WorldWideScience

Sample records for alloy powders produced

  1. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos. Rodovia Washington Luiz, km 235, 13.565-905, PO Box 676, São Carlos, SP (Brazil)

    2013-11-15

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  2. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Audebert, F.; Galano, M.; Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C.

    2013-01-01

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  3. Machinability of zinc-aluminum alloy5; zamzk5; alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Adnan, I.O.; Momani, M.A.A.

    2007-01-01

    Powder metallurgy process (P/M) is repeatedly reported as a near-net or net-shape manufacturing process with the ability of producing parts of complicated or intricate shapes with high required dimensional accuracy and high surface quality. However, some finishing and machining operations are sometimes necessary and must be done to meet dimensional tolerances or accommodate design features that can be achieved during compaction such as transverse holes, undercuts and threads. Therefore, it is necessary to study the machinability of P/M products. ZAMAK5 alloy is widely used in engineering applications in the automobile industry, particularly in the manufacturing of bushes and recently self -lubricated bearings which are manufactured by the P/M process. Therefore it is anticipated that studying the machinability of this alloy as produced by the powder metallurgy process is worthwhile investigating. In this paper, the machinability of ZAMAK5, alloy produced by powder metallurgy, under different cutting conditions of speed, depth of cut and feed rate is carried out. Surface roughness was used as a criterion for assessing machinability at the different conditions. It was found that specimens compacted at 475 MPa and having 1% addition of zinc stearates as a binder and lubricant gave better surface quality than those produced at 550 MPa compacting pressure,whereas at 1.5% addition of zinc stearates produced worse surface quality (i.e. Higher surface roughness than in case of 475 MPa compacting pressure). On the whole, the results of the experimental work revealed that the surface roughness at the different cutting conditions remained within the accepted level in industry, less than 2 microns. (author)

  4. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  5. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  6. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  7. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  8. Microstructure and mechanical properties of a Mg–Zn–Y alloy produced by a powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Asgharzadeh, H. [Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, P.O. Box 51666-16471, Tabriz (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, E.Y. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Chae, H.J.; Kim, T.S. [Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, J.W. [Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-02-15

    In this paper, a bulk Mg–Zn–Y alloy reinforced by quasicrystalline particles was produced by hot extrusion of rapidly-solidified powders. MgZn{sub 4.3}Y{sub 0.7} powders with different particle sizes were prepared by an inert gas atomizer and then extruded at 380 °C with extrusion ratios of 10:1, 15:1, and 20:1. Microstructural studies were performed using an optical microscope, scanning electron microscope, transmission electron microscope, and X-ray diffraction. The mechanical strength and hardness of the extruded materials were enhanced by employing finer Mg alloy powders. More uniform deformation of powders in extruded billets with good tensile properties was achieved at higher extrusion ratios, especially for finer powders. The high strength of the MgZn{sub 4.3}Y{sub 0.7} alloy was preserved at elevated temperatures due to the presence of icosahedral phase nanoparticles.

  9. Performance evaluation and characterisation of EIGA produced titanium alloy powder for additive manufacturing processes

    CSIR Research Space (South Africa)

    Arthur, Nana KK

    2017-11-01

    Full Text Available affect powder quality, and hinder processing. In an investigation by Goso and Kale [3], Ti-6Al-4V alloy powder was produced by the hydride-dehydride (HDH) process in order to make titanium components by blended elemental approach. Chemical analysis.... 2016. Additive manufacturing of metals, Acta Materialia, 117, pp 371-392. 3 [3] Goso, X. and Kale, A. 2010. Production of titanium metal powder by the HDH process, (Paper presented at the South African Institute of Mining and Metallurgy Light...

  10. Microstructure and corrosion of Pd-modified Ti alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Ashworth, M.A.; Davenport, A.J.; Ward, R.M.; Hamilton, H.G.C.

    2010-01-01

    A method for the fabrication of titanium alloy parts with enhanced corrosion resistance by a powder metallurgy route is presented in this paper. Commercial purity titanium powders modified with Pd have been hot isostatically pressed (HIPped) and the microstructure and distribution of the noble metal characterised by optical and scanning electron microscopy. The electrochemistry of the HIPped alloy has been assessed and the effect of powder size fraction evaluated. Results show that the phase composition and electrochemistry of the HIPped Pd-modified alloy is equivalent to that of wrought grade 7 Ti.

  11. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  12. Influence of thermo-mechanical processing on the microstructure of Cu-based shape memory alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P.P.; Ibarra, A.; Iza-Mendia, A.; Recarte, V.; Perez-Landazabal, J.I.; San Juan, J.; No, M.L.

    2003-01-01

    Cu-Al-Ni shape memory alloys processed by powder metallurgy show very good thermo-mechanical properties, much better than those found in alloys produced by conventional casting. In this paper, we present the microstructural characterisation of these powder metallurgy alloys in order to find the microscopic mechanisms, linked to the powder metallurgy processing method, which are indeed responsible of such good thermo-mechanical behaviour. Electron microscopy studies [scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM)] show that powder metallurgy processing creates a sub-grain structure characterised by the presence of low angle sub-boundaries. These sub-boundaries are found to be lying on {1 1 0} and {1 1 2} lattice planes and are composed by an arrangement of superdislocations. These sub-boundaries may improve ductility in two ways: acting as a sink of dislocations which promotes plastic deformation and decreasing stress concentration at grain boundaries. Moreover, since sub-boundaries act as weak obstacles for the movement of martensite plates, the improvement on ductility is accomplished by an adequate thermo-mechanical behaviour

  13. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  14. Low-Pressure and Low-Temperature Hydriding-Pulverization-Dehydriding Method for Producing Shape Memory Alloy Powders

    Science.gov (United States)

    Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.

    2018-04-01

    Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.

  15. Effect of hydrogenation pressure on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio; Galdino, Gabriel Souza; Bressiani, Ana Helena; Faria Junior, Rubens Nunes de; Takiishi, Hidetoshi

    2009-01-01

    The effects of the hydrogenation stage on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy have been studied. Powder alloys have been produced by hydrogenation with 250 MPa or 1 GPa and via high energy planetary ball milling. Samples were isostatically pressed at 200 MPa and sintered at 1150 deg C for 7, 10 and 13 hours. Elastic modulus and microhardness were determined using a dynamic mechanical analyzer (DMA) and a Vickers microhardness tester. Density of the samples was measured using a liquid displacement system. Microstructure and phases presents were analyzed employing scanning electron microscopy (SEM). Elastic modulus were 81.3 ± 0.8 and 62.6 ± 0.6 GPa for samples produced by 250 MPa and 1 GPa hydrogenation, respectively when sintered for 7h. (author)

  16. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  17. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  18. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B., E-mail: givmartins@yahoo.com.br, E-mail: vladimir@las.inpe.br, E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF (Brazil); Nunes, C.A., E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Polo Urbo Industrial; Borges Junior, L.A., E-mail: borges.jr@itelefonica.com.br [Centro Universitario de Volta Redond (UNIFOA), Volta Redonda, RJ (Brazil)

    2009-07-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  19. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    International Nuclear Information System (INIS)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B.; Silva, C.R.M.; Nunes, C.A.

    2009-01-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  20. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  1. Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr

    International Nuclear Information System (INIS)

    Marty, M.; Delaunay, C.; Walder, A.

    1989-01-01

    The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)

  2. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  3. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  5. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Martinez, J.; Savoini, B.; Monge, M.A.; Munoz, A.; Pareja, R.

    2011-01-01

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La 2 O 3 or Y 2 O 3 as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  6. Sintered FeCuRe Alloys Produced from Commercially Available Powders

    Directory of Open Access Journals (Sweden)

    Borowiecka-Jamrozek J.

    2017-09-01

    Full Text Available This paper discusses the mechanical properties of materials fabricated from commercially available powders designed for use as a metal matrix of diamond-impregnated composites. The powders with the catalogue numbers CSA and CSA800 produced in China were tested under laboratory conditions. The specimens were fabricated in a graphite mould using hot pressing. The materials were analysed for density, porosity, hardness and static tensile strength. A scanning electron microscope (SEM was employed to observe the microstructure and fracture surfaces of the specimens. The experimental data was used to determine how the chemical composition of the powders and the process parameters affected the microstructure and properties of the materials. The properties of the sintered materials produced from the Chinese powders were compared with the properties reported for specimens fabricated from cobalt powder (Co SMS. Even though the hot pressed CSA and CSA800 powders had inferior mechanical properties to their cobalt analogue, they seem well-suited for general-purpose diamond-impregnated tools with less demanding applications.

  7. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Savoini, B.; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Munoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-15

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La{sub 2}O{sub 3} or Y{sub 2}O{sub 3} as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  8. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  9. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  10. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  11. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Marcio W.D., E-mail: mwdmendes@ipen.com; Ágreda, Carola G.; Bressiani, Ana H.A.; Bressiani, José C.

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti–27Nb–13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for > 3 days in the SBF solution. - Highlights: • The alloy is classified as α + β and the milling time influences the formation of these phases. • Dissolution of Nb is related to the mechanical properties of the alloy. • It's possible to form apatite on all samples immersed in SBF from 3 days. • The alloy can be used in orthopedic applications or in dental applications.

  12. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  13. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  14. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  15. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  17. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  18. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    Science.gov (United States)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  19. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  20. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  1. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  2. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  3. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  4. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  5. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    Science.gov (United States)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  6. MECHANICAL ALLOYING SYNTHESIS OF FORSTERITE-DIOPSIDE NANOCOMPOSITE POWDER FOR USING IN TISSUE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Sorour Sadeghzade

    2015-03-01

    Full Text Available In present study the pure forsterite-diopside nanocomposite powder was successfully synthesized by the economical method of mechanical alloying and subsequence sintering, for the first time. The starting economical materials were talc (Mg3Si4H2O12, magnesium carbonate (MgCO3 and calcium carbonate (CaCO3 powders. The prepared powder was characterized by thermo gravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The results showed preparation of forsterite- diopside nanocomposite powder after 10 h mechanical alloying and sintering at 1200oC for 1 h. The powder crystallite sizes and agglomerated particle sizes were measured about 73 +/- 4 nm and 0.3 - 4 μm, respectively. Absence of enstatite that causes a reduction in mechanical and bioactivity properties of forsterite ceramic, is an important feature of produced powder.

  7. Manufacturing method of hydrogen storage alloy powder for battery; Denchiyo suiso kyuzo gokin funmatsu no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.

    1997-04-04

    To produce hydrogen storage alloy powder for battery, ingot of a hydrogen storage alloy is crushed to coarse grains of a suitable size with a crusher and then, finely pulverized to a certain particle size with a ball mill or some other tools. In this pulverization process, the surface of the pulverized alloy powder is oxidized and the surface activity is partially lost to cause a problem of a decrease of the characteristics of the produced hydrogen storage alloy electrode. In this invention, ingot of hydrogen storage alloy is crushed to coarse alloy grains in a non-oxidizing atmosphere followed by mechanical pulverization in a state contact with a solution of sulfites, hypophosphites, hydrogen phosphates or dihydrogen phosphates. This treatment method prevents surface oxidation of the alloy powder during the pulverization process. As a result, the initial activity of the battery is improved and an increase of the internal pressure of the battery on overcharge is suppressed. The use of an aqueous alkaline solution containing cobalt instead of the above-mentioned solution gives a similar effect. 2 tabs.

  8. Metallurgical examination of powder metallurgy uranium alloy welds

    International Nuclear Information System (INIS)

    Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.

    1986-01-01

    Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties

  9. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  10. A novel method for producing magnesium based hydrogen storage alloys

    International Nuclear Information System (INIS)

    Walton, A.; Matthews, J.; Barlow, R.; Almamouri, M.M.; Speight, J.D.; Harris, I.R.

    2003-01-01

    Conventional melt casting techniques for producing Mg 2 Ni often result in no stoichiometric compositions due to the excess Mg which is added to the melt in order to counterbalance sublimation during processing. In this work a vapour phase process known as Low Pressure Pack Sublimation (LPPS) has been used to coat Ni substrates with Mg at 460-600 o C producing layers of single phase Mg 2 Ni. Ni substrates coated to date include powder, foils and wire. Using Ni-Fe substrates it has also been demonstrated that Fe can be distributed through the Mg 2 Ni alloy layer which could have a beneficial effect on the hydrogen storage characteristics. The alloy layers formed have been characterised by XRD and SEM equipped with EDX analysis. Hydrogen storage properties have been evaluated using an Intelligent Gravimetric Analyser (IGA). LPPS avoids most of the sintering of powder particles during processing which is observed in other vapour phase techniques while producing a stoichiometric composition of Mg 2 Ni. It is also a simple, low cost technique for producing these alloys. (author)

  11. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  12. Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study

    Science.gov (United States)

    Tandon, Rajiv; Madan, Deepak

    The use of powder metallurgy offers a potential processing route based on tailored compositions and unique microstructures to achieve high performance in magnesium alloys. This paper highlights recent advances in the production, qualification, and characterization of gas atomized AZ91E, WE43 and Elektron21 alloy powders. Transmission electron microscopy (TEM) was used to understand the bulk and surface structure of the atomized powder. The potential for using these magnesium alloy powders for emerging applications involves establishing compatibility with viable consolidation processes such as cold spray, laser assisted deposition, forging and extrusion. This study summarizes the preliminary results for various ongoing investigations using WE43 powder as an example. Results show that powder metallurgy processed WE43 results in comparable properties to those obtained from cast and wrought and offers potential for improvement.

  13. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  14. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  15. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on nasa 2b-11 alloy

    International Nuclear Information System (INIS)

    Miner, R.V. Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11. (Author)

  16. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu [KAERI, Taejon (Korea, Republic of); Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M. [Institute of Electrophysics (Russian Federation)

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully.

  17. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M.

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully

  18. Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders

    International Nuclear Information System (INIS)

    Osório, Wislei R.; Spinelli, José E.; Afonso, Conrado R.M.; Peixoto, Leandro C.; Garcia, Amauri

    2012-01-01

    Highlights: ► Spray-formed Al–Ni alloy powders have cellular microstructures. ► Porosity has no deleterious effect on the electrochemical corrosion behavior. ► Better pitting corrosion resistance is related to a fine powder microstructure. ► A coarse microstructure can be related to better general corrosion resistance. - Abstract: This is a study describing the effects of microstructure features of spray-formed Al–Ni alloy powders on the electrochemical corrosion resistance. Two different spray-formed powders were produced using nitrogen (N 2 ) gas flow (4 and 8 bar were used). Electrochemical impedance spectroscopy (EIS), potentiodynamic anodic polarization techniques and an equivalent circuit analysis were used to evaluate the electrochemical behavior in a dilute 0.05 M NaCl solution at room temperature. It was found that a N 2 gas pressure of 8 bar resulted in a microstructure characterized by a high fraction of small powders and fine cell spacings, having improved pitting potential but higher corrosion current density when compared with the corresponding results of a coarser microstructure array obtained under a lower pressure. A favorable effect in terms of current density and oxide protective film formation was shown to be associated with the coarser microstructure, however, its pitting potential was found to be lower than that of the finer microstructure.

  19. Sintered aluminium powders

    International Nuclear Information System (INIS)

    Stepanova, M.G.; Matveev, B.I.

    1974-01-01

    The mechanical and physical properties of aluminium powder alloys and the various methods employed to produce them are considered. Data are given on the hardening of the alloys SAP and SPAK-4, as well as the powder-alloy system Al-Cr-Zr. (L.M.)

  20. Production of a low young modulus titanium alloy by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Dalcy Roberto dos Santos

    2005-12-01

    Full Text Available Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

  1. Quantifying the properties of low-cost powder metallurgy titanium alloys

    International Nuclear Information System (INIS)

    Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E.

    2017-01-01

    The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.

  2. Quantifying the properties of low-cost powder metallurgy titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: bolzoni.leandro@gmail.com [WaiCAM (Waikato Centre for Advanced Materials), The University of Waikato, Private Bag 3105, 3240 Hamilton (New Zealand); Ruiz-Navas, E.M.; Gordo, E. [Department of Materials Science and Engineering, University Carlos III of Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid (Spain)

    2017-02-27

    The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.

  3. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  4. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  5. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    Science.gov (United States)

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  6. Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production

    International Nuclear Information System (INIS)

    Kondoh, Katsuyoshi; Hamada, EL-Sayed Ayman; Imai, Hisashi; Umeda, Junko; Jones, Tyrone

    2010-01-01

    Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1-4 mm length, having fine α-Mg grains and Al 2 Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg-6%Al-0.5%Mn-2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573-673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45-0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200-500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.

  7. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  8. Microstructure and properties of powder metallurgy (PM) high alloy tool steels

    International Nuclear Information System (INIS)

    Wojcieszynski, A.L.; Eisen, W.B.; Dixon, R.B.

    1998-01-01

    Particle metallurgy (PM) processing is currently the primary manufacturing method used to produce advanced high alloy tool steel compositions for use in industrial tooling applications. This process involves gas atomization of the pre-alloyed melt to form spherical powders and consolidation by HIP to full density. The HIP product may be used directly in select applications, but is usually subjected to additional forging to improve properties and produce a wide range of bar and plate sizes. Compared to ingot-cast tool steels, PM tool steels have very homogeneous microstructures with very fine carbide and sulfide size distributions, free from carbide banding, which results in improved machinability, grindability, and mechanical properties. In addition, this technology enables the development of advanced tool steel compositions which could not be economically produced by conventional steelmaking. (author)

  9. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  10. Gamma stability and powder formation of UMo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.B.V.; Andrade, D.A.; Angelo, G.; Belchior Junior, A.; Torres, W.M.; Umbehaun, P.E., E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Angelo, E., E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Grupo de Simulacao Numerica (GSN)

    2015-07-01

    A study of the hydrogen embrittlement as well as a research on the relation between gamma decomposition and powder formation of uranium molybdenum alloys were previously presented. In this study a comparison regarding the hypo-eutectoid and hyper-eutectoid molybdenum additions is presented. Gamma uranium molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR). Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation may occur with non-reactive or reactive mechanisms. Following the production of the alloys by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment, during the thermal shock phase of the experiments. Also, there is a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy and this phenomenon can be related to the eutectoid transformation temperature. This study was carried out to search for a new method for the production of powders and for the evaluation of important physical parameter such as the eutectoid transformation temperature, as an alternative to the existing ones. (author)

  11. Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu-Al-Ni-Mn alloy

    International Nuclear Information System (INIS)

    Xiao Zhu; Li Zhou; Fang Mei; Xiong Shiyun; Sheng Xiaofei; Zhou Mengqi

    2008-01-01

    The fabrication conditions of Cu-Al-Ni-Mn alloy powder by mechanical alloying and powder metallurgy have been systematically studied. The mechanically alloyed powder (MAed powder) was fabricated at a speed between 100 rpm and 300 rpm for various milling times with and without process control agent (PCA). With an increasing of milling time, the size of crystallite grain decreases. Only the Cu diffraction pattern appear as the rotation speed is up to 300 rpm for 25 h. The elemental powders with PCA agglomerate slightly, but the degree of alloying is lower than that without PCA. The shape memory recovery of the quenched sample hot-extruded at extrusion rate of 50:1 is measured to be 100% recovered in 250 deg. C oil bath for 40 s after deformed to 4.0%. After aging at 120 deg. C for 10 days, the shape memory recovery of the alloy remains 98%

  12. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  13. Mechanical alloying nanotechnology, materials science and powder metallurgy

    CERN Document Server

    El-Eskandarany, M Sherif

    2015-01-01

    This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new a

  14. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  15. Peculiarities of powder metallurgy of vanadium and its alloys

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-01-01

    Literature data on preparation of vanadium powder and powder materials on the vanadium base are generalized. Application of powder metallurgy engineering, allowing simulaneously to introduce practically any strengthening and solid-lubricating components as well as to alloy vanadium, permits undoubtedly to develop composite materials on the vanadium base

  16. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    Science.gov (United States)

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.

  17. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  18. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  19. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction

    International Nuclear Information System (INIS)

    Ryu, Hyun Seok; Lee, Sung Chul; Kim, Ki Tae

    2002-01-01

    Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The cap model with constraint factors was implemented into a finite element program(ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the cap model with constraint factors were good

  20. Monitoring alloy formation during mechanical alloying process by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Abdul Kadir Masrom; Noraizam Md Diah; Mazli Mustapha

    2002-01-01

    Monitoring alloying (MA) is a novel processing technique that use high energy impact ball mill to produce alloys with enhanced properties and microscopically homogeneous materials starting from various powder mixtures. Mechanical alloying process was originally developed to produce oxide dispersion strengthened nickel superalloys. In principal, in high-energy ball milling process, alloy is formed by the result of repeated welding, fracturing and rewelding of powder particles in a high energy ball mill. In this process a powder mixture in a ball mill is subjected to high-energy collisions among balls. MA has been shown to be capable of synthesizing a variety of materials. It is known to be capable to prepare equilibrium and non-equilibrium phases starting from blended elemental or prealloyed powders. The process ability to produce highly metastable materials such as amorphous alloys and nanostructured materials has made this process attractive and it has been considered as a promising material processing technique that could be used to produce many advanced materials at low cost. The present study explores the conditions under which aluminum alloys formation occurs by ball milling of blended aluminum and its alloying elements powders. In this work, attempt was made in producing aluminum 2024 alloys by milling of blended elemental aluminum powder of 2024 composition in a stainless steel container under argon atmosphere for up to 210 minutes. X-ray diffraction together with thermal analysis techniques has been used to monitor phase changes in the milled powder. Results indicate that, using our predetermined milling parameters, alloys were formed after 120 minutes milling. The thermal analysis data was also presented in this report. (Author)

  1. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Muñoz, A.; Pareja, R.

    2013-01-01

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y 2 O 3 powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y 2 O 3 (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS

  2. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A.; Castro, V. de [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2013-05-15

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y{sub 2}O{sub 3} powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y{sub 2}O{sub 3} (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  3. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  4. Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ruipeng [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu, Lei, E-mail: lxu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Jie; Yang, Rui [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zong, Bernie Y. [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    In present work, powder metallurgy (PM) Ti–6Al–4V alloy was produced by hot isostatic pressing (HIPing) from gas atomized powder. Various HIPing conditions and heat treatments were used to investigate the heat response of PM Ti–6Al–4V alloy. The results show that the optimization of HIPing parameters is temperature from 920 to 940 °C, pressure over 120 MPa and holding for 3 h. The microstructure of powder compact changes significantly after different heat treatments, while there was no obvious difference in tensile properties. Temperature induced porosity (TIP) in powder compact occurred after annealing at 930 °C for 1 h plus aging. The TIP has no obvious effects on tensile, impact, and fracture toughness properties of powder compact, but the TIP has an adverse effect on fatigue property, especially at shorter fatigue lives. In order to eliminate the TIP in powder compact, several probable solutions were suggested for the application of titanium powder components.

  5. Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response

    International Nuclear Information System (INIS)

    Guo, Ruipeng; Xu, Lei; Wu, Jie; Yang, Rui; Zong, Bernie Y.

    2015-01-01

    In present work, powder metallurgy (PM) Ti–6Al–4V alloy was produced by hot isostatic pressing (HIPing) from gas atomized powder. Various HIPing conditions and heat treatments were used to investigate the heat response of PM Ti–6Al–4V alloy. The results show that the optimization of HIPing parameters is temperature from 920 to 940 °C, pressure over 120 MPa and holding for 3 h. The microstructure of powder compact changes significantly after different heat treatments, while there was no obvious difference in tensile properties. Temperature induced porosity (TIP) in powder compact occurred after annealing at 930 °C for 1 h plus aging. The TIP has no obvious effects on tensile, impact, and fracture toughness properties of powder compact, but the TIP has an adverse effect on fatigue property, especially at shorter fatigue lives. In order to eliminate the TIP in powder compact, several probable solutions were suggested for the application of titanium powder components

  6. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    International Nuclear Information System (INIS)

    Park, Gyu-Hyeon; Lee, Gwang-Yeob; Kim, Hyeon-Ah; Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi; Kim, Do-Hyang; Lee, Min-Ha

    2016-01-01

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  7. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyu-Hyeon [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, Gwang-Yeob [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyeon-Ah [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kim, Do-Hyang [Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Min-Ha, E-mail: mhlee1@kitech.re.kr [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of)

    2016-10-15

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  8. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Science.gov (United States)

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  9. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  10. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  11. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  12. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  14. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  15. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  16. Welding of a powder metallurgy uranium alloy

    International Nuclear Information System (INIS)

    Holbert, R.K.; Doughty, M.W.; Alexander-Morrison, G.M.

    1989-01-01

    The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity. Varying the EB welding parameters did not eliminate the porosity. Reducing the oxygen and nitrogen content in this P/M uranium material did minimize the weld porosity, but this step made the techniques of producing the material more difficult. Therefore, joining wrought and P/M U-6Nb rods with the inertia welding technique is considered. Since no gases will be evolved with the solid-state welding process and the weld area will be compacted, porosity should not be a problem in the inertia welding of uranium alloys. The welds that are evaluated are wrought-to-wrought, wrought-to-P/M, and P/M-to-P/M U-6Nb samples

  17. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  18. Copper alloys with improved properties: standard ingot metallurgy vs. powder metallurgy

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2014-09-01

    Full Text Available Three copper-based alloys: two composites reinforced with Al2O3 particles and processed through powder metallurgy (P/M route, i.e. by internal oxidation (Cu-2.5Al composite and by mechanical alloying (Cu-4.7Al2O3 and Cu-0.4Cr-0.08Zr alloy produced by ingot metallurgy (vacuum melting and casting were the object of this investigation. Light microscope and scanning electron microscope (SEM equipped with electron X-ray spectrometer (EDS were used for microstructural characterization. Microhardness and electrical conductivity were also measured. Compared to composite materials, Cu-0.4Cr-0.08Zr alloy possesses highest electrical conductivity in the range from 20 to 800 ℃, whereas the lowest conductivity shows composite Cu-2.5Al processed by internal oxidation. In spite to somewhat lower electrical conductivity (probably due to inadequate density, Cu-2.5Al composite exhibits thermal stability enabling its application at much higher temperatures than materials processed by mechanical alloying or by vacuum melting and casting.

  19. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  20. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  1. Properties of boride-added powder metallurgy magnesium alloys

    Science.gov (United States)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.

  2. Properties of boride-added powder metallurgy magnesium alloys

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-01-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB 2 ) or aluminum diboride (AlB 2 ), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB 2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB 2 , did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg 17 Al 12 , formed in the alloy with AlB 2 , which was consistent with its higher hardness.

  3. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  4. Development of an alternative route for recycling AA2050 aluminum alloy by powder metallurgy

    International Nuclear Information System (INIS)

    Guido, V.; Oliveira, A.C. de; Travessa, D.N.; Cardoso, K.R.

    2014-01-01

    This paper presents an alternative solid state route to recycling AA2050 aeronautical aluminium alloy chips. The first stage in the recycling process, reported in this work, is the obtainment of the alloy powder by high energy ball milling to subsequent cold pressing and hot extrusion. The process started with the cleaning of chips with the aim of contaminant removing from machining process and transport, followed by the high energy ball milling to result in the AA2050 alloy powder. The powder obtained was characterized by laser size particle analysis, scanning electron microscopy (SEM), X-Ray diffraction (DRX) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show the feasibility of obtaining a powder having appropriate particle size and chemical composition in accordance with the specification for alloy. (author)

  5. Properties of boride-added powder metallurgy magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi [Department of Mechanical Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan)], E-mail: ktakagi@tcu.ac.jp

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB{sub 2}) or aluminum diboride (AlB{sub 2}), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB{sub 2} exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB{sub 2}, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg{sub 17}Al{sub 12}, formed in the alloy with AlB{sub 2}, which was consistent with its higher hardness.

  6. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ayman, Elsayed, E-mail: ayman@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Junko, Umeda; Katsuyoshi, Kondoh [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The microstructure and mechanical properties of hot extruded Mg-7Al-1Zn-1Ca powder alloys with an addition of 1.5% La or 3.3% La were investigated. Both rapidly solidified powders, produced via spinning water atomization process, and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powders were consolidated using both cold compaction and spark plasma sintering. The tensile properties of the extruded alloys were then evaluated and correlated to their microstructures. The results showed that the use of rapidly solidified Mg-7Al-1Zn-1Ca alloy powders with La additions could lead to effective grain refinement and super saturation of alloying elements, which in turn resulted in the improved mechanical response. The Mg-7Al-1Zn-1Ca-1.5La alloy extruded at 573 K attained ultimate tensile strength of 450 {+-} xx MPa and elongation of 17 {+-} xx%, superior to the Mg-7Al-1Zn-1Ca-3.3La alloy and other Mg alloys like Mg-Al-Mn-Ca. This may help extend the application of Mg alloys to higher load-carrying parts while maintaining the excellent advantage of light weight.

  7. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  8. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    Science.gov (United States)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  10. Microstructure evaluation of Al-Al2O3 composite produced by mechanical alloying method

    International Nuclear Information System (INIS)

    Zebarjad, S.M.; Sajjadi, S.A.

    2006-01-01

    Mechanical alloying process using ball-milling techniques, has received much attention as a powerful tool for fabrication of several advanced materials, including amorphous, quasicrystals, nanocrystalline and composite materials, etc. This research is focused on production of Al-Al 2 O 3 composite materials by mechanical alloying method and on investigation of its microstructure. For this purpose a horizontal ball mill was designed and manufactured. Aluminum and alumina powders, with specified size and weight percent, were added to the mill. The mixed powders were milled at different times. The milled powders were pressed and sintered under argon gas control. Microstructure of produced composite was investigated by scanning electron microscope. The results show that increasing milling time causes to make fine alumina powders as well as uniform distribution within aluminum, also in steady-state stage increasing milling time has not significant effect on their size distribution within aluminum. The results of atomic analysis of initial and milled powders at different times show that at the beginning of milling, the powders will tend to absorb iron and gradually their susceptibility decrease until steady-state condition is prevailed. The result of infrared spectroscopy does not show any evidence of compounds except alumina

  11. Stress relaxation study of water atomized Cu-Cr-Zr powder alloys consolidated by inverse warm extrusion

    International Nuclear Information System (INIS)

    Poblano-Salas, C.A.; Barceinas-Sanchez, J.D.O.

    2009-01-01

    Stress relaxation testing in compression at high temperature was performed on Cu-Cr-Zr alloys produced by consolidation of water atomized powders. Precipitation and recrystallization were monitored during stress relaxation experiments carried out at an ageing temperature of 723 K. Pre-straining imposed to the Cu-Cr-Zr samples prior to stress relaxation testing resulted in reduced hardness compared to that reported for conventionally-aged alloys; it also resulted in shorter times for achieving maximum strengthening on ageing.

  12. Powder metallurgy of NiTi-alloys with defined shape memory properties

    International Nuclear Information System (INIS)

    Bram, M.; Ahmad-Khanlou, A.; Buchkremer, H.P.; Stoever, D.

    2001-01-01

    The aim of the present work is the development of fabrication processes for NiTi shape memory alloys by powder metallurgical means. The starting materials used were prealloyed powders as well as elemental powder mixtures. Three techniques seem to be very promising for shaping of NiTi compacts. Hot Isostatic Pressing (HIP) has been examined for the production of dense semi-finished components. A promising technique for the production of dense and porous coatings with an increased wear resistance is Vacuum Plasma Spraying (VPS). Metal Injection Moulding (MIM) is especially suitable for near-net shape fabrication of small components with a complex geometry considering that large numbers of units have to be produced for compensating high tool and process costs. Subsequently, thermal treatments are required to establish defined shape memory properties. The reproducibility and stability of the shape memory effect are main aspects thinking about a production of NiTi components in an industrial scale. (author)

  13. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  14. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  15. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  16. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  17. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    Science.gov (United States)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  18. Identification of phases in zinc alloy powders using electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Martin G. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Kenik, Edward A. [Oak Ridge National Laboratory, 100 Bethel Valley Rd., Bldg. 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831 (United States); O' Keefe, Matthew J. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)]. E-mail: mjokeefe@umr.edu; Miller, F. Scott [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Johnson, Benedict [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-05-25

    Scanning electron microscopy and electron backscatter diffraction (EBSD) were used for the structural characterization of phases in Zn alloy powders. Commercial Zn alloy powders contained additions of <1000 ppm of Bi, In, Al or Mg. Bismuth and In have extremely low solubility in Zn and form intermetallic Bi-In compounds which segregate to the Zn grain boundaries. The Bi-In phases were <0.3 {mu}m in size, had low melting points, and were not abundant enough for EBSD analysis. Increasing the alloying additions 20-40-fold resulted in Bi-In phases >1 {mu}m that could be used for EBSD analysis for phase characterization. Deformation-free microstructures were obtained by mechanical polishing and ion milling. The Zn matrix was characterized as Zn via EBSD. A BiIn{sub 2} phase was identified in the powder microstructures via EBSD. An In phase with 8-9 wt.% Bi was identified using low voltage energy dispersive spectroscopy and closely matched the composition predicted by the Bi-In phase diagram.

  19. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  20. Development and characterization of Al-Zn alloy by ingot metallurgy and powder metallurgy with improved mechanical properties

    International Nuclear Information System (INIS)

    Waseem, M.; Awais, H.B.; Zauha, M.S.; Tariq, N.H.

    2007-01-01

    Current project focuses on the production of AI-Zn alloy AA7075 used for wide range of applications like Aircraft components, missile and other structural applications. The above alloy was developed by two different routes. One was melting /casting, after which alloy was characterized by microstructural - examination (optical and SEM) and mechanical testing. Other route was the preparation of this alloy by powder metallurgy. This involves preparation of powders, mechanical alloying, compaction, sintering, rolling, solution treatment and aging then analysis. Powders of Aluminum, Zinc and powders of master alloys of AI-Cu, AI-Mg, AI-Mn, and AI-Cr were Mechanical alloyed. Then this powder was compacted by uniaxial press to form pellets. Sintering was carried out at 500 degree C and then hot rolled in Ar atmosphere. After solution and aging treatments samples were characterized. It is observed that there is about 12-21% improvement in mechanical properties such as tensile strength, yield strength, ductility and fracture toughness due to the more fine microstructure and less segregation than ingot metallurgy route. (author)

  1. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  2. COMPARISON OF THE MECHANICAL RESPONSE OF POROUS TI-6AL-4V ALLOYS PRODUCED BY DIFFERENT COMPACTION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G.İpek Selimoğlu

    2017-03-01

    Full Text Available Porous Ti-6Al-4V alloys are attractive candidates as implant materials due to their good biocompatibility combined with the porous structure leading to increased osseointegration and decreased stiffness. Accordingly, different processing techniques were employed for the production of Ti-6Al-4V foams in the literature. Among these techniques, sintering with space holder is used to produce porous Ti-6Al-4V alloys in this study. Magnesium was employed as the space holder material because of its relatively low boiling point as well as high oxygen affinity. Two different compaction techniques, die compaction with hydraulic pressing and cold isostatic pressing (CIP, were employed for obtaining green compacts. Both spherical and nonspherical Ti-6Al-4V powders were used to investigate the effect of powder shape on compaction. Processed foams were characterized in terms of both microstructural and mechanical aspects in order to investigate the effect of pressing conditions in combination with powder characteristics. It was observed that NS-CIP foam, which was produced by compacting nonspherical powders by cold isostatic press, has the highest strength. However, the S-DP foam, which was produced by die-pressing of spherical powders, has the highest toughness.

  3. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    Science.gov (United States)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  4. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  5. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  6. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  7. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  8. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    OpenAIRE

    ZHU Langping; LU Xin; LIU Chengcheng; LI Jianchong; NAN Hai

    2017-01-01

    A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickl...

  9. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    Science.gov (United States)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-06-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  10. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  11. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  12. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  13. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  14. Microstructural and electrical investigation of Cu-Ni-Cr alloys obtained by powder metallurgy method

    International Nuclear Information System (INIS)

    Carrio, Juan A.G.; Carvalhal, M.A.; Ayabe, L.M.; Monteiro, W.A.

    2009-01-01

    The aim of this work, using the powder metallurgy process, is to synthesize metallic alloys with high mechanical strength and high electric conductivity, after melting optimizing and thermal treatments. The Cu-Ni-Cr (wt%) alloys are characterized in their mechanical and electrical properties as well as the obtained microstructure. Through the process of powder metallurgy, contacts and structural parts can be obtained. The alloys elements are added to copper with the intention to improve their strength, ductility and thermal stability, without causing considerable damages in their form, electrical and thermal conductivity, and corrosion resistance. The metallic powders were mixed for a suitable time and then they were pressed in a cold uniaxial pressing (1000 kPa). Afterwards, the specimens were sintered in temperatures varying from 700 up to 800 deg C under vacuum. At last, the samples were homogenized at 550 deg C under vacuum, for special times. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. The alloys were characterized by optical microscopy, X-rays powder diffraction, electrical conductivity and Vickers hardness. (author)

  15. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  16. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  17. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  18. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    Science.gov (United States)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  19. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    Science.gov (United States)

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  20. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    Directory of Open Access Journals (Sweden)

    ZHU Langping

    2017-06-01

    Full Text Available A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickly. The motion trajectory of particles with different sizes in the lower end of the cooling tube is different obviously, small particles tend to enter the air outlet,while the larger particles are easy to fall down to the bottom of the cooling tube to be collected. Increasing air flow rate can improve the velocity of air flow in the spheroidizing system, causing larger particles to be taken away by the air, resulting in yield reduction. The simulation results of TiAl alloy powder spheroidization are close to the experimental results refer to parameters such as powder size distribution, average particle size and powder yield, and the model is in good accordance with the actual process of the spheroidization.

  1. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    Mura, Giovanna; Musu, Elodia; Delogu, Francesco

    2013-01-01

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  2. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-03-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  3. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  4. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  5. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  6. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Directory of Open Access Journals (Sweden)

    Samar Reda Al-Sayed Ali

    2017-10-01

    Full Text Available Laser cladding process was performed on a commercial Ti-6Al-4V (α + β titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD. The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  7. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    Science.gov (United States)

    Kumar, P.; Chandran, K. S. Ravi

    2017-05-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  8. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  9. Design of powder metallurgy titanium alloys and composites

    International Nuclear Information System (INIS)

    Liu, Y.; Chen, L.F.; Tang, H.P.; Liu, C.T.; Liu, B.; Huang, B.Y.

    2006-01-01

    Low cost and good performance are two major factors virtually important for Ti alloy development. In this paper, we have studied the effects of alloying elements, thermo-mechanical treatment and particle reinforcement on microstructures and mechanical properties of powder metallurgy (PM) Ti alloys and their composites. Our results indicate that low cost PM Ti alloys and their composites with attractive properties can be fabricated through a single compaction-sintering process, although secondary treatments are required for high performance applications. Three new PM Ti alloys and one TiC/Ti composite of high performance are developed, and new design principles are also proposed. For design of PM Ti alloys, addition of alloying elements has the beneficial effect of enhanced sintering and/or improved mechanical properties. For example, Fe element accelerates the sintering process, Mo and Al are good candidates for solution strengthening, and rare earth elements effectively increase the material ductility by scavenging oxygen from the Ti matrix. For the design of Ti-based composites, in situ formation of strengthening particles and solid solution hardening of the matrix both should be considered simultaneously for alloy development. Cr 3 C 2 is found to be a very suitable additive for processing particle reinforced Ti composites

  10. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    Science.gov (United States)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  11. Early stages of the mechanical alloying of TiC-TiN powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Giovanna [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Industrial Telemicroscopy Laboratory, Sardegna Ricerche, Polaris, Technology Park of Sardinia, Edificio 3, Loc. Piscinamanna, 09010 Pula (Italy); Delogu, Francesco, E-mail: francesco.delogu@dimcm.unica.it [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Universita degli Studi di Cagliari, via Marengo 2, I-09123 Cagliari (Italy)

    2013-01-15

    The present work focuses on the alloying behavior of TiC-TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: Black-Right-Pointing-Pointer Mechanically processed TiC-TiN powder mixtures form two solid solutions. Black-Right-Pointing-Pointer An analytical model was developed to describe the mechanical alloying kinetics. Black-Right-Pointing-Pointer The amount of powder alloyed at collision was indirectly estimated. Black-Right-Pointing-Pointer A few nanomoles of material participate in the alloying process at each collision. Black-Right-Pointing-Pointer The chemical composition of the solid solutions was shown to change discontinuously.

  12. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  13. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  14. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    Science.gov (United States)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  15. Phase transition of Ni-Mn-Ga alloy powders prepared by vibration ball milling

    International Nuclear Information System (INIS)

    Tian, B.; Chen, F.; Tong, Y.X.; Li, L.; Zheng, Y.F.; Liu, Y.; Li, Q.Z.

    2011-01-01

    Research highlights: → The vibration ball milling with a high milling energy introduces the atomic disorder and large lattice distortion in the alloy during milling and makes the formation of disordered fcc structure phase in the alloy. → The transition temperature and activation energy for disordered fcc → disordered bcc are ∼320 o C and 209 ± 8 kJ/mol, respectively. → The alloy powders annealed at 800 o C for 1 h show a one-stage martensitic transformation with quite lower latent heat compared to the bulk alloy. - Abstract: This study investigated the phase transformation of the flaky shaped Ni-Mn-Ga powder particles with thickness around 1 μm prepared by vibration ball milling and post-annealing. The SEM, XRD, DSC and ac magnetic susceptibility measurement techniques were used to characterize the Ni-Mn-Ga powders. The structural transition of Heusler → disordered fcc occurred in the powders prepared by vibration ball milling (high milling energy) for 4 h, which was different from the structural transition of Heusler → disordered fct of the powders fabricated by planetary ball milling (low milling energy) for 4 h. The two different structures after ball milling should be due to the larger lattice distortion occurred in the vibration ball milling process than in the planetary ball milling process. The structural transition of disordered fcc → disordered bcc took place at ∼320 o C during heating the as-milled Ni-Mn-Ga powders, which was attributed to the elimination of lattice distortion caused by ball milling. The activation energy for this transition was 209 ± 8 kJ/mol. The Ni-Mn-Ga powder annealed at 800 o C mainly contained Heusler austenite phase at room temperature and showed a low volume of martensitic transformation upon cooling. The inhibition of martensitic transformation might be attributed to the reduction of grain size in the annealed Ni-Mn-Ga particles.

  16. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  17. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  18. Method of producing radioactive carbon powder

    International Nuclear Information System (INIS)

    Imamura, Y.

    1980-01-01

    Carbon powder, placed in a hermetically closed apparatus under vacuum together with radium ore, adsorbs radon gas emanating from the radium ore thus producing a radioactive carbonaceous material, the radioactivity of which is due to the presence of adsorbed radon. The radioactive carbon powder thus obtained has excellent therapeutical efficacy and is suitable for a variety of applications because of the mild radioactivity of radon. Radium ore permits substantially limitlessly repeated production of the radioactive carbon powder

  19. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  20. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  1. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin; Stulí ková , Ivana; Smola, Bohumil; Kekule, Tomá š; Kudrnová , Hana; Daniš, Stanislav; Gemma, Ryota; Očená šek, Vladivoj; Má lek, Jaroslav; Tanprayoon, Dhritti; Neubert, Volkmar

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  2. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  3. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  4. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  5. Mechanical properties of copper-lithium alloys produced by mechanic alloyed and hot extrusion

    International Nuclear Information System (INIS)

    Castillo B, Ricardo; Gorziglia S, Ezio; Penaloza V, Augusto

    2004-01-01

    In this work are presented the progress carried out on the characterization of some physical and mechanical properties, together with the determination of the micro mechanism of fracture of the Cu-2% wt Li, that was obtained by mechanical alloying followed hot extrusion at 500 o C and 700 o C. Hardness and tensile mechanical tests were performed together with metallographic and fractographic analysis. The experimental results obtained with powders of the Cu-Li alloy studied are compared with powder of pure copper, under similar test conditions. The results show that by hot extrusion was allowed to obtain very high densification levels for the materials under study. Moreover, it was found that lithium reduce both the tensile strength and elongation, of copper by a mechanism of embrittlement. The results are compares with the literature (au)

  6. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  7. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  8. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  9. Effect of calcium chloride on the preparation of NdFeB alloy powder by calciothermic reduction process

    International Nuclear Information System (INIS)

    Sidhu, R.K.; Verma, A.; Raina, K.K.

    1999-01-01

    The calciothermic reduction process has been identified to be one of the cost effective processes for producing NdFeB from Nd 2 O 3 . Use of CaCl 2 as slag former in calciothermic reduction is well established. This paper describes the effect of CaCl 2 on the various properties of NdFeB alloy powder prepared by calciothermic reduction. The effect of CaCl 2 on ease of disintegration of the reacted product during calcium leaching, particle size distribution, grain size, lattice parameters and residual calcium has been studied and compared with the alloy powder prepared without using calcium chloride. Addition of CaCl 2 has been found to result in easier disintegration, reduction in grain size and more uniform particle size distribution. Substantial decrease in the residual calcium in case of charge consisting of CaCl 2 was observed. The effect of lattice parameters was not found to be very significant. (author)

  10. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Perez Alcazar, G. A.; Bustos Rodriguez, H.; Oyola Lozano, D.

    2005-01-01

    In this work we report a comparative study of the magnetic and structural properties of Fe 50 Al 50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe 50 Al 50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  11. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  12. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  13. Surface coatings of mixed hard alloy powder metals sintered-on in vacuo

    International Nuclear Information System (INIS)

    Knotek, O.; Reimann, H.

    1980-01-01

    No technological difficulties are to be encountered in the processing of pseudo hard alloys in the form of powder compounds of conventional nickel base hard alloys with carbides. There is a great alloy influence on the resulting structures of the surface layers. Under some processing conditions the tungsten carbide is completely dissolved from molten matrix alloy. Hard phases on chromium carbide basis resulted upon cooling. Induced chromium carbide Cr 3 C 2 retains its structure while absorbing large amounts of iron into its grid. It can be concluded that not only alloying properties, but also eminently structural criterions are decisive for the stability of the applied supplementary hard phases. (orig.) [de

  14. Phase Transformation Behavior of Oxide Particles Formed in Mechanically Alloyed Fe-5Y{sub 2}O{sub 3} Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.

  15. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  16. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  17. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-04-01

    Full Text Available A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt % were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA route followed by spark plasma sintering (SPS and rapid cooling. Neutron Powder Diffraction (NPD, Electron Back Scattering Diffraction (EBSD, and Transmission Electron Microscopy (TEM were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  18. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  19. Microstructural evolution of Ti-10Nb and Ti-15Nb alloys produced by the blended elemental technique

    International Nuclear Information System (INIS)

    Martins, G.V.; Souza, J.V.C.; Machado, J.P.B.; Silva, C.R.M.; Henriques, V.A.R.

    2009-01-01

    Alfa/beta titanium alloys have been intensely used for aerospace and biomedical applications. Production of powder metallurgy titanium alloys components may lead to a reduction in the cost of parts, compared to those produced by conventional cast and wrought (ingot metallurgy) processes, because additional working operations (machining, turning, milling, etc.) and material waste can be avoided. In this work, samples of Ti- 10, 15Nb (weight%) alloys were obtained by the blended elemental technique using hydride-de hydride (HDH) powders as raw material, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering carried out in the range 900-1500 deg C. These alloys were characterized by X-ray diffractometry for phase composition, scanning electron microscopy for microstructure, Vickers indentation for hardness, Archimedes method for specific mass and resonance ultrasound device for elastic modulus. For the samples sintered at 1500 deg C it was identified α and β phases. It was observed the influence of the sintering temperatures on the final microstructure. With increasing sintering temperature, microstructure homogenization of the alloy takes place and at 1500 deg C this process is complete. The same behavior is observed for densification. Comparing to the Ti6Al4V alloy properties, these alloys hardness (sintered at 1500 deg C) are near and elastic modulus are 18% less. (author)

  20. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  1. Plasma spheroidization and cladding of powders

    Energy Technology Data Exchange (ETDEWEB)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-02-01

    With reference to experimental results for nickel and chromium alloys, it is shown that complex alloy powders can be spheroidized in plasma discharges using an argon plasma with hydrogen. The spheroidizing process is accompanied by the reduction of surface oxides, with uniform element distribution within the particles; the granulometric composition of the particles is preserved. It is also shown that plasma technology can be used for producing metal-clad oxide and carbide powders, which improve the performance of cermets and coatings.

  2. Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

    Directory of Open Access Journals (Sweden)

    Şelte A.

    2015-06-01

    Full Text Available In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

  3. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Mishra, R.S.; Bieler, T.R.; Mukherjee, A.K.

    1995-01-01

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  4. Compacting the powder of Al-Cr-Mn Alloy with SPS

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Novák, P.

    2015-01-01

    Roč. 49, č. 1 (2015), s. 129-132 ISSN 1580-2949 Institutional support: RVO:61389021 Keywords : aluminium alloy * intermetallics * powder metalurgy * spark-plasma sintering Subject RIV: JG - Metallurgy Impact factor: 0.439, year: 2015 http://mit.imt.si/Revija/izvodi/mit151/kubatik.pdf

  5. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  6. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    Science.gov (United States)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  7. Chemical and phase composition of powders obtained by electroerosion dispersion from alloys WC-Co

    International Nuclear Information System (INIS)

    Putintseva, M.N.

    2004-01-01

    A consideration is given to the dependence of chemical and phase compositions of dispersed powders on the conditions, the medium of electroerosion dispersing and the content of cobalt in an initial alloy. It is shown that dissociation of carbon from tungsten carbide proceeds even on dispersing in liquid hydrocarbon-containing media (kerosene and machine oil). The phase composition is determined to a large extent by a medium of dispersing and a cobalt content in the initial alloy. In all powders complex tungsten-cobalt carbides and even Co 7 W 6 intermetallic compounds are found [ru

  8. Chemical and Phase Composition of Powders Obtained by Electroerosion Dispersion from WC - Co Alloys

    Science.gov (United States)

    Putintseva, M. N.

    2004-03-01

    The dependence of the chemical and phase composition of dispersed powders on the mode and medium of electroerosion dispersion and the content of cobalt in the initial alloy is considered. It is shown that the dissociation of carbon from tungsten carbide occurs even in dispersion in liquid hydrocarbon-bearing media (kerosene and industrial oils). The phase composition is primarily determined by the dispersion medium and the content of cobalt in the initial alloy. Compound tungsten-cobalt carbides and even a Co7W6 intermetallic are determined in all the powders.

  9. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of milling time on microstructure and magnetic properties of Fe{sub 80}P{sub 11}C{sub 9} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, A.H. [Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Ghajari, F., E-mail: fati.ghajari@gmail.com [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Markó, D. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Prashanth, K.G. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Additive manufacturing Center, Sandvik AB, 81181 Sandviken (Sweden)

    2015-12-01

    Fe{sub 80}P{sub 11}C{sub 9} alloy with amorphous/nanocrytalline microstructure has been synthesized by mechanical alloying of the elemental powders. The microstructure, thermal behavior and morphology of the produced powders have been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The crystallite size, lattice strain and fraction of the amorphous phase have been calculated by Rietveld refinement method. The results indicate that the powders microstructure consists of α-Fe(P,C) nanocrystals with an average diameter of 9 nm±1 nm dispersed in the amorphous matrix after 90 h of milling. Moreover, the fraction of amorphous phase initially increases up to 90 h of milling and then decreases after 120 h of milling, as a result of mechanical crystallization and formation of Fe{sub 2}P phase. The magnetic measurements show that while the saturation magnetization decreases continuously with the milling time, the coercivity exhibits a complicated trend. The correlation between microstructural changes and magnetic properties has been discussed in detail. - Highlights: • Glass formation was investigated in Fe{sub 80}P{sub 11}C{sub 9} by mechanical alloying. • Structural parameters were calculated by Rietveld refinement method. • Milling first increased and then decreased the fraction of amorphous phase. • Magnetic properties were significantly changed upon milling.

  11. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  12. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  13. Peculiarities of phase transformation in Ni3Fe powder alloy

    International Nuclear Information System (INIS)

    Nuzhdin, A.A.

    1990-01-01

    Ordering process in sintered powder alloy Ni 3 Fe by normal and high temperatures was studied. Thermal stresses connected with porosity level of material effect on transformation peculiarities. The changes of electric conductivity, thermal expansion coefficient, bulk modulus during transformation were studied. The analysis of this changes was made

  14. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  15. Structural evolution of Fe-50 at.% Al powders during mechanical alloying and subsequent annealing processes

    International Nuclear Information System (INIS)

    Haghighi, Sh. Ehtemam; Janghorban, K.; Izadi, S.

    2010-01-01

    Iron aluminides, despite having desirable properties like excellent corrosion resistance, present low room-temperature ductility and low strength at high temperatures. Mechanical alloying as a capable process to synthesize nanocrystalline materials is under consideration to modify these drawbacks. In this study, the microstructure of iron aluminide powders synthesized by mechanical alloying and subsequent annealing was investigated. Elemental Fe and Al powders with the same atomic percent were milled in a planetary ball mill for 15 min to 100 h. The powder milled for 80 h was annealed at temperatures of 300, 500 and 700 o C for 1 h. The alloyed powders were disordered Fe(Al) solid solutions which were transformed to FeAl intermetallic after annealing. The effect of the milling time and annealing treatment on structural parameters, such as crystallite size, lattice parameter and lattice strain was evaluated by X-ray diffraction. Typically, these values were 15 nm, 2.92 A and 3.1% for the disordered Fe(Al) solid solution milled for 80 h and were 38.5 nm, 2.896 A and 1.2% for the FeAl intermetallic annealed at 700 o C, respectively.

  16. Study on the formation of cubic texture in Ni-7 at.% W alloy substrates by powder metallurgy routes

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, HongLi; Zhu, YongHua

    2009-01-01

    One of the main challenges for coated conductor applications is to produce sharp cubic textured alloy substrates with high strength and low magnetism. In this work, the cubic textured Ni–7 at.% W substrates were prepared from different powder metallurgy ingots by rolling-assisted biaxially textured...... substrate processing. The fabrication processes of cubic texture in the Ni–7 at.% W tapes by two powder metallurgy routes are described in detail. Through the optimized process, full width at half maximum values of 6.7° and 5.0° were obtained, as estimated by X-ray (1 1 1) phi scan and (2 0 0) rocking curve...

  17. Stereological analysis of structure formation for solid WC-Co alloys in the process of carbide powder consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyavskij, K S

    1986-03-01

    Evolution of particle size distribution in carbide powders of different technological prehistory is studied in the process of their consolidation as a hard alloy. A successive estimate on identical preparations is used to study a structural powder->alloy transition. Temperature dependences of integral measures of the consolidated structure and characteristics of its heterogeneity are studied. It is shown that all studied structural rearrangements: formation of regular alternation of carbide and binding phases, development of particle-phase interfaces, change in size distribution - more intensely proceed in the high-temperature carbide base alloy.

  18. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  19. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huiyang, E-mail: hl209@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Zhang, Deliang, E-mail: zhangdeliang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Gabbitas, Brian, E-mail: briang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Yang, Fei, E-mail: fyang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Matthews, Steven, E-mail: S.Matthews@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Auckland (New Zealand)

    2014-09-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study.

  20. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    International Nuclear Information System (INIS)

    Lu, Huiyang; Zhang, Deliang; Gabbitas, Brian; Yang, Fei; Matthews, Steven

    2014-01-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study

  1. Comparative Study by MS and XRD of Fe{sub 50}Al{sub 50} Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Bustos Rodriguez, H.; Oyola Lozano, D., E-mail: doyolalozano@yahoo.com.mx [University of Tolima, Department of Physics (Colombia)

    2005-02-15

    In this work we report a comparative study of the magnetic and structural properties of Fe{sub 50}Al{sub 50} alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe{sub 50}Al{sub 50} sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  2. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  3. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    Energy Technology Data Exchange (ETDEWEB)

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia; Amal, M. Ikhlasul; Kartika, Ika, E-mail: pepeng2000@yahoo.com [Research center for Metallurgy and Material, Indonesian Institute of Science (Indonesia); Sitorus, Lyandra S. [Sultan Ageng Tirtayasa University (Indonesia)

    2016-04-19

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  4. Corrosion issues of powder coated AA6060 aluminium profiles

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Valgarðsson, Smári; Jellesen, Morten Stendahl

    2015-01-01

    In this study detailed microstructural investigation of the reason for unexpected corrosion of powder coated aluminium alloy AA6060 windows profiles has been performed. The results from this study reveals that the failure of the window profiles was originated from the surface defects present...... on the extruded AA6060 aluminium profile after metallurgical process prior to powder coating. Surface defects are produced due to intermetallic particles in the alloy, which disturb the flow during the extrusion process. The corrosion mechanism leading to the failure of the powder coated AA6060 aluminium profiles...

  5. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.

    2009-01-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  6. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  7. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  8. Microstructural and morphological evaluation of MCrAlY/YSZ composite produced by mechanical alloying method

    International Nuclear Information System (INIS)

    Tahari, M.; Shamanian, M.; Salehi, M.

    2012-01-01

    Highlights: ► The grain size of CoNiCrAlY decreased as milling time increased. Adding YSZ, delayed decrease of grain size of matrix alloy. ► Increase of milling time and YSZ percent resulted in spherical morphology and homogenous distribution of powders. Adding YSZ also delayed cold welding phenomenon. ► At initial stage of milling, CoNiCrAlY powder showed the greatest hardness but with increases milling time powders contained 15% YSZ showed the maximum hardness. - Abstract: This paper investigates CoNiCrAlY/YSZ composite materials produced by mechanical alloying process. Various amounts of YSZ particles (0%, 5%, 10% and 15 wt.%) were mixed with CoNiCrAlY powder and milled for 12, 24 and 36 h. The structural and mechanical evolutions of the mechanically milled powders were executed using X-ray diffractometry, scanning electron microscopy, optical microscopy and micro-hardness test. It was observed that by increasing milling time, the internal lattice strain of γ-phase matrix increased while grain size of this phase decreased. Also, addition of YSZ to CoNiCrAlY decreased the rate of grain size reduction. In comparison with milled CoNiCrAlY powders, CoNiCrAlY/YSZ milled powders exhibited more spherical morphology and narrower particle size range. Moreover, the increase in milling time caused the homogenous distribution of ceramic particles in CoNiCrAlY matrix, while the increase in YSZ percent decreased the homogenous distribution of ceramic particles in CoNiCrAlY matrix. Besides, micro-hardness tests illustrated that the effect of milling on hardness is more significant than that of ceramic particles addition.

  9. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  10. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  11. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.

    Science.gov (United States)

    Li, Kai Chun; Prior, David J; Waddell, J Neil; Swain, Michael V

    2015-12-01

    The objective of this study was to identify the different microstructures produced by CC, PM and as-cast techniques for Co-Cr alloys and their phase stability following porcelain firings. Three bi-layer porcelain veneered Co-Cr specimens and one monolithic Co-Cr specimen of each alloy group [cast, powder metallurgy (PM), CAD/CAM (CC)] were manufactured and analyzed using electron backscatter diffraction (EBSD), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Specimens were treated to incremental numbers of porcelain firings (control 0, 5, 15) with crystallographic data, grain size and chemical composition subsequently obtained and analyzed. EBSD datasets of the cast alloy indicated large grains >200 μm whereas PM and CC alloy consisted of mean arithmetic grain sizes of 29.6 μm and 19.2 μm respectively. XRD and EBSD results both indicated the highest increase in hcp content (>13vol%) for cast Co-Cr alloy after treatment with porcelain firing while PM and CC indicated .05) was observed in CC. EDS line scans indicated an increase in Cr content at the alloy surface after porcelain firing treatment for all three alloys. PM and CC produced alloy had superior fcc phase stability after porcelain firings compared to a traditional cast alloy. It is recommended that PM and CC alloys be used for porcelain-fused-to-metal restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. The wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Ay, H.; Özyurek, D.; Yıldırım, M., E-mail: musayildirim@karabuk.edu.tr [Karabük University, Technology Faculty, Department of Manufacturing Engineering / Karabuk (Turkey); Bostan, B. [Gazi University, Technology Faculty, Department of Metallurgy and Materials Engineering (Turkey)

    2016-04-21

    In this study, the wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route were investigated. Different amount of Ti (2, 4, 6 %) added to gas atomized 7075 Al alloy powders and they were mixed in turbula with 47rpm for 45 minutes. Then the mixed powders were pre-shaped by press under 600 MPa pressure. The samples were cooled in the furnace after sintered at 580 °C for 4 hours in the atmosphere controlled furnace. Standard metallographic process such as grinding, polishing and etching were applied to sintered samples. The hardness values were measured. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) examines were carried out. The wear tests were performed in a pin-on disc type wear apparatus with 1 ms{sup −1} sliding speed at six different sliding distance (500-3000 m) under 30 N loads. As a result of studies, hardness values were increased with increasing Ti content, in addition the weight losses were decreased with increasing Ti amount.

  13. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  14. On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Johansen, K.; Voggenreiter, H.; Eggeler, G.

    1999-01-01

    The present study investigates the tensile properties of a nickel titanium (NiTi) shape memory alloy (SMA) produced by powder metallurgy (PM) with and without TiC-particles. It discusses the effect of the addition of particles on the mechanical behavior in tension and studies the intrinsic two way effect (ε 2W ) after thermomechanical training. Special emphasis is placed on the stability of ε 2W after subsequent thermal cycling. The results are discussed on the basis of an analysis of the thermomechanical data and microstructural results. The present study shows that the PM route can produce NiTi SMAs with tensile properties which match those of materials produced by classical ingot metallurgy. Adding TiC particles to NiTi SMAs alters the phase transition temperatures (PTTs) and affects the SMA performance. Adding more than ten volume percent TiC particles results in early and brittle rupture during tensile loading. (orig.)

  15. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  16. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  17. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  18. Characterization and Sintering of Armstrong Process Titanium Powder

    Science.gov (United States)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-04-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  19. Microstructure and microanalysis studies of copper-nickel-tin alloys obtained by conventional powder metallurgy processing

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Masson, T.J.; Vitor, E.; Abreu, C.D.; Marques, I.M.

    2009-01-01

    The aim of this paper was to analyze the microstructural development in samples of Cu-Ni-Sn alloys (weight %) obtained by powder metallurgy (P/M). The powders were mixed for 1/2 hour. After this, they were pressed, in a cold uniaxial pressing (1000 kPa). In the next step the specimens were sintered at temperatures varying from 650 up to 780 deg C under vacuum. Secondly, the samples were homogenized at 500 deg C for several special times. The alloys were characterized by optical microscopy, electrical conductivity and Vickers hardness. X-rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. (author)

  20. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    Science.gov (United States)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  1. Effect of composition and heat treatment on the phase formation of mechanically alloyed Cr-B and Mo-B powders

    International Nuclear Information System (INIS)

    Wu, H M; Hu, C J; Pai, K Y

    2009-01-01

    Blended elemental Cr-B and Mo-B powders in atomic ratio of 67:33, 50:50, and 20:80 were subjected to mechanical alloying up to 60 h and subsequent heat treatment to investigate effect of composition and heat treatment on the phase formation of Cr-B and Mo-B powders. It was studied by X-ray diffraction and differential thermal analysis. Mechanical alloying these powder mixtures for 60 h leads essentially to a amorphous structure except for the Mo 20 B 80 powder, which creates a partially amorphous MoB 4 structure. Annealing at lower temperatures relieves the strains cumulative in the milled powders and creates no new phase. The structures obtained after annealing the milled powders at higher temperature vary and depend on the overall composition of the powder mixtures. Annealing the milled Mo-B powders having greater Mo content ends up with a dissociation reaction at higher temperature.

  2. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    International Nuclear Information System (INIS)

    Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt

    2017-01-01

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  3. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Christian, E-mail: christian.haase@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen (Germany); Tang, Florian [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany); Wilms, Markus B.; Weisheit, Andreas [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hallstedt, Bengt [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)

    2017-03-14

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  4. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  5. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio

    2009-01-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  6. Effect of milling duration on the evolution of shape memory properties in a powder processed Cu-Al-Ni-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mohit; Gupta, Gaurav K.; Shafeeq, Muhamed M.; Modi, Om P.; Prasad, Braj K. [CSIR - Advanced Materials and Processes Research Institute, Bhopal (India)

    2013-09-15

    The present work describes the effect of milling duration on the properties of a powder metallurgy processed Cu-Al-Ni-Ti shape memory alloy employing mechanical alloying. Powder mixtures milled for different durations were sintered in order to investigate the formation of solid solution and evolution of martensitic structure. The idea was to optimize the duration of milling (mechanical alloying) to obtain chemical homogeneity as well as shape memory properties in the processed material without undergoing extensive post homogenization treatment. The martensitic structure was noted to evolve in the powder mix milled for at least 16 hrs, whereas complete transformation to martensite occurred after milling for 40 hrs. Interestingly, the dissolution of alloying elements (to form the {beta} phase prior to the formation of martensite) was noted to complete partially only during mechanical alloying for 40 hrs and remaining during subsequent sintering for 1 hr. The hot pressed compacts of the powders milled for 40 hrs were chemically homogeneous and consisted of fully martensite phase, which is essential for the realization of shape memory properties. They also revealed almost 100% shape recovery at the applied pre-strain levels of 1 and 2%. (orig.)

  7. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  8. Magnetic properties of centrifugally prepared melt-spun Nd-Fe-B alloys and their powders

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Kozlov, A.I.; Markin, P.E.; Pushkarskiy, V.I.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching on to the internal surface of an iron spinning wheel at the tangential speeds in the range 5-20 m/sec are reported. The alloy composition was Nd-36% wt. B-1.2% wt. and Fe-reminder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in the applied range (1430 kA/m at 5 m/sec and 1750 kA/m at 20 m/sec), whereas the grain size of the basic phase (2-14-1) steadily decreases when the speed rises, starting from 2-3 μm for 5 m sec alloy down to the 200-300 nm for 20 m/sec alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for traditionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbons subjected to hydrogen and annealing treatments causes the coercivity drop. However, this operations increase the powder alignment ability and, as a result, the energy product for fully dense magnet from such powder rises to 160-180 kJ/m 3 . (orig.)

  9. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al 3 Sc and/or Al 3 (Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al 3 Sc and/or Al 3 (Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al 6 Mn- and/or Al 6 (Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al 3 Sc particles formation and/or coarsening and that of the Al 6 Mn and/or Al 6 (Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al 3 Sc-phase and the Al 6 Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by

  10. The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys

    Science.gov (United States)

    Pickens, J. R.; Christodoulou, L.

    1987-01-01

    The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.

  11. Characterization of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Monge, M.A.; Auger, M.A.; Leguey, T.; Pareja, R. [Universidad Carlos 3, Dept. de Fisica, Madrid (Spain); Bolzoni, L.; Gordo, E. [Universidad Carlos 3, Dept. de Ciencias de Materiales, Madrid (Spain)

    2007-07-01

    Full text of publication follows: Tungsten is considered as a candidate material for plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of a tungsten material that, in addition to these properties, maintains good mechanical properties after a prolonged exposure at high temperatures. Sintering would be the most suitable method to produce tungsten materials for these applications if their recrystallization temperature is high enough and the grain growth is restrained. Usual sintering conditions for tungsten requires very high temperatures that induces a coarse grained structure in the sintered material, and a low recrystallization temperature in the hot worked material. This causes the failure of its mechanical properties. The combined addition of a sintering activator, which lowers the sintering temperature and favors the densification, and an insoluble oxide that produces a dispersion strengthening and grain growth inhibition, may result in a tungsten material with improved mechanical characteristics. Cu, Ni and Fe are the most used activators to produce tungsten heavy alloys but they may be no recommendable for PFCs. The present work assesses the possibility of using jointly Ti as sintering activator and Y{sub 2}O{sub 3} particles as strengthening dispersoids in tungsten. Pure tungsten and tungsten alloys having 0.5 wt % Y{sub 2}O{sub 3}, x wt % Ti and 0.5 wt % Y{sub 2}O{sub 3}+ x wt % Ti have been prepared by powder metallurgy; 0{<=}x{<=}4%. Elemental powders were blended or ball milled, canned, out-gassed and finally consolidated by a two-stage HIP process under a pressure of 200 MPa. The first stage was performed at 1523 K for 2 h, and after un-canning, the second HIP at 1973 K for 30 min. It is found that Ti addition favors the densification attaining a fully dense material, while pure W and W-0.5Y{sub 2

  12. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  13. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  14. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  15. The investigation of the microstructure and mechanical properties of ordered alominide-iron (boron) nanostructures produced by mechanical alloying and sintering

    Science.gov (United States)

    Izadi, S.; Akbari, Gh.; Janghorban, K.; Ghaffari, M.

    In this study, mechanical alloying (MA) of Fe-50Al, Fe-49.5Al-1B, and Fe-47.5Al-5B (at.%) alloy powders and mechanical properties of sintered products of the as-milled powders were investigated. X-ray diffraction (XRD) results showed the addition of B caused more crystallite refinement compared to the B-free powders. To consider the sintering and ordering behaviors of the parts produced from cold compaction of the powders milled for 80 h, sintering was conducted at various temperatures. It was found that the sintering temperature has no meaningful effect on the long-range order parameter. The transformation of the disordered solid solution developed by MA to ordered Fe-Al- (B) intermetallics was a consequence of sintering. Also, the nano-scale structure of the samples was retained even after sintering. The microhardness of pore-free zones of the nanostructured specimens decreased by increasing the sintering temperature. Moreover, the sintering temperature has no effect on the compressive yield stress. However, the fracture strain increased by increasing the sintering temperature. The samples containing 1 at.% B showed more strain to fracture compared with the B-free and 5 at.% B samples.

  16. Development of indigenous laboratory scale gas atomizer for producing metal powders

    International Nuclear Information System (INIS)

    Khan, K.K.; Qasim, A.M.; Ahmed, P.

    2011-01-01

    Gas atomization is one of the methods for production of clean metal powders at relatively moderate cost. A laboratory scale gas atomizer was designed and fabricated indigenously to produce metal powders with a batch capacity of 500 g of copper (Cu). The design includes several features regarding fabrication and operation to provide optimum conditions for atomization. The inner diameter of atomizing chamber is 440 mm and its height is 1200 mm. The atomizing nozzle is of annular confined convergent type with an angle of 25 degree. Argon gas at desired pressure has been used for atomizing the metals to produce relatively clean powders. A provision has also been made to view the atomization process. The indigenous laboratory scale gas atomizer was used to produce tin (Sn) and copper (Cu) powders with different atomizing gas pressures ranging from 2 to 10 bar. The particle size of different powders produced ranges from 40 to 400 im. (author)

  17. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  18. Influence of the particle size on phase transformation temperatures of Ni-49at.%Ti shape memory alloy powders

    International Nuclear Information System (INIS)

    Anselmo, George Carlos. S.; Castro, Walman B. de; Araujo, Carlos Jose de

    2009-01-01

    It is important to control the martensitic transformation start temperature (Ms) of Ti-Ni alloys because it determines the temperature range over which the shape memory effect and superelasticity appear. Powder metallurgy (PM) is known to provide the possibility of material saving and automated fabrication of at least semi-finished products as well as net-shape components for NiTi alloys. In this study powder with different particle sizes was subjected by gas atomization. The evolution of the control the martensitic transformation start temperature (Ms) was studied by differential scanning calorimetry. The effect of the particle size of powders on the transformation temperatures behaviors was discussed. (author)

  19. Structure and Mechanical Properties of Powdered Quasicrystalline Al94Fe3Cr3 Alloy Consolidated by Quasi-Hydrostatic Compression

    Directory of Open Access Journals (Sweden)

    Alexandra I. Yurkova

    2017-10-01

    Full Text Available Background. Quasicrystalline Al-based alloys belong to the class of the state-of-the-art metal materials for the application in light engineering constructions, primarily in aviation and the motor transport industry. These materials are commonly made in the form of powders, which is due to the high productivity of powder metallurgy methods. Therefore, the powder consolidation methods are of great importance in the production of products, which is associated with certain difficulties, and consequently, they should be chosen considering not only the quasicrystals’ propensity to brittle fracture but also the metastable nature of the quasicrystalline phases. Certain possibilities in this direction are provided by the quasi-hydrostatic compression method, which can provide a non-trivial combination of strength and ductility properties of materials. Objective. The aim of the paper is to investigate the effect of high pressure under quasi-hydrostatic compression on the formation of structure, phase composition and mechanical properties of the quasicrystalline Al94Fe3Cr3 alloy. Methods. 40 μm Al94Fe3Cr3 alloy quasicrystalline powder was fabricated by water-atomisation technique. Consolidation of quasicrystalline powder was performed by quasi-hydrostatic compression technique in high-pressure cells at room temperature at a pressure of 2.5, 4, and 6 hPa. Structure, phase composition and mechanical characteristics of Al94Fe3Cr3 alloy were performed by scanning electron microscopy (SEM, X-ray diffraction andmicromechanical tests. Results. Using the phase X-ray analysis and SEM, the content of the quasicrystalline icosahedral phase (i-phase in the Al94Fe3Cr3 alloy structure was completely preserved after its consolidation at different pressures (2.5, 4, and 6 hPa under quasi-hydrostatic compression at room temperature. Despite the high pressure applied in the consolidation process, the morphology of quasicrystalline phase particles located in the a

  20. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  1. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  2. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  3. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  4. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  5. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  6. Powder metallurgy in aerospace research: A survey

    Science.gov (United States)

    Blakeslee, H. W.

    1971-01-01

    The various techniques by which powders can be produced, as pure metals or as alloys, are discussed; the methods by which these powders can be formed into the final parts are explained as well as further processing that may be necessary to meet specific requirements. The NASA developments are detailed, and references are provided for those who wish to obtain further information characteristic of any methodology.

  7. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  8. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  9. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    Science.gov (United States)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  10. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  11. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  12. Exploring Oven-drying Technique in Producing Pineapple Powder

    Directory of Open Access Journals (Sweden)

    Cyril John A. Domingo

    2017-11-01

    Full Text Available Pineapple puree and juice of 11 to 12 °Brix were used to obtain pineapple powder using oven-drying technique. Addition of maltodextrin in treatments 2 and 4 yielded good quality powder, however addition of sugar and maltodextrin in treatments 1 and 3 resulted to sticky product which was processed to pineapple leather. Treatment 2 composed of pineapple puree and maltodextrin resulted to significantly higher powder recovery compared with treatment 4 which composed of pineapple juice and maltodextrin. The solubility of pineapple powder improved as maltodextrin concentration is increased from 40.00 % to 60.00 %.Addition of maltodextrin also reduced stickiness of the final product. An instant pineapple powder of 5.47 and 5.33 % moisture content could be produced by oven-drying.This level of moisture content will prohibit bacterial growth in the pineapple powder but may have mold or yeast growth with increase storage period at environments with high humidity. Molds were observed on the 17th day at 89.00 % relative humidity as exhibited by the moisture sorption isotherm data. This suggests that appropriate packaging with moisture barrier is recommended for pineapple powder. This study showedthat by using appropriate ratio of juice, puree, and maltodextrin and appropriate oven drying conditions, a good oven-dried pineapple powder could be obtained.

  13. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    Science.gov (United States)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  14. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  15. Nanocrystalline AL2 O2 powders produced by laser induced gas phase reactions

    International Nuclear Information System (INIS)

    Borsella, E.; Botti, S.; Martelli, S.; Zappa, G.; Giorgi, R.; Turt, S.

    1993-01-01

    Nanocrystalline Al 2 O 3 powders were successfully synthesized by a CO 2 laser-driven gas-phase reaction involving trimethylaluminium (Al(CH 3 ) 3 ) and nitrous-oxide (N 2 O). Ethylene (C 2 H 4 ) was added as gas sensitizer. The as-synthesized powder particles showed a considerable carbon contamination and an amorphous-like structure. After thermal treatment at 1200-1400 degrees C, the powder was transformed to hexagonal a-Al 2 O 3 with very low carbon contamination as confirmed by X-ray diffraction, X-ray photo-electron spectroscopy and chemical analysis. The calcinated powders resulted to be spherical single crystal nanoparticles with a mean size of 15-20 nm, as determined by X-ray diffraction, electron microscopy and B.E.T. specific surface measurements. The laser synthesized Al 2 O 3 particles are well suited dispersoids for intermetallic alloy technology

  16. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    Science.gov (United States)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  17. Relationship of Powder Feedstock Variability to Microstructure and Defects in Selective Laser Melted Alloy 718

    Science.gov (United States)

    Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.

    2017-01-01

    Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.

  18. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  19. Technological investigation for producing UO2 powder from ADU by using rotary furnace

    International Nuclear Information System (INIS)

    Pham Duc Thai; Ngo Trong Hiep; Dam Van Tien; Vu Quang Chat; Nguyen Duy Lam; Ngo Xuan Hung; Ngo Quang Hien; Tran Duy Hai; Nguyen Van Sinh

    2003-01-01

    Uranium dioxide powder UO 2 is main material for producing UO 2 fuel ceramic pellets. The technical characteristics of UO 2 powder directly affect on mechanical and physical characteristics of UO 2 fuel ceramic pellets. Project titled 'Technological investigation for producing UO 2 powder from ADU by using rotary furnace' with the code number BO/01/03-06 for two years 2001 and 2002, on purpose to step by step perfect the technology and equipments for producing UO 2 powder, that is as nuclear fuel. This UO 2 powder may be good material for producing UO 2 fuel ceramic pellets. The results had been achieved as follows: 1. Study on the perfection of the reduction process U 3 O 8 to UO 2 in the gas mixture of 3H 2 + N 2 in inactive condition. 2. Study, design and production of active device system called rotary furnace for manufacturing UO 2 powder from ADU. 3. Study on 4 steps of technology process: drying, calcination, reduction and stabilization of UO 2 powder in the system of rotary furnace from which obtained UO 2 with technical characteristics meeting basic criteria of UO 2 fuel powder. (author)

  20. Development of Cu-Be bronzes through powder metallurgy

    International Nuclear Information System (INIS)

    Abbas, M.

    2012-01-01

    Copper and copper alloys are the major group of commercial alloy. One of the important copper bronzes is Copper beryllium. This is unique among all engineering alloys. Copper beryllium alloy possesses the highest strength in all the copper base alloys. Development of copper beryllium alloy with powder metallurgy is challenging problem due to toxicity of beryllium dust. Purpose of this project to find out parameters by which copper beryllium with all unique properties should obtained. For this purpose efforts are put on development of alternative to copper beryllium system like copper-tin and copper-aluminum by powder metallurgy route. Different time of milling with uniaxial pressure of about 200 MPa and different sintering temperature according to phase diagram of alloy, with different soaking time is tried. Problems may occur like decrease in density after sintering, breaking of samples by Rockwell A, B and C indenters arid by hammering. Cold iso-static pressing at 300 MPa and sintering at above 900 degree C is used to develop copper beryllium alloy. As quenched samples are heat treated at 260 degree C, 315 degree C and 370 degree C with different soaking time of 30, 90 and 180 minutes to find out optimum time and temperature parameters. . It is observed that at aging at 260 degree C for 180 minutes, aging at 315 degree C for 180 minutes and aging at 370 degree C for 30 minutes produce optimum result. By observing these pellets by SEM, precipitates appeared in peak-aged alloy and bigger precipitates in over-aged alloy. Copper beryllium alloy developed through powder metallurgy has better prospects than other copper bronzes. (author)

  1. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders

    Directory of Open Access Journals (Sweden)

    Manja Krüger

    2016-10-01

    Full Text Available V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of the planetary ball mill and the type of grinding materials is therefore investigated. These modifications result in different impact energies during ball-powder-wall collisions, which are quantitatively described in this comparative study. Processing with tungsten carbide vials and balls provides slightly improved impact energies compared to vials and balls made of steel. However, contamination of the mechanically alloyed powders with flaked particles of tungsten carbide is unavoidable. In the case of using steel grinding materials, Fe contaminations are also detectable, which are solved in the V and Mo solid solution phases, respectively. Typical mechanisms that occur during the MA process such as fracturing and comminution are analyzed using the comminution rate KP. In both alloys, the welding processes are more pronounced compared to the fracturing processes.

  2. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  3. Fabrication of powder from ductile uranium alloys for use as nuclear dispersion

    International Nuclear Information System (INIS)

    Durazzo, M.; Leal Neto, R.M.; Rocha, C.J.; Urano de Carvalho, E.; Riella, H.G.

    2014-01-01

    This work forms part of the studies presently ongoing at IPEN investigating the feasibility of powdering ductile U-10wt%Mo alloy by hydriding-milling-de-hydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following de-hydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H 3 . SEM analysis of HMD powder particles revealed equi-axial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested. (authors)

  4. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  5. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  6. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.

    Science.gov (United States)

    do Prado, Renata Falchete; Esteves, Gabriela Campos; Santos, Evelyn Luzia De Souza; Bueno, Daiane Acácia Griti; Cairo, Carlos Alberto Alves; Vasconcellos, Luis Gustavo Oliveira De; Sagnori, Renata Silveira; Tessarin, Fernanda Bastos Pereira; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Villaça-Carvalho, Maria Fernanda Lima; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis

    2018-01-01

    Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical

  7. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  8. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  9. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  10. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  11. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  12. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    Science.gov (United States)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  13. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries

    Science.gov (United States)

    Cai, Hongyan; Han, Kai; Jiang, Heng; Wang, Jingwen; Liu, Hui

    2017-10-01

    Silicon/carbon (Si/C) composite shows great potential to replace graphite as lithium-ion battery (LIB) anode owing to its high theoretical capacity. Exploring low-cost scalable approach for synthesizing Si/C composites with excellent electrochemical performance is critical for practical application of Si/C anodes. In this study, we rationally applied a scalable in situ approach to produce Si-carbon nanotube (Si-CNT) composite via acid etching of commercial inexpensive micro-sized Al-Si alloy powder and CNT mixture. In the Si-CNT composite, ∼10 nm Si particles were uniformly deposited on the CNT surface. After combining with graphene sheets, a flexible self-standing Si-CNT/graphene paper was fabricated with three-dimensional (3D) sandwich-like structure. The in situ presence of CNT during acid-etching process shows remarkable two advantages: providing deposition sites for Si atoms to restrain agglomeration of Si nanoparticles after Al removal from Al-Si alloy powder, increasing the cross-layer conductivity of the paper anode to provide excellent conductive contact sites for each Si nanoparticles. When used as binder-free anode for LIBs without any further treatment, in situ addition of CNT especially plays important role to improve the initial electrochemical activity of Si nanoparticles synthesized from low-cost Al-Si alloy powder, thus resulting in about twice higher capacity than Si/G paper anode. The self-standing Si-CNT/graphene paper anode exhibited a high specific capacity of 1100 mAh g-1 even after 100 cycles at 200 mA g-1 current density with a Coulombic efficiency of >99%. It also showed remarkable rate capability improvement compared to Si/G paper without CNT. The present work demonstrates a low-cost scalable in situ approach from commercial micro-sized Al-Si alloy powder for Si-based composites with specific nanostructure. The Si-CNT/graphene paper is a promising anode candidate with high capacity and cycling stability for LIBs, especially for the

  14. Synthesis of Nb-18%Al alloy by mechanical alloying method

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Dollar, M.

    1999-01-01

    The main goal of this study was attempt to employ by mechanical alloying to produce Nb-Al alloy. The Nb-rich alloy composition was selected in order to receive the ductile niobium solid solution (Nb ss ) phase in the final, equilibrium state. This ductile phase was believed to prevent crack propagation in the consolidated alloy and thus to improve its ductility and toughness. Elemental powders of niobium (99.8% pure and -325 mesh) and aluminium (99.9% pure and -325 mesh) were used as starting materials. These powders were mixed to give the nominal compositions od 82% Nb and 18% Al (atomic percent). Mechanical alloying was carried out in a Szegvari laboratory attritor mill in an argon atmosphere with the controlled oxygen level reduced to less than 10 ppm. The total milling time was 86 hours. During the course of milling powder samples were taken out after 5, 10 and 20 hours, which allowed characterization of the powder morphology and progress of the mechanical alloying process. The changes in particle morphology during milling were examined using a scanning electron microscope and the phase analysis was performed in a X-ray diffractometer with CoK α radiation. Initially, particles' size increased and their appearance changed from the regular to one of the flaky shape. X-ray diffraction patterns of examined powders as a function of milling time are presented. Peaks from Al, through much weaker than in the starting material, were still present after 5 hours of milling but disappeared completely after 10 hours of milling. With increasing milling time, the peaks became broader and their intensities decreased. Formation of amorphous phase was observed after 86 hours of milling. This was deducted from a diffuse halo observed at the 2Θ angle of about 27 o . Intermetallic phases Nb 3 Al and Nb 2 Al were found in the consolidated material only. (author)

  15. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  16. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  17. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    Science.gov (United States)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  18. Evaluation of mechanical alloying to obtain Cu-Al-Nb shape memory alloy

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Amorim da Silva

    2005-06-01

    Full Text Available The technical viability of preparing a Cu-Al-Nb shape memory alloy by high energy ball milling in a planetary mill has been evaluated. The alloy Cu-13Al-2Nb (wt. (% was prepared by mixing pure elemental powders. A ball-to-powder weight ratio of 6:1 and rotation rate of 150 rpm in argon atmosphere were the main processing parameters. The milling time ranged from 1 to 65 hours. Changes in microstructure as a function of milling time were investigated, using X-ray diffraction analysis and scanning electron microscopy. To investigate the viability of producing sintered parts from milled powders, the conventional powder metallurgy route was used. The milled powders were compacted in a cylindrical die at 900 MPa. Sintering was carried out in argon atmosphere at 850 °C for 6 hours. This study has shown that high energy ball milling, combined with pressing and sintering, can be used to promote the formation of a copper-aluminum solid solution and achieve final sintered densities of 91% of the theoretical density.

  19. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    Science.gov (United States)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  20. Mechanical behavior of novel W alloys produced by HIP

    International Nuclear Information System (INIS)

    Pastor, J.Y.; Martin, A.; Llorca, J.; Monge, M.A.; Pareja, R.

    2007-01-01

    Full text of publication follows: W appears to be one of the candidate materials being considered for making plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of W materials that, in addition to these properties, maintains good mechanical properties at high temperatures. In W, high temperature strength and creep resistance may be effectively increased by solid-solution and dispersion strengthening. Sintering could be a suitable method to produce solid-solution and dispersion strengthening in W alloys for these applications if their recrystallization temperature is high enough and the grain growth is restrained. The aim of the present work is to investigate the mechanical properties of W materials produced by liquid phase sintering using Ti as sintering activator and nanoparticles of Y 2 O 3 as strengthening dispersoids. The mechanical behaviour of pure W and W alloys, having 0.5 wt % Y 2 O 3 , X Wt % Ti and 0.5 wt % Y 2 O 3 + X wt % Ti prepared by powder metallurgy have been studied (0≤X≤4). Three point bending tests have been performed on 2 x 2 x 25 mm 3 specimens cut from ingots consolidated by a two-stage hot isostatic pressing process. The bending strength, fracture toughness and elastic modulus have been determined as a function of temperature. The fracture surfaces have been analyzed to find the fracture mode and investigate the temperature dependence of the mechanical properties and fracture mechanisms. The effect of the Y 2 O 3 dispersion and Ti content on the mechanical properties is also investigated. (authors)

  1. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    International Nuclear Information System (INIS)

    Ding, W.F.; Xu, J.H.; Shen, M.; Su, H.H.; Fu, Y.C.; Xiao, B.

    2006-01-01

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system

  2. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    Science.gov (United States)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  3. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    Science.gov (United States)

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Erlei [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Kemin, E-mail: zhangkm@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zou, Jianxin [National Engineering Research Center of Light Alloys Net Forming & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-30

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10{sup −5} A cm{sup −2} to 1.64 × 10{sup −6} A cm{sup −2}. The results show that laser cladding is an efficient method to improve

  5. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  6. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance.

    Science.gov (United States)

    Tian, Lihui; Fu, Ming; Xiong, Wei

    2018-02-23

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10 -4 mm³·N -1 ·m -1 , which makes it a promising coating for use in abrasive environments.

  8. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Moravčík, I.; Čížek, Jan; Kováčová, Z.; Nejezchlebová, J.; Kitzmantel, M.; Neubauer, E.; Kuběna, Ivo; Horník, Vít; Dlouhý, I.

    2017-01-01

    Roč. 701, July (2017), s. 370-380 ISSN 0921-5093 Institutional support: RVO:61389021 ; RVO:68081723 Keywords : tensile test * mechanical alloying * plastic ity * mechanical characterization * powder metallurgy Subject RIV: JG - Metallurgy; JG - Metallurgy (UFM-A) OBOR OECD: Materials engineering; Materials engineering (UFM-A) Impact factor: 3.094, year: 2016 https://www.sciencedirect.com/science/article/pii/S0921509317308535

  9. Formation of the minor phase shell on the surface of hypermonotectic alloy powders

    International Nuclear Information System (INIS)

    Zhao, J.Z.

    2006-01-01

    The microstructure evolution in an atomized hypermonotectic alloy drop is calculated. The results indicate that the formation of the minor phase shell on the surface of the powder is due to the heterogeneous nucleation of the minor phase droplets on the atomized drop surface and the resultant diffusional transfer of solute during the liquid-liquid phase transformation

  10. The influence of structural changes on electrical and magnetic characteristics of amorphous powder of the nixmoy alloy

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović Lenka

    2006-01-01

    Full Text Available Nickel and molybdenum alloy powder was electrodeposited on a titanium cathode from a NiSO4⋅7H2O and (NH46 Mo7O24⋅4H2O ammonium solution. The desired chemical composition, structure, size and shape of particles in the powder samples were achieved by an appropriate choice of electrolysis parameters (current density, composition and temperature of the solution, cathode material and electrolysis duration. Metal coatings form in the current density range 15 mA cm-2powders form. The chemical composition of powder samples depends on the current density of electrodeposition. The molybdenum content in the powder increases with the increase of current density (in the low current density range, while in the higher current density range the molybdenum content in the alloy decreases with the increase of the current density of deposition. Smaller sized particles form at higher current density. X-ray analysis, differential scanning calorimetric and measurements of the temperature dependence of electric resistance and magnetic permeability of the powder samples were all used to establish a predominantly amorphous structure of the powder samples formed at the current density of j≥70mA cm-2. The crystalline particle content in the powder samples increases with the decrease of the current density of deposition. Powder heating causes structural changes. The process of thermal stabilization of nickel and molybdenum amorphous powders takes place in the temperature interval from 463K to 573K and causes a decrease in electrical resistance and increase in magnetic permeability. The crystallization temperature depends on the value of current density of powder electrodeposition. Powder formed at j=180 mA cm-2 begins to crystallize at 573K, while the powder deposited at j=50 mA cm-2 begins to crystallize at 673K. Crystallization of the powder causes a decrease in electric resistivity and magnetic

  11. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  12. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  13. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  14. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    Science.gov (United States)

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  15. Obtainment of the alloy Cu13Al4Ni using processed by powder metallurgy

    International Nuclear Information System (INIS)

    Grossi, L.J.; Damasceno, N.; Muterlle, P.V.

    2016-01-01

    The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)

  16. Investigation of powdering ductile gamma U-10 wt%Mo alloy for dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, R.M., E-mail: lealneto@ipen.br [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Rocha, C.J. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Urano de Carvalho, E. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Riella, H.G. [Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil); Durazzo, M. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil)

    2014-02-01

    This work forms part of the studies presently ongoing at Nuclear and Energy Research Institute – IPEN/CNEN-SP investigating the feasibility of powdering ductile U-10 wt%Mo alloy by hydriding–milling–dehydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following dehydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H{sub 3}. SEM analysis of HMD powder particles revealed equiaxial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested.

  17. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  18. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    Science.gov (United States)

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  19. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Eleonora Atzeni

    2013-03-01

    Full Text Available In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  20. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  1. Surface treatment method for hydrogen adsorbing alloy powder and alkali secondary battery fabricated by applying the method; Suiso kyuzo gokin funmatsu no hyomen shori hoho to sorewo tekiyoshite eraeta arukari niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K. [Furukawa Electric Co. Ltd., Tokyo (Japan); Sawa, H. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-03-07

    Corrosion of alloy proceeds in the conventional hydrogen absorbing alloy because the composing hydrogen absorbing alloy powder contacts with high concentration alkali electrolyte in the battery. Immersion into alkali aqueous solution and pulverization by metal fluoride compound of the electrode have been practiced to solve the problem, but internal resistance of the battery increases and the charge and discharge properties of the battery are deteriorated. This invention relates to a method in which hydrogen absorbing alloy electrode powder or the hydrogen alloy electrode whose main content is the said powder is contacted with alkali aqueous solution to increase the specific surface area of the hydrogen absorbing alloy powder, followed by its contact with pH3-6 acidic aqueous solution containing fluorine ions. As a result, corrosion resistance of the surface of hydrogen absorbing alloy powder after the treatment against high concentration alkali electrolyte is improved to elongate the cycle life. Salts of LiF, NaF, KF, RbF, and CsF or their hydrogen salts can be used as the supply source of fluorine ions. 3 tabs.

  2. Solid-assisted melt disintegration (SAMD), a novel technique for metal powder production

    International Nuclear Information System (INIS)

    Akhlaghi, F.; Esfandiari, H.

    2007-01-01

    A new process termed 'solid-assisted melt disintegration (SAMD)' has been developed for the preparation of aluminum alloy powder particles. The method consists of introducing and mixing a specified amount of as-received alumina particles (in the range of +700 to 500 μm) in A356 aluminum melt at the temperature of 715 deg. C. Melt disintegration occurs in 10 min by kinetic energy transfer from a rotating impeller (450 rpm) to the metal via the solid atomizing medium (alumina particles). The resulting mixture of aluminum droplets and alumina particles was cooled in air and screened through 300 μm sieve to separate alumina from solidified aluminum powder particles. A356 aluminum alloy was also gas atomized by using a free-fall atomizer operating by nitrogen gas at the pressure of 1.1 MPa and the sub-300 μm of the produced powder was used as a base of comparison. The SAMD produced powders of diameter above 53 μm were mostly spherical while powders less than 53 μm showed various elongated shapes. No evidence was found for satelliting of small particles on to large ones or agglomerated particles. While gas atomized particles in the +53 μm sieve size range showed some signs of porosity, the SAMD particles were dense and did not show any signs of internal porosity in any of the sieve fractions investigated. Comparison of the microstructure of the SAMD and gas-atomized powders revealed that for the same size powder of A356 alloy, the former exhibited a coarser microstructure as a result of a slower cooling rate

  3. Thermal stability of the grain structure in the W-2V and W-2V-0.5Y2O3 alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Martínez, J.; Savoini, B.; Monge, M.A.; Muñoz, A.; Armstrong, D.E.J.; Pareja, R.

    2013-01-01

    Highlights: • W-2V and ODS W-2V-0.5Y 2 O 3 alloys have been produced following a powder metallurgy route. • Grain microstructure and microhardness have been studied after isothermal treatments in vacuum. • Both alloys exhibit a duplex grain size population: a submicron-sized grain and a coarse grained one. • The Y 2 O 3 addition inhibits growth of the coarse grains for T 2 O 3 nanoparticles enhance the microhardness of W-2V-0.5Y 2 O 3 . -- Abstract: W-2V and ODS W-2V-0.5Y 2 O 3 alloys have been produced following a powder metallurgy route consisting of mechanical alloying and a subsequent high isostatic pressing HIP at 1573 K. The grain microstructure and microhardness recovery of the alloys have been studied in samples subjected to isothermal treatments in vacuum in temperature range 1073–1973 K. Both alloys exhibit a duplex grain size distribution consisting of a submicron-sized grain and a coarse-grained population. It has been found that the Y 2 O 3 addition inhibits growth of the coarse grains at T 2 O 3 , respectively, was observed at T ≥ 1573 K. It resulted that the rate constant for grain growth is 30 times higher in W-2V-0.5Y 2 O 3 than in W-2V. The considerable enhancement of the microhardness in the W-2V-0.5Y 2 O 3 appears to be associated to dispersion strengthening

  4. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2013-10-15

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties.

  5. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    International Nuclear Information System (INIS)

    Gheisari, Kh.; Javadpour, S.

    2013-01-01

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties

  6. Mechanical behavior of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, J.Y.; Martin, A.; Llorca, J. [Madrid Univ. Politecnica, Dept de Ciencia de Materiales (Spain); Monge, M.A.; Pareja, R. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)

    2007-07-01

    Full text of publication follows: W appears to be one of the candidate materials being considered for making plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of W materials that, in addition to these properties, maintains good mechanical properties at high temperatures. In W, high temperature strength and creep resistance may be effectively increased by solid-solution and dispersion strengthening. Sintering could be a suitable method to produce solid-solution and dispersion strengthening in W alloys for these applications if their recrystallization temperature is high enough and the grain growth is restrained. The aim of the present work is to investigate the mechanical properties of W materials produced by liquid phase sintering using Ti as sintering activator and nanoparticles of Y{sub 2}O{sub 3} as strengthening dispersoids. The mechanical behaviour of pure W and W alloys, having 0.5 wt % Y{sub 2}O{sub 3}, X Wt % Ti and 0.5 wt % Y{sub 2}O{sub 3} + X wt % Ti prepared by powder metallurgy have been studied (0{<=}X{<=}4). Three point bending tests have been performed on 2 x 2 x 25 mm{sup 3} specimens cut from ingots consolidated by a two-stage hot isostatic pressing process. The bending strength, fracture toughness and elastic modulus have been determined as a function of temperature. The fracture surfaces have been analyzed to find the fracture mode and investigate the temperature dependence of the mechanical properties and fracture mechanisms. The effect of the Y{sub 2}O{sub 3} dispersion and Ti content on the mechanical properties is also investigated. (authors)

  7. Obtaining beta phase in Ti through processing in high energy mill powders of Ti and Nb

    International Nuclear Information System (INIS)

    Milanez, Mateus; Ferretto, Aline; Rocha, Marcio Roberto da; Arnt, Angela Coelho; Milanez, Alexandre; Schaeffer, Lirio

    2014-01-01

    An orthopedic implant, ideal, must meet the requirements of biocompatibility, have good mechanical properties among others. Titanium and Niobium exhibit biocompatibility and the β-Ti phase relationships have the highest strength / weight among all titanium alloys, presenting lower values of elastic modulus. The alloy has mechanically produced specific microstructural characteristics and improved mechanical properties compared with conventional powder metallurgy. In this study, a titanium alloy with different additions of niobium was used. The metal powders were mixed via mechanical alloy in high energy mill (attritor). The powder samples were analyzed by X-ray diffraction (X-RD) and property held by adhesive wear testing with a Pin-on-Disk. The present study revealed that through the high-energy milling is possible the atomic interaction between Ti and Nb particles and the mechanical properties are affected by the concentration of Nb. (author)

  8. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2017-03-01

    Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  10. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    Science.gov (United States)

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  11. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  12. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Haruhiko, E-mail: atsumi-h@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imai, Hisashi; Li, Shufeng; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kousaka, Yoshiharu; Kojima, Akimichi [San-etsu Metals Co. Ltd., 1892 Ohta, Tonami, Toyama 939-1315 (Japan)

    2012-08-15

    In this paper, high-strength brass (Cu-40% Zn) alloy with magnesium (Mg) element was fabricated via powder technology process, and the effect of the additive Mg element on microstructural and mechanical properties of extruded brass alloys with {alpha}-{beta} duplex phases was investigated. Pre-mixed Cu-40% Zn alloy powder with 0.5-1.5 mass% pure Mg powder (Cu-40% Zn + Mg) was consolidated using a spark plasma sintering (SPS) equipment. SPSed Cu-40% Zn + Mg specimens consisted of {alpha}-{beta} duplex phases containing Mg(Cu{sub 1-x}Zn{sub x}){sub 2} intermetallic compounds (IMCs) with a mean particle size of 10-30 {mu}m in diameter. The IMCs were completely dissolved in the {alpha}-{beta} duplex phases by a heat-treatment at 973 K for 15 min; thus, in order to disperse fine IMCs on {alpha}-{beta} duplex phase matrix, the SPSed Cu-40% Zn + Mg specimens were pre-heated at the solid solutionizing condition, and immediately extruded. The extruded specimen exhibited fine {alpha}-{beta} duplex phases, containing very fine precipitates of the above Mg(Cu{sub 1-x}Zn{sub x}){sub 2} IMCs with 0.5-3.0 {mu}m in diameter. In particular, a mean grain size of the extruded Cu-40% Zn + 1.0% Mg specimen was 3.32 {mu}m analyzed using an electron back-scattered diffraction. Tensile properties of the extruded Cu-40% Zn + 1.0% Mg specimen were an average value of yield strength (YS): 328 MPa, ultimate tensile strength (UTS): 553 MPa, and 25% elongation. This indicated that the extruded Cu-40% Zn + 1.0% Mg specimen revealed the significantly high-strength properties compared to a conventional binary brass alloy with 229 MPa YS and 464 MPa UTS. A high strengthening mechanism of this wrought brass alloy was mainly due to the grain refinement because of a pinning effect by the fine Mg(Cu{sub 1-x}Zn{sub x}){sub 2} precipitates at the boundaries of each phase. -- Highlights: Black-Right-Pointing-Pointer New high-strength extruded brass alloy with Mg was fabricated via powder metallurgy. Black

  13. Influence of powder particle injection velocity on the microstructure of Al-12Si/SiCp coatings produced by laser cladding

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J. Th M.

    2009-01-01

    The influence of powder particle injection velocity on the microstructure of coatings consisting of an Al-Si matrix reinforced with SiC particles prepared by laser cladding from mixtures of powders of Al-12 wt.% Si alloy and SiC was investigated both experimentally and by modeling. At low injection

  14. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  15. Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Alexandre Nogueira Ottoboni; Silva, Aline da; Rodrigues, Carlos Alberto; Melo, Mirian de Lourdes Noronha Motta; Rodrigues, Geovani; Silva, Gilbert, E-mail: aottoboni@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil)

    2017-05-15

    The aluminum bronze alloy is part of a class of highly reliable materials due to high mechanical strength and corrosion resistance being used in the aerospace and shipbuilding industry. It's machined to produce parts and after its use cycle, it's discarded, but third process is considered expensive and besides not being correct for environment reasons. Thus, reusing this material through the powder metallurgy (PM) route is considered advantageous. The aluminum bronze chips were submitted to high energy ball milling process with 3% of niobium carbide (NbC) addition. The NbC is a metal-ceramic composite with a ductile-brittle behaviour. It was analyzed the morphology of powders by scanning electron microscopy as well as particle size it was determined. X ray diffraction identified the phases and the influence of milling time in the diffractogram patterns. Results indicates that milling time and NbC addition improves the milling efficiency significantly and being possible to obtain nanoparticles. (author)

  16. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    International Nuclear Information System (INIS)

    López-Ruiz, P.; Ordás, N.; Iturriza, I.; Walter, M.; Gaganidze, E.; Lindig, S.; Koch, F.; García-Rosales, C.

    2013-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO 3 . Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr) 5 Si 3 ; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material

  17. Investigation of a hot-pressed Nb–Ti–Al alloy: Mechanical alloying, microstructure and mechanical property

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Jin, Tao; Sun, Xiaofeng; Zheng, Qi, E-mail: qzheng@imr.ac.cn

    2016-01-10

    The Nb–23Ti–15Al (at%) alloy was prepared by mechanical alloying (MA) and hot-pressing (HPing). The microstructure evolution of powder particles during MA and its influence on the microstructure and mechanical properties of the hot-pressed (HPed) alloy have been investigated. The powder and HPed alloy were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that particle size increases in the first stage and then decreases in the second stage during MA; as milling speed increases, mechanically alloyed (MAed) powder with convoluted elemental lamellae, homogeneous Nb solid-solution and an amorphous phase could be obtained respectively in 24 h. Higher homogeneity in microstructure and composition of the MAed powder particles promotes the precipitation of the δ phase and refines the β and Ti(O,C) phases in the HPed alloy. Moreover, due to the phase equilibrium changes caused by Fe and Cr in the amorphous powder, σ phase appears in the alloy as a stable phase instead of the δ phase. Properly MAed powder contributes to higher hardness of the HPed alloy, for reasons of microstructure refinement and sufficient precipitating of strengthening phases.

  18. Investigation of a hot-pressed Nb–Ti–Al alloy: Mechanical alloying, microstructure and mechanical property

    International Nuclear Information System (INIS)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Jin, Tao; Sun, Xiaofeng; Zheng, Qi

    2016-01-01

    The Nb–23Ti–15Al (at%) alloy was prepared by mechanical alloying (MA) and hot-pressing (HPing). The microstructure evolution of powder particles during MA and its influence on the microstructure and mechanical properties of the hot-pressed (HPed) alloy have been investigated. The powder and HPed alloy were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that particle size increases in the first stage and then decreases in the second stage during MA; as milling speed increases, mechanically alloyed (MAed) powder with convoluted elemental lamellae, homogeneous Nb solid-solution and an amorphous phase could be obtained respectively in 24 h. Higher homogeneity in microstructure and composition of the MAed powder particles promotes the precipitation of the δ phase and refines the β and Ti(O,C) phases in the HPed alloy. Moreover, due to the phase equilibrium changes caused by Fe and Cr in the amorphous powder, σ phase appears in the alloy as a stable phase instead of the δ phase. Properly MAed powder contributes to higher hardness of the HPed alloy, for reasons of microstructure refinement and sufficient precipitating of strengthening phases.

  19. Metal-Matrix Hardmetal/Cermet Reinforced Composite Powders for Thermal Spray

    Directory of Open Access Journals (Sweden)

    Dmitri GOLJANDIN

    2012-03-01

    Full Text Available Recycling of materials is becoming increasingly important as industry response to public demands, that resources must be preserved and environment protected. To produce materials competitive in cost with primary product, secondary producers have to pursue new technologies and other innovations. For these purposes different recycling technologies for composite materials (oxidation, milling, remelting etc are widely used. The current paper studies hardmetal/cermet powders produced by mechanical milling technology. The following composite materials were studied: Cr3C2-Ni cermets and WC-Co hardmetal. Different disintegrator milling systems for production of powders with determined size and shape were used. Chemical composition of produced powders was analysed.  To estimate the properties of recycled hardmetal/cermet powders, sieving analysis, laser granulometry and angularity study were conducted. To describe the angularity of milled powders, spike parameter–quadric fit (SPQ was used and experiments for determination of SPQ sensitivity and precision to characterize particles angularity were performed. Images used for calculating SPQ were taken by SEM processed with Omnimet Image Analyser 22. The graphs of grindability and angularity were composed. Composite powders based on Fe- and Ni-self-fluxing alloys for thermal spray (plasma and HVOF were produced. Technological properties of powders and properties of thermal sprayed coatings from studied powders were investigated. The properties of spray powders reinforced with recycled hardmetal and cermet particles as alternatives for cost-sensitive applications were demonstrated.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1348

  20. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I. E., E-mail: andersoni@ameslab.gov; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J. [Ames Laboratory (USDOE), Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  1. Microstructural Development in Al-Si Powder During Rapid Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Genau, Amber Lynn [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  2. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    . The improvement obtained is shown to be due to the development of a secondary bond in the joint beside the weld nugget increasing the total weld area. The application of powder additive is especially feasible, when using welding machines with insufficient current capacity for producing the required nugget size......In order to ensure good quality joints between aluminum sheets by resistance spot welding, a new approach involving the addition of metal powder to the faying surfaces before resistance heating is proposed. Three different metal powders (pure aluminum and two powders corresponding to the alloys AA....... In such cases the best results are obtained with pure aluminum powder....

  3. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  4. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  5. Laser alloying of Al with Ti and Ni based powders to improve wear resistance and hardness

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-10-01

    Full Text Available /s and 0.012m/s scanning speeds • The was no sufficient melting and infusion of the powder into the substrate obtained at high laser scanning speed • The thickness of the alloyed layer was ~0.52mm Results © CSIR 2008 www...

  6. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  7. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    Science.gov (United States)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2017-04-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  8. Development of an alternative route for recycling AA2050 aluminum alloy by powder metallurgy; Desenvolvimento de uma rota alternativa para reciclagem da liga de aluminio AA2050 via metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Guido, V.; Oliveira, A.C. de; Travessa, D.N.; Cardoso, K.R., E-mail: vane.guid@gmail.com [Universidade Federal de Sao Paulo (USP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    This paper presents an alternative solid state route to recycling AA2050 aeronautical aluminium alloy chips. The first stage in the recycling process, reported in this work, is the obtainment of the alloy powder by high energy ball milling to subsequent cold pressing and hot extrusion. The process started with the cleaning of chips with the aim of contaminant removing from machining process and transport, followed by the high energy ball milling to result in the AA2050 alloy powder. The powder obtained was characterized by laser size particle analysis, scanning electron microscopy (SEM), X-Ray diffraction (DRX) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show the feasibility of obtaining a powder having appropriate particle size and chemical composition in accordance with the specification for alloy. (author)

  9. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  10. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  11. Thermohydrogen processing (THP) of titanium alloy and titanium-aluminum alloys

    Science.gov (United States)

    Qazi, Javaid Iqbal

    the average prior beta grain size; recommendations have been made for future work in this area. Fully dense hydrogenated nano-crystalline TiAl compacts were produced from BE powders. HIP'ing of the mechanically alloyed hydrogenated powders at 850°C resulted in a homogenous microstructure, whereas prior powder particle boundaries were visible in the samples produced from non-hydrogenated powders. The hydrogen was removed by vacuum annealing resulting in nano-size gamma-TiAl.

  12. Design and Testing of UMM Vertical Ball Mill (UVBM) for producing Aluminium Powder

    Science.gov (United States)

    Aisyah, I. S.; Caesarendra, Wahyu; Suprihanto, Agus

    2018-04-01

    UMM Vertical Ball Mill (UVBM) was intended to be the apparatus to produce metal powder with superior characteristic in production rate while retaining good quality of metal powder. The concept of design was adopting design theory of Phal and Beitz with emphasis on increasing of probability of success in engineering and economy aspects.Since it was designed as vertical ball mill, a new way to produce powder, then it need to be tested for the performance after manufactured. The test on UVBM was carried out by milling of aluminium chip for 5 (five) different milling time of 0.5 hours, 1 hour, 3 hours, 5 hours and 7 hours, and the powder product then be characterized for it morphology and size using Scanning Electron Microscope (SEM) and Sieve.The results of the study were the longer of the milling time, the finer of the powder. From the test results of SEM, the morphology of the powder with 5 variations of milling time were most of the powder in form of flake (flat), small round and angular (irregular). The distribution of powder size was best obtained on the variation of milling time 3 hours, 5 hours, and 7 hours with percentage of 200 mesh in size of 22.14 %, 64 % and 91.25 % respectively.

  13. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, P.; Ordás, N.; Iturriza, I. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Walter, M.; Gaganidze, E. [Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Lindig, S.; Koch, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain)

    2013-11-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO{sub 3}. Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr){sub 5}Si{sub 3}; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material.

  14. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    Science.gov (United States)

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e

  15. Microstructure and magnetic properties of nanostructured (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, N. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Souami, N. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Gorria, P. [Department of Physics and IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Bourzami, A. [Laboratoire d' Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), Université Sétif1, 19000 Sétif (Algeria); Lenoble, O. [Institut Jean Lamour, CNRS-Université de Lorraine, Boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy (France)

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe{sub 80}Al{sub 20} alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties. - Highlights: • Single-phase nanocrystalline (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} (x=0, 5, 10, 15 and 20 at%) powders were successfully fabricated by mechanical alloying for a milling time of 72 h. • The insertion of Si atoms leads to a unit-cell contraction and a decrease in the average crystallite size. • The hyperfine and magnetic properties of (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} were influenced by the Si content.

  16. Effects of N2 mixed gas atomization on electrochemical properties of Mm(Ni,Co,Mn,Al)5.0 alloy powder

    International Nuclear Information System (INIS)

    Yanagimoto, K.; Sunada, S.; Majima, K.; Sawada, T.

    2004-01-01

    N 2 gas, N 2 -Ar mixed gas and Ar gas atomization followed by acid surface treatment was applied to improve electrochemical properties of AB 5 type hydrogen storage alloy powder. The shape of Ar atomized powder was spherical and it changed to be irregular with increasing N 2 content of mixed gas. Irrespective of gas kinds, electrodes of atomized powder showed the same discharge capacity as cast-pulverized powder under auxiliary electrical conductivity by nickel powder addition. Without nickel powder, however, N 2 atomized powder showed the best electrochemical properties as well as gas activation behavior. By the combination process of N 2 gas atomization and acid surface treatment, it was considered that irregular shape of N 2 atomized powder promoted electrical conductivity of electrodes and catalytic nickel concentrated surface layer was formed to increase the hydrogen storage rapidity

  17. Microstructure and mechanical properties of sintered Ti Binary alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz Atay, H.; Haro Rodriguez, M.; Amigo Mata, A.; Vicente Escuder, V.; Amigo Borras, V.

    2016-07-01

    Biomaterials have shown rapid growth in the field of elderly population demands with the prolongation of human life. One of those biomaterials, titanium, has excellent properties and biocompatibility though it may cause weakening in the structures due to its higher stiffness. In this study, powder metallurgy process was used to produce Ti-Cr, Ti-Mo and Ti-Cu metal alloys to overcome this problem. Metal powders were mixed by mechanical alloying. After pressing and sintering, alloys structures were investigated. Characterizations were carried out by size analyzer, SEM-EDX, optical microscope and three points bending test. (Author)

  18. Evidence of magnetic dipolar interaction in micrometric powders of the Fe50Mn10Al40 system: Melted alloys

    International Nuclear Information System (INIS)

    Pérez Alcázar, G.A.; Zamora, L.E.; Tabares, J.A.; Piamba, J.F.; González, J.M.; Greneche, J.M.; Martinez, A.; Romero, J.J.; Marco, J.F.

    2013-01-01

    Powders of melted disordered Fe 50 Mn 10 Al 40 alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 μm showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: ► The effect of particle size in microsized powders of Fe 50 Mn 10 Al 40 melted disordered alloy is studied. ► Dipolar magnetic interaction between particles exists and this changes with the particle size. ► For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. ► RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  19. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  20. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  1. Ultrasonic characterization of microstructure in powder metal alloy

    Science.gov (United States)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  2. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  3. A superplastic Al-Li-Cu-Mg-Zr powder alloy with high hardness and modulus

    International Nuclear Information System (INIS)

    Phillips, V.A.

    1986-01-01

    Structure/property studies were made on an experimental Al-3.18% Li-4.29% Cu-1.17% Mg-0.18% Zr powder alloy, which is of the low density/high modulus type. Alloy powder was made by the P and W/GPD rapid solidification rate (RSR) process, canned, and extruded to bar. The density was 2.458 x 10/sup 6/ g/m/sup 3/. The material was solution-treated, and aged at 149 0 C(300 0 F), 171 0 C(340 0 F), and 193 0 C(380 0 F), using hardness tests to determine the aging curves. Testpieces solution-treated at 516 0 C(961 0 F) showed an average yield strength (0.2% offset) of 43.3 ksi (299 MPa) and ultimate tensile strength of 50.0 ksi (345 MPa), with 1% elongation, which increased to 73.0 ksi (503 MPa) and 73.1 ksi (504 MPa), respectively, with only 0.2% elongation, on peak aging at 193 0 C(380 0 F), with a modulus of elasticity of 11.4 x 10/sup 6/ psi (78.3 GPa). Hardness values reached 90-92 R/sub B/ on aging at 149-193 0 C(300-380 0 F). The as-extruded alloy showed superplastic behavior at 400-500 0 C(752-932 0 F) with elongations of 80-185% on 25.6 mm, peaking at 450 0 C(842 0 F). An RSR Al-2.53% Li-2.82% Mn-0.02% Zr extruded allow showed only 18-23% elongation at 400-500 0 C(752-932 0 F)

  4. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment

    International Nuclear Information System (INIS)

    Abbasi, A.R.; Shamanian, M.

    2011-01-01

    Research highlights: → α-Mo-Mo 5 SiB 2 nanocomposite was produced after 20 h milling of Mo-Si-B powders. → Heat treatment of 5 h MAed powders led to the formation of boride phases. → Heat treatment of 10 h MAed powders led to the formation of Mo 5 SiB 2 phase. → By increasing heat treatment time, quantity of Mo 5 SiB 2 phase increased. → 5 h heat treatment of 20 h MAed powders led to the formation of Mo 5 SiB 2 -based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo 5 SiB 2 -based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an α-Mo-Mo 5 SiB 2 nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo 2 B were detected and α-Mo-MoB-Mo 2 B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an α-Mo-Mo 5 SiB 2 -MoSi 2 -Mo 3 Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo 5 SiB 2 phase after heat treatment wherein below that time, boride phase and after that time, Mo 5 SiB 2 phase are formed. In the case of 20 h mechanically alloyed powders, by increasing heat treatment time, not only the quantity of α-Mo was reduced and the quantity of Mo 5 SiB 2 was increased, but also new boride

  5. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  6. Characterization of novel W alloys produced by HIP

    International Nuclear Information System (INIS)

    Monge, M.A.; Auger, M.A.; Leguey, T.; Ortega, Y.; Bolzoni, L.; Gordo, E.; Pareja, R.

    2009-01-01

    W and W alloys containing 0.5 wt% Y 2 O 3 , x wt% Ti and (x wt% Ti + 0.5 wt% Y 2 O 3 ) have been prepared, x = 2 or 4. Elemental powders were blended or ball milled, canned, degassed and finally consolidated by a two-stage HIP process under a pressure of 195 MPa. It is found that Ti addition favours the densification attaining a fully dense material. XRD, SEM and EDX analyses of the material with Ti addition reveal the formation of a microstructure consisting of tungsten particles embedded in a W-Ti matrix. The microhardness of these materials increased noticeably with the titanium content.

  7. An application of powder metallurgy to dentistry.

    Science.gov (United States)

    Oda, Y; Ueno, S; Kudoh, Y

    1995-11-01

    Generally, the dental casting method is used to fabricate dental prostheses made with metal. The method of fabricating dental prostheses from sintered titanium alloy has certain advantages: the elimination of casting defects, a sintering temperature that is lower than the melting point, and a shorter processing time. By examining (1) the properties of green, sintered compacts of titanium powder, (2) the effects of adding aluminum powder on the properties of green, sintered compacts of Ti-Al compound, and (3) the effects of adding copper powder on the properties of green, sintered compacts of Ti-Al-Cu compound, the authors developed a sintered titanium alloy on a trial basis. Because the properties satisfied the requirements of dental restorations, a powder metallurgical method of making dental restorations from this sintered titanium alloy was devised. Applications of such sintered titanium alloys for the metal coping of metal-ceramic crowns and denture base plates were discussed.

  8. Influence of the chemical composition and the fabrication process on the behaviour of high temperature oxidation of Fe-Cr-Al alloys

    International Nuclear Information System (INIS)

    Clemendot, F.; Arnoldi, F.; Cerede, J.B.; Dionnet, B.; Nardou, F.; Duysen, J.C. van

    1993-01-01

    The oxidation behaviour of four industrial Fe-Cr-Al alloys was studied. Two of them were Fe-Cr-Al alloys fabricated either by melting or by powder metallurgy. The two other ones were Fe-Cr-Al-Y alloys either produced by melting or by mechanical alloying. On these alloys, we determined oxidation kinetics and observed the morphology of the oxide layer after isothermal and cyclic exposures from 1000 C up to 1300 C. The beneficial effect of yttrium on the adherence of oxide layers was confirmed. The powder metallurgy fabrication route does not improve the oxidation resistance of yttrium-free alloys. On the other hand, the association of the powder metallurgy and the addition of yttrium allow the manufacturing of alloys which present an excellent behaviour to high temperature oxidation. (orig.)

  9. A study of stability of MgH{sub 2} in Mg-8at%Al alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Tanniru, Mahesh; Ebrahimi, Fereshteh [Materials Science and Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Slattery, Darlene K. [Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2010-04-15

    To investigate the effect of Al addition on the stability of magnesium hydride, the hydrogenation characteristics of a Mg-8at%Al alloy powder synthesized using the electrodeposition technique were evaluated. The characterization of the hydrogenation behavior within the 180 C-280 C temperature range and the subsequent microstructural analysis elucidated that the amount of Al present in the hydride decreased with increasing temperature. This observation suggests that Al has very low solubility in magnesium hydride but Al can be accommodated in MgH{sub 2} by processing under non-equilibrium conditions. Pressure-composition isotherms were developed at different temperatures for the Mg-Al powder as well as pure Mg powder. The results indicate that the enthalpy of formation was slightly lower for the Mg-8at%Al powder while the enthalpy of dissociation did not change. The absence of noticeable influence of Al addition on the stability of magnesium hydride is attributed to its lack of solubility. (author)

  10. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  11. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  12. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Kalita, M.P.C.; Perumal, A.; Srinivasan, A.

    2008-01-01

    Nanocrystalline Fe 75 Si 25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 10 17 m -2 . During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time

  13. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  14. Superior metallic alloys through rapid solidification processing (RSP) by design

    Energy Technology Data Exchange (ETDEWEB)

    Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  15. Methods for production of aluminium powders and their application fields

    Energy Technology Data Exchange (ETDEWEB)

    Gopienko, V.G.; Kiselev, V.P.; Zobnina, N.S. (Vsesoyuznyj Nauchno-Issledovatel' skij i Proektnyj Inst. Alyuminievoj, magnievoj i ehlektrodnoj promyshlennosti (USSR))

    1984-12-01

    Different types of powder products made of alluminium and its alloys (powder, fine powders, granules and pastes) as well as their basic physicochemical properties are briefly characterized. The principle methods for alluminium powder production are outlined: physicochemical methods, the melt spraying by compressed gas being the mostly developed among them, and physico-mechanical ones. Main application spheres for powder productions of aluminium and its alloys are reported in short.

  16. Methods for production of aluminium powders and their application fields

    International Nuclear Information System (INIS)

    Gopienko, V.G.; Kiselev, V.P.; Zobnina, N.S.

    1984-01-01

    Different types of powder products made of alluminium and its alloys (powder, fine powders, granules and pastes) as well as their basic physicochemical properties are briefly characterized. The principle methods for alluminium powder production are outlined: physicochemical methods, the melt spraying by compressed gas being the mostly developed among them, and physico-mechanical ones. Main application spheres for powder productions of aluminium and its alloys are reported in short

  17. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  18. Technology development for producing nickel metallic filters

    International Nuclear Information System (INIS)

    Hubler, C.H.

    1990-01-01

    A technology to produce metallic filters by Instituto de Engenharia Nuclear (IEN-Brazilian CNEN) providing the Instituto de Pesquisas Energeticas e Nucleares (IPEN-Brazilian CNEN) in obtaining nickel alloy filters used for filtration process of uranium hexafluoride, was developed. The experiences carried out for producing nickel conical trunk filters from powder metallurgy are related. (M.C.K.)

  19. LEU fuel powder technology at Babcock and Wilcox (USA)

    International Nuclear Information System (INIS)

    Bogacik, K.E.

    1984-01-01

    This paper traces BandW involvement in HEU fuel manufacturing to the current work directed at LEU reactor technology. Past work at BandW in areas such as alloying, fuel handling and core manufacturing has been of significant benefit to the current LEU fuel processing requirements. Recent investigations and process developments for production of LEU aluminide and silicide fuels are discussed. Techniques for alloying by vacuum are melting, followed by comminution methods after alloying, are presented for both the LEU aluminide and silicide fuel powders. Powder processing discussions include compacting techniques used by BandW for these alloys. This overview of BandW's LEU i nvolvement provides details of specific modifications and process developments in powdered fuels. Product attributes such as powder chemistry, size, and other physical properties of each LEU fuel are presented. (author)

  20. Freeze-dried processing of tungsten heavy alloys

    International Nuclear Information System (INIS)

    White, G.D.; Gurwell, W.E.

    1989-06-01

    Tungsten heavy alloy powders were produced from freeze-dried aqueous solutions of ammonium metatungstate and, principally, sulfates of Ni and Fe. The freeze-dried salts were calcined and hydrogen reduced to form very fine, homogeneous, low-density, W heavy alloy powders having a coral-like structure with elements of approximately 0.1 μm in diameter. The powders yield high green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%, and 96% W were prepared by freeze drying, compacted, and solid-state (SS) sintered to fully density at temperatures as low as 1200 degree C and also at conventional liquid-phase (LP) sintering temperatures. Solid-state sintered microstructures contained polygonal W grains with high contiguity; the matrix did not coat and separate the W grains to form low-contiguity, high-ductility structures. Liquid-phase sintered microstructures were very conventional in appearance, having W spheroids of low contiguity. All these materials were found to be brittle. High levels of residual S accompanied by segregation of the S to all the microstructural interfaces are principally responsible for the brittleness; problems with S could be eliminated by using Fe and Ni nitrates rather than the sulfates. 9 refs., 22 figs., 3 tabs

  1. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  2. Thermal stability of the grain structure in the W-2V and W-2V-0.5Y{sub 2}O{sub 3} alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, J.; Savoini, B.; Monge, M.A. [Departamento de Física, Universidad Carlos III de Madrid, 28911-Leganés Madrid (Spain); Muñoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911-Leganés Madrid (Spain); Armstrong, D.E.J. [Department of Materials, University of Oxford, Park Road, Oxford OX1 3PH (United Kingdom); Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911-Leganés Madrid (Spain)

    2013-10-15

    Highlights: • W-2V and ODS W-2V-0.5Y{sub 2}O{sub 3} alloys have been produced following a powder metallurgy route. • Grain microstructure and microhardness have been studied after isothermal treatments in vacuum. • Both alloys exhibit a duplex grain size population: a submicron-sized grain and a coarse grained one. • The Y{sub 2}O{sub 3} addition inhibits growth of the coarse grains for T < 1973 K. • The Y{sub 2}O{sub 3} nanoparticles enhance the microhardness of W-2V-0.5Y{sub 2}O{sub 3}. -- Abstract: W-2V and ODS W-2V-0.5Y{sub 2}O{sub 3} alloys have been produced following a powder metallurgy route consisting of mechanical alloying and a subsequent high isostatic pressing HIP at 1573 K. The grain microstructure and microhardness recovery of the alloys have been studied in samples subjected to isothermal treatments in vacuum in temperature range 1073–1973 K. Both alloys exhibit a duplex grain size distribution consisting of a submicron-sized grain and a coarse-grained population. It has been found that the Y{sub 2}O{sub 3} addition inhibits growth of the coarse grains at T < 1973 K. Submicron grain growth, with activation enthalpy of 1.9 and 2.49 eV for W-2V and W-2V-0.5Y{sub 2}O{sub 3}, respectively, was observed at T ≥ 1573 K. It resulted that the rate constant for grain growth is 30 times higher in W-2V-0.5Y{sub 2}O{sub 3} than in W-2V. The considerable enhancement of the microhardness in the W-2V-0.5Y{sub 2}O{sub 3} appears to be associated to dispersion strengthening.

  3. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the Al{sub x}CoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's.

  4. Characterization of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: mmonge@fis.uc3m.es; Auger, M.A.; Leguey, T.; Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bolzoni, L.; Gordo, E. [Departamento de Ciencias de Materiales, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    W and W alloys containing 0.5 wt% Y{sub 2}O{sub 3}, x wt% Ti and (x wt% Ti + 0.5 wt% Y{sub 2}O{sub 3}) have been prepared, x = 2 or 4. Elemental powders were blended or ball milled, canned, degassed and finally consolidated by a two-stage HIP process under a pressure of 195 MPa. It is found that Ti addition favours the densification attaining a fully dense material. XRD, SEM and EDX analyses of the material with Ti addition reveal the formation of a microstructure consisting of tungsten particles embedded in a W-Ti matrix. The microhardness of these materials increased noticeably with the titanium content.

  5. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  6. Effect of carbon on mechanical properties of powder-processed Fe ...

    Indian Academy of Sciences (India)

    The present paper records the results of mechanical tests on iron-phosphorus powder alloys which were made using a hot powder forging technique. In this process mild steel encapsulated powders were hot forged into slabs, hot rolled and annealed to relieve the residual stresses. These alloys were characterized in terms ...

  7. The effect of structural changes during sintering on the electric and magnetic traits of the Ni96.7Mo3.3 alloy nanostructured powder

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović L.

    2009-01-01

    Full Text Available Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.

  8. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  9. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  10. Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yafen; Fan, Jianfeng, E-mail: fanjianfeng@tyut.edu.cn; Zhang, Hua; Zhang, Qiang; Gao, Jing; Dong, Hongbiao, E-mail: hd38@leicester.ac.uk; Xu, Bingshe

    2017-03-15

    Grain sizes of AZ91 alloy powders were markedly refined to about 15 nm from 100 to 160 μm by an optimized hydrogenation-disproportionation-desorption-recombination (HDDR) process. The effect of temperature, hydrogen pressure and processing time on phase and microstructure evolution of AZ91 alloy powders during HDDR process was investigated systematically by X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The optimal HDDR process for preparing nanocrystalline Mg alloy powders is hydriding at temperature of 350 °C under 4 MPa hydrogen pressure for 12 h and dehydriding at 350 °C for 3 h in vacuum. A modified unreacted core model was introduced to describe the mechanism of grain refinement of during HDDR process. - Highlights: • Grain size of the AZ91 alloy powders was significantly refined from 100 μm to 15 nm. • The optimal HDDR technology for nano Mg alloy powders is obtained. • A modified unreacted core model of grain refinement mechanism was proposed.

  11. Investigation of alloying effects in aluminum dispersion strengthened with Al2O3

    International Nuclear Information System (INIS)

    Copeland, G.L.

    1975-10-01

    Two types of alloying elements were investigated to determine if the room-temperature strength could be improved and if, through lowering the oxide content, the high-temperature ductility could be improved. Mg was investigated for its solid solution strengthening in one type alloy. The other type alloy involved further dispersion strengthening through adding Fe, Mo, Zr, Cr, V, and Ti which form highly stable intermetallic compounds with Al. Fabrication techniques were developed which produced uniform and reproducible rods for testing. Prealloyed powders were produced by atomizing the molten alloys and collecting the powders in water. This procedure produced uniform powders with a very fine distribution of the intermetallic compounds. Fabrication into rods then included ball-milling, vacuum hot pressing, vacuum heat treating, and hot extrusion. Mg additions improved strengths up to 200 0 C with little effect above that temperature. Room-temperature tensile strengths up to 77,000 psi were obtained which are comparable to the strengths obtained in conventional aluminum alloys. The additional dispersion strengthening of the intermetallic compounds is additive to that of the oxide from room temperature to 450 0 C. No significant improvements in ductility are obtained by reducing the oxide content since even at very low ball-milling times (i.e., low oxide contents) the uniform elongation at 450 0 C is typically 0.5 percent. Good combinations of strength and ductility at 450 0 C were obtained in some of the alloys containing intermetallic compounds with no ball-milling. Typical properties at this temperature were tensile strengths of 7,000 psi, uniform elongation of 3 percent, and total elongation of 35 percent. (21 tables, 33 fig, 43 references) (auth)

  12. PERSPECTIVES OF NANOPOWDERS APPLICATION FOR MANUFACTURING OF MODIFYING ALLOYING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. Kalinichenko

    2015-01-01

    Full Text Available Application of nanomaterials for grain refining of metals and its allac is of great interest as it aimis achieveto higher physicalmechanical properties in finished parts. Analysis shows that to gain high effectiveness of nanoparticles it is important to provide proper input of these particles into alloying alloy. The aim of present research is study of initial nanoparticles structure on the base of titanium, boron, yttrium and carbon nanotubes as well as development of method to manufacture alloying alloys containing nanoparticles.Investigations of nanopowders phase compositions on the base of titanium, boron and yttrium have shown that active elements such as boron carbide, titanium carbide and nitride, yttrium oxide are base compounds of these nanopowders. Powder particles are formed by primary structural elements having mainly plate state (titanium and boron carbides and containing equiaxial inclusions with sizes of 5–200 nm. Chemical composition of specimens synthesized is uniform and contains 98.0 – 99.5% of main compound.Results of metal-protector and nanoparticles mixing have revealed that the increase of mixing duration from 2 to 6 hours assist to more uniform elements distribution through the pellet volume. Applying extrusion method specimens of alloying alloys have been produced and elements distribution in cross-section and longitudinal directions were determined.Analysis of research implemented has shown that distribution of active nanopowders in matrix is more uniform in extruded alloying alloys specimens compared to ones produced by methods of sintering or pressing of powder mixtures.

  13. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  14. Experimental study of the polymer powder film thickness uniformity produced by the corona discharge

    Science.gov (United States)

    Fazlyyyakhmatov, Marsel

    2017-01-01

    The results of an experimental study of the polymer powder film thickness uniformity are presented. Polymer powder films are produced by the electrostatic field of corona discharge. Epoxy and epoxy-polyester powder films with thickness in the range of 30-120 microns are studied. Experimentally confirmed possibility of using these coatings as protective matching layer of piezoceramic transducers at frequencies of 0.5-15 MHz.

  15. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  16. Structural, microstructural and Mössbauer studies of nanocrystalline Fe100-x Alx powders elaborated by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Akkouche K.

    2012-06-01

    Full Text Available Nanocrystalline Fe100-xAlx powders (x= 25, 30, 34 and 40 at % were prepared by the mechanical alloying process using a vario-planetary high-energy ball mill for a milling time of 35 h. The formation and physical properties of the alloys were investigated as a function of Al content by means of X-ray diffraction, scanning electron microscopy (SEM, energy dispersive X-ray and Mössbauer spectroscopy. For all Fe100-xAlx samples, the complete formation of bcc phase was observed after 35 h of milling. As Al content increases, the lattice parameter increases, whereas the grain size decreases from 106 to 12 nm. The powder particle morphology for different compositions was observed by SEM. The Mössbauer spectra were adjusted with a singlet line and a sextet containing two components. The singlet was attributed to the formation of paramagnetic A2 disordered structure rich with Al. About the sextet, the first component indicated the formation of Fe clusters/ Fe-rich phases; however, the second component is characteristic of disordered ferromagnetic phase.

  17. The formation mechanism of mechanically alloyed Fe-20 at% Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, F., E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Otmani, A. [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Djekoun, A. [Laboratoire de Magnetisme et Spectroscopie des Solides, LM2S, Universite Badji Mokhtar, BP 12 Annaba 23000 (Algeria); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans (France)

    2013-01-15

    The formation mechanism of the mechanically alloyed Fe-20 at% Al, from elemental Fe and Al powders, has been investigated. The experimental results indicate the formation of a nanocrystalline bcc {alpha}-Fe(Al) solid solution with a lattice parameter close to a{sub {alpha}-Fe(Al)}=0.2890 nm, where each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere. The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Aluminum particles undergo an important refinement to the nanometer scale and then they stick on Fe particles of large sizes. A large number of clear Al/Fe interface areas were generated. The short diffusion path and the presence of high concentration of defects accelerated the solid state reaction. - Highlights: Black-Right-Pointing-Pointer A nanocrystalline bcc {alpha}-Fe(Al) solid solution is formed from elemental Fe and Al powders. Black-Right-Pointing-Pointer The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Black-Right-Pointing-Pointer Each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere.

  18. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  19. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  20. Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shaobo; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Peng, Hui; Zhang, Hu

    2016-04-06

    Atomized, pre-alloyed Al-8.5Fe-1.3V-1.7Si (wt%) powder was used to fabricate solid components by electron beam melting (EBM). The residual porosity, chemical composition, microstructure and mechanical properties have been investigated. Results show that the relative density of as-built alloy under the optimized processing parameters was 98.2%. Compare to the initial alloy powder, the EBM parts demonstrated a restricted aluminum loss (~1 wt%) and a quite low oxygen pickup. The microstructure of the deposits was non-uniform. The fusion zone and heat affected zone exhibited a large number of fine spherical Al{sub 12}(Fe,V){sub 3}Si particles (30–110 nm) distributed uniformly in the α-Al matrix. Some coarser Fe- and V-riched rectangle-like Al{sub m}Fe phase (m=4.0–4.4) with 100–400 nm in size was precipitated in the melting boundary zone. The microhardness of the EBM samples was 153 HV in average. The average ultimate tensile strength (UTS) reached 438 MPa with the elongation of 12%. A ductile fracture mode of the tensile specimens was also revealed.

  1. The Effect of Heat Treatments on Alloying of Pre-mixed Al + 4.5 wt. % Cu Powders

    Directory of Open Access Journals (Sweden)

    Kübra KÖPRÜLÜ

    2018-06-01

    Full Text Available In this study, 4.5 wt. % Cu powder was added to Al powder and mixed for 45 minutes to produce premixed metal powders. Premixed powders were compacted by cold pressing at 20 MPa. After that these samples were pressed at 500℃ under 200 MPa for 30 minutes by hot pressed method. Hot pressed block samples were subjected to diffusion annealing at 540 ℃ for 2, 4, 8, 16, 32 hours. These samples, produced by powder metallurgy, are used at metallographic and microscopic researches to investigate the diffusion process. During the diffusion annealing, it was determined that significant amount of copper powder particles was dissolved in the Al matrix by diffusion. Diffusion annealing was followed by aging heat treatment, characterized by metallographic and mechanical tests. According to the increasing the annealing time, the homogeneity of the chemical composition is not provided, however the increasing of the heat treatment (T6 capability of the produced parts, and partial porosity which is believed to be due to atomic diffusion, have been observed. Moreover, in the XRD analyses, it was determined that the phases of -Al,  and  were formed in the microstructure.

  2. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  3. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  4. Set up of Uranium-Molybdenum powder production (HMD process)

    International Nuclear Information System (INIS)

    Lopez, Marisol; Pasqualini, Enrique E.; Gonzalez, Alfredo G.

    2003-01-01

    Powder metallurgy offers different alternatives for the production of Uranium-Molybdenum (UMo) alloy powder in sizes smaller than 150 microns. This powder is intended to be used as a dispersion fuel in an aluminum matrix for research, testing and radioisotopes production reactors (MTR). A particular process of massive hydriding the UMo alloy in gamma phase has been developed. This work describes the final adjustments of process variables to obtain UMo powder by hydriding-milling-de hydriding (HMD) and its capability for industrial scaling up. (author)

  5. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    International Nuclear Information System (INIS)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa

    2011-01-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the α and γ phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  6. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil)

    2011-07-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the {alpha} and {gamma} phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  7. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  8. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  9. Melt-drop technique for the production of high-purity metal powder

    International Nuclear Information System (INIS)

    Aldinger, F.; Linck, E.; Claussen, N.

    1977-01-01

    The production of high-purity powders of metals and alloys such as beryllium, titanium alloys, or superalloys is a problem. Oxidation of these materials cannot be avoided. Oxidation occurs in inert gases and even in reducing atmospheres when any gas impurities are present. Therefore, the powder production of these materials has to be performed either in high vacuum or at least in a static atmosphere of inert gas purified immediately before coming into contact with the disintegrating material. These requirements are very well met by the melt-drop technique presented in this paper, especially for coarse powders which must not necessarily be cold-workable. This is true, for example, for superalloys where high-temperature applications require large grain sizes; or in titanium alloys because the final microstructure will be achieved by a thermomechanical treatment. In the case of beryllium and beryllium alloys, where grain sizes <5 μm are desired, further milling is necessary. But the melt-drop technique offers a simple and clean method directly from the purifying process of vacuum melting. In melt-drop processes a liquid metal flows through a nozzle at the bottom of a crucible or the melt is just poured through a sieve. The theory of disintegration of a liquid jet into droplets, dates back to the 19th century. More recent investigations attempted to produce uniformly sized droplets by applying a capillary wave of given wave length to the jet. But this has been done only with non-metallic materials. Evidence is presented to prove the theory and show that this concept is applicable to the production of metal powders with controlled particle size

  10. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.; Grant, W.A.; Wohlenberg, P.; Hansen, P.; Chadderton, L.T.

    1978-01-01

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy + and P + ions at doses between 10 13 - 10 17 ions/cm 2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  11. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    Science.gov (United States)

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination

    International Nuclear Information System (INIS)

    Bhattacharya, Prajina; Bellon, Pascal; Averback, Robert S.; Hales, Stephen J.

    2004-01-01

    High-energy ball milling was employed to produce nanocrystalline Ti-Al powders. As sticking of the powders can be sufficiently severe to result in a near zero yield, emphasis was placed on varying milling conditions so as to increase the yield, while avoiding contamination of the powders. The effects of milling parameters such as milling tools, initial state of the powders and addition of process control agents (PCA's) were investigated. Cyclohexane, stearic acid and titanium hydride were used as PCA's. Milling was conducted either in a Cr-steel vial with C-steel balls, or in a tungsten carbide (WC) vial with WC balls, using either elemental or pre-alloyed powders. Powder samples were characterized using X-ray diffraction, scanning and transmission electron microscopy. In the absence of PCA's mechanical alloying in a WC vial and attrition milling in a Cr-steel vial were shown to lead to satisfactory yields, about 65-80%, without inducing any significant contamination of the powders. The results suggest that sticking of the powders on to the milling tools is correlated with the phase evolution occurring in these powders during milling

  13. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  14. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  15. New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process

    Science.gov (United States)

    Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo

    2013-03-01

    This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.

  16. Microstructure, mechanical and corrosion properties of biodegradable powder metallourgical Fe-2 wt% X (X = Pd, Ag and C) alloys

    Czech Academy of Sciences Publication Activity Database

    Čapek, Jaroslav; Stehlíková, K.; Michalcová, A.; Msallamová, Š.; Vojtěch, J.

    2016-01-01

    Roč. 181, Sep (2016), 501–511 ISSN 0254-0584 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : biomaterials * powder metallurgy * alloys * electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.084, year: 2016

  17. Vacuum hot pressing of titanium-alloy powders

    International Nuclear Information System (INIS)

    Malik, R.K.

    1975-01-01

    Full or nearly full dense products of wrought-metal properties have been obtained by vacuum hot pressing (VHP) of several prealloyed Ti--6Al--4V powders including hydride, hydride/dehydride, and rotating electrode process (REP) spherical powder. The properties of billets VHP from Ti--6Al--4V hydride powder and from hydride/dehydride powders have been shown to be equivalent. The REP spherical powder billets processed by VHP or by hot isostatic pressing (HIP) resulted in equivalent tensile properties. The potential of VHP for fabrication of near net aircraft parts such as complex fittings and engine disks offers considerable cost savings due to reduced material and machining requirements

  18. XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route

    Science.gov (United States)

    Gil, E.; Cortés, J.; Iturriza, I.; Ordás, N.

    2018-01-01

    An innovative powder metallurgy route to produce ODS FS, named STARS, has succeeded in atomizing steel powders containing the oxide formers (Y and Ti) and, hence, avoids the mechanical alloying (MA) step to dissolve Y in the matrix. A metastable oxide layer forms at the surface of atomized powders and dissociates during HIP consolidation at high temperatures, leading to precipitation of more stable Y-Ti-O nanoparticles.

  19. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  20. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  1. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  2. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  3. Advanced composite alloys for constructional parts of robots

    Science.gov (United States)

    Issin, D. K.; Zholdubayeva, Zh D.; Neshina, Y. G.; Alkina, A. D.; Khuangan, N.; Rahimova, G. M.

    2018-05-01

    In recent years all over the world special attention has been paid to the development and implementation of nanostructured materials possessing unique properties and opening fascinating prospects for the development of technical progress in various fields of human activities. A special place can be given to the development of service robots, the market of which is actively developing. There is problem associated mainly with the lack of heat-strengthened alloys which consists in low thermal stability of the alloy properties under the conditions of elevated variable temperatures and loads. The article presents studies to assess the effect of composition, the amounts of refractory nanoscale particles and methods for their introduction into the melt on the structure and properties in nanostructured composite aluminum alloys. The powders of metals, alloys, as well as silicon carbide and aluminum oxide were used to produce the nanostructured powder composite materials. As a result of the research, NPCM compositions containing micro-size particles of transition metals that are carriers of nanosized reinforcing particles and initiators of the formation of an intermetallide of endogenous origin in a melt.

  4. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

    International Nuclear Information System (INIS)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.

    1996-01-01

    Microstructure of the bonding zones (BZs) between laser-clad Ni-alloy-based composite coatings and steel substrates was studied by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. Observations indicate that for pure Ni-alloy coating the laser parameters selected for good interface fusion have no effect on the microstructure of the BZ except for its thickness. However, the addition of ceramic particles (TiN, SiC, or ZrO 2 ) to the Ni alloy varies the compositional or constitutional undercooling of the melt near the solid/liquid interface and consequently leads to the observed changes of microstructure of the BZs. For TiN/Ni-alloy coating the morphology of γ-Ni solid solution in the BZ changes from dendritic to planar form with increasing scanning speed. A colony structure of eutectic is found in the BZ of SiC/Ni-alloy coating in which complete dissolution of SiC particles takes place during laser cladding. The immiscible melting of ZrO 2 and Ni-alloy powders induces the stratification of ZrO 2 /Ni-alloy coating which consists of a pure ZrO 2 layer fin the upper region and a BZ composed mainly of γ-Ni dendrites adjacent to the substrate. All the BZs studied in this investigation have good metallurgical characteristics between the coatings and the substrates

  5. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  6. Microstructure characteristic for high temperature deformation of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy

    International Nuclear Information System (INIS)

    Zhang, Dan-yang; Li, Hui-zhong; Liang, Xiao-peng; Wei, Zhong-wei; Liu, Yong

    2014-01-01

    Highlights: • With temperature increasing and strain rate decreasing, the β phase decreases. • With temperature increasing and strain rate decreasing, DRX grains increase. • The high temperature deformation mechanism of TiAl alloy was clearly. - Abstract: Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10 −3 s −1 to 1 s −1 . Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae

  7. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  8. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  9. Microstructural characterisation of Ni75Al25 and Ni31.5Al68.5 powder particles produced by gas atomisation

    International Nuclear Information System (INIS)

    García-Escorial, A.; Lieblich, M.

    2014-01-01

    Highlight: ► Successful production of gas atomised Ni75Al25 and Ni31.5Al68.5 powder particles. ► Characterization of the as-solidified microstructure of 75 Al 25 and Ni 31.5 Al 68.5 at.% powder particles below 100 μm in size have been studied. The gas atomised Ni 75 Al 25 powder particles are mainly spherical. The solidification of this alloy is very fast, and its microstructure consists of a dendrite and lamellar structure of partially ordered γ-(Ni), γ′-Ni 3 Al L1 2 phase, and β-NiAl phase. The order increases with the powder particle size. The gas atomised Ni 31.5 Al 68.5 powder particles are also spherical in shape. The microstructure consists of Ni 2 Al 3 dendrites with interdendritic peritectic NiAl 3 and eutectic NiAl 3 + α-Al. The amount of the Ni 2 Al 3 increases as the cooling rate increases. NiAl phase is absent in the gas atomised Ni 31.5 Al 68.5 powder

  10. Preparation, Characterization and application of Alumina Powder Produced by advanced Preparation Techniques

    International Nuclear Information System (INIS)

    Khalil, T.; Abou El Nour, F.; Bossert, J.; Ashor, A.H.

    2000-01-01

    Aluminum oxide powders were prepared by advanced chemical techniques. The morphology of the produced powders were examined using scanning electron microscopy (SEM). Surface characteristics of the powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K, through the use of nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer-Emett-Teller (BET) equation. The total surface area, total pore volume and pore radius of the powders were calculated through the construction of the plots relating the amount of nitrogen gas adsorbed V 1 and the thickness of the adsorbed layer t(V 1 -t plots). The thermal behaviour of the powders were studied with the help of differential thermal analysis (DTA) and thermogravimetry (TG). Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact powders after isostatic pressing was evaluated using dilatometry. The sintering temperature of the studied samples were also determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the compacts was investigated

  11. Fine crystalline powders. Analysis of scientific and technical literature

    International Nuclear Information System (INIS)

    Denisenko, Eh.T.; Kulik, O.P.; Eremina, T.V.

    1983-01-01

    The state of development and studies of fine crystalline powders for recent five years is reviewed in the paper. Based on data available in literature, the most significant methods for fine metal and alloy powder production are considered and physicochemical properties of ultrafine particles are discussed from the standpoint of their interrelation with promising techniques for powder production. It is stated that the most important feature of ultrafine powder production technique at the present stage is a transition from the stage of data accumulation to that of controlled production of ultrafine structures of various metals and alloys under controllable conditions

  12. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  13. Hydrogen solubility in FLiNaK mixed with titanium powder

    International Nuclear Information System (INIS)

    Yagi, Juro; Sagara, Akio; Watanabe, Takashi; Tanaka, Teruya; Takayama, Sadatsugu; Muroga, Takeo

    2015-01-01

    Highlights: • The hydrogen solubility in a FLiNaK mixed with Ti powder was investigated. • A significant increase in hydrogen solubility was observed. • Controlling the purity of the molten salt was found to be one of the key issues. • A vanadium alloy would be compatible with the Ti powder/molten salt mixture. - Abstract: The hydrogen solubility in a FLiNaK molten salt mixed with Ti powder was investigated. A hydrogen-soluble metal powder mixed with a molten salt can increase the effective hydrogen solubility of the molten salt, which is currently a major disadvantage of molten salts. A significant increase in hydrogen solubility was observed, even with a mass fraction of Ti powder of only 0.1 wt%. The increase of hydrogen solubility was so large that a vanadium alloy would be compatible with the Ti powder/molten salt mixture, unlike typical molten salts that result in an unacceptably large tritium inventory in the vanadium alloy. In addition, contamination of the Ti powder by oxidation suppressed the hydrogen uptake and release capability. Controlling the purity of the molten salt was found to be one of the key issues for the metal powder mixture concept.

  14. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  15. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  16. Development of a Novel, Bicombinatorial Approach to Alloy Development, and Application to Rapid Screening of Creep Resistant Titanium Alloys

    Science.gov (United States)

    Martin, Brian

    Combinatorial approaches have proven useful for rapid alloy fabrication and optimization. A new method of producing controlled isothermal gradients using the Gleeble Thermomechanical simulator has been developed, and demonstrated on the metastable beta-Ti alloy beta-21S, achieving a thermal gradient of 525-700 °C. This thermal gradient method has subsequently been coupled with existing combinatorial methods of producing composition gradients using the LENS(TM) additive manufacturing system, through the use of elemental blended powders. This has been demonstrated with a binary Ti-(0-15) wt% Cr build, which has subsequently been characterized with optical and electron microscopy, with special attention to the precipitate of TiCr2 Laves phases. The TiCr2 phase has been explored for its high temperature mechanical properties in a new oxidation resistant beta-Ti alloy, which serves as a demonstration of the new bicombinatorial methods developed as applied to a multicomponent alloy system.

  17. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Microstructural Evolution during Pressureless Sintering of Blended Elemental Ti-Al-V-Fe Titanium Alloys from Fine Hydrogenated-Dehydrogenated Titanium Powder

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-07-01

    Full Text Available A comprehensive study was conducted on microstructural evolution of sintered Ti-Al-V-Fe titanium alloys utilizing very fine hydrogenation-dehydrogenation (HDH titanium powder with a median particle size of 8.84 μm. Both micropores (5–15 μm and macropores (50–200 μm were identified in sintered titanium alloys. Spherical micropores were observed in Ti-6Al-4V sintered with fine Ti at the lowest temperature of 1150 °C. The addition of iron can help reduce microporosity and improve microstructural and compositional homogenization. A theoretical calculation of evaporation based on the Miedema model and Langmuir equation indicates that the evaporation of aluminum could be responsible for the formation of the macropores. Although reasonable densification was achieved at low sintering temperatures (93–96% relative density the samples had poor mechanical properties due mainly to the presence of the macroporosity and the high inherent oxygen content in the as-received fine powders.

  19. Coercivity enhancement in HDDR near-stoichiometric ternary Nd–Fe–B powders

    International Nuclear Information System (INIS)

    Wan, Fangming; Han, Jingzhi; Zhang, Yinfeng; Wang, Changsheng; Liu, Shunquan; Yang, Jinbo; Yang, Yingchang; Sun, Aizhi; Yang, Fuqiang; Song, Renbo

    2014-01-01

    Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. The coercivity of the powders was improved from 208.6 to 980.1 kA/m by the subsequent diffusion treatment using the Pr–Cu alloy. For comparison, Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 alloy, in which Pr and Cu elements were directly added into the original Nd–Fe–B alloy, was also treated by the same HDDR process and the coercivity was only 557.3 kA/m. Microstructural investigations showed that a large area of (Nd, Pr)-rich phases concentrated at triangle regions in the HDDR Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 powders, while the (Nd, Pr)-rich phases distributed uniformly in the diffusion treated powders. The uniform grain boundary layer can pin the motion of domain wall more effectively, resulting in a higher coercivity in diffusion treated HDDR Nd–Fe–B powders. - Highlights: • Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. • The coercivity of the powders was improved from 2.62 to 12.31 kOe by the diffusion of Pr–Cu alloy. • The uniform grain boundary layer leads to a higher coercivity in diffusion treated powders

  20. Tungsen--nickel--cobalt alloy and method of producing same

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Riley, R.E.

    1977-01-01

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing this tungsten--nickel--cobalt alloy is further described and comprises coating the tungsten particles with a nickel--cobalt alloy, pressing the coated particles into a compact shape, heating the compact in hydrogen to a temperature in the range of 1400 0 C and holding at this elevated temperature for a period of about 2 hours, increasing this elevated temperature to about 1500 0 C and holding for 1 hour at this temperature, cooling to about 1200 0 C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1 / 2 hour, and cooling the resulting alloy to room temperature in this argon atmosphere

  1. Process variables in the obtention of U-Mo powder by the hydriding-milling-dehydriding method (HMD process)

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.; Helzel Garcia, Javier; Lopez, Marisol

    2003-01-01

    In the next few years nuclear fuels based on uranium oxides, aluminides and silicides for MTR reactors will be replaced by the high density alloy uranium- 7% (w/w) molybdenum (U-7 Mo). Actually there is only one commercial supplier of this raw material that has to be provided as powder containing 20% enriched uranium ( 235 U). In the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA) at Buenos Aires was developed an alternative way of producing U-7 Mo powder in a production scale. Meanwhile CNEA is participating in the International Program (RERTR) for final qualification of this nuclear material. This new method of production consists in the hydriding of the alloy, milling the hydride to final size and dehydriding the powder. These results were achieved because a special technique was discovered for the massive hydriding of the U-7 Mo alloy. The production method is simple, requires conventional equipment and low investment. Argentine can have important comparative advantages for its production and exportation. A scale production plant is being planed. (author)

  2. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    International Nuclear Information System (INIS)

    Li Shufeng; Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi; Kojima, Akimichi; Kosaka, Yoshiharu; Yamamoto, Koji; Takahashi, Motoi

    2012-01-01

    Highlights: ► Alloying elements Ti and Sn are proposed as additives in 60/40 brass. ► Super-saturated Ti in powder creates high chemical potential for precipitation. ► Ti is readily segregated in primary particle boundaries in BS40–1.0Ti. ► Sn was proposed as an additive to inhibit segregation of Ti in BS40–1.0Ti. ► The introduction of Sn to BS40–1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40–1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40–1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40–0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn 3 Ti 5 in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40–0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40–0.6Sn1.0Ti sintered at 600 °C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40–1.0Ti brass.

  3. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Li Shufeng, E-mail: shufenglimail@gmail.com [Joining and Welding Research Institute, Osaka University (Japan); Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu metals Co. Ltd., 1892, OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer Ti is readily segregated in primary particle boundaries in BS40-1.0Ti. Black-Right-Pointing-Pointer Sn was proposed as an additive to inhibit segregation of Ti in BS40-1.0Ti. Black-Right-Pointing-Pointer The introduction of Sn to BS40-1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40-1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40-1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40-0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn{sub 3}Ti{sub 5} in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40-0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40-0.6Sn1.0Ti sintered at 600 Degree-Sign C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40-1.0Ti brass.

  4. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    Science.gov (United States)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  5. Thermal stability and creep behaviour of MgNiYCe-rich mischmetal alloys processed by a powder metallurgy route

    Czech Academy of Sciences Publication Activity Database

    Peréz, P.; Milička, Karel; Badia, J. M.; Garcés, G.; Antoranz, J. M.; Gonzáles, S.; Dobeš, Ferdinand; Adeva, P.

    289-292, - (2009), s. 127-136 ISSN 1012-0386. [DIMAT 2008, International Conference on Diffusion in Materials /7./. Lanzarote, Canary Islands, 28.10.2008-31.10.2008] Grant - others:Ministerio de Ciencia y Tecnologia (ES) MAT2006-11731-C02 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnesium alloys * powder metallurgy * microstructure * thermal stability * creep Subject RIV: JG - Metallurgy

  6. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  7. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  8. Evidence of magnetic dipolar interaction in micrometric powders of the Fe{sub 50}Mn{sub 10}Al{sub 40} system: Melted alloys

    Energy Technology Data Exchange (ETDEWEB)

    Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Zamora, L.E. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Tabares, J.A.; Piamba, J.F. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans Cedex 9 (France); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Spain); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain); Marco, J.F. [Instituto de Quimica Fisica Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-02-15

    Powders of melted disordered Fe{sub 50}Mn{sub 10}Al{sub 40} alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 {mu}m showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: Black-Right-Pointing-Pointer The effect of particle size in microsized powders of Fe{sub 50}Mn{sub 10}Al{sub 40} melted disordered alloy is studied. Black-Right-Pointing-Pointer Dipolar magnetic interaction between particles exists and this changes with the particle size. Black-Right-Pointing-Pointer For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. Black-Right-Pointing-Pointer RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  9. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-12-05

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  10. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-10-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  11. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Joguet, D. [Laboratoire d' Etudes et de Recherches sur les Matériaux, les Procédés et les Surfaces LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Robin, G. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Peltier, L. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Ecole Nationale Supérieure d' Arts et Métiers, F-57078 Metz (France); Laheurte, P. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France)

    2016-05-01

    Ti–Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti–Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti–26Nb ingot. - Highlights: • Biomimetic implants can be provided from additive manufacturing with Ti–Nb. • We made parts in a Ti–Nb alloy elaborated in situ from a mixture of elemental powders. • Process parameters have a significant impact on homogeneity and compactness. • Non-columnar elongated beta-grains are stacked with an orientation {001}<100 >. • Low Young's modulus is achieved by this texture.

  12. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  13. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    Science.gov (United States)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  14. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  15. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed

  16. Study of twinning behavior of powder metallurgy Ti-Si alloy by interrupted in-situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.X., E-mail: ye-xiaoxin@jwri.osaka-u.ac.jp [Joining and Welding Institute (JWRI), Osaka University (Japan); Imai, H.; Shen, J.H.; Chen, B. [Joining and Welding Institute (JWRI), Osaka University (Japan); Han, G.Q. [College of Materials Science and Engineering, Beijing University of Technology (China); Umeda, J.; Kondoh, K. [Joining and Welding Institute (JWRI), Osaka University (Japan)

    2017-01-02

    Twinning mechanism of powder metallurgy Ti-Si alloy was investigated by interrupted in-situ tensile tests. Extension twins {10−12}<10-1-1> in the fine-grained Ti-Si alloy were found in the uniform deformation period, but no twinning in the coarse pure Ti. Three deformation twinning nucleation mechanisms were proposed: i) local stress concentration by neighboured slip incompatibility, ii) slip/twin oriented relationship in the parent grain and iii) slip/twin transfer by high Luster-Morris oriented relationship. The interior back-stress state, grains rotation and dislocations pile-up drove the occurrence of detwinning phenomenon. Silicon-facilitation twinning verified the hypothesis that the substitutional Si solutes affected the core structures and thus the mobility of screw dislocations. Enhanced driving force and decreased energy barrier of nucleation in the micro/atomic scale were further proposed in the twinning activation. It was expected to deepen the understanding of twinning/detwinning behaviors and supply direct evidences building immature twinning mechanism. In-depth understanding about the relationship among the processing, mechanical properties and microstructure of Ti alloy was facilitated in the present work.

  17. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  18. Laser stereolithography by multilayer cladding of metal powders

    Science.gov (United States)

    Jendrzejewski, Rafal; Rabczuk, Grazyna T.; Zaremba, R.; Sliwinski, Gerard

    1998-07-01

    3D-structures obtained by means of laser cladding of the metal alloy powders: bronze B10 and stellite 6 and the process parameters are studied experimentally. The structures are made trace-on-trace by remelting of the metal powder injected into the focusing region of the 1.2 kW CO2 laser beam. For the powder and sample feeding rates of 8-22 g/min and 0.4-1.2 m/min, respectively, and the applied beam intensities not exceeding 2 X 105 W cm-2 the process is stable and regular traces connected via fusion zones are produced for each material. The thickness of these zones does not exceed several per cent of the layer height. The process results in the efficient formation of multilayer structures. From their geometry the effect of energy coupling and interaction parameters are deduced. Moreover, the microanalysis by means of SEM- and optical photographs of samples produced under different experimental conditions confirms the expected mechanical properties, low porosity and highly homogenous structure of the multilayers. In addition to the known material stellite 6 the bronze B10 is originally proposed for a rapid prototyping.

  19. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  20. Structure and properties of permeable fine-fibrous materials fabricated of powders

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, I M; Kostornov, A G; Kirichenko, O V; Guzhva, N S [AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya

    1982-09-01

    Effect of main structural characteristics of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter.

  1. Structure and properties of permeable fine-fibrous materials fabricated of powders

    International Nuclear Information System (INIS)

    Fedorchenko, I.M.; Kostornov, A.G.; Kirichenko, O.V.; Guzhva, N.S.

    1982-01-01

    Effect of main structural characteristicf of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter

  2. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  3. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  4. Giant magnetoresistive properties of FexAu100-x alloys produced by mechanical alloying

    International Nuclear Information System (INIS)

    Socolovsky, L.M.; Sanchez, F.H.; Shingu, P.H.

    2001-01-01

    The Fe x Au 100- x alloys were produced for the first time by mechanical alloying. Resistance of samples with iron concentrations of x=15, 20, 25, and 30 at% were measured at 77 K under an applied field of 14 kOe. A maximum in magnetoresistive ratio (Δρ/ρ) of 3.5% was obtained for Fe 25 Au 75 . Samples were annealed in order to enhance magnetoresistive properties. These samples exhibit larger ratios, primarily due to the elimination of defects. X-ray diffraction Moessbauer spectroscopy and magnetoresistance measurements were performed, in order to correlate bulk and hyperfine magnetic properties with crystalline structure. X-ray diffractograms show an FCC structure, with no evidence for a BCC one

  5. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  6. Low temperature study of micrometric powder of melted Fe50Mn10Al40 alloy

    International Nuclear Information System (INIS)

    Zamora, Ligia E.; Pérez Alcazar, G.A.; Tabares, J.A.; Romero, J.J.; Martinez, A.; Gonzalez, J.M.; Palomares, F.J.; Marco, J.F.

    2012-01-01

    Melted Fe 50 Mn 10 Al 40 alloy powder with particle size less than 40 μm was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Mössbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.

  7. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  8. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  9. Compacted and Sintered Microstructure Depending on Uranium Powder Size in Zr-U Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chang Gun; Jun, Hyun-Joon; Ju, Jung Hwan; Lee, Ho Jin; Lee, Chong-Tak; Kim, Hyung Lae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    In case of the uranium (U) and zirconium (Zr) powders which have been utilized for the production of a metallic fuel in the various nuclear applications, the homogenous distribution of U powders in the Zr-U pellet has influenced significantly on the nuclear fuel performance. The inhomogeneity in a powder process was changed by various intricate factors, e.g. powder size, shape, distribution and so on. Particularly, the U inhomogeneity in the Zr-U pellets occurs by segregation derived from the great gaps of densities between Zr and U during compaction of the mixed powders. In this study, the relationship between powder size and homogeneity was investigated by using the different-sized U powders. The microstructure in Zr-U pellets reveals more homogeneity when the weight ration of Zr and U powders are close to 1. In addition, homogeneous pellets which were produced by fine U powders have higher density because the homogeneity affects the alloying reaction during sintering and the densification behavior of pore induced by powder size.

  10. Producing tantalum or columbium powder

    International Nuclear Information System (INIS)

    Rerat, C.F.

    1979-01-01

    A process is described for the production of tantalum or columbium powder with a high yield within a desired range of particle sizes. A molten salt bath of a double salt comprising either an alkali metal tantalum fluoride or an alkali metal columbium fluoride and a relatively large amount of alkali metal halide diluent salt to act as a heat sink is initially maintained at a temperature a little above the liquidus temperature of the salt mixture. A liquid alkali metal at a comparatively low temperature is added to the continuously stirred bath at a high mass flow rate, and reduces the double salt, producing tantalum or columbium. The reaction is exothermic and causes the temperature to rise rapidly to a desired final reaction temperature within the range 760 to 1000 0 . The liquid alkali metal is thereafter fed at a high mass flow rate to complete the reaction quickly at the final reaction temperature. Forced cooling at a heat extraction rate not less than 42 kilojoules/min./kg. of double salt is used during at least a portion of the reaction cycle at a rate sufficient to maintain the final reaction temperature within a desired range. (author)

  11. Powder-Metallurgy Process And Product

    Science.gov (United States)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  12. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  13. Niobium-base superalloys via powder metallurgy technology

    International Nuclear Information System (INIS)

    Loria, E.A.

    1987-01-01

    This paper provides some insight into an area that has been neglected, namely the possibility of developing high-strength, niobium-base alloys by improved oxidation resistance via the consolidation of rapidly solidified powders. Powder metallurgy (P/M) is an attractive processing technique because of its flexibility and versatility, and it may provide the alloys with properties and workability not obtainable via metal casting. A critical review of both U.S. and Russian literature is presented along with suggestions on the most promising compositions and processing techniques available to meet these competing goals. Previous work on many niobium alloys reveals that long term properties are retained well above those obtained on nickel-base superalloys. Cast and wrought alloys extend specific strength beyond 1200 0 C (2200 0 F), but lack oxidation resistance. Remarkable oxidation resistance is obtained, however, on miniature castings of certain ternary alloys which are too brittle for any processing. A better understanding of the oxidation mechanism is necessary before the proper P/M (RST) approach is taken on compositions which could provide compatibility between the two competing goals through grain refinement and a homogeneous distribution of the contributory phases. Finally, ways to up-scale production of Nb powder are discussed, including thermodynamic feasibility for the direct reduction of NbCl/sub 5/ in a 1.5 MW plasma reactor

  14. In situ synthesis of Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin (China); Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology, IL (United States); Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-25

    Highlights: •Using zwitterionic surfactant to enhance the dispersion of the CNTs on the powder surface. •CNTs as carbon source decreased the formation temperature of Ti{sub 2}AlC. •Al{sub 2}O{sub 3} was generated in situ from the oxygen atoms introduced in the drying procedure. •Nanosized Ti{sub 3}Al was precipitated at 1250 °C and distribute in the TiAl matrix homogeneously. •Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite was synthesized in situ by sintering pre-alloy Ti–Al coated with CNTs. -- Abstract: Bulk Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were in situ synthesized by vacuum sintering mechanically alloyed Ti–50 at.% Al powders coated with carbon nanotubes (CNTs). The pre-alloyed Ti–50 at.% Al powder was obtained by ball milling Ti and Al powders. The multi-walled carbon nanotubes as the carbon resource were covered on the surface of the pre-alloyed powders by immersing them into a water solution containing the CNTs. A zwitterionic surfactant was used to enhance the dispersion of the CNTs on the powder surface. The samples were cold pressed and sintered in vacuum at temperatures from 950 to 1250 °C, respectively. The results show that the reaction of forming Ti{sub 2}AlC can be achieved below 950 °C, which is 150 °C lower than in the Ti–Al–TiC system and 250 °C lower than for the Ti–Al–C system due to the addition of CNTs. Additionally, the reinforcement of Al{sub 2}O{sub 3} particles was introduced in situ in Ti{sub 2}AlC/TiAl by the drying process and subsequent sintering of the composite powders. Dense Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were obtained by sintering at 1250 °C and exhibited a homogeneous distribution of Ti{sub 2}AlC, Al{sub 2}O{sub 3} and precipitated Ti{sub 3}Al particles and a resulting high hardness.

  15. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kreitcberg, Alena, E-mail: alena.kreitcberg.1@ens.etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Brailovski, Vladimir, E-mail: vladimir.brailovski@etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Turenne, Sylvain, E-mail: sylvain.turenne@polymtl.ca [École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Montreal, Quebec H3T 1J4 Canada (Canada)

    2017-03-24

    The effect of different heat treatments and hot isostatic pressing on the microstructure and mechanical properties of laser powder bed fusion IN625 alloy was studied. The heat treatments were: stress relief annealing, recrystallization annealing and low-temperature solution treatment. The resulting microstructure and crystallographic textures were studied using optical and scanning electron microscopy. The mechanical properties of the as-built and post-treated IN625 alloy were obtained after tensile testing at room temperature and at 760 °C (1400 °F), and compared to those of an annealed wrought alloy of the same composition.

  16. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants; Estudo das propriedades mecanicas e microestruturais de ligas a base de titanio-niobiozirconio processados com hidrogenio e metalurgia do po para utilizacao em implantes dentarios

    Energy Technology Data Exchange (ETDEWEB)

    Duvaizem, Jose Helio

    2009-07-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  17. Preparation of Al-Mg Alloy Electrodes by Using Powder Metallurgy and Their Application for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Wen-Nong Hsu

    2014-01-01

    Full Text Available The choice of an electrode is the most critical parameter for water electrolysis. In this study, powder metallurgy is used to prepare aluminum-magnesium (Al-Mg alloy electrodes. In addition to pure Mg and Al electrodes, five Al-Mg alloy electrodes composed of Al-Mg (10 wt%, Al-Mg (25 wt%, Al-Mg (50 wt%, and Al-Mg (75 wt% were prepared. In water electrolysis experiments, the pure Al electrode exhibited optimal electrolytic efficiency. However, the Al-Mg (25 wt% alloy was the most efficient when the anticorrosion effect and materials costs were considered. In this study, an ultrasonic field was applied to the electrolysis cell to improve its efficiency. The results revealed that the current increased by approximately 23.1% when placed in a 30 wt% KOH solution under the ultrasonic field. Electrochemical polarization impedance spectroscopy (EIS was employed to evaluate the effect of the ultrasonic field on the reduction of polarization resistance. The results showed that the concentration impedance in the 30 wt% KOH electrolyte decreased markedly by 44%–51% Ω.

  18. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  19. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Alijani, Fatemeh; Amini, Rasool; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2014-01-01

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  20. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  1. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  2. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  3. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    Science.gov (United States)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  4. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  5. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    Science.gov (United States)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  6. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available ),. 559-563. [2] T. Tomida, K. Nakata, S. Saji, T. Kubo, T, Formation of metal matrix composite layer on aluminium alloy with TiC-Cu powder by laser surface alloying process; Surface and Coatings Technology; vol. 142-144, 2001, 585-589. [3] L. A. B...

  7. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  8. Stability of gas atomized reactive powders through multiple step in-situ passivation

    Science.gov (United States)

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  9. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  10. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    Science.gov (United States)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  11. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  12. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Toman, Jakub; Stevens, Erica L.; Hughes, Eamonn T.; Krimer, Yuval L.; Chmielus, Markus

    2017-01-01

    In this study, we investigate the effect of powders resulting from different atomization methods on properties of binder jet printed and heat-treated samples. Air-melted gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet print samples for a detailed comparative study on microstructural evolution and mechanical properties. GA printed samples achieved higher sintering density (99.2%) than WA samples (95.0%) due to differences in powder morphology and chemistry. Grain sizes of GA and WA samples at their highest density were 89 ± 21 μm and 88 ± 26 μm, respectively. Mechanical tests were conducted on optimally sintered samples and sintered plus aged samples; aging further improved microstructure and mechanical properties. This study shows that microstructural evolution (densification, and carbide, oxide and intermetallic phase formation) is very different for GA and WA binder jet printed and heat-treated samples. This difference in microstructural evolution results in different mechanical properties with the superior sintered and aged GA specimen reaching a hardness of 327 ± 7 HV_0_._1, yield strength of 394 ± 15 MPa, and ultimate tensile strength of 718 ± 14 MPa which are higher than cast alloy 625 values.

  13. Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.

    Science.gov (United States)

    Hong, Min-Ho; Son, Jun Sik; Kwon, Tae-Yub

    2018-03-01

    The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 μm) was fabricated at a scan line spacing of 60 μm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

  14. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  15. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  16. Electroerosion micro- and nanopowders for the production of hard alloys

    Science.gov (United States)

    Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.

    2016-06-01

    The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.

  17. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  18. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  19. Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Herting, Gunilla; Latvala, Siiri; Elihn, Karine; Karlsson, Hanna L; Odnevall Wallinder, Inger

    2016-11-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, are identified and proven safe for humans and the environment. Therefore, differences in bioaccessibility in terms of released metals in synthetic biological fluids (different pH (1.5-7.4) and composition) that are relevant for different human exposure routes (inhalation, ingestion, and dermal contact) have been assessed for powder particles of an alloy containing high levels of nickel (Inconel 718, 57 wt% nickel). This powder is compared with the bioaccessibility of two nickel-containing stainless steel powders (AISI 316L, 10-12% nickel) and with powders representing their main pure alloy constituents: two nickel metal powders (100% nickel), two iron metal powders and two chromium metal powders. X-ray photoelectron spectroscopy, microscopy, light scattering, and nitrogen absorption were employed for the particle and surface oxide characterization. Atomic absorption spectroscopy was used to quantify released amounts of metals in solution. Cytotoxicity (Alamar blue assay) and DNA damage (comet assay) of the Inconel powder were assessed following exposure of the human lung cell line A549, as well as its ability to generate reactive oxygen species (DCFH-DA assay). Despite its high nickel content, the Inconel alloy powder did not release any significant amounts of metals and did not induce any toxic response. It is concluded, that this is related to the high surface passivity of the Inconel powder governed by its chromium-rich surface oxide. Read-across from the pure metal constituents is hence not recommended either for this or any other passive alloy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  1. Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing

    International Nuclear Information System (INIS)

    Azimi, Amin; Shokuhfar, Ali; Zolriasatein, Ashkan

    2014-01-01

    Nanostructured Al–7.8 wt% Zn–2.6 wt% Mg–2 wt% Cu–0.1 wt% Zr alloy was mechanically alloyed (MA) from elemental powders and consolidated by hot press technique. The effect of the milling time and hot pressing process on microstructure was investigated by means of X-ray diffraction measurements (XRD) and analytical and scanning electron microscopy (SEM). Furthermore mechanical properties of samples with different MA time as well as pure aluminum were investigated by microhardness and compression tests. The results show that an Al–Zn–Mg–Cu–Zr homogenous supersaturated solid solution with a crystallite size of 27 nm was obtained after 40 h of milling time. Microstructure refinement and morphological changes of powders from flake to spherical shape were observed by increasing milling time. Phase and microstructural characterization of high density bulk nanostructured samples revealed that increasing milling time up to 40 h leads to formation of MgZn 2 precipitation in the alloy matrix. With increasing milling time, density of the samples and crystalline size decrease. Significant enhancement of hardness and compressive strength is observed in the aluminum alloy by increasing milling time up to 40 h which is much higher than pure aluminum. Crystallite size refinement in pure aluminum samples from micro- to nanoscales resulted in 107% and 100% improvement in compressive strength and hardness, respectively. Furthermore the compressive strength and hardness of Al–Zn–Mg–Cu–Zr alloy nanostructured samples increased to 179% and 172%, respectively, compared to nanostructured pure Al, which was produced as reference specimen. 40 h of MA was the optimum case for preparing such an Al alloy and more milling up to 50 h led to deterioration of mechanical properties

  2. Leaching and heating process as alternative to produce fish protein powder from Kilka (Clupeonella cultiventris caspia

    Directory of Open Access Journals (Sweden)

    KAVEH RAHMANIFARAH

    2014-05-01

    Full Text Available Rahmanifarah K, Shabanpour B, Shaviklo AR, Aalami M. 2014. Leaching and heating process as alternative to produce fish protein powder from Kilka (Clupeonella cultiventris caspia. Nusantara Bioscience 6: 1-6. The effect of protein extraction procedures (leached mince and heated suspension on selected properties of fish protein powder (proximate composition, pH, color, density, viscosity, fat adsorption, emulsifying capacity, emulsifying stability, foaming capacity, foaming stability, WBC, protein solubility in water, hygroscopicity, Trichloroacetic acid (TCA-soluble peptides and free sulfhydryl groups was investigated. Results showed that Fish protein powder (FPP produced by leaching mince (LM have higher protein, moisture, ash, pH, L*, viscosity, emulsion capacity, emulsion stability, foam capacity, foam stability, water binding capacity (WBC, protein solubility, hygroscopicity, TCA soluble peptides and free sulfhydryl group content than heated suspension (HS (P0.05. Overall, it was observed that high temperature during heating of suspension in HS method makes possible protein denaturation and aggregation. Consequently, based on functional, chemical and physical properties, extraction of fish protein by leaching process was found to be suitable for the production of fish protein powder.

  3. Nanostructured hydroxyapatite powders produced by a flame-based technique

    Energy Technology Data Exchange (ETDEWEB)

    Trommer, R.M., E-mail: rafael_trommer@yahoo.com.br [Ceramic Materials Laboratory, av. Osvaldo Aranha 99/705, 90035190, Porto Alegre, RS (Brazil); Santos, L.A. [Biomaterials Laboratory, av. Bento Goncalves 9500, Campus do Vale Setor IV Predio 74 Sala 123, 91501970, Porto Alegre, RS (Brazil); Bergmann, C.P. [Ceramic Materials Laboratory, av. Osvaldo Aranha 99/705, 90035190, Porto Alegre, RS (Brazil)

    2009-08-01

    In this work we reported the production of hydroxyapatite (HA) powder, one of the most studied calcium phosphates in the bioceramics field, using a cost-effective apparatus, composed by three major components: the atomization device, the pilot and main flames and finally the powder collector system. Calcium acetate and ammonium phosphate, diluted in ethanol and water, were used as salts in the precursor solution. The Ca/P molar ratio in the precursor solution was 1.65, equivalent to biological hydroxyapatite. After its production and collection, HA powder was calcined at 600 deg. C for 2 h. X-ray diffraction analysis pointed to the formation of crystalline hydroxyapatite powders. Carbonate was identified in the powders by Fourier-transform infrared (FTIR) spectroscopy. Scanning electronic microscopy (SEM) showed that the powders were composed of spherical primary particles and secondary aggregates, with the morphology unchanged after calcination. By transmission electronic microscopy (TEM), it was observed that the crystallite size of the primary particles was 24.8 {+-} 5.8 nm, for the calcined powder. The specific surface area was 15.03 {+-} 6.4 and 26.50 {+-} 7.6 m{sup 2}/g, for the as-synthetized and calcined powder respectively.

  4. The Synthesis of Nanostructured WC-Based Hardmetals Using Mechanical Alloying and Their Direct Consolidation

    Directory of Open Access Journals (Sweden)

    N. Al-Aqeeli

    2014-01-01

    Full Text Available Tungsten carbide- (WC- based hardmetals or cemented carbides represent an important class of materials used in a wide range of industrial applications which primarily include cutting/drilling tools and wear resistant components. The introduction and processing of nanostructured WC-based cemented carbides and their subsequent consolidation to produce dense components have been the subject of several investigations. One of the attractive means of producing this class of materials is by mechanical alloying technique. However, one of the challenging issues in obtaining the right end-product is the possible loss of the nanocrystallite sizes due to the undesirable grain growth during powder sintering step. Many research groups have engaged in multiple projects aiming at exploring the right path of consolidating the nanostructured WC-based powders without substantially loosing the attained nanostructure. The present paper highlights some key issues related to powder synthesis and sintering of WC-based nanostructured materials using mechanical alloying. The path of directly consolidating the powders using nonconventional consolidation techniques will be addressed and some light will be shed on the advantageous use of such techniques. Cobalt-bonded hardmetals will be principally covered in this work along with an additional exposure of the use of other binders in the WC-based hardmetals.

  5. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  6. Obtaining beta phase in Ti through processing in high energy mill powders of Ti and Nb; Obtencao de fase beta no Ti atraves de processamento em moinho de alta energia de pos de Ti e Nb

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Mateus; Ferretto, Aline; Rocha, Marcio Roberto da; Arnt, Angela Coelho [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Departamento de Engenharia de Materiais; Milanez, Alexandre [Faculdade SATC (FASATC), Criciuma, SC (Brazil). Departamento de Engenharia Mecanica; Schaeffer, Lirio [Universidade Federal do Rio Grande do Sul (LdTM/UFRGS), RS (Brazil). Lab. de Transformacao Mecanica

    2014-07-01

    An orthopedic implant, ideal, must meet the requirements of biocompatibility, have good mechanical properties among others. Titanium and Niobium exhibit biocompatibility and the β-Ti phase relationships have the highest strength / weight among all titanium alloys, presenting lower values of elastic modulus. The alloy has mechanically produced specific microstructural characteristics and improved mechanical properties compared with conventional powder metallurgy. In this study, a titanium alloy with different additions of niobium was used. The metal powders were mixed via mechanical alloy in high energy mill (attritor). The powder samples were analyzed by X-ray diffraction (X-RD) and property held by adhesive wear testing with a Pin-on-Disk. The present study revealed that through the high-energy milling is possible the atomic interaction between Ti and Nb particles and the mechanical properties are affected by the concentration of Nb. (author)

  7. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    Science.gov (United States)

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  8. 78 FR 18877 - Defense Federal Acquisition Regulation Supplement; Specialty Metals-Definition of “Produce...

    Science.gov (United States)

    2013-03-28

    ..., research and development necessary to meet the needs of the U.S. military, thereby reducing the possibility... metal powders produced through atomization would not be sufficient to confer domestic origin on the... preceding the definition headings of ``Alloy''; ``Assembly''; ``Commercial derivative military article...

  9. Exploring Oven-drying Technique in Producing Pineapple Powder

    OpenAIRE

    Cyril John A. Domingo; Wilma M. De Vera; Raquel C. Pambid

    2017-01-01

    Pineapple puree and juice of 11 to 12 °Brix were used to obtain pineapple powder using oven-drying technique. Addition of maltodextrin in treatments 2 and 4 yielded good quality powder, however addition of sugar and maltodextrin in treatments 1 and 3 resulted to sticky product which was processed to pineapple leather. Treatment 2 composed of pineapple puree and maltodextrin resulted to significantly higher powder recovery compared with treatment 4 which composed of pineapple juice...

  10. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B/B4c Systems Used for Aluminum Alloy Modification

    Science.gov (United States)

    Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.

    2018-03-01

    The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

  11. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  12. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  13. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  14. Magnetic characterization of nanocrystalline Fe80−xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-01-01

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe 80−x Cr x Co 20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively.

  15. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa Inc., Pittsburgh, PA (United States)

    2017-06-30

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.

  16. Influence of dislocations in solid-phase crystal lattices on structure and properties of an WC-9Co alloy

    International Nuclear Information System (INIS)

    Grewe, H.

    1976-01-01

    After theoretical considerations about evaluation of degree of dislocation concentration in crystal lattices two tungsten-carbide-powders are characterized by chemical reaction behaviour. The hard metal grades produced from the two carbide powders are tested by material and tool life investigation. The tungsten carbide powder with lower level of dislocation-concentration leads to a hardmetall-alloy with an equal microstructure and with favourable properties, especially with a good toughness and with an interesting tool life. (orig.) [de

  17. Progress of HDDR NdFeB powders modulated by the diffusion of low melting point elements and their alloys

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available The hydrogenation-disproportionation-desorption-recombination (HDDR process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application of HDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.

  18. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  19. Proceedings of the 1985 annual powder metallurgy conference

    International Nuclear Information System (INIS)

    Sanderow, H.I.; Giebelhausen, W.L.; Kulkarni, K.M.

    1985-01-01

    This book presents the papers given at a conference on powder metallurgy. Topics considered at the conference included yttrium oxide dispersion strengthened nickel alloy made by mechanical alloying, the optimal design of regression of the additive chromium oxide in aluminium oxide-molybdenum cermets, particle size distribution effects on the sintering of spherical tungsten, and heavy metal alloys containing 30% to 90% tungsten

  20. Modeling of wear behavior of Al/B_4C composites produced by powder metallurgy

    International Nuclear Information System (INIS)

    Sahin, Ismail; Bektas, Asli; Guel, Ferhat; Cinci, Hanifi

    2017-01-01

    Wear characteristics of composites, Al matrix reinforced with B_4C particles percentages of 5, 10,15 and 20 produced by the powder metallurgy method were studied in this study. For this purpose, a mixture of Al and B_4C powders were pressed under 650 MPa pressure and then sintered at 635 C. The analysis of hardness, density and microstructure was performed. The produced samples were worn using a pin-on-disk abrasion device under 10, 20 and 30 N load through 500, 800 and 1200 mesh SiC abrasive papers. The obtained wear values were implemented in an artificial neural network (ANN) model having three inputs and one output using feed forward backpropagation Levenberg-Marquardt algorithm. Thus, the optimum wear conditions and hardness values were determined.