WorldWideScience

Sample records for alloy electrochemical behavior

  1. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  2. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  3. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  4. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution

    Science.gov (United States)

    Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.

    2018-03-01

    Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

  5. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses

    International Nuclear Information System (INIS)

    Cremasco, Alessandra; Osorio, Wislei R.; Freire, Celia M.A.; Garcia, Amauri; Caram, Rubens

    2008-01-01

    Since the 1980s, the titanium alloys show attractive properties for biomedical applications where the most important factors are, firstly, biocompatibility, corrosion and mechanical resistances, low modulus of elasticity, very good strength to weight ratio, reasonable formability and osseointegration. The aim of this study was to investigate the effects of two different heat treatments; furnace cooling and water quenching, on the general electrochemical corrosion resistance of Ti-35 wt%Nb alloy samples immersed in a 0.9% NaCl (0.15 mol L -1 ) solution at 25 deg. C and neutral pH range. The samples were obtained using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The microstructural pattern was examined by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In order to evaluate the electrochemical corrosion behavior of such Ti-Nb alloy samples, corrosion tests were performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. Analyses of an equivalent circuit have also been used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that water quenching provides a microstructural pattern consisting of an alpha-martensite acicular phase which decreases the material electrochemical performance due to the stress-induced martensitic transformation

  6. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Cremasco, Alessandra [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)], E-mail: wislei@fem.unicamp.br; Freire, Celia M.A.; Garcia, Amauri; Caram, Rubens [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-05-30

    Since the 1980s, the titanium alloys show attractive properties for biomedical applications where the most important factors are, firstly, biocompatibility, corrosion and mechanical resistances, low modulus of elasticity, very good strength to weight ratio, reasonable formability and osseointegration. The aim of this study was to investigate the effects of two different heat treatments; furnace cooling and water quenching, on the general electrochemical corrosion resistance of Ti-35 wt%Nb alloy samples immersed in a 0.9% NaCl (0.15 mol L{sup -1}) solution at 25 deg. C and neutral pH range. The samples were obtained using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The microstructural pattern was examined by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In order to evaluate the electrochemical corrosion behavior of such Ti-Nb alloy samples, corrosion tests were performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. Analyses of an equivalent circuit have also been used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that water quenching provides a microstructural pattern consisting of an alpha-martensite acicular phase which decreases the material electrochemical performance due to the stress-induced martensitic transformation.

  7. An electrochemical investigation of the corrosion behavior of aluminum alloys in chloride containing solutions

    International Nuclear Information System (INIS)

    Campos Filho, Jorge Eustaquio de

    2005-01-01

    Aluminum alloys have been used as cladding materials for nuclear fuel in research reactors due to its corrosion resistance. Aluminum owes its good corrosion resistance to a protective barrier oxide film formed and strongly bonded to its surface. In pool type TRIGA IPR-R1 reactor, located at Centro de Desenvolvimento da Tecnologia Nuclear in Belo Horizonte, previous immersion coupon tests revealed that aluminum alloys suffer from pitting corrosion, in spite of high quality of water control. Corrosion attack is initiated by breaking the protective oxide film on aluminum alloy surface. Chloride ions can break this oxide film and stimulate metal dissolution. In this study the aluminum alloys 1050, 5052 and 6061 were used to evaluate their corrosion behavior in chloride containing solutions. The electrochemical techniques used were potentiodynamic anodic polarization and cyclic polarization. Results showed that aluminum alloys 5052 and 6061 present similar corrosion resistance in low chloride solutions (0,1 ppm NaCl) and in reactor water but both alloys are less resistant in high chloride solution (1 ppm NaCl). Aluminum alloy 1050 presented similar behavior in the three electrolytes used, regarding to pitting corrosion, indicating that the concentration of the chloride ions was not the only variable to influence its corrosion susceptibility. (author)

  8. Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders

    International Nuclear Information System (INIS)

    Osório, Wislei R.; Spinelli, José E.; Afonso, Conrado R.M.; Peixoto, Leandro C.; Garcia, Amauri

    2012-01-01

    Highlights: ► Spray-formed Al–Ni alloy powders have cellular microstructures. ► Porosity has no deleterious effect on the electrochemical corrosion behavior. ► Better pitting corrosion resistance is related to a fine powder microstructure. ► A coarse microstructure can be related to better general corrosion resistance. - Abstract: This is a study describing the effects of microstructure features of spray-formed Al–Ni alloy powders on the electrochemical corrosion resistance. Two different spray-formed powders were produced using nitrogen (N 2 ) gas flow (4 and 8 bar were used). Electrochemical impedance spectroscopy (EIS), potentiodynamic anodic polarization techniques and an equivalent circuit analysis were used to evaluate the electrochemical behavior in a dilute 0.05 M NaCl solution at room temperature. It was found that a N 2 gas pressure of 8 bar resulted in a microstructure characterized by a high fraction of small powders and fine cell spacings, having improved pitting potential but higher corrosion current density when compared with the corresponding results of a coarser microstructure array obtained under a lower pressure. A favorable effect in terms of current density and oxide protective film formation was shown to be associated with the coarser microstructure, however, its pitting potential was found to be lower than that of the finer microstructure.

  9. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  10. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, G.S.; Chen, K.H.; Fang, H.C.; Chen, S.Y.; Chao, H. [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2011-01-15

    By weight loss, potentiodynamic polarization, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques complemented by optical and scanning electron microscopy observations, the effect of recrystallization on the corrosion, and electrochemical behavior of 7150 Al alloy was studied. The results indicated that the high recrystallization fraction 7150-1 was worse than the low recrystallization fraction 7150-2 on corrosion resistance. The analysis of EIS indicated that 7150-1 exhibited obvious pitting corrosion at 5 h immersion time, whereas 7150-2 showed no obvious pitting corrosion even at 33 h. The corrosion route developed along the grain boundary of recrystallization grains, not along the grain boundary of unrecrystallization grains. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy.

  12. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    International Nuclear Information System (INIS)

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy

  13. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2009-01-01

    cyclic voltammetry, galvanostatic and potentiostatic pulse method. Cyclic voltammetry gave useful data on potential regions where ferrate(VI formation is to be expected in the course of transpassive anodic oxidation of iron and some of its alloys, and its stability in the electrolytes of different composition. In addition, step-wise oxidation of iron in anodic oxidation is confirmed. Galvanostatic pulse experiments confirmed the character of successive anodic oxidation of iron, as the three-step process of ferrate(VI formation is clearly observed. In the cathodic pulse complex reduction of ferrate (VI, firstly to Fe(III species and then to mixed Fe(II and Fe(III compounds and finally to elementary iron is confirmed. The significant difference between the mechanisms of anodic oxidation of pure iron and low carbon steel at the one side and electrical ferrous-silicon steel at the other is observed. The influence of material chemical composition on the electrochemical behavior of electrode in course of anodic polarization in strong alkaline solutions is discussed in terms of composition of passivating layer formed on the electrode. On the base of the experimental data, efficient synthesis of ferrate(VI can be expected in the region of anodic potentials between + 0,55 and + 0,75 V against Hg|HgO reference electrode in the same solution, depending on the anode materials composition, in the alkaline electrolytes concentration between 10 and 15 M.

  14. Microstructures and Electrochemical Behavior of Ti-Mo Alloys for Biomaterials

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2015-01-01

    Full Text Available The Ti alloy with 7 wt% Mo revealed a microstructure that contained only the orthorhombic α′′ phase of a fine acicular martensitic structure. The corrosion resistance of the Ti-Mo alloys increased as the Mo content increased. Based on the results obtained from the polarization curve and electrochemical impedance, the Ti-Mo alloys were shown to be corrosion resistant because of the passive films formed on their surfaces. No ion release was detected in SBF (simulated body fluid solution, while Ti ions were released in 0.1% lactic acid ranging from 0.05 to 0.12 μg/mL for the Ti-Mo alloys. In vitro tests showed that MC3T3-E1 cell proliferation on Ti-7 wt% Mo alloy was rather active compared to other Ti-Mo alloys and commercial-grade pure Ti.

  15. Electrochemical behavior of anodized AA6063-T6 alloys affected by matrix structures

    International Nuclear Information System (INIS)

    Huang, Yung-Sen; Shih, Teng-Shih; Wu, Chen-En

    2013-01-01

    Highlights: ► Deformation after solution treatment introduced Al matrix to have deformation bands and few Si particles. ► Dislocations remained in the matrix lift up field potential and produce AlOOH oxide in the AAO film. ► The silicon-containing particles were found to trap in the AAO film. ► The silicon particles and the Al(OOH) oxide is significantly to influence the electrochemical behavior of AAO films. - Abstract: AA 6063 alloys were cold-rolled (CR) either before or after solution treatment (S) and then different samples were artificially aged (T6) to obtain different samples (CRST6 and SCRT6). The highest dislocation density was observed in the SCRT6 sample which also showed the lowest particle count among the three samples; ST6, CRST6 and SCRT6. Subsequently, all samples were anodized in a 15 wt% sulfuric acid solution for different time spans to obtain anodic aluminum oxide (AAO) films. The anodized samples were further analyzed with X-ray Photoelectron Spectroscopy (XPS) analysis. We determined that the constituent phases in the AAO film were composed of hydrated amorphous alumina, hydrated oxide (Al(OH) 3 ) and oxyhydroxide (AlOOH) phases together with some silicon-containing particles trapped in the films on all samples. In the electrochemical test, the silicon-containing particles and hydrated Al(OH) 3 oxide that existed at the electrolyte/film (e/f) interface were found to inversely influence the corrosion resistance of the anodized samples.

  16. Effect of passivation with CO on the electrochemical corrosion behavior of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Dai Lianxin; Zou Juesheng; Bai Chaomao; Wang Xiaolin

    2000-01-01

    Electrochemical studies are performed to investigate the corrosion resistance of uranium-niobium alloy before and after passivated with carbon monoxide. Using X-ray photoelectron spectroscopy (XPS), the surface composition of specimen passivated with carbon monoxide is determined. The corrosion resistance of uranium-niobium alloy is well improved because the passive layer (UC/UC x O y + Nb 2 O 5 + UO 2 ) on surface serves as passive film and increases the anodic impedance after the specimen is passivated with carbon monoxide

  17. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments

    International Nuclear Information System (INIS)

    Chen, Jian; Asmussen, R. Matthew; Zagidulin, Dmitrij; Noël, James J.; Shoesmith, David W.

    2013-01-01

    Highlights: ► We investigated the corrosion behavior of a metal alloy in six reference solutions. ► Majority of rhenium used as a technetium surrogate contained within a Fe 2 Mo phase. ► This prototype alloy exhibited generally passive behavior in all environments. ► Passivity breakdown events can occur and lead to localized corrosion. - Abstract: The electrochemical and corrosion behavior of a stainless-steel-based alloy made as a prototype metallic nuclear wasteform to immobilize 99 Tc, has been studied in a number of reference solutions ranging in pH from 4 to 10. The results showed the 47SS(304)-9Zr–23Mo prototype alloy contained at least five distinct phases with the majority of the Re, used as a Tc surrogate, contained within a Fe 2 Mo intermetallic phase. Polarization studies showed this alloy exhibited generally passive behavior in a range of dilute aqueous environments. Impedance measurements indicated passivity breakdown events can occur and lead to localized corrosion, especially in slightly alkaline conditions.

  19. Electrochemical and corrosion behavior of two chromium dental alloys in artificial bioenvironments

    Directory of Open Access Journals (Sweden)

    Banu Alexandra

    2017-01-01

    Full Text Available The purpose of this study is to compare the corrosion and tarnish behavior of NiCrMo and CoCrMo cast dental alloys in artificial bio environments. The cobalt chromium alloys are known and used in dentistry for many years, but its difficult machinability because of the strength and hardness, is an argument for scientists to study alternative materials with comparable biocompatibility. On the other hand, for dentistry devices beside corrosion behavior is important the aesthetic so, the used alloys have to preserve their shining and do not stain. The corrosion resistance has been evaluated using the Atomic mass spectroscopy method for ion release determination, the anodic polarization curves and the open circuit potential – time monitoring for corrosion behavior evaluation and optical microscopy for the structure analysis. The tarnish tendency of alloys was estimated using the method of cyclic immersion with frequency of 10 seconds for each minute during 72 hours in Na2S containing solution. The most important conclusion is that the alloys are comparable from corrosion and tarnish point of view, but we recommend to use the nickel base alloy only for orthodontic devices implanted for short periods of time, because of higher quantity of released ions.

  20. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H 3 PO 4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  1. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    Science.gov (United States)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  3. The electrochemical polishing behavior of the Inconel 718 alloy in perchloric-acetic mixed acids

    International Nuclear Information System (INIS)

    Huang, C.A.; Chen, Y.C.; Chang, J.H.

    2008-01-01

    The electropolishing behavior of the Inconel 718 alloy was studied by using rotating disc electrode (RDE) in the HClO 4 -CH 3 COOH mixed acids with different HClO 4 -concentrations. After electropolishing, surface morphologies of RDE specimens were examined with surface profiler, atomic force microscope and scanning electron microscope. According to the surface morphologies observed, three types of anodic dissolution behavior can be characterized in relation to the HClO 4 -content in mixed acids; namely, leveling without brightening of the surface in the mixed acids with 10 and 20 vol% HClO 4 , leveling and brightening of the surface in the mixed acids with 30 and 40 vol% HClO 4 , and a matt and gray surface in the mixed acids with 50 vol% or more HClO 4 . Anodic dissolution in the first and second dissolution types follows a mass-transfer controlled mechanism, in which a linear relationship between the reciprocal of limiting-current density and the reciprocal of square root of rotating speed of RDE specimen can be detected. Owing to precipitation of salt film on the polished surface of the Inconel 718 material, saturated dissolved metallic ions could be the chemical species for the mass-controlled mechanism. The salt film, in addition, could enhance the corrosion resistance of the Inconel 718 alloy

  4. Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys

    Directory of Open Access Journals (Sweden)

    Farida Benhalla-Haddad

    2012-01-01

    Full Text Available This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe and graphite as well as two univariante lines : peritectic L+(Fe↔(Fe and eutectic L↔(Fe+Cgraphite. The ternary alloys were thereafter studied in nondeaerated solution of 10−3 M NaHCO3 + 10−3 M Na2SO4, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.

  5. Properties and electrochemical behaviors of AuPt alloys prepared by direct-current electrodeposition for lithium air batteries

    International Nuclear Information System (INIS)

    Zhang, Jinqiu; Li, Da; Zhu, Yiming; Chen, Miaomiao; An, Maozhong; Yang, Peixia; Wang, Peng

    2015-01-01

    AuPt catalyst has a prospective application in a lithium air battery because of its bi-function on catalyzing Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). Electrodeposition is an in-situ convenient technology for catalyst preparation without chemical residue. In an acid electrolyte, AuPt alloy catalysts were electrodeposited on carbon paper. The effect of main salt concentration, electrodeposition time and current density were studied by deposit micromorphology observation, structure analyses and composition testing. Catalytic abilities of AuPt alloys were measured by cyclic voltammetry (CV) in an ionic liquid of EMI-TFSI/Li-TFSI [1- Ethyl - 3- methylimidazolium–bis (trifluoromethanesulphonyl) imide/lithium–bis (trifluoromethanesulphonyl) imide]. The electrochemical behaviors of Au, Pt and AuPt deposits were also measured. An optimized direct-current electrodeposition process of getting high active AuPt catalyst is concluded, which is an aqueous solution containing 6.7∼10 mmol · L −1 HAuCl 4 , 10∼13.3 mmol · L −1 H 2 PtCl 6 and 0.5 mol · L −1 H 2 SO 4 as the electrolyte, current density of 20mA · cm −2 and electrodeposition time of 8∼34 s. The co-deposition of AuPt alloy is an irregular co-deposition controlled by diffusion, while gold atoms enter the platinum’s crystal lattice in the structure of AuPt alloy. The increase of the concentration of H 2 PtCl 6 in the electrolyte, the extension of the electrodeposition time or the raise of the current density can improve the content of Pt in the deposit. The clusters’ diameters of AuPt catalysts decrease to 150∼250 nm by adjusting current densities during electrodeposition

  6. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  7. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    International Nuclear Information System (INIS)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian; Popa, Monica

    2013-01-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled

  8. Investigation into electrochemical behavior of molybdenum VM-1 alloy at high current density

    Energy Technology Data Exchange (ETDEWEB)

    Tatarinova, O M; Amirkhanova, N A; Akhmadiev, A G

    1975-01-01

    The effect of the composition and concentration of electrolyte on the workability of the molybdenum VM-1 alloy has been studied and a number of anions has been determined relative to their activation capacity. The best workability of the alloy is achieved in a 15% NaOH solution and a composite electrolyte 15% NaNO/sub 3/+5%NaOH. It is shown that in polarization of the VM-1 alloy both in alkali- and salt solutions a film of oxides of different valence molybdenum is formed: Mo/sub 2/O/sub 3/, Mo/sub 4/O/sub 11/, Mo/sub 9/O/sub 26/, MoO/sub 3/, but molybdenum gets dissolved only in a hexavalent form, its content in a solution being in conformity with the polarizing current densities. Using a temperature-kinetic technique it has been found that the concentrational polarization is the limiting stage in the reaction of molybdenum and VM-1 alloy anodic dissolution in 15% NaNO/sub 3/ solution and in the composite electrolyte 15%NaNO/sub 3/+5%NaOH.

  9. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  10. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  11. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  12. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    International Nuclear Information System (INIS)

    Traldi, S. M.; Rossi, J. L.; Costa, I.

    2003-01-01

    Al-Si-Cu hypereutectic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. they the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties- mainly wear resistance at high temperatures. The corrosion s resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation hove been used to evaluate the corrosion resistance of a hyper eutectic Al-Si-Cu alloy in alcoholic environments. the EIS tests carried out in pure ethanol, and ethanol with small additions (1 mM) of acid an chloride to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium. (Author) 13 refs

  13. The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Li Qing; Xu Shuqiang; Hu Junying; Zhang Shiyan; Zhong Xiankang; Yang Xiaokui

    2010-01-01

    This paper discussed a zinc phosphate conversion coating formed on magnesium alloy AZ91D from the phosphating bath with varying amounts of ethanolamine (MEA). The effects of MEA on the form, structure, phase composition and electrochemical behavior of the phosphate coatings were examined using an scanning electron microscopy (SEM), X-ray diffraction (XRD) potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Interpretations of the electrical elements of the equivalent circuit were obtained from the SEM structure of the coatings, assumed to be formed of two layers: an outer porous crystal layer and an inner flat amorphous layer. The result showed that adding MEA refined the microstructure of the crystal layer and that the phosphate coating, derived at the optimal content of 1.2 g/L, with the most uniform and compact outer crystal layer provided the best corrosion protection.

  14. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  15. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  16. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    Science.gov (United States)

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  17. Electrochemical corrosion behavior of acid treated strip cast AM50 and AZX310 magnesium alloys in 3.5 wt.% NaCl solution

    Directory of Open Access Journals (Sweden)

    Srinivasan Arthanari

    2017-09-01

    Full Text Available The influence of acid treatments on the surface morphology and electrochemical corrosion behavior of strip-cast AM50 and AZX310 alloys have been studied in the present investigation. The alloys were acid treated using H3PO4 (AT-1, HF (AT-2 and HNO3 (AT-3 for different treatment durations viz., 60, 300 and 600 s. The acid treatments produced a surface layer consisting of corresponding magnesium salts of the acids and were confirmed from the X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray analysis (EDAX. AT-1 treatment produced cracked and network porous morphology for AM50 and AZX310 alloys respectively and AT-3 treatment exhibited dense creaked surface layer formation while AT-2 does not produce any significant change in the morphology. Polarization studies revealed that, the acid treatment significantly altered the corrosion process by altering anodic and cathodic reaction rates of AM50 and AZX310 alloys. The HNO3 (AT-3 treatment was effective compared to other treatments to control the corrosion rate in the studied treatment conditions. The surface morphology and chemical composition of surface layer produced during the treatment was correlated to explain the corrosion results.

  18. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    Directory of Open Access Journals (Sweden)

    Traldi, S. M.

    2003-12-01

    Full Text Available Al-Si-Cu hypereutetic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties - mainly wear resistance at high temperatures. The corrosion resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS and potentiodynamic polarisation have been used to evaluate the corrosion resistance of a hypereutectic Al-Si-Cu alloy in alcoholic environments. The EIS tests were carried out in pure ethanol, and ethanol with small additions (1 mM of acid and chloride, to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium.

    Aleaciones hipereutécticas producidas por conformación por spray son muy empleadas en la industria automovilística, especialmente en los revestimientos de los cilindros. Tienen la ventaja de añadir menos peso con bajo coeficiente de expansión térmica y excelentes propiedades mecánicas, sobre todo resistencia al desgaste en altas temperaturas. Todavía, la resistencia a la corrosión de estas aleaciones en combustibles no es conocida. En este estudio fueron utilizadas las técnicas de espectroscopia de impedancia electroquímica y polarización potenciodinámica, para evaluar la resistencia a la corrosión de una aleación hipereutéctica Al-Si-Cu en medio alcohólico. Las pruebas fueron conducidas en etanol puro y etanol con pequeñas adiciones (1 mM de ácido y cloruro, con la finalidad de investigar el efecto de estos contaminantes en la resistencia a la corrosión. Hierro fundido gris, también fue

  19. Effect of the carbon dioxide pressure on the electrochemical behavior of 3Cr low alloyed steel at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhijun, E-mail: jiazhijunwin@163.com [Department of Chemical Engineering, University of Tsinghua, Beijing 100084 (China); Key Laboratory of Corrosion and Protection of Chinese Ministry of Education, University of Science and Technology Beijing, Beijing 100083 (China); Li, Xiaogang; Du, Cuiwei; Liu, Zhiyong; Gao, Jin [Key Laboratory of Corrosion and Protection of Chinese Ministry of Education, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-10-15

    Electrochemical corrosion behavior of 3Cr steel in CO{sub 2}-containing solution at a high temperature was investigated by various electrochemical measurements and analysis as well as thermodynamic calculations of ionic concentrations and equilibrium electrode potentials. A conceptual model was developed to illustrate the electrochemical corrosion mechanism of 3Cr steel in the CO{sub 2}-containing sodium chloride solution. Comparing the corrosion potentials of 3Cr steel in the test solution under different CO{sub 2} pressures with the conceptual model, it is found that anodic reactions of the 3Cr steel contain a direct dissolution of Fe, and the formation of corrosion scales, FeCO{sub 3} and Cr(OH){sub 3}, by Fe+HCO{sub 3}{sup -}=FeCO{sub 3}+H{sup +}+2e and Cr + 3OH{sup -} = Cr(OH){sub 3}. With the CO{sub 2} pressure increasing, the corrosion potential has a positive shift. It indicates that the CO{sub 2} pressure has a greater effect on the cathodic reaction than that of anodic reaction. And the corrosion current has positive linear relationship with the increase of CO{sub 2} pressure. It is attributed to the concentration increasing of the reactants of the cathodic reaction. According to analysis of the electrochemical impedance spectroscopy, the scale forming reactions dominate the corrosion process when the CO{sub 2} pressure is lower than 0.6 MPa and the dissolution of Fe, followed by the consecutive mechanism with adsorbed intermediate products, takes up the dominant part in the anodic process when the CO{sub 2} pressure exceeds 0.6 MPa. -- Highlights: Black-Right-Pointing-Pointer A conceptual model is developed to illustrate the corrosion mechanism. Black-Right-Pointing-Pointer A good reference electrode which is used at high temperature is made. Black-Right-Pointing-Pointer Corrosion current has positive linear relationship with the increase of CO{sub 2} pressure. Black-Right-Pointing-Pointer CO{sub 2} pressure has a greater effect on cathodic reaction than

  20. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  1. Evaluation of the electrochemical behavior of U2.5Zr7.5Nb and U3Zr9Nb uranium alloys in relation to the pH and the solution aeration

    International Nuclear Information System (INIS)

    Mansur, Fabio Abud; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Figueiredo, Celia de Araujo

    2011-01-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing, in cooperation with the Centro Tecnologico da Marinha (CTMSP), the advanced nuclear plate type fuel for the second core of the land-based reactor prototype of the Laboratorio de Geracao Nucleo-Eletrica (LABGENE). Recent investigations have shown that the fuel made of uranium-based niobium and zirconium alloys reaches the best performance relative to other fuels, e.g. UO 2 . Niobium and Zirconium also increase the corrosion resistance and the mechanical strength of the uranium alloys. By means of electrochemical techniques the corrosion behavior of alloys U 2 . 5 Zr 7.5 Nb and U 3 Zr 9 Nb, developed at CDTN and heat treated in the temperature range of 200 deg C to 600 deg C, was assessed. The effect of the parameters pH and solution aeration was studied as well as the influence of zirconium and niobium alloying elements in the corrosion of uranium. The techniques used were open circuit potential, electrochemical impedance and potentiodynamic anodic polarization at room temperature. The tests were performed in a three-electrode electrochemical cell with Ag/AgCl (3M KCl) as the reference electrode and a platinum plate as the auxiliary electrode. The potentiodynamic polarization curves of uranium and its alloys in acidic solutions showed regions with anodic currents limited by a passive film. The presence of niobium and zirconium contributed for the formation of this film. The impedance data showed the presence of two semicircles in the Bode diagram, indicating the occurrence of two distinct electrochemical processes. The data were fitted to an equivalent circuit model in order to obtain parameters of the electrochemical processes and evaluate the effect of the studied variables. (author)

  2. Effect of nanocrystalline phase on the electrochemical behavior of the alloy Ti{sub 60}Ni{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Shubhra, E-mail: shubhramathur3@gmail.com [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Jain, Rohit [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Kumar, Praveen [Surface Physics and Nanostructure Group, National Physical Laboratory, New Delhi 110012 (India); Sachdev, K.; Sharma, S.K. [Department of Physics, Malaviya National Institute of Technology, JLN-Marg, Jaipur 302017 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Polarization studies carried out on different structural states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer Nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer XPS results show that nanocrystalline specimen contains only TiO{sub 2} species. Black-Right-Pointing-Pointer It leads to the formation of adherent and stable film and improves the corrosion resistance. - Abstract: Polarization studies were carried out on crystalline, amorphous and nanocrystalline states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium at room temperature. It was observed that nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Cyclic voltammetry studies and weight loss data corroborates the polarization studies. X-ray photoelectron spectroscopy (XPS) technique was used in order to decipher the nature of the oxide film formed after corrosion test on the specimens of the alloy Ti{sub 60}Ni{sub 40}. The crystalline specimen of the alloy Ti{sub 60}Ni{sub 40} shows the presence of Ti{sup 2+}, Ti{sup 3+} and Ti{sup 4+} species along with some unoxidized Ti in metallic form (Ti{sup 0}) whereas the amorphous specimen consists of Ti{sup 3+} and Ti{sup 4+} species. On the other hand nanocrystalline specimen contains only Ti{sup 4+} species. Thus it is likely that the presence of fewer species and the absence of Ti{sup 3+} in the oxide film formed on nanocrystalline specimen of Ti{sub 60}Ni{sub 40} lead to the formation of a film with greater homogeneity and protective quality in comparison to the films formed on crystalline and amorphous states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium.

  3. Structural and electrochemical behavior of sol-gel ZrO2 ceramic film on chemically pre-treated AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Li Qing; Chen Bo; Xu Shuqiang; Gao Hui; Zhang Liang; Liu Chao

    2009-01-01

    In the present investigation sol-gel-based ZrO 2 ceramic film was obtained using zirconium acetate as the precursor material. The film was deposited on AZ91D magnesium alloy by a dip-coating technique. An uniform stannate conversion coating as chemical pretreatment was employed as an intermediate layer prior to deposition of the ZrO 2 film in order to provide advantage for the formation of sol-gel-based ZrO 2 layer. The corrosion properties, structure, composition and morphology of these coatings on AZ91D magnesium alloy were studied by potentiodynamic polarization tests, EIS, XRD, SEM, respectively. According to the electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environment-friendly surface treatment.

  4. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  5. Microstructure influence on corrosion behavior of a Fe–Cr–V–N tool alloy studied by SEM/EDS, scanning Kelvin force microscopy and electrochemical measurement

    International Nuclear Information System (INIS)

    Sababi, Majid; Ejnermark, Sebastian; Andersson, Jörgen; Claesson, Per M.; Pan, Jinshan

    2013-01-01

    Highlights: ► Localized corrosion of a new N-based tool alloy (Fe–Cr–V–N) has been studied. ► One-pass mode of scanning Kelvin force microscopy (KFM) was used in the study. ► The focus was on correlation between microstructure and localized corrosion. - Abstract: Microstructure influence on corrosion behavior of an N-based tool alloy (Fe–Cr–V–N) has been studied. Electron microscopy analysis showed two types of hard phases in the alloy. One-pass mode scanning Kelvin force microscopy (KFM) was used to investigate relative nobility of the hard phases. Volta potential mapping indicates higher nobility for the hard phases than the alloy matrix, and, the V- and N-rich particles exhibit the highest Volta potential. Post-polarization analysis by SEM revealed localized dissolution initiated in matrix regions adjacent to hard phase particles, and the boundary region surrounding the Cr- and Mo-rich particles is more prone to localized corrosion.

  6. Influence of the alloying elements vanadium, chromium and carbon on the electrochemical behavior of uranium in media with a pH 13 or a pH acid

    International Nuclear Information System (INIS)

    Pommier, Gerard; Jouve, Gerard; Lacombe, Paul.

    1976-06-01

    The electrochemical properties of uranium alloys with low vanadium and chromium contents were studied in aqueous medium for different pH values of the solution (pH between 0 and 5 in H 2 SO 4 medium and pH=13 in NaOH medium). In acid medium, the study of the behavior of the two types of alloys carried out by the potentiokinetic method is described. The specific role of chromium concerning the anodic process is demonstrated and the influence of vanadium in specimens of same nominal vanadium contents but different carbon contents is revealed by the modification of the reduction overvoltage of water. In basic medium, the electrochemical study was supported by an optical method of determining the relative growth kinetics of the films in situ and continuously. At lower values of potential, the growth of an oxide film of UO 2 with linear growth kinetics is demonstrated; at higher values of potential a system of two layers is observed and its evolution is followed kinematically. The film initially formed is constituted of an oxide UO 3 2H 2 O, and its growth is linear, then a film of UO 2 develops underneath. A structural evolution of the superficial film is then observed, an evolution which leads to its cracking after breakdown. These phenomena were followed by electron microscopy using a technic of two stage replicas [fr

  7. In-Situ Electrochemical Corrosion Behavior of Nickel-Base 718 Alloy Under Various CO2 Partial Pressures at 150 and 205 °C in NaCl Solution

    Science.gov (United States)

    Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo

    2018-03-01

    The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }} s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }} s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.

  8. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, A., E-mail: andrea.ulrich@empa.ch [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Ott, N. [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); EPFL-Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Tournier-Fillon, A. [Laboratory for Corrosion and Material Integrity, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Homazava, N. [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Swiss Centre for Applied Ecotoxicology, Eawag/EPFL, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); Schmutz, P. [Laboratory for Corrosion and Material Integrity, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2011-07-15

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  9. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    International Nuclear Information System (INIS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-01-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  10. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    Science.gov (United States)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  11. Effect of chloride and sulphate ions on the electrochemical corrosion behavior of alloy 800NG in PWR secondary water environment at 250 deg C

    International Nuclear Information System (INIS)

    Mansur, Fabio A.; Schvartzman, Monica Maria de A.M.; Quinan, Marco A.D.; Soares, Antonio E.G.; Nogueira, Pedro Henrique B.O.

    2013-01-01

    Alloy 800NG (nuclear grade) is used in nuclear steam generators (SG) as the tubing material for pressurized water reactors (PWRs) because of its high corrosion resistance. The corrosion resistance is due to the protective character of the oxide film formed on the tube surface by contact with the high temperature pressurized water. Nevertheless, corrosion has been the major cause of tube failures in nuclear SGs. The existing experience of different nuclear power plants shows that the water chemistry has an important role in maintaining the integrity of the protective oxide films. Many of such problems have been attributed to secondary side water chemistry conditions and excursions, many of which have been resulted from condenser cooling water ingress. Alloy 800 is known to undergo passivity breakdown and pitting in the presence of chloride ions under oxidative water conditions. In this work the effect of chloride and sulphate ions at various concentrations on the corrosion behavior of Alloy 800 tube at 250 deg C was investigated using the potentiodynamic anodic polarization technique. An active-passive transition occurred at 250 deg C in all studied conditions and the oxide film grown on surface showed greater porosity and lower resistance to localised corrosion in all studied conditions. (author)

  12. Corrosion behavior of Ti–39Nb alloy for dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Joska, Ludek [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Malek, Jaroslav [UJP Praha, Nad Kamínkou 1345, 156 10 Prague-Zbraslav (Czech Republic); Sefl, Vaclav [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic)

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus–high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti–39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. - Highlights: • Alloy Ti–39Nb shows excellent corrosion resistance in physiological solution. • Corrosion resistance of Ti–39Nb alloy is significantly higher than that of titanium in the presence of fluoride ions. • The electrochemical impedance spectroscopy indicates a porous passive layer. • Passive layer of the alloy is enriched by niobium.

  13. Corrosion behavior of Ti–39Nb alloy for dentistry

    International Nuclear Information System (INIS)

    Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav

    2015-01-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus–high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti–39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. - Highlights: • Alloy Ti–39Nb shows excellent corrosion resistance in physiological solution. • Corrosion resistance of Ti–39Nb alloy is significantly higher than that of titanium in the presence of fluoride ions. • The electrochemical impedance spectroscopy indicates a porous passive layer. • Passive layer of the alloy is enriched by niobium

  14. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  15. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    Science.gov (United States)

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  16. Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium

    International Nuclear Information System (INIS)

    Jamesh, Mohammed Ibrahim; Wu, Guosong; Zhao, Ying; Jin, Weihong; McKenzie, David R.; Bilek, Marcela M.M.; Chu, Paul K.

    2014-01-01

    Highlights: • Dual Zr and N plasma ion implantation are conducted on WE43Mg alloy. • Zr and N implanted WE43 (ZrN-WE43) enhanced corrosion resistance in cell culture medium. • ZrN-WE43 enhanced corrosion resistance in simulated body fluid (SBF). • ZrN-WE43 shows near capacitive impedance spectra in cell culture medium. • Calcium phosphate is formed on the corrosion product. - Abstract: The effects of dual Zr and N plasma immersion ion implantation (PIII) on the corrosion behavior of WE43Mg alloy are evaluated in simulated body fluid (SBF) and cell culture medium (cDMEM). Zr and N PIII improves the corrosion resistance of WE43 which exhibits smaller i corr , larger R 1 and R 2 , smaller CPE 2 , and larger phase angle maxima in SBF and cDMEM. The Zr and N PIII WE43 samples exhibit 12-folds decrease in i corr in SBF and 71-folds decrease in i corr with near capacitive EIS in cDMEM. Analysis of the corrosion products reveals calcium phosphate

  17. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, V., E-mail: V_khalili@sut.ac.ir [Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Frenzel, J.; Eggeler, G. [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. - Highlights: • The composite coatings of HA, Si and MWCNTs was prepared using electrophoretic deposition. • The presence of 1 wt.% MWCNTs in the HA coating provides more nucleation cites of apatite crystallites in SBF. • The presence of Si in HA coating increases the growth rate of apatite crystallites with the Ca/P atomic ratio of 1.67. • The EIS indicate the compact HA-20%Si and HA-20%Si-1%MWCNTs coatings efficiently increase corrosion resistance of NiTi. • The porous HA and HA-1%MWCNTs do not increase significantly corrosion resistance due to the easy diffusion path.

  18. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-01-01

    Previous work in our laboratory and elsewhere has suggested that MIC of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possibly a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. Similar test procedures are applicable to other environments of interest to this symposium

  19. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  20. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  1. Assessment of Some Advanced Protective Schemes, Including Chromate and Non-Chromate Conversion Coatings for Mg Alloy ZE41A-T5 Using Electrochemical Impedance Spectroscopy

    National Research Council Canada - National Science Library

    Chang, Frank

    1994-01-01

    .... Electrochemical Impedance Spectroscopy (EIS) and salt spray tests have been employed to compare the corrosion behavior in chloride containing solutions of Mg alloy ZE41A-T5 which has been coated with various combinations of a conversion coating...

  2. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  3. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  4. Dependence of an overvoltage of electrochemical properties of aluminum alloys from various additives

    International Nuclear Information System (INIS)

    Karieva, Z.M.; Sidikov, S.A.

    2005-01-01

    It is known, that AI and its alloys are electrochemical behavior in electrolytes appreciably differs from many other metals as chrome, nickel, cobalt and iron. The study behavior of aluminum alloys in investigated electrolytes shows about stability of the oxygenic film that during electrode reactions are supplemented and further there is a moderate dissolution even at high temperatures and concentration of a passive film. The greater affinity to oxygen gives advantage, that the passive site of metal is considerably wide. Stage of transportation it is inherent in any heterogeneous processes. In the same a stage transition of the charged particles (electrons and ions) through border an electrode -solution (the stage of the category of ionization) is specifically electrochemical stage. At the slowed down course electrochemical processes the overvoltage develops of two parts -an overvoltage of transition and an overvoltage of reaction. In the present work is investigated behavior of electrochemical properties at addition in electrolyte-electrode of insignificant amounts of organic substances -inhibitors of corrosion. It is revealed, that adsorption of the given substances on surfaces of an electrode appreciably influences size of an overvoltage not changing thus of value of constants coefficient Taffel' s equation. ' The technique of carrying out of experiment and preparation of samples are resulted in works [3-5]. (author)

  5. Electrochemical machining of titanium alloys with the use of anodal activating pulses

    International Nuclear Information System (INIS)

    Davydov, A.D.; Klepikov, R.P.; Moroz, I.I.

    1980-01-01

    A comparative investigation of electrochemical machining of VT-6 titanium alloy by direct current and in different pulse mode is carried out taking into account the peculiarities of anodal behaviour of titanium alloys at high current desities. The mode of electrochemical machining of VT-6 alloy with activating pulses is chosen. It allows to conduct a process at lower voltages and small interelectrode gaps

  6. Study crevice corrosion alloys C-22 and 625 by electrochemical noise

    International Nuclear Information System (INIS)

    Ungaro, María L.; Carranza, Ricardo M.; Rodríguez, Martín A.

    2013-01-01

    C-22 and 625 alloys are two of the Ni –Cr-Mo alloys considered as candidate materials to form the corrosion resistance engineered barriers for nuclear waste repositories. The corrosion resistance of these alloys is remarkable in a wide variety of environments. Despite of their resistance these alloys are susceptible to crevice corrosion in a certain aggressive environments. This work presents the use of electrochemical noise technique to study crevice corrosion susceptibility of alloys C-22 and 625 in 1M NaCl acidic solutions at 60ºC and 90ºC. Asymmetrical electrodes and a complementary platinum electrode were used to assess the influence of cathodic reaction in crevice process. The obtained records were analyzed directly and through statistical parameters. The potential drop and the simultaneous increment of the current records indicated the occurrence of crevice corrosion. The alternative use of a platinum electrode resulted in higher currents and higher potentials and reduced the induction time to crevice formation. The reason for this behavior is that platinum surface allows faster cathodic reactions than C-22 and 625 alloys. The standard deviation of the current records was responsive to the crevice corrosion intensity. C-22 alloy had better crevice corrosion performance than 625 alloy. (author)

  7. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  8. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  9. Influence of strontium as additive on corrosive-electrochemical behavior of alloy Al +6% lithium in NaCI electrolyte medium

    International Nuclear Information System (INIS)

    Ganiev, I.N.; Norova, M.T.; Nazarov, Kh.M.; Nikitin, V.I.; Karieva, Z.M.

    2005-01-01

    At various voltages, strontium settles down ahead of hydrogen, and the standard electrode potential equals -2,89B. Thus, in relation to aluminum- lithium an alloy Al-Li (6 % lithium) at electrode potential -1,020B, strontium is the anode. Taking into account anodic properties of strontium as additional and its solubility in aluminum-lithium a firm solution is formed, we have selected the following ratio of concentration of an alloying component, 0.01; 0.05; 0.1; 0.5 (mass %). It has perilously been shown, that potential of free corrosion in time, alloys alloyed by strontium, are exposed a little bit faster passivity, than not alloyed. The similar tendency has been observed in all three investigated medium: with the increase in concentration of strontium, the potential of free corrosion is displaced in positive area. Results potentiodynamic researches of alloys in the medium of electrolyte NaCI of various concentration of chlorines -ions the potential of corrosion is displaced in negative area that testifies to decrease of corrosion stability of allays, with growth of aggression of the corrosion medium. It proves to be true accounting speeds of corrosion of alloys from a catholic branch potentiodynamic curves. (author)

  10. A Comparative Electrochemical Study of AZ31 and AZ91 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    S. A. Salman

    2010-01-01

    Full Text Available A comparative study has been carried out on AZ31 and AZ91 magnesium alloys in order to understand the electrochemical behavior in both alkaline and chloride containing solutions. The open circuit potential (OCP was examined in 1 M NaOH and 3.5 mass % NaCl solutions. AZ31 magnesium alloy shows several potential drops throughout the immersion in 1 M NaOH solution, though AZ91 does not show this phenomenon. The specimens were anodized at a constant potential of 3 V for 30 minutes at 298 K in 1 M NaOH solution. The anticorrosion behavior of the anodized specimens was better than those of nonanodized specimens. The anodized AZ91 has better corrosion resistance compared to nonanodized specimen and anodized AZ31 magnesium alloy.

  11. Evaluation of the electrochemical behavior of U{sub 2.5}Zr{sub 7.5}Nb and U{sub 3}Zr{sub 9}Nb uranium alloys in relation to the pH and the solution aeration

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fabio Abud; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Figueiredo, Celia de Araujo, E-mail: ferraz@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing, in cooperation with the Centro Tecnologico da Marinha (CTMSP), the advanced nuclear plate type fuel for the second core of the land-based reactor prototype of the Laboratorio de Geracao Nucleo-Eletrica (LABGENE). Recent investigations have shown that the fuel made of uranium-based niobium and zirconium alloys reaches the best performance relative to other fuels, e.g. UO{sub 2}. Niobium and Zirconium also increase the corrosion resistance and the mechanical strength of the uranium alloys. By means of electrochemical techniques the corrosion behavior of alloys U{sub 2}.{sub 5}Zr{sub 7.5}Nb and U{sub 3}Zr{sub 9}Nb, developed at CDTN and heat treated in the temperature range of 200 deg C to 600 deg C, was assessed. The effect of the parameters pH and solution aeration was studied as well as the influence of zirconium and niobium alloying elements in the corrosion of uranium. The techniques used were open circuit potential, electrochemical impedance and potentiodynamic anodic polarization at room temperature. The tests were performed in a three-electrode electrochemical cell with Ag/AgCl (3M KCl) as the reference electrode and a platinum plate as the auxiliary electrode. The potentiodynamic polarization curves of uranium and its alloys in acidic solutions showed regions with anodic currents limited by a passive film. The presence of niobium and zirconium contributed for the formation of this film. The impedance data showed the presence of two semicircles in the Bode diagram, indicating the occurrence of two distinct electrochemical processes. The data were fitted to an equivalent circuit model in order to obtain parameters of the electrochemical processes and evaluate the effect of the studied variables. (author)

  12. Electrochemical behavior of titanium implanted with platinum

    International Nuclear Information System (INIS)

    Thompson, N.G.; Lichter, B.D.; Appleton, B.R.; Kelly, E.J.; White, C.W.

    1979-01-01

    The following conclusions apply to Ti(Pt) near-surface alloys studied. (1) Open-circuit corrosion measurements show that accumulation of platinum may occur at a surface concentration of 0.32 atomic percent Pt while no accumulation occurs at 0.16 atomic percent Pt. However, these results do not allow a distinction as to cause of accumulation to be made between concentration effects and effects due to the presence of an oxide film. (2) Potentiostatic corrosion at -0.450 V (active corrosion) establish that little or no accumulation of platinum occurs at an oxide-free surface for concentrations less than 0.086 atomic percent Pt; whereas, a large amount of accumulation occurs for a distribution with a peak concentration of 0.83 atomic percent Pt. (3) An initial distribution having a peak concentration of 0.32 atomic percent platinum is sufficient to induce natural passivity in titanium and bring a freely corroding sample to a potential of 0.269 V. This is nearly the applicable reversible potential (-0.260 V) for the hydrogen reaction in 1N H 2 SO 4 . (4) Of three samples which showed accumulation, platinum was eventually lost for two of these samples (0.32 atomic percent, open-circuit corrosion; 0.83 atomic percent, potentiostatic corrosion). The remaining sample (9.1 atomic percent, open-circuit corrosion) maintained the maximum possible potential of -0.260 V for the length of the experiment (approx. 30 days). (5) For samples which had been polarized at -0.300 to -0.340 V and which had eventually reverted to the behavior of pure Ti, post corrosion RBS measurements reveal that a substantial fraction of the Pt fluence is retained on the surface in an electrochemically inactive state

  13. Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution

    Science.gov (United States)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2010-12-01

    The stress corrosion cracking (SCC) behavior of AA2219 aluminum alloy in the as-welded (AW) and repair-welded (RW) conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using the slow strain rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both BM and welded joints. The results show that the ductility ratio ( ɛ NaCl/( ɛ air)) of the BM was close to one (0.97) and reduced to 0.9 for the AW joint. This value further reduced to 0.77 after carrying out one repair welding operation. However, the RW specimen exhibited higher ductility than the single-weld specimens even in 3.5 wt pct NaCl solution. SSRT results obtained using pre-exposed samples followed by post-test metallographic observations clearly showed localized pitting corrosion along the partially melted zone (PMZ), signifying that the reduction in ductility ratio of both the AW and RW joints was more due to mechanical overload failure, caused by the localized corrosion and a consequent reduction in specimen thickness, than due to SCC. Also, the RW joint exhibited higher ductility than the AW joint both in air and the environment, although SCC index (SI) for the former is lower than that of the latter. Fractographic examination of the failed samples, in general, revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy. Microstructural examination and polarization tests further demonstrate grain boundary melting along the PMZ, and that provided the necessary electrochemical condition for the preferential cracking on that zone of the weldment.

  14. Corrosion behavior of zinc-nickel alloy electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fabri Miranda, F.J. [USIMINAS, Ipatinga, Minas Gerais (Brazil); Margarit, I.C.P.; Mattos, O.R.; Barcia, O.E. [UFRJ, Rio de Janeiro (Brazil); Wiart, R. [Univ. Pierre et M. Curie, Paris (France)

    1999-08-01

    Various types of zinc-electrocoated steel sheets are used to improve the durability of car bodies. Among these coatings, the Zn-Ni alloy has higher corrosion resistance than pure Zn, as well as better welding and painting properties. The corrosion mechanism of the Zn-Ni alloy has been investigated mainly on the basis of accelerated tests and electrochemical measurements. There are few data about long-term corrosion tests. In the present study, the behavior of unpainted Zn-Ni alloy coated steel was studied during 3 years of exposure in industrial and marine environments. Electrochemical impedance spectroscopy (EIS) and surface analysis (scanning electron microscopy [SEM] and Auger electron spectroscopy [AES]) were the experimental techniques used. Long-term atmospheric corrosion mechanism of Zn-Ni coatings was discussed and compared with that proposed based on short-term tests.

  15. Electrochemical investigation on the effects of sulfate ion concentration, temperature and medium pH on the corrosion behavior of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. Medhashree

    2017-03-01

    Full Text Available The effects of sulfate ion concentration, temperature and medium pH on the corrosion of Mg–Al–Zn–Mn alloy in 30% aqueous ethylene glycol solution have been investigated by electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy methods. Surface morphology of the alloy was examined before and after immersing in the corrosive media by scanning electron microscopy (SEM and energy dispersion X-ray (EDX analysis. Activation energy, enthalpy of activation and entropy of activation were calculated from Arrhenius equation and transition state theory equation. The obtained results indicate that, the rate of corrosion increases with the increase in sulfate ion concentration and temperature of the medium and decreases with the increase in the pH of the medium.

  16. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  17. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-11-01

    Previous work in our laboratory and elsewhere has suggested that microbially influenced corrosion (MIC) of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate-reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possible a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. This report discusses the adaption of these procedures to study corrosion of nuclear waste containers. (author). 20 refs., 2 tabs., 7 figs

  18. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  19. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  20. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  1. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  2. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  3. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tsuyoshi, E-mail: m-tsuyo@criepi.denken.or.j [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Kato, Tetsuya; Kurata, Masaki [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Yamana, Hajimu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-11-15

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the delta-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag{sup +}/Ag) in LiCl-KCl melts containing 0.13 in mol% UCl{sub 3} and 0.23 in mol% ZrCl{sub 4} at 773 K. To our knowledge, this is the first report on the electrochemical formation of the delta-(U, Zr) phase. The relative partial molar properties of uranium in the delta-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared delta-phase electrode.

  4. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    International Nuclear Information System (INIS)

    Murakami, Tsuyoshi; Kato, Tetsuya; Kurata, Masaki; Yamana, Hajimu

    2009-01-01

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the δ-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag + /Ag) in LiCl-KCl melts containing 0.13 in mol% UCl 3 and 0.23 in mol% ZrCl 4 at 773 K. To our knowledge, this is the first report on the electrochemical formation of the δ-(U, Zr) phase. The relative partial molar properties of uranium in the δ-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared δ-phase electrode.

  5. Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    López, M.M. Machado, E-mail: machadolopez23@gmail.com [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico); Fauré, J. [Laboratoire Ingénierie et Sciences des Matériaux (LISM EA 4695) - Université de Reims Champagne-Ardenne, 21 rue Clément Ader, Reims, BP 138 Cedex 02, 51685 France (France); Cabrera, M.I. Espitia [Facultad de ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “D”, C.P. 58000, Morelia, Michoacán, México (Mexico); García, M.E. Contreras, E-mail: eucontre@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico)

    2016-04-15

    Graphical abstract: - Highlights: • Bioglass 45S5 nanostructured films were obtained by colloidal electrophoretic deposition (CEDP) method, proposed in this work, on Ti6Al4 V substrates. • Ti6Al4 V corrosion resistance in Hank's solution was increased with bioglass 45S5 coating. • Crystalline phases of 45S5 bioglass xerogels were obtained and characterized by XRD. • The model of chemical anchoring between Ti6Al4 V and bioglass 45S5 is proposed. - Abstract: In the present work, 45S5 bioglass coatings were deposited on the Ti6Al4 V alloy substrate through the cathodic colloidal electrophoretic deposition process (CEDP) proposed in this work. The coatings were thermally treated at temperatures of 500, 600, 700, and 800 °C for 2 h, and their structure was characterized by FESEM and DRX. Nanostructure and phase evolution of the coatings and xerogels was followed as a function of temperature. The corrosion resistance of the Ti6Al4 V alloy and the 45S5/Ti6Al4 V coating was studied by means of Tafel extrapolation in Hank's solution, at 37 °C, simulating the conditions inside the mouth. The 45S5 bioglass coatings displayed an amorphous nanostructure at lower temperatures, and partial crystallization at higher temperatures. An increase in the corrosion resistance was observed in the 45S5/Ti6l4 V coating treated at 700 °C because it reduced the i{sub corr}, and there was a change in the E{sub corr} towards more noble values. A model of the chemical anchorage of the 45S5 bioglass coating on Ti6Al4 V was proposed.

  6. Corrosion behavior of Ti-39Nb alloy for dentistry.

    Science.gov (United States)

    Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  8. Electrochemical properties in a seawater environment of 5456-H116 aluminum alloy subjected to optimal friction stir processing

    International Nuclear Information System (INIS)

    Park, Jae-Cheul; Kim, Seong-Jong

    2010-01-01

    The mechanical properties of aluminum alloy may be enhanced by modifying the microstructure of the metal by friction stir processing (FSP). Previous studies have demonstrated that the mechanical characteristics of 5456-H116 Al alloy subjected to FSP, at 250 rpm and 15 mm min -1 using a full screw probe, are similar to those of the original alloy. In the present work, the same alloy was processed under these optimal conditions, and the range of favorable protection potentials with regard to hydrogen embrittlement and stress corrosion cracking was determined to lie between -1.3 and -0.7 V (versus Ag/AgCl). The electrochemical behavior of the specimens subjected to FSP was superior to that of the original 5456-H116 Al alloy.

  9. Electrochemical properties in a seawater environment of 5456-H116 aluminum alloy subjected to optimal friction stir processing

    Science.gov (United States)

    Park, Jae-Cheul; Kim, Seong-Jong

    2010-05-01

    The mechanical properties of aluminum alloy may be enhanced by modifying the microstructure of the metal by friction stir processing (FSP). Previous studies have demonstrated that the mechanical characteristics of 5456-H116 Al alloy subjected to FSP, at 250 rpm and 15 mm min-1 using a full screw probe, are similar to those of the original alloy. In the present work, the same alloy was processed under these optimal conditions, and the range of favorable protection potentials with regard to hydrogen embrittlement and stress corrosion cracking was determined to lie between -1.3 and -0.7 V (versus Ag/AgCl). The electrochemical behavior of the specimens subjected to FSP was superior to that of the original 5456-H116 Al alloy.

  10. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  11. The behavior of electrochemical cell resistance

    International Nuclear Information System (INIS)

    Ritley, K.A.; Dull, P.M.; Weber, M.H.; Carroll, M.; Hurst, J.J.; Lynn, K.G.

    1990-01-01

    Knowledge of the basic electrochemical behavior found in typical cold fusion experiments is important to understanding and preventing experimental errors. For a Pd/LiOH(D)/Pt electrochemical cell, the applied cell voltage/current relationship (the effective cell resistance) does not obey Ohm's law directly, but instead exhibits a complicated response to the current, voltage, temperature, electrolyte conductance, and other factors. Failure to properly consider this response can possibly result in errors that could affect the heat balance in calorimetry and temperature measurement experiments. Measurements of this response under varying voltage, temperature, and electrolyte conductivity conditions are reported. A plausible scenario in which the temperature dependence of the effective cell resistance can either exaggerate or ameliorate novel exothermic processes is suggested

  12. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  13. Electrochemical process for the manufacturing of titanium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    V. Soare

    2009-07-01

    Full Text Available The paper presents a new method for precursors’ synthesis of titanium alloys matrix composites through an electrochemical process in molten calcium chloride. The cathode of the cell was made from metallic oxides powders and reinforcement ceramic particles, which were pressed and sintered into disk form and the anode from graphite. The process occurred at 850 °C, in two stages, at 2,7 / 3,2 V: the ionization of the oxygen in oxides and the reduction with calcium formed by electrolysis of calcium oxide fed in the electrolyte. The obtained composite precursors, in a form of metallic sponge, were consolidated by pressing and sintering. Chemical and structural analyses on composites samples were performed.

  14. Electrochemical machining of burn-resistant Ti40 alloy

    Directory of Open Access Journals (Sweden)

    Xu Zhengyang

    2015-08-01

    Full Text Available This study investigates the feasibility of using electrochemical machining (ECM to produce critical aeroengine components from a new burn-resistant titanium alloy (Ti40, thereby reducing costs and improving efficiency relative to conventional mechanical machining. Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of 1 kHz rather than a direct current. Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration. By optimizing these parameters, a surface roughness of 0.371 μm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A·min.

  15. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    Obigodi-Ndjeng, Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr 2 O 3 , the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2 nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA

  16. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  17. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  18. EFFECTS OF LASER SHOCK PEENING ON SCC BEHAVIOR OF ALLOY 600

    Energy Technology Data Exchange (ETDEWEB)

    Abhishek Telang; Amrinder Gill; S.R.Mannava; Vijay K. Vasudevan; Dong Qian; Sebastien P. Teysseyre

    2013-08-01

    In this study, the effects of laser shock peening (LSP) on stress corrosion cracking (SCC) behavior of Alloy 600 in tetrathionate solution were investigated. The degree of sensitization was quantified using double loop electrochemical potentiokinetic reactivation (DLEPR) tests. The sensitized Alloy 600 was demonstrated to be susceptible to intergranular SCC in tetrathionate solution. Following LSP, residual stresses and the amount of plastic strain introduced in Alloy 600 were characterized. The effects of LSP on SCC susceptibility of Alloy 600 in tetrathionate solution were evaluated by slow strain rate tests and constant load tests. Results indicate a significant increase in resistance to crack initiation and decreased susceptibility to SCC after LSP.

  19. Electrochemical studies on electroless ternary and quaternary Ni-P based alloys

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Selvi, V. Ezhil; Grips, V.K. William; Rajam, K.S.

    2006-01-01

    The autocatalytic (electroless) deposition of Ni-P based alloys is a well-known commercial process that has found numerous applications because of their excellent anticorrosive, wear, magnetic, solderable properties, etc. It is a barrier coating, protecting the substrate by sealing it off from the corrosive environments, rather than by sacrificial action. The corrosion resistance varies with the phosphorus content of the deposit: relatively high for a high-phosphorus electroless nickel deposit but low for a low-phosphorus electroless nickel deposit. In the present investigation ternary Ni-W-P alloy films were prepared using alkaline citrate-based bath. Quaternary Ni-W-Cu-P films were deposited by the addition of 3 mM copper ions in ternary Ni-W-P bath. X-ray diffraction (XRD) studies indicated that all the deposits were nanocrystalline, i.e. 1.2, 2.1 and 6.0 nm, respectively, for binary, ternary and quaternary alloys. Corrosion resistance of the films was evaluated in 3.5% sodium chloride solution in non-deaerated and deaerated conditions by potentiodynamic polarization and electrochemical impedance (EIS) methods. Lower corrosion current density values were obtained for the coatings tested in deaerated condition. EIS studies showed that higher charge transfer resistance values were obtained for binary Ni-P coatings compared to ternary or quaternary coatings. For all the coatings a gradual increase in the anodic current density had been observed beyond 740 mV. In deaerated condition all the reported coatings exhibited a narrow passive region and all the values of E p , E tp and i pass were very close showing no major changes in the electrochemical behavior. In the non-deaerated conditions no passivation behavior had been observed for all these coatings

  20. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  1. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  2. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Hyun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO 3 ) 2 + 3 mM NH 4 H 2 PO 4 . Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings

  3. Corrosion monitoring of the AA2024 alloy in NaCl solutions by electrochemical noise measurements

    International Nuclear Information System (INIS)

    Aballe, A.; Bethencourt, M.; Botana, F.J.; Marcos, M.; Rodriguez-Chacon, M.A.

    1998-01-01

    The behaviour of the AA2024 alloy against corrosion in 3.5% NaCl solution has been monitored. In this environment the alloy can be easily damaged under small anodic polarizations. Linear Polarization, electrochemical impedance, spectroscopy and electrochemical noise measurement have been used as experimental techniques. Data from ENM have been analyzed using statistical parameters and Chaos Theory. The results here obtained suggest that ENM is particularly useful to monitored systems that can be modified using other electrochemical techniques. (Author) 11 refs

  4. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  5. Electrochemical evaluation of zinc effect on the corrosion of nickel alloy in PWR solutions with increasing temperature

    International Nuclear Information System (INIS)

    Alvial M, Gaston; Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Quinan, Marco Antonio D.

    2007-01-01

    The main objective for the addition of zinc acetate to the reactor coolant system of PWRs is to effect radiation dose rate reductions. However, zinc is also added as an approach to mitigate the occurrence or severity of primary water stress corrosion cracking of nickel alloy 600. The mechanism by which zinc affects the corrosion of austenitic nickel-base alloys is by incorporation of zinc into the spinel oxide corrosion films. The purpose of this work is to evaluate the influence of zinc on the corrosion behavior of the nickel alloy 600 in PWR chemical environment (1200 ppm B, 2.2 ppm Li, deoxygenated water) with increasing temperature at room pressure. Electrochemical tests (anodic potentiodynamic polarization and electrochemical impedance spectroscopy) were used to characterize the alloy 600. Two conditions were applied: 0 and 100 ppb zinc and the temperature range was 50 - 90 deg C, at ambient pressure. Potentiodynamic polarization was inefficient to present conclusive results. Impedance measurements showed single semicircle in the Nyquist plane suggesting reduction of the charge transference resistance in zinc-containing solutions. This effect is evident at 90 deg C suggesting prejudicial influence of zinc for the alloy 600 at room pressure. (author)

  6. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  7. The electrochemical corrosion behavior of austenitic alloys, cobalt or nickel based super alloys, structurally hardened martensitic, Inconel, zircaloy, super austenitic, duplex and of Ni-Cr or NTi deposits in tritiated water. 3 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-01-01

    The redox potential of 3 H 2 O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. The steels that are most resistant to this behavior are the super austenitic and super Duplex. To avoid corrosion, another solution is to decompose the radiolytic products by imposing a slight reducing potential. Corrosion inhibitors, which are stable in tritiated water, can be used. (author). 69 refs., 421 figs., tabs

  8. INFLUENCIA DEL TIEMPO DE INMERSIÓN EN SOLUCIÓN SALINA EN EL COMPORTAMIENTO ELECTROQUÍMICO DE LA ALEACIÓN COMERCIAL DE ALUMINIO AA3003H16 | INFLUENCE OF IMMERSION TIME IN SALINE SOLUTION ON ELECTROCHEMICAL BEHAVIOR OF COMMERCIAL ALUMINUM ALLOY AA3003H16

    Directory of Open Access Journals (Sweden)

    Solange Ysbeth Paredes-Dugarte

    2015-11-01

    Full Text Available The behavior of AA3003H16 aluminum alloy was analyzed in a saline environment. The corrosion rate of the alloy at different exposure times (12 h, 1, 2, 4, 6 and 8 days in the corrosive medium was determined by electrochemical technique of Tafel extrapolation. The corrosion damage morphology was examined by optical microscopy and scanning electron microscopy with energy dispersive X-ray microanalysis. Results show that corrosion speed of alloy AA3003H16 increased with time of exposure. Such behavior was attributed not only to the change in the natural oxide film, but also to the characteristics of the intermetallic particles and the aluminum matrix. The corrosion attack nucleated preferentially at the periphery of the intermetallic particles α-Al (FeMn Si and β-Al (FeMn. The exposure time in the corrosive medium does not influence the morphology of the attack, showing small and large bites from the early hours of immersion in saline solution.

  9. Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution

    International Nuclear Information System (INIS)

    Luo, Hong; Gao, Shujun; Dong, Chaofang; Li, Xiaogang

    2014-01-01

    Highlights: • A considerably thinner n-type passive film is observed on the Alloy-59. • The passive film formed in air was thicker than that formed in acid solution. • Primary constituents of passive film in air and acid solution are (Cr, Ni)-oxides and (Cr, Ni) hydroxides, respectively. - Abstract: The electrochemical behaviour and passive film properties of the Alloy 59 in sulfuric acid solution was evaluated by the potentiodynamic electrochemical measurements, electrochemical impedance spectroscopy, Mott-Schottky approach, and ex situ surface analytical technique as X-ray photoelectron spectroscopy (XPS) and Auger Electronic Spectrometer (AES). The results confirmed that the Alloy 59 exhibits well passive behaviour. A considerably thinner n-type passive film is observed on this type alloy. Based on the evaluations of surface composition analysis, the primary constituents of passive film formed in the air and acid solution are different, with the (Cr, Ni)-oxides and (Cr, Ni) hydroxides, respectively

  10. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  11. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  12. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  13. The electrochemical synthesis of poly(pyrrole-co-o-anisidine) on 3102 aluminum alloy and its corrosion protection properties

    International Nuclear Information System (INIS)

    Mert, B. Dogru; Yazici, B.

    2011-01-01

    Research highlights: → The electrochemical synthesis of strongly adherent, uniform polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) coatings were successfully achieved on 3102 aluminum alloy from 0.1 M monomer (pyrrole and pyrrole:o-anisidine, 8:2) containing oxalic acid by means of the cyclic voltammetry technique. → The results were showed that the water permeation of copolymer coating is lower than PPy. → This study was showed that copolymer is suitable coating for protection of 3102 Al alloy against corrosion. - Abstract: The electrochemical syntheses of polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) were achieved on 3102 aluminum alloy (Al) from 0.1 M monomer (pyrrole:o-anisidine, 8:2) containing 0.4 M oxalic acid solution using the cyclic voltammetry technique. The synthesized films were characterized by FT-IR spectroscopy. The thermal stability of films was determined by thermogravimetric analysis (TGA) technique. Surface morphologies were characterized by scanning electron microscope (SEM) images. The potential of zero charge (pzc) of Al was determined using electrochemical impedance spectroscopy (EIS). The corrosion behavior of samples was investigated with open circuit potential (E ocp )-time, EIS, and anodic polarization techniques. It was found that copolymer coated Al provides better barrier property against of corrosion in 3.5% NaCl solution.

  14. Corrosion behavior of Ti-13Nb-13Zr alloy used as a biomaterial

    International Nuclear Information System (INIS)

    Niemeyer, T.C.; Grandini, C.R.; Pinto, L.M.C.; Angelo, A.C.D.; Schneider, S.G.

    2009-01-01

    Titanium alloys were developed as an alternative to stainless steels and have been extensively used as biomaterials ever since. One of these alloys is Ti-13Nb-13Zr (TNZ), a near-beta phase alloy containing elements with excellent biocompatibility. The main advantage of the TNZ alloy, compared to other titanium alloys, such as Ti-6Al-4V and Ti-6Al-7Nb, widely used as biomaterials, is its low elasticity modulus, closer to that of bone, and the absence of aluminum and vanadium, which have been reported to cause long-term adverse effects. In this paper, the corrosion and electrochemical behavior of TNZ alloy (as cast and after oxygen charge) was studied in a PBS solution. The results showed that, with the oxygen load, there is a significant reduction of the anodic current in almost the whole potential spam explored in this work, meaning that the corrosion rate decreases when the doping is performed.

  15. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  16. Effect of Ce addition on the mechanical and electrochemical properties of a lithium battery shell alloy

    International Nuclear Information System (INIS)

    Zhang, Junchao; Ding, Dongyan; Xu, Xinglong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Huang, Yuanwei; Tang, Jinsong

    2014-01-01

    Highlights: • Fabrication of Ce-free and Ce-containing Al–Cu–Mn–Fe–Mg alloy. • TEM, tensile and electrochemical characterization of the alloys. • Ce element greatly affects the precipitation of the alloy. • Ce element had great impact on the tensile strength and corrosion potential of the alloys. - Abstract: Due to severe application environment lithium battery shell of new-energy automotives requires increasing demands for using high performance aluminum alloys. In the present work, effect of Ce addition on the microstructure, tensile and electrochemical properties of an Al–Cu–Mn–Mg–Fe alloy were investigated through using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile tests and electrochemical tests. The experimental results indicated that the addition of Ce element could promote the precipitation of second phases. With addition of 0.36% Ce, high melting point Al 8 Cu 4 Ce phase and many Al 20 Cu 2 Mn 3 particles could be found. In addition, the precipitation of conventionally dominant phase of Al 2 Cu could be suppressed in alloy. The Ce addition was found to result in enhanced tensile strength and improved corrosion resistance

  17. Effect of Ce addition on the mechanical and electrochemical properties of a lithium battery shell alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junchao [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Xinglong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2014-12-25

    Highlights: • Fabrication of Ce-free and Ce-containing Al–Cu–Mn–Fe–Mg alloy. • TEM, tensile and electrochemical characterization of the alloys. • Ce element greatly affects the precipitation of the alloy. • Ce element had great impact on the tensile strength and corrosion potential of the alloys. - Abstract: Due to severe application environment lithium battery shell of new-energy automotives requires increasing demands for using high performance aluminum alloys. In the present work, effect of Ce addition on the microstructure, tensile and electrochemical properties of an Al–Cu–Mn–Mg–Fe alloy were investigated through using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile tests and electrochemical tests. The experimental results indicated that the addition of Ce element could promote the precipitation of second phases. With addition of 0.36% Ce, high melting point Al{sub 8}Cu{sub 4}Ce phase and many Al{sub 20}Cu{sub 2}Mn{sub 3} particles could be found. In addition, the precipitation of conventionally dominant phase of Al{sub 2}Cu could be suppressed in alloy. The Ce addition was found to result in enhanced tensile strength and improved corrosion resistance.

  18. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    International Nuclear Information System (INIS)

    Rocca, E.; Juers, C.; Steinmetz, J.

    2010-01-01

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO 2 or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  19. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, E. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)], E-mail: emmanuel.rocca@lcsm.uhp-nancy.fr; Juers, C.; Steinmetz, J. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)

    2010-06-15

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO{sub 2} or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  20. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  1. Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Han, Min Su; Woo, Yong Bin [Mokpo Maritime Univ., Mokpo (Korea, Republic of)

    2013-05-15

    In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

  2. Anodic solubility and electrochemical machining of hard alloys on the base of chromium and titanium carbides

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A D; Klepikov, A N; Malofeeva, A N; Moroz, I I

    1985-01-01

    The regularities of anodic behaviour and electrochemical machining (ECM) of the samples of three materials with the following compositions: 25% of Cr/sub 3/C/sub 2/, 15% of Ni, 70% of TiC, 25% of Ni, 5% of Cr, 70% of TiC, 15% of Ni, 15% of Mo are investigated. It is shown that the electrochemical method is applicable to hard alloys machining on the base of chromium and titanium carbides, the machining of which mechanically meets serious difficulties. The alloys machining rate by a mobile cathode constitutes about 0.5 mm/min.

  3. The effect of metallic oxide deposition on the electrochemical behaviour of Al-Zn-Mg-Sn alloy in natural tropical seawater

    Science.gov (United States)

    Din Yati, M. S.; Nazree Derman, Mohd; Isa, M. C.; Y Ahmad, M.; Yusoff, N. H. N.; Muhammad, M. M.; Nain, H.

    2014-06-01

    The potential of aluminium alloys as anode materials in cathodic protection system has been explored and a significant improvement has been achieved. However, for marine application, it is quite difficult to maintain continuous activation process due to passivation behavior of aluminum alloys. Therefore, to choose the best activation mechanism for aluminium alloy in marine environment, it has to be considered from various points such as alloy composition and surface treatment. This paper report the effect of metallic ruthenium oxide (RuO2) deposition on the surface of as-cast Al-Zn-Mg-Sn alloy and to study the effect of its presence on the electrochemical behavior using direct current (DC) electrochemical polarization and current capacity measurement. The morphology and topography of corroded surface were studied by the aid of scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) respectively. Results from this study showed that the presence of intermetallic compound (Mg2Sn) and also mixed metal oxide compound (Al2O3 and RuO2) on the alloy surface has been very useful in improving electrochemical reaction and charge transfer activities in chloride containing solution. This study also showed that RuO2 catalytic coating applied on the surface of Al-Zn-Mg-Sn alloy has slightly increased the corrosion current density compared to Al-Zn-Mg-Sn without RuO2. The corrosion morphology and topography of corroded surface of Al-Zn-Mg-Sn alloy deposited with RuO2 was found more uniform corrosion attack with the formation of porous and fibrous mud-like crack on outer layer. Based on surface morphology and 3D topographic studies, these features were believed to facilitate ionic species adsorption and diffusion through corrosion product layer at solution-alloy interface. Deposited RuO2 films also was found to increase of current efficiency by more than 10%.

  4. Microstructural, mechanical and electrochemical behaviour of a 7017 Al–Zn–Mg alloy of different tempers

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Prasanta Kumar, E-mail: prasantonnet55@yahoo.com; Ghosh, M.M.; Ghosh, K.S., E-mail: ksghosh2001@yahoo.co.uk

    2015-06-15

    The aim of the investigation is to assess the microstructural features and associated physical, mechanical and electrochemical properties of a 7017 Al–Zn–Mg alloy of various tempers. A 7017 Al–Zn–Mg alloy was subjected to different ageing schedules to produce under-(T4), peak-(T6), over-(T7) and highly over-aged tempers. Optical microscopy, hardness measurement, electrical conductivity measurement, tensile testing and SEM fractographs, differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and electrochemical polarization studies have been used to characterize the alloy tempers. Hardness measurement and tensile testing showed the characteristic age hardening phenomenon of aluminium alloys. Optical and TEM micrographs have revealed the variation in size of matrix strengthening η′ (MgZn{sub 2}) and also the size and distribution of grain boundary η (MgZn{sub 2}) precipitate with ageing time. DSC thermograms exhibiting exothermic and endothermic peaks indicated the characteristic solid state reaction sequence of the 7017 alloy. Potentiodynamic polarization study of the 7017 alloy of various tempers in 3.5 wt.% NaCl solution at near neutral pH showed typical active metal dissolution behaviour, but at pH 12 an active–passive–transpassive transition behaviour has been observed. - Graphical abstract: TEM micrograph of the 7017 aluminium alloy of various tempers (a, b) under aged (T4), (c, d) peak aged (T6), (e, f) over aged (T7) and (g, h) highly over-aged. Display Omitted - Highlights: • 7017 Al-Zn-Mg alloy was subjected to different artificial ageing treatments. • Characterization of 7017 alloy tempers by hardness, tensile, DSC, TEM and electrochemical behaviour. • Structure-properties relationship of the 7017 Al-Zn-Mg alloy of various tempers.

  5. Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions

    International Nuclear Information System (INIS)

    Bai, Y.J.; Wang, Y.B.; Cheng, Y.; Deng, F.; Zheng, Y.F.; Wei, S.C.

    2011-01-01

    The corrosion behavior of Ti-Nb dental alloy in artificial saliva with and without the addition of lactic acid and sodium fluoride was investigated by electrochemical techniques, with the commercial Titanium-molybdenum alloy (TMA) as a comparison. The chemical composition, microstructure and constitutional phase were characterized via energy dispersive spectrometry, optical microscope and X-ray diffraction, meanwhile the open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements were carried out to study the corrosion resistance of experimental alloys, with the corroded surface being further characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the corrosion behavior of Ti-Nb alloy was similar to those TMA alloy samples in both artificial and acidified saliva solutions, whereas statistical analysis of the electrochemical impedance spectroscopy and polarization parameters showed Ti-Nb alloy exhibited better corrosion resistance in fluoridated saliva and fluoridated acidified saliva. SEM observation indicated that TMA alloy corroded heavily than Ti-Nb alloy in fluoride containing saliva. XPS surface analysis suggested that Nb 2 O 5 played an important role in anti-corrosion from the attack of fluoride ion. Based on the above finding, Ti-Nb alloy is believed to be suitable for the usage in certain fluoride treated dental works with excellent corrosion resistance in fluoride-containing oral media.

  6. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  7. Electrochemical assessment of some titanium and stainless steel impact dental alloys

    International Nuclear Information System (INIS)

    Echavarria, A.; Arroyave, C.

    2003-01-01

    Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy) with immersion times of 30 d. Results were simulated as a sandwich system composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed. (Author) 22 refs

  8. Calculation methods for dissolution rate of multicomponent alloys during electrochemical machining

    International Nuclear Information System (INIS)

    Dikusar, A.I.; Petrenko, V.I.; Dikusar, G.K.; Ehngel'gardt, G.R.; Michukova, N.Yu.

    1981-01-01

    The possibility of theoretical calculation of metal dissolution rate during electrochemical mashining is considered. Two calculation techniques are compared at the example of two-component W-Re, Ni-W, Mo-Re alloys, namely: ''charge superposition'' and ''weight percents''. It is concluded that the technique of ''charge superposition'' is the only grounded calculation technique of specific rates of dissolution for alloys [ru

  9. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yaokun; He, Siyu; Wang, Diangang, E-mail: wangdg@sdu.edu.cn; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong, E-mail: czchen@sdu.edu.cn

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions.

  10. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    International Nuclear Information System (INIS)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions

  11. Effect of microstructure on corrosion behavior of Ag-30Cu-27Sn alloy in vitro media

    International Nuclear Information System (INIS)

    Salehisaki, Mehdi; Aryana, Maryam

    2014-01-01

    Highlights: • High cooling rates decrease the number of Ag intermetallic particles in Cu-rich phase. • Increasing cooling rate improves corrosion behavior of Ag-30Cu-27Sn dental alloy. • Cathode/anode ratio in Cu-rich phases determines the corrosion behavior of alloy. - Abstract: In the present work, three simple heat treatment cycles were used to study the effects of microstructure on electrochemical corrosion behavior of Ag-30Cu-27Sn dental alloy. The electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of as-cast and heat treated samples in synthetic saliva solution. The presence of intermetallic compounds were studied by X-ray diffraction method (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDAX). The microstructural observations and electrochemical corrosion results revealed that, increasing the cooling rate improves the corrosion behavior of under investigation samples. Improvement of the corrosion behavior is attributed to reducing the area of fine distributed Ag 3 Sn islands in the Cu-rich matrix which decrease the cathode/anode ratio of microgalvanic cells

  12. Electrochemical polarization measurements on pitting corrosion susceptibility of nickel-rich Alloy 825

    International Nuclear Information System (INIS)

    McCright, R.D.; Fleming, D.L.

    1991-10-01

    Alloy 825 contains approximately 40% Ni, 30% Fe, 20% Cr, 3.5% Mo, 2% Cu, and 1% Ti. Alloy 825 has a number of performance features that make it attractive as a candidate material for nuclear waste containers. However, under certain environmental conditions Alloy 825 is susceptible to localized forms of corrosion, and the focus of this paper is determination of those conditions. Electrochemical polarization was used to determine the critical potential for passive film breakdown, a process which leads to localized corrosion attack. Results indicated that quite high levels of chloride ion concentrations coupled with low pH are required to lower the critical potential to approach the corrosion potential

  13. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.

    Science.gov (United States)

    Zhou, F Y; Wang, B L; Qiu, K J; Li, L; Lin, J P; Li, H F; Zheng, Y F

    2013-02-01

    In this study, the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Zr-Mo alloys as a function of Mo content after solution treatment were systemically investigated to assess their potential use in biomedical application. The experimental results indicated that Zr-1Mo alloy mainly consisted of an acicular structure of α' phase, while ω phase formed in Zr-3Mo alloy. In Zr-5Mo alloy, retained β phase and a small amount of precipitated α phase were observed. Only the retained β phase was obtained in Zr-10Mo alloy. Zr-1Mo alloy exhibited the greatest hardness, bending strength, and modulus among all experimental Zr-Mo alloys, while β phase Zr-10Mo alloy had a low modulus. The results of electrochemical corrosion indicated that adding Mo into Zr improved its corrosion resistance which resulted in increasing the thermodynamic stability and passivity of zirconium. The cytotoxicity test suggested that the extracts of the studied Zr-Mo alloys produced no significant deleterious effect to fibroblast cells (L-929) and osteoblast cells (MG 63), indicating an excellent in vitro biocompatibility. Based on these facts, certain Zr-Mo alloys potentially suitable for different biomedical applications were proposed. Copyright © 2012 Wiley Periodicals, Inc.

  14. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  15. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    Andreatta, F.

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a

  16. Topographic and Electrochemical Ti6Al4V Alloy Surface Characterization in Dry and Wet Reciprocating Sliding

    Directory of Open Access Journals (Sweden)

    Z. Doni

    2013-09-01

    Full Text Available This present paper shows the behavior of functional integrity of the state Ti6Al4V alloy under reciprocating sliding wear conditions in acomparative way for two different counter materials, steel and ceramicballs in dry and corrosive environment (3.5% NaCl. The surface integrity analysis of the dry reciprocating wear tests was based on the evolution of The roughness parameters with the applied load. In the case of reciprocating wear tests in corrosive environment the surface integrity analysis was based on electrochemical parameters. Comparative analysis of the evolution of the roughness parameters with the applied load shows a higher stability of the Ti6Al4V/Al2O3 contact pair, while from the point of view of the electrochemical parameters the Tribological properties are worse than Ti6Al4V/steel ball contact pair.

  17. A cell for the controllable thermal treatment and electrochemical characterisation of single crystal alloy electrodes

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Chorkendorff, Ib

    2012-01-01

    be performed in this cell. These include preparation and basic voltammetric characterisation of Cu/Pt(111) near-surface and surface alloys where monolayer amounts of Cu are located in the 1st and 2nd layers, respectively. The cell can also be useful for “electrochemical atomic layer epitaxy” to assemble...... multilayers using repetitive underpotential deposition....

  18. Electrochemical migration of lead-free solder alloys in Na2SO4 environment

    DEFF Research Database (Denmark)

    Medgyes, Balint; Ádám, Sándor; Tar, Lajos

    2017-01-01

    The effect of sulphate ion concentration on electrochemical migration of lead-free solder alloys was investigated with the use of water drop tests, by applying an in-situ optical and electrical inspection system. According to the Mean-Time-To-Failure (MTTF) values it was found that in the case of...

  19. Application of spectral analysis of the electrochemical noise to the investigation of aluminium alloy pitting corrosion

    International Nuclear Information System (INIS)

    Bataillon, Christian

    1987-01-01

    The objective of this research is to decode (at least partially) the nature of the information contained in the electrochemical noise associated with the pitting corrosion phenomenon in aluminium alloys. After a general presentation of aluminium and its alloys and a report of a bibliographical study on the electrochemical noise, the author gives an overview of a theoretical approach of stochastic phenomena, and of an experimental approach. Then, the experimental investigation of the electrochemical noise in the case of pitting corrosion leads to a noise control law, to a study of the structure of pitting growth, and to the elaboration of a procedure of assessment of spectral characteristics of this noise. The author reports a systematic study of the electrochemical noise with respect to the parameters of the control law. Results allow a quantitative characterization of pitting corrosion resistance of the studied alloys, notably by using the kinetic aspect of pitting growth and the structure of pitting corrosion. The author discusses the physicochemical nature of random fluctuations which build up the noise. He proposes a more precise explanation of phenomena related to initiation and propagation of pitting corrosion on aluminium alloys in marine environment [fr

  20. Electrochemical impedance spectroscopy on Co-Cr-Mo alloy in two media simulating physiological liquid. Caractérisation par spectroscopie d'impédance électrochimique d'un alliage de Co-Cr-Mo dans différents milieux simulant le liquide physiologique.

    OpenAIRE

    Geringer , Jean; Normand , Bernard; Diemiaszonek , Robert; Alémany-Dumont , Catherine; Mary , Nicolas

    2007-01-01

    National audience; Co-Cr-Mo is an alloy which allows manufacturing orthopedic implants, especially hip total joint prostheses. This alloy has good tribological and biocompatibility properties. This work aims at studying electrochemical behavior of this alloy. Moreover, measurements reproductibility has been improved: polarization and electrochemical impedance spectroscopy. Measurements have been carried out with phosphate buffered solution and this one containing albumin, 1 g.L-1. Three diffe...

  1. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  2. Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications.

    Science.gov (United States)

    Tsao, L C

    2015-01-01

    The aim of this study was to investigate the effects of Sn content on the microstructure and corrosion resistance of Ti7CuXSn (x=0-5 wt.%) samples. The corrosion tests were carried out in 0.9 wt.% NaCl solution at 25 °C. The electrochemical corrosion behavior of the Ti7CuXSn alloy samples was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and equivalent circuit analysis. The resulting impedance parameters and polarization curves showed that adding Sn improved the electrochemical corrosion behavior of the Ti7CuXSn alloy. The Ti7CuXSn alloy samples were composed of a dual-layer oxide consisting of an inner barrier layer and an outer porous layer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution.

    Science.gov (United States)

    Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M

    2016-03-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Passive behavior of magnesium alloys (Mg-Zr) containing rare-earth elements in alkaline media

    International Nuclear Information System (INIS)

    Pinto, R.; Ferreira, M.G.S.; Carmezim, M.J.; Montemor, M.F.

    2010-01-01

    The passive behavior of magnesium alloys ZK31, EZ33 and WE54 was studied in alkaline media (NaOH - pH 13) in the presence and absence of chloride ions. The electrochemical properties were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and capacitance measurements. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed for the study of the chemical composition and surface morphology of the surface films, respectively. The electrochemical impedance results revealed that the film formed on the surface of the three alloys is characterized by an increasing resistance, which stabilized with time. In the absence of chloride the film resistance was identical for all the three alloys. However, in the presence of chloride, the resistance of the film formed on the EZ33 alloy dropped nearly one order of magnitude comparatively to the other alloys. Generally, in the presence of chloride there was a decrease of the conductive character of the film. The films are homogeneous and, according to the XPS results, the outer layer seemed mainly composed of Mg(OH) 2 and the internal layer composed of MgO, independently of the presence of chloride. The AFM study revealed that the presence of chloride affected film morphology, namely nano-crystallites dimensions and aggregates size that increased.

  5. Electrochemical Characterization of Surface Reactions on Biomedical Titanium alloys

    OpenAIRE

    Alkhateeb, Emad Hashim

    2008-01-01

    Titanium and its alloys are successfully used as implant materials for dental, orthopedic and osteosynthesis applications. The processes that take place at the implant tissue interface are important for the acceptance and integration of the implant. This thesis is divided into two parts: the first part deals with surface modification of titanium to improve the osseointegration, and the second part studies metastable pitting of titanium and its alloys. The weakly attached layer of a bone-like ...

  6. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  7. Potentiodynamic polarization study of the corrosion behavior of palladium-silver dental alloys.

    Science.gov (United States)

    Sun, Desheng; Brantley, William A; Frankel, Gerald S; Heshmati, Reza H; Johnston, William M

    2018-04-01

    Although palladium-silver alloys have been marketed for over 3 decades for metal-ceramic restorations, understanding of the corrosion behavior of current alloys is incomplete; this understanding is critical for evaluating biocompatibility and clinical performance. The purpose of this in vitro study was to characterize the corrosion behavior of 3 representative Pd-Ag alloys in simulated body fluid and oral environments and to compare them with a high-noble Au-Pd alloy. The study obtained values of important electrochemical corrosion parameters, with clinical relevance, for the rational selection of casting alloys. The room temperature in vitro corrosion characteristics of the 3 Pd-Ag alloys and the high-noble Au-Pd alloy were evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. After simulated porcelain firing heat treatment, 5 specimens of each alloy were immersed in the electrolytes for 24 hours. For each specimen, the open-circuit potential (OCP) was first recorded, and linear polarization was then performed from -20 mV to +20 mV (versus OCP) at a rate of 0.125 mV/s. Cyclic polarization was subsequently performed on 3 specimens of each alloy from -300 mV to +1000 mV and back to -300 mV (versus OCP) at a scanning rate of 1 mV/s. The differences in OCP and corrosion resistance parameters (zero-current potential and polarization resistance) among alloys and electrolyte combinations were compared with the 2-factor ANOVA (maximum-likelihood method) with post hoc Tukey adjustments (α=.05). The 24-hour OCPs and polarization resistance values of the 3 Pd-Ag alloys and the Au-Pd alloy were not significantly different (P=.233 and P=.211, respectively) for the same electrolyte, but significant differences were found for corrosion test results in different electrolytes (Palloy and electrolyte (P=.249 and P=.713, respectively). The 3 Pd-Ag silver alloys appeared to be resistant to chloride ion corrosion, and passivation and de-alloying were identified for these

  8. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  10. The effect of hydrogen peroxide on the electrochemical behaviour of Ti-13Nb-13Zr alloy in Hanks' solution

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz de Assis

    2006-12-01

    Full Text Available Titanium alloys are largely used for biomedical applications mainly due to their high corrosion resistance resulting from the protective oxide film formed on their surface. The literature, however, has pointed out discrepancies between in vitro tests and in vivo tests. These discrepancies have been ascribed to hydrogen peroxide (H2O2 generated by inflammatory reactions. In this investigation the electrochemical behaviour of a Ti-13Nb-13Zr alloy, which was developed as material for implants, has been evaluated in Hanks' solution, with and without H2O2. The evolution of the electrochemical behavior was monitored by electrochemical impedance spectroscopy (EIS and the results were fitted to an equivalent circuit that simulates an oxide film as a duplex layer structure composed of an inner barrier layer and an outer porous layer. In the solution without H2O2, the oxide film was very stable during the whole test period. On the other hand, in the solution with H2O2, the EIS results varied significantly, indicating a progressive decrease in the barrier layer resistance until 35 days which was followed by the restoration of the barrier layer protective characteristics against corrosion, either due to its growth or to its self-healing after partial consumption of the oxidant agent. The oxide film formed on the Ti alloy samples after 125 days of immersion in Hanks' solution, either with or without H2O2 was analyzed by XPS. The XPS results revealed the presence of TiO and TiO2 on the samples immersed in the two electrolytes, however, Ti2O3 was only found on the samples exposed to the H2O2 containing solution.

  11. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Effect of composition on the electrochemical behavior of austenitic stainless steel in Ringer's solution

    International Nuclear Information System (INIS)

    Bandy, R.; Cahoon, J.R.

    1977-01-01

    Potentiodynamic cyclic polarization tests on Type 316L stainless steel, a common orthopedic implant alloy, in Ringer's solution show considerable hysteresis and a protection potential more active than the open circuit corrosion potential. This implies that chances of repassivation of actively growing pits in this alloy are limited. Tests in Ringer's solution containing hydrochloric acid show that the open circuit potential of Type 316L steel in this solution may exceed in the noble direction the critical pitting potential in the same solution. This signifies that spontaneous breakdown of passivity may occur in a bulk environment which grossly simulates the electrochemical environment within a crevice. Alloying elements such as Mo, Ni, Cr, all improve the corrosion resistance of Type 316L stainless steel in that the critical pitting potential shifts in the noble direction in the alloys having any of the three alloying elements in a higher proportion than in Type 316L steel. Polarization tests in Ringer's solution on a 20% Cr, 25% Ni, 4.5% Mo, 1.5% Cu austenitic stainless steel, having Mo, Cr, and Ni--all in higher proportions than in Type 316L steel, does not show any critical pitting potential or hysteresis at potentials below that for dissociation of water. However, test in 4% NaCl solution at 60 C, a more aggressive chloride environment than Ringer'ssolution, reveals considerable hysteresis and a very active protection potential, indicating that this behavior is a common feature of austenitic stainless steel in sufficiently aggressive, chloride media

  13. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  14. Marine bio-fouling of different alloys exposed to continuous flowing fresh seawater by electrochemical impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Khalid Al-Muhanna

    2016-07-01

    Full Text Available The petroleum industry and desalination plants suffer from marine bio-fouling problems that have a major role in the stimulation of the corrosion process. Thus, the aim of this study was to investigate the effect of the micro and the macro-organisms, on the corrosion behavior of different alloys used in Kuwait’s industries. The alloys used in this study were; sanicro 28, stainless steel 316L, Cu–Ni 70–30, and titanium. The electrochemical impedance spectroscopy was used in this study in order to determine the corrosion susceptibility of different alloys exposed to continuous fresh seawater. This was achieved by calculating the charge transfer resistance of the metal surface and the resistance of the solution. The total exposure time of the tests was about 180 days. The visual inspection of the tested samples, showed a bio-film formation on the surface of these samples. Also, it was observed that the stainless steel 316, sanicro 28, Cu–Ni 70–30, and titanium alloys exhibited good corrosion resistance.

  15. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Barchiche, C.-E.; Rocca, E.; Juers, C.; Hazan, J.; Steinmetz, J.

    2007-01-01

    Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na 3 PO 4 .12 H 2 O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau

  16. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy

    Directory of Open Access Journals (Sweden)

    Hansong LI

    2018-03-01

    Full Text Available GH4169 alloy is one of the most commonly used materials in aero engine turbine blades, but its machinability is poor because of its excellent strength at high temperatures. Electrochemical machining (ECM has become a common method for machining this alloy and other difficult-to-machine materials. Electrochemical grinding (ECG is a hybrid process combining ECM and conventional grinding. In this paper, investigations conducted on inner-jet ECG of GH4169 alloy are described. Two types of inner-jet ECG grinding wheels were used to machine a flat bottom surface. The machining process was simulated using COMSOL software, and machining gaps under different machining parameters were obtained. In addition, maximum feed rates and maximum material removal rates under different machining parameters were studied experimentally. The maximum sizes and the uniformity of the distributions of the gaps machined by the two grinding wheels were compared. The effects of different applied voltages on the machining results were also investigated. Keywords: Electrochemical grinding, GH4169 alloy, Inner-jet, Material removal rate, Maximum feed rate

  17. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases

    Science.gov (United States)

    Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang

    2013-01-01

    Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705

  18. Electrochemical behaviour of aluminum alloy containing various stanum concentration tested in tropical seawater

    International Nuclear Information System (INIS)

    Siti Radiah Mohd Kamarudin; Muhamad Daud; Mohd Shariff Satar

    2004-01-01

    A study has been carried out to investigate the electrochemical behaviour of sacrificial anodes with different Sh concentration in tropical seawater environment. In this work, samples of Aluminum alloy with the addition of Sn in a range of 1. 0% - 1. 7% were tested in tropical seawater at room temperature. Tafel technique was used to produce a graph of the measured current versus potential for each different Sh concentration of aluminum alloy. The results show that the variation in alloy compositions affected the values of corrosion rate, corrosion current density and potential compared to alloy without Sn content. Furthermore, it was found that small addition of Sn successfully increased aluminum ion dissolution into seawater by producing a higher value of corrosion current density and corrosion rate. (Author)

  19. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  20. Evaluation of the corrosion behavior of the al-356 alloy in NaCl solutions

    Directory of Open Access Journals (Sweden)

    Mauricio Vásquez Rendón

    2011-01-01

    Full Text Available Cellular metals are a new class of materials with promising applications and a unique combination of physical, chemical and mechanical properties. The Al-356 alloy is used to manufacture metal foams from NaCl preforms. Despite the usefulness of these materials, their performance may be affected by corrosion due to residual salt. This paper reports the study of the behavior of the Al-356 alloy in chloride solutions by electrochemical techniques in rotating disk electrode. The cathodic reaction of oxygen reduction is the crucial stage of process dissolution of the material, which shows that is the oxygen transport which limits the corrosion process.

  1. Passivation behavior of AB{sub 5}-type hydrogen storage alloys for battery electrode application

    Energy Technology Data Exchange (ETDEWEB)

    Meli, F. [Fribourg Univ. (Switzerland). Inst. de Physique; Sakai, T. [Fribourg Univ. (Switzerland). Inst. de Physique; Zuettel, A. [Fribourg Univ. (Switzerland). Inst. de Physique; Schlapbach, L. [Fribourg Univ. (Switzerland). Inst. de Physique

    1995-04-15

    In many applications, AB{sub 5} type hydrogen storage alloys show passivation behavior, i.e. when fully discharged, metal hydride electrodes show (especially at higher temperatures) a decrease in activity and therefore a decrease in capacity at normal discharge currents for ensuing cycles. Passivation may continue to the point where activity becomes so low that the capacity is no longer accessible. Electrochemical measurements were taken of two different AB{sub 5}-type alloys, one with manganese and one without manganese (LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.4} and LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.3}Mn{sub 0.1}). Both alloys showed passivation behavior after remaining in the discharged state. The alloy with manganese showed a stronger tendency to passivation which is in contradiction with earlier observations. Photoelectron spectroscopic analysis together with sputter depth profiling was used to investigate the surface composition of samples which had undergone different surface pretreatments. Surface analysis of electrodes in the passivated state shows a lower content of metallic nickel and a thicker nickel surface oxide film. We attribute the low electrochemical kinetics of the alloys after passivation to the loss of metallic nickel and/or cobalt at the electrode-electrolyte interface. ((orig.))

  2. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  3. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    International Nuclear Information System (INIS)

    Wu, Fengxia; Liang, Jun; Peng, Zhenjun; Liu, Baixing

    2014-01-01

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion

  4. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-01-01

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g −1 /366.6 mA h g −1 ) and optimal cycle stability (a specific reversible capacity of 240 mA h g −1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.

  5. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Huang, Hao, E-mail: huanghao@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Cao, Guozhong, E-mail: gzcao@u.washington.edu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States)

    2016-10-15

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.

  6. Electrochemical Behavior of Biologically Important Indole Derivatives

    Directory of Open Access Journals (Sweden)

    Cigdem Karaaslan

    2011-01-01

    Full Text Available Voltammetric techniques are most suitable to investigate the redox properties of a new drug. Use of electrochemistry is an important approach in drug discovery and research as well as quality control, drug stability, and determination of physiological activity. The indole nucleus is an essential element of a number of natural and synthetic products with significant biological activity. Indole derivatives are the well-known electroactive compounds that are readily oxidized at carbon-based electrodes, and thus analytical procedures, such as electrochemical detection and voltammetry, have been developed for the determination of biologically important indoles. This paper explains some of the relevant and recent achievements in the electrochemistry processes and parameters mainly related to biologically important indole derivatives in view of drug discovery and analysis.

  7. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  8. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.

    Science.gov (United States)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg-0.6Ca, Mg-0.55Ca-1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl-aminomethane hydrochloric acid (Tris-HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg-0.55Ca-1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg-0.55Ca-1.74Zn alloy has the potential to be served as a biodegradable implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics

    Directory of Open Access Journals (Sweden)

    Marija Todorović

    2007-10-01

    Full Text Available We have investigated the electrochemical oxidation of a number natural phenolics (salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, quercetin and rutin using cyclic voltammetry. The antioxidant properties of these compounds were also studied. A structural analysis of the tested phenolics suggests that multiple OH substitution and conjugation are important determinants of the free radical scavenging activity and electrochemical behavior. Compounds with low oxidation potentials (Epa lower than 0.45 showed antioxidant activity, whereas compounds with high Epa values (>0.45 act as prooxidants.

  10. Electrochemical polymerization of pyrrole over AZ31 Mg alloy for biomedical applications

    International Nuclear Information System (INIS)

    Srinivasan, A.; Ranjani, P.; Rajendran, N.

    2013-01-01

    Highlights: ► Polymerization of pyrrole over AZ31 Mg was carried out using cyclic voltammetry. ► Pyrrole concentration was optimized to accomplish the adherent and uniform coating. ► Effect of monomer concentration on the surface morphology was discussed. ► Corrosion resistance of AZ31 Mg in SBF was studied as a function of Py concentration. ► PPy coated AZ31 Mg alloy exhibited enhanced corrosion resistance at 0.25 M of Py. -- Abstract: Electrochemical polymerization of pyrrole (Py) from aqueous salicylate solution over AZ31 Mg alloy was carried out using cyclic voltammetry (CV). The effect of monomer concentration on the surface and electrochemical corrosion in simulated body fluid (SBF) were analysed. Attenuated total reflection-infrared (ATR-IR) spectra showed the characteristic ring stretching peaks for polypyrrole (PPy). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited typical cauliflower morphology with rough surface for PPy coated AZ31 Mg alloy. Open circuit potential measurement and potentiodynamic polarization studies revealed that the coating prepared using 0.25 M of Py had positive shift of about 120 mV in corrosion potential and lower corrosion current density (0.03 mA/cm 2 ) compared to other concentrations and uncoated AZ31 Mg alloy (0.25 mA/cm 2 ). Electrochemical impedance spectroscopic (EIS) studies of uncoated and PPy coated Mg alloy in SBF revealed three-time constants behaviour with about one order of increment in impedance value for 0.25 M of Py

  11. Effect of niobium element on the electrochemical corrosion behavior of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanping, E-mail: wuyanping-2@126.com; Wu, Quanwen; Zhu, Shengfa, E-mail: zhushf-306@163.com; Pu, Zhen; Zhang, Yanzhi; Wang, Qinguo; Lang, Dingmu; Zhang, Yuping

    2016-09-15

    Depleted uranium (DU) has many military and civilian uses. However, its high chemical reactivity limits its application. The effect of Nb content on corrosion behavior of DU is evaluated by scanning Kelvin probe and electrochemical corrosion measurements. The Volta potential value of DU and U-2.5 wt% Nb is about the same level, the Volta potential value of U-5.7 wt% Nb has a rise of 370mV{sub SHE} in comparison with DU. The polarization current of U-5.7 wt% Nb alloy is about an order of magnitude of that of DU. The Nb{sub 2}O{sub 5} is the protective layer for the U-Nb alloys. The negative potential of Nb-depleted α phase is the main reason of the poor corrosion resistance of DU and U-2.5 wt% Nb alloy. - Highlights: • New method (scanning Kelvin probe) was used to study the corrosion property. • Three types of corrosion morphologies were found after potentiodynamic polarization. • The effect of impurity elements on corrosion property was mentioned. • The corrosion mechanism of DU and U-Nb alloys was discussed.

  12. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    Science.gov (United States)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  13. Serrated flow behavior in tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jiten, E-mail: das.jiten@gmail.com; Sankaranarayana, M.; Nandy, T.K.

    2015-10-14

    Flow behavior of a tungsten heavy alloy of composition, 90.5 wt% W–7.1 wt% Ni–1.65 wt% Fe–0.5 wt% Co–0.25 wt% Mo was investigated in a temperature range of 223–973 K and strain rate range of 10{sup −5}–10{sup −2} s{sup −1}. In the temperature range of 773–873 K, the stress strain curves were characterized by jerky flow pointing towards Dynamic Strain Ageing (DSA)/Portevin Le-Chatelier's (PLC) effect. Characteristics of DSA were analyzed in detail. Based on the value of activation energy determined from the critical strain method, diffusion of interstitials (carbon, oxygen, nitrogen and hydrogen) were thought to be responsible for the DSA effect. The results were discussed in relation to information existing in this area in tungsten heavy alloys. The study of fracture surface of tensile tested samples (in the range of 823–973 K) showed that the fractographic features, mostly intergranular, predominantly govern the overall ductility of the alloy and do not change except for surface oxidation at relatively higher temperatures.

  14. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  15. Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, N.T.C. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Biaggio, S.R. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Piazza, S. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: piazza@dicpm.unipa.it; Sunseri, C. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Quarto, F. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2004-10-15

    The anodic behaviour of two titanium cast alloys, obtained by fusion in a voltaic arc under argon atmosphere, was analyzed in aerated aqueous solutions having different pH values. In all solutions the alloys, having nominal compositions Ti-50Zr at.% and Ti-13Zr-13Nb wt.%, displayed a valve-metal behaviour, owing to the formation of barrier-type oxide films. Passive films, grown potentiodynamically up to about 9 V, were investigated by photocurrent spectroscopy (PCS) and electrochemical impedance spectroscopy (EIS). These passive layers show photoactivity under anodic polarizations, with optical gaps close to 3.55 and 3.25 eV for the binary and the ternary alloy, respectively, independent of the anodizing electrolyte. Films grown on the binary alloy present insulating behaviour and anodic impedance spectra with one time constant; this was interpreted in terms of a single-layer mixed Ti-Zr oxide enriched in Ti with respect to the alloy composition. Also for the ternary alloy the results are consistent with the formation, upon anodization, of Ti-Nb-Zr mixed oxide films, but they display n-type semiconducting behaviour, owing to their poor content of ZrO{sub 2} groups.

  16. Electrochemical impedance spectroscopy study of the metal hydride alloy/electrolyte junction

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Mathlouthi, Hamadi; Lamloumi, Jilani

    2009-01-01

    The behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 alloy, used as a negative electrode in the Ni-MH batteries, was studied by the electrochemical impedance spectroscopy (EIS), measured at different potentials. The modeling of the EIS spectra allows us to model the interface electrolyte/Ni-MH electrode by a succession of interfaces electrolyte/corrosion film/alloy particles. The various processes and the physics parameters of each interface are discussed and evaluated. When the potential shifts to more negative values, two reactions are in competition: the hydrogen molecular evolution and the hydrogen atomic absorption. The hydrogen diffuses in the bulk of the alloy and the diffusion is not the limiting factor for the hydrogen absorption.

  17. Corrosion behaviour of Alloy 800 in high temperature aqueous solutions: Electrochemical studies

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Villegas, M.; Alvarez, M.G.

    1996-01-01

    The anodic behaviour and passivity breakdown of Alloy 800 in aqueous solutions of sodium chloride, sodium sulphate and sodium bicarbonate were studied by electrochemical techniques in the temperature range from 60 C to 280 C. The pitting resistance and pitting morphology of the alloy in chloride plus sulphate and chloride plus bicarbonate mixtures, at 60 C and 280 C, were also examined. Increasing bicarbonate or sulphate additions to chloride solutions shift the characteristic pitting potential of Alloy 800 to higher values, both at low and high temperatures. Changes in pitting morphology were observed in sulphate containing solutions while the morphology of the attack found in bicarbonate containing solutions was similar to that in pure chloride solutions. Finally, no localized or substantial generalized corrosion was detected in pure sulphate or bicarbonate solutions at any temperature. (orig.)

  18. Electrochemical behavior of some new pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    MUSTAFA LUTFU BERKEM

    2004-09-01

    Full Text Available Electrochemical reduction of two recently synthesized pyrimidine compounds, 1-amino-5-benzoyil-4-phenyl-1H-pyrimidine-2-one (I, and 1-amino-5-benzoil-4-phenyl-1H-pyrimidine-2-thione (II were investigated by cyclic volatmmetry at a hanging mercury drop electrode in aqueous methanol (36 % v/v and in non-aqueous methanol. A series of cathodic peaks without the corresponding anodic peaks were observed for I. As the pH of the solution was increased, some of the cathodic peaks overlapped resulting in the loss of the previously observed peaks. For II, three cathodic peaks and one anodic peak were observed in addition to those observed for I. The peak potentials shifted in the negative direction with increasing pH. This shift was measured over a large pH range (1.80 – 12.30 to determine the pKa values of the compounds. The acidity constants related to the amino groups were 4.80 and 9.80 for I and 5.50 and 9.80 for II. A thiol-thione tautomerization was observed for II, which was more pronounced in the non-aqueous methanol medium. The pK values for both protonation and deprotonation of the thiocarbonyl group were also determined. The pK values were 5.80 and 9.80 for protonation and deprotonation in aqueous methanol and 6.80 and 10.80 in non-aqueous methanol.

  19. Alloy formation during the electrochemical growth of a Ag-Cd ultrathin film on Au(1 1 1)

    International Nuclear Information System (INIS)

    Barrio, M.C. del; Garcia, S.G.; Salinas, D.R.

    2009-01-01

    The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag + or Cd 2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.

  20. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  1. Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy

    International Nuclear Information System (INIS)

    Wang Feng; Xiong Baiqing; Zhang Yongan; Liu Hongwei; Li Zhihui; Li Xiwu; Qu Chu

    2012-01-01

    Highlights: ► Zn–30Al–xCu alloys were synthesized by the spray atomization and deposition technique. ► Immersion test and electrochemical measurements have been used to estimate the corrosion rate and the behavior. ► The result indicates that the 1 wt.% Cu addition displays superior corrosion resistance. - Abstract: In this study, one binary Zn–30Al and three ternary Zn–30Al–Cu alloys were synthesized by the spray atomization and deposition technique. The microstructures of the spray-deposited alloys were investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD). Immersion test, potentiodynamic polarization and electrochemical impedance measurements have been used to estimate the corrosion rate and the behavior. The results indicate that the 1 wt.% Cu addition to spray-deposited Zn–30Al alloy does not make significant change in microstructure. However, with the 2, 4 wt.% Cu additions to the alloy, some ε-CuZn 4 compounds with particle or irregular shapes were observed on the grain boundaries in the microstructures. Immersion test and electrochemical measurements confirmed that the 1 wt.% Cu addition displays superior corrosion resistance, whereas the 2, 4 wt.% Cu additions have a baneful effect on the corrosion behavior.

  2. Polarization behavior of new and used lead alloys in acid sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P.; O' Keefe, T.J. [Univ. of Missouri-Rolla, Materials Research Center and Dept. of Metallurgical Engineering, Rolla, Missouri (United States)

    2001-07-01

    Polarization and Electrochemical impedance were used to study various lead alloys commercially used to electrowin zinc and copper from acidic sulfate solutions. Anode specimens that had been in service at several electrowinning operations were tested and their electrochemical performance was compared to that obtained from new anode samples. Tests were conducted in sulfuric acid. Cyclic voltammetry was used in a potential range in which both Pb{sup +2} and Pb{sup +4} formed stable phases. Selected polarization tests were also made to study a number of variables, including changes in the concentration of cobalt and manganese in the electrolyte. Results showed that the phases formed on the surface of the anode were critical in defining the electrochemical behavior of the anodes. In particular, certain active phases, which were depolarizing were identified on some of the used anodes. It was possible to duplicate some of these phases in the laboratory. (author)

  3. Structural Characteristics and Corrosion Behavior of Bio-Degradable Zn-Li Alloys in Stent Application

    Science.gov (United States)

    Zhao, Shan

    Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn's intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic. In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is implanted into the artery of Sprague-Dawley rats. The completed work includes: Manufactured Zn-Li alloy ingots and sheets via induction vacuum casting, melt spinning, hot rolling deformation, and wire electro discharge machining (wire EDM) technique; processed alloy samples using cross sectioning, mounting, etching and polishing technique; • Characterized alloy ingots, sheets and wires using hardness and tensile test, XRD, BEI imaging, SEM, ESEM, FTIR, ICP-OES and electrochemical test; then selected the optimum composition for in vitro and in vivo experiments; • Mimicked the degradation behavior of the Zn-Li alloy in vitro using simulated body fluid (SBF) and explored the relations between corrosion rate, corrosion products and surface morphology with changing compositions; • Explanted the Zn-Li alloy wire in abdominal aorta of rat over 12 months and studied its degradation mechanism, rate of bioabsorption, cytotoxicity and corrosion product migration from histological analysis.

  4. [The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys].

    Science.gov (United States)

    Wang, Jue; Qiao, Guang-yan

    2013-04-01

    To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (δE) of nickel-chromium alloys in artificial saliva was 30% alloys to the artificial saliva, and the order of the concentrations of metal ions was 0% corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva.

  5. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  6. Exfoliation corrosion of Al-Zn-Mg-Cu-Zr alloy containing Sc examined by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.P.; Liu, X.Y.; He, Y.B.; Li, C.L. [School of Materials Science and Engineering, Central South University, Changsha (China); Pan, Q.L. [School of Materials Science and Engineering, Central South University, Changsha (China); The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Changsha (China); Li, W.B. [School of Materials Science and Engineering, Central South University, Changsha (China); School of Civil Engineering, Hunan City University, Yiyang (China)

    2012-02-15

    The exfoliation corrosion behavior of an Al-Zn-Mg-Cu-Zr alloy containing Sc artificially aged at 120 C for 24 h is studied by macroscopic observation techniques and electrochemical impedance spectroscopy (EIS) measurements. After 48 h immersion, the blisters start bursting and delamination initiates, along with the appearance of two time constants in the impedance diagrams. According to the simulation by equivalent circuit, the corrosion rate decreases sharply and then reaches a steady state, which is due to the change of the solution pH and oxide layer thickness, as well as the accumulation of corrosion products. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Santhi, Kalavathy [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Department of Physics, Women’s Christian College, Chennai 600006 (India); Kumarsan, Dhanapal [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Vengidusamy, Naryanan [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Arumainathan, Stephen, E-mail: stephen_arum@hotmail.com [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)

    2017-07-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  8. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    International Nuclear Information System (INIS)

    Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen

    2017-01-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  9. Investigation on the Structure and Electrochemical Properties of La-Ce-Mg-Al-Ni Hydrogen Storage Alloy

    Directory of Open Access Journals (Sweden)

    Yuqing Qiao

    2013-01-01

    Full Text Available Structure and electrochemical characteristics of La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy have been investigated. X-ray diffraction analyses reveal that the La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy consisted of a (La, MgNi3 phase with the rhombohedral PuNi3-type structure and a LaNi5 phase with the hexagonal CaCu5-type structure. TEM shows that the alloy is multicrystal with a lattice space 0.187 nm. EDS analyse shows that the content of Mg is 3.48% (atom which coincide well with the designed composition of the electrode alloy. Electrochemical investigations show that the maximum discharge capacity of the alloy electrode is 325 mAh g−1. The alloy electrode has higher discharge capacity within the discharge current density span from 60 mA g−1 to 300 mA g−1. Electrochemical impedance spectroscopy measurements indicate that the charge transfer resistance RT on the alloy electrode surface and the calculated exchange current density I0 are 0.135 Ω and 1298 mA g−1, respectively; the better eletrochemical reaction kinetic of the alloy electrode may be responsible for the better high-rate dischargeability.

  10. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    International Nuclear Information System (INIS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-01-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution

  11. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, C., E-mail: canandan@nal.res.in; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution.

  12. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    Directory of Open Access Journals (Sweden)

    Yongseok Jang

    2014-08-01

    Full Text Available The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3− and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD. Electrochemical impedance spectroscopy (EIS was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  13. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents.

    Science.gov (United States)

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W; Yun, Yeoheung

    2014-08-15

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO₃ - ) and mucin in Gamble's solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble's solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  14. Corrosion-electrochemical behavior of metals in alkali solutions

    International Nuclear Information System (INIS)

    Levin, V.A.; Levina, E.Eh.

    1995-01-01

    Results of an investigation into corrosion-electrochemical behaviour of 12Kh18N10T, 10Kh17N13M2T, 08Kh21N6M2T and 15Kh25T steels, 06KhN28MDT and KhN78T alloys as well as NP-2 nickel in sodium, potassium and lithium hydroxide solutions at 95-180 deg C temperatures are considered. It is ascertained, that anode polarization curves of all metals irrespective of hydroxide nature, concentration, temperature, presence of chloride and chlorate additions, are of identic character. The movement of anode polarization curves in the direction of lower current of hydroxide type in NaOH-KOH-LiOH series, temperature and solution concentration reduction at other equal terms. 12 refs.; 6 figs

  15. Localized electrochemical corrosion of nickel-based alloys. Final report

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Oyeleye, O.; Davidson, M.; Dudek, D.; Hatton, T.A.; Tester, J.W.; Helling, R.K.; Erickson, J.C.

    1986-09-01

    The technique of monitoring open-circuit potential over time to study pitting corrosion of Alloy 600 was demonstrated at 95 0 C. Chloride ion and oxygen levels were varied to determine the conditions required for pit initiation and propagation at 25 0 C and 95 0 C. Without applied potential pitting was not observed at 25 0 C in solutions of up to 2.6 M NaCl. At 95 0 C pit initiation occurred above 0.22 M NaCl for a nitrogen sparged system, 0.042 M NaCl for a contaminated air sparged system and 0.059 M for an O 2 sparged system. At 95 0 C initiation followed by propagation was observed at 0.22 M, 0.12 M and 0.11 M NaCl for the N 2 , air and O 2 sparged systems, respectively. A theoretical model, using a hemispherical pit geometry and transport based on the Nernst-Einstein equation, was developed to predict changes in ion concentration, current and pit size. For a pit with an initial radius of 100 A, a fixed potential difference of 0.5 V and constant ionic diffusivities on the order of 10 -5 , cm 2 /sec, the model predicts that the solution within the pit will become saturated with metal chloride within 2 x 10 -7 seconds. The current density increases exponentially with time and reaches a maximum value of 7.2 x 10 4 A/cm 2 at the point of saturation

  16. Studies of the corrosion and cracking behavior of steels in high temperature water by electrochemical techniques

    International Nuclear Information System (INIS)

    Cheng, Y.F.; Bullerwell, J.; Steward, F.R.

    2003-01-01

    Electrochemical methods were used to study the corrosion and cracking behavior of five Fe-Cr alloy steels and 304L stainless steel in high temperature water. A layer of magnetite film forms on the metal surface, which decreases the corrosion rate in high temperature water. Passivity can be achieved on A-106 B carbon steel with a small content of chromium, which cannot be passivated at room temperature. The formation rate and the stability of the passive film (magnetite film) increased with increasing Cr-content in the steels. A mechanistic model was developed to simulate the corrosion and cracking processes of steels in high temperature water. The crack growth rate on steels was calculated from the maximum current of the repassivation current curves according to the slip-oxidation model. The highest crack growth rate was found for 304L stainless steel in high temperature water. Of the four Fe-Cr alloys, the crack growth rate was lower on 0.236% Cr- and 0.33% Cr-steels than on 0.406% Cr-steel and 2.5% Cr-1% Mo steel. The crack growth rate on 0.33% Cr-steel was the smallest over the tested potential range. A higher temperature of the electrolyte led to a higher rate of electrochemical dissolution of steel and a higher susceptibility of steel to cracking, as shown by the positive increase of the electrochemical potential. An increase in Cr-content in the steel is predicted to reduce the corrosion rate of steel at high temperatures. However, this increase in Cr-content is predicted not to reduce the susceptibility of steel to cracking at high temperatures. (author)

  17. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling

    International Nuclear Information System (INIS)

    Hosni, B.; Li, X.; Khaldi, C.; ElKedim, O.; Lamloumi, J.

    2014-01-01

    Highlights: • The Ti 2 Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. • By increasing the temperature the capacity loss, undergoes an increase and it is more pronounced for the 60 °C. • A good correlation is found between the evolutions of the different electrochemical parameters according to the temperature. - Abstract: The structure and the electrochemical hydrogen storage properties of amorphous Ti 2 Ni alloy synthesized by ball milling and used as an anode in nickel–metal hydride batteries were studied. Nominal Ti 2 Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The structural and morphological characterization of the amorphous Ti 2 Ni alloy is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization of the Ti 2 Ni electrodes is carried out by the galvanostatic charging and discharging, the constant potential discharge, the open circuit potential and the potentiodynamic polarization techniques. The Ti 2 Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. The electrochemical discharge capacity of the Ti 2 Ni alloy, during the first eight cycles, and at a temperature of 30 °C, remained practically unchanged and a good held cycling is observed. By increasing the temperature, the electrochemical discharge capacity loss after eight cycles undergoes an increase and it is more pronounced for the temperature 60 °C. At 30 °C, the anodic corrosion current density is 1 mA cm −2 and then it undergoes a rapid drop, remaining substantially constant (0.06 mA cm −2 ) in the range 40–60 °C, before undergoing a slight increase to 70 °C (0.3 mA cm −2 ). This variation is in good agreement with the maximum electrochemical discharge capacity values found for the different temperatures. By increasing the

  18. Electrochemical and metallurgical characterization of ZrCr{sub 1-x}NiMo{sub x} AB{sub 2} metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Erika, Teliz [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); Ricardo, Faccio [Universidad de la República, Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Centro NanoMat, Polo Tecnológico de Pando, Espacio Interdisciplinario, Facultad de Química, Montevideo (Uruguay); Fabricio, Ruiz [Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires (Argentina); Centro Atómico Bariloche , Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN (Argentina); Fernando, Zinola [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); and others

    2015-11-15

    The effects of partial replacement of chromium by molybdenum was studied on the structure and electrochemical kinetic properties of ZrCr{sub 1-x}NiMo{sub x}(x = 0.0, 0.3 and 0.6) metal hydride alloys. The arc-melting prepared alloys were metallurgically characterized by X-ray diffraction and energy dispersive spectroscopy microanalysis, which showed AB{sub 2} (with hexagonal C14 structure) and Zr{sub x}Ni{sub y} (Zr{sub 7}Ni{sub 10}, Zr{sub 9}Ni{sub 11}) phases. After a partial substitution of chromium by molybdenum, secondary phases monotonically increase with the C14 unit cell volume indicating that most of molybdenum atoms locate in the B-site. The alloys were electrochemically characterized using charge/discharge cycling, electrochemical impedance spectroscopy and rate capability experiments that allowed the determination of hydriding reaction kinetic parameters. The presence of molybdenum produces a positive effect for hydrogen diffusion in the alloy lattice, and ZrCr{sub 0.7}NiMo{sub 0.3} alloy depicts the better kinetics associated with a fast activation, lower charge transfer resistance and the best high rate discharge behavior. This fact would be related to a lower diffusion time constant and a bigger value of the product between exchange density current and surface active area. There is a trade-off in the amounts of secondary phase and Laves phases in order to improve the kinetic performance. - Highlights: • Metallurgical characterization evidences the presence of Zr{sub x}Ni{sub y} and C14 phases. • The partial replacement of Cr by Mo promotes the segregation of Zr{sub x}Ni{sub y} phase. • The incorporation of molybdenum improves the kinetics for the hydriding process. • Mo produces a decrease in the diffusion time constant.

  19. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  20. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys.

    Science.gov (United States)

    Han, Mi-Kyung; Kim, Jai-Youl; Hwang, Moon-Jin; Song, Ho-Jun; Park, Yeong-Joon

    2015-09-09

    In this paper, the effects of Nb addition (5-20 wt %) on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys were investigated with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xNb alloys. Phase/microstructure was analyzed using X-ray diffraction (XRD), SEM, and TEM. The results indicated that the Ti-xNb alloys (x = 10, 15, and 20 wt %) were mainly composed of α + β phases with precipitation of the isothermal ω phase. The volume percentage of the ω phase increased with increasing Nb content. We also investigated the effects of the alloying element Nb on the mechanical properties (including Vickers hardness and elastic modulus), oxidation protection ability, and corrosion behavior of Ti-xNb binary alloys. The mechanical properties and corrosion behavior of Ti-xNb alloys were found to be sensitive to Nb content. These experimental results indicated that the addition of Nb contributed to the hardening of cp-Ti and to the improvement of its oxidation resistance. Electrochemical experiments showed that the Ti-xNb alloys exhibited superior corrosion resistance to that of cp-Ti. The cytotoxicities of the Ti-xNb alloys were similar to that of pure titanium.

  1. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  2. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  3. Method of making electrodes for electrochemical cell. [Li-Al alloy

    Science.gov (United States)

    Kaun, T.D.; Kilsdonk, D.J.

    1981-07-29

    A method is described for making an electrode for an electrochemical cell in which particulate electrode-active material is mixed with a liquid organic carrier chemically inert with respect to the electrode-active material, mixing the liquid carrier to form an extrudable slurry. The liquid carrier is present in an amount of from about 10 to about 50% by volume of the slurry, and then the carrier is removed from the slurry leaving the electrode-active material. The method is particularly suited for making a lithium-aluminum alloy negative electrode for a high-temperature cell.

  4. Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys

    OpenAIRE

    Fengxia Wu; Jun Liang; Weixue Li

    2015-01-01

    Mg(OH)2/graphene oxide (GO) composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH)2/GO composite film were investigated by scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH)2 film, the Mg(OH)2/GO composite film exhibited more uniform and compac...

  5. Electrochemical Noise Chaotic Analysis of NiCoAg Alloy in Hank Solution

    Directory of Open Access Journals (Sweden)

    D. Bahena

    2011-01-01

    Full Text Available The potential and current oscillations during corrosion of NiCoAg alloy in Hank solution were studied. Detailed nonlinear fractal analyses were used to characterize complex time series clearly showing that the irregularity in these time series corresponds to deterministic chaos rather than to random noise. The chaotic oscillations were characterized by power spectral densities, phase space, and Lyapunov exponents. Electrochemical impedance was also applied the fractal dimensions for the corroded surface was obtained, and a corrosion mechanism was proposed.

  6. Application of electrochemical impedance spectroscopy to monitor seawater fouling on stainless steels and copper alloys

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    Electrochemical impedance spectroscopy may be applied to detect and to follow seawater fouling. Experiments have been conducted with natural seawater flowing inside tube-electrodes at temperatures between 30 deg C and 85 deg C. With stainless steel tubes, mineral and organic foulings have been followed; a linear relationship between the dry weight of the organic fouling and its electrical resistance, has been observed. On copper alloy tubes, only mineral deposits have occurred and so have been detected by impedance spectroscopy. (Author). 5 refs., 6 figs

  7. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  8. Correlation between zirconium oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Myung Ho; Choi, Byoung Kwon; Jeong, Yong Hwan; Jung, Youn Ho

    2001-01-01

    To evaluate the correlation of Zr oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys, the corrosion behavior of the alloys was tested in the autoclave containing 70 ppm LiOH solution at 360 .deg. C. The characteristics of the oxide on the alloys were investigated by using the electrochemical impedance spectrosocpy (EIS) method. The corrosion resistance of the alloys was evaluated from the corrosion rate determined as a function of the concentration of Nb. The equivalent circuit of the oxide was composed on the base of the spectrum from EIS measurements on the oxide layers that had formed at pre-and post-transition regions on the curve of corrosion rate. By using the capacitance characteristics of the equivalent circuit, the thickness of impervious layer, it's electrical resistance and characteristics of space charge layer were evaluated. The corrosion characteristics of the Zr-Nb-Sn-Fe-Cu alloys were successfully explained by applying the EIS test results

  9. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z., E-mail: zuojia.liu@gmail.com; Curioni, M.; Jamshidi, P.; Walker, A.; Prengnell, P.; Thompson, G.E.; Skeldon, P.

    2014-09-30

    Highlights: • Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation in NaCl electrolyte. • The exposed carbon fibres on the side and front regions are responsible for a high cathodic current density. • The NaCl + CuSO{sub 4} electrolyte was used to investigate the cathodic polarization behaviour of the exposed carbon fibres. • Galvanic coupling behaviour between the composite and aluminium alloys (AA7075-T6 and AA1050) was measured in NaCl electrolyte. • The higher galvanic current density measured on AA1050 alloy introduced a higher dissolution rate than the AA7075-T6 alloy. - Abstract: The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO{sub 4} electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions.

  10. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-01-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  11. Surface modification of {beta}-Type titanium alloy by electrochemical potential pulse polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: fujimoto@mat.eng.osaka-u.ac.jp

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  12. Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui [Department of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    The biocompatibility of an implant material is determined by its surface characteristics. This study investigated the application of an electrochemical anodization surface treatment to improve both the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for implant applications. The electrochemical anodization treatment produced an Al-free oxide layer with nanoscale porosity on the Ti–6Al–7Nb alloy surface. The surface topography and microstructure of Ti–6Al–7Nb alloy were analyzed. The corrosion resistance was investigated using potentiodynamic polarization curve measurements in simulated blood plasma (SBP). The adhesion and proliferation of human bone marrow mesenchymal stem cells to test specimens were evaluated using various biological analysis techniques. The results showed that the presence of a nanoporous oxide layer on the anodized Ti–6Al–7Nb alloy increased the corrosion resistance (i.e., increased the corrosion potential and decreased both the corrosion rate and the passive current) in SBP compared with the untreated Ti–6Al–7Nb alloy. Changes in the nanotopography also improved the cell adhesion and proliferation on the anodized Ti–6Al–7Nb alloy. We conclude that a fast and simple electrochemical anodization surface treatment improves the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for biomedical implant applications. - Highlights: ► Simple/fast electrochemical anodization was applied to biomedical Ti–6Al–7Nb surface. ► Anodized surface had nano-porous topography and contained Al-free oxide layer. ► Anodized surface raised corrosion resistance in three simulated biological solutions. ► Anodized surface enhanced cell adhesion and cell proliferation. ► Electrochemical anodization has potential as biomedical implant surface treatment.

  13. Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of an implant material is determined by its surface characteristics. This study investigated the application of an electrochemical anodization surface treatment to improve both the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for implant applications. The electrochemical anodization treatment produced an Al-free oxide layer with nanoscale porosity on the Ti–6Al–7Nb alloy surface. The surface topography and microstructure of Ti–6Al–7Nb alloy were analyzed. The corrosion resistance was investigated using potentiodynamic polarization curve measurements in simulated blood plasma (SBP). The adhesion and proliferation of human bone marrow mesenchymal stem cells to test specimens were evaluated using various biological analysis techniques. The results showed that the presence of a nanoporous oxide layer on the anodized Ti–6Al–7Nb alloy increased the corrosion resistance (i.e., increased the corrosion potential and decreased both the corrosion rate and the passive current) in SBP compared with the untreated Ti–6Al–7Nb alloy. Changes in the nanotopography also improved the cell adhesion and proliferation on the anodized Ti–6Al–7Nb alloy. We conclude that a fast and simple electrochemical anodization surface treatment improves the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for biomedical implant applications. - Highlights: ► Simple/fast electrochemical anodization was applied to biomedical Ti–6Al–7Nb surface. ► Anodized surface had nano-porous topography and contained Al-free oxide layer. ► Anodized surface raised corrosion resistance in three simulated biological solutions. ► Anodized surface enhanced cell adhesion and cell proliferation. ► Electrochemical anodization has potential as biomedical implant surface treatment

  14. Microstructural characterization and electrochemical corrosion behavior of Incoloy 800 in sulphate and chloride solutions

    International Nuclear Information System (INIS)

    Mansur, Fabio Abud; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa; Aguiar, Antonio Eugenio de; Chaim, Marcos Souza

    2011-01-01

    Corrosion has been the major cause of tube failures in steam generators (SG) tubes in nuclear power plants. Problems have resulted from impurities in the secondary water systems which are originated from leaks of cooling water. It is important to understand the compatibility of steam generator tube materials with the environment. This study presents the microstructural characterization and electrochemical behavior of the Incoloy 800 in sodium chloride and sodium sulphate aqueous solutions at 80 degree C. Potentiodynamic anodic polarization, cyclic polarization and open circuit potential (OCP) measurements were the electrochemical techniques applied in this work. The pitting resistance of Incoloy 800 in chloride plus sulphate mixtures were also examined. Experiments performed in solutions with different concentrations of Cl- and SO 4 2- ions in solution (200 ppb, 500 ppb, 1ppm, 5 ppm, 50 ppm and 100 ppm) showed that this concentrations range had no substantial effect on the anodic behavior of the alloy. After polarization no localized corrosion was found on the samples. (author)

  15. Hot deformation behavior of AA5383 alloy

    Science.gov (United States)

    Du, Rou; Giraud, Eliane; Mareau, Charles; Ayed, Yessine; Santo, Philippe Dal

    2018-05-01

    Hot forming processes are widely used in deep drawing applications due to the ability of metallic materials to sustain large deformations. The optimization of such forming processes often requires the mechanical behavior to be accurately described. In this study, the hot temperature behavior of a 5383 aluminum alloy is investigated. In this perspective, different uniaxial tension tests have been carried out on dog-bone shaped specimens using a specific experimental device. The temperature and strain rate ranges of interest are 623˜723 K and 0.0001˜0.1 s-1, respectively. An inverse method has been used to determine the flow curves from the experimental force-displacement data. The material exhibits a slight flow stress increase beyond the yield point for most configurations. Softening phenomenon exists at high strain rates and high temperatures. A new model based on the modification of a modified Zerilli-Armstrong model is proposed to describe the stress-strain responses. Genetic algorithm optimization method is used for the identification of parameters for the new model. It is found that the new model has a good predictability under the experimental conditions. The application of this model is validated by shear and notched tension tests.

  16. Surface modification of 2014 aluminium alloy-Al2O3 particles composites by nickel electrochemical deposition

    International Nuclear Information System (INIS)

    Molina, J.M.; Saravanan, R.A.; Narciso, J.; Louis, E.

    2004-01-01

    A method to modify the surface of aluminium matrix composites (AMC) by electrochemical nickel deposition has been developed. Deposition was carried out in a stirred standard Watt's bath, whereas potential and time were varied to optimize coating characteristics. The method, that allowed to overcome the serious difficulties associated to electrochemical deposition of an inherently inhomogeneous material, was used to nickel coat composites of 2014 aluminium alloy-15 vol.% Al 2 O 3 particles. Coats with a good adherence and up to 60 μm thick were easily obtained. In order to improve surface properties, the coated composite was subjected to rather long (from 10 to 47.5 h) heat treatments at a temperature of 520 deg,C. The heat treatments improved the uniformity of the deposited layer and promoted the formation of Al-Ni intermetallics (mainly Al 3 Ni 2 , as revealed by X-ray diffraction and energy-dispersive X-ray analysis (EDX)). Experimental results indicate that growth of the intermetallic layer is diffusion limited

  17. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  18. Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhou Zenglin; Song Yueqing; Cui Shun; Huang Changgeng; Qian Wenlian; Lin Chenguang; Zhang Yongjian; Lin Yulin

    2010-01-01

    MmNi 4.2 Co 0.3 Mn 0.4 Al 0.3 Mg 0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure-composition-temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu 5 -type structure or the relief of an Mg-containing AlMnNi 2 -type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi 4.05 Co 0.45 Mn 0.4 Al 0.3 alloy product.

  19. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  20. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  1. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys

    International Nuclear Information System (INIS)

    Ma Jingling; Wen Jiuba

    2009-01-01

    In order to improve the non-uniform corrosion of Al-0.5Zn-0.03In-1Mg-0.05Ti alloys, Al-5Zn-0.03In-1Mg-0.05Ti-xLa (x = 0.3, 0.5 and 0.7 wt.%) alloys were developed. Microstructures and electrochemical properties of the alloys were investigated. The results show that the optimal microstructures and electrochemical properties are obtained in Al-5Zn-0.03In-1Mg-0.05Ti-0.5La alloy. The main precipitate phase is Al 2 LaZn 2 particles. The excellent electrochemical properties of Al-5Zn-0.03In-1Mg-0.05Ti-0.5La alloy is mainly attributed to fine grains and grain boundaries containing fine Al 2 LaZn 2 precipitates. At the same time the fine grains can improve the non-uniform corrosion of Al-0.5Zn-0.03In-1Mg-0.05Ti alloy.

  2. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    Science.gov (United States)

    2014-07-01

    Spray. Journal of Failure Analysis and Prevention 2008, 8 (2), 164–175. 34. Aluminium Alloy 5083, Plate and Sheet; SAE-AMS-QQ-A-250/6S; SAE...Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods...Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods Brian E. Placzankis, Joseph P

  3. Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

    International Nuclear Information System (INIS)

    Sakairi, M.; Shimoyama, Y.; Nagasawa, D.

    2008-01-01

    A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in 0.5 kmol/m 3 H 3 BO 4 /0.05 kmol/m 3 Na 2 B 4 O 7 with 0.01 kmol/m 3 NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion

  4. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  5. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Vasilescu, Ecaterina; Drob, Paula [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cinca, Ion, E-mail: ion_cinca@hotmail.com [Faculty of Material Science and Engineering, Politehnica University, Spl. Independentei 313, 060042 Bucharest (Romania); Vasilescu, Cora; Anastasescu, Mihai [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, Valentina [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Drob, Silviu Iulian [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2014-05-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances.

  6. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-01-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances

  7. Corrosion behavior of dental alloys used for retention elements in prosthodontics.

    Science.gov (United States)

    Nierlich, Judith; Papageorgiou, Spyridon N; Bourauel, Christoph; Hültenschmidt, Robert; Bayer, Stefan; Stark, Helmut; Keilig, Ludger

    2016-06-01

    The purpose of this study was to investigate the corrosion behavior of 10 different high noble gold-based dental alloys, used for prosthodontic retention elements, according to ISO 10271. Samples of 10 high-noble and noble gold-based dental alloys were subjected to: (i) static immersion tests with subsequent analysis of ion release for eight different elements using mass spectrometry; (ii) electrochemical tests, including open-circuit potential and potentiodynamic scans; and (iii) scanning electron microscopy, followed by energy-dispersive X-ray microscopy. The results were analyzed using one-way ANOVA and Sidak multiple-comparisons post-hoc test at a level of significance of α = 0.05. Significant differences were found among the 10 alloys studied for all ions (P alloys. Scanning electron microscopy analysis confirmed the existence of typically small-diameter corrosion defects, whilst the energy-dispersive X-ray analysis found no significant alteration in the elemental composition of the alloys. The results of this study reveal the variability in the corrosive resistance among the materials used for retention elements in prosthodontics. © 2016 Eur J Oral Sci.

  8. Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Arthanari, Srinivasan; Jang, Jae Cheol; Shin, Kwang Seon [Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density (i{sub corr}) value (5.969 μA/cm{sup 2}) compared to N15 (7.387 μA/cm{sup 2}). EIS-Bode plots revealed a higher impedance (|Z|) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer (R{sub 1}) and charge transfer resistance (R{sub ct}) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss (P{sub W}) and hydrogen volume (P{sub H}) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al{sub 3}Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

  9. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei, 112 Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung, 413 Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao [Institute of Oral Biology, National Yang-Ming University, Taipei, 112 Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung, 402 Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung, 402 Taiwan (China)

    2013-12-31

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment.

  10. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment

  11. Electrochemical hydrogen storage in ZrCrNiPd{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, F.C. [Centro Atomico Bariloche (CAB), Comision Nacional de Energia Atomica (CNEA), C. P. 8400, S. C. de Bariloche (RN) (Argentina); CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad de Buenos Aires (Argentina); Peretti, H.A. [Centro Atomico Bariloche (CAB), Comision Nacional de Energia Atomica (CNEA), C. P. 8400, S. C. de Bariloche (RN) (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, C. P. 8400, S. C. de Bariloche (RN) (Argentina); Visintin, A. [CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad de Buenos Aires (Argentina); Instituto de Investigaciones Fisicoquimicas, Teoricas y Aplicadas, Universidad Nacional de La Plata, Suc. 4, C.C.: 16/Comision de Investigaciones Cientificas Provincia de Buenos Aires (C.I.C.), CP: 1900, La Plata (Argentina)

    2010-06-15

    The consumption of rechargeable batteries at worldwide level has increased constantly in the last years, mainly due to the use of portable devices such as cellular phones, digital cameras, computers, music and video reproducers, etc. Nickel Metal Hydride (NiMH) is a rechargeable battery system widely used in these devices, also including the most of electrical and hybrid vehicles (EV and HEV). The study of hydride forming alloys is fundamental for its use as negative electrode component in NiMH batteries. In previous works, the electrocatalytic effect of Pd element addition to the electrode, in powder form and by means of electroless technique, has been studied. In this work, AB{sub 2}-type alloys are studied, in which Pd is incorporated to the structure by re-melting inside an arc furnace. The base alloy composition is ZrCrNi, and the composition of the elaborated compounds is ZrCrNiPd{sub x} (x = 0.095 and 0.19). The effect of the composition modification on these materials on properties such as electrochemical discharge capacity, activation and high rate dischargeability (HRD) is analyzed. (author)

  12. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  13. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  14. Effects of N2 mixed gas atomization on electrochemical properties of Mm(Ni,Co,Mn,Al)5.0 alloy powder

    International Nuclear Information System (INIS)

    Yanagimoto, K.; Sunada, S.; Majima, K.; Sawada, T.

    2004-01-01

    N 2 gas, N 2 -Ar mixed gas and Ar gas atomization followed by acid surface treatment was applied to improve electrochemical properties of AB 5 type hydrogen storage alloy powder. The shape of Ar atomized powder was spherical and it changed to be irregular with increasing N 2 content of mixed gas. Irrespective of gas kinds, electrodes of atomized powder showed the same discharge capacity as cast-pulverized powder under auxiliary electrical conductivity by nickel powder addition. Without nickel powder, however, N 2 atomized powder showed the best electrochemical properties as well as gas activation behavior. By the combination process of N 2 gas atomization and acid surface treatment, it was considered that irregular shape of N 2 atomized powder promoted electrical conductivity of electrodes and catalytic nickel concentrated surface layer was formed to increase the hydrogen storage rapidity

  15. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

    Science.gov (United States)

    Xin, Yunchang; Huo, Kaifu; Tao, Hu; Tang, Guoyi; Chu, Paul K

    2008-11-01

    Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.

  16. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  17. Electrochemical characterization of melt spun AB{sub 5} alloys for metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Brateng, Randi

    2003-05-01

    This thesis is part of a larger research project where two metal hydride forming AB{sub 5} type alloys have been investigated. A slightly non-stoichiometric alloy with mischmetal on A-site and nickel, cobalt, manganese and aluminium on B-site has been characterized. The composition of this material, which will be referred to as Mm(NiCoMnA1){sub 5.15}, is close to the normal battery composition. The other alloy characterized is LaNi{sub 5} based, where nickel is partly substituted with tin. This material will later be referred to as La(NiSn){sub 5}. These materials were produced by melt spinning to vary the cooling rate during solidification. The main purpose of the study has been to characterize the electrochemical properties related to battery performance. The production as well as the metallurgical and structural characterization of the materials were performed in another part of the project. For Mm(NiCoMnA1){sub 5.15} the unit cell volume was dependent on the cooling rate before heat treatment, while the unit cell volume was almost independent of the cooling rate for La(NiSn){sub 5}. For both alloy compositions, the electrochemical properties seemed to change with varying cooling rate. The desorption equilibrium potential, the discharge capacity when discharging at a low current and the deterioration rate were found to be reduced with decreasing unit cell volume and increased with increasing unit cell volume, before heat treatment of Mm(NiCoMnA1){sub 5.15}. The self discharge rate was observed to be inversely proportional to the unit cell volume for this material. For not heat treated La(NiSn){sub 5}, produced at different cooling rates, the desorption equilibrium potential decreased when the self discharge rate and the discharge capacity increased after cycling for 300 cycles. The deterioration rate decreased when the desorption equilibrium potential was reduced for La(NiSn){sub 5}. The electrochemical parameters both before and after heat treatment of La

  18. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application

    Science.gov (United States)

    Wang, Y. M.; Wang, F. H.; Xu, M. J.; Zhao, B.; Guo, L. X.; Ouyang, J. H.

    2009-08-01

    Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO 2 is introduced into the as-deposited coating mainly composed of MgO and Mg 2SiO 4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300˜500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO 2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO 2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.

  19. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  20. Investigation of electrochemical behaviour and structure of oxide films on Ni60Nb40 alloy in amorphous and crystalline states

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Skvortsova, I.B.; Gorodetskij, A.E.; Bogomolov, D.B.

    1987-01-01

    Electrochemical properties of Ni 60 Nb 40 alloy in amorphous and crystalline states as well as structure of oxide films forming during anode polarization in electrolytes on the surface of this alloy in both its states are investigated. It is stated that increased passive ability of Ni 60 Nb 40 alloys in amorphous state and high efficiency of chlorine evolution (2 n NaCl+HCl up to pH=0) anode process in comparison with crystalline state are defined by increased homogeneity and uniformity of passive films forming on amorphous alloy and their increased electron conductivity, that is in direct dependence on different structure of passive films forming on alloys in amorphous and crystalline states

  1. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    Quang, K.V.; Da Cunha Belo, M.; Benabed, M.S.; Bourelier, F.; Jallerat, N.; Pari, F.L.

    1985-01-01

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 20 0 C and 90 0 C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 90 0 C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  2. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    International Nuclear Information System (INIS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-01-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  3. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongwei; Yan, Yu, E-mail: yanyu@ustb.edu.cn; Su, Yanjing; Qiao, Lijie

    2017-06-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  4. Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Zhou Wei; Aung, Naing Naing; Sun Yangshan

    2009-01-01

    This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg 3 Bi 2 and Mg 3 Sb 2 particles while Mg 17 Al 8 Ca 0.5 and Mg 2 Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate

  5. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    Science.gov (United States)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  6. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Song Yingwei; Shan Dayong; Chen Rongshi; Zhang Fan; Han Enhou

    2009-01-01

    Magnesium alloys have unique advantages to act as biodegradable implants for clinical application. The biodegradable behaviors of AZ31 in simulated body fluid (SBF) for various immersion time intervals were investigated by electrochemical impedance spectroscopy (EIS) tests and scanning electron microscope (SEM) observation, and then the biodegradable mechanisms were discussed. It was found that a protective film layer was formed on the surface of AZ31 in SBF. With increasing of immersion time, the film layer became more compact. If the immersion time was more than 24 h, the film layer began to degenerate and emerge corrosion pits. In the meantime, there was hydroxyapatite particles deposited on the film layer. The hydroxyapatite is the essential component of human bone, which indicates the perfect biocompatibility of AZ31 magnesium alloy.

  7. Surface morphological structures and electrochemical activity properties of iridium–niobium binary alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toru, E-mail: matsumoto.t@jemai.or.jp [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Sata, Naoaki [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Kobayashi, Kiyoshi [Advanced Ceramic Group, Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Yamabe-Mitarai, Yoko [High Temperature Materials Unit Functional Structure Materials Group, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-10-01

    Highlights: • An Ir–23Nb alloy has the best oxidation capability among other Nb concentrations. • The reason is the Ir–23Nb has a large surface area which results from Ir + Ir{sub 3}Nb. • An Ir–23Nb glucose sensor detects glucose much better than an Ir glucose sensor. -- Abstract: The electrochemical activities of Ir–Nb binary alloys were investigated as functions of the alloy compositions, crystal structures, and surface morphologies for a hydrogen peroxide and ascorbic acid redox reaction. High activities for the redox reaction of hydrogen peroxide were observed when pure Ir and an alloy with a composition of 77 at% Ir–23 at% Nb (Ir–23Nb) were used. Tests on eight electrodes—Ir, Ir–13Nb, Ir–17Nb, Ir–23Nb, Ir–30Nb, Ir–43Nb, Ir–62Nb, and Nb—showed that at a constant potential difference of 0.7 V vs. Ag/AgCl, the Ir–23Nb electrode had the best hydrogen peroxide oxidation capability: 9.2 μA/mm{sup 2} for 2 mM hydrogen peroxide. Apart from Nb, Ir–23Nb gave the best performance in terms of preferential hydrogen peroxide oxidation against ascorbic acid. Subsequently, the Ir and Ir–23Nb electrodes were used for the fabrication of amperometric glucose sensors. We first coated the two electrodes with a γ-aminopropyltriethoxysilane membrane and then with a glucose oxidase membrane. Tests on the Ir and Ir–23Nb electrode glucose sensors showed that the latter had better glucose detection capability than the former: 0.226 μA/(mm{sup 2} mM) for the Ir–23Nb sensor with 1.67 mM glucose. We investigated the relationship between the electrode responses to both hydrogen peroxide and ascorbic acid and the electrode surface structures.

  8. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Bolat, G. [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Izquierdo, J. [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Crimu, C.; Munteanu, C. [Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Antoniac, I. [Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania)

    2016-03-01

    Biodegradable magnesium–calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg–0.63Ca and Mg–0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. - Highlights: • Spontaneous degradation of MgCa alloys in Ringer's solution characterized at 37 °C • Reactivity differences between Mg0.63Ca and Mg0.89Ca are evidenced using multiscale electrochemical characterization. • Electrochemical activation occurs heterogeneously on the alloy surface. • Metal dissolution is accompanied by local pH changes. • Mg0.63Ca degrades faster

  9. Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides

    Directory of Open Access Journals (Sweden)

    Anelise Marlene Schmidt

    2006-12-01

    Full Text Available This paper reports on an investigation of the electrochemical behavior of Ti grade 2 and Ti6Al4V alloy in aqueous citric acid solutions with pH 2.0 containing halide ions. Voltammetric studies of Ti and the alloy in citric acid, with and without chloride ions, indicate that the Ti and Ti alloy presented a passive behavior in the test solutions used. Pitting was observed at 3.0 and 2.5 V/SCE for Ti and Ti6Al4V, respectively, when bromide ions were added to the solution. In solutions containing fluoride ions, dissolution of the film occurred at potentials close to - 1.0 V/SCE in both electrodes. The iodide ions oxidized on the passive oxide film at potentials close to 1.0 V/SCE. EIS results of the materials in citric acid solutions containing chloride ions revealed that the film's resistance increased as the applied potential rose from 0 to 1.0 V. In bromide-containing solutions, breakdown of the film was confirmed at potentials above 2.0 V/SCE in both electrodes. These results suggest film reformation for Ti and the alloy in solutions containing fluoride at potentials within the passive region.

  10. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  11. Influence of boron introduction on structure and electrochemical hydrogen storage properties of Ti–V-based alloys

    International Nuclear Information System (INIS)

    Qiu, Shujun; Huang, Jianling; Chu, Hailiang; Zou, Yongjin; Xiang, Cuili; Zhang, Huanzhi; Xu, Fen; Sun, Lixian; Zhou, Huaiying

    2015-01-01

    In order to improve the properties of Ti–V-based alloys in the electrochemical system, Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 B x (x = 0–0.04) alloys were prepared and their structural and electrochemical performances had been systematically investigated in this study. XRD patterns show that they are mainly comprised of a C14 Laves phase and a body centered cubic (BCC) solid solution phase. The introduction of boron has little effect on the structure, while it remarkably influences the electrochemical performances. The cycle life of each electrode made from the studied alloy is obviously improved. For instance, the cycle retention after 200 charge–discharge cycles is more than 90%. Furthermore, high rate dischargeability (HRD) is also enhanced after boron introduction. It is also found that the charge-transfer reaction resistance R ct , the limiting current density I L, and the hydrogen diffusion coefficient D are first decreased and then increased with the increase of boron amount. Taking into consideration various factors, the introduction of boron in the alloy has an optimal value of x = 0.01. - Graphical abstract: Trace amounts of B element was introduced into Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 alloys. XRD patterns show that the introduction of B has little effect on the structure, while it remarkably influences the electrochemical performances. The cycle life and the high rate dischargeability (HRD) are obviously improved. - Highlights: • Trace amounts of B element was introduced into Ti–V-based alloys. • Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 B 0.01 has an optimal property. • At x = 0.01, C 200 /C max is 89.4% and HRD 800 is 72.5%

  12. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  13. Ductility behavior of irradiated path B alloys

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Hamilton, M.L.

    1983-01-01

    The objective of this study was to assess the practicality of using five Path B alloys in their current form as structural materials in the Fusion First-Wall/Blanket by evaluating both their postirradiation ductility and the corresponding microstructures

  14. The measurement of phosphorus in low alloy steels by electrochemical methods

    International Nuclear Information System (INIS)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-01-01

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram -1 in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  15. The measurement of phosphorus in low alloy steels by electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-08-15

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram{sup -1} in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  16. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  17. The aqueous corrosion behavior of technetium - Alloy and composite materials

    International Nuclear Information System (INIS)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M.; Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K.

    2013-01-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection

  18. The aqueous corrosion behavior of technetium - Alloy and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  19. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

    Science.gov (United States)

    Zheng, Maobo; Xu, Guangquan; Liu, Debao; Zhao, Yue; Ning, Baoqun; Chen, Minfang

    2018-03-01

    Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

  20. Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy.

    Science.gov (United States)

    Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika

    2017-01-01

    The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.

  1. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    International Nuclear Information System (INIS)

    Mareci, Daniel; Bolat, Georgiana; Chelariu, Romeu; Sutiman, Daniel; Munteanu, Corneliu

    2013-01-01

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO 2 is lower than that of TiO 2 rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F − ) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F − could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions

  2. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Bolat, Georgiana, E-mail: georgiana20022@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Chelariu, Romeu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Iasi (Romania); Sutiman, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Munteanu, Corneliu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical, Iasi (Romania)

    2013-08-15

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO{sub 2} is lower than that of TiO{sub 2} rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F{sup −}) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F{sup −} could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions.

  3. Work hardening behavior study of structural alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Chu, D.; Morris, J.W. Jr.

    1992-01-01

    Previous investigation on aluminum-lithium alloys have indicated different dependencies of the work hardening behavior on temperature. This variation in temperature dependence is attributed to differences in microstructure rather than composition. An understanding of the microstructural effect on the observed thermal dependency is important as it may allow the tailoring of deformation properties through mechanical processing. Work hardening analyses on other aluminum alloys and a number of structural steels have been performed to better elucidate the role played by microstructure in determining the work hardening behavior. In the paper correlations between the differences in mechanical behavior and the various microstructures observed are presented

  4. Microstructure and Mechanical Behavior of High-Entropy Alloys

    Science.gov (United States)

    Licavoli, Joseph J.; Gao, Michael C.; Sears, John S.; Jablonski, Paul D.; Hawk, Jeffrey A.

    2015-10-01

    High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 °C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.

  5. La doping effect on TZM alloy oxidation behavior

    International Nuclear Information System (INIS)

    Yang, Fan; Wang, Kuai-She; Hu, Ping; He, Huan-Cheng; Kang, Xuan-Qi; Wang, Hua; Liu, Ren-Zhi; Volinsky, Alex A.

    2014-01-01

    Highlights: • The oxidation can be resisted by doping La into TZM alloy. • La doped TZM alloy has more compact organization. • It can rise the starting temperature of severe oxidation reaction by more than 50 °C. • Effectively slow down the oxidation rate. • Provide guidance for experiments of improving high-temperature oxidation resistance. - Abstract: Powder metallurgy methods were utilized to prepare lanthanum-doped (La-TZM) and traditional TZM alloy plates. High temperature oxidation experiments along with the differential thermal analysis were employed to study the oxidation behavior of the two kinds of TZM alloys. An extremely volatile oxide layer was generated on the surface of traditional TZM alloy plates when the oxidation started. Molybdenum oxide volatilization exposed the alloy matrix, which was gradually corroded by oxygen, losing its quality with serious surface degradation. The La-TZM alloy has a more compact structure due to the lanthanum doping. The minute lanthanum oxide particles are pinned at the grain boundaries and refine the grains. Oxide layer generated on the matrix surface can form a compact coating, which effectively blocks the surface from being corroded by oxidation. The oxidation resistance of La-TZM alloys has been enhanced, expanding its application range

  6. Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Tao, Yang; Ke, Dandan; Ma, Yufei [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The Co–Ni composite coating was prepared by electroplating. • The alloy treated at 10 mA/cm{sup 2} has superior kinetic performances. • The Co–Ni layer accelerates the charge transfer rate on the surface of the alloy. - Abstract: Electroplating Co–Ni treatment was applied to the surface of the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.48} alloy electrodes in order to improve the electrochemical and kinetic performances. The Scanning electron microscope-Energy dispersive spectroscopy and X-ray diffraction results showed that the electrodes were plated with a homogeneous Co–Ni alloy film. The alloy coating significantly improved the high rate dischargeability of the alloy electrode, and the HRD value increased to 57.5% at discharge current density 1875 mA/g after the Co–Ni-coating. The exchange current density I{sub 0}, the limiting current density I{sub L} and the oxidation peak current also increased for the coated alloy. The improvement of overall electrode performances was attributed to an enhancement in electro-catalytic activity and conductivity at the alloy surface, owing to the precipitation of the Co–Ni layer.

  7. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Dec, Weronika [Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna Street 27, 43-200 Pszczyna (Poland); Mosiałek, Michał; Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Jaworska-Kik, Marzena [Department of Biopharmacy, Medical University of Silesia, Jedności Street 8, 41-200 Sosnowiec (Poland); Simka, Wojciech [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland); Michalska, Joanna, E-mail: joanna.k.michalska@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland)

    2017-07-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  8. Electrochemical assessment of some titanium and stainless steel implant dental alloys

    Directory of Open Access Journals (Sweden)

    Echevarría, A.

    2003-12-01

    Full Text Available Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy with immersion times of 30 d. Results were simulated as a "sandwich system" composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed.

    Se utilizó la técnica de la Espectroscopia de Impedancia Electroquímica para evaluar en soluciones fisiológicas artificiales (Ringer y saliva sintética muestras extraídas de tornillos de implantes dentales certificados de titanio comercialmente puro, aleación Ti-6Al-W y acero inoxidable a temperatura corporal, con tiempos de inmersión hasta de 30 d. Los resultados se simularon mediante un modelo del tipo sandwich de cuatro elementos RC, conectados en serie con una resistencia de la solución. A partir de de esta simulación, se propone un modelo que explica los resultados obtenidos en términos de la evolución de la porosidad y el espesor de cuatro diferentes capas que se desarrollan en la superficie de los materiales evaluados.

  9. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    International Nuclear Information System (INIS)

    Dec, Weronika; Mosiałek, Michał; Socha, Robert P.; Jaworska-Kik, Marzena; Simka, Wojciech; Michalska, Joanna

    2017-01-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  10. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    International Nuclear Information System (INIS)

    Wen Zhaohui; Wu Changjun; Dai Changsong; Yang Feixia

    2009-01-01

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D ct ) of the three magnesium alloys initially increased and then decreased while the R ct of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the β-Mg 12 Al 17 precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al 8 Mn 5 and a little β-Mg 12 Al 17 presented along the grain boundary heterogeneously and discontinuously. Al 8 Mn 5 was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the α-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase in Al content, the corrosion resistances of the samples were improved.

  11. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  12. Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Fan, Dawei; Wang, Jinping; Xu, Caixia

    2015-01-01

    A hierarchical nanoporous PtCu alloy was fabricated by two-step dealloying of a PtCuAl precursor alloy followed by annealing. The new alloy possesses interconnected hierarchical network architecture with bimodal distributions of ligaments and pores. It exhibits high electrochemical activity towards the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at working potentials of 0.32, 0.47 and 0.61 V (vs. a mercury sulfate reference electrode), respectively. The new alloy was placed on a glassy carbon electrode and then displayed a wide linear response to AA, DA, and UA in the concentration ranges from 25 to 800 μM, 4 to 20 μM, and 10 to 70 μM, respectively. The lower detection limits are 17.5 μM, 2.8 µM and 5.7 μM at an S/N ratio of 3. (author)

  13. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    Science.gov (United States)

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  14. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  15. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    Science.gov (United States)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  16. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  17. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    International Nuclear Information System (INIS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-01-01

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  18. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  19. The Influence of MgH2 on the Assessment of Electrochemical Data to Predict the Degradation Rate of Mg and Mg Alloys

    Directory of Open Access Journals (Sweden)

    Wolf-Dieter Mueller

    2014-06-01

    Full Text Available Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys.

  20. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy

    Directory of Open Access Journals (Sweden)

    Swetha Chowdary V

    2018-03-01

    Full Text Available In the present study, AZ91 Mg alloy was heat treated at 410 °C for 6, 12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior. The effect of soaking time on the amount and distribution of Mg17Al12 (β – phase was analyzed under the optical microscope. Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time, which can be attributed to the solid solution strengthening. The influence of super saturated α-grains on reducing the cutting force (Fz with respect to increased cutting speed was observed as prominent. The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests. Surprisingly, corrosion rate of heat treated samples was observed as increased compared with the base material. From the results, it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturated α-grains through heat treatment but at the cost of losing corrosion resistance. Keywords: AZ91 Mg alloy, Solid solution, Turning, Corrosion, Machinability

  1. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  2. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  3. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  4. The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Quantong Jiang

    2017-10-01

    Full Text Available The effect of quenching on the corrosion resistance of Mg-7Y-1.5Nd alloy was investigated. The as-cast alloy was homogenized at 535 °C for 24 h, followed by quenching in air, water, and liquid nitrogen. Then, all of the samples were peak-aged at 225 °C for 14 h. The microstructures were studied by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. Corrosion behavior was analyzed by using weight loss rate and gas collection. Electrochemical characterizations revealed that the T4-deep cryogenic sample displayed the strongest corrosion resistance among all of the samples. A new square phase was discovered in the microstructure of the T6-deep cryogenic sample; this phase was hugely responsible for the corrosion property. Cryogenic treatment significantly improved the corrosion resistance of Mg-7Y-1.5Nd alloy.

  5. An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Li, D.Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering

    2000-11-30

    The corrosive erosion behavior of Ti-51at.%Ni alloy under different erosion conditions was studied and compared to that of 304 stainless steel. Erosion tests were performed in a slurry-pot tester with dry sand, 3.5% NaCl slurry and 0.1 moll{sup -1} H{sub 2}SO{sub 4} slurry containing 30% silica sand, respectively. Synergistic effects of corrosion and erosion were studied in steady corrosion, polarization, dry sand erosion and micro-wear experiments. An electrochemical-scratching test characterized the failure and recovery of the passive film formed on TiNi alloy in 3.5% NaCl and 0.1 mol l{sup -1} H{sub 2}SO{sub 4} solutions, respectively. In both dry sand and the corrosive media, the TiNi alloy exhibited considerably greater erosion resistance than 304 stainless steel. (orig.)

  6. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li{sup +} containing water

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Aneta [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Macák, Jan, E-mail: macakj@vscht.cz [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Sajdl, Petr [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Novotný, Radek [JRC-IET, Westerduinveg 3, 1755 LE Petten (Netherlands); Renčiuková, Veronika [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Vrtílková, Věra [ÚJP a.s., Nad Kamínkou 1345, 156 10 Prague 5 (Czech Republic)

    2015-12-15

    Long-term in-situ corrosion tests were performed in order to evaluate the influence of lithium ions on the corrosion of zirconium alloy. Experiments were carried out in a high-pressure high-temperature loop (280 °C, 8 MPa) in a high concentration water solution of LiOH (70 and 200 ppm Li{sup +}) and in a simulated WWER primary coolant environment. The kinetic parameters characterising the oxidation process have been explored using in-situ electrochemical impedance spectroscopy and slow potentiodynamic polarization. Also, a suitable equivalent circuit was suggested, which would approximate the impedance characteristics of the corrosion of Zr–1Nb alloy. The Mott–Schottky approach was used to determine the semiconducting character of the passive film. - Highlights: • Zr1Nb alloy was tested in WWER coolant and in LiOH solutions at 280 °C. • Corrosion rates were estimated in-situ from electrochemical data. • Electrochemical data agreed well with weight gains and metallography data. • Increase of corrosion rate in LiOH appeared after short exposure (300–500 h). • Very high donor densities (1.1–1.2 × 10{sup 20} cm{sup −3}) of Zr oxide grown in LiOH were found.

  7. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  8. A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution

    Directory of Open Access Journals (Sweden)

    I.B. Singh

    2015-06-01

    Full Text Available The corrosion behavior of Mg, AZ31 and AZ91 has been evaluated in 3.5% NaCl solution using weight loss, electrochemical polarization and impedance measurements. Corrosion rate derived from the weight losses demonstrated the occurrence of steeply fast corrosion reaction on AZ91 alloy after three hours of immersion, indicating the start of galvanic corrosion. An increase of corrosion rate with immersion time was also observed for AZ31 but with lesser extent than AZ91 alloy. Whereas Mg metals showed a decrease of corrosion rate with immersion time, suggesting the formation of a protective layer on their surfaces. In contrast, the corrosion current density (Icorr derived from the Tafel plots, exhibited their corrosion resistances in order of Mg > AZ91 > AZ31. Electrochemical charge transfer resistance (Rct and double layer capacitance measured by electrochemical impedance spectroscopy (EIS, are well in accordance with the measured Icorr. EIS measurements with time and microstructural examination of the corroded and uncorroded samples are helpful in elucidation of results measured by electrochemical polarization.

  9. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis

    International Nuclear Information System (INIS)

    Assis, Sergio Luiz de

    2006-01-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  10. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  11. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    Science.gov (United States)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  12. Electrochemical investigations of activation and degradation of hydrogen storage alloy electrodes in sealed Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.X.; Xu, Z.D. [Zhejiang University, Hangzhou (China). Dept. of Chemistry; Tu, J.P. [Zhejiang University, Hangzhou (China). Dept. of Materials Science and Engineering

    2002-04-01

    The M1Ni{sub 0.4}Co{sub 0.6}Al{sub 0.4} alloy was treated with hot alkaline solution containing a small amount of KBH{sub 4} and its effect on the activation and degradation behaviors of the hydrogen storage alloy electrodes in sealed Ni/MH batteries was investigated. It was found that the treated alloy electrode exhibited a better activation property than the untreated one in the sealed battery as well as in open cell. For the treated alloy electrode activating, the polarization resistance in the sealed battery was almost equal to that in the open cell. But in the case of the untreated alloy electrode activating, the polarization resistance in the sealed battery was larger than that in the open cell. The reason is that the oxide film on the untreated alloy surface suppressed the combination of the oxygen evolved on the positive electrode with hydrogen on the negative alloy surface. In addition, the decaying of capacity of the untreated alloy electrode was much faster than that of the treated one. The reasons were, that after surface treatment, the Ni-rich and Al-poor layer on the alloy surface not only had a high electrocatalytic activity for hydrogen electrode reaction, but also facilitated the combination of the oxygen with hydrogen and hydrogen adsorption on the alloy surface. (author)

  13. Electrochemical behavior of uranyl in anhydrous polar organic media

    Energy Technology Data Exchange (ETDEWEB)

    Burn, Adam G.; Nash, Kenneth L. [Washington State Univ., Pullmann, WA (United States). Dept. of Chemistry

    2017-09-01

    Weak complexes between pentavalent and hexavalent actinyl cations have been reported to exist in acidic, non-complexing high ionic strength aqueous media. Such ''cation-cation complexes'' were first identified in the context of actinide-actinide redox reactions in acidic aqueous media relevant to solvent extraction-based separation systems, hence their characterization is of potential interest for advanced nuclear fuel reprocessing. This chemistry could be relevant to efforts to develop advanced actinide separations based on the upper oxidation states of americium, which are of current interest. In the present study, the chemical behavior of pentavalent uranyl was examined in non-aqueous, aprotic polar organic solvents (propylene carbonate and acetonitrile) to determine whether UO{sub 2}{sup +} cations generated at the reducing working electrode surface would interact with the UO{sub 2}{sup 2+} cations in the bulk phase to form cation-cation complexes in such media. In magnesium perchlorate media, the electrolyte adsorbed onto the working electrode surface and interfered with the uranyl reduction/diffusion process through an ECE (electron transfer/chemical reaction/electron transfer) mechanism. In parallel studies of uranyl redox behavior in tetrabutylammonium hexafluorophosphate solutions, an EC (electron transfer/chemical reaction) mechanism was observed in the cyclic voltammograms. Ultimately, no conclusive electrochemical evidence demonstrated uranyl cation-cation interactions in the non-aqueous, aprotic polar organic solvent solutions, though the results reported do not completely rule out the presence of UO{sub 2}{sup +}.UO{sub 2}{sup 2+} complexes.

  14. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  15. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  16. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion

    KAUST Repository

    Lee, S. W.; McDowell, M. T.; Berla, L. A.; Nix, W. D.; Cui, Y.

    2012-01-01

    in a solid can result in dramatic structural transformations and associated changes in mechanical behavior: This is particularly evident during electrochemical cycling of novel battery electrodes, such as alloying anodes, conversion oxides, and sulfur

  17. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  18. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au

    2012-09-30

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: Black-Right-Pointing-Pointer Polylactic acid (PLA) was coated on a magnesium-based alloy. Black-Right-Pointing-Pointer PLA coating enhanced the in vitro degradation resistance of the alloy. Black-Right-Pointing-Pointer Increase in the PLA coating thickness improved the alloy degradation resistance. Black-Right-Pointing-Pointer Thin film PLA coating exhibited both good degradation resistance and adhesion.

  19. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby

    2012-01-01

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: ► Polylactic acid (PLA) was coated on a magnesium-based alloy. ► PLA coating enhanced the in vitro degradation resistance of the alloy. ► Increase in the PLA coating thickness improved the alloy degradation resistance. ► Thin film PLA coating exhibited both good degradation resistance and adhesion.

  20. Features investigation of corrosion-electrochemical behaviour of Al-alloys for engineering an effective protection of the water-distillings setups

    International Nuclear Information System (INIS)

    Fokin, M.N.; Lomakina, S.V.; Tselykh, O.G.; Shatova, T.S.; Trubetskaya, L.F.

    1993-01-01

    The problem of aluminium alloy application in distilling setups is studied. Investigation into the features of corrosion and electrochemical behaviour of aluminium alloys under sea water distillation allows one to reveal the main control factors and to propose optimal alloy compositions capable of providing the safe setup operation on their base. Preliminary treatment in tungsten and molybdenum isopolycompound solutions is proposed which reduces sedimentation which in its turn is very important for distilling setups

  1. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  2. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    Science.gov (United States)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  3. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  4. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation.

    Science.gov (United States)

    Kazek-Kęsik, Alicja; Krok-Borkowicz, Małgorzata; Pamuła, Elżbieta; Simka, Wojciech

    2014-10-01

    β-Type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca3PO4), wollastonite (CaSiO3) and silica (SiO2) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37°C. The open-circuit potential (EOCP) as a function of time, corrosion potential (ECORR), corrosion current density (jCORR) and polarization resistance (Rp) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the as-ground sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Structure and electrochemical properties of plasma-nitrided low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1990-10-01

    Plasma-nitrided SAE 4140 steel has been widely applied industrially because of its superior resistance to wear and fatigue. However, its corrosion behaviour in aqueous environments has not been completely explored. The effects of nitriding on corrosion were investigated by performing electrochemical tests on both nitrided and untreated SAE 4140. It was found that, by plasma nitriding, the corrosion resistance improved significantly in HNO{sub 3} and Na{sub 2}SO{sub 4} aqueous environments. A reaction model is proposed to explain the beneficial effect of nitride on corrosion resistance. It is concluded that nitrogen and chromium (an alloying element) act synergistically to form a dense protective layer which is responsible for the corrosion resistance. Characterization of the surface layers by Auger electron spectroscopy and X-ray photoelectron spectroscopy reveals that the protective layer is composed of (Fe, Cr){sub 4}N, (Fe, Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} together with nitrides in the middle layer, and nitrides, {gamma}'-FeOOH, and Cr(OH){sub 3}.H{sub 2}O in the outermost layer. (orig.).

  6. Corrosion behavior of as-cast binary Mg-Bi alloys in Hank's solution

    Directory of Open Access Journals (Sweden)

    Wei-li Cheng

    2015-11-01

    Full Text Available Biodegradable Mg-xBi (x = 3, 6 and 9wt.% alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using optical micrograph (OM, X-ray diffraction (XRD, scanning electron microscope (SEM equipped with an energy dispersive X-ray spectrometer (EDS, electrochemical and immersion tests. The results show that the microstructures of the as-cast Mg-Bi alloys mainly consisted of dendritic ?Mg grains and Mg3Bi2 phase in common, with the secondary dendrite arm spacing (SDAS decreasing significantly from 41.2 靘 to 25.4 靘 and the fraction of Mg3Bi2 increasing from 3.1% to 10.7%. Furthermore, the corrosion rate increasing from 1.32 mm昦-1 to 8.07 mm昦-1 as the Bi content was increased from 3wt.% to 9wt.%. The reduced corrosion resistance was mainly ascribed to the increasing fraction of the second phase particles, which bring positive effects on the development of pitting.

  7. Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys

    Directory of Open Access Journals (Sweden)

    Xiumin Ma

    2016-01-01

    Full Text Available Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM and energy dispersive spectrometer (EDS. The weight loss rates of different samples were arranged as T6-24 h>T6-6 h>T6-14 h>as-cast>T4. The open circuit potential (OCP showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μA·cm−2, whereas the T4 sample had the lowest at 52.164 μA·cm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.

  8. Electrochemical approach to corrosion behavior of ferritic steels in Flibe melt

    International Nuclear Information System (INIS)

    Nishimura, H.; Suzuki, A.; Terai, T.; Kondo, M.; Sagara, A.; Noda, N.

    2007-01-01

    Full text of publication follows: A mixture of LiF-BeF 2 , Flibe, is considered as a candidate material for tritium breeding in a fusion liquid blanket. Flibe has favorable characteristics such as high chemical stability and low electric conductivity. However, it produces TF with neutron irradiation, which is corrosive to structural materials. Therefore, the compatibility of structural materials with Flibe is a critical issue. Up to the present, the compatibility of some materials with Flibe was examined by carrying out simple immersion tests under limited conditions. By visual observations and analyses such as XRD on the surfaces after washing out Flibe from specimens, it was found that ferritic steels seemed to have good compatibility. However, strictly speaking, surface condition of the specimens should not be same as that during immersion in melt because these specimens were subjected to heat treatments and washing processes in order to remove solidified Flibe. Therefore, we planed electrochemical experiment to observe corrosion behavior during immersion. In this study, by carrying out cyclic voltammetry on specimens to observe alteration of surface condition of specimen in Flibe melt from moment to moment, the compatibility of ferritic steel with Flibe melt was discussed on. JLF-1 JOYO-II heat ferritic steel (Fe-9.000r-1.98W-0.09C-0.49Mn-0.20V-0.083Ta) which is a candidate low activation ferritic steel as a structural material of fusion reactor was chosen as a test specimen. Fe-9Cr and Fe-2W alloys were also chosen for comparison. The size of all specimens was 20 x 10 x 1 mm. A electrochemical cell was assembled using these specimens as working electrodes. Pt was chosen as a material for quasi-reference electrode. A Ni crucible which was the container of electrolyte, Flibe, was used as a counter electrode. 600 grams of Flibe was prepared and purified by HF/H 2 bubbling before being filled in the Ni crucible. Each specimen was dunked into Flibe at 773, 823 and

  9. Anodic characteristics and stress corrosion cracking behavior of nickel rich alloys in bicarbonate and buffer solutions

    International Nuclear Information System (INIS)

    Zadorozne, Natalia S.; Giordano, Mabel C.; Ares, Alicia E.; Carranza, Ricardo M.; Rebak, Raul B.

    2016-01-01

    Highlights: • We investigate which element in alloy C-22 may be responsible for the cracking susceptibility of the high nickel alloy. • Six nickel based alloys with different amount of Cr and Mo were selected for the electrochemical tests and response to SSRT. • Polarization tests showed that an anodic peak appear in the passive region in Cr containing alloys. • Cracking of Ni alloys in carbonate solutions seem to be a consequence of the instability of the passivating chromium oxide. • Alloys containing both Cr and Mo have the highest susceptibility. - Abstract: The aim of this work is to investigate which alloying element in C-22 is responsible for the cracking susceptibility of the alloy in bicarbonate and two buffer solutions (tungstate and borate). Six nickel based alloys, with different amount of chromium (Cr) and molybdenum (Mo) were tested using electrochemical methods and slow strain rate tests (SSRT) at 90 °C. All Cr containing alloys had transgranular cracking at high anodic potential; however, C-22 containing high Cr and high Mo was the most susceptible alloy to cracking. Bicarbonate was the most aggressive of three tested environments of similar pH.

  10. Effects of Ce, La and Ba addition on the electrochemical behavior of super duplex stainless steels

    International Nuclear Information System (INIS)

    Yoo, Yun-Ha; Choi, Yoon-Seok; Kim, Jung-Gu; Park, Yong-Soo

    2010-01-01

    The effects of rare earth metal (REM: Ce, La) and Ba addition on aqueous corrosion properties of super duplex stainless steels (SDSS) were investigated by electrochemical tests and surface analyses. The results of potentiodynamic test indicated that the passive range increased by the addition of Ce, La, and Ba, indicating increased relative resistance to localized corrosion. The EIS measurements showed that the Ce-La-Ba-bearing alloys exhibited higher R ct and R p values than the Ce-La-Ba-free alloy at the passive and breakdown states. Furthermore, the additions of REMs and Ba together promoted the formation of dense chromium-enriched passive film.

  11. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  12. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  13. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  14. Mechanical behavior of aluminum-lithium alloys at cryogenic temperatures

    International Nuclear Information System (INIS)

    Glazer, J.; Verzasconi, S.L.; Sawtell, R.R.; Morris, J.W. Jr.

    1987-01-01

    The cryogenic mechanical properties of aluminum-lithium alloys are of interest because these alloys are attractive candidate materials for cryogenic tankage. Previous work indicates that the strength-toughness relationship for alloy 2090-T81 (Al-2.7Cu-2.2Li-0.12Zr by weight) improves significantly as temperature decreases. The subject of this investigation is the mechanism of this improvement. Deformation behavior was studied since the fracture morphology did not change with temperature. Tensile failures in 2090-T81 and -T4 occur at plastic instability. In contrast, in the binary aluminum-lithium alloy studied here they occur well before plastic instability. For all three materials, the strain hardening rate in the longitudinal direction increases as temperature decreases. This increase is associated with an improvement in tensile elongation at low temperatures. In alloy 2090-T4, these results correlate with a decrease in planar slip at low temperatures. The improved toughness at low temperatures is believed to be due to increased stable deformation prior to fracture

  15. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  16. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  17. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints

    Science.gov (United States)

    Zhao, Zhixia; Liang, Haimei; Zhao, Yong; Yan, Keng

    2018-03-01

    Friction stir welding (FSW) was used to weld dissimilar joints between Al 6013-T4 and Al7003 alloys in this work. The effect of exchanging advancing (AS) and retreating (RS) side material on microstructure, mechanical behaviors and electrochemical corrosion resistance was discussed. Results showed that different joint cross sections were obtained when exchanging AS and RS materials. The material on the AS would be more deformed during the welding process. When the Al6013 placed on the AS, the plastic flow of weld is more sufficient. Whether on the AS or RS, the Al6013-T4 side is the weak region for both tensile specimens and hardness samples. The fracture position corresponds to the minimum hardness position. Also, more strengthening phase can be retained in the joint, and the joint of A6R7 has better corrosion resistance.

  18. Semiconducting behavior of the anodically passive films formed on AZ31B alloy

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-12-01

    Full Text Available This work includes determination of the semiconductor character and estimation of the dopant levels in the passive film formed on AZ31B alloy in 0.01 M NaOH, as well as the estimation of the passive film thickness as a function of the film formation potential. Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials preponderated. Based on the Mott–Schottky analysis, it was shown that the calculated donor density increases linearly with increasing the formation potential. Also, the electrochemical impedance spectroscopy (EIS results indicated that the thickness of the passive film was decreased linearly with increasing the formation potential. The results showed that decreasing the formation potential offer better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  19. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  20. A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qian; Wang Xiaoguang; Qi Zhen [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Wang Yan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jiwei Road 106, Jinan 250022 (China); Zhang Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn

    2009-11-01

    Nanoporous gold (NPG) ribbons have been fabricated through electrochemical dealloying of melt-spun Al-Au alloys with 20-50 at.% Au in a 10 wt.% NaCl aqueous solution under potential control at room temperature. The microstructures of NPG were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) analysis. The microstructures of the NPG ribbons strongly depend upon the phase constitutions of the starting Al-Au alloys. The single-phase Al{sub 2}Au or AlAu intermetallic compound can be fully dealloyed, resulting in the formation of NPG with a homogeneous porous structure. The separate dealloying of Al{sub 2}Au and AlAu in the two-phase Al-45 Au alloy leads to the formation of NPG composites (NPGCs). In addition, the dealloying of the Al-20 Au alloy comprising {alpha}-Al and Al{sub 2}Au leads to the formation of NPG with bimodal channel size distributions. According to the ligament size, the surface diffusivity of Au adatoms along the alloy/electrolyte interface has been evaluated and increases with increasing applied potential. The dealloying mechanism in the neutral NaCl solution has been explained based upon pourbaix diagram and chloride ion effect.

  1. Structures and Electrochemical Hydrogen Storage Properties of the As-Spun RE-Mg-Ni-Co-Al-Based AB2-Type Alloys Applied to Ni-MH Battery

    Science.gov (United States)

    Zhang, Yanghuan; Yuan, Zeming; Shang, Hongwei; Li, Yaqin; Qi, Yan; Zhao, Dongliang

    2017-05-01

    In this paper, the La0.8- x Ce0.2Y x MgNi3.5Co0.4Al0.1 ( x = 0, 0.05, 0.1, 0.15, 0.2) alloys were synthesized via smelting and melt spinning. The effect of Y content on the structure and electrochemical hydrogen storage characteristics of the as-cast and spun alloys was investigated. The identifications of XRD and SEM demonstrate that the experimental alloys possess a major phase LaMgNi4 and a minor phase LaNi5. The variation of Y content results in an obvious transformation of the phase abundance rather than phase composition in the alloys, namely LaMgNi4 phase increases while LaNi5 phase decreases with Y content growing. Furthermore, the replacement of Y for La causes the lattice constants and cell volume to clearly decrease and markedly refines the alloy grains. The electrochemical tests reveal that these alloys can obtain the maximum values of discharge capacity at the first cycling without any activation needed. With Y content growing, the discharge capacity of the alloys obviously declines, but its cycle stability remarkably improves. Moreover, the electrochemical dynamics of the alloys, involving the high-rate discharge ability, hydrogen diffusion coefficient ( D), limiting current density ( I L), and charge transfer rate, initially augment and then decrease with rising Y content.

  2. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  3. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  4. Anisotropic Deformation Behavior of Al2024T351 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    R Khan

    2013-06-01

    Full Text Available The objective of this work was to investigate the effects of material anisotropy on the yielding and hardening behavior of 2024T351 aluminum alloy using isotropic and anisotropic yield criteria. Anisotropy may be induced in a material during the manufacturing through processes like rolling or forging. This induced anisotropy gives rise to the concept of orientation-dependent material properties such as yield strength, ductility, strain hardening, fracture strength, or fatigue resistance. Inclusion of the effects of anisotropy is essential in correctly predicting the deformation behavior of a material. In this study, uniaxial tensile tests were first performed in all three rolling directions, L , T  and S , for smooth bar specimens made from hot rolled plate of Al2024 alloy. The experimental results showed that the L - and T -directions yielded higher yield strengths and a greater percentage of elongation before fracture than the S -direction. Subsequently, finite element analysis of tensile specimens was performed using isotropic (von Mises and anisotropic (Hill yield criteria to predict the onset of yielding and hardening behaviors during the course of deformation. Hill's criterion perfectly fitted with the test data in the S -direction, but slightly underestimated the yield strength in L -direction. The results indicated that the Hill yield criterion is the most suitable one to predict the onset of yielding and hardening behaviors for 2024T351 aluminum alloy in all directions.

  5. Modelling and theories of alloy phase behavior

    International Nuclear Information System (INIS)

    Watson, R.E.; Davenport, J.W.; Weinert, M.; Bennett, L.H.

    1987-01-01

    Many trends in alloy phase formation are readily understood in terms of physically plausible atomic parameters. This has led to the introduction of structural maps where two (or more) such atomic parameters are employed as the coordinates and well-defined regions are observed to be associated with particular crystalline phases. These coordinates sometimes involve the difference in atomic parameters and sometimes involve an average. An alternative approach to the emphasis on atomic parameters has been the consideration of how atoms are packed in some crystal structure and how this controls what the constituent atoms may be. Recently this has led to the utilization of Wigner-Seitz (sometimes called Voronoi or Dirichlet) constructs of the atomic cells in a crystal structure and to the observation that sometimes two crystals which are nominally considered to have the same crystal structure according to normal crystallographic designation should be considered to be different. The Wigner-Seitz cell constructs have also offered a framework for understanding trends in the magnetic and chemical properties of particular phases as well as making coordination between crystalline and glassy structures. Neither of the above approaches provides numerical estimates of quantities of thermodynamic interest such as heats of formation. Such heats are being calculated. 42 refs., 15 figs

  6. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2010-01-01

    The electrochemical degradation of a silicate- and a phosphate-based plasma electrolytic oxidation (PEO) coated AM50 magnesium alloy obtained using a pulsed DC power supply was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in NaCl solutions of different chloride ion concentrations viz., 0.01 M, 0.1 M, 0.5 M and 1 M. The surface of the PEO coated specimens after 50 h of immersion/EIS testing was examined by optical microscopy and scanning electron microscopy. The results showed that the corrosion deterioration of PEO coated magnesium alloy in NaCl solutions was significantly influenced by chloride ion concentration. The silicate-based coating was found to offer a superior corrosion resistance to the magnesium substrate than the phosphate-based coatings in lower chloride ion concentration NaCl solutions (0.01 M and 0.1 M NaCl). On the other hand both these PEO coatings were found to be highly susceptible to localized damage, and could not provide an effective corrosion protection to Mg alloy substrate in solutions containing higher chloride concentrations (0.5 M and 1 M). The extent of localized damage was observed to be more with increase in chloride concentration in both the cases.

  7. Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinping [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wang, Zhihong [School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355 (China); Zhao, Dianyun [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Xu, Caixia, E-mail: chm_xucx@ujn.edu.cn [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2014-06-01

    Graphical abstract: Nanoporous PdFe alloy, characterized by open three-dimensional bicontinuous nanospongy architecture, was easily fabricated by selectively dealloying PdFeAl source alloys, which exhibits greatly enhanced sensing performance and structure stability towards H{sub 2}O{sub 2} and glucose compared with NP-Pd and Pd/C catalysts. - Highlights: • NP-PdFe alloy is fabricated by a simple dealloying method. • NP-PdFe possesses open three-dimensional bicontinuous spongy morphology. • NP-PdFe shows high electrochemical sensing activities towards H{sub 2}O{sub 2} and glucose. • NP-PdFe shows good long-term stability for H{sub 2}O{sub 2} and glucose detection. • NP-PdFe shows good reproducibility for H{sub 2}O{sub 2} and glucose detection. - Abstract: Nanoporous (NP) PdFe alloy is easily fabricated through one step mild dealloying of PdFeAl ternary source alloy in NaOH solution. Electron microscopy characterization demonstrates that selectively dissolving Al from PdFeAl alloy generates three-dimensional bicontinuous nanospongy architecture with the typical ligament size around 5 nm. Electrochemical measurements show that the NP-PdFe alloy exhibits the superior electrocatalytic activity and durability towards hydrogen peroxide (H{sub 2}O{sub 2}) detection compared with NP-Pd and commercial Pd/C catalysts. In addition, NP-PdFe performs high sensing performance towards H{sub 2}O{sub 2} in a wide linear range from 0.5 to 6 mM with a low detection limit of 2.1 μM. This nanoporous structure also can sensitively detect glucose over a wide concentration range (1–32 mM) with a low detection limit of 1.6 μM and high resistance against chloride ions. Along with these attractive features, the as-made NP-PdFe alloy also has a good anti-interference towards ascorbic acid, uric acid, and dopamine.

  8. Anodic behavior of nickel alloys in media containing bicarbonate ions

    International Nuclear Information System (INIS)

    Zadorozne, N.S; Carranza, R. M.; Giordano, C.M.

    2011-01-01

    Alloy 22 has been designed to resist corrosion in oxidizing and reducing conditions. Thanks to these properties it is considered a possible candidate for the fabrication of containers of high-level radioactive waste. Since the containers provide services in natural environments characterized by multi-ionic solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is required in order to produce cracking. It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media potentials below trans-passivity. The aim of this work is to study the anodic behavior of Alloy 22 in different media containing bicarbonate and chloride ions in various concentrations and temperatures and compare the results with other alloys containing nickel, and relate them to the susceptibility to stress corrosion cracking in a future job. Polarization curves were made on alloy 22 (Ni-Cr-Mo), 600 (Ni- Cr-Fe), 800h (Ni-Fe- Cr) and 201 (Ni commercially pure) in the following environments: 1.148 mol/L NaHCO 3 , 1.148 mol/L NaHCO 3 + 1 mol/L NaCl, 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl. The tests were performed at the following temperatures: 90°C, 75°C, 60°C and 25°C. It was found that alloy 22 has a current peak in the anodic domain at potentials below trans-passivity between 200 and 300 m VECS, when the test temperature was 90°C. The potential, at which this peak occurred, increased with decreasing temperature. Also there was a variation of the peak with the composition of the solution. When bicarbonate ions were added to a solution containing chloride ions, the peak potential shifted to higher current densities, depending on the concentration of added chloride ions. It was found that diminishing the content of

  9. Oxidation behavior of Zr and its alloys

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1984-01-01

    The environment effect, material composition, thermal treatment and superficial treatment on the oxidation behavior of Zr, Zircaloy-4 and Zr - 2,5% Nb, in the temperature range of 400 - 900 0 C, by thermogravimetry were studied. (E.G.) [pt

  10. Elevated temperature creep behavior of Inconel alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Burke, W.F.

    1984-07-01

    Inconel 625 in the solution-annealed condition has been selected as the clad material for the fuel and control rod housing assemblies of the Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU). The clad is expected to be subjected to temperatures up to about 1100 0 C. Creep behavior for the temperature range of 800 0 C to 1100 0 C of Inconel alloy 625, in four distinct heat treated conditions, was experimentally evaluated

  11. Superplastic behavior of coarse-grained aluminum alloys

    NARCIS (Netherlands)

    Chezan, AR; De Hosson, JTM

    2005-01-01

    In this paper we concentrate on the superplastic behavior and the microstructural evolution of two coarse-grained Al alloys: Al-4.4w/oMg and Al-4.4w/oMg-0.4w/oCu. The values for the strain rate sensitivity index and activation energy suggest that solute drag on dislocation motion is an important

  12. Structure and electrochemical hydrogen storage properties of Ti{sub 2}Ni alloy synthesized by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, B. [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Li, X. [FEMTO-ST, MN2S, Université de Technologie de Belfort-Montbéliard, Site de Sévenans, 90010 Belfort cedex (France); Khaldi, C., E-mail: chokri.khaldi@esstt.rnu.tn [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); ElKedim, O. [FEMTO-ST, MN2S, Université de Technologie de Belfort-Montbéliard, Site de Sévenans, 90010 Belfort cedex (France); Lamloumi, J. [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia)

    2014-12-05

    Highlights: • The Ti{sub 2}Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. • By increasing the temperature the capacity loss, undergoes an increase and it is more pronounced for the 60 °C. • A good correlation is found between the evolutions of the different electrochemical parameters according to the temperature. - Abstract: The structure and the electrochemical hydrogen storage properties of amorphous Ti{sub 2}Ni alloy synthesized by ball milling and used as an anode in nickel–metal hydride batteries were studied. Nominal Ti{sub 2}Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The structural and morphological characterization of the amorphous Ti{sub 2}Ni alloy is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization of the Ti{sub 2}Ni electrodes is carried out by the galvanostatic charging and discharging, the constant potential discharge, the open circuit potential and the potentiodynamic polarization techniques. The Ti{sub 2}Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. The electrochemical discharge capacity of the Ti{sub 2}Ni alloy, during the first eight cycles, and at a temperature of 30 °C, remained practically unchanged and a good held cycling is observed. By increasing the temperature, the electrochemical discharge capacity loss after eight cycles undergoes an increase and it is more pronounced for the temperature 60 °C. At 30 °C, the anodic corrosion current density is 1 mA cm{sup −2} and then it undergoes a rapid drop, remaining substantially constant (0.06 mA cm{sup −2}) in the range 40–60 °C, before undergoing a slight increase to 70 °C (0.3 mA cm{sup −2}). This variation is in good agreement with the maximum electrochemical discharge capacity values found for the

  13. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  14. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  15. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Stoermer, M.; Dietzel, W.

    2009-01-01

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  16. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    OpenAIRE

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in th...

  17. Effects of Nd-addition on the structural, hydrogen storage, and electrochemical properties of C14 metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Nei, J.; Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Ng, K.Y.S. [Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2015-10-25

    Nd-addition to the AB{sub 2}-based alloy Ti{sub 12}Zr{sub 22.8−x}V{sub 10}Cr{sub 7.5}Mn{sub 8.1}Co{sub 7.0}Ni{sub 32.2}Al{sub 0.4}Nd{sub x} is studied for its effects on the structure, gaseous-phase hydrogen storage, and electrochemical properties. This study follows a series of Cu, Mo, Fe, Y, Si, and La doping studies in similar AB{sub 2}-based alloys. Limited solubility of Nd in the main Laves phase promotes the formation of secondary phases (AB and Zr{sub 7}Ni{sub 10}) to provide catalytic effects and synergies for improved capacity and high-rate dischargeability (HRD) performance. The main C14 storage phase has smaller lattice constants and cell volumes, and these effects reduce the storage capacity at higher Nd levels. Different hydrogen absorption mechanisms can occur in these multi-component, multi-phase alloys depending on the interfaces of the phases, and they have effects on the alloy properties. Higher Nd-levels improve the HRD performance despite having lower bulk diffusion and surface exchange current. Magnetic susceptibility measurements indicate large percentage of larger metallic nickel clusters are present in the surface oxide of alloys with higher Nd-content, and AC impedance studies show very low charge-transfer resistance with high catalytic capability in the alloys. The −40 °C charge-transfer resistance of 8.9 Ω g in this Nd-series of alloys is the lowest measured out of the studies investigating doped AB{sub 2}-based MH alloys for improved low-temperature characteristics. The improvement in HRD and low-temperature performance appears to be related to the proportion of the highly catalytic NdNi-phase at the surface, which must offset the increased bulk diffusion resistance in the alloy. - Graphical abstract: Schematics of hydrogen flow and corresponding PCT isotherms in funneling mode. - Highlights: • Structural and hydrogen storage properties of Nd-substituted AB{sub 2} metal hydride are reported. • Nd contributes to the lowest

  18. Electrochemical behavior of amorphous metal-silicon-carbon nanocomposites based on titanium or tungsten nanophase

    International Nuclear Information System (INIS)

    Pleskov, Yu.V.; Krotova, M.D.; Shupegin, M.L.; Bozhko, A.D.

    2009-01-01

    Electrode behavior of nanocomposite films containing titanium- or tungsten-based conducting nanophase embedded in dielectric silicon-carbon matrix, deposited onto glassceramics substrate, is studied by cyclic voltammetry and electrochemical impedance spectroscopy. As the films' resistivity decreases, their electrochemical behavior gradually changes from that of 'poor conductor' to the nearly metal-like behavior. In particular, the differential capacitance increases, the charge transfer in a model redox system [Fe(CN) 6 ] 3-/4- accelerates, which may be explained by the increasing number of metal-containing clusters at the film/electrolyte solution interface

  19. An electrochemical analysis of AZ91 Mg alloy processed by plasma electrolytic oxidation followed by static annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.G. [School of Materials Science and Engineering, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Gyeongbuk (Korea, Republic of); Lee, K.M.; Lee, B.U. [Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Shin, D.H., E-mail: dhshin@hanyang.ac.kr [Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2011-06-15

    Research highlights: > The amount of MgO in the oxide film increased with increasing annealing temperature. > The dehydration reaction resulted in the formation of micro-cracks in the oxide film. > Electrochemical response of the PEO-treated sample annealed at 150 deg. C was improved. - Abstract: In this study, the effect of subsequent annealing on the electrochemical response of AZ91 Mg alloy coated via plasma electrolytic oxidation (PEO) was investigated. PEO coating was carried out on the Mg alloy under AC condition in an alkaline silicate electrolyte, and the PEO-coated samples underwent several subsequent annealing treatments at three different temperatures of 100, 150, and 200 deg. C. The surface morphologies of the coating layers were observed via a scanning electron microscope (SEM) and their constituent compounds were characterized by qualitative observation based on X-ray photoelectron spectroscopy (XPS). In addition, the corrosion protection properties of the PEO-coated sample were examined by electrochemical impedance spectroscopy (EIS) in a 3.5 wt% NaCl solution with a focus on exploring the effect of subsequent annealing on the electrochemical response in a quantitative manner. SEM and XPS observations evidenced that the subsequent annealing at temperatures higher than 150 deg. C resulted in significant morphological changes due to the dehydration reaction of Mg(OH){sub 2} to form MgO. Thus, it was found that the sample annealed at 150 deg. C exhibited a better corrosion resistance than the other samples, which were analyzed by taking an equivalent circuit model into account.

  20. Electrochemical Behavior of La on Liquid Bi electrode in LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Kyu; Han, Hwa Jeong; Park, Byung Gi [Soonchunyang University, Asan (Korea, Republic of)

    2016-05-15

    Pyroprocessing technology aims to achieve a grouped and efficiently separation of all actinide for recycling with a sufficient decontamination of fission products generating the minimum. The main steps of the pyroprocess is electrowinning process, where the remaining elements in a molten salt after electrorifinning process. That process is U, MAs are concurrently recovered at the liquid metal. Recently, a study of the liquid metal and molten salt using an electrochemical is carried out in a variety of fields. However, there is deficient information about the electrode reaction of lanthanide and actinide on the liquid bismuth metal electrodes. In this paper, the electrochemical behavior of La(III), with liquid bismuth was investigated by the electrochemical method. The aim of this study is to investigate the electrochemical behavior of lanthanum or neodymium among lanthanides in molten LiCl-KCl salt at liquid metal bismuth electrode cyclic voltammetry and derive the thermochemical properties. The electrochemical behavior of La was studied in LiCl-KCl-LaCl{sub 3} molten salts using electrochemical techniques Cyclic Voltammetry on liquid Bi electrodes at 773K. During the process of cyclic voltammetry electrolysis, intermetallic compound were observed of La, Lax-Biy, Li-Bi. The diffusion coefficient of La was measured by cyclic voltemmetry and was found to be 8.18x10{sup -5}cm{sup 2}/s.

  1. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  2. Electrochemical heterogeneity and chemical stability of anodic oxide films of barrier type on certain valve metals and alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.

    1986-01-01

    Direct current and alternating current electrochemical methods are used to study kinetic regularities and mechanism of titanium films dissolution in NaOH and H 2 SO 4 concentrated solutions. Piece-line dependence of oxidized electrode specific reverse capacitance on the time of C c -1 =α i -β i τ type is stated. Effective activation energy and dissolution reaction apparent order are determined by agressive ions. For amorphous alloys films interrelation of structure heterogeneity, film composition and resistance to pitting corrosion is shown. Decrease of oxide protecting properties is due to crystallization of originally amorphous films

  3. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Justin Raj, C.; Kim, Byung Chul; Cho, Won-Je; Lee, Won-Gil; Seo, Yongseong; Yu, Kook-Hyun, E-mail: yukook@dongguk.edu

    2014-02-15

    Highlights: • The electrochemical supercapacitor electrode was fabricated using CuS nanoplatelets. • CuS electrodes shows better electrochemical properties in aqueous LiClO{sub 4} electrolyte. • The heat treated CuS electrode shows an excellent pseudocapacitance performance than bare CuS electrode. -- Abstract: Copper sulfide (CuS) nanoplatelets have been fabricated by simple low temperature chemical bath deposition technique for electrochemical supercapacitor electrodes. The morphology and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction. The effect of heat treatment on electrochemical properties of CuS electrodes were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge tests. Results show that bare and heat treated CuS has pseudocapacitive characteristic within the potential range of −0.6 to 0.3 V (vs. Ag/AgCl) in aqueous 1 M LiClO{sub 4} solution. The pseudocapacitance is induced mainly by lithium ions insertion/extraction with the CuS electrodes. The specific capacitance of 72.85 F g{sup −1} was delivered by heat treated CuS film at a scan rate of 5 mV s{sup −1} with an energy and power density of 6.23 W h kg{sup −1} and 1.75 kW kg{sup −1} at 3 Ag{sup −1} constant discharge current which is comparatively higher than that of as deposited CuS electrode.

  4. Electrochemical hydrogen storage behaviour of as-cast and as-spun RE-Mg-Ni-Mn-based alloys applied to Ni-MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan; Hou, Zhonghui; Hu, Feng [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Cai, Ying [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Qi, Yan; Zhao, Dongliang [Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research

    2016-09-15

    La-Mg-Ni-Mn-based AB{sub 2}-type La{sub 1-x}Ce{sub x}MgNi{sub 3.5}Mn{sub 0.5} (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning. X-ray diffraction and scanning electron microscopy revealed that the experimental alloys consisted of a major phase LaMgNi{sub 4} and a secondary phase LaNi{sub 5}. The Ce substitution for La and melt spinning refined the grains of the alloys clearly. Electrochemical tests showed that the as-cast and as-spun alloys exhibited excellent activation capability. With the increase in the spinning rate and Ce content, the discharge capacities of the alloys initially increased and then decreased, whereas their cycle stabilities always increased. Moreover, the electrochemical kinetics of the alloys initially increased and then decreased with the growth of Ce content and spinning rate. The major reason leading to the capacity degradation of the alloy electrodes was determined to be the pulverisation of the alloy particles and the corrosion and oxidation of the alloy surface.

  5. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells.

    Science.gov (United States)

    Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan

    2006-05-04

    The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.

  6. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  7. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  8. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  9. Corrosion behaviour of zinc and aluminum magnesium alloys by scanning reference electrode technique (SRET) and electrochemical noise (EN)

    International Nuclear Information System (INIS)

    Klassen, R.D.; Roberge, P.R.; Lafront, A.-M.; Oteyaka, M.O.; Ghali, E.

    2005-01-01

    The corrosion characteristics of five permanent mould magnesium alloys were studied. Two contained aluminum (AZ91D and AZ91E) and three contained zinc as the primary alloying element (ZA104 (Zn 10%, Al 4%), ZAC and ZACS). ZAC contained a small amount of calcium and ZACS contained small amounts of calcium and strontium. Two techniques were used in this study, namely 1) scanning reference electrode technique (SRET) and 2) electrochemical noise (EN). The test solution for each case was 5% NaCl saturated with Mg(OH)2 at room temperature. According to the EN measurements, the corrosion rate of AZ91D was the lowest followed by AZ91E, ZACS, ZAC and ZA104. The EN measurements showed that both the frequency and magnitude of current transients were much higher for the zinc based alloys than for the aluminum based alloys. The SRET measurements illustrated that localized corrosion occurred more frequently on the ZA104 sample than on the AZ91D sample. It seemed that increasing the level of zinc and lowering the level of aluminum relative to the levels in AZ91D does not improve corrosion resistance. (author)

  10. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Javier [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Bolat, Georgiana [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Cimpoesu, Nicanor [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science, 61-63 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Trinca, Lucia Carmen [Science Department, University of Agricultural Sciences and Veterinary Medicine, M. Sadoveanu Alley 3, 700490 Iasi (Romania); Mareci, Daniel, E-mail: danmareci@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Souto, Ricardo Manuel, E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna, Tenerife (Spain)

    2016-11-01

    Highlights: • New quarternary Ti-based alloy for biomaterial application. • Combined hydroxyapatite-zirconia coating produced by pulsed laser deposition. • Porous layer formed on the coated alloy blocks electron transfer reactions. • Electrochemical behaviour consistent with passive film with duplex structure. • HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr exhibits high potential for osseointegration. - Abstract: A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA–ZrO{sub 2}) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer’s solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA–ZrO{sub 2} coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  11. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  12. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    Science.gov (United States)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s-1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  13. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  14. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  15. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    International Nuclear Information System (INIS)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-01-01

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L"−"1 BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si−O−M chemical

  16. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  17. The solidification behavior of dilute aluminium-scandium alloys

    International Nuclear Information System (INIS)

    Norman, A.F.; Prangnell, P.B.; McEwen, R.S.

    1998-01-01

    The solidification behavior of dilute Sc containing Al alloys has been investigated. In binary Al-Sc alloys, Sc additions greater than the eutectic composition (0.55 wt%) were found to produce a remarkable refinement in the grain size of aluminum castings, of two orders of magnitude, due to the formation of the primary Al 3 Sc intermetallic phase during solidification. The refinement in grain size only occurred in hypereutectic compositions and was shown to be far greater than can be achieved by conventional Al grain refiners. Grain refinement by the addition of Sc is accompanied by a change in growth morphology from dendritic, in the large unrefined grains, to fine spherical grains with a divorced eutectic appearing on the grain boundaries in the refined castings. Similar levels of refinement were observed in Al-Sc-Zr and Al-Cu-Sc alloys. In the latter, a change in the segregation behavior of Cu was observed, from a strongly interdendritic segregation pattern to a more homogeneous distribution. The supersaturated Al-Sc solid solution can decompose via a discontinuous precipitation reaction to form coherent rod-like precipitates of the L1 2 Al 3 Sc phase

  18. Hot deformation behavior of TC18 titanium alloy

    Directory of Open Access Journals (Sweden)

    Jia Bao-Hua

    2013-01-01

    Full Text Available Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25°C to 800°C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.

  19. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  20. Comparison of electrochemical performance of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2010-03-15

    A comparative experimental study of the electrochemical features of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys is carried out with a view to applications in the manufacture of lead-acid battery components. The as-cast samples are obtained using a water-cooled unidirectional solidification system. Pb-Sn and Pb-Sb alloy samples having similar coarse cell arrays are subjected to corrosion tests in order to assess the effect of Sn or Sb segregation in the cell boundary on the electrochemical performance. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis are used to evaluate the electrochemical parameters in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Both the experimental and simulated EIS parameters evidence different kinetics of corrosion. The Pb-1 wt.% Sn alloy is found to have a current density which is of about three times lower than that of the Pb-1 wt.% Sb alloy which indicates that dilute Pb-Sn alloys have higher potential for application as positive grid material in maintenance-free Pb-acid batteries. (author)

  1. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions

    Directory of Open Access Journals (Sweden)

    Alvaro A. Rodriguez

    2018-01-01

    Full Text Available The corrosion behavior of high-entropy alloys (HEAs CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276 and stainless steel 316L (UNS 31600 to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.

  2. Dynamic Mechanical Behaviors of 6082-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Peng Yibo

    2013-01-01

    Full Text Available The structural components of high speed trains are usually made of aluminum alloys, for example, 6082. The dynamic mechanical behavior of the material is one of key factors considered in structural design and safety assessment. In this paper, dynamic mechanical experiments were conducted with strain rate ranging from 0.001 s−1 to 100 s−1 using Instron tensile testing machine. The true stress-strain curves were fitted based on experimental data. Johnson-Cook model of 6082-T6 aluminum alloy was built to investigate the effect of strain and strain rate on flow stress. It has shown that the flow stress was sensitive to the strain rate. Yield strength and tensile strength increased with a high strain rate, which showed strain rate effect to some extent. Fracture analysis was carried out by using Backscattered Electron imaging (BSE. As strain rate increased, more precipitates were generated in fracture.

  3. Creep and creep-rupture behavior of Alloy 718

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760 degree C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A ''master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs

  4. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhaohui [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Wu Changjun, E-mail: wucj163@126.co [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai Changsong, E-mail: changsd@hit.edu.c [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang Feixia [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-20

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D < AZ61 < AZ31 < pure Mg after immersion for 1 day. With an increase in immersion time, their corrosion rates decreased and then a stable stage was reached after 16 days. The order of CRs of the four samples changed to AZ91D < pure Mg < AZ61 < AZ31 after immersion for 24 days. The results of EIS experiments indicate that the charge transfer resistance (R{sub ct}) of the three magnesium alloys initially increased and then decreased while the R{sub ct} of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the {beta}-Mg{sub 12}Al{sub 17} precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al{sub 8}Mn{sub 5} and a little {beta}-Mg{sub 12}Al{sub 17} presented along the grain boundary heterogeneously and discontinuously. Al{sub 8}Mn{sub 5} was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the {alpha}-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase

  5. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    Science.gov (United States)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  6. An Electrochemical Investigation of the Chemical Diffusivity in Liquid Metal Alloys

    Science.gov (United States)

    Barriga, Salvador A.

    The liquid metal battery has been shown to be a viable candidate for grid-scale energy storage, due to its fast kinetics and ability to be constructed from economically feasible materials. Various of the liquid metal couples that form high stable voltages, such as the calcium chemistries, are rate limited because they tend to form solid intermetallic compounds with high melting points. In order to understand and better engineer these batteries, the kinetic properties of these liquid alloys, in particular the chemical diffusivity, must be known accurately so that it can be used as input in computational simulations to avoid the nucleation of any solids. Unfortunately, the dominant experimental methods for measuring diffusion in liquid metals today are unreliable because the measurement timescales are on the order of days, require long capillaries susceptible to buoyancy-driven flow from temperature fluctuations, and composition analysis must be done ex-situ as a solid. To counter all these problems, a new and novel method for measuring the chemical diffusivity of metals in liquid alloys derived from electrochemical principles is presented in this thesis. This new method has the advantage of operating in shorter times scales of minutes rather than days, and requires the use of small capillaries which collectively minimize the effect of convectively-driven flow caused from temperature gradients. This new method was derived by solving the same boundary conditions required by the galvanostatic intermittent titration technique for solid-state electrodes. To verify the validity of the new theoretical derivation, the method was used to measure the chemical diffusivity of calcium in liquid bismuth within the temperature range of 550 - 700 °C using a three-electrode setup with a ternary molten salt electrolyte. Three compositions where studied (5% Ca-Bi, 10% Ca-Bi, and 15% Ca-Bi) for comparison. The chemical diffusion coefficient was found to range between (6.77 +/- 0.21)x

  7. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    International Nuclear Information System (INIS)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y.; Lee, E.S.

    2014-01-01

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis

  8. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  9. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  10. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  11. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca 2+ , PO 4 3− and SiO 3 2− ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO 4 4− groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO 4 4− groups in the Si-HA coating

  12. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  13. Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials

    Directory of Open Access Journals (Sweden)

    Jiarun Li

    2016-03-01

    Full Text Available The Mg-6%Al-3%Zn and Mg-6%Al-3%Zn-(1%, 1.5%, 2%In alloys were prepared by melting and casting. Their microstructures were investigated via metallographic and energy-dispersive X-ray spectroscopy (EDS analysis. Moreover, hydrogen evolution and electrochemical tests were carried out in 3.5 wt% NaCl solution aiming at identifying their corrosion mechanisms and discharge behaviors. The results suggested that indium exerts an improvement on both the corrosion rate and the discharge activity of Mg-Al-Zn alloy via the effects of grain refining, β-Mg17Al12 precipitation, dissolving-reprecipitation, and self-peeling. The Mg-6%Al-3%Zn-1.5%In alloy with the highest corrosion rate at free corrosion potential did not perform desirable discharge activity indicating that the barrier effect caused by the β-Mg17Al12 phase would have been enhanced under the conditions of anodic polarization. The Mg-6%Al-3%Zn-1.0%In alloy with a relative low corrosion rate and a high discharge activity is a promising anode material for both cathodic protection and chemical power source applications.

  14. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail: qingliu@cqu.edu.cn; Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn; Xing, Yuan; Ding, Lipeng; Wang, Xueli

    2017-05-31

    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  15. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty Banerjee, P. [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); CAST Cooperative Research Centre, Hawthorn, VIC-3122 (Australia); Singh Raman, R.K., E-mail: raman.singh@eng.monash.edu.a [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC-3800 (Australia)

    2011-04-15

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  16. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    International Nuclear Information System (INIS)

    Chakraborty Banerjee, P.; Singh Raman, R.K.

    2011-01-01

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  17. Study of the oxidation behavior of zirconoium and its alloys

    International Nuclear Information System (INIS)

    Costa, I.

    1985-01-01

    The oxidation behavior of zirconium, zircaloy-4 and Zr-2,5% Nb alloy, as well as the influence of temperature, oxidising atmosphere, metal composition, heat treatment, surface treatment and specimen size on the oxidation of these materials in the temperature range 350 - 900 0 C and at atmospheric pressure have been studied with the aid of thermogravimetry. The results indicate that oxidation rate increases with temperature and the rate of oxidation of the zirconium alloys was appreciable beyond 600 0 C. At temperature higher than 500 0 C, the oxidation curves of the zirconium alloys revealed a rate transition, the kinetics after transition being either mixed parabolic and linear or linear. The transition produced an alteration in oxide characteristics, from being dark and adherent and protective, to white or grey and revealing at times cracks and scaling. The oxidation atmospheres were oxygen and air, and the results showed that the extent of oxidation in air was higher than that in oxygen. Among the metals, zirconium showed a low degree of oxidation, and the alloy Zr-2,5% Nb the lowest resistance to oxidation. Specimens heat treated in the α-phase showed the highest resistance to oxidation, and those heat treated in the β-phase the lowest. Surface treatments in aqueous solutions containing a high concentration of the fluoride ion, left behind fluorates on the surface and increased the oxidation rates of zirconium and zircaloy-4. Specimens with a high proportion of corners in relation to the total area, showed a high extent of oxidation giving rise to cracks in the oxide at the corners. (Author) [pt

  18. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  19. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    Science.gov (United States)

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  20. Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X=Ni, Si) hydrogen storage alloys

    NARCIS (Netherlands)

    Gobichettipalayam Manivasagam, T.; Iliksu, M.; Danilov, D.L.; Notten, P.H.L.

    2017-01-01

    Mg-based hydrogen storage alloys are promising candidate for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties

  1. Plasma electrolytic oxidation of AZ91D magnesium alloy with different additives and its corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fa-he; Cao, Jiang-lin; Zhang, Zhao [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Zhang, Jian-qing; Cao, Chu-nan [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-09-15

    Plasma electrolytic oxidation (PEO) of Mg-based AZ91D alloys was investigated using 50 Hz AC anodizing technique in an alkaline borate solution, which contained a new kind of organic additive and without F, P, and Cr. The anodizing technological parameters have been optimized and a kind of ivory-white smooth anodic film with high corrosion resistance was obtained. It was found that the formation of the anodic films was always coupled with sparking and oxygen evolution, whose intensity changed with the additive and anodizing voltage. All EIS plots have two capacitive loops and one low frequency inductive component. Two capacitive arcs present the barrier and porous layer of the PEO film and the inductive component in the low frequency domain is a complex behavior due to the porous structure connected to the electrolyte. EIS plots and fitting results show that a self-sealing process of the PEO firm with different additives takes place in the beginning of immersion time, then corrosion attack becomes a preponderant process to promote the degradation of the film. Tafel results show that PEO treatment decreases the corrosion current density by four, even five orders of magnitude, while additives content does not affect strongly the electrochemical corrosion behavior. Salt spray test shows that the PEO film formed with NaAlO{sub 2} and Na{sub 2}SiO{sub 3} presents good corrosion resistance, over 600 h without any sealing treatment. The difference of corrosion resistance arose by additives examined by electrochemical techniques and salt spray test does not show strict corresponding relationship. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  3. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  4. Abnormal magnetization behaviors in Sm–Ni–Fe–Cu alloys

    International Nuclear Information System (INIS)

    Yang, W.Y.; Zhang, Y.F.; Zhao, H.; Chen, G.F.; Zhang, Y.; Du, H.L.; Liu, S.Q.; Wang, C.S.; Han, J.Z.; Yang, Y.C.; Yang, J.B.

    2016-01-01

    The magnetization behaviors in Sm–Ni–Fe–Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu 5 -type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu 5 -type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10 −15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion. - Highlights: • Two different magnetization mechanisms, controlled by temperature, have been found in the Sm–Ni–Fe–Cu alloys. The smooth-jump behavior of the magnetization is observed at T>5 K and the step-like magnetization process appears at T<5 K. • The magnetic moment reversal model with thermal activation has been successfully used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The energy barrier for the reversal of the moment direction has been found to be about 6.6×10 −15 erg. • The transition field for the step-like jumps is very strict, independent from the magnetic sweep rate. This is remarkably different from the similar step-like jump behavior in reference [20]. • According to the SEM images and EDX analysis, two kinds of regions are found in the alloys. The Fe–Ni–Cu regions are surrounded by the 1:5 Sm–Ni–Fe–Cu regions and shows fish-bone like structure. An interesting thing is that the Fe–Ni–Cu regions are

  5. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    Science.gov (United States)

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  7. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2017-12-01

    Full Text Available The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF. The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction, SEM (Scanning Electron Microscopy, and TEM (Transmission Electron Microscope. The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy. The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO42 compound (precursor of hydroxyapatite deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material.

  8. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    Science.gov (United States)

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys

    International Nuclear Information System (INIS)

    Naka, M.; Hoshimoto, K.; Masumoto, T.

    1978-01-01

    Corrosion rates and anodic polarization curves of amorphous and crystalline Cu 50 Ti 50 and Cu 50 Zr 50 alloys have been examined in various acidic, neutral and alkaline solutions. The amorphous alloys are very stable in acidic and alkaline solutions, but unstable in agressive chloride solutions. The corrosion resistance of these amorphous alloys is higher than that of the crystallized alloys. The high corrosion resistance of amorphous alloys is attributable to the high chemical homogeneity of amorphous alloys without localized crystalline defects such as precipitates, segregates, grain boundaries, etc. Metalloid elements play an important role in the corrosion behavior of amorphous alloys; the addition of phosphorus to amorphous Cu-Ti alloy greatly increases the corrosion resistance, even in 1N HCl. (Auth.)

  10. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  11. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater.

    Science.gov (United States)

    Torres Bautista, Blanca E; Carvalho, Maria L; Seyeux, Antoine; Zanna, Sandrine; Cristiani, Pierangela; Tribollet, Bernard; Marcus, Philippe; Frateur, Isabelle

    2014-06-01

    Copper alloys often used in cooling circuits of industrial plants can be affected by biocorrosion induced by biofilm formation. The objective of this work was to study the influence of protein adsorption, which is the first step in biofilm formation, on the electrochemical behavior of 70Cu-30Ni (wt.%) alloy in static artificial seawater and on the chemical composition of oxide layers. For that purpose, electrochemical measurements performed after 1h of immersion were combined to surface analyses. A model is proposed to analyze impedance data. In the presence of bovine serum albumin (BSA, model protein), the anodic charge transfer resistance deduced from EIS data at Ecorr is slightly higher, corresponding to lower corrosion current. Without BSA, two oxidized layers are shown by XPS and ToF-SIMS: an outer layer mainly composed of copper oxide (Cu2O redeposited layer) and an inner layer mainly composed of oxidized nickel, with a global thickness of ~30nm. The presence of BSA leads to a mixed oxide layer (CuO, Cu2O, Ni(OH)2) with a lower thickness (~10nm). Thus, the protein induces a decrease of the dissolution rate at Ecorr and hence a decrease of the amount of redeposited Cu2O and of the oxide layer thickness. © 2013.

  12. Polarization and EIS studies to evaluate the effect of aluminum concentration on the corrosion behavior of SAC105 solder alloy

    Directory of Open Access Journals (Sweden)

    Liyana N. K.

    2018-03-01

    Full Text Available This paper presents an investigation on corrosion behavior of Sn-1.0Ag-0.5Cu-XAl (X = 0, 0.1, 0.5, 1.0 by means of polarization and electrochemical impedance spectroscopy (EIS measurements in 3.5 wt.% NaCl solution. The results show that addition of aluminum into SAC105 shifts the corrosion current density and passivation current density towards more positive values. It is also found that with an increase in aluminum concentration in SAC105 solder alloy, the corrosion current density increases and polarization resistance decreases. This suggests that SAC105 with the highest concentration of Al has the lowest corrosion resistance. In this case, the corrosion behavior seems to be attributed to anodic dissolution of aluminum and Sn-matrix.

  13. Corrosion behavior of HPT-deformed TiNi alloys in cell culture medium

    Science.gov (United States)

    Shri, D. N. Awang; Tsuchiya, K.; Yamamoto, A.

    2017-09-01

    In recent years there are growing interest in fabrication of bulk nanostructured metals and alloys by using severe plastic deformation (SPD) techniques as new alternative in producing bulk nanocrystalline materials. These techniques allows for processing of bulk, fully dense workpiece with ultrafine grains. Metal undergoes SPD processing in certain techniques such as high pressure torsion (HPT), equal-channel angular pressing (ECAP) or multi-directional forging (MDF) are subjected to extensive hydrostatic pressure that may be used to impart a very high strain to the bulk solid without the introduction of any significant change in overall dimension of the sample. The change in the structure (small grain size and high-volume fraction of grain boundaries) of the material may result in the corrosion behavior different from that of the coarse-grained material. Electrochemical measurements were done to understand the corrosion behavior of TiNi alloys before and after HPT deformation. The experiment was carried out using standard three electrode setup (a sample as working electrode; a platinum wire as a counter electrode and a saturated calomel electrode in saturated KCl as a reference electrode) with the surface area of 26.42 mm2 exposed to the EMEM+10% FBS cell culture medium. The measurements were performed in an incubator with controlled environment at 37 °C and 5% CO2, simulating the cell culture condition. The potential of the specimen was monitored over 1 hour, and the stabilized potential was used as the open-circuit potential (EOCP). Potentiodynamic curves were scanned in the potential range from -0.5 V to 1.5 V relative to the EOCP, at a rate of 0.5 mV/s. The result of OCP-time measurement done in the cell culture medium shows that the OCP of HPT-deformed samples shifts towards to the more positive rather than that of BHPT samples. The OCP of deformed samples were ennobled to more than +70 mV for Ti-50mol%. The shift of OCP towards the nobler direction

  14. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  15. Electrochemical reduction of oxygen on lead-silver alloys in an alkaline medium

    International Nuclear Information System (INIS)

    Seliverstov, S.D.; Arkhangel'skaya, Z.P.; Lyzlov, N.Y.

    1986-01-01

    The use of lead-silver alloys as materials for the gas-absorbing electrode in sealed silver-cadmium alkaline storage batteries is desirable primarily from the stanpoint of saving the costly silver. The authors studied reduction of oxygen with the aim of optimizing the composition of the Pb-Ag alloy and of the porous structure of the electrodes. The alloys were made in a muffle furnace in corundum crucibles under a layer of VI-2 flux. Curves are shown which represent the dependence of the ionization current of molecular oxygen on smooth partially immersed electrodes made from alloys differing in composition on the length of the part of the electrode withdrawn from the solution. It is shown that decrease of the corrosion resistance of the alloy in the porous electrode causes partial loss of its mechanical strength. Worsening of the electric contact between the particles of active material is also possible. An alloy of the composition (mass %) 60 Pb-40 Ag is the most suitable from the practical standpoint

  16. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Use of an AC/DC/AC Electrochemical Technique to Assess the Durability of Protection Systems for Magnesium Alloys

    Science.gov (United States)

    Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming

    One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.

  18. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  19. Electrochemical corrosion characteristics of aluminium alloy 6061 T6 in demineralized water containing 0.1 % chloride ion

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2012-01-01

    Direct current electrochemical method is one of the techniques has been used to study the corrosion behaviour of metal/alloy in its environment. This paper attempts to investigate the corrosion behaviour of Al 6061 T6 immersed in Reactor TRIGA Mark II pool water containing about 0.1% NaCl content. The result shown that the corrosion rate value of the aluminium 6061 T6 increased with the presence of 0.1 % Ion Chloride content in the demineralized water reactor pool as compared to normal demineralized water. This is due to aggressiveness of chloride ion attack to metal surface. Beside corrosion rate analysis, the further tests such as corrosion behaviour diagram, cyclic polarization have been carried and the results have been reported. (author)

  20. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes

    International Nuclear Information System (INIS)

    Chen Wanyu; Tang Haitao; Ou Ziwei; Wang Hong; Yang Yajiang

    2007-01-01

    An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate (DEA) with acrylic acid (AAc). Free radical copolymerization of the ionic complex and acrylamide (AAm), yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEA-AAm), designated as PADA] using two types of organic solvents containing a lithium salt. The PADA gel electrolyte exhibited good thermal stability shown by the DSC thermogram. The impedance analysis at temperatures ranging from -30 to 75 deg. C indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes. The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation. Moreover, the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers. The ionic conductivities of PADA gels prepared in solvent mixtures of propylene carbonate, ethyl methyl ether and dioxolane (3:1:1, v/v) were higher than those of PADA gels prepared in propylene carbonate only. Significantly, the ionic conductivities of two kinds of PADA gel electrolytes were in the range of 10 -3 and 10 -4 S cm -1 even at -30 deg. C. The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 V to 4.5 V

  1. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    Science.gov (United States)

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pcorrosion current density) and Ipass (pcorrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  2. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    Science.gov (United States)

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pdextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (pdextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

  3. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  4. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua; Zhan Zhongwei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of glycidoxypropyl-trimethoxy-silane (GTMS) on a titanium alloy was found fitting Temkin isotherm by XPS. Black-Right-Pointing-Pointer From an electrochemical point of view, the in situ adsorption process of GTMS molecules agreed with XPS results. Black-Right-Pointing-Pointer At 30 Degree-Sign C, the adsorption of GTMS molecules is spontaneous, and follows a chemisorption-based mechanism. - Abstract: The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 Degree-Sign C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (K{sub ads}) and free energy of adsorption process ({Delta}G{sub ads}) were calculated to elaborate the mechanism of GTMS adsorption.

  5. On the elasto-viscoplastic behavior of the Ti5553 alloy

    OpenAIRE

    Ben Bettaieb , Mohamed; VAN HOOF , Thibaut; Pardoen , Thomas; Dufour , Philippe; LENAIN , Astrid; JACQUES , Pascal J.; Habraken , Anne-Marie

    2014-01-01

    International audience; The elastoviscoplastic behavior of the Ti5553 alloy is characterized and compared to the classical Ti–6Al–4V alloy. The true stress–strain curves are determined based on tensile tests performed under different strain rates at room temperature and at 1501C, from which the elastic constants and the parameters of a Norton–Hoff viscoplastic model are identified. The strength of the Ti5553 alloy is 20–40% higher than the strength of the Ti–6Al–4V alloy. The Ti5553 alloy con...

  6. Oxidation behavior of steels and Alloy 800 in supercritical water

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordoni, R.; Dominguez, G.; Alvarez, M.G.

    2011-01-01

    The oxidation behavior of a ferritic-martensitic steel T91 and a martensitic steel AISI 403 up to 750 h, and of AISI 316L and Alloy 800 up to 336 h in deaerated supercritical water, 450ºC-25 MPa, was investigated in this paper. After exposure up to 750 h, the weight gain data, for steels T91 and AISI 403, was fitted by ∆W=k t n , were n are similar for both steels and k is a little higher for T91. The oxide films grown in the steels were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction. The films were adherent and exhibited a low porosity. For this low oxygen content supercritical water exposure, the oxide scale exhibited a typical duplex structure, in which the scale is composed of an outer iron oxide layer of magnetite (Fe 3 O 4 ) and an inner iron/chromium oxide layer of a non-stoichiometric iron chromite (Fe,Cr) 3 O 4 . Preliminary results, with AISI 316L and Alloy 800, for two exposure periods (168 and 336 h), are also reported. The morphology shown for the oxide films grown on both materials up to 336 h of oxidation in supercritical water, resembles that of a duplex layer film like that shown by stainless steels and Alloy 800 oxide films grown in a in a high temperature and pressure (220-350ºC) of a primary or secondary coolant of a plant. (author) [es

  7. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  8. M5TM alloy high burnup behavior and worldwide licensing

    International Nuclear Information System (INIS)

    Mardon, J.P.; Hoffmann, P.B.; Garner, G.L.

    2005-01-01

    The in-reactor behavior of advanced PWR Zirconium alloys at burnups equal to or below licensing limits has been widely reported. Specifically, the advanced alloy M5 has demonstrated impressive improvements over Zircaloy-4 for fuel rod cladding and fuel assembly structural components. To demonstrate superiority of the alloy at burnups beyond current licensing limits, M5 has been operated in PWR at burnups exceeding 71 GWd/tU in the United States and 78 GWd/tU in Europe. Two extensive irradiation programs have been performed in the United States to demonstrate alloy M5 performance beyond current licensing limits. Four M5 TM fuel rods were exposed to four 24-month cycles in a 15x15 reactor beginning in 1995. Additionally, one 17x17 lead assembly containing M5 fuel rods and guide tubes was operated for four 18-month cycles beginning from 1997. Post-irradiation examinations (PIE) performed after all four cycles in the 15x15 demonstration program revealed excellent performance in the licensed burnup and in the high burnup stages of the experience. Examination of the 4th cycle 17x17 assembly will be accomplished in two stages the first of which is scheduled for June 2005. Moreover, several irradiation campaigns have been performed in Europe in order to confirm the excellent M5 in-pile behavior in demanding PWRs irradiation conditions with regard to void fraction, heat flux, lithium content and temperature. Results from the high burnup fuel examinations verify that the excellent performance achieved up to 62 GWd/tU was continued into higher burnup. The results of high burnup PIE campaigns for European and American PWR's are presented in this paper. Measured performance indicators include fuel assembly dimensional stability parameters (assembly length, fuel rod length, assembly bow, fuel rod bow, fuel rod radial creep and spacer grid width), oxidation measurements (fuel rod and guide tube) and hydrogen pick-up data (fuel rod). In the framework of PCI studies, power ramp

  9. Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications

    International Nuclear Information System (INIS)

    Khalil-Allafi, Jafar; Amin-Ahmadi, Behnam; Zare, Mehrnoush

    2010-01-01

    Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO 2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.

  10. Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Meng, G.Z.; Cheng, Y.F.

    2009-01-01

    Passivity of aluminum (Al) alloy 3003 in air and in aqueous solutions without and with chloride ions was characterized by electrochemical measurements, including cyclic polarization, electrochemical impedance spectroscopy (EIS), localized EIS and potential of zero charge, Mott-Schottky analysis and secondary ion mass spectroscopy (SIMS) technique. Stability, pitting susceptibility and repassivation ability of Al alloy 3003 under various film-forming conditions were determined. Results demonstrated that passive films formed on 3003 Al alloy in air and in Na 2 SO 4 solution without and with NaCl addition show an n-type semiconductor in nature. The passive film formed in chloride-free solution is most stable, and that formed in chloride-containing solution is most unstable, with the film formed in air in between. Pitting of Al alloy 3003 passivated both in air and in aqueous solutions is inevitable in the presence of chloride ions. There is the strongest capability for the air-passivated Al alloy 3003 to repassivate, and the weakest repassivating capability for Al alloy 3003 passivated in chloride-containing solution. The resistance of the passivated Al alloy 3003 to pitting corrosion is dependent on the competitive effects of pitting (breakdown of passive film) and repassivation (repair of passive film). According to the differences between corrosion potential and potential of zero charge, passive film formed in air has the strongest capability to adsorb chloride ions, while the film formed in chloride-containing solution the least. Chloride ions causing pitting of passivated Al alloy 3003 in air and in chloride-free solution come from the test solution, while those resulting in pitting of passivated Al alloy 3003 in chloride-containing solution mainly exist in the film during film-forming stage.

  11. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  12. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  13. Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiali, E-mail: wangjialicsu@yahoo.cn [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Qin, Ling [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Wang, Kai [School of Humanities and Social Sciences, Hunan University of Chinese Medicine, Changsha 410208 (China); Wang, Jue; Yue, Ye [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Yangde [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China); Tang, Jian [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Weirong [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China)

    2013-10-01

    Magnesium alloys have been advocated as potential artificial bone materials due to their biocompatibility and biodegradability. The understanding of their corrosive mechanism in physiological environments is therefore essential for making application-orientated designs. Thus, this in vitro study was designed to assess the effects of CO{sub 2} on corrosive behavior of AZ31D to mimic in vivo special ingredient. Electrochemical technologies accompanied with Scanning electron microscope, Fourier transform infrared, X-ray diffraction, Energy dispersive spectroscopy and hydrogen evolution measurement were employed to analyze corrosive rates and mechanisms of AZ31D. Moreover, the biocompatibility of AZ31D was assessed with a direct cell attachment assay and an indirect cytotoxicity test in different diluted extracts. The ion concentrations in extracts were measured using inductively coupled plasma mass spectrometry to offer explanations on the differences of cell viability in the indirect test. The results of the direct cytotoxicity assay showed that the corrosive rate of AZ31D was too rapid to allow for cell adhesion. Extracts diluted less than 20 times would cause adverse effects on cell proliferation, likely due to excessive ions and gas release. Moreover, the presence of CO{sub 2} did not cause significant differences on corrosive behavior of AZ31D according to the results of electrochemical testing and hydrogen evolution measurement. This might be caused by the simultaneous process of precipitation and dissolution of MgCO{sub 3} due to the penetration role of CO{sub 2}. This analysis of corrosive atmospheres on the degradation behavior of magnesium alloys would contribute to the design of more scientific in vitro testing systems in the future. - Highlights: • We evaluate the effects of CO{sub 2} on corrosion behavior of magnesium alloys. • We assess the feasibility of commercial AZ31D alloy as potential implants. • CO{sub 2} is not the key factor to minimize

  14. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    Science.gov (United States)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  15. Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kesteven, Jazmin [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Walter, Rhys; Khakbaz, Hadis [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Choe, Han-Choel [Department of Dental Materials, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium–tantalum (Ti–Ta) alloys (10–30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium–aluminium–vanadium (Ti6Al4V) alloy. Among the three Ti–Ta alloys studied, the Ti20Ta (6.3 × 10{sup −4} mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2 × 10{sup −3} mm/y) and Ti10Ta (1.4 × 10{sup −3} mm/y). All the Ti–Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8 × 10{sup −3} mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1 × 10{sup −4} mm/y), the degradation rate of Ti20Ta alloy was lower by ∼ 22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ∼ 48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8 × 10{sup −3} mm/y) showed ∼ 53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. - Highlights: • In vitro degradation of titanium–tantalum (Ti–Ta) alloys was studied. • Ta addition to Ti is beneficial for better degradation resistance. • Ti–Ta alloys perform better than commercially pure Ti. • Calcium phosphate coated Ti–Ta alloy is superior to Ti6Al4V alloy.

  16. The Effect of Normal Force on Tribocorrosion Behaviour of Ti-10Zr Alloy and Porous TiO2-ZrO2 Thin Film Electrochemical Formed

    Science.gov (United States)

    Dănăilă, E.; Benea, L.

    2017-06-01

    The tribocorrosion behaviour of Ti-10Zr alloy and porous TiO2-ZrO2 thin film electrochemical formed on Ti-10Zr alloy was evaluated in Fusayama-Mayer artificial saliva solution. Tribocorrosion experiments were performed using a unidirectional pin-on-disc experimental set-up which was mechanically and electrochemically instrumented, under various solicitation conditions. The effect of applied normal force on tribocorrosion performance of the tested materials was determined. Open circuit potential (OCP) measurements performed before, during and after sliding tests were applied in order to determine the tribocorrosion degradation. The applied normal force was found to greatly affect the potential during tribocorrosion experiments, an increase in the normal force inducing a decrease in potential accelerating the depassivation of the materials studied. The results show a decrease in friction coefficient with gradually increasing the normal load. It was proved that the porous TiO2-ZrO2 thin film electrochemical formed on Ti-10Zr alloy lead to an improvement of tribocorrosion resistance compared to non-anodized Ti-10Zr alloy intended for biomedical applications.

  17. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  18. Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Wolf Dieter Müller

    2007-03-01

    Full Text Available Magnesium is potentially useful for orthopaedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. In industrial media the behaviour of several magnesium alloys have been probed to be better than magnesium performance. However, the information related to their corrosion behaviour in biological media is insufficient. The aim of this work is to study the influence of the components of organic fluids on the corrosion behaviour of Mg and AZ31 and LAE442 alloys using potentiodynamic, potentiostatic and EIS techniques. Results showed localized attack in chloride containing media. The breakdown potential decreased when chloride concentration increased. The potential range of the passivation region was extended in the presence of albumin. EIS measurements showed that the corrosion behaviour of the AZ31 was very different from that of LAE442 alloy in chloride solutions.

  19. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Compression behavior of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.

    2015-12-01

    Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.

  1. A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface

    International Nuclear Information System (INIS)

    Badwe, Sunil; Raja, K.S.; Misra, M.

    2006-01-01

    Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Most of the corrosion studies on Alloy 22 have been conducted using conventional chemical or electrochemical methods. In the present investigation, the specimen was directly heated instead of heating the electrolyte, thereby simulating the nuclear waste package container temperature profile. Corrosion behavior of Alloy 22 and evaporation conditions of water diffusing on the container were evaluated using the newly devised heated electrode corrosion test (HECT) method in simulated acidified water (SAW) and simulated concentrated water (SCW) environments. In this method, the concentration of the environment varied with test duration. The corrosion rate of Alloy 22 was not affected by the continuous increase in ionic strength of the SAW (pH 3) environment. Passivation kinetics was faster with increase in concentration of the electrolytes. The major difference between the conventional test and HECT was the aging characteristics of the passive film of Alloy 22. The heated electrode corrosion test can be used for evaluating materials for construction of heat transfer equipments such as evaporators

  2. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-06-01

    Full Text Available The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution. The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg–1.5Zn–0.6Zr alloy than AZ91D.

  3. Effect of heat treatment conditions on the passivation behavior of WE43C Mg–Y–Nd alloy in chloride containing alkaline environments

    Directory of Open Access Journals (Sweden)

    Jakraphan Ninlachart

    2017-06-01

    Full Text Available Mg–Y–Nd alloy (WE43C or Elektron 43 is a heat treatable magnesium wrought alloy that can be used up to 250 °C for aerospace application. This alloy has excellent mechanical properties (UTS: up to 345 MPa at room temperature and improved corrosion resistance. Electrochemical passivation studies were conducted on this alloy under different heat treatment conditions in 0.1 M NaOH solution with the addition of chloride from 0 to 1000 ppm. The passive potential range typically extended to more than 1.5 VAg/AgCl. The transpassive potential was not dependent on the heat treatment condition of the alloy when the chloride concentration increased up to 500 ppm. However, pitting protection potential varied with the heat treatment condition when the chloride addition was 500 ppm or more. The specimen surface was analyzed using scanning electron microscopy (SEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy to understand the passivation behavior of this alloy. The passivated surface of the WE43C specimens indicated that the surface layer consisted of MgO, Mg(OH2, and rare earth oxide phases, and the heat treatment conditions did not significantly affect the composition of the surface film.

  4. The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.

    Science.gov (United States)

    1986-07-30

    means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the...photodecomposition of water (e.g. see (32-41)). It should be noted that the size range of the particles which will be most frequently used in dispersion

  5. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  7. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system

    International Nuclear Information System (INIS)

    Le, D.P.; Ji, W.S.; Kim, J.G.; Jeong, K.J.; Lee, S.H.

    2008-01-01

    The alloying effect of Sb in a new low-alloy steel for the purpose of FGD materials was investigated by potentiodynamic polarization, linear polarization resistance measurement, electrochemical impedance spectroscopy (EIS) and weight loss measurements in an aggressive solution of 16.9 vol.% H 2 SO 4 + 0.35 vol.% HCl (modified green death solution) at 60 deg. C, pH -0.3. All measurements confirmed the marked improvement in the corrosion behavior of the low-alloy steel via the addition of a small amount of Sb, particularly for the 0.10Sb steel. Pitting corrosion was detected by scanning electron microscopy (SEM) on the surface of blank steel and 0.05Sb steel, but not 0.10Sb steel, after weight loss measurements. X-ray photoelectron spectroscopy (XPS) analysis of the corroded surfaces after EIS and linear polarization measurements showed that the decrease in corrosion rates was due to the formation of a protective Sb 2 O 5 oxide film on the surface of the Sb-containing steels. Moreover, the addition of 0.10% Sb stimulated the development of high corrosion inhibiting, Cu-containing compounds which further inhibited the anodic and cathodic reactions

  8. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Directory of Open Access Journals (Sweden)

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  9. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, M.; Ahmad, A. [Department of Metallurgical and Materials Engineering, University of Engineering and Technology, 54890 Lahore (Pakistan); Deen, K.M. [Corrosion Control Research Cell, Department of Metallurgy and Materials Engineering, CEET, University of the Punjab, 54590 Lahore (Pakistan); Haider, W., E-mail: haiderw@utpa.edu [Mechanical Engineering Department, University of Texas Pan American, Edinburg, TX 78539 (United States)

    2014-11-30

    Highlights: • Nitrogen ions of known dosage were implanted on cp-Ti. • Increase in surface roughness with increase in ions dose was confirmed by AFM. • TiN{sub 0.3} and Ti{sub 3}N{sub 2−x} nitride phases were formed and validated by XRD. • The ions implantation reduced the corrosion rate and stabilized the passive film. • Surface roughness greatly affected the morphology and growth of Mesenchymal Stem Cells. - Abstract: Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN{sub 0.3} and Ti{sub 3}N{sub 2-x}nitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  10. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  11. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2007-01-01

    A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...

  12. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  13. Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy

    Czech Academy of Sciences Publication Activity Database

    Tkacz, J.; Minda, J.; Fintová, Stanislava; Wasserbauer, J.

    2016-01-01

    Roč. 9, č. 11 (2016), č. článku 925. ISSN 1996-1944 Institutional support: RVO:68081723 Keywords : AZ91 magnesium alloy * cathodic polarization curve * anodic polarization curve * linear polarization curve Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/11/925

  14. Friction and wear behavior of Colmonoy and Stellite alloys in sodium environment

    International Nuclear Information System (INIS)

    Kanoh, S.; Mizobuchi, S.; Atsumo, H.

    1976-01-01

    A description is given of a series of experiments in sodium environment for the research and development of friction and wear resistant material used for the sliding components of sodium cooled fast breeder reactor. The study relates to the friction and wear characteristics of nickel-base alloy, Colmonoy, and cobalt-base alloy, Stellite, with respect to temperature, load, sliding velocity, sliding mode, and sodium flushing. The friction behavior of these alloys in sodium is compared with that in argon

  15. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  16. Insights into electrochemical dealloying of Cu out of Au-doped Pt-alloy nanoparticles at the sub-nano-scale

    Directory of Open Access Journals (Sweden)

    Matija Gatalo

    2018-03-01

    Full Text Available Pt alloy nanoparticles present the most probable candidate to be used as the cathode cathodic oxygen reduction reaction electrocatalyst for achieving commercialization targets of the low-temperature fuel cells. It is therefore very important to understand its activation and degradation processes. Besides the ones known from the pure Pt electrocatalysts, the dealloying phenomena possess a great threat since the leached less-noble metal can interact with the polymer membrane or even poison the electrocatalyst. In this study, we present a solution, supported by in-depth advance electrochemical characterization, on how to suppress the removal of Cu from the Pt alloy nanoparticles.

  17. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  18. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    Science.gov (United States)

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  19. Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel

    Science.gov (United States)

    Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.

    2018-03-01

    The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.

  20. Electrochemical characterization and redox behavior of Nb-doped SrTiO3

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2009-01-01

    Sr-vacancy compensated Nb-doped SrTiO3 with the nominal composition Sr0.94Ti0.9Nb0.1O3 has been evaluated as a solid oxide fuel cell (SOFC) anode material in terms of redox stability and electrochemical properties. Sr0.94Ti0.9Nb0.1O3 has been synthesized with a recently developed modified glycine......-nitrate process. The phase purity and redox behavior have been analyzed with XRD and TGA. The electrochemical properties of Sr0.94Ti0.9Nb0.1O3 and a composite electrode of Sr0.94Ti0.9Nb0.1O3/YSZ have been investigated by electrochemical impedance spectroscopy (EIS) on cone shaped electrodes and on electrodes...... in a symmetrical cell configuration. The experiments indicated that the Nb-doped SrTiO3 electrodes were redox stable and showed a potential ability to be used as a part of a SOFC anode. The electrochemical activity appeared to be governed by the concentration of defect species (especially Ti3+ and V-0...

  1. Precipitation Behavior of Magnesium Alloys Containing Neodymium and Yttrium

    Science.gov (United States)

    Solomon, Ellen L. S.

    Magnesium is the lightest of the structural metals and has great potential for reducing the weight of transportation systems, which in turn reduces harmful emissions and improves fuel economy. Due to the inherent softness of Mg, other elements are typically added in order to form a fine distribution of precipitates during aging, which improves the strength by acting as barriers to moving dislocations. Mg-RE alloys are unique among other Mg alloys because they form precipitates that lie parallel to the prismatic planes of the Mg matrix, which is an ideal orientation to hinder dislocation slip. However, RE elements are expensive and impractical for many commercial applications, motivating the rapid design of alternative alloy compositions with comparable mechanical properties. Yet in order to design new alloys reproducing some of the beneficial properties of Mg-RE alloys, we must first fully understand precipitation in these systems. Therefore, the main objectives of this thesis are to identify the roles of specific RE elements (Nd and Y) on precipitation and to relate the precipitate microstructure to the alloy strength. The alloys investigated in this thesis are the Mg-Nd, Mg-Y, and Mg-Y-Nd systems, which contain the main alloying elements of commercial WE series alloys (Y and Nd). In all three alloy systems, a sequence of metastable phases forms upon aging. Precipitate composition, atomic structure, morphology, and spatial distribution are strongly controlled by the elastic strain energy originating from the misfitting coherent precipitates. The dominating role that strain energy plays in these alloy systems gives rise to very unique microstructures. The evolution of the hardness and precipitate microstructure with aging revealed that metastable phases are the primary strengthening phases of these alloys, and interact with dislocations by shearing. Our understanding of precipitation mechanisms and commonalities among the Mg-RE alloys provide future avenues to

  2. Austenite Grain Growth Behavior of AISI 4140 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.

  3. Uniaxial creep behavior of V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.; Purohit, A.

    2002-01-01

    We are undertaking a systematic study at Argonne National Laboratory to evaluate the uniaxial creep behavior of V-Cr-Ti alloys in a vacuum environment as a function of temperature in the range of 650-800 deg. C and at applied stress levels of 75-380 MPa. Creep strain in the specimens is measured by a linear-variable-differential transducer, which is attached between the fixed and movable pull rods of the creep assembly. Strain is measured at sufficiently frequent intervals during testing to define the creep strain/time curve. A linear least-squares analysis function is used to ensure consistent extraction of minimum creep rate, onset of tertiary creep and creep strain at the onset of tertiary creep. Creep test data, obtained at 650, 700, 725 and 800 deg. C, showed power-law creep behavior. Extensive analysis of the tested specimens is conducted to establish hardness profiles, oxygen content and microstructural characteristics. The data are also quantified by the Larson-Miller approach, and correlations are developed to relate time to rupture, onset of tertiary creep, times for 1% and 2% strain, exposure temperature and applied stress

  4. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  5. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5 wt.% NaCl solution

    International Nuclear Information System (INIS)

    Wang, Jingfeng; Li, Yang; Huang, Song; Zhou, Xiaoen

    2014-01-01

    Highlights: • Corrosion of four cast Mg–xSn alloys in 3.5 wt.% NaCl solution was investigated. • Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn. • Compact Mg(OH) 2 /MgSnO 3 film suppressed the cathodic effect of the impurity inclusions. • Mg–xSn (x = 0.5, 1.0, 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film. - Abstract: The corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn (x = 0.5, 1.0, 1.5, and 2.0 wt.%) alloys in 3.5 wt.% NaCl solution were investigated by immersion tests, electrochemical measurements, corrosion morphology observations, and X-ray diffraction analysis. Immersion tests and electrochemical measurements illustrated that the best corrosion resistance was reported for the Mg–1.5Sn alloy. Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn alloy surface. Mg(OH) 2 /MgSnO 3 clusters were compact and suppressed the cathodic effect of the impurity inclusions greatly. The Mg–xSn (x = 0.5, 1.0, and 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film during the corrosion process

  6. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants.

    Science.gov (United States)

    Chandar, Sanchitha; Kotian, Ravindra; Madhyastha, Prashanthi; Kabekkodu, Shama Prasada; Rao, Padmalatha

    2017-01-01

    The aim of this study was to investigate the cytotoxicity in human gingival fibroblast by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and corrosion behavior by potentiodynamic polarization technique of commercially pure titanium (Ti 12) and its alloy Ti-6Al-4V (Ti 31). In the present in vitro study, cytotoxicity of Ti 12 and Ti 31 in human gingival fibroblast by MTT assay and the corrosion behavior by potentiodynamic polarization technique in aqueous solutions of 0.1 N NaCl, 0.1 N KCl, and artificial saliva with and without NaF were studied. The independent t -test within materials and paired t-test with time interval showed higher cell viability for Ti 12 compared to Ti 31. Over a period, cell viability found to stabilize in both Ti 12 and Ti 31. The effects of ions of Ti and alloying elements aluminum and vanadium on the cell viability were found with incubation period of cells on samples to 72 h. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO 2 and additional metal oxides. The multiphase alloy Ti-6Al-4V showed more surface pitting. The commercially pure Ti showed better cell viability compared to Ti 31. Less cell viability in Ti 31 is because of the presence of aluminum and vanadium. A significant decrease in cytotoxicity due to the formation of TiO 2 over a period of time was observed both in Ti 12 and Ti 31. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. Ti 31 alloy showed surface pitting because of its multiphase structure.

  7. Microscopic Analysis and Electrochemical Behavior of Fe-Based Coating Produced by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jinlin Chen

    2017-10-01

    Full Text Available The effect of laser cladding on the surface microstructure and corrosion properties of coated/uncoated specimens were investigated. Fe-based alloy coating was produced on 35CrMo steel by laser cladding. The phase composition, microstructure, interface element distribution, microhardness and corrosion resistance of the cladding coating were measured. The results show that the cladding layer is mainly composed of α-Fe phases, the microstructure presents a gradient distribution, and a good metallurgical bond is formed at the boundary with the substrate. Microhardness profiles show that the average microhardness of the cladding coating is about 2.1 times higher than that of the uncoated specimen. In addition, the electrochemical results show that the coated specimen exhibits far better corrosion resistance than to the uncoated specimen.

  8. Role of turbulent flow seawater in the corrosion enhancement of an Al–Zn–Mg alloy: an electrochemical impedance spectroscopy (EIS analysis of oxygen reduction reaction (ORR

    Directory of Open Access Journals (Sweden)

    Marcela C. Quevedo

    2018-04-01

    Full Text Available The effect of flow on the corrosion of Al–14 wt% Zn–8 wt% Mg alloy in aerated synthetic seawater at ambient temperature was studied using a rotating cylinder electrode (RCE under turbulent regime conditions by means of electrochemical impedance spectroscopy (EIS. The overall electrochemical corrosion process was found to be strongly influenced by the oxygen mass transfer process under turbulent flow conditions on the cathodic kinetics, driving to a significant increase in corrosion rate.At corrosion potential, Ecorr value, contributions from the anodic and cathodic processes involved were observed in the impedance diagrams. Instead, at a cathodic potential of −1.2 V (sce, impedance measurements proved the predominance of the mass-transfer process for oxygen. A primary analysis of the impedance plots allowed to confirm such situation. Keywords: Aluminum alloy, Corrosion, EIS, Flow, Oxygen, Mass transfer, Rotating cylinder electrode, Seawater

  9. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  10. Electrochemical behavior of molten fluoride-water system

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Toshihide; Ito, Yasuhiko; Ishikawa, Takayasu; Oishi, Jun

    1984-11-01

    The cathodic behavior of a molten fluoride-water system was investigated by the potential sweep method. LiF-KF-NaF eutectic melt was used as an electrolyte and HF-H/sub 2/O gas mixture with Ar as a carrier was bubbled into it. Gold wire was used as a working electrode. The peak currents due to the reduction of HF and H/sub 2/O were clearly observed. The relations between peak currents and the square roots of the scanning rates were linear, strongly suggesting that the reduction reactions of the HF and H/sub 2/O dissolved in the melt were diffusion controlled. From the linearity of the relations between peak currents and partial pressures of HF and H/sub 2/O in the low partial pressure region, it was concluded that the concentrations of HF and H/sub 2/O in a fluoride melt are proportional to the partial pressure of each gas. The peak current due to the reduction of OH/sup -/ ion could not be observed, though a clear peak current was observed when OH/sup -/ ion was added to the melt and a cathodic scan was applied immediately. This indicates that OH/sup -/ ion is unstable in a fluoride melt under HF-H/sub 2/O atmosphere.

  11. Estimation of the effect of molybdenum on chemical and electrochemical stability of iron-based alloys

    International Nuclear Information System (INIS)

    Tyurin, A.G.

    2003-01-01

    The E-pH diagram for Mo-H 2 O system is made more precise. It is shown that a passivating film on molybdenum in weakly acid, neutral and alkali solutions may constitute MoO 2 only. In strongly acid solutions at anodic polarization the film should transform according to the following scheme: MoO 2 → Mo 4 O 11 → Mo 9 O 26 → MoO 3 . Sections of a Fe-Mo-O system phase diagram and a Fe-Mo-H 2 O system E-pH diagram at 25 deg C are plotted. MoO 2 is found to be a product of iron-molybdenum alloy oxidation in the air and in water. For the system of alloy Kh17N13M2-H 2 O the section of a E-pH diagram is plotted at 25 deg C [ru

  12. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  13. Magnesium and its alloys as degradable biomaterials : Corrosion studies using potentiodynamic and EIS electrochemical techniques

    OpenAIRE

    Müller, Wolf Dieter; Nascimento, Maria Lucia; Zeddies, Miriam; Córsico, Mariana; Gassa, Liliana Mabel; Fernández Lorenzo de Mele, Mónica Alicia

    2007-01-01

    Magnesium is potentially useful for orthopaedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. In industrial media the behaviour of several magnesium alloys have been probed to be better than magnesium performance. However, the information related to their corrosion behaviour in biological media is insufficient. The aim of this work is to study the influence of the components of organic f...

  14. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  15. Electrochemical corrosion behaviors of the X90 linepipe steel in NS4 solution

    Directory of Open Access Journals (Sweden)

    Jinheng Luo

    2016-10-01

    Full Text Available Oil and gas line pipes are laid underground and run through different areas in the laying process, so they will be subjected to different degrees of corrosion and even crack, leading to enormous casualties and economic losses. In order to guarantee the safe operation of line pipes, therefore, it is significant to investigate the electrochemical corrosion behaviors of pipe steel in a simulated soil environment. In this paper, the electrochemical corrosion behaviors of the base metals and welding materials of API 5L X90 steel longitudinally submerged arc welding pipes in near-neutral simulated soil solution (NS4 were studied by means of the electrochemical impedance spectroscopy (EIS and the potentiodynamic polarization testing technology. It is shown that the typical characteristic of anodic dissolution is presented but with no passivation phenomenon when X90 linepipe steel is put in NS4 solution. The base material is thermodynamically more stable than the seam weld material. The base material and seam weld samples were polarized under −850 mV polarization potential for different durations. It is demonstrated that with the proceeding of polarization, the polarization resistance and the corrosion resistance increase while the corrosion current density decreases. And the corrosion resistance of base material is better than that of seam weld material.

  16. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang

    2012-10-01

    Hierarchically porous carbons (HPCs) have been prepared by sol-gel self-assembly technology with nickel oxide and surfactant as the dual template. The porous carbons are further activated by nitric acid. The electrochemical behaviors of supercapacitors using HPCs as electrode material in different aqueous electrolytes, e.g., (NH4)2SO4, Na2SO4, H2SO4 and KOH are studied by cyclic voltametry, galvanostatic charge/discharge, cyclic life, leakage current, self-discharge and electrochemical impedance spectroscopy. The results demonstrate that the supercapacitors in various electrolytes perform definitely capacitive behaviors; especially in 6 M KOH electrolyte the supercapacitor represents the best electrochemical performance, the shortest relaxation time, and nearly ideal polarisability. The energy density of 8.42 Wh kg-1 and power density of 17.22 kW kg-1 are obtained at the operated voltage window of 1.0 V. Especially, the energy density of 11.54 Wh kg-1 and power density of 10.58 kW kg-1 can be achieved when the voltage is up to 1.2 V.

  17. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  18. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    Science.gov (United States)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  19. New Leaf Gilding Alloys: Physico-Chemistry, Colour, Mechanical Behavior

    OpenAIRE

    Darque-Ceretti , Evelyne; Aucouturier , Marc; Felder , Eric; Burr , Alain; Robcis , Dominique; Thomas , Caroline

    2015-01-01

    International audience; In the frame of a systematic investigation on leaf gilding history and processes, in a research program intending to propose gold leaf alloys specially devoted to restoration, new gold alloys containing low concentration additions of In or Pd were designed and leaves were elaborated in collaboration with the goldbeater Dauvet. The influence of those elements on the colour change induced by alloying was obtained by colorimetry. The microstructural and metallurgical prop...

  20. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants

    Directory of Open Access Journals (Sweden)

    Sanchitha Chandar

    2017-01-01

    Conclusion: The commercially pure Ti showed better cell viability compared to Ti 31. Less cell viability in Ti 31 is because of the presence of aluminum and vanadium. A significant decrease in cytotoxicity due to the formation of TiO2over a period of time was observed both in Ti 12 and Ti 31. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. Ti 31 alloy showed surface pitting because of its multiphase structure.

  1. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  2. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    Science.gov (United States)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the