and heat-treatment effect - Study on texture development mechanism - Study on final annealing effect Ο Out-of-pile performance evaluation of HANA alloy tube - Corrosion performance evaluation of HANA alloy manufactured at KNF - Mechanical performance evaluation of HANA alloy manufactured at KNF - Recrystallization behavior evaluation of HANA alloy manufactured at KNF - Texture characterization of HANA alloy manufactured at KNF - Microstructure characterization of HANA alloy manufactured at KNF Ο Manufacturing guideline setup to increase formability of HANA alloy tube - Manufacturing guideline setup to decrease surface defect - Manufacturing guideline setup to increase strength and corrosion resistance - Manufacturing guideline setup to control texture

  1. Tube in zirconium base alloy for nuclear fuel assembly and manufacturing process of such a tube

    International Nuclear Information System (INIS)

    Mardon, J.P.; Senevat, J.; Charquet, D.

    1996-01-01

    This patent concerns the description and manufacturing guidelines of a zirconium alloy tube for fuel cladding or fuel assembly guiding. The alloy contains (in weight) 0.4 to 0.6% of tin, 0.5 to 0.8% of iron, 0.35 to 0.50% of vanadium and 0.1 to 0.18% of oxygen. The carbon and silicon tenors range from 100 to 180 ppm and from 80 to 120 ppm, respectively. The alloy contains only zirconium, plus inevitable impurities, and is completely recrystallized. Corrosion resistance tests were performed on tubes made of this alloy and compared to corrosion tests performed on zircaloy 4 tubes. These tests show a better corrosion resistance and a lower corrosion kinetics for the new alloy, even in presence of lithium and iodine, and a lower hydridation rate. The mechanical resistance of this alloy is slightly lower than the one of zircaloy 4 but becomes equivalent or slightly better after two irradiation cycles. The ductility remains always equal or better than for zircaloy 4. (J.S.)

  2. Material reliability of Ni alloy electrodeposition for steam generator tube repair

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Myong Jin; Kim, Joung Soo; Kim, Hong Pyo

    2007-01-01

    Due to the occasional occurrences of Stress Corrosion Cracking (SCC) in steam generator tubing (Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube dose not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electroforming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a Primary Water Stress Corrosion Cracking (PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance

  3. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  4. A survey on the corrosion susceptibility of Alloy 800 CANDU steam generator tubing materials

    International Nuclear Information System (INIS)

    Lu, Y.C.; Dupuis, M.; Burns, D.

    2008-01-01

    To provide support for a proactive steam generator (SG) aging management strategy, a survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs under plausible crevice chemistry conditions was conducted to assess the potential material degradation issues in CANDU SGs. Archived Alloy 800 samples were collected from four CANDU utilities. High-temperature electrochemical analysis was carried out to assess the corrosion susceptibility of the archived SG tubing under simulated CANDU crevice chemistry conditions at both 150 o C and 300 o C. The potentiodynamic polarization results obtained from the archived CANDU SG tubes were compared to the data from ex-service tubes removed from Darlington Nuclear Generating Station (DNGS) SGs and a reference nuclear grade Alloy 800 tubing. It was found that the removed Darlington SG tubes, with signs of in-service degradation, were more susceptible to pitting corrosion than the reference nuclear grade Alloy 800 tubing. At 150 o C, under the same neutral crevice chemistry conditions, the potentiodynamic polarization curve of the ex-service Darlington SG tubing has an active peak, which is a sign of propensity to crevice/underdeposit corrosion. This active peak was not observed in any of the potentiodynamic polarization curves of all archived Alloy 800 CANDU SG tubing indicating that archived CANDU SG tubes are less susceptible to the underdeposit corrosion under SG startup conditions. The corrosion behaviour of the archived Alloy 800 tubes from CANDU SG was similar to that of the reference nuclear grade Alloy 800 tubing. The results of this survey suggest that the Alloy 800 tubing materials used in the existing CANDU utilities (other than ex-service DNGS tubing) will continue to have reliable performance under specified CANDU operating conditions. Ex-service SG tubing from DNGS, although showing lower than average corrosion resistance, still has a wide acceptable operating margin and the in

  5. Wear behavior of 2-1/4 Cr-1Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    International Nuclear Information System (INIS)

    Wilson, W.L.

    1983-05-01

    A series of prototypic steam generator 2-1/4 Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, ''over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-1/4 Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 μm (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 μm (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 μm maximum tube wear allowance would not be exceeded in service. Softer, ''over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-1/4 Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-1/4 Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs

  6. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  7. Characteristics of Pilger Die Materials for Nuclear Zirconium Alloy Tubes

    International Nuclear Information System (INIS)

    Park, Ki Bum; Kim, In Kyu; Park, Min Young; Kahng, Jong Yeol; Kim, Sun Doo

    2011-01-01

    KEPCO Nuclear Fuel Company's (KEPCO NF) tube manufacturing facility, Techno Special Alloy (TSA) Plant, has started cold pilgering operation since 2008. It is obvious that the cold pilgering process is one of the key processes controlling the quality and the characteristics of the tubes manufactured, i.e. nuclear zirconium alloy tube in KEPCO NF. Cold pilgering is a rolling process for forming metal tubes in which diameter and wall thickness are reduced in a number of forming steps, using ring dies at outside of the tube and a curved mandrel at inside to reduce tube cross sections by up to 90 percent. The OD size of tube is reduced by a pair of dies, and ID size and wall thickness is controlled simultaneously by mandrel. During the cold pilgering process, both tools are the critical components for providing qualified tube. Development of pilger die and mandrel has been a significant importance in the zirconium tube manufacturing and a major goal of KEPCO NF. The objective of this study is to evaluate the life time of pilger die during pilgering. Therefore, a comparison of the heat treatment and mechanical properties of between AISI 52100 and AISI H13 materials was made in this study

  8. Possible first occurrence of external corrosion on alloy 600TT tubes in France

    International Nuclear Information System (INIS)

    Boccanfuso, M.; Thebault, Y.; Massini, B.; Bigne, L.

    2015-01-01

    During the last decade, in different countries, several occurrences of external corrosion have been identified on steam generator (SG) tube bundles equipped with thermally treated 600 alloy. In France, this feedback leads EDF to enhance the SG inspection program. Nevertheless, until now, no damage of this type was reported. Recently, during in-service inspection at the Cattenom plant on a SG equipped with alloy 600TT tubes, Eddy current tests have highlighted a signal that could be related to external corrosion. The tube was removed and sent to the EDF hot laboratory for destructive examinations. Various exams were performed at different scales to characterize the causes of this NDT signal, the material properties and the residual stresses. The assessments carried out on the tube conclude that the source of the damage is external intergranular stress corrosion cracking, also called ODSCC (Outside Diameter Stress Corrosion Cracking) making it the first occurrence on the tube bundles made of alloy 600TT in the French fleet. This first case of 600 TT ODSCC in France is an unexpected and particular one, because of its altitude in the full mechanical rolling area. This is reinforced by the low number of occurrences noted to date (only one after nearly 30 years of operation of alloy 600TT tube bundles). International (Biblis) OPEX had identified recent IGSCC with cracks initiated and propagated in the tubesheet. For this case, the scenario considered requires highly restrictive conditions (tube in the sludge zone and on the periphery of the tube bundle, including the tube lane) and may explain the singular nature of the Cattenom tube

  9. Stress relief treatment of Alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Rooyen, D. van; Cragnolino, C.

    1994-01-01

    The intergranular stress corrosion cracking (IGSCC) of Alloy 600 tubing in the primary side of operating steam generators is the subject of this investigation. The objective of the program was to examine the feasibility of heat treatment to alleviate the IGSCC problem. In addition to this, tests were also performed to examine the IGSCC susceptibility of nuclear grade Alloy 600 tubing obtained from various sources. Examination of temperature-time combinations that may hold potential for improved IGSCC resistance of the transition regions of tubes expanded into tube sheet holes was done. The combinations fall in two categories. One is of short duration and relatively high temperature, where induction is the best method of heating because the treatment only lasts from some tens of seconds to a few minutes. The other is carried out in a lower temperature range and lasts for several hours. This latter combination of temperatures and times is considered for the so-called global heat treatment of entire tube sheet. To assess the effect of these treatments, reverse U-bend testing in high purity deaerated water containing an overpressure of hydrogen was employed and several heats of Alloy 600 were compared in tests at 365 degrees C, which is well above actual operating temperatures of steam generators, but provides an accelerated test procedure. Results of furnace heating in the range of 550-610 degrees C indicated improvement in IGSCC resistance, with best performance after a heat treatment at 610 degrees C for nine hours. In addition to stress relief, carbide precipitation can also occur, and their relative contributions to the improvement is discussed

  10. Microstructure and textural characterization of hot extruded Zr-2.5Nb alloy PHWR pressure tube fabricated by various ingot processing route

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Neogy, S.; Mani Krishna, K.V.; Srivastava, D.; Dey, G.K.

    2011-01-01

    Zr-2.5 Nb alloys finds its applications as a pressure tube component in pressure tube type thermal reactors such as PHWRs and RBMK due to properties attributed such as low neutron absorption cross section, high temperature strength and corrosion resistance etc. Manufacturing of this life time components involves series of thermo-mechanical processes of hot working and cold working with intermediate annealing. The life time of Pressure tube are limited due to their diametral creep properties which is governed by metallurgical characteristics such as texture, microstructure dislocation density etc. The primary breakdown of cast structure in Vacuum Arc Melted ingot can be effected by either hot extrusion or forging in single or multiple stages before final hot extrusion step into the blank for manufacturing of seamless pressure tube. Elevated temperature deformation carried out in hot working above the recrystallization temperature would enable impositions of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on process parameters such as extrusion ratio, temperature and strain rate. Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. The major texture in α+β Zr-2.5 Nb alloy is established during final extrusion to blank which does not change significantly during subsequent cold pilgering. However, microstructure is modified significantly in subsequent cold working which can be effected by cold pilgering or cold drawing in single or multiple steps. Present paper brings out the various ingot processing routes using forging and or extrusion followed for fabrication of pressure tubes. The development of texture and microstructures has been discussed at the blank stage from these processing routes and also with respect to varying extrusion variable such as extrusion ratio

  11. The temperature dependence of the tensile properties of thermally treated Alloy 690 tubing

    International Nuclear Information System (INIS)

    Harrod, D.L.; Gold, R.E.; Larsson, B.; Bjoerkman, G.

    1992-01-01

    Tensile tests were run in air on full tube cross-sections of 22.23 mm OD by 1.27 mm wall thickness Alloy 690 steam generator production tubes from ten (10) heats of material at eight (8) temperatures between room temperature and 760 degrees C. The tubing was manufactured to specification requirements consistent with the EPRI guidelines for Alloy 690 tubing. The room temperature stress-strain curves are described quite well by the Voce equation. Ductile fracture by dimpled rupture was observed at all test temperatures. The elevated temperature tensile properties are compared with design data given in the ASME Code

  12. The development of octagon Zr-4 alloy tube for heating reactors

    International Nuclear Information System (INIS)

    Yang Fanglin; Yang Yingli; Wang Guangshen

    1989-10-01

    The asymmetrical octagon Zr-4 alloy tubes which are used for fuel assembly in the heating reactor have been developed. The thickness of tube wall is 1.5 mm and the length is 1725 mm. The long side of the octagon is 138.7 0.3 +0.2 mm, the short side is 93.1 ± 0.1 mm. To manufacture these tubes a stretch draw forming processing method is adopted. The process is divided into two phases. In the first phase, a short draw mould is used to stretch the Zr-4 alloy tube. In the second phase, a long draw mould, its length is equal to the end-produt length, is used to complete the final processing. The size accuracy and repeatability of this method are excellent and can fully meet the design requirements

  13. Degradation of Alloy 800 steam generator tubing and its long-term behaviour predictions for plant life management

    International Nuclear Information System (INIS)

    Lu, Y.C.; Tapping, R.L.; Pandey, M.D.

    2009-01-01

    Alloy 800 tubing has a good service record in steam generators (SGs) in both German pressurized water reactors and CANDU 6 reactors, however, a recent comprehensive examination of several ex-service SG tubes removed from Darlington Nuclear Generating Station (DNGS) found that these SG tubes (which had experienced shallow pitting in service) were more susceptible to pitting corrosion in laboratory tests than a reference nuclear grade Alloy 800 tubing under SG crevice chemistry conditions. This was an unexpected finding and has raised questions about possible effects of in-service 'aging' on SG tubing. In addition, there has also been recent evidence that a few Alloy 800 tubes have experienced stress corrosion cracking (SCC) in some German pressurized water reactors (PWRs), possibly after many years of degradation-free service, although the inspection history of these tubes is not available to confirm that the reported degradation initiated recently. These findings suggest that Alloy 800 tubing may have some aging degradation susceptibility after many years of service. To provide support for a proactive SG aging management, a survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs under plausible crevice chemistry conditions was conducted to assess the potential material degradation issues in CANDU SGs. Experimental work was also performed to investigate the root cause leading to Alloy 800 SG tubing degradation. The results from this study suggested that a combination of negative factors; aggressive chemistry resulting from impurity ingress into the secondary side of the SGs, elevated electrochemical corrosion potential (ECP) during SG transients and surface strain/plastic deformation, might have led to the degradation of the ex-service SG tubing. The studies have shown that each of these conditions in isolation does not cause degradation of Alloy 800 SG tubing; a synergistic combination of factors is required. The OPEX and experimental

  14. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  15. Alloy-steel bolting materials for special applications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification covers regular and special-quality alloy steel bolting materials which may be used for nuclear and other special applications. Bolting materials as used in the specification cover rolled or forged bars, rotary pierced or extruded seamless tubes, bored bars, or forged hollows from forged or rolled bar segments to be machined into bolts, studs, washers, and nuts. Several grades of steel are covered and supplementary requirements of an optional nature are provided for use when special quality is desired

  16. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    International Nuclear Information System (INIS)

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Anderson, Iver; Rieken, Joel; Lewandowski, John; Hoelzer, Dave; Odette, George R.

    2016-01-01

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing for further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of ?- and ?-fibers on and together with a shear texture of ?-fiber on and . On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of ?- and ?-fiber on together with weak ?-fiber on . Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large number of high-angle grain boundaries (HAB), 44% of shear deformation results

  17. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Iver [Ames Lab., Ames, IA (United States); Rieken, Joel [Ames Lab., Ames, IA (United States); Lewandowski, John [Case Western Reserve Univ., Cleveland, OH (United States); Hoelzer, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, George R. [Univ. of California, Santa Barbara, CA (United States)

    2016-09-20

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing for further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of α- and γ-fibers on {001}<110> and {111}<110> together with a shear texture of ζ-fiber on {011}<211> and {011}<011>. On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of θ- and ε-fiber on {001}<110> together with weak γ-fiber on {111}<112>. Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large number of

  18. Analytical TEM of service-induced SCC in alloy 600TT steam generator tubing

    International Nuclear Information System (INIS)

    Wolfe, R.; Legras, L.; Boccanfuso; Martin, A.

    2015-01-01

    In 2008, Vogtle Electric Generating Plant Unit 1 performed tube pulls to confirm outside diameter stress corrosion cracking (ODSCC) in a steam generator with thermally treated Alloy 600TT tubing. Subsequent metallographic and other laboratory work attributed the cracking to the non-optimal microstructure of the tubing and the elevated residual stresses at the expansion transition. In the current work, analytical transmission electron microscopy was performed to gain a better understanding of this in-service cracking through a detailed characterization of the oxides and crack tips. These examinations, which are the first of this kind for U.S. Alloy 600TT tubing service cracks, detected lead (Pb) in the region of the top-of-tube sheet crevice, in oxides at the crack tips, and at degraded grain boundaries. In addition, sulfur was observed in oxides on the outside surface of the tube in the free span area. The presence of Pb at the crack tip and the lack of plasticity on the observed failure surfaces suggest that the environment played a predominant role in the cracking of this tubing with a non-optimal microstructure. The significance of the degradation will be discussed in the context of overall corrosion indications in Alloy 600TT steam generators in the United States. (authors)

  19. The resistance to PWSCC of explosively expanded Alloy 600 tube-to-tubesheet joints

    International Nuclear Information System (INIS)

    Gold, R.E.; Pement, F.W.; Tarabek, S.A.; Economy, G.

    1992-01-01

    Experimental evaluations were performed to determine the approximate magnitude of the residual stresses associated with explosively expanded steam generator tubing, and to assess the resistance to primary water stress corrosion cracking (PWSCC) of these expansions. Indexing of residual stresses was performed by means of magnesium chloride exposures of surrogate stainless steel mockups. The PWSCC resistance was evaluated by the testing of pressurized mockups of explosively expanded mill annealed Alloy 600 tubing in a highly accelerated Alloy 600 tubing in a highly accelerated steam test environment. Shot peening of the inside tube surfaces was demonstrated to be effective in modifying the residual stresses, providing additional resistance to PWSCC

  20. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  1. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  2. Specification of steam generator, condenser and regenerative heat exchanger materials for nuclear applications

    International Nuclear Information System (INIS)

    Jovasevic, J.V.; Stefanovic, V.M.; Spasic, Z.LJ.

    1977-01-01

    The basic standards specifications of materials for nuclear applications are selected. Seamless Ni-Cr-Fe alloy Tubes (Inconel-600) for steam generators, condensers and other heat exchangers can be employed instead of austenitic stainless steal or copper alloys tubes; supplementary requirements for these materials are given. Specifications of Ni-Cr-Fe alloy plate, sheet and strip for steam generator lower sub-assembly, U-bend seamless copper-alloy tubes for heat exchanger and condensers are also presented. At the end, steam generator channel head material is proposed in the specification for carbon-steel castings suitable for welding

  3. A Study on Corrosion and Fretting Wear Resistance of Alloy 690 Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Min, Su Jung; Kim, Myeong Su; Kim, Kyu Tae [Dongguk Univ., Gyeongju (Korea, Republic of)

    2013-10-15

    In this article, the effects of such failures have on the materials of alloy 690 are assessed. The corroded volume variation and mass decreased continuously with time. However, the oxide volume changes in an irregular pattern since the oxide formed on the alloy 690 metal may be detached due to the flake formation. The amount of the fretting wear increased with time. It can be seen that the wear rate increased with time and reduced at the later time. The test results show that the ductility decreased as corrosion increases. Alloy 690 is broadly used as a material of nuclear power plant's steam generator tubes because of its excellent mechanical strength, corrosion properties, wear properties and stability at a high temperature. However, the tubes for nuclear power plant's steam generators become a major threat for lifetime management and efficient operation of nuclear power plant due to various corrosion and fretting wear failures caused by flow-induced vibration (FIV) that occurs between tubes.

  4. Simulation studies on Tube End Expansion of AA2014 Alloy Tubes

    Science.gov (United States)

    Venugopal, L.; Prasad, N. E. C.; Geeta Krishna, P.; Praveen, L.

    2018-03-01

    End forming is defined as forming the end of tubular forms either by inverting the tube or by expanding it. It finds application in many fields such as in automotive and aerospace sectors as power transmission elements, fuel lines, exhaust pipes etc. The main aim of the present work is to expand the AA2014 alloy tubes with different die sets without any fracture. Deform 2D software was used for performing simulations on expanding the tubes with different die set (punch) values having differed forming angles (α = 15°, 30° and 45°) and expansion ratios (rp/r0 = 1.39, 1.53 and 1.67). Experiments were also conducted and the results correlate with the simulation results. The results shows that for the punch having less cone angle (α) values the linear displacement is more rather than higher cone angles. But in the case of higher cone angles the radial displacement is more than the linear displacement.

  5. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    International Nuclear Information System (INIS)

    Li Heng; Yang He; Zhan Mei

    2010-01-01

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  6. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold.

    Science.gov (United States)

    Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon

    2015-03-07

    We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).

  7. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  8. Effect of young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes

    Science.gov (United States)

    Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.

    2018-04-01

    Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.

  9. Forming of Zr-4 alloy guide tube with varied diameters

    International Nuclear Information System (INIS)

    Wei Songyan; Tian Zhenye

    1989-10-01

    A new built-up mould method to manufacture Zr-4 alloy guide tubes with varied diameters at the middle of tube is introduced. The guide tube is used in nuclear power plants for guiding the control rods. This method has many advantages such as simple in forming, low cost of manufacturing, no need of special devices and favour of batch processing. The test results show that the accuracy of size, mechanical properties, resistance to corrosion, grain size and hydrogenate orientation of the end-products can meet the technical needs for nuclear reactor operation

  10. Polycrystalline models for the calculation of residual stresses in zirconium alloys tubes

    International Nuclear Information System (INIS)

    Signorelli, J.W.; Turner, P.A.; Lebensohn, R.A.; Pochettino, A.A.

    1995-01-01

    Tubes made of different Zirconium alloys are used in various types of reactors. The final texture of tubes as well as the distribution of residual stresses depend on the mechanical treatments done during their manufacturing process. The knowledge and prediction of both the final texture and the distribution of residual stresses in a tube for nuclear applications are of outstanding importance in relation with in-reactor performance of the tube, especially in what concerns to its irradiation creep and growth behaviour. The viscoplastic and the elastoplastic self consistent polycrystal models are used to investigate the influence of different mechanical treatments, performed during rolling processes on the final distribution of intergranular residual stresses of zirconium alloys tubes. The residual strains predictions with both formulations show a non linear dependence with the orientation, but they are qualitatively different. This discrepancy could be explain in terms of the relative plastic activity between the -type and -type deformation modes predicted with the viscoplastic and elastoplastic models. (author). 10 refs., 4 figs., 1 tab

  11. Rejuvenation of service exposed ammonia cracker tubes of cast Alloy 625 and their re-use

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.B., E-mail: jbsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Verma, A. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Jaiswal, D.M.; Kumar, N.; Patel, R.D. [Heavy Water Board, Department of Atomic Energy, Anushakti Nagar, Mumbai 400094 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-09-17

    This study is an extension of a previous study undertaken to rejuvenate ammonia cracker tubes of Alloy 625 alloy that have been service exposed in heavy water plants for their full service life of 100,000 h. The service exposure caused significant microstructural modifications and deterioration in mechanical properties, and a solution annealing treatment of 2 h at 1160 °C rejuvenated all properties similar to those of the virgin alloy. The present study reports the evolution of microstructure and mechanical properties of a full service exposed centrifugally cast Alloy 625 tube that was put into service again for 55,000 h after receiving a rejuvenation treatment. During the second service, microstructural modifications, increase in strength and loss of ductility were on the lines of the work reported earlier. However, it was encouraging to observe that degraded properties after the second service life remained within the bounds of those of virgin and full service exposed tubes. The good performance of the rejuvenated tube during the second service life has been attributed to good control of operation parameters that limited the precipitation of grain boundary carbides during the first service life, which otherwise would have had a direct bearing on premature failure of tubes during their second service life.

  12. Externally fired gas turbine cycles with high temperature heat exchangers utilising Fe-based ODS alloy tubing

    International Nuclear Information System (INIS)

    Olsson, F.; Svensson, S.-A.; Duncan, R.

    2001-01-01

    This work is part of the BRITE / EuRAM Project 'Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant'. The main goal of this project is to heat exchanger tubes working at 1100 o C and above. The paper deals with design implications of a biomass power plant, using an indirectly fired gas turbine with a high temperature heat exchanger containing Fe-based ODS alloy tubing. In the current heat exchanger design, ODS alloy tubing is used in a radiant section, using a bayonet type tube arrangement. This enables the use of straight sections of ODS tubing and reduces the amount of material required. In order to assess the potential of the power plant system, thermodynamic calculations have been conducted. Both co-generation and condensing applications are studied and results so far indicate that the electrical efficiency is high, compared to values reached by conventional steam cycle power plants of the same size (approx. 5 MW e ). (author)

  13. Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes.

    Science.gov (United States)

    Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng

    2018-01-02

    In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed.

  14. Thermal creep behavior of N36 zirconium alloy cladding tube

    International Nuclear Information System (INIS)

    Wang, P.; Zhao, W.; Dai, X.

    2015-01-01

    N36 is an alloy containing Zr, Sn, Nb and Fe that is developed by China as a superior cladding material to meet the performance of PWR fuel assembly at the maximum fuel rod burn-up. The creep characteristics of N36 zirconium alloy cladding tube were investigated at temperature from 593 K to 723 K with stress ranging from 20 MPa to 160 MPa. Transitions in creep mechanisms were noted, showing the distinct three rate-controlled creep mechanisms for the alloy at test conditions. In the region of low stresses with stress exponent n ∼ 1 and activation energy Q ∼ (104±4) kJ.mol -1 , Coble creep, based on diffusion of materials through grain boundaries, is the dominant rate-controlling mechanism, which contributes to the creep deformation. The formation of slip bands acts as an accommodation mechanism. In the region of middle stress with stress exponent n ∼ 3 and activation energy Q ∼ (195±7) kJ.mol -1 , micro-creep, caused by viscous gliding of dislocations due to the interaction of O atoms with dislocations, controls the deformation. In the high stress region with stress exponent n ∼ 5-6 and activation energy Q ∼ (210±10) kJ.mol -1 , two mechanisms of the climb of edge dislocations (EDC) and the motion of jogged screw dislocation (MJS) contribute to rate controlling process. In test conditions N36 alloy cladding tube behaves a type of creep similar to that noted in class-I (A) alloys

  15. PLUSS-A weldless leaktight sleeve for alloy 600/690 steam generator tubes

    International Nuclear Information System (INIS)

    Potz, F.; Bohmann, W.

    1998-01-01

    The ABB PLUSS sleeving represents a new SG tube repair technique qualified and approved to replace in the future most of the plugging as well as welded sleeving. Basically the advantages of an innovative combination of both alloys 600/690 and 800 are taken into consideration. The upper sleeve/SG tube-joint is hydraulically expanded stressing the SG tube only within the elastic range. The lower joint is hard rolled. The installation processes are simple and reproducible, fast, computerized and individually recorded. The operating temperature range of the sleeved SG-tube is effectively reduced so that any further corrosion is impeded. Both, sleeve and SG tube are fully inspectable by ECT. (author)

  16. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  17. Automated Hydroforming of Seamless Superconducting RF Cavity

    International Nuclear Information System (INIS)

    Nagata, Tomohiko; Shinozawa, Seiichi; Abe, Noriyuki; Nagakubo, Junki; Murakami, Hirohiko; Tajima, Tsuyoshi; Inoue, Hitoshi; Yamanaka, Masashi; Ueno, Kenji

    2012-01-01

    We are studying the possibility of automated hydroforming process for seamless superconducting RF cavities. Preliminary hydroforming tests of three-cell cavities from seamless tubes made of C1020 copper have been performed. The key point of an automated forming is to monitor and strictly control some parameters such as operation time, internal pressure and material displacements. Especially, it is necessary for our studies to be able to control axial and radial deformation independently. We plan to perform the forming in two stages to increase the reliability of successful forming. In the first stage hydroforming by using intermediate constraint dies, three-cell cavities were successfully formed in less than 1 minute. In parallel, we did elongation tests on cavity-quality niobium and confirmed that it is possible to achieve an elongation of >64% in 2 stages that is required for our forming of 1.3 GHz cavities.

  18. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Institute of Scientific and Technical Information of China (English)

    Zhen-Bing Cai; Jin-Fang Peng; Hao Qian; Li-Chen Tang; Min-Hao Zhu

    2017-01-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration,and it will take potential hazards to the service of the equipment.However,the present study focuses on the tangential fretting wear of alloy 690 tubes.Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent.Therefore,impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated.Deionized water is used to simulate the flow environment of the equipment,and the dry environment is used for comparison.Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear.Characterization results indicate that cracks occur at high impact load in both water and dry equipment;however,the water as a medium can significantly delay the cracking time.The crack propagation behavior shows a jagged shape in the water,but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process.The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation.The effect of medium(water) on fretting wear is revealed,which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  19. Observations and insights into Pb-assisted stress corrosion cracking of alloy 600 steam generator tubes

    International Nuclear Information System (INIS)

    Thomas, L.; Bruemmer, Stephen M.

    2005-01-01

    Pb-assisted stress-corrosion cracking (PbSCC) of Alloy 600 steam-generator tubing in high-temperature-water service and laboratory tests were studied by analytical transmission electron microscopy of cross-sectioned samples. Examinations of pulled tubes from many pressurized water reactors revealed lead in cracks from 11 of 17 samples. Comparisons of the degraded intergranular structures with ones produced in simple laboratory tests with PbO in near-neutral AVT water showed that the PbSCC characteristics in service tubing could be reproduced without complex chemistries and heat-flow conditions that can occur during plant operation. Observations of intergranular and transgranular cracks promoted by Pb in the test samples also provided new insights into the mechanisms of PbSCC in mill-annealed and thermally treated Alloy 600

  20. SCC analysis of Alloy 600 tubes from a retired steam generator

    Science.gov (United States)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the

  1. Effects of Oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Nitheanandan, T.; Bullock, C.D.; Slater, L.F.; McRae, G.A.

    2003-05-01

    Glass-bead peening the outside surfaces of zirconium alloy tubes has been shown to increase the Critical Heat Flux (CHF) in pool boiling of water. The CHF is found to correlate with the fractal roughness of the metal tube surfaces. In this study on the effect of oxidation on glass-peened surfaces, test measurements for CHF, surface wettability and roughness have been evaluated using various glass-peened and oxidized zirconium alloy tubes. The results show that oxidation changes the solid-liquid contact angle (i.e., decreases wettability of the metal-oxide surface), but does not change the fractal surface roughness, appreciably. Thus, oxidation of the glass-peened surfaces of zirconium alloy tubes is not expected to degrade the CHF enhancement obtained by glass-bead peening. (author)

  2. Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for PHWR700

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, S.; Bind, A.K.; Khandelwal, H.K.; Singh, R.N., E-mail: rnsingh@barc.gov.in; Chakravartty, J.K.

    2015-11-15

    In order to attain improved in-reactor performance few prototypes pressure tubes of Zr-2.5Nb alloy were manufactured by employing forging to break the cast structure and to obtain more homogeneous microstructure. Both double forging and single forging were employed. The forged material was further processed by employing hot extrusion, cold pilgering and autoclaving. A detailed characterization in terms of mechanical properties and microstructure of the prototype tubes were carried for qualifying it for intended use as pressure tubes in PHWR700 reactors. In this work, Delayed Hydride Cracking (DHC) behavior of the forged Zr-2.5Nb pressure tube material characterized in terms of DHC velocity and threshold stress intensity factor associated with DHC (K{sub IH}) was compared with that of conventionally manufactured material in the temperature range of 200–283 °C. Activation energy associated with the DHC in this alloy was found to be ∼60 kJ/mol for the forged materials.

  3. Integrity evaluation of Alloy 600 RV head penetration tubes in Korean PWR plants

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Park, Sung Ho; Hong, Sung Yull; Choi, Kwang Hee

    1995-01-01

    The structural integrity assessment of Alloy 600 RV head penetration tubes has been an important issue for the economical and reliable operation of power plants. In this paper, an overview of the integrity evaluation program for the RV head penetration tubes in Korean nuclear power plants is presented. Since the crack growth mechanism of the penetration tube is due to the primary water stress corrosion cracking (PWSCC) which is mainly related to the stress at the tube, the present paper consists of three primary activities: the stress evaluation, the flaw evaluation, and data generation through material and mechanical tests. (author). 5 refs, 2 figs, 1 tab

  4. On the characteristics and application of thin wall welded titanium tubes for heat transfer

    International Nuclear Information System (INIS)

    Nishimura, Takashi; Miyamoto, Yoshiyuki

    1985-01-01

    Because of the excellent corrosion resistance, thin wall welded titanium tubes have become to be used in large number as the heat transfer tubes of condensers and seawater desalting plants using seawater in place of conventional copper alloy tubes. Especially in nuclear power plants, the all titanium condensers using thin wall welded titanium tubes and titanium tube plates were adopted in the almost all plants under construction or expected to be constructed. In this report, the various characteristics of thin wall welded titanium tubes required for using them as heat transfer tubes, such as corrosion resistance, heat transfer characteristics, fatigue strength and expanding characteristics, are outlined, and the state of use is described. At first, relatively thick seamless titanium tubes were used for chemical industry, but thereafter, due to the advance of the mass production techniques, the welded titanium tubes of less than 0.7 mm thickness and high quality have become to be supplied at low cost. In 1969, titanium tubes were used for the first time in Japan for the air cooler in the condenser of Akita Power Station, Tohoku Electric Power Co., Inc. The features of titanium are small specific gravity, small linear expansion coefficient and small Young's modulus. (Kako, I.)

  5. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  6. High-temperature strength of Nb-1%Zr alloy for irradiation-capsules inner-shell

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Nakata, Hirokatsu; Tanaka, Mitsuo; Fukaya, Kiyoshi.

    1978-04-01

    Coated fuel particles in capsules will be irradiated at about 1600 0 C in JMTR. Nb-1%Zr alloy was chosen for inner shell material of the capsules because of its sufficient strength at 1000 0 C and low induced radioactivity. Nb-1%Zr ingot produced by electron beam melting was formed into seamless tubes by hollowing and swaging, followed by annealing. Creep test in helium flow and tensile test in vacuum were made to examine mechanical strength of the Nb-1%Zr tubes at 1000 0 C. Following are the results; 1) 0.2% yield stress at 1000 0 C is about 6 kg/mm 2 . 2) 3000 hr creep rupture stress at 1000 0 C is about 6 kg/mm 2 . (auth.)

  7. Tensile properties of Zr-2.5 Nb pressure tube alloy between 25 and 800 degC

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Sinha, T.K.; Banerjee, S.

    2000-10-01

    Tensile properties of zirconium-2.5 wt. % niobium pressure tube material were evaluated by uniaxial tension tests at temperatures between 25 and 800 degC and under strain-rates varying from 3.3 x 10 -5 to 3.3 x 10 -3 /s. Tests were carried out on specimens fabricated from the sections of finished (autoclaved) tubes as well as on those machined from the sections of cold worked (2 nd pilgered) tubes. Moreover, specimens fabricated from finished tubes belonging to twenty different heats were tested at 300 degC to study the heat to heat variation in tensile properties of this alloy. In order to study the effect of the crystallographic texture on the tensile properties, specimens oriented in longitudinal as well as, in transverse directions of the tubes were also tested. Results showed that both yield and ultimate tensile strengths of this alloy decreased monotonically with increasing test temperatures, with a rapid fall in strengths above a temperature of 350 degC (623 K). The tensile ductility did not change appreciably up to 400 degC (673K) but increased rapidly above this temperature. The observed results on the temperature dependence of the strength and ductility indicated the possible occurrence of dynamic strain-ageing in this alloy in the temperature range of 200-300 degC (473 to 573 K). The transverse specimens showed higher strengths and lower ductility as compared to those of the longitudinal specimens up to a temperature of 350 degC (623 K). Above 350 degC, the difference in the strengths and the ductility of the two types of the specimens, became negligibly small indicating that the texture did not appreciably influence the tensile properties of this alloy at temperatures exceeding 350 degC. The alloy developed extensive superplasticity (ductility exceeding 100 %), when tested in the temperature range of 650-800 degC. Maximum ductility values of 650 % for longitudinal and 900 % for the transverse orientation with strain-rate sensitivity (m) exceeding 0

  8. Relaxation and corrosion resistance of alloy 800 used for steam generator tubes of ship borne boilers

    International Nuclear Information System (INIS)

    Corrieu, J.M.; Cortial, F.; Maillard, J.L.; Vernot-Loier, C.; Lebeau, M.

    1994-01-01

    The INCO ''INCOLOY 800'' trademark groups the Fe-Cr-Ni alloys containing 30 to 35% nickel, 19 to 23% chromium, 0,15 to 0,60% aluminium, 0,15 to 0,60% titanium and less than 0,10% carbon contents, used as construction materials for condenser and heat exchanger tubes. In parallel with water chemistry control and studies aimed at reducing the residual stresses resulting from tube expansion, studies have been conducted to a better understanding of this alloy, its metallurgy and its corrosion behaviour under accurately defined fabrication and heat treatment conditions. The purpose of this paper is to present the results of a behaviour study of INDRET alloy 800 concerning isothermal relaxation and effects of the said relaxation heat treatments on alloy microstructure studied with a transmission electron-chemical method to determine the sensitiveness to intergranular corrosion, and by electrochemistry in pressurized hot water. (authors). 4 figs., 5 tabs., 7 refs

  9. Examination of steam generator alloy 800 NG tube from the Almaraz unit 2 NPP

    International Nuclear Information System (INIS)

    Diego, G. de; Gomez Briceno, D.; Maffiotte, C.; Baladia, M.; Arias, C.J.

    2015-01-01

    The steam generators of Almaraz Unit 2 were replaced in 1997 by the model 61W/D3 (Siemens) with Alloy 800NG steam generator tubes. Denting indications were firstly detected in 2006 in the SG-3. Crack indications were identified in 2009. At the end of 2011, three tubes were recovered from this steam generator to carry out destructive examination in order to identify the root cause of the tubes degradation. Analysis of deposits point out the existence of multiples elements in the removed OD (Outer Diameter) deposits as well as in the deposits at the free tube under sludge and at the transition zone. Deposits are more abundant at the transition zone than at free tube. About 10% Na concentration has been detected, whereas S and Cl appear in small concentrations. Si appears regularly and Cr, Ni concentrations in the deposits are similar. Multiple intergranular cracks have been detected at 3 mm above the last contact point between the tube and the TS (tube support), in a band of around 5 mm, practically in the whole perimeter of the tube. Fracture surface of crack-B was partially covered by a Si rich layer, whereas fracture surface of crack-A seems to be cleaner. However, no significant differences in composition, except higher amount of S in crack-B, were found in the deposits of both cracks. EDX mapping and Auger profiles point out Ni enrichment with slight Cr enrichment or depletion and Fe depletion. The comparison of Auger profiles with available results for Alloy 800 tested in caustic and acid sulfate environments seems to indicate that the environment inside the cracks detected in the tube R67C48 is neutral or moderately caustic

  10. An evaluation of the statistical variability in thermal expansion properties of steam generator tubesheet (SA-508) and tubing (Alloy-600TT)

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Staples, J.F.; Kandra, J.T.

    2009-01-01

    Inspections of steam generator tubing are performed in U.S. PWRs as part of the Steam Generator Management Program. Westinghouse has recently completed a technical justification demonstrating that in steam generators with thermally treated Ni-Cr Alloy (Alloy 600TT) tubes that are hydraulically expanded into low alloy steel (SA-508) tubesheets, flaws in the region of the tubes below a certain distance from the top of the tubesheet, denoted H * , will not result in reactor coolant pressure boundary breach nor unacceptable primary-to-secondary leakage. This is because, even if a flaw in this region were to result in complete tube sever, if the length of undegraded tube in the tubesheet exceeds H*, neither operating nor accident loadings create sufficient pull-out forces to overcome the frictional forces between the tube and tubesheet. One key component of this technical justification is the differential thermal expansion between the tube and tubesheet, since a significant portion of the pullout strength of the hydraulically expanded tube-to-tubesheet joint is due to mechanical interference resulting from the larger expansion of the tubing relative to the tubesheet at a given temperature. To address this phenomenon, a detailed statistical evaluation of coefficient of thermal expansion (CTE) data for the tubesheet material (SA-508) and the tube material (thermally treated Alloy-600) was performed. Data used in the evaluation included existing test results obtained from a number of sources as well as extensive new laboratory data developed specifically for this purpose. The evaluation resulted in recommended statistical distributions of this property for the two materials including their means and probabilistic variability. In addition, it was determined that the CTE values reported in the ASME Code (Section II) represent reasonably conservative mean values for both the tubesheet and tubing material. (author)

  11. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  12. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  13. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  14. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  15. Investigation of impingement attack mechanism of copper alloy condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Nakajima, Nobuo; Arioka, Koji; Totsuka, Nobuo; Nakagawa, Tomokazu [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to investigate generation and growth mechanisms of impingement attacks of sea water against copper alloy condenser tubes used in condensers of nuclear power plants, we took out condenser tubes from actual condensers, cut them into several pieces and carried out several material tests mainly for impinged spots. In addition water flow inside of a pit was analyzed. From the results of the investigation, it was found that all of impingement attacks were found in the marks left by sessile organisms and none were found in downstream of the marks as frequently proposed so far. At the pits generated inside the marks, iron coating was striped and zinc content was deficient in some cases. Combining these data and the result of flow analysis, we considered the following mechanism of the impingement attacks: sessile organisms clinging to the surface of the condenser tube and growth, occlusion of the tube, extinction and decomposition of sessile organisms, pollution corrosion under the organisms and cavity formation, occlusion removal by the cleaning, generation of impingement attacks by flow collision inside the cavity, growth of the impingement attacks. (author)

  16. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  17. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2008-01-01

    Uniaxial thermal creep rupture properties of 20% cold worked alloy D9 stainless steel (alloy D9 SS) fuel clad tubes for fast breeder reactors have been evaluated at 973 K in the stress range 125-250 MPa. The rupture lives were in the range 90-8100 h. The results are compared with the properties of 20% cold worked type 316 stainless steel (316 SS) clad tubes. Alloy D9 SS were found to have higher creep rupture strengths, lower creep rates and lower rupture ductility than 316 SS. The deformation and damage processes were related through Monkman Grant relationship and modified Monkman Grant relationship. The creep damage tolerance parameter indicates that creep fracture takes place by intergranular cavitation. Precipitation of titanium carbides in the matrix and chromium carbides on the grain boundaries, dislocation substructure and twins were observed in transmission electron microscopic investigations of alloy D9 SS. The improvement in strength is attributed to the precipitation of fine titanium carbides in the matrix which prevents the recovery and recrystallisation of the cold worked microstructure

  18. Intergranular corrosion in unserviced austenitic stainless steel pipes made of alloy 904L; Kornzerfall in nicht betriebsbeanspruchten rostfreien austenitischen Rohren aus Alloy 904L

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Cagliyan, Erhan; Fischer, Boromir; Giller, Madeleine; Riesenbeck, Susanne [Siemens AG, Energy Sector, Berlin (Germany). Gasturbinenwerk Berlin

    2017-09-01

    Seamless tubes of the highly corrosion resistant austenitic steel 1.4539, X1NiCrMoCu25-20-5 (Alloy 904L) were observed to exhibit signs of inter-crystalline damage to a depth of several layers of grains and in particular on their internal surface. The material had been stored and had not been put into service. A number of hypotheses had been discussed to explain the predominant cause of the damage. Using optical light and scanning electron microscopy investigation techniques, clear evidence was obtained indicating it to be inter-crystalline corrosion due to the sensitisation of the grain boundaries. The most probable cause of this was determined to be the presence of residual deposits from the rolling process, which due to poor cleaning, had not been completely removed prior to the final solution annealing treatment. This explaining why predominantly the internal surface of the tubes was affected.

  19. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    Science.gov (United States)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  20. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  1. Time-dependent leak behavior of flawed Alloy 600 tube specimens at constant pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Majumdar, Saurin [Argonne National Laboratory, Argonne, IL 60439 (United States); Harris, Charles [United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-10-15

    Leak rate testing has been performed using Alloy 600 tube specimens with throughwall flaws. Some specimens have shown time-dependent leak behavior at constant pressure conditions. Fractographic characterization was performed to identify the time-dependent crack growth mechanism. The fracture surface of the specimens showed the typical features of ductile fracture, as well as the distinct crystallographic facets, typical of fatigue crack growth at low {Delta}K level. Structural vibration appears to have been caused by the oscillation of pressure, induced by a high-pressure pump used in a test facility, and by the water jet/tube structure interaction. Analyses of the leak behaviors and crack growth indicated that both the high-pressure pump and the water jet could significantly contribute to fatigue crack growth. To determine whether the fatigue crack growth during the leak testing can occur solely by the water jet effect, leak rate tests at constant pressure without the high-pressure pump need to be performed. - Highlights: > Leak rate of flawed Alloy 600 tubing increased at constant pressure condition. > Fractography revealed two cases: ductile tearing and crystallographic facets. > Crystallographic facets are typical features of fatigue crack growth at low {Delta}K. > Fatigue source could be water jet-induced vibration and/or high-pressure pump pulsation.

  2. Proving the viability of manufacturing of multi-layer steel/vanadium alloy/steel composite tubes by numerical simulations and experiment

    Science.gov (United States)

    Nechaykina, T.; Nikulin, S.; Rozhnov, A.; Molotnikov, A.; Zavodchikov, S.; Estrin, Y.

    2018-05-01

    Vanadium alloys are promising structural materials for fuel cladding tubes for fast-neutron reactors. However, high solubility of oxygen and nitrogen in vanadium alloys at operating temperatures of 700 °C limits their application. In this work, we present a novel composite structure consisting of vanadium alloy V-4Ti-4Cr (provides high long-term strength of the material) and stainless steel Fe-0.2C-13Cr (as a corrosion resistant protective layer). It is produced by co-extrusion of these materials forming a three-layered tube. Finite element simulations were utilised to explore the influence of the various co-extrusion parameters on manufacturability of multi-layered tubes. Experimental verification of the numerical modelling was performed using co-extrusion with the process parameters suggested by the numerical simulations. Scanning electron microscopy and microhardness measurements revealed a defect-free diffusion layer at the interfaces between both materials indicating a good quality bonding for these co-extrusion conditions.

  3. Crack growth of throughwall flaw in Alloy 600 tube during leak testing

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Majumdar, Saurin

    2015-01-01

    Graphical abstract: - Highlights: • A series of leak testing was conducted at a constant pressure and room temperature. • The time-dependent increase in the leak rate was observed. • The fractography revealed slip offsets and crystallographic facets. • Time-dependent plasticity at the crack tip caused the slip offsets. • Fatigue by jet/structure interaction caused the crystallographic facets. - Abstract: We examined the issue of whether crack growth in a full thickness material can occur in a leaking crack. A series of leak tests was conducted at a room temperature and constant pressure (17.3 MPa) with Alloy 600 tube specimens containing a tight rectangular throughwall axial fatigue crack. To exclude a potential pulsation effect by a high pressure pump, the test water was pressurized by using high pressure nitrogen gas. Fractography showed that crack growth in the full thickness material can occur in the leaking crack by two mechanisms: time-dependent plasticity at the crack tip and fatigue induced by jet/structure interaction. The threshold leak rate at which the jet/structure interaction was triggered was between 1.3 and 3.3 L/min for the specific heat of the Alloy 600 tube tested

  4. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  5. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  6. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  7. The elastic properties of zirconium alloy fuel cladding and pressure tubing materials

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Northwood, D.O.

    1979-01-01

    A knowledge of the elastic properties of zirconium alloys is required in the mathematical modelling of cladding and pressure tubing performance. Until recently, little of this type of data was available, particularly at elevated temperatures. The dynamic elastic moduli of zircaloy-2, zircaloy-4, the alloys Zr-1.0 wt%Nb, Zr-2.5 wt%Nb and Marz grade zirconium have therefore been determined over the temperature range 275 to 1000 K. Young's modulus and shear modulus for all the zirconium alloys decrease with temperature and are expressed by empirical relations fitted to the data. The elastic properties are texture dependent and a detailed study has been conducted on the effect of texture on the elastic properties of Zr-1.0 wt% Nb over the temperature range 275 to 775 K. The results are compared with polycrystalline elastic constants computed from single crystal elastic constants, and the effect of texture on the dynamic elastic moduli is discussed in detail. (Auth.)

  8. Influence of the S/N ratio on the corrosion release of Alloy 690 tubes in a primary coolant

    International Nuclear Information System (INIS)

    Shim, Hee-Sang; Choi, Myung Sik; Kim, Kyung Mo; Seo, Myung Ji; Hur, Do Haeng; Choi, Tack-Sang; Yoo, One

    2014-01-01

    Alloy 690TT is a promising steam generator (SG) tube material of a pressurized water reactor due to its excellent resistance to stress corrosion cracking (SCC) that has caused problems in Alloy 600 as an old SG tube material. The qualities of this material have been managed thoroughly from manufacturing step under various specification regulations as well as in in-service step. For examples, the surface roughness are prescribed as the values less than 1.6 μm for the tube outside and 0.5 μm for the inside, respectively. In addition, the surface state and defect must be qualified through the eddy current test (ECT) and the ultrasonic test (UT) according to the ASME Section III, NB2550. Then, the signal-to-noise (S/N) ratio, which is measured using ECT bobbin probe, is the important criteria to determine the material and it shall be 15 to 1 or higher at the standard frequency for any fixed 0.5 m length of any tube. The corrosion behaviours of the Alloy 690TT under high-temperature pressurized primary water have been studied widely in a point of the SCC but discussed narrowly in a point of the corrosion release. In particular, the effect of the S/N ratio on the corrosion release of this material surface has been rarely investigated. In this work, we evaluate the influence of the S/N ratio on the corrosion release of Alloy 690 SG tubes. The specimens with different S/N ratio were selected through ECT bobbin inspection and a corrosion release test was conducted using a simulated primary circulation loop. The material properties and oxidation behaviours were investigated by surface profiler, scanning electron microscopy, transmission electron microscopy, grazing incidence X-ray diffraction and etc. As a result, the corrosion rate was matched preferably with the MRPC characteristics showing macroscopic surface state rather than with the bobbin S/N ratio results. (author)

  9. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  10. Superelastic NiTi memory alloy micro-tube under tension - nucleation and propagation of martensite band

    International Nuclear Information System (INIS)

    Li, Z.Q.; Sun, Q.P.

    2000-01-01

    The superelastic behavior of polycrystalline NiTi shape memory alloy micro-tube under tension is studied experimentally. The nominal stress-strain curve of the micro-tube is recorded. By using a special surface coating it is found that the deformation of the tube is via the nucleation and propagation of stress-induced martensite band. The experiments show that the martensite nucleates in the form of a spiral lens-shaped narrow band that is inclined at 61 to the axis of loading when the stress reaches the peak of stress-strain curve. The width and the length of the band grew gradually with increase of loading and finally joined and merged into a single band. The subsequent deformation of the tube is realized by the propagation of this cylindrical martensite band. (orig.)

  11. Microstructure control of Zr-Nb-Sn alloy with Mo addition for HWR pressure tube application

    International Nuclear Information System (INIS)

    Hwang, S. K.; Kim, M. H.; Kim, J. H.; Kwon, S. I.; Kim, Y. S.

    1997-01-01

    As a basic research to develop the material for heavy water reactor pressure tube application the effect of Mo addition to Zr-Nb-Sn alloy was studied for the purpose of minimizing the amount of cold working while maintaining a high strength. To select the target alloy system we first designed various alloy compositions and chose Zr-Nb-Sn and Zr-Nb-Mo through multi-regression analysis of the relationship between the basic properties and the compositions. Plasma arc melting was used to produce the alloys and the microstructure change introduced by the processing steps including hot forging, beta-heat treatment, hot rolling, cold rolling and recrystallization heat treatment was investigated. Recrystallization of Zr-Nb-Sn was retarded by adding Mo and this resulted in a fine grain structure in Zr-Nb-Sn-Mo alloy. Beside the retarding effect recrystallization, Mo increased the amount of residual beta phase and showed an indication of precipitation hardening, which added up to the possibility of applying the alloy for the desired usage. (author)

  12. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  13. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    2013-04-01

    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  14. Demonstration of a shape memory alloy torque tube-based morphing radiator

    Science.gov (United States)

    Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.

    2018-03-01

    Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.

  15. Environmentally assisted fatigue evaluation model of alloy 690 steam generator tube in high temperature water

    International Nuclear Information System (INIS)

    Tan Jibo; Wu Xinqiang; Han Enhou; Wang Xiang; Liu Xiaoqiang; Xu Xuelian

    2015-01-01

    Nickel-based alloy 690 has been widely used as steam generator tube in light water reactor (LWR) nuclear power plants, which may suffer from corrosion fatigue during long-term service. Many researches and operating experience indicated that the effect of LWR environment could significantly reduce the fatigue life of structural materials. However. such an environmental degradation effect was not fully addressed in the current ASME code design fatigue curves. Therefore, the Regulatory Guide 1.207 issued by US NRC required a new NPP have to incorporate the environment effects into fatigue analyses. In the last few decades, researchers in USA and Japan systematically investigated the corrosion fatigue behavior of nuclear-grade structural materials in LWR environment. Then, ANL model and JSME model were proposed, which incorporated environmental effects, including temperature, dissolved oxygen (DO) and strain rate for the nickel-based alloys. Due to lack of experiment data on domestic materials, there is no related environmental fatigue design model in China. In the present work, based on the corrosion fatigue tests of a kind of boat-shaped specimen in borated and lithiated high temperature water, the corrosion fatigue behavior and environmentally assisted cracking mechanism of domestic Alloy 690 steam generator tube have been investigate. An IMR model for the nickel-based alloy was proposed. The environmental fatigue life correction factor (F en ) was established, which addressed the environmental factors, including temperature, strain rate and dissolved oxygen. The method to evaluate environmental fatigue damage of structural materials in NPPs was proposed. (authors)

  16. Failure evaluation on a high-strength alloy SA213-T91 super heater tube of a power generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.; Ahmad, A. [University of Tenaga Nas, Kajang (Malaysia). Dept. of Mechanical Engineering

    2010-07-01

    This article presents failure investigation on a high-strength alloy SA213-T91 superheater tube. This failure is the first occurrence involving the material in Kapar Power Station Malaysia. The investigation includes visual inspections, hardness measurements, and microscopic examinations. The failed super-heater tube shows a wide open rupture with thin and blunt edges. Hardness readings on all the as-received tubes are used for estimating the operating metal temperature of the super-heater tubes. Microstructures of the failed tube show numerous creep cavities consisting of individual pores and chain of pores which form micro-and macro-cracks. The findings confirmed that the super-heater tube is failed by short-term overheating. Higher temperatures of the flue gas due to the inconsistent feeding of pulverized fuels into the burner is identified to cause overheating of the failed tube.

  17. Welding qualification procedure for fuel rods tubes of Zr-Sn alloys by the TIG automatic process

    International Nuclear Information System (INIS)

    1984-11-01

    It is presented the requirements to be used in the Welding qualification procedure for tubes of Zr-Sn alloys, specified in the ASTM B353 regulatory guide, used in the fabrication of fuel rods PWR reactors by the automatic TIG process. (E.G.) [pt

  18. 75 FR 71146 - Seamless Refined Copper Pipe and Tube From China and Mexico

    Science.gov (United States)

    2010-11-22

    ... Copper Pipe and Tube From China and Mexico Determinations On the basis of the record \\1\\ developed in the... copper pipe and tube (``SRC pipe and tube'') from China and Mexico provided for in subheadings 7411.10.10... notification of preliminary determinations by Commerce that imports of SRC pipe and tube from China and Mexico...

  19. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  20. SCC of Alloy 600 in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Pascali, R.; Buzzanca, G.; Quaglia, G.M.; Ronchetti, C.

    1986-01-01

    The studies reported in this paper concern the evaluation of Alloy 600 and 690 behaviour in chemical agressive conditions simulating the concentration film on heat exchanging tube. The corrosion tests have been performed to evidence the influence of metallurgical conditions and different heats. Various devices for reproducing dead areas and steam blanketing have been designed and tested, such as, umbrellas, rings, thin deposits, etc. A system to reproduce the S.G. areas with thick deposits has been designed successively and set up in a previous series of tests, in boiling water at 56 kg/cm/sup 2/, 270 0 C and heat flux 45 W/cm/sup 2/. Caustic SCC tests have been carried out in adiabatic conditions also using small autoclaves

  1. Plugging of feed inlet tube upstands with Ni/Ti shape memory alloy plugs - Heysham 1 power station

    International Nuclear Information System (INIS)

    Mathews, A.J.

    1988-01-01

    The paper contains a description of a new approach for Plugging feed inlet tubes of Gas-Cooled Reactors. Instead of utilizing the original explosive method plugging by fitting a shape memory alloy plug into the upstand is being described. (author)

  2. X-ray study of texture in zirconium alloy tubes and in graphite

    International Nuclear Information System (INIS)

    Skvortsov, V.V.; Alekseev, S.I.

    1987-01-01

    X-ray study of texture in zirconium alloy tubes and in graphite has been developed. The method is based on constructing coordinate grid of stereographic projection determining quantity and coordinates of points where measurements should be performed depending on a specimen slope pitch. Complete stereographic projection obtained so is a base both for constructing pole figures showing distribution normales of plane system being studied and for calculating texture coefficients determining property anisotropy in materials under investigation. This method can be applied to study texture in items of any materials independent of the item shape

  3. 78 FR 22515 - Seamless Refined Copper Pipe and Tube From Mexico: Rescission, in Part, of Antidumping Duty...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-838] Seamless Refined Copper Pipe... Administration, International Trade Administration, Department of Commerce. DATES: Effective Date: April 16, 2013..., Import Administration, International Trade Administration, U.S. Department of Commerce, 14th Street and...

  4. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. NOAA Seamless Raster Navigational Charts (RNC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Seamless Raster Chart Server provides a seamless collarless mosaic of the NOAA Raster Navigational Charts (RNC). The RNC are a collection of approximately...

  6. Seamless handoff in Mobile IP

    NARCIS (Netherlands)

    Karagiannis, Georgios; Heijenk, Geert; El Malki, Karim; Soliman, Hesham

    2001-01-01

    In a system and method for handing off a mobile node in a seamless manner in a wireless access network, procedures are implemented for allowing the mobile node to synchronize the handoff with a base node (e.g., a home agent) and a correspondent node. In this way, a seamless handoff may be achieved,

  7. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  8. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  9. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  10. Development of the advanced nuclear materials -Development of Inconel alloys-

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Chang, Jin Sung; Lee, Chang Kyu; Park, Soon Dong; Kim, Woo Kon; Jeong, Man Kyo; Woo, Yoon Myung; Han, Chang Hee

    1995-07-01

    The performance and the integrity of the steam generator U-tubes directly affects the efficiency and economics of nuclear power plant because they are closely interrelated with the maintenance and repair. Also the steam generator U-tubes have been one of world-wide hot issues in nuclear power plants for long time because of their continuing corrosion-related degradation. Right after stress corrosion cracking of Alloy 600 tubes are reported at primary side, in which the environment is believed to be tightly controlled all the time, in mid 80's, alloy 690 has started to replace alloy 600. Alloy 690 is basically same with alloy 600 except more Cr content. Firstly minor elements in alloy 690 (C, B, N, Y, Mo) were added or controlled to improve hot workability and corrosion resistance. It would be much more desirable if the mechanism or basic understanding of the degradation phenomena of steam generator U-tubes in operation conditions can be illuminated through the alloy modification research. Alloy 600 tubes which were preproduced in cooperation with Sammi Special Steel were evaluated, being compared with imported one. Also alloy 600 and alloy 690 tubes were produced from Inconel 600 and 690 INCO- forged bar. These will be closely evaluated with purely Korean-made alloy 600 and 690 tubes. 22 tabs., 93 figs., 14 refs. (Author)

  11. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-01-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators

  12. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Science.gov (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  13. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  14. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  15. Strong, corrosion-resistant aluminum tubing

    Science.gov (United States)

    Reed, M. W.; Adams, F. F.

    1980-01-01

    When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment.

  16. SEAMLESS TECHNOLOGY ON CIRCULAR KNITTING MACHINES

    Directory of Open Access Journals (Sweden)

    CRETU Viorica

    2014-05-01

    Full Text Available With industrial progress, the advancements in garment manufacturing have evolved from cut & sew to complete garment knitting, which produces one entire garment without sewing or linking process. Seamless knitting technology is similar to sock manufacture, the specialized circular knitting machines producing 3 dimensional garments with no side seams, with the waistband integrated with body of the garment and with knitted washing instructions and logos. The paper starts by presenting the main advantages of seamless garments but also some limitations because the technology. Because for a seamless garment, which is realized as a knitted tub, is very important to ensure the required final chest size, it was presented the main components involved: the knitting machine, the garment design and the yarns used. The knitting machines, beside the values of diameters and gauges with a great impact on the chest size, are characterized by a very innovative and complex construction. The design of a seamless garment is fundamental different compared to garments produced on a traditional way because the designer must to work backwards from a finished garment to create the knitting programme that will ultimately give the correct finished size. On the end of the paper it was presented some of the applications of the seamless products that cover intimate apparel and other bodywear, outwear, activewear and functional sportswear, upholstery, industrial, automotive and medical textiles.

  17. Heat exchanger tubing materials for CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Taylor, G.F.

    1977-07-01

    The performance of steam generator tubing (nickel-chromium-iron alloy in NPD and nickel-copper alloy in Douglas Point and Pickering generating stations) has been outstanding and no corrosion-induced failures have occurred. The primary coolant will be allowed to boil in the 600 MW (electrical) CANDU-PHW reactors. An iron-nickel-chromium alloy has been selected for the steam generator tubing because it will result in lower radiation fields than the alloys used before. It is also more resistant than nickel-chromium-iron alloy to stress corrosion cracking in the high purity water of the primary circuit, an unlikely but conceivable hazard associated with higher operating temperatures. Austenitic alloy and ferritic-austenitic stainless steel tubing have been selected for the moderator coolers in CANDU reactors being designed and under construction. These materials will reduce the radiation fields around the moderator circuit while retaining the good resistance to corrosion in service water that has characterized the copper-nickel alloys now in use. Brass and bronze tubes in feedwater heaters and condensers have given satisfactory service but do, however, complicate corrosion control in the steam cycle and, to reduce the transport of corrosion products from the feedtrain to the steam generator, stainless steel is preferred for feedwater heaters and stainlss steel or titanium for condensers. (author)

  18. Creep and stress rupture behaviour of zircaloy-2 and Zr-2.5% Nb alloy tubes at 573 K

    International Nuclear Information System (INIS)

    Laha, K.; Bhanu Sankara Rao, K.; Chandravathi, K.S.; Mannan, S.L.

    1992-01-01

    Zirconium alloys are extensively used for coolant tubes of pressurised heavy water reactors. The choice of these materials is based on their good corrosion resistance in water, low capture cross section for thermal neutrons and good mechanical properties. In this paper the results of an investigation performed on the creep and rupture behaviour of indigenously produced zircaloy-2 and Zr-2.5% Nb alloy are presented. Samples for creep testing were cut longitudinally from finished pressure tubes. Creep rupture tests were carried out in air under constant load conditions at 300 C employing five stress levels in the range 300-360 MPa. Zr-2.5% Nb alloy displayed higher rupture lives at all stress levels compared to zircaloy-2. Steady state creep rate of Zr-2.5%Nb was lower than that zircaloy-2 at identical stress levels. In the stress range of the experiments, the dependence of the steady state creep rate (ε s ) on applied stress (σ) for both the alloys could be represented by a power law, ε s =A σ n The stress sensitivity (n) for Zr-2.5% Nb was lower than that of zircaloy-2. For both the alloys the time to creep rupture t r was found related to the steady state creep rate through the modified Monkman-Grant relation (ε s ) α . t r = constant. Similar value of α was obtained for both the materials. Zr-2.5%Nb exhibited higher ductility (% elongation to rupture) compared to zircaloy-2 at stress levels ≥ 320 MPa. At lower stresses significant difference in ductility was not noticed. Percentage reduction in area was lower in Zr-2.5%Nb at all stress levels indicating better resistance for necking. The time for onset of tertiary was longer for Zr-2.5% Nb alloy. The proportion of life spent by Zr-2.5% Nb in steady state creep regime was higher compared to that of zircaloy-2. Metallographic investigations on longitudinal sections in both the alloys showed large number of intragranular pores close to the fracture surface. A few number of cracks which are characteristic of

  19. Characterization of tube support alloys

    International Nuclear Information System (INIS)

    Vaia, A.R.

    1985-01-01

    The involvement and relationship of carbon steel corrosion products in the tube denting phenomenon promoted an intensive research effort to: 1) understand, reproduce, and arrest the denting process, and 2) evaluate alternative tube support materials to provide additional corrosion resistance. The paper summarizes a corrosion testing program for the verification of type 405 stainless steel under acid or all volatile treatment conditions

  20. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  1. Spring/dimple instrument tube restraint

    International Nuclear Information System (INIS)

    DeMario, E.E.; Lawson, C.N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures

  2. Wat betekent ‘Seamless learning’ (voor u)?

    NARCIS (Netherlands)

    Rusman, Ellen

    2017-01-01

    Wat betekent Seamless Learning (voor u)? ‘Seamless learning’ richt zich op het doormiddel van technologie draadloos en naadloos verbinden van (leer)ervaringen in verschillende contexten en het hierdoor ondersteunen, verbeteren en versterken van leerprocessen. ‘Seamless’ leerscenario’s bieden

  3. Microstructure in welding zone of a zircaloy 4 tube welded by TIG process

    International Nuclear Information System (INIS)

    Bolfarini, C.; Domingues Filho, H.

    1982-01-01

    The details concerned with the welding of seamless zircaloy 4 tubes for nuclear application and the earlier welding tests made in the tubes that will be used for the construction of the Argonautas' Reactor fuel element, are described. Based on the references the microestructure changes in the heat affected zone were analyzed in respect to the material's performance in operation. (Author) [pt

  4. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    International Nuclear Information System (INIS)

    Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng

    2017-01-01

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.

  5. Minimize corrosion degradation of steam generator tube materials

    International Nuclear Information System (INIS)

    Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Experimental data suggest that all steam generator tube materials are susceptible to corrosion degradation under some specific off-specification conditions. The tolerance to the chemistry upset for each steam generator tube alloy is different. Electrochemical corrosion behaviors of major steam generator tube alloys were studied under the plausible aggressive crevice chemistry conditions. The potential hazardous conditions leading to steam generator tube degradation and the conditions, which can minimize steam generator tube degradation have been determined. Recommended electrochemical corrosion potential/pH zones were defined for all major steam generator tube materials, including Alloys 600, 800, 690 and 400, under CANDU steam generator operating and startup conditions. Stress corrosion cracking tests and accelerated corrosion tests were carried out to verify and revise the recommended electrochemical corrosion potential/pH zones. Based on this information, utilities can prevent steam generator material degradation surprises by appropriate steam generator water chemistry management and increase the reliability of nuclear power generating stations. (author)

  6. Bottom nozzle to guide tube connection

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1991-01-01

    This patent describes a nuclear fuel assembly which includes an upper end fitting and a lower end fitting spaced therefrom and connected thereto by elongated guide tubes of one alloy having an open upper end and a closed lower end with spaced fuel element retaining grids mounted on the guide tubes therebetween, the closed lower ends of the guide tubes including a threaded central passageway and the attachment of the guide tubes to the lower end fitting of another alloy. It comprises: an externally threaded bolt with a first end threadably received in the threaded central passageway of the lower end of the guide tube and a head at the other end of the side of the lower end fitting opposite the guide tube; an interruption in the external threads of the bolt which forms a groove which communicates the interior of the guide tube with the side of the lower end fitting opposite the guide tube and enhances its frictional engagement with the threaded central passageway, thereby to hold and attach the guide tube and lower end fitting firmly together, even through a series of temperature cycles

  7. Corrosion in PWR steam generator tubes made of alloy 600TT: overview of operating experience, NDE and safety issues

    International Nuclear Information System (INIS)

    Curieres, I. de; Sollier, T.; Delaval, C.

    2015-01-01

    About 60 PWR plants worldwide are operating with steam generator tubes made of alloy 600TT, among which 27 are located in France. This alloy is susceptible to corrosion, both on the primary and secondary side in every fleet, though with different kinetics or extent. It is noteworthy that many of the primary side corrosion issues can be clearly explained by design or operating conditions. However, studies show that all the secondary side issues are much hardly explained by simple considerations. This paper will give an overview of the international operating experience of this alloy and indicate the associated controllability and safety-related issues. An emphasis will be put on the manufacturing, chemistry and specificities of the different fleets. The French situation will be reviewed in this frame. (authors)

  8. Effect of Cold Drawing Pass Schedule on Mechanical Properties and Microstructure of ST 52 during Cold Drawing of Seamless Tubes and its Influence on Springback

    Directory of Open Access Journals (Sweden)

    Dadabhau Baban Karanjule

    2017-07-01

    Full Text Available In-elastic recovery behavior of seamless tube material has been investigated by uniaxial tensile tests. Unloading Stress–Strain curves obtained under different passes of cold drawing process shows that the percentage of in-elastic recovery to the total recovery increased with plastic deformation. This paper is an experimental study that shows Young’s Modulus decreases with plastic strain for ST 52 material. It is found that with increase in plastic strain, Young’s Modulus reduces rapidly initially then reduces more slowly and finally settles to stable value due to increase in plastic deformation and ultimately increased residual stresses. This variation of Young’s’ Modulus is related to internal stresses, residual stresses, micro cracks, dislocations during plastic deformation. Similarly, Scan Electron Microscopy (SEM and Micro-hardness testing reveals that mechanical properties are better in the first pass sample of multiple cold drawing passes. The results of this study reveals that 10-20% degradation occurs in Young’s Modulus for 5-7% plastic strain and better mechanical properties are achieved in the first pass sample.

  9. Social Media and Seamless Learning: Lessons Learned

    Science.gov (United States)

    Panke, Stefanie; Kohls, Christian; Gaiser, Birgit

    2017-01-01

    The paper discusses best practice approaches and metrics for evaluation that support seamless learning with social media. We draw upon the theoretical frameworks of social learning theory, transfer learning (bricolage), and educational design patterns to elaborate upon different ideas for ways in which social media can support seamless learning.…

  10. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  11. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  12. Method of forming magnetostrictive rods from rare earth-iron alloys

    Science.gov (United States)

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  13. Importance of crevices formed between tubes and tube plate for the operational behaviour of heat exchangers

    International Nuclear Information System (INIS)

    Achten, N.; Herbsleb, G.; Wieling, N.

    1986-01-01

    It must be guaranteed by construction and manufacture of heat exchangers that primary and secondary medium are completely separated from each other. When this requirement is fullfilled, the operational use of heat exchangers can be impaired by corrosion reactions within the crevice formed between tube and tube plate which may result in corrosion damage. The various techniques which are in use to connect tubes and tube plate and which are described in the present report, must be valued with respect to the tightness of the connection as well as to the formation of crevices between tubes and tube plate. Corrosion resistant copperbase alloys and stainless steels are the most important materials which are in use for the construction of heat exchangers. The mechanisms of crevice corrosion with unalloyed and low alloy carbon steels, stainless steels, and mixed connections between tube and tube plate with these materials are described in detail. Crevice corrosion may be caused also by the formation of galvanic cells between materials of differing electrochemical response. Furthermore, the concentration of aggressive media in crevices between tubes and tube plate can lead to corrosion damage of heat exchanger tubes. For the service operation of heat exchangers without any hazard of corrosion damage in crevices between tubes and tube plate, such crevices must be avoided by proper construction and manufacture. As a model for suitable measures to avoid crevices, the manufacture of steam generators for PWR's is described. (orig.) [de

  14. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  15. Repair technology for steam generator tubes

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating

  16. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  17. Leakproof Swaged Joints in Thin-Wall Tubing

    Science.gov (United States)

    Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.

    1986-01-01

    Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.

  18. Oxide Dispersion Strengthened Fe3Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    2002-02-08

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100% in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is

  19. IGA resistance of TT Alloy 690 and concentration behavior of Broached Egg Crate tube support configuration

    International Nuclear Information System (INIS)

    Suzuki, S.; Kusakabe, T.; Yamamoto, H.; Arioka, K.; Ochi, T.

    1992-01-01

    In order to improve the reliability of the Steam Generator (SG), TT Alloy 690 and BEC (Broached Egg Crate) type tube support plate has been developed. Some tests are carried out to heighten the reliability for these improvements all the more and the following results are obtained. (1) SERT test (Slow Extension Rate Test) made clear that TT690 has less IGA susceptibility in comparison with MA600. (2) The alkaline susceptibility on the occurrence of IGA/SCC on TT690 and MA600 obtained by SERT corresponds to that obtained by Model Boiler test. (3) By model boiler test, superior concentration behaviors for BEC type tube support plate configuration have been recognized in comparison with Drill type. This result is obtained by the joint research of the five utilities (Kansai Epco, Hokkaido Epco, Shikoku Epco, Kyushu Epco, JAPCO) and MHI

  20. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  1. Corrosion and Rupture of Steam Generator Tubings in PWRs

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-01

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned

  2. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  3. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  4. Deposition of magnetite particles onto alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H. [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    1998-07-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m{sup 2} . A concentration of suspended magnetite of 5.0E-03kg/m{sup 3} was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1{mu}m) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was

  5. Deposition of magnetite particles onto alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H.

    1998-01-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m 2 . A concentration of suspended magnetite of 5.0E-03kg/m 3 was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1μm) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was considered

  6. Influences of Alloying Element and Annealing on the Microstructure and Corrosion Resistance of Steam Generator Tubing Materials of Nuclear Power Plant (I)

    International Nuclear Information System (INIS)

    Kim, Young Sik; Pari, Yong Soo; Kuk, Il Hiun

    1996-01-01

    Influences of alloying elements and annealing heat treatments on Alloy 690 and Alloy 600 for steam generator tubing materials of nuclear power plants were studied. OM, SEM, TEM, and XRD analyses were used to study the microstructural changes of the alloys. Mechanical properties were investigated by means of tension tests and Rockwell hardness tests, and corrosion resistance was evaluated using the anodic polarization tests and the 65% boiling nitric acid immersion tests. Increasing the carbon content of Alloy 690, the hardness and tensile strength were increased, but the elongation and grain size were decreased. However, increasing the annealing temperature, the tensile strength and hardness were decreased, but the elongation and grain size were increased. Increasing the carbon content of Alloy 690, the results of the anodic polarization tests and the nitric acid immersion tests showed that the annealing temperature to reveal a minimum corrosion rate was increased. This behavior seemed to be due to the combination of the solid solution of carbon in the matrix and grain growth with annealing. In this work, the corrosion properties of Alloy 690 were better than that of Alloy 600, and the range of the optimum annealing temperature of Alloy 690 was from 1100 .deg. C to 1150 .deg. C

  7. Methods for batch fabrication of cold cathode vacuum switch tubes

    Science.gov (United States)

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  8. Stress relief to prevent stress corrosion in the transition region of expanded Alloy 600 steam-generator tubing. Final report

    International Nuclear Information System (INIS)

    Woodward, J.; van Rooyen, D.

    1983-05-01

    The feasibility of preventing primary side roll transition cracking has been investigated, using induction heating to attain stress relief of expanded Ni-Cr-Fe Alloy 600 steam generator tubing. Work on rolled tubing and U-bends has shown that temperatures with which stress relief can be obtained range from 700 to 850 0 C, with lower temperatures in this range requiring longer times at temperature to provide the requisite reduction in residual stresses. No work has yet been done outside this range. Preliminary tests, using induction heating, have been carried out on a mock tube sheet assembly, designed to the dimensions of a typical steam generator, and have identified the type of heating/cooling cycle that would occur in the tube sheet during a stress relief operation. Preliminary results show that the times to reach the higher temperatures in the range observed to give stress relief, of the order of 850 0 C, can be as short as 8 seconds, and less with optimum coil design and power control

  9. Heat removal capability of divertor coaxial tube assembly

    International Nuclear Information System (INIS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications. (author)

  10. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  11. Characteristics of hydrostatically extruded Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Jie, Z.; Jiaqi, D.; Tieqi, Y.; Wenxian, H.; Yan, L.; Yunxia, Z.; Zhenhe, L.

    1984-01-01

    Hydrostatic extrusion is a new production technology. Zr-2.5Nb alloy tubes cold hydrostatically extruded possess excellent mechanical properties similar to heat-treated tubes and better than cold-worked tubes. Examination by transmission electron microscope shows that the alloy is of a uniform cell substructure containing the (α + β) phases, which is one of important factors improving properties of the alloy. The study of texture, stress, and reorientation of the hydride shows that hydrostatically extruded tubes with basal plane normals in the radial direction have obviously higher hydride reorientation threshold stress than tubes with basal plane normals in the circumferential direction. Moreover, investigation of fracture toughness reveals that hydride distributed perpendicular to the crack propagation direction restrains further propagation of the crack. It is favorable for preserving the fracture resistance of the material

  12. Influence of hydrogen content on fracture toughness of CWSR Zr-2.5Nb pressure tube alloy

    Science.gov (United States)

    Singh, R. N.; Bind, A. K.; Srinivasan, N. S.; Ståhle, P.

    2013-01-01

    In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr-2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial-circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30-300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.

  13. The stress-rupture behavior of tubes made from austenitic stainless steels and Ni-based alloys subjected to internal pressure

    International Nuclear Information System (INIS)

    Schaefer, L.; Kempe, H.

    1983-12-01

    The report outlines the stress-rupture results obtained on tubes tested as possible fuel rod cladding tubes for fast breeder reactors cooled with sodium, steam or gas. For the rupture elongations of some specimens showing a pronounced burst, higher values than in earlier reports are now indicated because of better evaluation techniques. The choice and comparisons of materials are explained, the calculations of stresses and strains are described, and reference is made to the own studies carried out to date of the parameters influencing creep-rupture behaviour. Minor modifications of the composition of an alloy and of the mechanical-thermal treatment of materials, respectively, are seen to produce clearcut changes in the stress-rupture properties. (orig.) [de

  14. Construction of vacuum system for Tristan accumulation ring

    International Nuclear Information System (INIS)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.; Kubo, T.; Mizuno, H.; Momose, T.; Narushima, K.; Watanabe, H.; Yamaguchi, H.

    1983-01-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole and quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described

  15. The influence of lead on stress corrosion cracking of steam generator tubing

    International Nuclear Information System (INIS)

    Ryan Curtis Wolfe

    2015-01-01

    Lead (Pb) is present at low concentrations on the secondary side of steam generators, but is known to accumulate in steam generator sludge and become concentrated in crevices and cracks. Pb is known to have played a role in the degradation of Alloy 600MA tubing, necessitating the replacement of those steam generators. There is new evidence which indicates that Pb has also played a role in the stress corrosion cracking (SCC) of Alloy 600TT. Furthermore. laboratory testing indicates that advanced tubing alloys such as Alloy 690TT and Alloy 800NG area also susceptible to this attack. In response to these vulnerabilities, utilities are attempting to manufacture tubing using processes which will impart optimal corrosion resistance, fabricate and operate SG's to minimize stress in the tubing, undertake efforts to identify and remove the sources of Pb, reduce the existing inventory of Pb using chemical or mechanical cleaning processes, and maintain rigorous chemistry controls. Research is warranted to qualify chemical methods to mitigate PbSCC that may be observed in service. This presentation will review work performed through the Electric Power Research Institute (EPRI) to address the issue of Pb-assisted stress corrosion cracking of steam generator tubing. (author)

  16. 75 FR 3203 - Certain Oil Country Tubular Goods From the People's Republic of China: Amended Final Affirmative...

    Science.gov (United States)

    2010-01-20

    ... cross-section, including oil well casing and tubing, of iron (other than cast iron) or steel (both carbon and alloy), whether seamless or welded, regardless of end finish (e.g., whether or not plain end... December 14, 2009, petitioners United States Steel Corporation (``U.S. Steel'') and TMK IPSCO et al.\\1...

  17. Comparison of evaluation method for planar flaw in pressure tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, Won Gul

    2009-01-01

    CSA N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA N285.8-05, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of FFSG(Fitness For Service Guideline for Zirconium alloy pressure in operation CANDU) used now. The object of this paper is to address the fracture initiation and plastic collapse evaluation for the planar flaw as it applies to the pressure tube on Wolsong NPP.

  18. Inelastic analysis of finite length and depth cracked tubes

    International Nuclear Information System (INIS)

    Reich, M.; Prachuktam, S.; Gardner, D.

    1977-01-01

    Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. Typical PWR steam generator units contain thousands of long straight tubes with U-bend sections. These tubes are primarily made from alloy 600 and their sizes vary between 3 / 4 '' and 7 / 8 '' (1.905 cm and 2.223 cm) in diameter with nominal thicknesses of 0.043'' to 0.053'' (0.109 cm to 0.135 cm). Since alloy 600 (and the previously used 304-SS tubes) are ductile, high toughness materials LEFM (linear elastic fracture mechanics) criteria do not apply. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered

  19. Feasibility Test with a STS304 tube of the Eddy Current Test using a Bobbin Probe for the SMART SG Tube Inspection

    International Nuclear Information System (INIS)

    Lee, Yoon Sang; Jung, Hyun Kyu; Choung, Yun Hang

    2010-01-01

    The SMART SG tubes will be made of Alloy 690. The outside diameter will be 17 mm and the thickness will be 2.5 mm. They will be assembled helically around, and their innermost diameter will be about 600 mm and the total length will be about 32 meters. For the sake of safety, SMART SG tubes are designed for use with thick tubes such as 2.5 mm thickness compared to about 1 mm thickness of normal Korean standard pressurized water reactor tubes. Due to using thick tubes such as the 2.5 mm varieties, it was doubted that the Eddy Current Testing Method (ECT) would be a feasible method. Therefore we are trying to check the feasibility of the ECT using the substitute material STS304 tube instead of Alloy 690 tubes with the bobbin type ECT probe. The previous paper reported the feasibility of the ECT using modeling, but this paper will report the preliminary experimental results and comparison with the previous results of the modeling for the STS304 tube

  20. A State of the Art Report on Wear Damage of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Lim, Yun Soo; Kim, Joung Soo; Kim, Hong Pyo; Hwang, Seong Sik; Jung, Man Kyo

    2004-10-01

    The recent status on wear damage of steam generator tubes caused by flow-induced vibration was investigated, and the criteria for structural integrity evaluation of the wear-damaged tubes were reviewed. It was surveyed how the wear damage of tubes could be affected by main parameters, such as, materials properties and their combination, impact load and vibration amplitude/frequency, contact areas and diametral clearance between the tube and tube support plate, wear test duration, and test temperature. Finally, corrosive wear, which means the combined action of corrosion and wear simultaneously, was also surveyed in this report. There has been only a few works concerned on the wear damage of steam generator tubes in Korea, compared with the leading foreign research institutes. Especially, the experience related to the wear characteristics of Alloy 690, which has become a replacement material for Alloy 600 as steam generator tubes, is far from satisfactory. Systematic studies, therefore, concerned with structural integrity of tubes as well as improvement of were resistance of Alloy 690 in the PWR environment are needed

  1. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  2. Supporting Seamless Learning Experiences

    NARCIS (Netherlands)

    Rusman, Ellen; Specht, Marcus; Klemke, Roland; Ternier, Stefaan; Tan, Esther; Firssova, Olga; Stracke, Christian M.; Suarez, Angel; Van Dijk, Guido

    2017-01-01

    Elevator pitch about Seamless learning for the Board of the Open University of the Netherlands. People increasingly learn in different (physical and social) settings with less effort than 50 years ago, as both technological as well as physical infrastructures allow them to do so. Learners easily

  3. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    Science.gov (United States)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  4. Effect of Ti3+ ion on the Corrosion Behavior of Alloy 600

    International Nuclear Information System (INIS)

    Lee, Chang Bong; Lim, Han Gwi; Kim, Bok Hee; Kim, Ki Ju

    1999-01-01

    Alloy 600 has been widely used as a steam generator tubing material in pressurized water reactors(PWRs) nuclear power plants. Corrosion of steam generator tubing mainly occurs on the secondary water side. The purpose of this work is primarily concerned with examining the effect of Ti 3+ ion concentrations on the corrosion behavior of the Alloy 600 steam generator tubing material. Corrosion behavior of the Alloy 600 steam generator tubing material was studied in aqueous solutions with varying Ti 3+ ion concentration at room temperature. Potentiodynamic and potentiostatic polarization techniques were used to determine the corrosion and pitting potentials for the Alloy 600 test material. The addition of Ti 3+ ion to 1000ppm, showed inhibition effect on the corrosion of Alloy 600. But the corrosion of Alloy 600 was accelerated when the concentration of Ti 3+ ion exceeded 1000ppm, it is assumed that the effect of general corrosion of Alloy 600 is more sensitive than pitting corrosion. It is considered that the passive film which was formed on the Alloy 600 surface in the 100ppm Ti 3+ ion containing solution is mainly consisted of TiO 2

  5. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  6. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun-Lin; Zhou, Ke-Yi, E-mail: boiler@seu.edu.cn; Xu, Jian-Qun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province (China); Wang, Xin-Meng; Tu, Yi-You [School of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  7. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    Science.gov (United States)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  8. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    International Nuclear Information System (INIS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-01-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  9. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  10. Seamless learning: Technology-enhanced learning from practical experiences across contexts

    NARCIS (Netherlands)

    Rusman, Ellen

    2018-01-01

    Rusman, E. (2018, 8th of June). Seamless learning: Technology-enhanced learning from practical experiences across contexts. Keynote presentation at the Seamless learning conference, Maastricht, The Netherlands. http://www.ou.nl/slc

  11. Seamless-merging-oriented parallel inverse lithography technology

    International Nuclear Information System (INIS)

    Yang Yiwei; Shi Zheng; Shen Shanhu

    2009-01-01

    Inverse lithography technology (ILT), a promising resolution enhancement technology (RET) used in next generations of IC manufacture, has the capability to push lithography to its limit. However, the existing methods of ILT are either time-consuming due to the large layout in a single process, or not accurate enough due to simply block merging in the parallel process. The seamless-merging-oriented parallel ILT method proposed in this paper is fast because of the parallel process; and most importantly, convergence enhancement penalty terms (CEPT) introduced in the parallel ILT optimization process take the environment into consideration as well as environmental change through target updating. This method increases the similarity of the overlapped area between guard-bands and work units, makes the merging process approach seamless and hence reduces hot-spots. The experimental results show that seamless-merging-oriented parallel ILT not only accelerates the optimization process, but also significantly improves the quality of ILT.

  12. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  13. Development of process route for the production of Fe-0.12C-9CR-2W-0.35Y2O3 ODS alloy tubing for Indian FBR application

    International Nuclear Information System (INIS)

    Lakshminarayana, B.; Tonpe, S.; Jha, S.K.; Kapoor, Komal; Dubey, A.K.; Gurunadh, J.; Surender, A.; Deshpande, K.V.K.; Maity, P.K.

    2011-01-01

    In the wake of Nuclear Renaissance, India is playing key role in generation of clean and green Nuclear Energy. It has entered into its second stage Nuclear Power Program on commercial scale with the commencement of construction of 500 MWe Prototype Fast Breeder Reactor (PFBR) at Kalpakkam. Nuclear Fuel Complex (NFC), Hyderabad is playing a crucial role in the manufacture of all the critical sub-assemblies in SS (D9) grade materials for this reactor. The SS(D9) material with controlled cold work is having very good void swelling resistance and high temperature properties, which can sustain fluence of 100 dpa. The paper covers the manufacturing process and characterization of the ODS tubes for fuel clad application. Manufacturing of 9 Cr 2W Y 2 O 3 - ODS martensitic steel fuel cladding tube has been taken up in Nuclear Fuel Complex, Hyderabad with mechanical alloying followed by MS canning of mechanically alloyed powder, upsetting and hot extrusion and subsequently thermo mechanical process. Manufacturing technology of ODS steel tube is critical with respect its chemical composition, dimensional tolerances, Y 2 O 3 particle size and its distribution and achievement of mechanical properties with proper combination of cold working and heat treatment. The paper covers the manufacturing process and characterization of the ODS tubes for fuel clad application. Manufacturing process for the production of ODS alloy (9 Cr 2W Y 2 O 3 - ODS) has been optimized for mass scale production at NFC

  14. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  15. Prospects for zirconium structural alloys at high temperatures

    International Nuclear Information System (INIS)

    Thomas, W.R.

    1969-05-01

    Improved station efficiencies and lower capital costs provide incentives for the development of zirconium alloys for pressure tubes which can operate at temperatures above 450 o C. The experience of the Ti industry indicates that a complex alloy containing solution hardeners of Sn or Al and precipitation hardeners of Mo and Nb and perhaps Si will be required. The thermal neutron cross-section of the alloy will be about 10% higher than Zircaloy-2 and because of its poor corrosion resistance will require cladding with a corrosion resistant alloy such as Zr-Cr. Results to date indicate that such a pressure tube is feasible. (author)

  16. Development of microstructure in thermomechanical processing of zirconium alloys

    International Nuclear Information System (INIS)

    Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Zirconium based alloys are used for the manufacture of fuel tubes pressure tubes calandria tubes and other components of Pressurized Heavy Water Reactors (PHWRS). In single or two phase zirconium alloy system a variety of microstructure can be generated by suitable heat treatments by the process of equilibrium and non equilibrium phase transformations Microstructure can also be modified by alloying with α and β stabilizers. The microstructure in Zr alloys could be single hexagonal phase (α alloys) two phase bcc and hexagonal (α + β alloys) phase, single metastable martensitic microstructure and β with ω phase. The microstructural and micro textural evolution during thermo mechanical treatments depends strongly on such initial microstructure. Hot extrusion is a significant bulk deformation step which decides the initial microstructure of the alloy. It is carried out at elevated temperature i e above the recrystallization temperature, which enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature, strain rate (Ram speed), reduction ratio etc. In the present paper development of microstructures, microtexture and texture have been examined. An attempt is also made to optimise the hot working parameters for different Zirconium alloys with help of these studies. (author)

  17. Evaluation of the TIG welding mechanical behavior in AISI 316 tubes for fuel rods

    International Nuclear Information System (INIS)

    Bittencourt, M.S.Q.; Carvalho Perdigao, S. de

    1985-10-01

    The effect of service temperature, the mechanical resistance and the creep behaviour of a steel which is intendend to be used as fuel rods in Nuclear Reactors was investigated. The tests were performed in seamless tubes of austenitic stainless steel, AISI 316, 20% cold worked, TIG welded. (Author) [pt

  18. Heat treated tube for cladding nuclear fuel element

    International Nuclear Information System (INIS)

    Eddens, F.C.; White, D.W.; Harmon, J.L.

    1983-01-01

    The zirconium alloy tube comprises a metallurgical gradient across the width of the tube wall wherein the tube has a more corrosion-resistant metallurgical condition at the outer circumference and a less corrosion-resistant metallurgical condition at the inner circumference. The metallurgical gradient can be generated by heating an outer circumferential portion of the tube to the high alpha or mixed alpha plus beta range while maintaining the inner surface at a lower temperature, followed by cooling of the tube. Preferably the tube is made of Zircaloy. (author)

  19. Influence of microstructure modification on the circumferential creep of Zr–Nb–Sn–Fe cladding tubes

    International Nuclear Information System (INIS)

    Jeong, Gu Beom; Kim, In Won; Hong, Sun Ig

    2016-01-01

    Out-of-reactor, non-irradiated thermal creep performances and lives of annealed and stress-relieved Zr-1.02Nb-0.69Sn-0.12Fe cladding tubes were studied and compared. The creep rates of annealed Zr-1.02Nb-0.69Sn-0.12Fe cladding tubes were appreciably slower than those of stress-relieved annealed counterpart. The stress exponent increased slightly from 5.1 to 6.1 in the stress-relieved cladding to 5.3–6.3 in the annealed cladding. The creep activation energy of the annealed Zr-1.02Nb-0.69Sn-0.12Fe alloy (300–330 kJ/mol) was larger compared to that of the stress-relieved alloy (210–260 kJ/mol). The creep activation energy of annealed alloy is close to that of self-diffusion in α-Zr (336 kJ/mol). The smaller activation energy in the stress-relieved alloy is attributed to the increasing contribution of faster diffusion path such as grain boundaries and dislocations. The presence of dislocation arrays with higher dislocation density and smaller grain size in the stress-relived alloy was confirmed by TEM analysis. The creep rupture time increased dramatically in the annealed Zr–1Nb- 0.7Sn-0.1Fe alloy compared to that of stress-relieved alloy, supporting the decrease of creep rate by annealing. The creep life of Zr-1.02Nb-0.69Sn-0.12Fe claddings can be extended through microstructure modification by annealing at intermediate temperatures in which dislocation creep dominates. - Highlights: • Effect of microstructure modification on creep in Zr–Nb–Sn–Fe tubes was studied. • Creep activation energy in annealed tubes was larger than in stress-relieved tubes. • Lower dislocation density in lager grains was observed after creep in annealed tubes. • Larson–Miller parameter of annealed tube was larger than that of stress-relieved one. • Creep life of tubes was extended through microstructure modification by annealing.

  20. Evaluation of crack propagation of alloy 600 tube in high temperature water, (1)

    International Nuclear Information System (INIS)

    Hirano, Hideo; Kawamura, H.; Kawamura, Kohji; Matsubara, Masaaki

    1990-01-01

    This report describes the analysis of stress intensity factors at cracks in alloy 600 steam generator tubes. Based on the results of the analysis, IGA/SCC tests were carried out to examine the effect of stress intensity and water quality on the crack propagation rate. The main test result are as follows: (1) Hoop stress was caused by the pressure difference between the internal and external surface of the steam generator tube. The calculated hoop stress was about 7 kg/mm 2 . In addition, the temperature difference between the internal and external surface caused thermal stress. The thermal stress was about 10 kg/mm 2 at the external surface and the one at the internal surface was about -10 kg/mm 2 . Total stress at the external and internal surface was 17 kg/mm 2 and -3 kg/mm 2 , respectively. (2) The stress intensity factor at the crack tip increased with increasing crack length. For a long crack, the stress intensity factor decreased with increasing crack number. However, for a short crack, the stress intensity factor decreased little with increasing crack number. (3) Under high stress-intensity conditions, i.e. 40∼50 kg·mm -3/2 , the IGA/SCC test showed that IGA/SCC propagated in AVT and AVT/boric-acid solution at 320degC and 350degC. However, the propagation rate was low. (author)

  1. Experimental study and modeling of high-temperature oxidation and phase transformation of cladding-tubes made in zirconium alloy

    International Nuclear Information System (INIS)

    Mazeres, Benoit

    2013-01-01

    One of the hypothetical accident studied in the field of the safety studies of Pressurized light Water Reactor (PWR) is the Loss-Of-Coolant-Accident (LOCA). In this scenario, zirconium alloy fuel claddings could undergo an important oxidation at high temperature (T≅ 1200 C) in a steam environment. Cladding tubes constitute the first confinement barrier of radioelements and then it is essential that they keep a certain level of ductility after quenching to ensure their integrity. These properties are directly related to the growth kinetics of both the oxide and the αZr(O) phase and also to the oxygen diffusion profile in the cladding tube after the transient. In this context, this work was dedicated to the understanding and the modeling of the both oxidation phenomenon and oxygen diffusion in zirconium based alloys at high temperature. The numerical tool (EKINOX-Zr) used in this thesis is based on a numerical resolution of a diffusion/reaction problem with equilibrium-conditions on three moving boundaries: gas/oxide, oxide/αZr(O), αZr(O)/βZr. EKINOX-Zr kinetics model is coupled with ThermoCalc software and the Zircobase database to take into account the influence of the alloying elements (Sn, Fe, Cr, Nb) but also the influence of hydrogen on the solubility of oxygen. This study focused on two parts of the LOCA scenario: the influence of a pre-oxide layer (formed in-service) and the effects of hydrogen. Thanks to the link between EKINOX-Zr and the thermodynamic database Zircobase, the hydrogen effects on oxygen solubility limit could be considered in the numerical simulations. Thus, simulations could reproduce the oxygen diffusion profiles measured in pre-hydrided samples. The existence of a thick pre-oxide layer on cladding tubes can induce a reduction of this pre-oxide layer before the growth of a high-temperature one during the high temperature dwell under steam. The first simulations performed using the numerical tool EKINOX-Zr showed that this particular

  2. Titanium condenser tubes. Problems and their solution for wider application to large surface condensers. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, S; Nagata, K; Nanba, K; Shimono, M [Sumitomo Light Metal Industries Ltd., Tokyo (Japan)

    1977-06-01

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack on copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection was observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling.

  3. Titanium condenser tubes--problems and their solutions for wider application to large surface condensers

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M

    1978-01-01

    To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.

  4. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  5. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  6. Device and method for shortening reactor process tubes

    Science.gov (United States)

    Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  7. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    Science.gov (United States)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-05-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  8. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  9. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life. (paper)

  10. Flow forming of Al-Zn alloys 7075

    International Nuclear Information System (INIS)

    Abbas, G.

    1997-01-01

    Feasibility of flow forming aluminium alloy 7075 for manufacturing the tubes of about 70 mm diameter and different lengths has been studied. The elongation of the material was increased by increasing the working temperature of the process. Effect of various process parameters like roller rpm, roller offset, roller feed, spindle speed etc. on the flow ability of ally 7075 and the hardness and surface furnish of the tube has been determined. It was found that the roller bite and roller speed, of the flow forming machine, were two most important process parameters, which affected the hardness and the surface finish of the tube. By establishing the optimum process parameters, it was possible to produce aluminium alloy 7075 tubes of lengths ranging from 500 cm to 1 m with 70 mm outer diameter. The maximum hardness achieved on the surface of the tube was 146 Hv with good surface finish. (author)

  11. Development and properties of aluminum-clad graphite/epoxy tubes for space structures

    Science.gov (United States)

    Johnson, R. R.; Kural, M. H.

    1988-01-01

    This paper presents the development and properties of seamless aluminum-clad P75/Epoxy tubes and the unique manufacturing method used in their production. Thermo-mechanical properties of the tubes were determined analytically and verified by tests. These properties were shown to be suitable for space structures that require high stiffness, low weight and thermal expansion, and dimensional stability during operational life. A special feature of the tubes is the ability to tune the tube for thermal expansion after fabrication by a chemical milling process. The tubes are also resistant to atomic oxygen and handling damage. The toughness of the tubes was demonstrated by impact testing. Cyclic thermal testing showed no adverse effects on the expansion and stiffness behavior of the tubes. The paper also includes a discussion of a joining method that uses aluminum end fittings and an efficient scarf joint configuration. Additional studies considered various adhesives and fitting materials. Joint allowables were higher for titanium and B4C particulate magnesium fittings. The effect of different adhesives under static loading conditions favored the high-strength adhesives.

  12. Seamless and secure communications over heterogeneous wireless networks

    CERN Document Server

    Cao, Jiannong

    2014-01-01

    This brief provides an overview of the requirements, challenges, design issues and major techniques for seamless and secure communications over heterogeneous wireless networks. It summarizes and provides detailed insights into the latest research on handoff management, mobility management, fast authentication and security management to support seamless and secure roaming for mobile clients. The reader will also learn about the challenges in developing relevant technologies and providing ubiquitous Internet access over heterogeneous wireless networks. The authors have extensive experience in im

  13. 76 FR 39850 - Seamless Refined Copper Pipe and Tube From Mexico: Notice of Initiation of Antidumping Duty New...

    Science.gov (United States)

    2011-07-07

    ... and Tube From Mexico and the People's Republic of China: Antidumping Duty Orders and Amended Final... copper pipe and tube from Mexico exported by GD, for the period November 22, 2010, through April 30, 2011... and Tube From Mexico: Notice of Initiation of Antidumping Duty New Shipper Review AGENCY: Import...

  14. Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry.

    Science.gov (United States)

    Khaksar, Ladan; Shirokoff, John

    2017-04-20

    The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.

  15. Define optimal conditions for steam generator tube integrity and an extended steam generator service life

    International Nuclear Information System (INIS)

    Lu, Y.C.

    2007-01-01

    Steam generator (SG) tubing materials are susceptible to corrosion degradation in certain electrochemical corrosion potential regions in the presence of some aggressive ions. Because of the hideout of impurities, the local chemistry conditions in areas under sludge and inside SG crevices may be very aggressive with high concentrations of chlorides and other impurities. These areas are the locations where SG tubing materials are susceptible to degradation such as pitting, crevice corrosion, intergranular attack (IGA) and stress corrosion cracking (SCC). The corrosion susceptibility of each SG alloy is different and is a function of the electrochemical corrosion potential (ECP) and chemical environment. Electrochemical corrosion behaviors of major SG tube alloys were studied under some plausible aggressive crevice chemistry conditions. The possible hazardous conditions leading to SG tube degradation and the conditions, which can minimize SG tube degradation have been determined. Optimal operating conditions in the form of a 'Recommended ECP/pH zone' for minimizing corrosion degradation have been defined for all major SG tube materials, including Alloys 600, 800, 690 and 400, under CANDU SG operating and startup conditions. SCC tests and accelerated corrosion tests were carried out to verify and revise the recommended ECP/pH zones. This information is being incorporated into ChemAND, a system health monitor for plant chemistry management developed by AECL, which alloys utilities to evaluate the status of the SG alloys and to minimize SG material degradation by appropriate SG water chemistry management. (author)

  16. Delayed hydrogen cracking of zirconium alloy pressure tubes

    International Nuclear Information System (INIS)

    Jackman, A.H.; Dunn, J.T.

    1976-10-01

    After several years of almost continuous service, Pickering Units 3 and 4 have both experienced long outages to replace cracked pressure tubes. This report summarizes the status of the investigation into the cause of the cracks as of May 1976. The basic cause of the cracking was the presence of very high residual tensile stresses in the pressure tubes due to improper rolling procedures. These residual stresses are being reduced to acceptable levels by local stress relieving techniques at Bruce G.S. and in future reactors improvements in rolling procedures and changes in pressure tube specifications will prevent a recurrence of this problem. (author)

  17. Improving the calandria tubes for CANDU reactors

    International Nuclear Information System (INIS)

    Coleman, C.E.; Fong, R.W.L.; Doubt, G.L.

    1997-01-01

    CANDU calandria tubes are made from annealed Zircaloy-2 sheet formed into a cylinder and welded along its length to make the tube. The current calandria tubes have given exemplary service for many years. With more stringent regulations and the need to accommodate warm cooling water in tropical countries, we started a development program to increase the margins for failure during postulated accidents. These improvements involve increasing the tube strength and optimising the heat-transfer from an excessively hot fuel channel to the cool moderator. If the postulated accident involves a pressure tube break, it would be desirable if the calandria tube withstood the full pressure of the heat-transport system. The weakest link in current calandria tubes is the weld. Thickening the weld can increase the strength by 20% while seamless tubes can be 45% stronger than current tubes. The latter tubes can hold full system pressure for many hours without failure. If during the postulated accident the fuel and pressure tube become excessively hot but do not touch the calandria tube, the radiant heat loss must be maximised. Current calandria tubes have an absorptivity (emissivity) of about 0.2. To protect the fuel and the fuel channel we have devised a finish to the inside surface of the calandria tube that increases the emissivity to 0.7. If during the postulated accident the hot pressure tube touches the cool calandria tube, the contact conductance and the critical heat flux must be optimised to ensure nucleate boiling of the moderator at the outside surface of the calandria tube and therefore efficient exploitation of the moderator as a heat sink. In laboratory tests small ridges on the inside surface and roughening of the outside surface have been shown to increase the margins against failure and increase the possible moderator temperatures thus providing the opportunity to decrease the cost of the moderator heat-exchange system and remove restrictions on reactor operation in

  18. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  19. Probabilistic analysis of degradation incubation time of steam generator tubing materials

    International Nuclear Information System (INIS)

    Pandey, M.D.; Jyrkama, M.I.; Lu, Y.; Chi, L.

    2012-01-01

    The prediction of degradation free lifetime of steam generator (SG) tubing material is an important step in the life cycle management and decision for replacement of steam generators during the refurbishment of a nuclear station. Therefore, an extensive experimental research program has been undertaken by the Canadian Nuclear Industry to investigate the degradation of widely-used SG tubing alloys, namely, Alloy 600 TT, Alloy 690 TT, and Alloy 800. The corrosion related degradations of passive metals, such as pitting, crevice corrosion and stress corrosion cracking (SCC) etc. are assumed to start with the break down of the passive film at the tube-environment interface, which is characterized by the incubation time for passivity breakdown and then the degradation growth rate, and both are influenced by the chemical environment and coolant temperature. Since the incubation time and growth rate exhibit significant variability in the laboratory tests used to simulate these degradation processes, the use of probabilistic modeling is warranted. A pit is initiated with the breakdown of the passive film on the SG tubing surface. Upon exposure to aggressive environments, pitting corrosion may not initiate immediately, or may initiate and then re-passivate. The time required to initiate pitting corrosion is called the pitting incubation time, and that can be used to characterize the corrosion resistance of a material under specific test conditions. Pitting may be the precursor to other corrosion degradation mechanisms, such as environmentally-assisted cracking. This paper will provide an overview of the results of the first stage of experimental program in which samples of Alloy 600 TT, Alloy 690 TT, and Alloy 800 were tested under various temperatures and potentials and simulated crevice environments. The testing environment was chosen to represent layup, startup, and full operating conditions of the steam generators. Degradation incubation times for over 80 samples were

  20. Inconel alloys development -Development of the advanced nuclear materials-

    International Nuclear Information System (INIS)

    Kuk, Il Hiun; Jang, Jin Sung; Rhee, Chang Kyu; Chung, Man Kyo; Woo, Yun Myeoung; Han, Chang Hee

    1994-07-01

    We surveyed the current status and problems in S/G U-tubes in Korea and worldwide. Also we gathered manufacturing specifications of S/G U-tubes and compared/analyzed the differences in them company by company. We produced alloy 600 tubes (in cooperation with Sammi Special Steels) through V.I.M. (Vacuum Induction Melting; 2 ton capacity), 4 steps of hot press forging, hot extrusion (10:1 of reduction ratio), 3 steps of cold pilgerings and so on. We will continue to characterize the tubes and 2nd time preproduce the tubes using the feed-back data. With regard to alloy 690, which is getting popular for S/G U-tubes worldwide, we cast four 60 Kg ingots and two 6 Kg ingots by V.I.M.. We analyzed the chemical composition, macrostructures, hot workability, and so on ; all ingots were good except on 60 Kg ingot. Finally we produced high quality alloy 690 ingot (about 1 Kg) by E.S.R. (Electroslag Remelting) method (in cooperation with Yeoungnam University). We used CaF/CaO/Al2O3/MgO quartenary slag system. We have made directionally grown good ingots by E.S.R. and especially the hot workability at 1100 deg C - the temperature at which V.I.M. ingots showed very poor hot workability - was very much improved (from 30 to 90 % of reduction of area). We continue to analyze the effects of E.S.R. to the structure and properties of alloy 690 (grain size, morphology, and directionality; any changes of inclusions and so on). (Author)

  1. Fabrication of fine-grain tantalum diffusion barrier tube for Nb3Sn conductors

    International Nuclear Information System (INIS)

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-01

    Diffusion barriers used in Nb 3 Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy

  2. Fabrication of fine-grain tantalum diffusion barrier tube for Nb3Sn conductors

    Science.gov (United States)

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-01

    Diffusion barriers used in Nb3Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  3. Delayed Hydride Cracking Mechanism in Zirconium Alloys and Technical Requirements for In-Service Evaluation of Zr-2.5Nb Tubes with Flaws

    International Nuclear Information System (INIS)

    Kim, Young Suk

    2007-01-01

    In association with periodic inspection of CANDU nuclear power plant components, Canadian Standards Association issued CSA N285.8 in 2005 as technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors. This first version, CSA N285.8 involves procedures for, firstly, the evaluation of pressure tube flaws, secondly, the evaluation of pressure tube to calandria tube contact and, thirdly, the assessment of a reactor core, and material properties and derived quantities. The evaluation of pressure tube flaws includes delayed hydride cracking evaluation the procedures of which are stipulated based on the existing delayed hydride cracking models. For example, the evaluation of flaw-tip hydride precipitation during reactor cooldown involves a procedure to calculate the equilibrium hydrogen equivalent concentration in solution at the flaw tip, Htipas follows: Htip=Hfexp[- (VH delta no.)/RT], where Hf is the total bulk hydrogen equivalent concentration, VH partial molar volume of hydrogen in zirconium, δ a difference in hydrostatic stress between the bulk and the crack tip. When Htip ≥TSSP at temperature, then flaw-tip hydride is predicted to precipitate. Eq. (1) suggests that hydrogen concentration at the crack tip would increase due to an work energy given by the difference in the hydrostatic stress

  4. State-of-the-art review of OPG steam generator tubing degradation mechanisms

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.; Ramamurthy, S.; Good, G.M.

    2009-01-01

    Steam generator (SG) degradation has been a major cause of pressurized water reactor (PWR) incapability world-wide and has limited the useful life of SGs at some utilities. The vast majority of the degradation has been the result of SCC of the thin walled nickel alloy SG tubes and has been most prevalent in mill annealed (MA) Alloy 600. Fortunately, Ontario Power Generation (OPG) SG tubes are manufactured from alloys that have much better resistance to this form of localized corrosion than Alloy 600MA and as a consequence have not encountered SCC to date. Other forms of degradation nevertheless have been experienced; some units at Pickering - B in particular have had many Alloy 400 SG tubes removed from service due to severe underdeposit corrosion (UDC) and costly modifications have been made to Darlington SGs to prevent leaks as a result of SG tube fretting-wear at tube supports. Degradation other than UDC and fretting-wear which could pose a threat to the future reliable operation of OPG's nuclear fleet has also been observed. Important activities in effectively managing SG degradation include determining the mode of degradation and arriving at an understanding of the contributing factors. This is done by a combination of non-destructive examination (NDE) of SG tubing in-situ, SG tube removals for metallurgical examination and research and development. SG tube metallurgical examinations provide information that can be used in the timely development of a strategy dealing with the degradation in the short to intermediate timeframe. Determining the main causative factors at a mechanistic level helps to improve the predictive capability and increases the probability of dealing with the problem in the most cost-effective way. OPG has used this approach together with in-situ NDE inspections during planned outages of its nuclear reactors to minimize the possibility of unscheduled outages and provide the best possible fitness-for-service assessments. Many metallurgical

  5. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  6. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  7. Wear behavior of steam generator tubes in nuclear power plant operating condition

    International Nuclear Information System (INIS)

    Kim, In-Sup; Hong, Jin-Ki; Kim, Hyung-Nam; Jang, Ki-Sang

    2003-01-01

    Reciprocating sliding wear tests were performed on steam generator tubes materials at steam generator operating temperature. The material surfaces react with oxygen to form oxides. The oxide properties such as formation rate and mechanical properties are varied with the test temperature and alloy composition. So, it is important to investigate the wear properties of each steam generator tube materials in steam generator operating condition. The tests results indicated that the wear coefficient in work rate model of alloy 690 was faster than that of alloy 800. From the scanning electron microscopy observation, the wear scars were similar each other and worn surfaces were covered with oxide layers. It seemed that the oxide layers were formed by wear debris sintering or cold welding and these layer properties affected the wear rate of steam generator tube materials. (author)

  8. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  9. Changes in the design, fabrication and setting of guide tube support pins in alloy X750

    International Nuclear Information System (INIS)

    Benhamou, C.; Chambrin, J.L.; Todeschini, P.; Champredonde, J.; Lemaire, E.

    2004-01-01

    As a consequence of a problem of stress corrosion cracking (SCC) encountered on guide tube support pins (GTSP) of first generation (1982) and of second generation (1987), EDF and Framatome decided in mars 1988 to launch an important program involving a complete overhaul of the design, the material used, the fabrication and the setting in reactor of GTSP. This program has led to the implementation in 900 MWe and 1300 MWe PWR of a new tube guide support pin called NG89. This implementation began in 1989, now 15 years later, 40% of the operating GTSP in 900 MWe and 1300 MWe PWR are of NG89 type, the oldest ones cumulate 105000 hours in service without negative feedback experience. The main features of the NG89 is: - to be made from an alloy X-750 containing boron (from 25 to 45 ppm) - to have a SCC threshold set at 720 MPa - to be machined from metal bars completely treated, - to have a rolling of the fillets, and - to undergo a shot blasting on the zones of the surface the most acted upon. (A.C.)

  10. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  11. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  12. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G; Decours, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l'avantage de supprimer les cavites

  13. Learning Analytics for Supporting Seamless Language Learning Using E-Book with Ubiquitous Learning System

    Science.gov (United States)

    Mouri, Kousuke; Uosaki, Noriko; Ogata, Hiroaki

    2018-01-01

    Seamless learning has been recognized as an effective learning approach across various dimensions including formal and informal learning contexts, individual and social learning, and physical world and cyberspace. With the emergence of seamless learning, the majority of the current research focuses on realizing a seamless learning environment at…

  14. TO SEW OR NOT TO SEW. SEAMLESS CLOTHES AND SEAMLESS APPEARANCE IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    ANDOR Elena Corina

    2015-05-01

    Full Text Available At first glance clothes are obviously made by cutting and sewing. The textile fabric is cut in different shapes and reassembled by sewing in the wanted shape and volume. Sometimes the structures can be quite complex. The truth is that there are more ways of making clothes, as we can see looking back into the history of fashion. The progress of technology in textile industry offers also very interesting directions that we could not dream about some time ago. Observing carefully the economy of seams, their presence, absence or the suitable number can move us towards creative solutions that are relevant not only for the esthetic of a garment but also for the process of making clothes suggesting alternatives for the present situation and its important problems like sustainability. This paper is a survey of alternative ways in making clothes and highlights the relation between concept and practical issues. The starting point is seamless clothing and the natural fascination of the subject. Going further on this line we should consider that the absence of the seams in a garment is not the same with a seamless appearance. So, do we really need to sew our clothes?

  15. SCC testing of steam generator tubes repaired by welded sleeves

    International Nuclear Information System (INIS)

    Pierson, E.; Stubbe, J.

    1993-01-01

    One way to repair steam generator tubing is to introduce a sleeve inside the tube so that it spans the corroded area and to seal it at both ends. This technique has been studied at Laborelec with a particular attention paid to the occurrence of new SCC cracks at the upper joint. Tube segments coming from the same lot of mill annealed alloy 600 were sent to six manufacturers to be sleeved by their own procedure (including TIG, laser or kinetic welding, followed or not by a stress relief heat treatment), and then tested at Laborelecin 10% NaOH at 350 degrees C. The tests were performed with and without differential pressure i.e. in capsules (Δ = 9 and 19 MPa) and in autoclave (Δp = 0). Nearly all the not stress relieved mock-ups developed through cracks in several hundred hours in auto-clave. The cracks were circumferential and situated near the weld. At 9 and 19 MPa, the time to failure decreased and longitudinal cracks appeared near the weld and at the transition zone of expanded areas. Cracks were never observed in the alloy 690 sleeve, except in the weld bead. Reference capsules (roll expaned tubes) made of the same lot of alloy 600 were tested in the same environment

  16. Ad-hoc networking towards seamless communications

    CERN Document Server

    Gavrilovska, Liljana

    2006-01-01

    Ad-Hoc Networking Towards Seamless Communications is dedicated to an area that attracts growing interest in academia and industry and concentrates on wireless ad hoc networking paradigm. The persistent efforts to acquire the ability to establish dynamic wireless connections from anywhere to anyone with any device without prerequisite imbedded infrastructure move the communications boundaries towards ad-hoc networks. Recently, ad hoc networking has attracted growing interest due to advances in wireless communications, and developed framework for running IP based protocols. The expected degree of penetration of these networks will depend on the successful resolution of the key features. Ad-hoc networks pose many complex and open problems for researchers. Ad-Hoc Networking Towards Seamless Communications reveals the state-of-the-art in wireless ad-hoc networking and discusses some of the key research topics that are expected to promote and accelerate the commercial applications of these networks (e.g., MAC, rout...

  17. X-ray tube targets

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    In rotary targets for X-ray tubes warping is a problem which causes X-ray deficiency. A rotary target is described in which warping is reduced by using alloys of molybdenum with 0.05 to 10% iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide or mixture thereof. Suitable mixtures are 0.5 to 10% of tantalum, niobium or hafnium with from 0.5 to 5% yttrium oxide, or 0.05 to 0.3% of cobalt or silicon. Optionally 0.1 to 5% by weight of additional material may be alloyed with the molybdenum, such as tantalum or hafnium carbides. (author)

  18. Seamless Learning Environments in Higher Education with Mobile Devices and Examples

    Science.gov (United States)

    Marín, Victoria I.; Jääskelä, Päivikki; Häkkinen, Päivi; Juntunen, Merja; Rasku-Puttonen, Helena; Vesisenaho, Mikko

    2016-01-01

    The use of seamless learning environments that have the potential to support lifelong learning anytime and anywhere has become a reality. In this sense, many educational institutions have started to consider introducing seamless learning environments into their programs. The aim of this study is to analyze how various educational university…

  19. Ferromagnetic material inspection for feedwater heater and condenser tubes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In recent years, special ferritic stainless steels, such as AL29-4C/sup TM/, Sea-Cure/sup TM/, E-Brite/sup TM/, 439, and similar alloys have been introduced as tube material in condensers, feedwater heaters, moisture separator/reheaters, and other heat exchangers. In addition, carbon steel tubes are widely used in feedwater heaters and heat exchangers in chemical plants. The main problem with the in-service inspection of these ferritic alloys and carbon steel tubes lies in their highly ferromagnetic properties. These properties severely limit the application of the standard eddy current techniques. The effort was undertaken under EPRI sponsorship to develop a reliable technique for in-service inspection of ferromagnetic tubes. The new method combines the measurement of magnetic flux leakage generated around the defects with measurement of total flux in the tube wall. The heart of the inspection system is a special ID probe that magnetizes the tube and generates signals for any tube defect. A permanent record of inspection is provided with a strip-chart or magnetic tape recorder. The laboratory and field evaluation of this new system demonstrated its very good sensitivity to small defects, its reliability, and its ruggedness. Defects as small as 10% external wall loss in heavy wall carbon steel tube were detected. Tubes in the power plant were inspected at a rate of 300-500 tubes per eight-hour shift. The other advantages of this newly developed technique are its simplicity, low cost of instrumentation, easy data interpretation, and full portability

  20. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  1. Qualification of stainless steel for OTEC heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    LaQue, F.L.

    1979-01-01

    The history of the AL-6X alloy is reviewed and its credentials as a candidate for use as tubing in Ocean Thermal Energy Conversion Heat Exchangers are examined. Qualification is based on results of accelerated tests using ferric chloride for resistance to crevice corrosion and pitting, long-time crevice corrosion and pitting tests in natural sea water and anticipated resistance to attack by ammonia and mixtures of ammonia and sea water. Since the alloy has no natural resistance to fouling by marine organisms, it must be able to accomodate action to prevent fouling by chlorination or to remove it by mechanical cleaning techniques or appropriate chemical cleaning methods. The satisfactory behavior indicated by the various accelerated and long-time corrosion tests has been confirmed by excellent performance of several million feet of tubing in condensers in coastal power plants. Early evaluation tests demonstrated the need for proper heat treatment to avoid the presence of a sigma phase, which promoted severe pitting of some, but not all, specimens in tests in natural sea water. The available data qualify the AL-6X alloy as being a satisfactory alternate to titanium for tubes in OTEC heat exchangers.

  2. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G.; Decours, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l

  3. Numerical and Experimental Analysis on the Cavity Formation and Shrinkage for Investment Cast Alloy 738 4 mm-Thick Rectangular Tube

    International Nuclear Information System (INIS)

    Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu; Kim, Kyeong-Min; Lee, Yeong-Chul; Lee, Jung-Seok; Lee, Jae-Hyun

    2017-01-01

    Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.

  4. Numerical and Experimental Analysis on the Cavity Formation and Shrinkage for Investment Cast Alloy 738 4 mm-Thick Rectangular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu [Pusan National University, Busan (Korea, Republic of); Kim, Kyeong-Min; Lee, Yeong-Chul [Sung Il Turbine Co., Ltd., Busan (Korea, Republic of); Lee, Jung-Seok; Lee, Jae-Hyun [Changwon National University, Changwon (Korea, Republic of)

    2017-02-15

    Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.

  5. Horizontal beam tubes in FRM-II

    International Nuclear Information System (INIS)

    Coors, D.; Vanvor, D.

    2001-01-01

    The new research reactor in Garching FRM-II is equipped with 10 leak tight horizontal beam tubes (BT1 - BT10), each of them consisting of a beam tube structure taking an insert with neutron channels. The design of all beam tube structures is similar whereas the inserts are adapted to the special requirements of the using of each beam tube. Inside the reflector tank the beam tube structures are shaped by the inner cones which are made of Al-alloy with circular and rectangular cross sections. They are located in the region of maximum neutron flux (exception BT10), they are directly connected to the flanges of the reflector tank, their lengths are about 1.5 m (exception BT10) and their axes are directed tagentially to the core centre thus contributing to a low γ-noise at the experiments. (orig.)

  6. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  7. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  8. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu

    2014-01-01

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  9. Manufacturing of FeCrAl/Zr Dual Layer tube for its application to LWR Fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Lim, Do Wan; Jung, Yang Il; Kim, Hyun Gil; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many advanced materials such as MAX phases, Mo, SiC, and Fe-based alloys are being considered a possible candidate to substitute the Zr-based alloy cladding has been used in light water reactors. Among the proposed candidate materials, Fe-based alloy is one of the most promising candidates owing to its excellent formability, very good high strength, and corrosion resistance at high temperature. However, neutron cross section of FeCrAl alloy is much higher than that of existing Zr-based alloys. In this study, FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. The thickness of outer FeCrAl layer was varied from 50 to 250 μm but all the FeCrAl/Zr dual layer tube samples maintained its total thickness of 570 μm. For a detailed microstructural characterization of FeCrAl/Zr dual layer, polarized optical microscopy and scanning electron microscopy (SEM) study carried out and its mechanical property was measured by ring compression test. FeCrAl/Zr dual layer tube sample was successfully manufactured with good adhesion between both layers. Inter layer showing gradual element variation was observed at interface. Result obtained from simulated LOCA test indicates that FeCrAl/Zr dual layer tube may maintain its integrity during LOCA and its accident tolerance had greatly improved compared to that of Zr-based alloy.

  10. Bulge testing of copper and niobium tubes for hydroformed RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S., E-mail: kim.3237@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sumption, M.D. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Susner, M.A. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lim, H. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sandia National Laboratories, Albuquerque, NM (United States); Collings, E.W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States)

    2016-01-27

    The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to gain experience for the subsequent hydroforming of Nb tube into seamless superconducting radio frequency (SRF) cavities for high energy particle acceleration. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. In the final part of the study finite-element models (FEM) incorporating constitutive (stress–strain) relationships analytically derived from the tensile and bulge tests, respectively, were used to replicate the bulge test. As expected, agreement was obtained between the experimental bulge parameters and the FEM model based on the bulge-derived constitutive relationship. Not so for the FEM model based on tensile-test data. It is concluded that a constitutive relationship based on bulge testing is necessary to predict a material's performance under hydraulic deformation.

  11. Bulge testing of copper and niobium tubes for hydroformed RF cavities

    International Nuclear Information System (INIS)

    Kim, H.S.; Sumption, M.D.; Susner, M.A.; Lim, H.; Collings, E.W.

    2016-01-01

    The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to gain experience for the subsequent hydroforming of Nb tube into seamless superconducting radio frequency (SRF) cavities for high energy particle acceleration. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. In the final part of the study finite-element models (FEM) incorporating constitutive (stress–strain) relationships analytically derived from the tensile and bulge tests, respectively, were used to replicate the bulge test. As expected, agreement was obtained between the experimental bulge parameters and the FEM model based on the bulge-derived constitutive relationship. Not so for the FEM model based on tensile-test data. It is concluded that a constitutive relationship based on bulge testing is necessary to predict a material's performance under hydraulic deformation.

  12. The use of titanium for condenser tube bundles

    International Nuclear Information System (INIS)

    Dobrovitch, N.

    2002-01-01

    In a power plant, the condenser is a strategic heat exchanger with regards to the efficiency of the steam turbine and its reliability guarantees the performance and continuous operation of the plant. Until the early 1980's, copper alloys were routinely used in condenser tubes, thanks to their high heat transfer rates. Yet numerous problems arose from the use of this material, such as stress cracking corrosion, ammoniacal corrosion, fouling, erosion, dezincification, abrasion, erosion-corrosion,... and lately the problem of inadequateness of copper with nuclear steam generators (in nuclear power plant the abrasion problem of the copper alloy tubes created a deposit problem in the steam generator conducting to the replacement of all the condensers). The trend was then to consider new tube materials, such stainless steel and titanium, firstly for particular operating conditions and now for most of the projects, with several objectives, such as: 1) improve the reliability (titanium in particular can bring major improvements such as higher water velocities promoting better heat coefficients, excellent resistance to abrasion, erosion and corrosion thereby improving resistance to fouling; 2) find more cost-effective solutions. The first investment is higher but money is saved on maintenance costs and on time reliability of the material. Titanium tube manufacturing has greatly evolved for the last 20 years. Tubes are mostly welded tubes from ASTM SB 338 grade 1 made on a continuous manufacturing line. All manufacturing operations (welding, annealing, non-destructive testing) are fully automated to produce high quality tubes in large quantities. The most common way to attach tubes to a tubesheet is to roller expand them. (A.C.)

  13. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  14. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  15. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  16. Leak behavior of steam generator tube-to-tubesheet joints under creep condition: Experimental study

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Majumdar, Saurin; Kasza, Ken E.; Shack, William J.

    2013-01-01

    To address concerns regarding excessive leakage from throughwall cracks in steam generator tube-to-tubesheet joints under severe accident conditions, leak rate testing was conducted using tube-to-collar joint specimens. The tube interior and the interface between tube and collar (crevice) were pressurized independently using nitrogen gas. The leak rate through the crevice was almost zero when the specimens were pressurized at ∼500 °C; this low leak rate is attributed to thermal mismatch effects preventing much leakage. The near zero leak rate was maintained until the onset of large leakage at higher temperatures. The leak rate behavior after the onset of the large leakage was not much affected by the crevice length or heat-to-heat variation of Alloy 600 tubes. This suggests that once the crevice gap opens, the creep rate of the low alloy steel collar becomes dominant. Specimens with different tube diameters behaved essentially the same way. To simulate a flawed steam generator tube in the tubesheet, the crevice region was pressurized through a hole in the tube. This simulation resulted in essentially the same behavior as those specimens whose tubes and crevices were pressurized independently. Oxidation of low alloy steel collars in air tests can increase the flow resistance, and thus tests using nitrogen gas would provide more conservative leak rate data. Highlights: ► Leak rates were measured by using tube-to-collar joint specimens under creep condition. ► Leak rate through the joint interface was almost zero at ∼500 °C due to thermal mismatch. ► The near zero leak rate was maintained until the onset of large leakage at ∼680 °C. ► The leak behavior after the onset of the large leakage was not affected by hydraulic expansion length or tube heats.

  17. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  18. Characterization of BOR-60 Irradiated 14YWT-NFA1 Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-15

    Tubes of FCRD 14YWT-NFA1 Alloy were placed in the BOR-60 reactor and irradiated under a fast flux neutron environment to two conditions: 7 dpa at 360-370 °C and 6 dpa at 385-430 °C. Small sections of the tube were cut and sent to UC Berkeley for nanohardness testing and focused ion beam (FIB) milling of TEM specimens. FIB specimens were sent back to LANL for final FIB milling and TEM imaging. Hardness data and TEM images are presented in this report. This is the first fast reactor neutron irradiated information on the 14YWT-NFA1 alloy.

  19. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  20. Irradiation creep of dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-01-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al 2 O 3 , is very similar to the GlidCop trademark alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10 21 n/cm 2 (E>0.1 MeV), which corresponds to ∼3-5 dpa. The irradiation temperature ranged from 60-90 degrees C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of ±0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as ∼2 x 10 -9 s -1 . These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys

  1. Effects of microstructure and mechanical properties of alloys 600 an 690 on secondary side SCC

    International Nuclear Information System (INIS)

    Vaillant, F.; Buisine, D.; Prieux, B.; Fournel, J.C.; Gelpi, A.

    1996-03-01

    Modeling for secondary side cracking is needed to understand the behaviour of alloy 600 in plants. They require a comprehensive understanding of the various influences of the material properties on Stress Corrosion Cracking (SCC), based on field experience and laboratory data. In an attempt to predict the materials effects on SCC behaviour of new steam generators, laboratory corrosion data of alloy 690 were overviewed. French field experience with steam generators equipped with drilled tube support plates (TSPs) has demonstrated that the lower the yield stress (YS) and the carbon content, the higher the susceptibility t secondary side cracking of mill-annealed (MA) alloy 600. Also heat treated (700 deg. C x 16 h) tubing has been shown to have a much better resistance, but this excellent resistance could not be attributed only to the material properties. In laboratory environments, particularly in caustics, results have confirmed several of the above mentioned key findings on alloy 600: in caustic environments and under constant loading, tubes fabricated from MA alloy 600 with low YS have exhibited the worst resistance to initiation; YS was found to be the most accurate parameter to account for the behaviour of MA alloy 600. A heat treatment at 700 deg. C appeared to reduce the propagation rates of cracks in alloy 600. The best IGSCC resistance of alloy 690 was obtained for tubes with intergranular precipitation of carbides. TT (700 deg. C) significantly improved the propagation resistance of alloy 690; in acidic and neutral sulfate environments, IGSCC of alloy 600 was not strongly dependent on the microstructure in the MA condition, but sensitization was detrimental. When alloy 600 and particularly alloy 690 were thermally treated at 700 deg. C x 16 h, the resistance to IGSCC was significantly improved. Tests performed on alloy 690 have shown a better resistance to IGSCC initiation and propagation than alloy 600, in NaOH and acidic sulfate environments. (authors

  2. Effect of the environment on a SG tube fatigue cracking at Fessenheim unit 2

    International Nuclear Information System (INIS)

    Duisabeau, L.; Fargeas, E.; Miloudi, S.; Leduc, A.; Hollner, S.; Thebault, Y.; Legras, L.; Mansour, C.

    2015-01-01

    In 2008, a primary-to-secondary leak was detected at TSP n8 level, on the tube R12C62 of Fessenheim unit 2 SG3. The leak was associated to a high cycle fatigue crack that was confirmed two years after, when the tube was pulled out for destructive examination. It revealed on the one hand a highly oxidized fracture surface and on the other hand, that the fatigue crack was initiated on small IGA (Intergranular Attack) piles located at the OD (Outside Diameter) surface of the alloy 600MA tube. In order to take into account a potential environmental effect on the fatigue limit of alloy 600MA in mechanical calculations implemented to establish the root cause failure analysis, several investigations were conducted to evaluate the environment at the tube/tubesheet interstice. To achieve this goal, a multi-scale analysis has been performed. It includes a global analysis of the corrosion damage of the SG, the SG chemistry monitoring, an evaluation of the pH in confined areas with MulteQ calculations based on hide out returns, as well as oxides characterization on the tube by Transmission Electronic Microscopy. All methods converge to a slightly neutral pH with pollutants such as copper, lead and sulfates leading to the conclusion that the fatigue limit of alloy 600MA has not been reduced by the chemical environment. All these chemical elements are known to affect in a certain extent the corrosion resistance of the alloy 600 in the secondary water. If all these pollutants can be detected during the global monitoring of the plant during operation or outage (blow down, hideout returns, feed water and sludge chemical analysis), transmission electronic microscopy offers a unique technique for better understanding how these pollutants may react in confined area, corroded area or free span oxides in the alloy 600 and thus for a better understanding of the corrosion mechanism of nickel based alloys in the secondary side

  3. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolmachova, G.N.; V'yugov, P.N.

    2014-01-01

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  4. Deuterium absorption in CANDU Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Ploc, R.A.; McRae, G.A.

    1999-12-01

    Corrosion of CANDU Zr-2.5%Nb pressure tubes in heavy water results in the formation of an oxide film and the absorption of deuterium by the alloy. If deuterium concentrations are allowed to exceed the terminal solid solubility of the alloy, brittle deuterides can form, thereby limiting the service life of a component. In CANDU pressure tubes, ingress rates are largely determined by the metastable β-Zr that is present as a thin layer encasing the predominant α-Zr grains (approximately 90% by volume). The distribution and continuity of the corroded β-phase in the oxide provides a pervasive web for the development of interconnected porosity from the free surface to the oxide/metal interface. Changing the distribution of the β-phase in the alloy changes the nature of the oxide porosity, a technique that can be used to reduce deuterium ingress rates. (author)

  5. Deuterium absorption in CANDU Zr-2.5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ploc, R.A.; McRae, G.A

    1999-12-01

    Corrosion of CANDU Zr-2.5%Nb pressure tubes in heavy water results in the formation of an oxide film and the absorption of deuterium by the alloy. If deuterium concentrations are allowed to exceed the terminal solid solubility of the alloy, brittle deuterides can form, thereby limiting the service life of a component. In CANDU pressure tubes, ingress rates are largely determined by the metastable {beta}-Zr that is present as a thin layer encasing the predominant {alpha}-Zr grains (approximately 90% by volume). The distribution and continuity of the corroded {beta}-phase in the oxide provides a pervasive web for the development of interconnected porosity from the free surface to the oxide/metal interface. Changing the distribution of the {beta}-phase in the alloy changes the nature of the oxide porosity, a technique that can be used to reduce deuterium ingress rates. (author)

  6. Influence of hydrogen content on impact toughness of Zr-2.5Nb pressure tube alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N., E-mail: rnsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Viswanathan, U.K.; Kumar, Sunil; Satheesh, P.M.; Anantharaman, S. [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Stahle, P. [Division of Solid Mechanics, Lund University/LTH, SE22100 Lund (Sweden)

    2011-07-15

    Highlights: > For the first time impact behaviour of Zr-2.5Nb pressure tube material used in Indian Pressurized Heavy Water Reactor (IPHWR) as a function of hydrogen content and temperature is being reported. > The critical hydrogen concentration to cause low energy fracture at 25 and 200 deg. C is suggested. > The impact behaviour is rationalized in terms of hydrogen content, test temperature, microstructural features and state of stress ahead of a crack. - Abstract: Influence of hydrogen content on the impact toughness of Zr-2.5% Nb alloy was examined by carrying out instrumented drop weight tests in the temperature range of 25-250 deg. C using curved Charpy specimens fabricated from unirradiated pressure tubes of Indian Pressurized Heavy Water Reactor (IPHWR). Hydrogen content of the samples was between 10 and 170 ppm by weight (wppm). Sharp ductile-to-brittle-transition behaviour was demonstrated by hydrided materials. The temperature for the onset of transition increased with the increase in the hydrogen content of the specimens. The fracture surfaces of unhydrided specimen exhibited ductile fracture caused by micro void coalescence and tear ridges at lower temperatures and by fibrous fracture at intermediate and at higher temperatures. Except for the samples tested at the upper shelf energy levels, the fracture surfaces of all hydrided samples were suggestive of hydride assisted failure. In most cases the transverse cracks observed in the fracture path matched well with the hydride precipitate distribution and orientation.

  7. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  8. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    International Nuclear Information System (INIS)

    Singh, Abhay Kumar; Kim, JunHo; Park, Jong Tae; Sangunni, K.S.

    2015-01-01

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se 55 Te 25 Ge 20, Se 55 Te 25 Ge 20 + 0.025% multi walled carbon nano tubes and Se 55 Te 25 Ge 20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se 55 Te 25 Ge 20 ) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids

  9. A seamless ubiquitous emergency medical service for crisis situations.

    Science.gov (United States)

    Lin, Bor-Shing

    2016-04-01

    In crisis situations, a seamless ubiquitous communication is necessary to provide emergency medical service to save people's lives. An excellent prehospital emergency medicine provides immediate medical care to increase the survival rate of patients. On their way to the hospital, ambulance personnel must transmit real-time and uninterrupted patient information to the hospital to apprise the physician of the situation and provide options to the ambulance personnel. In emergency and crisis situations, many communication channels can be unserviceable because of damage to equipment or loss of power. Thus, data transmission over wireless communication to achieve uninterrupted network services is a major obstacle. This study proposes a mobile middleware for cognitive radio (CR) for improving the wireless communication link. CRs can sense their operating environment and optimize the spectrum usage so that the mobile middleware can integrate the existing wireless communication systems with a seamless communication service in heterogeneous network environments. Eventually, the proposed seamless mobile communication middleware was ported into an embedded system, which is compatible with the actual network environment without the need for changing the original system architecture. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Development of low temperature solid state joining technology of dissimilar for nuclear heat exchanger tube components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    By conventional fusion welding process (TIG), a realization of reliable and sound joints for the nuclear heat exchanger components is very difficult, especially for the parts comprising of the dissimilar metal couples (Ti-STS, Ti-Cu alloy etc.). This is mainly attributed to the formation of brittle intermetallics (Ti{sub x}Cu{sub y}, Ti{sub x}Fe{sub y}, Ti{sub x}Ni{sub y} etc.) and wide difference in physical properties. Moreover, it usually employs very high thermal input, so making it difficult to obtain sound joints due to generations of high residual stresses and degradation of the adjacent base metals, even for similar metal combinations. In this project, the low temperature solid-state joining technology was established by developing new alloy fillers, e.g. the multi-component eutectic based alloys or amorphous alloys, and thereby lowering the joining temperature down to {approx}800 .deg. C without affecting the structural properties of base metals. Based on a low temperature joining, the interlayer engineering technology was then developed to be able to eliminate the brittleness of the joints for strong Ti-STS dissimilar joints, and the diffusion brazing technology of Ti-Ti with a superior joining strength and corrosion-resistance comparable to those of base metal were developed. By using those developed technologies, the joining procedures feasible for the heat exchanger components were finally established for the dissimilar metal joints including Ti tube sheet to super STS tube, Ti tube sheet to super STS tube sheet, and the joints of the Ti tube to Ti tube sheet

  11. A novel Fe–Cr–Nb matrix composite containing the TiB_2 neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    International Nuclear Information System (INIS)

    Litwa, Przemysław; Perkowski, Krzysztof; Zasada, Dariusz; Kobus, Izabela; Konopka, Gustaw; Czujko, Tomasz; Varin, Robert A.

    2016-01-01

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB_2 and a small quantity of Y_2O_3 ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB_2 particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB_2 particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB_2 neutron absorbing ceramic was mechanically

  12. Predicting tube repair at French nuclear steam generators using statistical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, C., E-mail: cedric.mathon@edf.fr [EDF Generation, Basic Design Department (SEPTEN), 69628 Villeurbanne (France); Chaudhary, A. [EDF Generation, Basic Design Department (SEPTEN), 69628 Villeurbanne (France); Gay, N.; Pitner, P. [EDF Generation, Nuclear Operation Division (UNIE), Saint-Denis (France)

    2014-04-01

    Electricité de France (EDF) currently operates a total of 58 Nuclear Pressurized Water Reactors (PWR) which are composed of 34 units of 900 MWe, 20 units of 1300 MWe and 4 units of 1450 MWe. This report provides an overall status of SG tube bundles on the 1300 MWe units. These units are 4 loop reactors using the AREVA 68/19 type SG model which are equipped either with Alloy 600 thermally treated (TT) tubes or Alloy 690 TT tubes. As of 2011, the effective full power years of operation (EFPY) ranges from 13 to 20 and during this time, the main degradation mechanisms observed on SG tubes are primary water stress corrosion cracking (PWSCC) and wear at anti-vibration bars (AVB) level. Statistical models have been developed for each type of degradation in order to predict the growth rate and number of affected tubes. Additional plugging is also performed to prevent other degradations such as tube wear due to foreign objects or high-cycle flow-induced fatigue. The contribution of these degradation mechanisms on the rate of tube plugging is described. The results from the statistical models are then used in predicting the long-term life of the steam generators and therefore providing a useful tool toward their effective life management and possible replacement.

  13. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  14. Effect of texture on creep deformation behavior of Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Guguloth, Krishna; Swaminathan, J.; Mitra, Rahul; Ghosh, R.N.; Singh, R.N.; Chakravartty, J.K.

    2016-01-01

    Zr-2.5%Nb alloys are extensively used as high temperature pressure tubes in nuclear reactor. Therefore creep behavior of this alloy is of considerable importance. The paper presents creep strain-time plots on two sets of specimens made from two as received pressure tubes having different diameters. These tubes were reported to have undergone different processing routes; both tubes were autoclaved at the same temperature in the steam atmosphere. A comparison of the creep strain-time plots of the two sets of specimen under identical test conditions showed a marked difference. The chemical composition and the microstructure of the two sets of samples were also found to be similar. Therefore X-ray diffraction patterns were taken from the two tubes. The ratio of intensity of two prominent reflections from 0002 and 1120 planes of alpha Zr in the case of 90mm tube was found to be 1.79; whereas that from the 110mm tube was 0.25. This suggests that in the case of 110mm tube most of the basal planes were less favorably oriented with respect to the loading axis. This is the reason why creep strength of 110mm tube was found to be higher. The paper also describes how the effect of texture can be incorporated in evaluating the creep behavior of Zr-Nb alloy. This suggests that a relatively larger volume of creep test data on Zr-2.5Nb pressure tube is necessary to account for the effect texture so that a reliable estimate of its creep life could be obtained. (author)

  15. Seamless service: maintaining momentum.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  16. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  17. A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

    Directory of Open Access Journals (Sweden)

    HANSUB CHUNG

    2013-08-01

    Full Text Available The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between 4th and 9th TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the 8th refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably

  18. Bromine-quenched high temperature G-M tube with passivated cathode

    International Nuclear Information System (INIS)

    Mitrofanov, N.

    1975-01-01

    A bromine doped self-quenching Geiger-Mueller tube having an operational life expectancy in excess of 1,200 hours at a temperature of 315 0 C is described. The tube comprises a passivated metal coated cathode which is conditioned or aged for operation at room temperature, thus obviating the necessity of thermally cycling the tube at progressively elevated temperatures. Useful metal coatings for the cathode include chromium, platinum, and nickel-copper alloys deposited in a layer less than about 1 mil thick. A method for passivating the metal coated cathode and subsequently conditioning the tube and its contents is disclosed. (auth)

  19. Control rod guide tube of nuclear reactor

    International Nuclear Information System (INIS)

    Suda, Yoshitaka; Ito, Kenji; Matsumoto, Kunio.

    1994-01-01

    Zr having a residual tensile stress of 3 to 10kg/mm 2 in a circumferential direction is used for the main ingredient of a control guide tube of a nuclear reactor. For this purpose, an appropriate correction method such as a roll-correction, tension-correction and press-correction method is applied to an existent Zr-base alloy tube with no substantial residual stress. If the residual tensile stress in the circumferential direction is smaller than 3kg/mm 2 , an effect sufficient to suppress irradiation growth is not obtainable, if it exceeds 10kg/mm 2 , dimensional changes, cracks or the like occurs locally since the wall thickness of the control rod guide tube is small and, accordingly, this often results in failed products as the control guide tube. (N.H.)

  20. Reactor fuel cladding tube with excellent corrosion resistance and method of manufacturing the same

    International Nuclear Information System (INIS)

    Okuda, Takanari; Kanehara, Mitsuo; Abe, Katsuhiro; Nishimura, Takashi.

    1995-01-01

    The present invention provides a fuel cladding tube having an excellent corrosion resistance and thus a long life, and a suitable manufacturing method therefor. Namely, in the fuel cladding tube, the outer circumference of an inner layer made of a zirconium base alloy is coated with an outer layer made of a metal more corrosion resistant than the zirconium base alloy. Ti or a titanium alloy is suitable for the corrosion resistant metal. In addition, the outer layer can be coated by a method such as vapor deposition or plating, not limited to joining of the inner layer material and the outer layer material. Specifically, a composite material having an inner layer made of a zirconium alloy coated by the outer material made of a titanium alloy is applied with hot fabrication at a temperature within a range of from 500 to 850degC and at a fabrication rate of not less than 5%. The fabrication method includes any of extrusion, rolling, drawing, and casting. As the titanium-base alloy, a Ti-Al alloy or a Ti-Nb alloy containing Al of not more than 20wt%, or Nb of not more than 20wt% is preferred. (I.S.)

  1. Scalability Optimization of Seamless Positioning Service

    Directory of Open Access Journals (Sweden)

    Juraj Machaj

    2016-01-01

    Full Text Available Recently positioning services are getting more attention not only within research community but also from service providers. From the service providers point of view positioning service that will be able to work seamlessly in all environments, for example, indoor, dense urban, and rural, has a huge potential to open new markets. However, such system does not only need to provide accurate position estimates but have to be scalable and resistant to fake positioning requests. In the previous works we have proposed a modular system, which is able to provide seamless positioning in various environments. The system automatically selects optimal positioning module based on available radio signals. The system currently consists of three positioning modules—GPS, GSM based positioning, and Wi-Fi based positioning. In this paper we will propose algorithm which will reduce time needed for position estimation and thus allow higher scalability of the modular system and thus allow providing positioning services to higher amount of users. Such improvement is extremely important, for real world application where large number of users will require position estimates, since positioning error is affected by response time of the positioning server.

  2. Method of and apparatus for use in joining tubular components and tube assemblies made thereby

    International Nuclear Information System (INIS)

    Percival, S.R.

    1979-01-01

    A method of joining difficult to weld materials involves the forming of a rolled joint. A particular application is the joining of zirconium alloy calandria tubes to stainless steel tube-plates in a SGHWR. (UK)

  3. Feasibility of Shape-Memory Ni/Ti Alloy Wire Containing Tube Elevators for Transcrestal Detaching Maxillary Sinus Mucosa: Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Yanfeng Li

    2016-12-01

    Full Text Available Background: Osteotome sinus floor elevation is a less invasive approach to augment an insufficient alveolar bone at the posterior maxilla for dental implantation. However, this approach has some limitations due to the lack of sinus lift tools available for clinical use and the small transcrestal access to the maxillary sinus floor. We recently invented shape-memory Ni/Ti alloy wire containing tube elevators for transcrestal detaching maxillary sinus mucosa, and developed goat ex vivo models for direct visualizing the effectiveness of detaching sinus mucosa in real time during transcrestal maxillary sinus floor elevation. Methods: We evaluated our invented elevators, namely elevator 012 and elevator 014, for their effectiveness for transcrestal detaching maxillary sinus mucosa using the goat ex vivo models. We measured the length of sinus mucosa detached in mesial and distal directions or buccal and palatal directions, and the space volume created by detaching maxillary sinus mucosa in mesial, distal, buccal and palatal directions using the invented elevators. Results: Elevator 012 had a shape-memory Ni/Ti alloy wire with a diameter of 0.012 inch, while elevator 014 had its shape-memory Ni/Ti alloy wire with a diameter of 0.014 inch. Elevator 012 could detach the goat maxillary sinus mucosa in the mesial or distal direction for 12.1±4.3 mm, while in the buccal or palatal direction for 12.5±6.7 mm. The elevator 014 could detach the goat maxillary sinus mucosa for 23.0±4.9 mm in the mesial or distal direction, and for 19.0±8.1 mm in the buccal or palatal direction. An average space volume of 1.7936±0.2079 ml was created after detaching the goat maxillay sinus mucosa in both mesial/distal direction and buccal/palatal direction using elevator 012; while the average space volume created using elevator 014 was 1.8764±0.2366 ml. Conclusion: Both two newly invented tube elevators could effectively detach the maxillary sinus mucosa on the goat ex

  4. Feasibility of Shape-Memory Ni/Ti Alloy Wire Containing Tube Elevators for Transcrestal Detaching Maxillary Sinus Mucosa: Ex Vivo Study.

    Science.gov (United States)

    Li, Yanfeng; Wang, Fuli; Hu, Pin; Fan, Jiadong; Han, Yishi; Liu, Bin; Liu, Tao; Yang, Chunhao; Gu, Xiangmin

    2016-01-01

    Osteotome sinus floor elevation is a less invasive approach to augment an insufficient alveolar bone at the posterior maxilla for dental implantation. However, this approach has some limitations due to the lack of sinus lift tools available for clinical use and the small transcrestal access to the maxillary sinus floor. We recently invented shape-memory Ni/Ti alloy wire containing tube elevators for transcrestal detaching maxillary sinus mucosa, and developed goat ex vivo models for direct visualizing the effectiveness of detaching sinus mucosa in real time during transcrestal maxillary sinus floor elevation. We evaluated our invented elevators, namely elevator 012 and elevator 014, for their effectiveness for transcrestal detaching maxillary sinus mucosa using the goat ex vivo models. We measured the length of sinus mucosa detached in mesial and distal directions or buccal and palatal directions, and the space volume created by detaching maxillary sinus mucosa in mesial, distal, buccal and palatal directions using the invented elevators. Elevator 012 had a shape-memory Ni/Ti alloy wire with a diameter of 0.012 inch, while elevator 014 had its shape-memory Ni/Ti alloy wire with a diameter of 0.014 inch. Elevator 012 could detach the goat maxillary sinus mucosa in the mesial or distal direction for 12.1±4.3 mm, while in the buccal or palatal direction for 12.5±6.7 mm. The elevator 014 could detach the goat maxillary sinus mucosa for 23.0±4.9 mm in the mesial or distal direction, and for 19.0±8.1 mm in the buccal or palatal direction. An average space volume of 1.7936±0.2079 ml was created after detaching the goat maxillay sinus mucosa in both mesial/distal direction and buccal/palatal direction using elevator 012; while the average space volume created using elevator 014 was 1.8764±0.2366 ml. Both two newly invented tube elevators could effectively detach the maxillary sinus mucosa on the goat ex vivo sinus models. Moreover, elevator 014 has advantages over

  5. Thin-walled large-diameter zirconium alloy tubes in CANDU reactors

    International Nuclear Information System (INIS)

    Price, E.G.; Richinson, P.J.

    1978-08-01

    The requirements of the thin-walled large-diameter Zircaloy-2 tubing used in CANDU reactors are reviewed. Strength, residual stress patterns, texture and prior deformation contribute to the stability of these tubes. The extent to which the present manufacturing route meets these requirements is discussed. (author)

  6. Progressive degradation of alloy 690 and the development of a significant improvement in alloy 800CR

    International Nuclear Information System (INIS)

    Staehle, Roger W.; Arioka, Koji; Tapping, Robert

    2015-01-01

    The present most widely used alloys for tubing in steam generators and structural materials in water cooled reactors are Alloy 690 and Alloy 800. However, both alloys, while improved over Alloy 600 may not meet the needs of longer range applications in the range of 80-100 years. Alloy 690 sustains damage resulting from the formation of cavities at grain boundaries which eventually cover about 50% of the area of the grain boundaries with the remainder covering being covered with carbides. The cavities seem to nucleate on the carbides leaving the grain boundaries a structure of cavities and carbides. Such a structure will lead the Alloy 690 to fail completely. Normal Alloy 800 does not produce such cavities and probably retains a large amount of its corrosion resistance but does sustain progressive SCC at low rate. A new alloy, 800CR, has been developed in a collaboration among Arioka, Tapping, and Staehle. This alloy is based on a Cr composition of 23.5-27% with the remainder retaining the previous Alloy 800 composition. 800CR sustains a crack velocity about 100 times less than Alloy 690 and a negligible rate of initiation. The 800CR, alloy is now seeking a patent. (authors)

  7. Effect of lead and silicon on localized corrosion of Alloy 800 in steam generator crevice environments

    International Nuclear Information System (INIS)

    Lu, Y.C.; Wright, M.D.; Cleland, R.D.

    2001-09-01

    The Alloy 800 tubes used in CANDU 6 steam generators have not experienced significant corrosion damage to date, which may be attributed to successful water chemistry control strategies. However, it is known that Alloy 800, like other steam generator (SG) tubing materials, is not immune to corrosion, especially pitting, under some plausible but off-specification operating scenarios. Electrochemical measurements provide information on corrosion susceptibility and rate, which are known to be a function of water chemistry. Using laboratory data in combination with chemistry monitoring and diagnostic software it is possible to assess the impact of plant operating conditions on SG tube corrosion for plant life management (PLIM). In this context, this paper discusses the results of electrochemical measurements made to elucidate the corrosion behaviour of Alloy 800 SG tubes under conditions simulating those plausible in SG crevices. In addition to crevice pH, the influence of PbO, acting alone or in combination with SiO 2 , on localized corrosion such as pitting or stress corrosion-cracking (SCC) was determined. Possible transient chemistry regimes that could significantly shorten expected tube lifetimes have been identified from the data analysis. Of equal significance, the results also support the position that under normal, near neutral pH and low dissolved oxygen conditions, pitting and cracking of Alloy 800 steam generator tubing will not be initiated. (author)

  8. Development of Alloy 718 tubular product for nuclear-reactor internals

    International Nuclear Information System (INIS)

    1981-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides mixing and flow direction of the core outlet flow. Alloy 718 tubes are the major components used in the UIS to provide this flow direction. The UIS is located directly above the reactor core and is exposed to a severe environment. This environment consists of high temperature sodium, alternating temperatures induced by mixing high temperature core assembly outlet flow with cooler core assembly outlet flow and rapid changes in temperature of the core outlet flow. The paper presents the UIS configuration, functions and environmental conditions that led to the selection of Alloy 718 as the material used to protect the basic UIS structure and to provide flow direction. The use of Alloy 718 is derived from the technology produced from the Department of Energy sponsored development programs. Alloy 718 tubes are made by a roll-extrusion process. The paper describes the tube fabrication process, the development of a finish sanding procedure and the results of high temperature thermal cycle testing. The high temperature thermal cycle testing generates peak strains on the metal surfaces, where the surface effects have a maximum influence on the fatigue strength. 9 figs., 2 tabs

  9. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  10. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castano, M.L.; Garcia, M.S.

    1996-01-01

    Alloy 600 steam generator tubing has shown a high susceptibility to stress corrosion degradation at the operation conditions of pressurized water reactors. Several contaminants, such as lead, have been postulated as being responsible for producing the secondary side stress corrosion cracking that has occurred mainly at the location where these contaminants can concentrate. An extensive experimental work has been carried out in order to better understand the effects of lead on the stress corrosion cracking susceptibility of steam generator tube materials, namely Alloys 600, 690 and 800. This paper presents the experimental work conducted with a view to determining the influence of lead oxide concentration in AVT (all volatile treatment) conditions on the stress corrosion resistance of nickel alloys used in the fabrication of steam generator tubing. (orig.)

  11. PWSCC Potential on the Drain Tubes of WEC Model 51F Steam Generators in Domestic Plants

    International Nuclear Information System (INIS)

    Chang, B. I.; Song, M. S.; Yoon, K. S.; Kim, I. Y.

    2009-01-01

    The drain couplings of Westinghouse Model 51F steam generators that had been operated in the domestic Nuclear Power Plants were modified and repaired in accordance with the corrective action of replacing the existing Alloy 600 weld build-up with Alloy 690(Alloy 52/152) weld build-up in order to increase its resistance to primary water stress corrosion cracking (PWSCC). The drain tube made of alloy 600, however, was not replaced and left susceptible to the PWSCC. Among the environmental, metallurgical and mechanical factors controlling a susceptibility to the PWSCC, it is believed that tensile stresses play an important role. The objective of this study is to conservatively estimate stress state of the drain tube during fabrication and when exposed to normal plant operations, and to investigate its potential for the PWSCC

  12. PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli

    DEFF Research Database (Denmark)

    Liu, Yilan; Yang, Maohua; Yan, Daojiang

    2016-01-01

    Efficiency and fidelity are the key obstacles for genome editing toolboxes. In the present study, a PCR-based tandem repeat assisted genome editing (TRAGE) method with high efficiency and fidelity was developed. The design of TRAGE is based on the mechanism of repair of spontaneous double...... for seamlessly deleting, substituting and inserting targeted genes using PCR products. The effects of different manipulations including sucrose addition time, subculture times in LB with sucrose and stages of inoculation on the efficiency were investigated. With our recommended procedure, seamless excision...... of cat-sacB cassette can be realized in 48 h efficiently. We believe that the developed method has great potential for seamless genome editing in E. coli....

  13. Standard practice for examination of seamless, Gas-Filled, pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of seamless pressure vessels (tubes) of the type used for distribution or storage of industrial gases. 1.2 This practice requires pressurization to a level greater than normal use. Pressurization medium may be gas or liquid. 1.3 This practice does not apply to vessels in cryogenic service. 1.4 The AE measurements are used to detect and locate emission sources. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1. Note 1—Shear wave, angle beam ultrasonic examination is commonly used to establish circumferential position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standa...

  14. Seamless user experiences in a brand new library

    KAUST Repository

    Vijayakumar, J.K.

    2012-01-01

    In order to provide seamless user experiences, the brand new libraries are far better positioned. They do not have to manage much in print, at least for the journal section, but huge electronic collection accessible via Internet. They do not worry

  15. An experimental study of ECT for fin-type copper alloy tubes

    International Nuclear Information System (INIS)

    Lee, Hyung Joon; Lee, Jeong Soon; Sung, Je Joong; Park, Cheon Woong; Suh, Dong Man; Yu, Taek In

    2002-01-01

    Eddy current detecting probes with inner and encircling coils were designed for the fin-type tubes that have uneven outer and inner surface to enhance the efficiency of heat emission. As the uneven surface of them, it is difficult to detect flaws in the tubes by eddy current test. In this paper, standard and artificial specimens with flaws for the different types of the tubes were manufactured. Eddy current test was performed with the designed probes, which have inner and encircling coils, for the prepared specimens. From the signals of the eddy current detecting probes, the phase and amplitude variation were analyzed and the best conditions of the flaw detection for the tubes were found.

  16. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  17. Secondary side IGA/IGSCC of SG alloys 600, 690 and 800 : R and D program in EDF Laboratories

    International Nuclear Information System (INIS)

    Vaillant, F.; DeBouvier, O.; Bouchacourt, M.; Stutzmann, A.; Lemaire, P.

    1998-01-01

    Many steam generators (SGs) equipped with 'mill-annealed' (MA) Alloy 600 tubings suffer significant secondary side corrosion. Until now, no degradation has been observed with either Alloy 600 TT or Alloy 690 for new SGs. The understanding of IGA/SCC of Alloy 600 MA in plants and the development of predictive models have become an important challenge to assess the life span and to reduce the maintenance costs of SGs. As degradation occurs in crevice environments which are varied and little known, EDF has undertaken an important program to improve the knowledge of crevice environments which lead to cracking. Corrosion tests are performed on Alloys 600 MA (also on 600 TT) in various environments in order to reproduce the deposits and the cracking observed on pulled tubes in laboratory conditions. Other corrosion tests are conducted in environments containing some pollutants identified by analyses of secondary water after hideout-return (sulfates) or oxidizing compounds : the influences of pH and potential are evaluated on Alloy 600 (MA or TT) and also on Alloys 690 and 800. A comprehensive model is proposed using IGA/SCC results of Alloy 600 in caustic environments. The thermomechanical parameters of the tubes and the field environmental conditions, introduced in the model, confirm some important features of SGs tubings. The model will be improved to include other detrimental environments. It will provide a useful tool to predict the life span (then steam generator replacements) and to optimize the maintenance policy of SGs still equipped with Alloys 600 MA and particularly with 600 TT (frequency and best locations of inspections). Margins will also be assessed for new SGs equipped with Alloy 690, and a comparison will be performed with Alloy 800. (author)

  18. "Seamlessly" Learning Chinese: Contextual Meaning Making and Vocabulary Growth in a Seamless Chinese as a Second Language Learning Environment

    Science.gov (United States)

    Wong, Lung-Hsiang; King, Ronnel B.; Chai, Ching Sing; Liu, May

    2016-01-01

    Second language learners are typically hampered by the lack of a natural environment to use the target language for authentic communication purpose (as a means for "learning by applying"). Thus, we propose MyCLOUD, a mobile-assisted seamless language learning approach that aims to nurture a second language social network that bridges…

  19. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    International Nuclear Information System (INIS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-01-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225x60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  20. Mobile Seamless Technology Enhanced CSL Oral Communication

    Science.gov (United States)

    Lan, Yu-Ju; Lin, Yen-Ting

    2016-01-01

    The current study aimed at investigating how mobile seamless technology can be used to enhance the pragmatic competence of learners of Chinese as a second language (CSL). 34 overseas CSL learners participated in this study. They were randomly assigned into two groups: the classroom group, executing language tasks in fake contexts in a traditional…

  1. Seamless Synthetic Aperture Radar Archive for Interferometry Analysis

    Science.gov (United States)

    Baker, S.; Baru, C.; Bryson, G.; Buechler, B.; Crosby, C.; Fielding, E.; Meertens, C.; Nicoll, J.; Youn, C.

    2014-11-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived interferometric SAR (InSAR) data products. A unified application programming interface (API) has been created to search the SAR archives at ASF and UNAVCO, 30 and 90-m SRTM DEM data available through OpenTopography, and tropospheric data from the NASA OSCAR project at JPL. The federated query service provides users a single access point to search for SAR granules, InSAR pairs, and corresponding DEM and tropospheric data products from the four archives, as well as the ability to search and download pre-processed InSAR products from ASF and UNAVCO.

  2. Single-Phase Microgrid with Seamless Transition Capabilities between Modes of Operation

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2015-01-01

    with the secondary control loops that are used to synchronize the microgrid as a single unit to the grid. Simulation results are given that show the seamless transitions between the two modes without any disconnection times for the CC-VSIs and VC-VSIs connected to the microgrid.......Microgrids are an effective way to increase the penetration of DG into the grid. They are capable of operating either in grid-connected or in islanded mode thereby increasing the supply reliability for the end user. This paper focuses on achieving seamless transitions from islanded to grid-connected...

  3. Titanium oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Hendrix, W.; Vandermeulen, W.

    1980-04-01

    The available data on the DT02 and DT3911 ferritic dispersion strengthened alloys, developed at SCK/CEN, Mol, Belgium, are presented. Both alloys consist of Fe - 13% Cr - 1.5% Mo to which 2% TiO 2 and about 3.5% Ti are added (wt.%). Their main use is for the fabrication of fast breeder reactor cladding tubes but their application as turbine blade material is also envisaged for cases where high damping is important. (auth.)

  4. Methodology to translate policy assessment problems into scenarios: the example of the SEAMLESS integrated framework

    NARCIS (Netherlands)

    Therond, O.; Belhouchette, H.; Janssen, S.J.C.; Louhichi, K.; Ewert, F.; Bergez, J.E.; Wery, J.; Heckelei, T.; Olsson, J.A.; Leenhardt, D.; Ittersum, van M.K.

    2009-01-01

    Scenario-based approaches in environmental and policy assessment studies are increasingly applied within integrated assessment and modelling frameworks. The SEAMLESS project develops such an integrated framework (SEAMLESS-IF) aiming to assess, ex-ante, impacts of alternative agro-environmental

  5. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Influence of compressive load conditions and thickness on the two-way shape memory behavior in tube-shaped NiTi alloy

    International Nuclear Information System (INIS)

    Yoo, Young Ik; Shin, Dong Kil; Lee, Jung Ju; Lee, Chang Ho

    2012-01-01

    The two-way shape memory behavior of Ni 55 Ti 45 was investigated to develop a tube-shaped NiTi actuator which could generate a large amount of force. The two-way shape memory effect (TWSME) was induced by thermal cycling under various amounts of constant compressive stress. Six specimens with the same outer diameter and different thickness were used to apply the TWSME to an actuator. A fast saturation tendency of the recovery strain was shown through training at each level of constant stress, after which the two-way shape memory strain was quantitatively measured during thermal cycling for each level of applied stress. From the results, the maximum two-way strain value was obtained after training at a constant level of stress and then decreased thereafter. In addition, the two-way strain was found to depend on the thickness of the tube-shaped specimen. All specimens could be divided into two groups depending on the rate of increase in the two-way strain. After two-way strain was obtained, the two-way recovery stress was measured to verify the performance of the sample as an actuator. The results showed that the two-way recovery stress behavior was similar to the two-way strain; if the optimal thickness of the specimen and the stress applied for training are used for the development of the TWSME, tube-shaped NiTi using the TWSME can replace one-way shape memory alloys. (paper)

  7. Manufacturing process optimization of nuclear fuel guide tube using HANA alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Choi, B. K.; Park, J. Y.; Kim, H. G.; Jeong, Y. I.; Park, D. J.; Lim, J. K.

    2010-08-01

    From this project, the advanced manufacturing parameters which were contained of heat-treatment, reduction rate, and new process (2 step) were considered to increase the guide tube performance of HANA material. It was obtained that the strength and corrosion resistance of HANA material were improved by applying the improve manufacturing parameters when compared to the commercial guide tube material. · Manufacturing parameter study to increase mechanical property -Tensile strength increase of 30% by manufacturing parameter setup when compared to the guide tube specification · Manufacturing parameter study to decrease irradiation growth -Theoretical study of the texture effect on sample specimens related to the irradiation growth · Manufacturing parameter study to increase corrosion resistance -Corrosion resistance increase of 30% by manufacturing parameter setup when compared to the commercial guide tube

  8. Characterisation of Oxides Formed on the Internal Surface of Steam Generator Tubes in Alloy 690 Corroded in the Primary Environment of Pressurised Water Reactors

    International Nuclear Information System (INIS)

    Carrette, Florence; Leclercq, Stephanie; Legras, Laurent

    2012-09-01

    Since the end of the 1990s, EDF R and D has been studying the phenomenon of corrosion product release from Steam Generator tubes in order to minimize the Source Term of the contamination and radiation exposure during operation and maintenance of Pressurised Water Reactors. With the BOREAL loop, release tests in primary water at 325 deg. C were performed on various Steam Generator tubes made of alloy 690. The experimental conditions of these tests (chemistry, temperature and hydraulics) were the same for all the tests but the results showed various behaviours towards release. For some tubes, the release was weak whereas for others, it was higher; the release rate of the tubes decreased more or less quickly with time. In order to explain these results, the internal surface of the tubes was characterised before and after the tests. Before the tests, various parameters were studied; the main parameters were the roughness, the impurities, the grain size and the cold work. The results demonstrated that it was not easy to quantify the influence of each parameter on release and to differentiate the tubes. A new parameter was proposed to characterise the internal extreme surface of SG tubes: the surface nano-hardness by nano-indentation measurements. The tubes were also observed and analysed by SEM, (X)TEM. Data obtained by (X)TEM revealed differences of the surface state (layer of perturbed microstructure, density of dislocations, grain size, impurities, initial oxide,...). After the tests, the oxides formed on the internal surface and the underlying material of the samples were characterised by SEM, (X)TEM and SIMS. The examinations showed various types of oxides. For some tubes, a duplex oxide scale was identified, for the others, only one oxide scale was observed. For equivalent durations of corrosion, the thickness of the enriched - chromium oxide layer can vary from 5 nm to 100 nm and the chemical composition can be different. The examinations of the underlying

  9. N Reactor pressure tube 1350 postirradiation examination

    International Nuclear Information System (INIS)

    Cook, D.J.

    1977-01-01

    The N Reactor pressure tubes were fabricated from Zircaloy-2 primarily due to the excellent corrosion resistance, low neutron absorption, and high strength properties of this alloy. Irradiation damage mechanisms increase the strength and decrease the ductility of the Zircaloy-2. Irradiation data available at the time the tubes were installed indicated that fast neutron irradiation damage mechanisms would not decrease the ductility to unacceptable levels over the estimated plant life of 25 to 30 years. However, because the tubes are a primary coolant system component and only limited data are available on irradiation effects at high fluences, a Postirradiation Examination (PIE) program was developed to assure that service factors do not compromise pressure tube integrity essential to reactor safety. The PIE program requires that a pressure tube be periodically removed from the reactor for destructive testing. The N Reactor Technical Specifications specify that the frequency of pressure tube removal and examination be based upon the previous PIE test results. Four pressure tubes were examined before tube 1350, and the test results were summarized in individual reports. PIE results on tube 1350 were summarized along with the test results on the previous four tubes in a previous report. The purpose of this report is to present in detail the results on PIE of pressure tube 1350, and, in particular, document the technique by which the fracture toughness of the pressure tube was determined

  10. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  11. Hydrogen concentration determination in pressure tube samples using differential scanning calorimetry (dsc)

    International Nuclear Information System (INIS)

    Marinescu, R.; Mincu, M.

    2015-01-01

    Zirconium alloys are widely used as a structural material in nuclear reactors. It is known that zirconium based cladding alloys absorb hydrogen as a result of service in a pressurized water reactor. Hydrogen absorbed (during operation of the reactor) in the zirconium alloy, out of which the pressure tube is made, is one of the major factors determining the life time of the pressure tube. For monitoring the hydrides, samples of the pressure tube are periodically taken and analyzed. At normal reactor operating temperature, hydrogen has limited solubility in the zirconium lattice and precipitates out of solid solution as zirconium hydride when the solid solubility is exceeded. As a consequences material characterization of Zr-2.5Nb CANDU pressure tubes is required after manufacturing but also during the operation to assess its structural integrity and to predict its behavior until the next in-service inspection. Hydrogen and deuterium concentration determination is one of the most important parameters to be evaluated during the experimental tests. Hydrogen present in zirconium alloys has a strong effect of weakening. Following the zirconium-hydrogen reaction, the resulting zirconium hydride precipitates in the mass of material. Weakening of the material, due to the presence of 10 ppm of precipitated hydrogen significantly affects some of its properties. The concentration of hydrogen in a sample can be determined by several methods, one of them being the differential scanning calorimetry (DSC). The principle of the method consists in measuring the difference between the amount of heat required to raise the temperature of a sample and a reference to a certain value. The experiments were made using a TA Instruments DSC Q2000 calorimeter. This paper contains experimental work for hydrogen concentration determination by Differential Scanning Calorimetry (DSC) method. Also, the reproducibility and accuracy of the method used at INR Pitesti are presented. (authors)

  12. Creep deformation behaviour and microstructural changes in Zr-2.5% Nb alloy

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Singh, R.; Ghosh, R.N.; Sinha, T.K.; Banerjee, S.

    2002-01-01

    Cold worked and stress relieved Zr-2.5% Nb alloy is a well-known material used as pressure tubes in Pressurised Heavy Water Reactors. The pressure tubes, made of a typical Zr-alloy, consisting of 2.54% Nb, 0.1175% oxygen and less than 100 ppm impurities, are expected to withstand 9.5 MPa to 12.5 MPa pressure at 250 degC to 310 degC under fast neutron fluxes of 3.5 x 10 17 nm -2 s -1 . These tubes are made by hot extrusion at 780 degC with an extrusion ratio 8.3:1 and 40% cold pilgering followed by annealing at 550 degC for 3 hours and subsequently by 20-30% cold pilgering and stress relieving at 400 degC for 24 hours. The microstructure of such cold worked and stress relieved alloy consists of Β-Zr precipitates in the matrix of elongated Α-Zr grains. Although various factors such as irradiation creep, thermal creep, irradiation growth etc are responsible for limiting the life of pressure tubes; the thermal creep contributes significantly in overall creep deformation. Keeping this in view as well as due to non-availability of adequate published information including creep database on this alloy, an extensive investigation on the thermal creep behaviour of indigenously produced Zr-2.5% Nb alloy was undertaken. The creep tests in air using Mayes' creep testing machines were carried out in the temperature range of 300 degC to 450 degC under stresses in the range of 50 to 550 MPa. Analysis of data revealed that the mechanism of creep deformation remains the same in this range

  13. Seamless communication in supply chains based on M2M technology

    Directory of Open Access Journals (Sweden)

    Walid Moneimne

    2016-12-01

    Full Text Available Background: Access to information is the key element in the successful and efficient organization of transport & logistic processes. The importance of real-time access to information is confirmed by a panel workshop carried out with support of design thinking methodology. There are two ways of gaining access to the right information - manual, where human agency is needed and fully automatic, where new M2M technology is implemented. Implementation of such technology improves seamless communication during transport execution and allows real-time access to needed information. The aim of the paper is to evaluate the influence of the effectiveness of using M2M technology and traditional way of communication as well as data gathering in order to ensure seamless communication in the supply chain. Methods: Survey, design thinking, desk research and real case study results were used in the paper. Results and conclusions: Seamless communication and implementation of M2M technology within the whole supply (including modes of transport and transport units chain is a backbone of the lean and reliable digital supply chain.

  14. An Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Jorge Miranda

    2016-12-01

    Full Text Available Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT, lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP, a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling

  15. An Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things

    Science.gov (United States)

    Miranda, Jorge; Cabral, Jorge; Wagner, Stefan Rahr; Fischer Pedersen, Christian; Ravelo, Blaise; Memon, Mukhtiar; Mathiesen, Morten

    2016-01-01

    Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT), lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP), a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling technology for secure and

  16. An Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things.

    Science.gov (United States)

    Miranda, Jorge; Cabral, Jorge; Wagner, Stefan Rahr; Fischer Pedersen, Christian; Ravelo, Blaise; Memon, Mukhtiar; Mathiesen, Morten

    2016-12-08

    Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT), lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP), a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling technology for secure and

  17. A novel Fe–Cr–Nb matrix composite containing the TiB{sub 2} neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    Energy Technology Data Exchange (ETDEWEB)

    Litwa, Przemysław [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Zasada, Dariusz [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Kobus, Izabela; Konopka, Gustaw [Department of Nanotechnology, Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Czujko, Tomasz [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Varin, Robert A., E-mail: robert.varin@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., Waterloo, ON N2L 3G1 (Canada)

    2016-07-25

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB{sub 2} and a small quantity of Y{sub 2}O{sub 3} ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB{sub 2} particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB{sub 2} particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB{sub 2} neutron

  18. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    Science.gov (United States)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  19. The corrosion Characteristics and Behaviors of the Ti-2.19Al-2.35Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Kim, Hyun Gil; Choi, Byoung Kwon; Jeong, Yong Hwan

    2007-01-01

    Ti-2.19Al-2.35Zr alloy is being considered as a steam generator tube material for the advanced pressurized water reactor (PWR) which is being developed by KAERI for the purpose of seawater desalination as well as a small scale electricity production. The main operational environment of SMART differs somewhat from that of a commercial PWR. That is, a heat-exchange tube is always exposed to a high temperature/pressure condition and an ammonia water chemistry is designed as a pH controlling agent without an addition of boric acid. The excellent mechanical and corrosion resistance properties are required for the steam generator tube material in SMART. Thus Ti-2.19Al-2.35Zr alloy was studied to investigate of the corrosion characteristics and behaviors of the Ti- 2.19Al-2.35Zr alloy in a simulated-SMART loop

  20. Development of Preliminary HT9 Cladding Tube for Sodium-cooled Fast Reactor (SFR)

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Baek, Jong Hyuk; Heo, Hyeong Min; Park, Sang Gyu; Kim, Sung Ho; Lee, Chan Bock

    2013-01-01

    To achieve manufacturing technology of the fuel cladding tube in order to keep pace with the predetermined schedule in developing SFR fuel, KAERI has launched in developing fuel cladding tube in cooperation with a domestic steelmaking company. After fabricating medium-sized 1.1 ton HT9 ingot, followed by the multiple processes of hot and cold working, preliminary samples of HT9 seamless cladding tube having 7.4mm in outer diameter, 0.56mm in thickness, and 3m in length were fabricated. The objective of this study is to summarize the brief development status of the HT9 cladding tubes. Mechanical properties like axial tension, biaxial burst, pressurized creep and sodium compatibility of the cladding tubes were carried out to set up the performance evaluation technology to test the prototype FMS cladding tube which is going to be manufactured in next stage. As a part of developing fuel cladding for the Sodium-cooled Fast Reactor (SFR), preliminary HT9 cladding tube was fabricated in cooperation with a domestic steelmaking company. Microstructure as well as mechanical tests like axial tensile test, biaxial burst test, and pressurized creep test of the fuel cladding were carried out. Performance of the domestic HT9 tube was revealed to be similar in the previously fabricated foreign HT9 tube. Further prototype FMS cladding tube is going to be manufactured in next year based on this experience. Various test items like mechanical test, sodium compatibility test, microstructural analysis, basic property, cladding performance under transient situation, and performance under ion and neutron irradiation are going be performed in the future to set up the relevant technology for the licensing of the SFR cladding tube

  1. Method for the protection of the cladding tubes of fuel rods

    International Nuclear Information System (INIS)

    Steinberg, E.

    1978-01-01

    To present stress crack corrosion and to protect the cladding tubes of the fuel rods made of a circonium alloy from attack by iodine, the inward surfaces are provided with protective coatings. Therefore the casting tubes already filled with fuel element pellets are put under over-pressure at a temperature range between 300 and 500 0 C, until almost yield-point is reached. A small amount of H 2 O or H 2 O 2 , filled in, reacts with the cladding tube material to form the Zr-O 2 protective coating. Afterwards comes a pressure relief, and the cladding tube reaches its original dimensions. (DG) [de

  2. 75 FR 28551 - Certain Oil Country Tubular Goods From the People's Republic of China: Amended Final...

    Science.gov (United States)

    2010-05-21

    ... 32.07 Ltd. Co., Ltd. Wuxi Sp. Steel Tube Wuxi Precese Special 32.07 Manufacturing Co., Ltd. Steel Co., Ltd. Wuxi Zhenda Special Steel Tube Huai'an Zhenda Steel 32.07 Manufacturing Co., Ltd. Tube Manufacturing Co., Ltd. Xigang Seamless Steel Tube Xigang Seamless Steel 32.07 Co., Ltd. Tube Co., Ltd.;. Wuxi...

  3. Multifrequency Eddy current testing of heat exchange tubes with a rotating probe

    International Nuclear Information System (INIS)

    Levy, R.

    1982-01-01

    Multi-frequency eddy current analyses have been used in France industrially since 1975. In light of the experienced gained during many steam generator inspections, this technique was applied to the examination of sheet and tube heat exchangers featuring tubes in very different materials such as copper, stainless steel and titanium. The principle of multi-frequency Eddy current inspection is first reviewed, using the example of a condenser with nickel alloy tubes (Inconel, Incoloy). This is followed by the description of a specific application of this technique to a condenser with titanium tubes, analyzed with a rotating local probe [fr

  4. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N.

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  5. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y M; Kim, Y S; Gong, U S; Kwon, S C; Kim, S S; Choo, K N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  6. PWSCC in the tube expansion zone - an overview

    International Nuclear Information System (INIS)

    Hernalsteen, P.

    1993-01-01

    Most of the PWR Steam Generators (SG) with tubes in Inconel 600 alloy are affected by Primary Water Stress Corrosion Cracking (PWSCC) in the Expansion Zone (mainly the Roll Transition) of tubes mechanically expanded in the tube sheet. After a description of the defect mechanism and characterization methods, the paper reviews the various measures that can be used to prevent the problem. In-Service Inspection results are presented to illustrate the actual field experience; prediction tools are available to forecast the further SG degradation. Degraded tubes are eventually removed from service; this plugging policy undergoes presently a major evolution towards a mechanism specific approach, taking into account both structural and leakage requirements. The paper reviews various repair techniques that can be used as an alternate to plugging. Ultimately repair has to be weighed against SG replacement with a comprehensive problem management approach. (orig.)

  7. IGA/SCC propagation rate measurements on alloy 600 steam generator tubing using a side stream model boiler

    International Nuclear Information System (INIS)

    Takamatsu, H.; Matsueda, K.; Matsunaga, T.; Kitera, T.; Arioka, K.; Tsuruta, T.; Okamoto, S.

    1993-01-01

    IGA/SCC crack propagation rate measurements using various types of IGA/SCC predefected ALloy 600 tubing were tested in model boilers, a side stream model boiler at Ohi Unit 1 and similar model boilers in the laboratory. Types of IGA/SCC predefects introduced from the outside of the tubing were as follows. (1) Actual IGA/SCC predefect introduced by high temperature caustic environments; (2) Longitudinal predefect by electrodischarge machining (EDM) method, and then crack tip fatigue was introduced to serve as the marker on the fractured surface (EDM slit + fatigue). IGA/SCC crack propagation rate was measured after the destructive examination by Cr concentration profile on fracture surface for (1), and observation of intergranular fractured surface propagated from the marked fatigue was employed for (2) and (3) after the model boiler tests. As for the water chemistry conditions, mainly AVT (high N 2 H 4 ) + boric acid (5-10ppm as B in SGs) treatment for both model boilers, and some of the tests for the model boiler in the laboratory employed AVT (high N 2 H 4 ) without boric acid. The results of IGA/SCC crack propagation rate measurements were compared with each other, and the three methods employed showed a good coincidence with the rate of ca. 1 x 10 -5 mm/Hr for AVT (high N 2 H 4 ) + boric acid treatment condition, in the case that crack tip boron intensity (B/O value by IMMA analysis) of more than 1 was observed

  8. Seamless service: research and action.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), and motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  9. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  10. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  11. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  12. Compressive Creep Behaviour of Extruded Mg Alloys at 150 °C

    Science.gov (United States)

    Fletcher, M.; Bichler, L.; Sediako, D.; Klassen, R.

    Wrought magnesium alloy bars, sections and tubes have been extensively used in the aerospace, electronics and automotive industries, where component weight is of concern. The operating temperature of these components is typically limited to below 100°C, since appreciable creep relaxation of the wrought alloys takes place above this temperature.

  13. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  14. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    International Nuclear Information System (INIS)

    Rabah, Mahmoud A.

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics

  15. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  16. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    International Nuclear Information System (INIS)

    Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed

    2015-01-01

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  17. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  18. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  19. Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder

    Science.gov (United States)

    Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.

    2018-01-01

    Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.

  20. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  1. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    Directory of Open Access Journals (Sweden)

    Mohammed Al Hajri

    2015-04-01

    Full Text Available Dissimilar metal weld (DMW joint between alloyed steel (AS and stainless steel (SS failed at one of intermediate temperature superheater (ITSH tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results of the investigation point out the limitation of Carbides precipitation at the alloyed steel/welding interface. This is synonym of creep stage I involvement in the failure of ITSH. Improper post-welding operation and bending moment are considered as root causes of the premature failure.

  2. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  3. Common Ambient Assisted Living Home Platform for Seamless Care

    DEFF Research Database (Denmark)

    Wagner, Stefan Rahr; Stenner, Rene; Memon, Mukhtiar

    The CareStore project is investigating the feasibility of creating an open and flexible infrastructure for facilitating seamless deployment of assisted living devices and applications on heterogeneous platforms. The Common Ambient Assisted Living Home Platform (CAALHP) is intended to be the main ...

  4. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  5. Seamless user experiences in a brand new library

    KAUST Repository

    Vijayakumar, J.K.

    2012-10-30

    In order to provide seamless user experiences, the brand new libraries are far better positioned. They do not have to manage much in print, at least for the journal section, but huge electronic collection accessible via Internet. They do not worry about migrating to new systems or technology; they just start with whatever the latest available in the market, whether it is new generation ILMS, discovery tools, content management systems, mobile technologies, cloud computing etc. Patrons\\' expectations for seamless experience are met - regardless of their location, device and service they opted for. The story of the two and half years old, Saudi Arabia\\'s brand new King Abdullah University of Science and Technology\\'s Library is not different. Huge amount of electronic resources also provide ever increasing challenges to the new generation libraries in collecting, organizing and delivering the right information, to the right person at the right time. Implementation of a good ILMS supported with better electronic resource management features will help in setting the house right. Well-designed user interfaces, supported with the web scale discovery tools will help the users to have a better search experience. Availability of library collection through the campus mobile applications, latest proxy technologies for out-campus access and integrating the resources to the campus e-learning platform are the main features of the library’s seamless experiences. Libguide platform is used for the first time in Saudi Arabia, to create online research guides by subject librarians. An institutional repository, based on D-Space platform is about to release. Ninety percent of our collection is online; they are purchased, organized and accessed online, like any other brand new academic research libraries. Analysis of usage statistics of different resources show that they are highly used and usage is increased over two years, as the technology improved and implemented.

  6. Structural integrity evaluations of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Radu, Vasile

    2003-01-01

    The core of a CANDU-6 pressurized heavy water reactor consists of some hundred horizontal pressure tubes that are manufactured from a Zr-2.5%Nb alloy and which contain the fuel bundles. These tubes are susceptible to a damaging phenomenon known as Delayed Hydride Cracking (DHC). The Zr-2.5%Nb alloy is susceptible to DHC phenomenon when there is diffusion of hydrogen atoms to a service-induced flaws, followed by the hydride platelets formation on the certain crystallographic planes in the matrix material. Finally, the development of hydride regions at the flaw-tip will happened. These hydride regions are able to fracture under stress-temperature conditions (DHC initiation) and the cracks can extend and grow by DHC mechanism. Some studies have been focused on the potential to initiate DHC at the blunt flaws in a CANDU reactor pressure tube and a methodology for structural integrity evaluation was developed. The methodology based on the Failure Assessment Diagrams (FAD's) consists in an integrated graphical plot, where the fracture failure and plastic collapse are simultaneously evaluated by means of two non-dimensional variables (K r and L r ). These two variables represent the ratio of the applied value of either stress or stress intensity factor and the resistance parameter of corresponding magnitude (yield stress or fracture toughness, respectively). Once the plotting plane is determined by the variables K r and L r , the procedure defines a critical failure line that establishes the safe area. The paper will demonstrate the possibility to perform structural integrity evaluations by means of Failure Assessment Diagrams for flaws occurring in CANDU pressure tubes. (author)

  7. Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods

    Directory of Open Access Journals (Sweden)

    Ken Motohashi

    2017-03-01

    Full Text Available Simple and low-cost recombinant enzyme-free seamless DNA cloning methods have recently become available. In vivo Escherichia coli cloning (iVEC can directly transform a mixture of insert and vector DNA fragments into E. coli, which are ligated by endogenous homologous recombination activity in the cells. Seamless ligation cloning extract (SLiCE cloning uses the endogenous recombination activity of E. coli cellular extracts in vitro to ligate insert and vector DNA fragments. An evaluation of the efficiency and utility of these methods is important in deciding the adoption of a seamless cloning method as a useful tool. In this study, both seamless cloning methods incorporated inserting DNA fragments into linearized DNA vectors through short (15–39 bp end homology regions. However, colony formation was 30–60-fold higher with SLiCE cloning in end homology regions between 15 and 29 bp than with the iVEC method using DH5α competent cells. E. coli AQ3625 strains, which harbor a sbcA gene mutation that activates the RecE homologous recombination pathway, can be used to efficiently ligate insert and vector DNA fragments with short-end homology regions in vivo. Using AQ3625 competent cells in the iVEC method improved the rate of colony formation, but the efficiency and accuracy of SLiCE cloning were still higher. In addition, the efficiency of seamless cloning methods depends on the intrinsic competency of E. coli cells. The competency of chemically competent AQ3625 cells was lower than that of competent DH5α cells, in all cases of chemically competent cell preparations using the three different methods. Moreover, SLiCE cloning permits the use of both homemade and commercially available competent cells because it can use general E. coli recA− strains such as DH5α as host cells for transformation. Therefore, between the two methods, SLiCE cloning provides both higher efficiency and better utility than the iVEC method for seamless DNA plasmid

  8. Seamless Image Mosaicking via Synchronization

    Science.gov (United States)

    Santellani, E.; Maset, E.; Fusiello, A.

    2018-05-01

    This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.

  9. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  10. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil, E-mail: hgkim@kaeri.re.kr; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-15

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  11. Estimation of improved productivity based on materials substitution in high temperature applications. Use of alloy ASTM A-335 P91

    International Nuclear Information System (INIS)

    Serna, J A; Afanador, W

    2001-01-01

    In ECOPETROL-ICP was carried out an evaluation of the mechanical and micro structural properties of modified 9 Cr-1 Mo alloy, ASTM A-335 Gr. P91, finding higher strength mechanical properties, allowable stresses and creep rupture strength, than the conventional 9 Cr-1 Mo alloy, ASTM A-335 Gr. P9, recommending the alloy P91 as substitute tube material in the radiation zone of the Visbreaking heater of Cartagena's refinery (furnace in revamping process). The results obtained permit a thickness reduction of radiation tubes of material P91 close to 25% and increase the internal volume tube over up 8%, which is a parameter to consider in improving productivity and efficiency process. Also would be obtained a significant savings cost in the material among 5 and 10%. Additionally, expectations of both design and remaining useful life would be seen extensively favored with this change of alloy

  12. Optimum Frequency for Eddy Current Testing Method of SMART SG tubes

    International Nuclear Information System (INIS)

    Lee, Yoon Sang; Jung, Hyun Kyu; Choung, Yun Hang

    2009-01-01

    The SMART SG tubes will be made of Alloy 690. The outside diameter will be 17 mm and the thickness will be 2.5 mm. They will be assembled helically around, and their innermost diameter will be about 600 mm and the total length will be about 32 meters. For safety, SMART SG tubes are designed for use with thick tubes such as 2.5 mm thickness compared to about 1 mm thickness of normal Korean standard pressurized water reactor tubes. Due to using thick tubes such as 2.5 mm varieties, it was doubted that the Eddy Current Testing Method (ECT) would be a feasible method. Therefore we are trying to simulate the bobbin probe signal for SMART SG tubes and comparing it to PWR SG ECT probe signal using VIM software, checking for the applicability of ECT. Also we are trying to compare the ECT signal of 2.5 mm thick stainless tubes to check if they are possible substitute material

  13. Microstructural characterization and mechanical properties of Excel alloy pressure tube material

    Science.gov (United States)

    Sattari, Mohammad

    Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared

  14. Integrated Guidelines for Management of Alloy 600 Locations

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kyung-Hwan; Chung, Hansub; Yang, Jun-Seog; Lee, Kyoung-Soo [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The locations experiencing PWSCC include steam generator tubes, pressurizer instrumental nozzles, control rod driving mechanism(CRDM) penetration nozzles, reactor outlet nozzles, and bottom mounted instrumental(BMI) nozzles. Korea Hydro and Nuclear Power Co.(KHNP) has developed integrated guidelines for management of alloy 600 locations and the guidelines are under review by the regulator. The guidelines consist of alloy 600 location database, inspection program, maintenance/preventive maintenance method, and finally water chemistry management for PWSCC mitigation. In this paper, the detailed contents are presented. The integrated guidelines collected all relevant information on the management of alloy 600 locations. This information may be useful for establishing the most effective preventive maintenance strategies by prioritization in addition to maintenance strategies. Table II summarize maintenance strategies for alloy 600 locations.

  15. The performance of alloy 625 in the high temperature application of Heavy Water Plants

    International Nuclear Information System (INIS)

    Mitra, J.; Dey, G.K.; Sundararaman, M.; Dubey, J.S.; De, P.K.; Kumar, Niraj

    2006-01-01

    Wrought and centrifugally cast alloy 625 tubes are used in the cracker units of ammonia based Heavy Water Plants (HWP). During the service of about 100,000 h, the ammonia cracker tubes, predictably, have been exposed to temperatures below 600degC to above 765degC and have undergone several hundreds of start-shutdown cycles, producing several ordered phases in the alloy. To understand the effect of the ordered phases on the structure properties, Alloy 625 samples were aged at 540degC, 700degC and 850degC temperatures, for duration up to 1200 h. Results were compared with that of cast and wrought Alloy 625 samples, which aged during the service of 100,000 h and that failed during the service after about 24,000 h along with that of aged samples, which were resolutionised at 1170degC for 2h. (author)

  16. Seamless Language Learning: Second Language Learning with Social Media

    Science.gov (United States)

    Wong, Lung-Hsiang; Chai, Ching Sing; Aw, Guat Poh

    2017-01-01

    This conceptual paper describes a language learning model that applies social media to foster contextualized and connected language learning in communities. The model emphasizes weaving together different forms of language learning activities that take place in different learning contexts to achieve seamless language learning. it promotes social…

  17. Distance tracking scheme for seamless handover in IMS-based ...

    African Journals Online (AJOL)

    This paper proposes a fast and seamless handover scheme for systems based on IP Multimedia Subsystem (IMS) architectural framework with Universal Mobile Telecommunications System (UMTS) access network. In the scheme the location, direction and movement pattern of a Mobile Node (MN) in a network cell are ...

  18. PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

    Directory of Open Access Journals (Sweden)

    Jong-Sung Kim

    2016-08-01

    Full Text Available We propose a primary water stress corrosion cracking (PWSCC initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

  19. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  20. Nickel electroplating as a remedy to steam generator tubing PWSCC

    International Nuclear Information System (INIS)

    Michaut, B.; Steltzlen, F.; Sala, B.; Laire, Ch.; Stubbe, J.

    1993-01-01

    Nickel plating appears to be a versatile process, as the application field, even if always used against PWSCC, is different from plant-to-plant. Its usage has been from a purely preventive action on tubes without defects, to a corrective action on through-wall cracked and leaking tubes. As a background for the large scale on-site operations of Doel 2 in 1990 (345 tubes) and Tihange 2 in 1992 (600 tubes), studies on four points are outlined, i.e. corrosion tests, stress measurements, sulfamate bath quality control, and in-service inspection. In conclusion, it appears that the nickel plating technique, following a case-by-case study, can often be a convenient remedy against Alloy 600 stress corrosion problems. New applications, in locations other than the steam generator field are under consideration

  1. Galvanic Corrosion between Alloy 690 and Magnetite in Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2015-12-01

    Full Text Available The galvanic corrosion behavior of Alloy 690 coupled with magnetite has been investigated in an alkaline solution at 30 °C and 60 °C using a potentiodynamic polarization method and a zero resistance ammeter. The positive current values were recorded in the galvanic couple and the corrosion potential of Alloy 690 was relatively lower. These results indicate that Alloy 690 behaves as the anode of the pair. The galvanic coupling between Alloy 690 and magnetite increased the corrosion rate of Alloy 690. The temperature increase led to an increase in the extent of galvanic effect and a decrease in the stability of passive film. Galvanic effect between Alloy 690 and magnetite is proposed as an additional factor accelerating the corrosion rate of Alloy 690 steam generator tubing in secondary water.

  2. Increasing Weldability of Service-Aged Reformer Tubes by Partial Solution Annealing

    Science.gov (United States)

    Mostafaei, M.; Shamanian, M.; Purmohamad, H.; Amini, M.

    2016-04-01

    A dissimilar joint of 25Cr-35Ni/30Cr-48Ni (HP/HV) heat-resistant steels was evaluated. The investigations indicated that the as-cast HP alloy contained M7C3, M23C6, and NbC carbides and HV alloy with 5 wt.% tungsten, contained M23C6 and M6C carbides embedded in an austenitic matrix. After 8 years of ex-service aging at 1050 °C, the ductility of HP/HV reformer tubes was decreased dramatically, and thus, the repair welding of the aged HP/HV dissimilar joint was at a risk. In order to repair the aged reformer tubes and increase weldability properties, a new partial solution annealing treatment was designed. Mechanical testing results showed that partial solution annealing at 1200 °C for 6 h increased the elongation and toughness of the aged HP and HV alloys drastically. Also, a mechanism for constitutional liquation cracking in the heat-affected zones (HAZ) of the HP/HV dissimilar joint was proposed. In the HAZ of the aged HP/HV welded joint, the cracks around the locally melted carbides were initiated and propagated during carbides solidification at the cooling cycle of welding associated with the decrease in the ductility of the aged HP and HV alloys. In addition, Varestraint weldability test showed that the susceptibility to hot cracking was decreased with partial solution annealing.

  3. Comparison of DHC behaviour of two zirconium alloys

    International Nuclear Information System (INIS)

    Ponzoni, Lucio; Mieza, Ignacio; Heras, Evangelina De Las; Domizzi, Gladys

    2011-01-01

    Delayed hydride cracking (DHC) is an important cracking mechanism that may occur in Zr alloys during service in water-cooled reactors. Two conditions must be attained to initiate DHC: the stress intensity factor must be higher than a threshold value called K IH and hydrogen concentration must exceed a critical value. Currently the pressure tubes for CANDU reactor are fabricated from Zr-2.5Nb, but another Zr-alloy, Excel was evaluated demonstrating similar values of K IH but higher DHC velocity. In this paper the critical hydrogen concentration of Excel tube was evaluated and compared with that of Zr-2.5Nb. Due to higher hydrogen solubility limits in Excel, its critical concentration for DHC initiation is 10-40 wppm over that of Zr-2.5Nb in the range of 150 to 300 deg C. (author)

  4. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  5. Analysis of Ruptured Heater Tube of Degasser Condenser in Wolsong Unit 4

    International Nuclear Information System (INIS)

    Kim, Hong Pyo; Kim, J. S.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Kim, D. J.; Kim, S. W.; Jeong, M. K.; Hong, J. H.

    2007-08-01

    In a degasser condenser in Wolsong unit 4, the cracks were found in the heater tube no. 6 and no. 7. To avoid additional damages in the specimen during a decontamination process for the previous analysis, the cracks were analyzed without any decontamination process in this work. We performed the investigation of the ruptured surface morphology, the EDS analysis of the ruptured surface, the microstructural analysis of Alloy 800H sheath tube and literature survey to find the failure mechanism. From the results, it was expected that the sheath tube has been exposed in a steam condition as the coolant level was decreased in the degasser condenser, leading to the rupture of the sheath tube

  6. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment

    International Nuclear Information System (INIS)

    Delabrouille, F.

    2004-11-01

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  7. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    OpenAIRE

    Al Hajri, Mohammed; Malik, Anees U.; Meroufel, Abdelkader; Al-Muaili, Fahd

    2015-01-01

    Dissimilar metal weld (DMW) joint between alloyed steel (AS) and stainless steel (SS) failed at one of intermediate temperature superheater (ITSH) tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years) where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results o...

  8. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  9. Leak behaviors of steam generator tube-to-tubesheet joints from room temperature to 320 °C

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Majumdar, Saurin; Kasza, Ken E.; Shack, William J.

    2013-01-01

    To address concerns about excessive leakage from throughwall cracks in nuclear reactor tube-to-tubesheet joints under accident conditions, leak rates were measured experimentally by using tube-to-collar joint specimens and nitrogen gas. Rates were dependent on differential pressure between the tube internal surface and the crevice (i.e., the tube-to-collar interface region) and on temperature. As specimen temperature was raised to 320 °C, leak rates decreased gradually due to changes in gas properties and to differential thermal expansion between the Alloy 600 tubes and the SA508 collars. The leak rates did not change even after repeated temperature excursions to 320 °C, suggesting that thermally induced creep and subsequent contact pressure relaxation is negligible below that temperature. When considering factors that could increase flow resistance, such as oxidation, or debris on top of the tubesheet, the measured leak rates in this work are considered to be conservative. The test results were further used to validate the contact pressure calculation and a leak rate model. Highlights: ► Leak rates were measured by using tube-to-collar joint specimens. ► Leak rates were dependent on differential pressure between tube internal and joint interface. ► Leak rates decreased gradually as specimen temperature was raided to 320 °C. ► Differential thermal expansion between Alloy 600 tube and SA508 collar plays a major role on the leak behavior.

  10. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Toward seamless hydrologic predictions across spatial scales

    Directory of Open Access Journals (Sweden)

    L. Samaniego

    2017-09-01

    Full Text Available Land surface and hydrologic models (LSMs/HMs are used at diverse spatial resolutions ranging from catchment-scale (1–10 km to global-scale (over 50 km applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR technique offers a practical and robust method that provides consistent (seamless parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  12. Toward seamless hydrologic predictions across spatial scales

    Science.gov (United States)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  13. Enhanced Hot Tensile Ductility of Mg-3Al-1Zn Alloy Thin-Walled Tubes Processed Via a Combined Severe Plastic Deformation

    Science.gov (United States)

    Fata, A.; Eftekhari, M.; Faraji, G.; Mosavi Mashhadi, M.

    2018-05-01

    In the current study, combined parallel tubular channel angular pressing (PTCAP) and tube backward extrusion (TBE), as a recently developed severe plastic deformation (SPD) method, were applied at 300 °C on a commercial Mg-3Al-1Zn alloy tubes to achieve an ultrafine grained structure. Then, the microstructure, hardness, tensile properties, and fractography evaluations were done at room temperature on the SPD-processed samples. Also, to study the hot tensile ductility of the SPD-processed samples, tensile testing was performed at an elevated temperature of 400 °C, and then, the fractured surface of the tensile samples was studied. It was observed that a bimodal microstructure, with large gains surrounded by many tiny ones, was created in the sample processed by PTCAP followed by TBE. This microstructure led to reach higher hardness and higher strength at room temperature and also led to reach very high elongation to failure ( 181%) at 400 °C. Also, the value of elongation to failure for this sample was 14.1% at room temperature. The fractographic SEM images showed the occurrence of predominately ductile fracture in the samples pulled at 400 °C. This was mostly due to the nucleation of microvoids and their subsequent growth and coalescence with each other.

  14. 76 FR 62762 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Japan...

    Science.gov (United States)

    2011-10-11

    ... Fahrenheit, at various American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels exceed those allowed for..., or pressure pipe applications. B. Finished and unfinished oil country tubular goods (``OCTG''), if...

  15. Macroscopic and microscopic determinations of residual stresses in thin oxide dispersion strengthened steel tubes

    International Nuclear Information System (INIS)

    Bechade, J.L.; Toualbi, L.; Bosonnet, S.; Carlan, Y. de; Castelnau, O.

    2014-01-01

    To improve the efficiency of components operating at high temperatures, many efforts are deployed to develop new materials. Oxide Dispersion Strengthened (ODS) materials could be used for heat exchangers or cladding tubes for the new GENIV nuclear reactors. This type of materials are composed with a metallic matrix (usually iron base alloy for nuclear applications or nickel base alloy for heat exchangers) reinforced by a distribution of nano-oxides. They are obtained by powder metallurgy and mechanical alloying. The creep resistance of these materials is excellent, and they usually exhibit a high tensile strength at room temperature. Depending on the cold working and/or the heat treatments, several types of microstructure can be obtained: recrystallised, stress relieved. One of the key challenges is to transform ODS materials into thin tubes (up to 500 microns thick) within a robust fabrication route while keeping the excellent mechanical properties. To prevent cracking during the process or to obtain a final product with low residual stresses, it is important to quantify the effect of the heat treatments on the release of internal stresses. The aim of this study is to show how residual stresses can be determined on different thin tubes using two complementary approaches: (i) macroscopic stresses determination in the tube using beam theory (small cuts along the longitudinal and circumferential directions and measurements of the deflection), (ii) stress determination from x-ray diffraction analyses (surface analyses, using 'sin"2ψ' method with different hypothesis). Depending on the material and the heat treatment, residual stresses vary dramatically and can reach 800 MPa which is not far from the yield stress; comparisons between both methods are performed and suggestions are given in order to optimize the thermo-mechanical treatment of thin ODS tubes. (authors)

  16. Ballooning of CANDU pressure tube in local thermal transients

    International Nuclear Information System (INIS)

    Mihalache, Maria; Ionescu, Viorel

    2008-01-01

    In certain LOCA scenarios for the CANDU fuel channel, the ballooning of the pressure tube and contact with the calandria tube can occur. After the contact moment, a radial heat transfer from cooling fluid to moderator takes place through the contact area. If the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. In INR-Pitesti the DELOCA code was developed to simulate the mechanical behaviour of pressure tube during pre-contact transition, and mechanical and thermal behaviour of pressure tube and calandria tube after occurrence of the contact between the two tubes. The code contains few models: thermal creep of Zr-2.5%Nb alloy, the heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. This paper gives a DELOCA code description and the fuel channel behaviour analysis, in transient temperature conditions of the pressure tube, using the materials properties, time and temperature dependencies of these properties as obtained in the different laboratories of the world and in the INR - Pitesti in the last years. DELOCA computer code simulated the fuel channel response to the constant heating rates of inside pressure tube surface. The paper presents contact temperature and time dependencies on the heating rate, and the appropriate fitting functions. (authors)

  17. Process Technology Development of Ni Electroplating in Steam Generator Tube

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Yi, Y. S.; Kim, D. J.; Jeong, M. K.

    2009-11-01

    Operating nuclear power steam generator tubing material, Alloy 600, having superior resistance to corrosion has many experiences of damage by various corrosion mechanisms during long term operation period. In this research project, a new Ni electroplating technology to be applied to repair the damaged steam generator tubes has been developed. In this technology development, the optimum conditions for variables affecting the Ni electroplating process, optimum process conditions for maximum adhesion forces at interface between were established. The various mechanical properties (RT and HT tensile, fatigue, creep, burst, etc.) and corrosion properties (general corrosion, pitting, crevice corrosion, stress corrosion cracking, boric acid corrosion, doped steam) of the Ni plated layers made at the established optimum conditions have been evaluated and confirmed to satisfy the specifications. In addition, a new ECT probe developed at KAERI enable to detect defects from magnetic materials was confirmed to be used for Ni electroplated Alloy 600 tubes at the field. For the application of this developed technology to operating plants, a mock-up electroplating system has been designed and manufactured, and set up at Doosan Heavy Industry Co. and also its performance test has been done. At same time, the anode probe has been modified and improved to be used with the established mock-up system without any problem

  18. Assessment of the Polyacrylic Acid for an Ammonia Water Treatment and for Alloy 800NG SG Tube Material in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Lamouroux, Christine; You, Dominique; Plancque, Gabriel; Roy, Marc; Laire, Charles; Schnongs, Philippe

    2012-09-01

    To prevent the Steam Generators (SG) fouling by corrosion products or the Tube Support Plate (TSP) blockage the on-line injection of a dispersant such the Polyacrylic Acid (PAA) could be a relevant water treatment. Long-term trials performed in PWRs have shown that the PAA, injected at the SG inlet, facilitate the evacuation of the iron oxides by the SG blowdown. Given the ammonia treatment of the secondary water of the Belgian PWRs, the R and D program carried out was devoted to: - Verify the innocuousness of the PAA and its degradation products versus Alloy 800NG SCC susceptibility in case of over concentrations and sludge presence, - Assess the potential impact of the PAA and its thermal degradation products on the specific NH 3 water treatment. The main results can be summarized as following: The corrosion tests performed with PAA in case of over concentrations and sludge couldn't point out any negative effect of the dispersant on the SCC susceptibility of tubing materials such as Alloy 800NG. No significant modification of the tube oxide layer has been observed. At the SG operating temperature, the PAA is decomposed and a large spectrum from high to lower molecular weights polymers than the initial PAA arises. The fragmentation of the polymer into low molecular weight polyacrylic acids is obtained within 20 minutes and the average molecular weight is reduced by 50% from the original one. The thermal degradation products, their quantity and their kinetic of appearance, have been determined. The generated acetate concentration during the on-line dispersant application should remain low compared to the current values observed in the SG water. From the numerical simulation based on acetate concentration and on the kinetic law deduced from the experimental work, it can be concluded that in a 2-phase medium, the margin on the water pH compared to the neutral pH remains high. At 180 deg. C, no impact on the water pH is identified, taking into account realistic

  19. Accounting for the residual stress effects on the creep deformation of channel tubes

    International Nuclear Information System (INIS)

    Knizhnikov, Yu.N.; Platonov, P.A.; Ul'yanov, A.I.

    1985-01-01

    The effect of the first kind residual stresses arising in the walls of the zirconium base alloy fules in the process of fabrication on the RBMK type reactor channel tube creep is investigated. Models for calculation of the reactor component creep with account for the relaxation of residual stresses distributed by the wall thickness as well as the radiation and temperature fields are developed. On the basis of the analysis of the data obtained it is concluded that the effect of the residual stresses on the RBMK channel tube deformation for a long-term operation is negligible. But for the short-term fests the results can be noticeably distorted by this factor. The role of internal stresses can also manifest when determining the deformation of radiation elongation of the zirconium base alloy samples

  20. 75 FR 38781 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan...

    Science.gov (United States)

    2010-07-06

    ... Fahrenheit, at various American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels exceed those allowed for.... B. Finished and unfinished oil country tubular goods (``OCTG''), if covered by the scope of another...

  1. Modification of structural phase state in superficial layers of fuel tubes made of Zirconium alloys

    International Nuclear Information System (INIS)

    Volkov, N.; Kalin, B.; Pimenov, Y.; Timoshin, S.

    2011-01-01

    The paper presents the results obtained in developing the method for introduction of the required changes into states and properties of outer surface on fuel rod cladding made of zirconium alloys E110 and E635 through irradiation by radial Ar + ion beam with a broad energy spectrum. In particular, the paper demonstrates that ion beam treatment of the claddings surface, at the final stage of their fabrication, can upgrade substantially quality of outer tubular surface after mechanical polishing (the cleaner surface, the lower roughness, removal of technological transversal scratches). In addition, the ion beam irradiation results in higher micro-hardness of the modified layer and in better tribological parameters. Kinetic effects in growth of oxide films were studied for the tubular samples of zirconium alloys after ion-beam treatment (cleaning and polishing by radial Ar + ion beam). Also, corrosion tests of the tubular samples were carried out in water (at 350 0 C) and steam (at 350, 375 and 400 0 C) with duration up to 3000 hours. It was revealed that oxide layer consisting mainly of zirconium dioxide in monoclinic modification was formed on tubular surface after oxidation at 3500 0 C in water or steam. The oxidizing process in the pressurized steam created thicker oxide layer on tubular surface than that in the pressurized water. Experimental data were used to determine optimal conditions for ion-beam treatment of outer fuel tube surface. The tubular samples with the following geometrical parameters were investigated: length - up to 500 mm, diameter - 9,15 mm. Optimal regimes for ion-beam cleaning and polishing of the tubular samples were studied up to the process rate of 1 meter per minute. Within the frames of linear approximation, analytical relationships were derived for time dependent growth of oxide films and used to evaluate thickness of oxide film under test conditions (duration . up to 10000 hours). Thickness of oxide films can cover the range from 6

  2. A statistical approach to the prediction of pressure tube fracture toughness

    International Nuclear Information System (INIS)

    Pandey, M.D.; Radford, D.D.

    2008-01-01

    The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in a nuclear reactor. Fracture toughness data have been generated by performing rising pressure burst tests on sections of pressure tubes removed from operating reactors. The test data were used to generate a lower-bound fracture toughness curve, which is used in defining the operational limits of pressure tubes. The paper presents a comprehensive statistical analysis of burst test data and develops a multivariate statistical model to relate toughness with material chemistry, mechanical properties, and operational history. The proposed model can be useful in predicting fracture toughness of specific in-service pressure tubes, thereby minimizing conservatism associated with a generic lower-bound approach

  3. The transformation behaviour of the beta phase in Zr-2.5 wt% Nb pressure tubes

    International Nuclear Information System (INIS)

    Griffiths, M.; Winegar, J.E.

    1994-12-01

    A temperature-time-transformation (TTT) diagram has been developed for the β-phase in Zr-2.5 wt% Nb pressure tubes. The results show that the morphology and/or physical state of the β-phase in pressure tubes has a significant effect on the transformation behaviour compared with a bulk Zr-19 wt%Nb alloy. (author). 14 refs., 1 tab., 15 figs

  4. Fatigue of thin walled tubes in copper alloy CuNi10

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Damkilde, Lars; Jepsen, Michael S.

    2016-01-01

    The current work concerns the investigation of the fatigue resistance of CuNi10 tubes, which are frequently used in heat exchangers of large ship engines. The lifetime performances of the exchanger tubes are greatly affected by the environmental conditions, where especially the temperature...... by means of the ASTM E739 guideline and one-sided tolerance limits factor method. The tests show good fatigue resistance and the risk for a failure is low in aspect to the case of a ship heat exchanger....

  5. A computational approach for thermomechanical fatigue life prediction of dissimilarly welded superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krishnasamy, Ram-Kumar; Seifert, Thomas; Siegele, Dieter [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    In this paper a computational approach for fatigue life prediction of dissimilarly welded superheater tubes is presented and applied to a dissimilar weld between tubes made of the nickel base alloy Alloy617 tube and the 12% chromium steel VM12. The approach comprises the calculation of the residual stresses in the welded tubes with a multi-pass dissimilar welding simulation, the relaxation of the residual stresses in a post weld heat treatment (PWHT) simulation and the fatigue life prediction using the remaining residual stresses as initial condition. A cyclic fiscoplasticity model is used to calculate the transient stresses and strains under thermocyclic service loadings. The fatigue life is predicted with a damage parameter which is based on fracture mechanics. The adjustable parameters of the model are determined based on LCF and TMF experiments. The simulations show, that the residual stresses that remain after PWHT further relax in the first loading cycles. The predicted fatigue lives depend on the residual stresses and, thus, on the choice of the loading cycle in which the damage parameter is evaluated. It the first loading cycle, where residual stresses are still present, is considered, lower fatigue lives are predicted compared to predictions considering loading cycles with relaxed residual stresses. (orig.)

  6. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  7. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  8. Measurement and analysis of pressure tube elongation in the Douglas Point reactor

    International Nuclear Information System (INIS)

    Causey, A.R.; MacEwan, S.R.; Jamieson, H.C.; Mitchell, A.B.

    1980-02-01

    Elongations of zirconium alloy pressure tubes in CANDU reactors, which occur as a result of neutron-irradiation-induced creep and growth, have been measured over the past 6 years, and the consequences of thses elongations have recently been analysed. Elongation rates, previously deduced from extensive measurements of elongations of cold-worked Zircaloy-2 pressure tubes in the Pickering reactors, have been modified to apply to the pressure tubes in the Douglas Point (DP) reactor by taking into account measured diffences in texture and dislocation density. Using these elongation rates, and structural data unique to the DP reactor, the analysis predicts elongation behaviour which is in good agreement with pressure tube elongations measured during the ten years of reactor operation. (Auth)

  9. 77 FR 56809 - Certain Small Diameter Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From...

    Science.gov (United States)

    2012-09-14

    ... stress levels. Alloy pipes made to ASTM standard A-335 must be used if temperatures and stress levels... not used in standard, line or pressure applications. In addition, finished and unfinished oil country... antidumping duty order from the same country. If not covered by such an OCTG order, finished and unfinished...

  10. 75 FR 69050 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's...

    Science.gov (United States)

    2010-11-10

    ... amended (``the Act''), that an industry in the United States is threatened with material injury by reason... case is based on the threat of material injury and is not accompanied by a finding that injury would... Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of China: Amended Final...

  11. Leak on a steam generator tube: in-depth analysis

    International Nuclear Information System (INIS)

    Berger, J.; Deotto, G.; Mathon, C.; Madurel, A.; Pitner, P.; Gay, N.; Guivarch, M.

    2015-01-01

    A circumferential through crack was observed on a steam generator tube of the unit 2 of the Fessenheim plant. Destructive tests showed that the crack was due to cycle fatigue combined with the presence of inter-granular corrosion zones. An in-depth analysis based on simulations shows that the combination of 5 elements caused the crack. First, a specific position of the anti-vibration bar near this tube, secondly, a local presence of fouling, these 2 first elements led to an increase of the tube vibratory level. Thirdly, the 600 MA alloy used is known to be susceptible to corrosion. Fourthly, the trapping of chemical species on the secondary circuit side due to the presence of interstices on the crosspiece and fifthly, the presence of spots where inter-granular corrosion developed. (A.C.)

  12. HIGH RESOLUTION SEAMLESS DOM GENERATION OVER CHANG'E-5 LANDING AREA USING LROC NAC IMAGES

    Directory of Open Access Journals (Sweden)

    K. Di

    2018-04-01

    Full Text Available Chang’e-5, China’s first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM generation, and presents the mapping result of Chang’e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude and is tied to the widely used reference DEM – SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  13. High Resolution Seamless Dom Generation Over CHANG'E-5 Landing Area Using Lroc Nac Images

    Science.gov (United States)

    Di, K.; Jia, M.; Xin, X.; Liu, B.; Liu, Z.; Peng, M.; Yue, Z.

    2018-04-01

    Chang'e-5, China's first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM) generation, and presents the mapping result of Chang'e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM) and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude) and is tied to the widely used reference DEM - SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  14. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  15. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    International Nuclear Information System (INIS)

    McGregor, R.; Doherty, P.; Hornbach, D.; Abdelsalam, U.

    1995-01-01

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tube reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material

  16. Corrosion resistant properties and weldabilities of ASTM Grade 12 titanium alloy

    International Nuclear Information System (INIS)

    Tsumori, Yoshikatsu; Itoh, Hideo

    1988-01-01

    Plates, sheets, bars, wires and thinner seam-welded tubings were manufactured from large-scaled ingot of ASTM Grade 12 alloy (Ti-0.8Ni-0.3Mo). The processability of G-12 alloy has proved almost similar to that of conventional commercially pure titanium grades. It has been clarified that the G-12 alloy showed several advantageous features: Chlorides-Crevice corrosion resistance of the alloy was almost equals to G-7 and Pd0/TiO 2 coated titanium, and the maximum allowable stress was able to be designed higher than that of commercially pure titanium. This alloy has been in applications also offers where such environments as seawater, brines and moist chlorine, various oil refinery and chemical industries, and others. (author)

  17. Stress corrosion cracking of steam generator tubing materials in lead containing solution

    International Nuclear Information System (INIS)

    Kim, H.P.; Hwang, S.S.; Kim, J.S.; Hong, J.H.

    2007-01-01

    Stress corrosion cracking (SCC) in lead (Pb) containing environments has been one of key issues in the nuclear power industry since Pb had been identified as a cause of the SCC of steam generator (SG) tubing materials in some power plants. To mitigate or prevent degradation of SG tubing materials, a mechanistic understanding of SCC in Pb containing environment is needed, along with an understanding of the source and transport behaviors of Pb species in the secondary circuit. In this work, SCC behaviors of Alloy 600 in Pb containing environments were studied. Influences of microstructures of Alloy 600 and the inhibitive additives were investigated using the C-ring and the slow strain rate tests in caustic solution and demineralized water at 315 o C. Microstructures of Alloy 600 were varied by heat treatment at different temperatures. The additives examined were nickel boride (NiB) and cerium boride (CeB 6 ). The surface films were analyzed using Auger Electron Spectroscopy (AES) and Energy Dispersive X-ray Spectroscopy (EDS). The SCC mode varied with microstructure. Effectiveness of the additives in Pb containing environments is discussed. (author)

  18. Undergraduate Certificate in Leadership Studies: An Opportunity for Seamless Learning

    Science.gov (United States)

    Guthrie, Kathy L.; Bovio, Becka

    2014-01-01

    In working to develop undergraduate student leadership capacity, Florida State University created the Undergraduate Certificate in Leadership Studies. This program, grounded in leadership theory and framed by a seamless learning model, has been influential in development of student leadership perceptions and capacity. This article addresses the…

  19. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  20. Influence of impurities and ion surface alloying on the corrosion resistance of E110 alloy

    International Nuclear Information System (INIS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Novikov, V. V.; Markelov, V. A.; Pimenov, Yu. V.

    2013-01-01

    The corrosion resistance of zirconium alloys depends on their structural-phase state, the type of core coolant and operating factors. The formation of a protective oxide film on the zirconium alloys is sensitive to the content of impurity atoms present in the charge base of alloys and accumulating in them in the manufacture of products. The impurity composition of the initial zirconium is determined by the method of its manufacture and generally remains unchanged in the products, deter-mining their properties, including their corrosion resistance. An increased content of impurities (C, N, Al, Mo, Fe) both individually and in their combination negatively affects the corrosion resistance of zirconium and its alloys. One of the potentially effective methods to increase the protective properties of oxide films on zirconium alloys is a surface alloying using the regime of mixing the atoms of a film, preliminarily coated on the surface, and the atoms of a target. This method makes it possible to form a given structural-phase state in the thin surface layer with unique physicochemical properties and thus to in-crease the corrosion resistance and wear resistance of fuel claddings. In this context, the object of investigation was samples of cladding tubes from alloy E110 with various content of impurity elements (nitrogen, aluminum, and carbon) with the aim to reduce the negative influence of impurities on the corrosion resistance by changing the structural-phase state of the surface layer of fuel claddings and fuel assembly components with alloying in the regime of ion mixing of atoms

  1. SCC of Alloy 600 components in PWR primary loop

    International Nuclear Information System (INIS)

    Gomez-Briceno, Dolores; Lapena, Jesus; Castano, M. Luisa; Blazquez, Fernando

    2002-01-01

    Full text: Cracking due to PWSCC in PWR CRDM nozzles and other VHP nozzles fabricated from Alloy 600 is not a new issue. In 1991, a leak was discovered on one CRDM nozzle at Bugey 3 PWR plant in France. The cause of the cracking was identified as primary water stress corrosion cracking. From then, similar cracks have been found in other European and USA PWR plants. The cracks were predominantly axial in orientation and it was accepted that CRDM nozzles and weld cracking in PWR was not a immediate safety concern. However, this consideration has to be reassessed in light of the recent identification of circumferential cracking in CRDM nozzles at Oconee Nuclear Station Unit 2 and 3 along with axial cracking in the Alloy 182 J-groove welds at these two units and at Oconee Nuclear Station 1 and Arkansas Nuclear One Unit 1. Alloy 600 susceptibility in primary water has received an enormous research effort for many years since the Alloy 600 steam generators tube degradation started. A significant amount of information is available to characterise the susceptibility of Alloy 600. However, Alloy 600 susceptibility is strongly dependent on the heat thermomechanical history and both the crack initiation time and the crack growth rate data obtained from representative materials of the VHP nozzles seem to be necessary for the structural integrity assessment of cracking nozzles. An extensive experimental program has been performed at CIEMAT, to study the behaviour of Alloy 600 VHP nozzles in PWR primary conditions. Crack initiation and crack propagation tests have been performed using different types of products (forged bar, tube, plate and steam generator tubing). Long duration crack initiation tests have been carried out, at 330 deg. C and 360 deg. C in water and at 400 deg. C in steam, using ten Alloy 600 heats with yield strength ranging from 291 MPa to 489 MPa. The influence of several parameters (grain boundary carbide distribution, grain size and yield strength) on crack

  2. PWR steam generators tube integrity: plugging criteria for PWSCC in roll transition zone

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Cruz, Julio R.B.

    1999-01-01

    One of the most important causes for tube plugging in PWR (Pressurized Water Reactor) steam generators is the degradation mechanism called Primary Water Stress Corrosion Cracking (PWSCC) in roll transition zone (RTZ) near the tubesheet, mainly for Alloy 600 tubes. To avoid an excessive tube plugging, alternative criteria have been developed based on an approach that consists in withdrawing from service any tube containing a defect for which there is a high probability of a critical size under accident conditions to be reached during next operation cycle. Predictions of the number of tubes to be plugged can be done aiming at preventive maintenance and tube repair, and even a steam generator replacement, without a large and non-planned plant outage. This work presents important aspects related to tube plugging criteria for PWSCC in RTZ based on the risk of break after a leak detection. Calculations of allowable crack length and allowable leak rate for a particular situation are also shown. (author)

  3. Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Boukis, N.; Kritzer, P.

    1997-01-01

    Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs

  4. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  5. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  6. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials

    International Nuclear Information System (INIS)

    Dutta, R.S.

    2009-01-01

    This paper reviews corrosion related issues of Ni-Cr-Fe based (in a general sense) and Ni-Cu based steam generator tube materials for nuclear power plants those have been dealt with for last more than four decades along with some updated information on corrosion research. The materials include austenitic stainless steels (SSs), Alloy 600, Monel 400, Alloy 800 and Alloy 690. Compatibility related issues of these alloys are briefly discussed along with the alloy chemistry and microstructure. For austenitic SSs, stress corrosion cracking (SCC) behaviour in high temperature aqueous environments is discussed. For Alloy 600, intergranular cracking in high temperature water including hydrogen-induced intergranular cracking is highlighted along with the interactions of material in various environments. In case of Monel 400, intergranular corrosion and pitting corrosion at ambient temperature and SCC behaviour at elevated temperature are briefly described. For Alloy 800, the discussion covers SCC behaviour, surface characterization and microstructural aspects of pitting, whereas hydrogen-related issues are also highlighted for Alloy 690.

  7. Delayed hydride cracking in irradiated Zr-2.5 % Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Coronel, Pascual; Haddad, Roberto; Lafont, Claudio; Mizrahi, Rafael

    2003-01-01

    Pressure tubes in CANDU nuclear power plants are made of Zr-2.5 % Nb alloy, which is susceptible to a cracking process called Delayed Hydride Cracking (DHC). Measurement of DHC velocity on irradiated pressure tubes is essential to assure the validity of the Leak Before Break criterion. This work was performed on samples from two pressure tubes taken out of the Embalse NPP in 1995, belonging to fuel channels A-14 and L-12. DHC velocity in the axial direction was measured at 211 C degrees for samples taken from different axial positions, which allowed to study its dependence on fast neutron fluency and irradiation temperature. Non-irradiated material was also tested. It was found that DHC velocity results for the tested material were similar to those obtained for a great number of tubes irradiated in other CANDU plants. (author)

  8. Fast fracture of a zirconium alloy pressure tube: cause and implications

    International Nuclear Information System (INIS)

    Price, E.G.; Cheadle, B.A.

    1985-12-01

    The cause of the unstable fracture of a Zircaloy-2 pressure tube in the core of a CANDU reactor is reviewed. Failure was associated with the presence of brittle zones of zirconium hydride which developed as a result of thermal gradient induced hydrogen diffusion. Unstable fracture occurred when the partial thickness crack reached an unstable length and the crack ran 2 meters along the tube and terminated by circumferential tearing. The partial thickness defect initiated and propagated to an unstable length by delayed hydride cracking is high compared to fatigue progression and increases exponentially with temperature. Delayed hydride cracking can be prevented by reducing residual stresses to a minimum and by high standards of non-destructive testing that ensures freedom from unacceptable defects. Future prevention of fast fracture is based upon the inspection of a limited number of fuel channels for the presence of defects and for conditions which can cause hydride build-up together with the periodic removal of Zr-2.5wt% Nb tubes to monitor their condition

  9. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    Science.gov (United States)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-04-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  10. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    Science.gov (United States)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-05-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  11. Development of safety evaluation technique of steam generator tubes for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk Sang; Kim, I. S.; Ann, Se Jin; Lee, S. J.; Seo, M. S.; Lee, Y. H.; Kim, J. H.; Hong, J. G. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-02-15

    Subject 1 - a technique for predicting the SCC susceptibility of steam generator tube material based on the repassivation kinetics was developed and the effects of Pb in the repassivation rate and SCC susceptibility rate of tube material was investigated with this technique. An alloy with a higher slope value of log i(t) vs. q(t) plot based on the current transient curve obtained by scratch test and a lower slope value log i(t) vs. l/q(t) plot (cBV) is repassivated faster with a more protective passive film and it can be predicted that it will show higher resistance to SCC. With PbO addition in all solution studied (pH 4, pH 10, Cl- containing pH 4), alloy 690TT showed decreased repassivation rate. So it can be predict that PbO addition lower the resistance of SCC of steam generator tune material. Subject 2 - SG wear testing of tube and support materials has been conducted at various load and sliding amplitude in air environment. The results showed effect of normal load and sliding amplitude on SG tube wear damage. It was also shown that, for predominantly sliding motion, the SG wear coefficient of work-rate model is lower for Inconel 690TT compared with inconel 600MA. SG tube wear data show that, for work-rates ranging from 4 to 25mW, average tube wear coefficient of 43.76{approx}54.05 X 10{sup 15} Pa{sup -1} for Inconel 600MA and 26.88{approx}33.94 X 10{sup -15} Pa{sup 1} for Inconel 690TT against 405 and 409 stainless steels.

  12. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  13. Low gravity containerless processing of immiscible gold rhodium alloys

    Science.gov (United States)

    Andrews, J. Barry

    1986-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.

  14. Ageing management of AG3NET beam tubes in ORPHEE Research

    International Nuclear Information System (INIS)

    Florence, Gupta; Maud, Corbel

    2013-01-01

    The materials used in research reactors come from the best compromise between research needs and safety issues such as integrity of equipment during their whole life. For example, aluminium alloys such as AG3NET are interesting for research reactors dedicated to the production of neutron flux since they are transparent to neutrons but they become fragile under irradiation. Therefore the evolution of material's mechanical properties under irradiation is a topic of interest for research reactors safety and operators must implement an ageing management program of equipment subject to irradiation. This kind of aluminium alloys compound is used in many French research reactors like the Jules Horowitz reactor (JHR) and ORPHEE reactor operated by the Atomic Energy and Alternative Energies Commission (CEA) or the high flux reactor (HFR) operated by the Laue-Langevin Institute (ILL). Particularly, in the ORPHEE reactor, AG3NET is used for beam tubes, located in the heavy water tank surrounding the core, which guide neutrons towards experimental stations. The failure of a beam tube in ORPHEE reactor can lead to a reactivity insertion in the core, whose effects can be managed by the control rods system. Nevertheless, to control the effects of ageing on such equipment, the operator plans to replace the beam tubes on the basis of a criterion he defined. For the ORPHEE's second periodic safety review, the operator has re-evaluated the situation of the beam tubes with regard of this criterion and has established a beam tube replacement schedule. The 'Institut de Radioprotection et de Surete Nucleaire' (IRSN), as a technical support of the French nuclear safety authority, assessed the elements presented by the CEA for this periodic safety review and concluded that the replacement criterion used for these equipment lead to reach a fragile behaviour of the materials. Thus, the breaking of several beam tubes can't be excluded but this situation can leads to severe consequences on the

  15. Pseudobinary eutectics in Cu–Ag–Ge alloy droplets under containerless condition

    International Nuclear Information System (INIS)

    Ruan, Y.; Wang, X.J.; Lu, X.Y.

    2013-01-01

    Highlights: ► Two pseudobinary eutectics form in Cu–Ag–Ge alloy. ► It is influenced by thermodynamic and kinetic factors of the alloy in the drop tube. ► As droplet size reduces, anomalous → lamellar → anomalous transition happens in (Ag + ζ). ► (Ag + ε 2 ) is a product of both peri-eutectic and pseudobinary eutectic transitions. -- Abstract: Pseudobinary eutectic generated by pseudobinary eutectic transition or peri-eutectic transition is a crucial structure in ternary alloy systems. Its formation mechanism strongly influences mechanical properties of these metallic materials. However, it was customarily neglected. In this paper, two pseudobinary eutectics, i.e. (Ag + ζ) and (Ag + ε 2 ), were investigated during the rapid solidification of Cu–Ag–Ge ternary alloy in a 3 m-drop tube. The sharp temperature variations and dramatic kinetic activities of the falling alloy droplets before solidification cause special microstructural characteristics. (Ag) dendrite is the heterogeneous nucleus for anomalous (Ag + ζ) pseudobinary eutectic in large droplets. Lamellar (Ag + ζ) pseudobinary eutectic grain forms independently on condition that primary (Ag) dendrite cannot form and its eutectic morphology becomes anomalous with the decrease of droplet size. Nanoscaled (Ag + ε 2 ) pseudobinary eutectic generating at the last stage of solidification is the product of both peri-eutectic and pseudobinary eutectic transitions. It distributes in the gaps of (Ag + ζ) pseudobinary eutectic grains and its morphology remains lamellar regardless of droplet size

  16. Influence of microstructure on grain boundary sliding of alloys 600 and 690

    International Nuclear Information System (INIS)

    Kergaravat, J.F.; Guetaz, L.; Baillin, X.; Robert, G.

    1995-01-01

    The influence of deformation and damage mechanisms, and more especially of the grain boundary sliding effect, on the stress corrosion of nickel base alloys used in nuclear industry (exchanger tubes), has been experimentally examined. The grain boundary sliding effect has been measured at 500 C and 320 C on several samples of alloy 690 and 600 (in the mill annealed and mill annealed heat treated conditions). (author). 4 figs., 1 tab

  17. 75 FR 57449 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe from the People's...

    Science.gov (United States)

    2010-09-21

    ... factor for argon gas (see Comment 24 in the Issues and Decision Memorandum); and (10) we added truck...'') percentages of pig iron purchased (see Comment 33 in the Issues and Decision Memorandum); (2) we did not value... mechanical tubing, submitted a request to the Department that it reconsider its preliminary decision to...

  18. Applications and development of shape-memory and superelastic alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, S.; Horikawa, H. [Furukawa Electric Co., Ltd., Hiratsuka (Japan); Kobayashi, J. [Japan Association of Shape Memory Alloys, Yokohama (Japan); Shimizu, K. [Kanazawa Inst. of Tech., Matsutou (Japan)

    2002-07-01

    The present situation of the applications and development of shape memory and superelastic alloys in Japan will collectively be introduced. Of many shape memory alloys, TiNi alloy systems have mostly been used for the applications from the point of view of fatigue and corrosion characteristics. Shape memory effect has been utilized for mainly thermal actuators with the form of coil springs. The effect associated with the B2 to R-phase transformation and its reversion exhibits recoverable strain of approximately 1%, and after a million thermal cycles the recovery characteristics are not affected. Thus, the effect is widely utilized as sensor flap of the air conditioner, water flow control valve, underfloor vent, automatic oil volume adjusting equipment for Shinkansen and water mixing valve. Another effect associated with the B2 to orthorhombic transformation and its reversion, as in TiNiCu alloys containing Cu more than 8%, can be applied to actuators required for 10,000 to 50,000 times life, and thus it is utilized as rice cooker, coffee maker and anti-scald valve. In Japan, however, the TiNi shape memory alloy systems are mainly used for applications using the superelasticity, like a rubber material. The superelasticity associated with the B2 to monoclinic stress-induced transformation and its reversion upon un-loading has been utilized as brassiere wire, eye glasses flame, antenna core wire for cellular phone and fishing wire, and that associated with the B2 to orthorhombic stress-induced transformation and its reversion upon un-loading has been as orthodontic wire, because the TiNiCu alloy wire exhibits smaller stress hysteresis than that of usual TiNi alloy wire. The TiNi shape memory alloy systems are now developed to make various shapes, such as tapes, foils and tubes, and the alloys with those shapes are examined to apply to medical uses, such as guide wire for catheter and catheter tube itself, and to any other uses. The development in Japan is rapidly

  19. Seamless Indoor/Outdoor Positioning Handover for Location-Based Services in Streamspin

    DEFF Research Database (Denmark)

    Hansen, Rene; Wind, Rico; Jensen, Christian Søndergaard

    2009-01-01

    the delivery of truly ubiquitous location-based services by integrating GPS and Wi-Fi location fingerprinting. The paper puts focus on key aspects of the seamless handover between outdoor to indoor positioning. Several different handover solutions are presented,and their applicability is evaluated with respect...

  20. 78 FR 64475 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Science.gov (United States)

    2013-10-29

    ... stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels..., or pressure pipe applications. B. Finished and unfinished oil country tubular goods (OCTG), if covered by the scope of another antidumping duty order from the same country. If not covered by such an...

  1. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    Science.gov (United States)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  2. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Science.gov (United States)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  3. Development of heat treated Zr-2.5 Wt% Nb pressure tube and its microstructural characterization using electron microscopy techniques

    International Nuclear Information System (INIS)

    Saibaba, N.

    2010-01-01

    Two phase Zr-2.5 wt % Nb alloy is widely used for manufacture of pressure tubes for pressurized heavy water reactors (PHWRs). These tubes are used in cold worked and stress relieved (CWSRs) condition and are manufactured by cold drawing or pilgering routes. The microstructure of the CWSR tube is characterized with presence of discontinuous β phase stringers sandwiched between elongated α-phase. Pressure tube undergoes dimensional changes and micro structural deterioration under the reactor operating conditions of temperature, pressure and neutron flux. This limits the life of the component and the availability of the power reactors. There is renewed interest in increasing the life of the pressure tube by bringing about a change in the microstructure of Zr-2.5 Nb material using various thermo mechanical processes during its manufacturing. Heat treatment of this two-phase alloy has been understood to uniquely stabilize the microstructure, which prevents degradation, under in-reactor service condition. This paper illustrates various heat treatment cycles carried out at intermediate cold working stage. Heat treatment involves solutionization of the Zr-2.5 wt % Nb tube from different temperatures followed by two types of quenching process viz, gas quenching and water quenching. The OIM-TEM studies were carried out for characterization of final tube. The technique confirmed the presence of β-phase relatively enriched in Nb content. The resulting SEM microstructures after ageing treatment at different soaking temperatures and time have been presented. Mechanical properties of heat treated pressure tubes, both at room temperature and elevated temperature have been compared with conventional CWSR pressure tube used in PHWRs. (author)

  4. Steam generator tube rupture simulation using extended finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurin; Natesan, Ken

    2016-08-15

    Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.

  5. Steam generator tube rupture simulation using extended finite element method

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurin; Natesan, Ken

    2016-01-01

    Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.

  6. New zirconium alloys for nuclear application; Novas ligas de zirconio para aplicacao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, R.M.; Andrade, A.H.P., E-mail: rmlobo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Zirconium alloys are widely used in the nuclear industry, mainly in fuel cladding tubes and structural components for PWR plants. The service life of these components, which operate under high temperatures conditions ({approx} 300 deg C), has led to developing new alloys with the aim to improve the mechanical properties, corrosion resistance and irradiation damage. The variation in the composition of the alloy produces second phase particles which alter the materials properties according to their size and distribution, is essential therefore, knowledge their characteristics. Analysis of second phase particles in zirconium alloys are carried out by scanning electron microscopy, transmission electron microscopy and image analysis. This study used the zircaloy-4 to illustrate the characterization of these alloys through the study of second phase particles. (author)

  7. Seamless Language Learning: Second Language Learning with Social Media

    OpenAIRE

    Wong, Lung-Hsiang; Sing-Chai, Ching; Poh-Aw, Guat

    2017-01-01

    This conceptual paper describes a language learning model that applies social media to foster contextualized and connected language learning in communities. The model emphasizes weaving together different forms of language learning activities that take place in different learning contexts to achieve seamless language learning. It promotes social interactions with social media about the learners’ day-to-day life using the targeted second or foreign language. The paper first identifies three ke...

  8. 76 FR 39852 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Science.gov (United States)

    2011-07-07

    ..., or equivalent, to the American Society for Testing and Materials (``ASTM'') A-53, ASTM A-106, ASTM A-333, ASTM A- 334, ASTM A-589, ASTM A-795, and the American Petroleum Institute (``API'') 5L... American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335...

  9. 77 FR 13079 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Science.gov (United States)

    2012-03-05

    ... produced, or equivalent, to the American Society for Testing and Materials (``ASTM'') A-53, ASTM A-106, ASTM A-333, ASTM A- 334, ASTM A-589, ASTM A-795, and the American Petroleum Institute (``API'') 5L... American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335...

  10. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  11. Evaluation of SCC susceptibility of alloy 800 under CANDU SG secondary-side conditions

    International Nuclear Information System (INIS)

    Liu, S.; Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Therefore, constant extension rate tests were carried out for Alloy 800 under various steam generator crevice chemistry conditions at applied potentials. These tests were designed to evaluate the stress corrosion cracking susceptibility of Alloy 800 under CANDU( steam generator operating conditions. Based on the experimental results, the recommended electrochemical corrosion potential/pH zone for Alloy 800 determined by electrochemical polarization measurements was verified with the respect of stress corrosion cracking susceptibility. The effects of lead contamination on the stress corrosion cracking susceptibility of Alloy 800 tubing were also evaluated. The experimental results from constant extension rate tests obtained under applied potentials suggest that Alloy 800 has good performance inside much of a previously recommended electrochemical corrosion potential/pH zone determined by electrochemical analysis. Alloy 800 is not susceptible to stress corrosion cracking under normal CANDU steam generator operating conditions. However, Alloy 800 may be susceptible to stress corrosion cracking under near-neutral crevice chemistry conditions in the presence of oxidants. In addition, stress corrosion cracking susceptibility is increased by lead contamination. This observation suggests that the previously defined electrochemical corrosion potential limit under near-neutral crevice conditions could be modified to minimize stress corrosion cracking of Alloy 800. The test results from this work also suggest that the pH dependency of the stress corrosion cracking susceptibility of Alloy 800

  12. Fracture toughness determination in steam generator tubes

    International Nuclear Information System (INIS)

    Bergant M; Yawny, A; Perez Ipina, J

    2012-01-01

    The assessment of the structural integrity of steam generator tubes in nuclear power plants deserved increasing attention in the last years due to the negative impact related to their failures. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J) and the experimental measurement of the fracture toughness of the material (e.g., the material J-resistance curve). The present work describes the development of a non standardized experimental technique aimed to determine J-resistance curves for steam generator tubes with circumferential through wall cracks. The tubes were made of Incoloy 800 (Ni: 30.0-35.0; Cr: 19.0-23.0; Fe: 35.5 min, % in weight). Due to its austenitic microstructure, this alloy shows very high toughness and is widely used in applications where a good corrosion resistance in aqueous environment or an excellent oxidation resistance in high temperature environment is required. Finally, a procedure for the structural integrity analysis of steam generator tubes with crack-like defects, based on a FAD diagram (Failure Assessment Diagram), is briefly described (author)

  13. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  14. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kyung Mun [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of); Hong, Jun Hee [Dept. of mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  15. Application Feasibility of PRE 50 grade Super Austenitic Stainless Steel as a Steam Generator Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Kim, Young sik [Andong National University, Andong (Korea, Republic of); Kim, Taek Jun; Kim, Sun Tae; Park, Hui Sang [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    The aim of this study is to evaluate the properties of the super austenitic stainless steel, SR-50A for application as steam generator tubing material. The microstructure, mechanical properties, corrosion properties, were analyzed and the results were compared between super austenitic stainless steel and Alloy 600 and Alloy 690. Super austenitic stainless steel, SR-50A is superior to Alloy 600, Alloy 690 and Alloy 800 in the mechanical properties(tensile strength, yield strength, and elongation). It was investigated that thermal conductivity of SR-50A was higher than Alloy 600. As a result of thermal treatment on super stainless steel, SR-50A, caustic SCC resistance was increased and its resistance was as much as Alloy 600TT and Alloy 690TT. In this study, optimum thermal treatment condition to improve the caustic corrosion properties was considered as 650 deg C or 550 deg C 15 hours. However, it is necessary to verify the corrosion mechanism and to prove the above results in the various corrosive environments. 27 refs., 6 tabs., 59 figs. (author)

  16. French steam generator tubes: an overview of degradations

    International Nuclear Information System (INIS)

    Buisine, D.; Bouvier, O. de; Rupa, N.; Thebault, Y.; Barbe, V.; Pitner, P.

    2011-01-01

    The various damages (corrosion, fatigue cracks, wear, ...) observed on steam generator (SG) tubes are presented here as well as the techniques used to characterize these damages. The SG are equipped with tubes of 3 materials: 600 MA, 600 TT and 690 TT. Concerning PWSCC of 600 MA and 600 TT tubes, beyond the damages usually observed (corrosion in expansion transition zone and in 600 MA tubes small radius U-bend zone), a new event is to be noted: the phenomenon of denting (presumably induced by the deposit of sludge on the tubesheet) has induced circumferential cracking of the tube expansion transition zone. Concerning ODSCC of 600 MA tubes, beyond the classically observed damages (IGA and IGSCC in expansion transition zone and in TSP crevice), a new event is to be noted: the occurrence of circumferential cracks in tube- TSP crevice. Concerning fatigue cracking, two events have to be noted at upper TSP level in Cruas 1 and Cruas 4 units and in Fessenheim 2 unit. The first (Cruas) was due to the blockage in the broached hole tube support plate which can create critical velocity ratios for some tubes and the second (Fessenheim) to high-cycle fatigue. Concerning wear damage, beyond what is usually observed in the U-bend zone facing the anti-vibration bars (AVB), a new event is to be noted: a wear at TSP level is observed on SG equipped with an economizer, the wear indications being located at TSP 7 and 8 level, on outer tubes close to the central lane. The number of tubes plugged for ODSCC has declined due to the progressive replacement of SG with Alloy 600 MA tubing. Starting in 2004, the increasing plugging of 690 tubing is mainly due to AVB wear. Since 2006, extensive preventive plugging campaigns for tubes at risk of high-cycle fatigue at the upper support plate are performed. Risk of high-cycle fatigue has consequently become the dominant mechanism inducing plugging. PWSCC is the second dominant mechanism which affects 600 MA and 600 TT tube bundles: extensive

  17. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, I G; Pan, Z L; Puls, M P [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1997-02-01

    The presence of hydrides in zirconium based alloys is an important factor in assessing the potential for delayed hydride cracking in pressure tubes and the embrittlement of other in-core components fabricated from these alloys. Consequently, the terminal solid solubility (TSS) of hydrogen in the zirconium alloys used in the Nuclear Industry is an important parameter. However, at the low hydrogen concentrations found in practice, the TSS is difficult to measure accurately and even the measurements of hydrogen concentrations by standard techniques are notoriously difficult to make reproducibly at the nominal levels found in pressure tube materials. The presence of hydrides, their dissolution and nucleation gives rise to a number of internal friction phenomena and changes in Young`s modulus that can be useful from the practical point of view. These phenomena can be used to establish expressions for the TSS as a function of temperature, the hysteresis between dissolution and nucleation and hydrogen supercharging from the gas phase. In particular, such studies show that the hysteresis between the TSS measured during heating and cooling is particularly sensitive to the thermal history of the sample. This paper reviews the phenomena involved and presents some recent results on Zr-2.5Nb pressure tube material. (author). 28 refs, 17 figs, 6 tabs.

  18. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  19. Experimental and Modeling Damage Limits Study for Straight Ti-3A1-2.5V Tubes

    National Research Council Canada - National Science Library

    Gupta, Mool C; Lin, Yaomin; Ni, Kan; Wong, Teh-Hwa; Woodland, Kevin; Grose, Tim; Spidel, Tom; Stone, Bill; Yu, Michael; Taylor, Bob; Lei, Charles; Williams, Reanne

    2007-01-01

    To insure the safety of the V-22 aircraft over long period of operation, damage limits should be established for Ti alloy hydraulic tubes In a previous report, the damage limit results for straight...

  20. A Comparison of the Predicted Tube Plugging Rate for Alloy 600HTMA Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Myung Hwan; Kang, Yong Seok [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2010-10-15

    To manage components that are used in long term operations such as steam generation, it is important to know the tube plugging rate, which can cause the performance degradation. The life of components can be predicted by the method using determinism and probability theory. With a method using probability theory, damage prediction of tube is possible. In this study, damage prediction for steam generation (SG) tube is performed using Weibull distribution and predicted plugging rate (life) is compared with the simple sum plugging number and case by case (failure cause) plugging number

  1. Development and performance of inspection equipment for pressure tubes in Fugen

    International Nuclear Information System (INIS)

    Naruo, Kazuteru; Tanimoto, Ken-ichi; Ohta, Takeo; Nakamura, Takahisa; Imaizumi, Kiyoshi.

    1984-01-01

    The pressure tubes of Fugen are the important equipment as the many tubes compose the core, and since they are made of Zr-2.5% Nb alloy which has been used for the first time in Japan, they have become the object of monitoring (the follow-up investigation of the change of inside diameter, the presence of defects and so on) in addition to the in-service inspection. In this paper, on the inspection equipment for pressure tubes, that has been developed independently by the Power Reactor and Nuclear Fuel Development Corp. in order to carry out the ISI and monitoring, the course of development and the construction and the performance are reported, and the results of having used it for the fourth regular inspection of Fugen are described. The 10-year plan of the ISI and monitoring of pressure tubes is shown. The core of Fugen is composed of 224 pressure tubes, therefore, the inspection is carried out by sampling inspection. The monitoring is carried out on four tubes for the follow-up investigation and one tube that shows the severest operation history at the time of inspection. The equipment performs ultrasonic flaw detection, the measurement of inside diameter and the visual inspection of internal surface. (Kako, I.)

  2. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  3. Factors in the selection of broiler tube materials for a civil fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tyzack, C; Chitty, A

    1975-07-01

    This paper briefly considers some of the factors which must be balanced in the selection of a boiler tube material for a Civil Fast Reactor. The merits and possible demerits of low alloy ferritic steels and the austenitic Alloy 800 are compared with respect to waterside corrosion resistance, mechanical properties, fabrication and weldability and possible effects of exposure to the sodium environment under normal and fault conditions. It is pointed out that although there is operational experience of most of the materials in boiler superheater applications there is little or none in evaporative regimes. (author)

  4. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1975-01-01

    The chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behaviour of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  5. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1974-01-01

    The Chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behavior of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time, and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  6. Toward seamless weather-climate and environmental prediction

    Science.gov (United States)

    Brunet, Gilbert

    2016-04-01

    Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).

  7. Feasibility study of aluminum beam tube for the collider: An option for no-coating and no-liner

    International Nuclear Information System (INIS)

    Chou, W.

    1994-07-01

    This report proposes to use a single-layer beam tube made of high strength, high resistivity aluminum alloy (such as 7039-T61 or A7N01) to replace the double-layer copper coated stainless steel tube in the SSC Collider. The main reasons are: (1) a potential saving of about $23 million which is basically the baseline cost of the copper coating and (2) the use of an extruded aluminum tube consisting of a beam chamber and a pumping chamber may solve the vacuum problem without any liner

  8. Evaluating Steam Generator Tubing Corrosion through Shutdown Nickel and Cobalt Releases

    International Nuclear Information System (INIS)

    Marks, Chuck; Little, Mike; Krull, Peter; Dennis Hussey; Kenny Epperson

    2012-09-01

    During power operation in PWRs, steam generator tubing corrodes. In PWRs with nickel alloy steam generator tubing this leads to the release of nickel into the coolant. While not structurally significant, this process leads to corrosion product deposition on the fuel surfaces that can threaten fuel integrity, provide a site for boron precipitation, and, through activation and subsequent release, lead to increased out-of-core radiation fields. During shutdown, decreases in temperature and pH and an increase in the oxidation potential lead to dissolution of some corrosion products from the core. This work evaluated the masses of corrosion products released during shutdown as a proxy for steam generator tubing corrosion rates. The masses were evaluated for trends with time (e.g., the number of cycles) and for the influence of design and operating features such as tubing manufacturer, plant design (e.g., three loop versus four loop), and operating chemistry program. This project utilized the EPRI PWR Chemistry Monitoring and Assessment database. Data from over 20 units, many over several cycles, were assessed. The focus was on corrosion product release from Alloy 690TT tubing and all data were from units that had replaced steam generators. Data were analyzed using models developed from corrosion rate test data reported in the literature with a heavy reliance on data from the EDF BOREAL testing. The most striking result of this analysis was a clear division between plants that exhibited corrosion with a falling rate (i.e., following an exponential decay as has been observed, for example, in the BOREAL testing) and those that showed a constant corrosion rate, sustained for many outages. This difference appears to be most closely correlated with the manufacturer of the tubing. Within the two distinct plant groups (decaying corrosion rate and constant corrosion rate), details of the trends were evaluated for correlation with zinc addition history, plant type, and operating

  9. The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Resta Levi, R.; Sagat, S

    1999-09-01

    Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)

  10. Sensitivity analysis of the Expansion Process for Alloy UNS N08028

    Directory of Open Access Journals (Sweden)

    Navarro Aitor

    2016-01-01

    Full Text Available Due to the good mechanical properties of forged parts, the forging process plays a decisive role in the manufacturing of seamless stainless steel pipes for oil country tubular goods (OCTG lines. Tough competition between manufacturers gives them plenty of incentive to make their processes in raw material and energy usage more and more efficient. In this context the expansion process is one of the critical production steps in the manufacturing of seamless stainless steel pipes. This work presents a sensitivity analysis of a finite element method (FEM for the simulation of the expansion of the alloy UNS N08028. The input parameters ram speed, tool angle, initial ID and final ID of the billet as well as temperature were used to describe responses like tool wear and material loss. With the aim to minimize the tool wear and to reduce the material waste, a study of influence of the input parameters on the mentioned responses were performed. This development is supported by experimental work in order to validate the simulation model. The sector demand for new materials with specific properties and the cost-intensive experimental trials justifies the use of such simulation tools and opens great opportunities for the industry.

  11. Enculturating Seamless Language Learning through Artifact Creation and Social Interaction Process

    Science.gov (United States)

    Wong, Lung-Hsiang; Chai, Ching Sing; Aw, Guat Poh; King, Ronnel B.

    2015-01-01

    This paper reports a design-based research (DBR) cycle of MyCLOUD (My Chinese ubiquitOUs learning Days). MyCLOUD is a seamless language learning model that addresses identified limitations of conventional Chinese language teaching, such as the decontextualized and unauthentic learning processes that usually hinder reflection and deep learning.…

  12. Operative behaviour of a condenser tube under ETA chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Burkart, Arturo; Rodriguez, Ivanna; Raul, Manera; Diego, Quinteros

    2012-09-01

    Among the various recommendations for the surveillance of the integrity of the materials of the Secondary Cycle (Balance of Plant) it is the periodic removal of a steam generator tube and a condenser tube and their analysis. It considers assessment of the water chemistry, corrosion and the reciprocal effect on or from other components of the cycle. Embalse N.P.P. is a CANDU 6 type, Pressurized Heavy Water Reactor, located in Cordoba Province, Argentina. Previous papers have shown results on tubes removed from the steam generators (Bordoni et al., NPC'08, September 15-18, 2008, Berlin, Germany; 6 th Canadian Nuclear Society - Steam Generators Conference, November 8-11, 2009, Toronto, Canada). Considering that the Embalse BOP has mixed metallurgy, i.e., steam generator tubes made of A800, piping made of ferrous alloys and condenser tubes made of Admiralty Brass and also taking into account that the chemistry has been modified from Morpholine control to ETA control (Fernandez et. al, NPC'2010, October 3-7, Quebec City, Canada), it has been decided to remove and analyze a condenser tube that has been placed in operation coincidently with the establishment of the ETA chemical control. The extraction is dated along with the November 2011 Plant Programmed Outage. Objectives are assessing the operative behavior of the tube performing visual and optical microscope inspection, SEM analysis of the oxides and deposits in exposed surfaces and occluded locations like tube sheet and other tests as well. Results are compared to the same analysis performed on a new tube in storage and integrated with the chemical operative figures of the cycle during the period: chemical data and corrosion products transport. (authors)

  13. Surface Modification Technology of ODS Alloying Treatment by using Laser Heat Source

    International Nuclear Information System (INIS)

    Kim, H. G.; Kim, I. H.; Choi, B. K.; Park, J. Y.; Koo, Y. H.

    2012-01-01

    The ODS (Oxide Dispersion Strengthed) alloys can be applied as structural materials for components in the core of a nuclear power plants since these components must have a high mechanical strength at high temperature up to 700 .deg. C. This type of alloy was generally manufactured by mechanical alloying from its source metal and Y 2 O 3 powders. The mechanical alloyed powder is subjected to the HIP (Hot Isotatic Pressing) or hot extrusion: and this product is heat treated at target temperature and time. Thus, the Y 2 O 3 particles are dispersed in the metal matrix. These manufacturing process of ODS alloy is very complex and expensive. Also, it is necessary the special techniques to obtain the uniform dispersion and volume control of Y 2 O 3 particles. Another problem is the final product forming such as tube and sheet because the intermediated-product has a high mechanical strength due to the dispersion of Y 2 O 3 particles. The laser cladding techniques was applied on the surface cladding of ceramics and inter-metallic compounds on metal base and ceramic base components to increase corrosion and wear resistance. The laser heat source can be used to the alloying the metal and ceramic materials, because thermally melting of metal and ceramic is possible. So, we are applied on ODS alloy manufacturing by using the laser heat source. The main advantages and disadvantage of this technology can be resumed as follows: · It is possible to apply to the sheet and tube shape component, directly. · Metallurgical damage such as HAZ and severe grain growth is considerably reduced. · Good control of the alloying element of the treated zone · Highly reproducible homogeneous zone · The pores and cracks are suppressed in the treated zone · Oxidation can be prevented during the process. · Good control is possible for the irregular shaped components. · The bulk material alloying is limited by the power of laser source. So, this work is studied on the ODS alloy manufacturing

  14. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  15. Effects of Heat-treatment on the Tensile Properties of Ti-Al-Zr Alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Choi, Byoung Kwon; Jeong, Yong Hwan

    2006-01-01

    Ti-Al-Zr, titanium alloy, has been well known material as one of the candidates for heat-exchange tubes in steam generators in SMART (System integrated Modular Advanced ReacTor). But the primary circuit with the primary coolant is much different from that of commercial PWRs, i.e., an ammonia is used as a pH raising agent and the heat-exchange tubes are exposed to the primary coolant water at high temperatures and in high-pressure environments. Thus, excellent mechanical properties and corrosion resistance are required for the safe operation during the lifetime. A lot of tests were done to examine the mechanical properties of the Ti-Al-Zr alloy in the room temperature. But the test of this work is done in the more realistic condition from the viewpoint of the system characteristics for SMART design concept. Therefore, the purpose of this study is to evaluate the effects of annealing and cooling rate on the tensile properties of Ti-Al-Zr alloy at the operation temperature

  16. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  17. Operational Challenges and Solutions with Implementation of an Adaptive Seamless Phase 2/3 Study

    Science.gov (United States)

    Spencer, Kimberly; Colvin, Kelly; Braunecker, Brad; Brackman, Marcia; Ripley, Joyce; Hines, Paul; Skrivanek, Zachary; Gaydos, Brenda; Geiger, Mary Jane

    2012-01-01

    A wide variety of operational issues were encountered with the planning and implementation of an adaptive, dose-finding, seamless phase 2/3 trial for a diabetes therapeutic. Compared with a conventional design, significant upfront planning was required, as well as earlier, more integrated cross-functional coordination. The existing infrastructure necessitated greater flexibility to meet the needs of the adaptive design. Rapid data acquisition, analysis, and reporting were essential to support the successful implementation of the adaptive algorithm. Drug supply for nine treatment arms had to be carefully managed across many sites worldwide. Details regarding these key operational challenges and others will be discussed along with resolutions taken to enable successful implementation of this adaptive, seamless trial. PMID:23294774

  18. Study of sintering on Mg-Zn-Ca alloy system

    Science.gov (United States)

    Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika

    2018-05-01

    Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.

  19. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4

    International Nuclear Information System (INIS)

    Thevenet, J.

    1964-01-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the φ = 340 ingot into φ = 220 billets, cutting into lengths and hot drilling at φ = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes (φ =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [fr

  20. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  1. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory.

  2. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J.

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory

  3. Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique

    Science.gov (United States)

    Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.

    2018-04-01

    Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.

  4. Dynamic response of INTOR/NET blankets after coolant tube rupture

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1985-01-01

    The dynamic response of different water-cooled liquid Li 17 Pb 83 breeder blanket modules has been calculated to study the potential of these modules in case of coolant tube rupture. Numerical calculations with the code PISCES have been carried out taking into account the fluid-structure interaction and the elasto-plastic behaviour of the structural material. The results show that for inert coolant characteristics the proposed conceptual designs for NET and INTOR have sufficient resistance against coolant tube rupture but when taking into account energy release due to chemical reaction of water with LiPb-alloy up to doubling of the wall thickness has to be envisaged to guarantee structural reliability. (orig.)

  5. Alloy 33: A new material for the handling of HNO3/HF media in reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1997-01-01

    Alloy 33, an austenitic 33Cr-32Fe-31Ni-1.6Mo-0.6Cu-0.4N material shows excellent resistance to corrosion when exposed to highly oxidizing media as e.g. HNO 3 and HNO 3 /HF mixtures which are encountered in reprocessing of nuclear fuel. According to the test results available so far, resistance to corrosion in boiling azeotropic (67%) HNO 3 is about 6 and 2 times superior to AISI 304 L and 310 L. In higher concentrated nitric acid it can be considered corrosion resistant up to 95% HNO 3 at 25 C, up to 90% HNO 3 at 50 C and up to somewhat less than 85% HNO 3 at 75 C. In 20% HNO 3 /7% HF at 50 C its resistance to corrosion is superior to AISI 316 Ti and Alloy 28 by factors of about 200 and 2.4. Other media tested with different results include 12% HNO 3 with up to 3.5% HF and 0.4% HF with 32 to 67.5% HNO 3 at 90 C. Alloy 33 is easily fabricated into all product forms required for chemical plants (e.g. plate, sheet, strip, wire, tube and flanges). Components such as dished ends and tube to tube sheet weldments have been successfully fabricated facilitating the use of Alloy 33 for reprocessing of nuclear fuel

  6. 77 FR 41967 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Certain...

    Science.gov (United States)

    2012-07-17

    ... Determination of Sales at Less Than Fair Value: Certain Circular Welded Non-Alloy Steel Pipe From Korea, 57 FR... pipe tubing used for farming and support members for reconstruction or load bearing purposes in the...

  7. SPIRIT: A seamless phase I/II randomized design for immunotherapy trials.

    Science.gov (United States)

    Guo, Beibei; Li, Daniel; Yuan, Ying

    2018-06-07

    Immunotherapy-treatments that enlist the immune system to battle tumors-has received widespread attention in cancer research. Due to its unique features and mechanisms for treating cancer, immunotherapy requires novel clinical trial designs. We propose a Bayesian seamless phase I/II randomized design for immunotherapy trials (SPIRIT) to find the optimal biological dose (OBD) defined in terms of the restricted mean survival time. We jointly model progression-free survival and the immune response. Progression-free survival is used as the primary endpoint to determine the OBD, and the immune response is used as an ancillary endpoint to quickly screen out futile doses. Toxicity is monitored throughout the trial. The design consists of two seamlessly connected stages. The first stage identifies a set of safe doses. The second stage adaptively randomizes patients to the safe doses identified and uses their progression-free survival and immune response to find the OBD. The simulation study shows that the SPIRIT has desirable operating characteristics and outperforms the conventional design. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Metallurgical problems in the exchange tube of a fast reactor steam generator

    International Nuclear Information System (INIS)

    Coriou, M.; Champeix, L.; Weisz, M.

    1980-10-01

    The design of the 1200 MWe Super Phenix power station steam generators is based on the following principles: once through helical tube exchangers which can be completely drained on the sodium side; the single wall exchange tubes are accessible to Foucault current testing during shutdowns. The authors explain the reasons for selecting the 800 Alloy for the exchange tubes. This choice was borne out by the results of several years of studies in the following areas: 6000 test hours with a 45 MWe model; corrosion test under stress in a water-steam and sodium plus caustic soda environment; resistance to creep and fatigue (effects of ageing and annealing, of the chemical compound); industrial feasibility, fabrication, utilization, bending, coiling, welding, testing. Concurrently, the EMl2 qualification finalizing has been pursued for the same application [fr

  9. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  10. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  11. Application of electrochemical impedance spectroscopy to monitor seawater fouling on stainless steels and copper alloys

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    Electrochemical impedance spectroscopy may be applied to detect and to follow seawater fouling. Experiments have been conducted with natural seawater flowing inside tube-electrodes at temperatures between 30 deg C and 85 deg C. With stainless steel tubes, mineral and organic foulings have been followed; a linear relationship between the dry weight of the organic fouling and its electrical resistance, has been observed. On copper alloy tubes, only mineral deposits have occurred and so have been detected by impedance spectroscopy. (Author). 5 refs., 6 figs

  12. Top of tubesheet cracking in Bruce A NGS steam generator tubing - recent experience

    International Nuclear Information System (INIS)

    Clark, M.A.; Lepik, O.; Mirzai, M.; Thompson, I.

    1998-01-01

    During the Bruce A Nuclear Generating Station (BNGS-A) Unit 1 1997 planned outage, a dew point search method identified a leak in one steam generator(SG) tube. Subsequently, the tube was inspected with all available eddy current probes and removed for examination. The initial inspection results and metallurgical examination of the removed tube confirmed that the leak was due to intergranular attack/stress corrosion cracking (IGA/SCC) emanating from the secondary side of the tube at the top of the tubesheet location. Subsequently, eddy current and ultrasonic indications were found at the top of the tubesheet of other Alloy 600 SG tubes. To investigate the source of the indications and to validate the inspection probes, sections of 40 tubes with various levels of damage were removed. The metallurgical examination of the removed sections showed that both secondary side and primary side initiated, circumferential, stress corrosion cracking and intergranular attack occurred in the BNGS-A SG tubing. Significant degradation from both mechanisms was found, invariably located in the roll transition region of the top expansion joint between the tube and the tubesheet on the hot leg (304 degrees C) side of the tube. Various aspects of the failures and tube examinations are presented in this paper, including presentation of the cracking morphology, measured crack size distributions, and discussion of some factors possibly affecting the cracking. (author)

  13. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  14. Seamless prevention of adverse events from tattooing

    DEFF Research Database (Denmark)

    Serup, Jørgen

    2015-01-01

    The boom in tattooing has been paralleled by more frequent adverse events, which may be localised in the skin or systemic and manifested clinically or latent. Infections, allergic reactions from red-coloured tattoos and papulo-nodular reactions from black tattoos dominate. Mild complaints are very...... orchestration of a multi-targeted strategy. High-priority elements of this strategy shall facilitate a qualified 'go' or 'no go' decision by the customer before the tattoo is made and should involve informed consent, qualification of the tattooist and the parlour, including supplies of inks etc., and attention......, which needs attention and timely action to prevent additional cases and epidemic outbreaks, are part of this seamless strategy, along with optimised medical therapy and research....

  15. A New Seamless Transfer Control Strategy of the Microgrid

    OpenAIRE

    Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe

    2014-01-01

    A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used t...

  16. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  17. Fracture toughness of irradiated Zr-2.5Nb pressure tube from Indian PHWR

    Science.gov (United States)

    Shah, Priti Kotak; Dubey, J. S.; Shriwastaw, R. S.; Dhotre, M. P.; Bhandekar, A.; Pandit, K. M.; Anantharaman, S.; Singh, R. N.; Chakravartty, J. K.

    2015-03-01

    Fracture toughness of irradiated Zr-2.5Nb alloy pressure tube, fabricated by the cold pilgering and stress relieving route, was evaluated using disk compact tension type specimens. These specimens were punched out from the irradiated pressure tube (S-07), which was in service for about 8 effective full power years of reactor operation in the Kakrapar Atomic Power Station-2 (KAPS-2). The tests were carried out remotely inside a lead shielded enclosure. Crack growth during the test was measured using the direct current potential drop technique. The irradiated pressure tube showed low fracture toughness at 25 °C. The fracture toughness increased with increase in temperature up to 250 °C but was practically unaffected with further increase in temperature up to 300 °C. This paper discusses the fracture behavior of irradiated Indian pressure tube material and compares it with other data available.

  18. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  19. Inhibition of stress corrosion cracking of alloy 600 in 10% NaOH solutions with and with lead oxide at 315 C

    International Nuclear Information System (INIS)

    Hur, D.H.; Kim, J.S.; Baek, J.S.; Kim, J.G.

    2002-01-01

    Alloy 600 steam generator tube materials have experienced various degradations by corrosion such as stress corrosion cracking (SCC) on the inner and outer diameter surface of tube, intergranular attack and pitting, and by mechanical damage such as fretting-wear and fatigue. These tube degradations not only increase the costs for tube inspection, maintenance and repair but also reduce the operation safety and the efficiency of plants. Therefore, the methodologies have been extensively developed to mitigate them. The addition of inhibitors to the coolant is a feasible method to mitigate tube degradations in operating plants. In this paper, a new inhibitor is proposed to mitigate the secondary side stress corrosion cracking of alloy 600 tubes. The effect of inhibitors on the electrochemical behavior and the stress corrosion cracking resistance of alloy 600 was evaluated in 10% sodium hydroxide solution with and without lead oxide at 315 C. The specimens of a C-ring type for stress corrosion cracking test were polarized at 150 mV above the corrosion potential for 120 hours without and with inhibitors such as titanium oxide, titanium boride, cerium boride. The chemical compositions of the films formed on the crack tip in the C-ring specimens were analyzed using a scanning Auger electron spectroscopy. The cerium boride, the most effective inhibitors, was observed to decrease the crack propagation rate more than a factor of three compared with that obtained in pure 10% NaOH solution. Furthermore, no SCC was observed in lead contaminated 10% NaOH solution by the addition of the cerium boride. (authors)

  20. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    Science.gov (United States)

    Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411

  1. Quality assurance when surface welding nickel-based alloys; Qualitaetssicherung bei der Auftragsschweissung von Nickelbasislackierungen

    Energy Technology Data Exchange (ETDEWEB)

    Metschke, J. [Muellkraftwerk Schwandorf Betriebsgesellschaft mbH (Germany)

    2003-07-01

    The cladding of evaporator heat exchanger surfaces in refuse incineration boilers with alloy 625 can effectively protect against the corrosive wear of the basic tube if the described rules concerning the pre-treatment, processing, quality control and after-care are observed. This statement is supported by the positive experience with this alloy at the Schwandorf refuse-fired power plant over a period of eight years now. Since the maximum service temperature is limited to 420 C, alloy 625 is only suitable for protecting superheater pipes subject to certain conditions. Long-term experience with alternative nickel-based alloys (alloy 622, alloy 686 and others) are not yet available. (orig.) [German] Die Schweissplattierung von Verdampferwaermetauscherflaechen in Muellverbrennungskesseln mit Alloy 625 kann einen wirksamen Schutz gegen den korrosiven Verschleiss des Grundrohres darstellen, wenn die vorstehenden Regeln ueber Vorbehandlung, Verarbeitung, Qualitaetskontrolle und laufende Nachsorgearbeiten beachtet werden. Diese Aussage wird durch die positiven Erfahrungen mit dieser Legierung im Muellkraftwerk Schwandorf ueber einen Zeitraum von nunmehr acht Jahren gestuetzt. (orig.)

  2. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  3. CASTI handbook of stainless steels and nickel alloys. 2. ed.

    International Nuclear Information System (INIS)

    Lamb, S.

    2002-01-01

    This is the only up-to-date (2002) reference book that covers both stainless steels and nickel alloys. Written by 30 authors and peer reviewers with over 700 years of combined industrial experience, this CASTI handbook provides the latest stainless steels and nickel alloys information in a practical and comprehensive manner. For the project engineer, maintenance engineer or inspector, this book provides solutions to many of the corrosion problems encountered in aggressive environmental conditions. Some of the corrosive conditions covered are: stress corrosion cracking, reducing environments, halogenation, highly oxidizing environments, and high temperatures. Hundreds of different material applications and selections, throughout many industries, are referenced. It is an ideal reference source to assist in preventing or minimizing corrosion related problems, including those encountered during welding fabrication. This practical handbook also contains a handy 'Alloy Index' which lists each alloy by its ASTM Specification, UNS Number, common name, trade name and page number references. The second edition includes additional coverage of corrosion resistant alloys for downhole production tubing. The new material covers corrosion processes, corrosion rates, hydrogen sulfide environments, corrosion inhibitors, corrosion resistant alloys, the application of stainless steel in production conditions, and more

  4. Laboratory results of stress corrosion cracking of steam generator tubes in a complex environment - An update

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Olivier; Pavageau, Ellen-Mary; Vaillant, Francois [EDF R and D, Materials and Mechanics of Components Department, 77818 Moret-sur-Loing (France); Bouvier, Odile de [EDF Nuclear Engineering Division, Centre d' Expertise et d' Inspection dans les Domaines de la Realisation et de l' Exploitation, 93206 Saint Denis (France)

    2004-07-01

    Stress corrosion cracking occurs in the flow-restricted areas on the secondary side of steam generator tubes of Pressured Water Reactors (PWR), where water pollutants are likely to concentrate. Chemical analyses carried out during the shutdowns gave some insight into the chemical composition of these areas, which has evolved during these last years (i.e. less sodium as pollutants). It has been modeled in laboratory by tests in two different typical environments: the sodium hydroxide and the sulfate environments. These models satisfactorily describe the secondary side corrosion of steam generator tubes for old plant units. Furthermore, a third typical environment - the complex environment - which corresponds to an All Volatile Treatment (AVT) environment containing alumina, silica, phosphate and acetic acid has been recently studied. This particular environment satisfactorily reproduces the composition of the deposits observed on the surface of the steam generator tubes as well as the degradation of the tubes. A review of the recent laboratory results obtained by considering the complex environment are presented here. Several tests have been carried out in order to study initiation and propagation of secondary side corrosion cracking for some selected materials in such an environment. 600 Thermally Treated (TT) alloy reveals to be less sensitive to secondary side corrosion cracking than 600 Mill Annealed (MA) alloy. Finally, the influence of some related factors like stress, temperature and environmental factors are discussed. (authors)

  5. Laboratory results of stress corrosion cracking of steam generator tubes in a complex environment - An update

    International Nuclear Information System (INIS)

    Horner, Olivier; Pavageau, Ellen-Mary; Vaillant, Francois; Bouvier, Odile de

    2004-01-01

    Stress corrosion cracking occurs in the flow-restricted areas on the secondary side of steam generator tubes of Pressured Water Reactors (PWR), where water pollutants are likely to concentrate. Chemical analyses carried out during the shutdowns gave some insight into the chemical composition of these areas, which has evolved during these last years (i.e. less sodium as pollutants). It has been modeled in laboratory by tests in two different typical environments: the sodium hydroxide and the sulfate environments. These models satisfactorily describe the secondary side corrosion of steam generator tubes for old plant units. Furthermore, a third typical environment - the complex environment - which corresponds to an All Volatile Treatment (AVT) environment containing alumina, silica, phosphate and acetic acid has been recently studied. This particular environment satisfactorily reproduces the composition of the deposits observed on the surface of the steam generator tubes as well as the degradation of the tubes. A review of the recent laboratory results obtained by considering the complex environment are presented here. Several tests have been carried out in order to study initiation and propagation of secondary side corrosion cracking for some selected materials in such an environment. 600 Thermally Treated (TT) alloy reveals to be less sensitive to secondary side corrosion cracking than 600 Mill Annealed (MA) alloy. Finally, the influence of some related factors like stress, temperature and environmental factors are discussed. (authors)

  6. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  7. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  8. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  9. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  10. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  11. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  12. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  13. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    International Nuclear Information System (INIS)

    Osborne, P.E.

    2002-01-01

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of 233 U from a gas (UF 6 ) sorbed on sodium fluoride pellets to a more stable oxide (U 3 O 8 ). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF 6 converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in 233 U is 232 U. This impurity isotope has several daughters that make the handling of the 233 U difficult. Traps of 233 U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been proven to have a finite life due to failure

  14. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  15. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  16. Enhanced Seamless Handover Algorithm for WiMAX and LTE Roaming

    Directory of Open Access Journals (Sweden)

    HINDIA, M. N.

    2014-11-01

    Full Text Available With the ever evolving mobile communication technology, achieving a high quality seamless mobility access across mobile networks is the present challenge to research and development engineers. Existing algorithms are used to make handover while a mobile station is roaming between cells. Such algorithms have some handover instability due to method of making handover decision. This paper proposes an enhanced handover algorithm that substantially reduces the handover redundancy in vertical and horizontal handovers. Also, it enables users to select the most appropriate target network technology based on their preferences even in the worst case where the mobile station roams between cell boundaries, and has high ability to have efficient performance in the critical area full of interferences. The proposed algorithm uses additional quality of service criteria, such as cost, delay, available bandwidth and network condition with two handover thresholds to achieve a better seamless handover process. After developing and testing this algorithm, the simulation results show a major reduction in the redundant handover, so high accuracy of horizontal and vertical handovers obtained. Moreover, the signal strength is kept at a level higher than the threshold during the whole simulation period, while maintaining low delay and connection cost compared to other two algorithms in both scenarios.

  17. Color seamlessness in multi-projector displays using constrained gamut morphing.

    Science.gov (United States)

    Sajadi, Behzad; Lazarov, Maxim; Majumder, Aditi; Gopi, M

    2009-01-01

    Multi-projector displays show significant spatial variation in 3D color gamut due to variation in the chromaticity gamuts across the projectors, vignetting effect of each projector and also overlap across adjacent projectors. In this paper we present a new constrained gamut morphing algorithm that removes all these variations and results in true color seamlessness across tiled multiprojector displays. Our color morphing algorithm adjusts the intensities of light from each pixel of each projector precisely to achieve a smooth morphing from one projector's gamut to the other's through the overlap region. This morphing is achieved by imposing precise constraints on the perceptual difference between the gamuts of two adjacent pixels. In addition, our gamut morphing assures a C1 continuity yielding visually pleasing appearance across the entire display.We demonstrate our method successfully on a planar and a curved display using both low and high-end projectors. Our approach is completely scalable, efficient and automatic. We also demonstrate the real-time performance of our image correction algorithm on GPUs for interactive applications. To the best of our knowledge, this is the first work that presents a scalable method with a strong foundation in perception and realizes, for the first time, a truly seamless display where the number of projectors cannot be deciphered.

  18. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  19. Traps in Zirconium Alloys Oxide Layers

    Directory of Open Access Journals (Sweden)

    Helmar Frank

    2005-01-01

    Full Text Available Oxide films long-time grown on tubes of three types of zirconium alloys in water and in steam were investigated, by analysing I-V characteristic measured at constant voltages with various temperatures. Using theoretical concepts of Rose [3] and Gould [5], ZryNbSn(Fe proved to have an exponential distribution of trapping centers below the conduction band edge, wheras Zr1Nb and IMP Zry-4 proved to have single energy trap levels.

  20. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)