WorldWideScience

Sample records for alloy c-22 induced

  1. Passivity of alloy C-22 in NaCl solutions

    International Nuclear Information System (INIS)

    Rodriguez, Martin A.; Carranza, Ricardo M.

    2004-01-01

    Alloy C-22 has been proposed as the corrosion resistant barrier of high-level waste nuclear containers. This alloy must be resistant to corrosion in multi-ionic solutions for a period of time as long as 10,000 years. The aim of the present work was to study the corrosion behavior of alloy C-22 in NaCl solutions. General and crevice corrosion were studied by means of electrochemical techniques. Open circuit potential was measured over the time, electrochemical impedance spectroscopy (EIS) measurements were carried out at open circuit and passivity potentials, as well as cyclic potentiodynamic polarization curves. Corrosion rates obtained by EIS measurements were acceptable for a waste nuclear container ( P ) values increased with open circuit potential and polarization time at constant potential. This was attributed to an increase in oxide film thickness and its aging respectively. The passive oxide form on alloy C-22 at the studied conditions presented a n-type semiconductor behavior in the passive potential range. Repassivation potential values (E R1 ) were determined for alloy C-22 at the studied conditions using PCA probes. (author) [es

  2. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  3. Study crevice corrosion alloys C-22 and 625 by electrochemical noise

    International Nuclear Information System (INIS)

    Ungaro, María L.; Carranza, Ricardo M.; Rodríguez, Martín A.

    2013-01-01

    C-22 and 625 alloys are two of the Ni –Cr-Mo alloys considered as candidate materials to form the corrosion resistance engineered barriers for nuclear waste repositories. The corrosion resistance of these alloys is remarkable in a wide variety of environments. Despite of their resistance these alloys are susceptible to crevice corrosion in a certain aggressive environments. This work presents the use of electrochemical noise technique to study crevice corrosion susceptibility of alloys C-22 and 625 in 1M NaCl acidic solutions at 60ºC and 90ºC. Asymmetrical electrodes and a complementary platinum electrode were used to assess the influence of cathodic reaction in crevice process. The obtained records were analyzed directly and through statistical parameters. The potential drop and the simultaneous increment of the current records indicated the occurrence of crevice corrosion. The alternative use of a platinum electrode resulted in higher currents and higher potentials and reduced the induction time to crevice formation. The reason for this behavior is that platinum surface allows faster cathodic reactions than C-22 and 625 alloys. The standard deviation of the current records was responsive to the crevice corrosion intensity. C-22 alloy had better crevice corrosion performance than 625 alloy. (author)

  4. Effect of fluorides and chlorides upon corrosion behavior of alloy C-22

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2003-01-01

    Alloy C-22 is one of the candidates to fabricate the external wall of the high level nuclear waste containers. These packages are designed to maintain isolation of the waste for a minimum of 10,000 years. During this period they must resist atmospheric corrosion. Electrochemical techniques such as cyclic potentiodynamic polarization, electrochemical impedance spectroscopy and variation of corrosion potential in time and non-electrochemical techniques such as X-ray fluorescence (XRF) and microscopy were applied to determine the effect of fluorides and chlorides upon general and localized corrosion of different microstructures of alloy C-22. The corrosion rates obtained were about 0.1 μm/year. Crevice corrosion was detected only in those solutions where chlorides ions were present. Fluoride ions affected the passivity and trans passivity behavior of the alloy. They produced higher current densities than chlorides in both ranges. There were no differences in corrosion behavior of the different microstructures. Mixtures of chlorides and fluorides seem to be more detrimental than the separated ions regarding to localized corrosion and trans passivity. (author)

  5. The deterministic prediction of localised corrosion damage to alloy C-22 HLNW canisters

    International Nuclear Information System (INIS)

    Macdonald, Digby D.; Engelhardt, G.; Jayaweera, P.; Priyantha, N.; Davydov, A.

    2003-01-01

    This paper summarises DOE-funded research programmes currently underway by researchers at SRI International, Penn State University, OLI Systems, and the Frumkin Institute of Electrochemistry (Moscow, Russia) that are aimed at exploring the corrosion behaviour of Alloy C-22 as the canister material for the disposal of high-level nuclear waste (HLNW) in Yucca Mountain-type repositories. The ultimate objective of these programmes is to develop deterministic models for predicting the accumulation of damage due to general corrosion and localised corrosion over the specified evolutionary path of the repository. Additionally, the programme seeks to measure important electrochemical parameters and diagnostic functions under conditions (steady-state) that are in good confluence with the theories and models used in the predictions. The present paper deals with the prediction of accumulated localised corrosion damage in the form of pitting; the prediction of general corrosion damage is dealt elsewhere in the Volume. (authors)

  6. Effect of thermal aging on corrosion resistance of C-22 alloy in chloride solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2007-01-01

    Alloy 22 (N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to localized corrosion. The anodic behavior of mill annealed (MA) and thermally aged (10 hours at 760 C degrees) Alloy 22 was studied in chloride solutions with different pH values at 90 C degrees. Thermal aging leads to a microstructure of full grain boundary precipitation of topologically closed packed (TCP) phases. Electrochemical tests included monitoring of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy. Assessment of general and localized (crevice) corrosion was performed. Re passivation potentials were obtained from cyclic potentiodynamic polarization tests. Results indicate that MA and TCP material show similar general corrosion rates and crevice corrosion resistance in the tested environments. MA and TCP specimens suffered general corrosion in an active state when tested in low pH chloride solutions. The grain structure of the alloy was revealed for MA material, while TCP material suffered a preferential attack at grain boundaries. (author)

  7. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  8. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  9. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  10. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  11. Kinetics of radiation-induced segregation in ternary alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally

  12. Radiation induced segregation and point defects in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Considerable progress, both theoretical and experimental, has been made in establishing and understanding the influence of factors such as temperature, time, displacement rate dependence and the effect of initial solute misfit on radiation induced solute diffusion and segregation. During irradiation, the composition of the alloy changes locally, due to defect flux driven non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries. This change in composition could influence properties and phenomena such as ductility, corrosion resistance, stress corrosion cracking, sputtering and blistering of materials used in thermo-nuclear reactors. In this work, the effect of 1 MeV electron irradiation on the initiation and development of segregation and defect diffusion in binary copper alloys has been studied in situ, with the aid of a high voltage electron microscope. The binary copper alloys had Be, Pt and Sn as alloying elements which had atomic radii less than, similar and greater than that of copper, respectively. It has been observed that in a wide irradiation temperature range, stabilization and growth of dislocation loops took place in Cu-Sn and Cu-Pt alloys. Whereas in the Cu-Be alloy, radiation induced precipitates formed and transformed to the stable γ phase. (Author) [pt

  13. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  14. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  15. Radiation induced structural changes in alpha-copper-zinc alloys

    International Nuclear Information System (INIS)

    Schuele, W.; Gieb, M.

    1991-01-01

    During irradiation of alpha-copper-zinc alloys with high energy electrons and protons a decrease of the electrical resistivity due to an increase of the degree of short range order is observed through radiation enhanced diffusion followed by an increase of the electrical resistivity through the formation of radiation induced interstitial clusters. The initial formation rate of interstitial clusters increases about linearly with the displacement rate for electron and proton irradiation. The largest initial formation rate is found between 60 and 130 0 C becoming negligibly small above 158 0 C and decreases drastically below 60 0 C. The dynamic steady state interstitial cluster concentration increases with decreasing irradiation temperature in the investigated temperature range between 158 and 40 0 C. Above 158 0 C the formation rate of interstitial clusters is negligibly small. Thus the transition temperature for radiation induced interstitial cluster formation is 158 0 C, depending mainly on the migration activation energy of vacancies. The radiation induced interstitial clusters are precipitates in those alloys in which the diffusion rate of the undersized component atoms via an interstitialcy diffusion mechanism is larger than that of the other atoms

  16. Deformation-induced dissolution of borides in FCC Fe-Ni alloys

    Science.gov (United States)

    Shabashov, V. A.; Litvinov, A. V.; Lyashkov, K. A.; Kataeva, N. V.; Novikov, S. I.; Titova, S. G.

    2011-12-01

    Deformation-induced dissolution of amorphous and crystal boron and also of orthorhombic boron nitride in face centered cubic (FCC) Fe-Ni alloys matrix has been investigated with the methods of Mössbauer spectroscopy, magnetic susceptibility and X-ray diffraction analysis by compression shear in Bridgman anvils. The formation of boron solid solution in a Fe-Ni alloy matrix has been revealed in the mechanosynthesis process. Growth of inner effective magnetic field, Curie point and crystal lattice period of invar alloys has been detected. Conclusion about the formation of supersaturated crystal boron interstitial solid solution in FCC Fe-Ni alloys has been made.

  17. Electron irradiation-induced nanocrystallization of amorphous Fe85B15 alloy: Evidence for athermal nature

    International Nuclear Information System (INIS)

    Qin, W.; Nagase, T.; Umakoshi, Y.

    2009-01-01

    Nanocrystallization of amorphous alloys induced by electronic energy deposition has been frequently reported in recent years. In this paper, the crystallization of amorphous Fe 85 B 15 alloy was performed by electron irradiation with 2 MeV electrons up to a flux of 4.0 x 10 24 m -2 s -1 . It was found that at 298 K, nanocrystalline Fe-B intermetallic phases formed prior to α-Fe phase, while at 463 K, only the α-Fe phase was observed. This phenomenon cannot be interpreted in terms of the electron-beam heating, but may be attributed to the irradiation-induced increases in the short-range order and atomic diffusivity. Theoretical analysis also showed that the maximum-temperature rise driven by beam heating is much lower than that required for thermal crystallization. Our work offers strong evidence that the irradiation-induced crystallization in amorphous alloys is not a thermal activation process

  18. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    International Nuclear Information System (INIS)

    Hua, F.; Mon, K.; Pasupathi, P.; Gordon, G.

    2004-01-01

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement

  19. Vacancy-induced hardening in Fe-Al alloys

    Czech Academy of Sciences Publication Activity Database

    Lukáč, F.; Čížek, J.; Procházka, I.; Jirásková, Yvonna; Janičkovič, D.; Anwand, W.; Brauer, G.

    2013-01-01

    Roč. 443, č. 1 (2013), 012025 ISSN 1742-6588. [International Conference on Positron Annihilation /16./. Bristol, 19.08.2012-24.08.2012] R&D Projects: GA ČR(CZ) GAP108/11/1350 Institutional support: RVO:68081723 Keywords : Vacancy * Hardening * Fe-Al alloy Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  1. Compositional change induced by ion bombardement on binary alloys. [5 KeV Ar+

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Nakamura, H.; Hayashibara, M.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1982-03-01

    The compositional change, induced by 5 keV Ar/sup +/ ion bombardment, of self-supporting films of Ni-Si (10%) alloy has been studied at elevated temperatures. The results are compared with those of similar studies for Ni-Au alloy and are explained using the previously suggested two-stepped segregation mechanism: the segregation from grain boundaries to the surface and that from the grains to the grain boundaries. The theoretical calculation for the two-stepped mechanism has been made for a thin film and for a thicker material. It is pointed out that the compositional change induced by sputtering of alloys at high temperatures may cause important effects on physical properties of materials.

  2. Irradiation-induced creep and microstructural development in precipitation-hardened nickel-aluminium alloys

    International Nuclear Information System (INIS)

    Ansari, I.

    1985-04-01

    Irradiation-induced creep in solid-solution Ni-8.5 at% AL and precipitation-hardened Ni-13.1 at% Al alloys was studied by bombarding miniaturized specimens with 6.2 MeV protons at 300 0 C under different tensile stresses. After irradiation transmission electron microscopic (TEM) investigations were made to observe the precipitate structure under irradiation for different experimental parameters. Moreover, the irradiation-induced changes in precipitate structure and changes of Al-concentrations in the matrix in Ni-13.1 at% Al alloys were studied by electrical resistivity measurements during irradiation. For comparison, the electrical resistivity of unirradiated specimens was also measured after thermal aging for different times. For correlation, TEM analysis was performed on irradiated and unirradiated aged specimens. Tensile tests on annealed and aged Ni-Al alloys were also done at various temperatures. (orig./RK)

  3. Pressure-induced Invar effect in Fe-Ni alloys.

    Science.gov (United States)

    Dubrovinsky, L; Dubrovinskaia, N; Abrikosov, I A; Vennström, M; Westman, F; Carlson, S; van Schilfgaarde, M; Johansson, B

    2001-05-21

    We have measured the pressure-volume (P-V) relations for cubic iron-nickel alloys for three different compositions: Fe 0.64Ni (0.36), Fe 0.55Ni (0.45), and Fe 0.20Ni (0.80). It is observed that for a certain pressure range the bulk modulus does not change or can even decrease to some minimum value, after which it begins to increase under still higher pressure. In our experiment, we observe for the first time a new effect, namely, that the Fe-Ni alloys with high Ni concentrations, which show positive thermal expansion at ambient pressure, become Invar system upon compression over a certain pressure range.

  4. Plasma plume induced during laser welding of Magnesium alloys

    International Nuclear Information System (INIS)

    Hoffman, J.; Szymanski, Z.; Azharonok, V.

    2005-01-01

    The laser welding process is influenced by the plasma produced by laser irradiation. When the pressure of the metal vapour reaches 1 atm and the plasma temperature is 10-15 kK then the electron density is about 2-3x10 23 m -3 . Under these conditions the absorption coefficient can reach several cm -1 . This means that dense plasma over the keyhole can block the laser radiation within the path of a few millimetres. Knowledge of plasma parameters helps to control technological process. The emission spectra were registered during laser welding of magnesium alloy using of a CCD camera connected to a spectrograph of focal length 1.3 m. The entrance slit of the spectrograph was perpendicular to the metal surface, so that successive tracks of the detector recorded the radiation from the plasma slices situated at different distances (heights) from the metal surface. The space-averaged electron densities are determined from the Stark broadening of the 5528.41 A Mg I spectral line and 4481.16 A Mg II line. The Stark widths of magnesium lines are taken from other paper. It has been found that the plasma density reaches 1x10 23 m -3 . Experimentally measured line broadening is obtained from the profiles of the spectral lines integrated along the line of sight (plasma diameter) and does not correspond to the maximum plasma density. Since the plasma is non-uniform, both the electron densities and temperatures obtained from spatially integrated line profiles are lower than their maximum values in the plasma centre. This effect is much stronger for the atomic line because its intensity reaches the maximum on the plasma periphery while the maximum intensity of the ionic line originates from the plasma centre. Therefore, the absorption of the laser beam evaluated from the space-averaged plasma parameters is underestimated. To find the maximum plasma density and temperature the radial temperature distribution in the plasma plume has to be reproduced. This has been done numerically by

  5. Bombardment-induced compositional change with alloys, oxides, and oxysalts. 1

    International Nuclear Information System (INIS)

    Kelly, R.

    1989-01-01

    A review of the role of surface binding energies in bombardment-induced compositional change with alloys, oxides and oxysalts is presented. The concepts of preferential sputtering and compositional change may or may not coincide; their differences are clarified. 77 refs.; 12 figs.; 4 tabs

  6. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  7. Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, M.S.; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....

  8. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  9. A phase field model for segregation and precipitation induced by irradiation in alloys

    International Nuclear Information System (INIS)

    Badillo, A; Bellon, P; Averback, R S

    2015-01-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni–Si and Al–Zn undersaturated solid solutions subjected to irradiation. (paper)

  10. Waste package degradation expert elicitation panel: Input on the corrosion of CRM alloy C-22

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. C., LLNL

    1998-02-26

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 10. Exposed patches of the CRM could see this environment.

  11. Waste package degradation expert elicitation panel: input on corrosion of CRM alloy C-22

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. C.,LLNL

    1998-03-30

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 1O. Exposed patches of the CRM could see this environment.

  12. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sengar, Saurabh K.; Mehta, B. R., E-mail: brmehta@physics.iitd.ac.in [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Govind [Surface Physics Group, National Physical Laboratory (CSIR), New Delhi 110012 (India)

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  13. KCl-induced high temperature corrosion of selected commercial alloys. Part I: chromia-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2015-01-01

    Laboratory testing of selected chromia-forming alloys was performed to rank the materials and gain further knowledge on the mechanism of KCl-induced high temperature corrosion. The investigated alloys were stainless steels EN1.4021, EN1.4057, EN1.4521, TP347H (coarse-grained), TP347HFG (fine......-grained), Sanicro 28 and the nickel-based alloys 625, 263 and C276. Exposure was performed at 600 °C for 168 h in flowing N2(g)+5%O2(g)+15% H2O(g) (vol.%). Samples were covered with KCl powder prior to exposure. A salt-free exposure was also performed for comparison. Corrosion morphology and products were studied....... In the presence of solid KCl, all the alloys showed significant corrosion. Measurement of corrosion extent indicated that alloys EN1.4057, Sanicro 28 and 625 show a better performance compared to the industrial state of the art material TP347HFG under laboratory conditions. An additional test was performed...

  14. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    Science.gov (United States)

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion.

  15. Evidence for the enhancement of stress-induced ordering in Ag-27 at % Zn alloy due to electron irradiation

    International Nuclear Information System (INIS)

    Halbwachs, M.; Hillairet, J.

    1975-01-01

    Internal friction measurements of rate of stress-induced ordering in a silver-zinc alloy during bombardment by electrons are reported. This alloy exhibits a Zener relaxation, i.e. a change in the degree of order with a change in the applied stress, and the rate of relaxation can provide information concerning the enhancement of the rate of ordering [fr

  16. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    International Nuclear Information System (INIS)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping; Yang, Xiaoqin

    2017-01-01

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  17. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping [China Univ. of Mining and Technology, Xuzhou (China). School of Mateial Science and Engineering; Yang, Xiaoqin [China Univ. of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2017-06-15

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  18. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  19. Electrically induced phase transition in GeSbTe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, Gunnar; Schlockermann, Carl; Woda, Michael; Wuttig, Matthias [I. Physikalisches Institut Ia, RWTH Aachen, 52056 Aachen (Germany)

    2008-07-01

    While phase change materials have already successfully been applied in rewriteable optical data storage, they are now also promising to form the basis for novel non-volatile electrical data storage devices. To understand the physical concepts of these so-called Phase Change Random Access Memory (PCRAM) it is mandatory to gain a deeper insight into the switching process between the highly resistive amorphous and the lowly resistive crystalline phase. The fast phase transitions between the amorphous and crystalline state of GeSbTe-based alloys has so far often been studied using pulsed laser irradiation. In this work an alternative approach is employed to investigate this transition. Electrical pulses are used to rapidly and reversibly switch between the two states. For these experiments a setup was built with a specially designed contacting circuit board to meet the requirements of electrical measurements on a nanosecond timescale. The influence of the pulse parameters on the change of device resistance was determined for different initial states. Furthermore the high time resolution of 0.4 ns allows investigation of transient electrical effects like the so-called threshold switching first described by Ovshinsky in the late 1960s.

  20. Laser-Irradiation-Induced Melting and Reduction Reaction for the Formation of Pt-Based Bimetallic Alloy Particles in Liquids.

    Science.gov (United States)

    Han, Yechuang; Wu, Shouliang; Dai, Enmei; Ye, Yixing; Liu, Jun; Tian, Zhenfei; Cai, Yunyu; Zhu, Xiaoguang; Liang, Changhao

    2017-05-05

    Laser melting in liquids (LML) is one of the most effective methods to prepare bimetallic alloys; however, despite being an ongoing focus of research, the process involved in the formation of such species remains ambiguous. In this paper, we prepared two types of Pt-based bimetallic alloys by LML, including Pt-Au alloys and Pt-iron group metal (iM=Fe/Co/Ni) alloys, and investigated the corresponding mechanisms of alloying process. Detailed component and structural characterizations indicate that laser irradiation induced a quite rapid formation process (not exceeding 10 s) of Pt-Au alloy nanospheres, and the crystalline structures of Pt-Au alloys is determined by the monometallic constituents with higher content. For Pt-iM alloys, we provide direct evidence to support the conclusion that FeO x /CoO x /NiO x colloids can be reduced to elementary Fe/Co/Ni particles by ethanol molecules during laser irradiation, which then react with Pt colloids to form Pt-iM sub-microspheres. These results demonstrate that LML provides an optional route to prepare Pt-based bimetallic alloy particles with tunable size, components, and crystalline phase, which should have promising applications in biological and catalysis studies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 26 CFR 1.381(c)(22)-1 - Successor life insurance company.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Successor life insurance company. 1.381(c)(22)-1...) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(22)-1 Successor life insurance... the following examples: Example 1. X qualified as a life insurance company in 1949. Y qualified as a...

  2. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  3. Vortex trapping in Pb-alloy Josephson junctions induced by strong sputtering of the base electrode

    International Nuclear Information System (INIS)

    Wada, M.; Nakano, J.; Yanagawa, F.

    1985-01-01

    It is observed that strong rf sputtering of the Pb-alloy base electrodes causes the junctions to trap magnetic vortices and thus induces Josephson current (I/sub J/) suppression. Trapping begins to occur when the rf sputtering that removes the native thermal oxide on the base electrode is carried out prior to rf plasma oxidation. Observed large I/sub J/ suppression is presumably induced by the concentration of vortices into the sputtered area upon cooling the sample below the transition temperature. This suggests a new method of the circumvention of the vortex trapping by strongly rf sputtering the areas of the electrode other than the junction areas

  4. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V., E-mail: bulgakov@itp.nsc.ru

    2017-02-28

    Highlights: • Laser damage thresholds of Ag, Au and Ag-Au alloys in air and water are measured. • Alloy thresholds are lower than those of Ag and Au due to low thermal conductivity. • Laser damage thresholds in water are ∼1.5 times higher than those in air. • Light scattering mechanisms responsible for high thresholds in water are suggested. • Light scattering mechanisms are supported by optical reflectance measurements. - Abstract: The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  5. Electromagnetic induced voltage signal to magnetic variation through torquing textured Fe81Ga19 alloy

    Science.gov (United States)

    Li, Mingming; Li, Jiheng; Bao, Xiaoqian; Mu, Xing; Gao, Xuexu

    2017-07-01

    The results of a study on the suitability of Fe-Ga alloys for torque sensor applications are presented. A Fe81Ga19 rod with a ⟨100⟩ preferred orientation along the length direction is prepared for the torque shaft and as the electromagnetic induction sensitive element, which is wound with three coils for signal excitation, signal pickup, and applied bias magnetic field, respectively. An apparent decrease in the induced voltage signal (peak voltage) of 3.88 mV is observed as the torque loading is 50 N m in the presence of a sine excitation signal (10 V, 1 kHz) and a bias current of 0.5 A. Meanwhile, a good repeatability and stress sensitivity are obtained, especially in the low torque range. These behaviors stem from the stress induced decrease in the magnetic permeability and the rotation of the arranged magnetic moment. Here, we use the Fe81Ga19 alloy as the shaft material; nevertheless, in practical use, the same effect can be achieved by forming a Fe-Ga layer with large magnetostriction on the surface of the torsion shaft. This work shows the prospect of Fe-Ga alloys for non-contact torque sensing, for the large magnetostriction and high sensitivity of magnetization to stress.

  6. Radiation Resistance of the U(Al, Si)₃ Alloy: Ion-Induced Disordering.

    Science.gov (United States)

    Meshi, Louisa; Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-02-02

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)₃ composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)₃, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program "Stopping and Range of Ions in Matter" (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed.

  7. Radiation Resistance of the U(Al, Si3 Alloy: Ion-Induced Disordering

    Directory of Open Access Journals (Sweden)

    Louisa Meshi

    2018-02-01

    Full Text Available During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si3 composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si3, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy. This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program “Stopping and Range of Ions in Matter” (SRIM, the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed.

  8. Segregation and diffusion of deffects induced by radiation in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Actually considerable theoretical and experimental progress has been made in establishing and in understanding the general feactures of the Radiation Induced Solute Difusion or Segregation such as its temperature, time and displacement rate dependence and the effects of some important materials factors such as the initial solute misfit. During irradiation, the local alloy compositions will change by defect flux driven, non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries and the compositional change are likely to influence a number of properties and phenomena important to Thermonuclear Reactors, as for example, Ductility, Corrosion, Stress, Corrosion Craking, Sputtering and Blistering. Our work is correlated with the 1 MeV electrons irradiations effects in Copper alloys where the alloying elements are Be, Pt, Sn. These three elements are undersized, similar and oversized relating the Copper atom radius, respectively. How starts and develops the Segregation Induced by Irradiation 'In Situ' with help of the High Voltage Electron Microscopy as technique. (Author) [pt

  9. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    International Nuclear Information System (INIS)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-01-01

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative

  10. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  11. Near surface modification of aluminum alloy induced by laser shock processing

    Science.gov (United States)

    Saklakoglu, Nursen; Gencalp Irizalp, Simge; Akman, Erhan; Demir, Arif

    2014-12-01

    This paper investigates the influences of near surface modification induced in 6061-T6 aluminum alloy by laser shock processing (LSP). The present study evaluates LSP with a Q-switched Nd:YAG low power laser using water confinement medium and absorbent overlay on the workpiece. The near surface microstructural change of 6061-T6 alloy after LSP was studied. The residual stress variation throughout the depth of the workpiece was determined. The results showed an improvement of the material resistance to pit formation. This improvement may be attributed to compressive residual stress and work-hardening. The size and number of pits revealed by immersion in an NaOH-HCl solution decreased in comparison with the untreated material.

  12. A study of iodine induced stress corrosion cracking of zirconium alloys

    International Nuclear Information System (INIS)

    Peng Qian; Ti Zhongxin; Pan Ying; Li Cong; Peng; Xiaoming

    2003-01-01

    Stress corrosion cracking (SCC) behavior of the various zirconium alloys was studied by axial tensile testing in an inert (argon) environment with different iodine concentration at 300 degree C, 350 degree C and 400 degree C. Creep tests of the samples of different orientations (L-T, T-L) were performed at 350 degree C. The testing loads were selected as those typically used in SCC tests in a series of steps. The characterizations of the SCC fractures have been observed by scanning electron microscope (SEM). The microstructures of the material have been examined by transmission electron microscope (TEM) and optical microscope. The textures of zirconium alloys have been determined by X-ray diffractometer. The influences of the material state, test temperature, iodine concentration and creep on iodine-induced stress corrosion cracking behavior have been discussed. (authors)

  13. Laser-induced microstructural development and phase evolution in magnesium alloy

    International Nuclear Information System (INIS)

    Guan, Y.C.; Zhou, W.; Li, Z.L.; Zheng, H.Y.

    2014-01-01

    Highlights: • Secondary phase evolution caused by laser processing was firstly reported. • Microstructure development was controlled by heat flow thermodynamics and kinetics. • Solid-state transformation resulted in submicron and nano-scale precipitates. • Cluster-shaped particles in overlapped region were due to precipitation coarsening. • Properties of materials can be tailored selectively by laser processing. -- Abstract: Secondary phase plays an important role in determining microstructures and properties of magnesium alloys. This paper focuses on laser-induced microstructure development and secondary phase evolution in AZ91D Mg alloy studied by SEM, TEM and EDS analyses. Compared to bulk shape and lamellar structure of the secondary phase in as-received cast material, rapid-solidified microstructures with various morphologies including nano-precipitates were observed in laser melt zone. Formation mechanisms of microstructural evolution and effect of phase development on surface properties were further discussed

  14. Evaluating the nickel content in metal alloys and the threshold for nickel-induced allergic contact dermatitis.

    Science.gov (United States)

    Kim, Yoon Young; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok; Koh, Cjae Sook; Lee, Hae Kwang

    2008-04-01

    Many patients are currently suffering from nickel (Ni)-induced allergic contact dermatitis (ACD). There have been few Korean studies dealing with the threshold of Ni-induced ACD and quantifying the total amount of Ni in the metal alloys. The aim of this study is to evaluate the amount of Ni leached from metal alloys and Ni contents in metal alloys, and to estimate the threshold of Ni-induced ACD. All the earrings we examined leached below 0.5 microg/cm(2)/week, the upper limit of European Union (EU) regulation, but the other metal alloys leached a much higher amount of Ni than the limit. Likewise, all the earrings we examined contained less than 0.05% Ni (500 microg/g), the upper limit of EU regulation, but the other metal alloys exceeded this limit. Twenty Ni-sensitive subjects, who were patch-tested with various concentrations of Ni sulphate, showed positive reactions to 5% and 1% Ni sulphate, 10 subjects showed positive reactions to 0.01%, and the most sensitive subject showed reaction even to 0.0001%. The subjects in this study were more sensitive to Ni than those in the previous studies done in Europe. Taken together, strictly regulating the Ni-containing alloys that are made in Korea is needed to lower the occurrence of Ni-induced ACD.

  15. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Was; Brian D. Wirth

    2011-05-29

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400°C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  16. Coherent potential approximation treatment of the Sm valence transition in SmS induced by alloying

    International Nuclear Information System (INIS)

    Spronken, G.

    1982-01-01

    The Sm valence transition, similar to the pressure-induced transition in pure SmS, has been observed in a large number of cases by substituting a trivalent rare earth, B, for Sm, thereby forming isostructural alloys with a lattice constant smaller than that of semiconducting SmS. Such substitutions are expected to exert a 'chemical' pressure which simulates the external pressure. However, divalent substitutions (Yb, Eu and Ca), although having a favourable 'size' factor, do not induce any valence transition. Accordingly, band structure effects, essentially due to the relative position of the conduction bands of SmS and BS, should also be taken into consideration. In order to clarify the role which the lattice constant and the electronic structure play in the valence transition, these alloys have been studied using the coherent potential approximation (CPA) including both the crystal field effect and the Coulomb interaction between localised and itinerant states as driving mechanisms. For Sm, the 'homogeneous' picture is considered, each Sm site having the average valence; then the Smsub(1-x)Bsub(x)S system is reduced to a binary alloy. Charge transfer between the f states of Sm and the alloy conduction band (i.e. Sm valence change) is determined self-consistently. The calculations are consistent with the experimental behaviour and allow us to understand qualitatively the variation of the critical concentration xsub(c) for the transition as a function of the difference Δa between the lattice parameters of SmS and BS. (author)

  17. Ion and laser beam induced metastable alloy formation

    International Nuclear Information System (INIS)

    Westendorp, J.F.M.

    1986-01-01

    This thesis deals with ion and laser beam induced thin film mixing. It describes the development of an Ultra High Vacuum apparatus for deposition, ion irradiation and in situ analysis of thin film sandwiches. This chamber has been developed in close collaboration with High Voltage Engineering Europa. Thin films can be deposited by an e-gun evaporator. The atom flux is monitored by a quadrupole mass spectrometer. A comparison is made between ion beam and laser mixing of Cu with Au and Cu with W. The comparison provides a better understanding of the relative importance of purely collisional mixing, the role of thermodynamic effects and the contribution of diffusion due to defect generation and migration. (Auth.)

  18. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Science.gov (United States)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  19. Radiation-Induced α' Phase Formation on Dislocation Loops in Fe-Cr Alloys During Electron Irradiation

    OpenAIRE

    Wakai, E.; Hishinuma, A.; Kato, Y.; Yano, H.; Takaki, S.; Abiko, K.

    1995-01-01

    Radiation-induced precipitates on dislocation loops in low and high purity Fe-9, -18 and -50 % Cr alloys were examined under electron irradiation in a high voltage electron microscope operated at 1 MV. Two types of dislocation loops on {100} planes with a Burgers vectors and on {111} planes with a /2 are formed in high purity Fe-Cr alloys. However, only a type loops are formed in low purity alloys, i.e. where carbon concentration is greater than about 60 wt.ppm. The growth rate of the loops...

  20. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    International Nuclear Information System (INIS)

    Luo, Dian; Tang, Guangze; Ma, Xinxin; Gu, Le; Sun, Mingren; Wang, Liqin

    2015-01-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm 2 . Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm 2 ) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation

  1. Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys

    International Nuclear Information System (INIS)

    Leguey, T.

    1996-01-01

    The annealing of defects induced by electron irradiation up to a dose of 6.10 21 m -2 at T<293 K has been investigated in single-crystals of pure vanadium and in vanadium-titanium alloys with compositions 0.3, 1 and 5 at.% Ti using positron annihilation spectroscopy. The recovery of the positron annihilation parameters in V single-crystals indicates that the defect annealing takes place in the temperature range 410-470 K without formation of microvoids for the present irradiation conditions. For the alloys the recovery onset is shifted to 460 K, the width of the annealing stage is gradually broadened with increasing Ti content, and microvoids are formed for annealing temperatures at the end of the recovery stage. The results show that the vacancy release from vacancy-interstitial impurity pairs and subsequent recombination with interstitial loops is the mechanism of the recovery in pure V. For V-Ti alloys, vacancy-Ti-interstitial impurity complexes and vacancy-Ti pairs appear to be the defects responsible for the positron trapping. The broadening of the recovery stage with increasing Ti content indicates that solute Ti is a very effective trap for vacancies in V. (orig.)

  2. Magnetism and high magnetic-field-induced stability of alloy carbides in Fe-based materials.

    Science.gov (United States)

    Hou, T P; Wu, K M; Liu, W M; Peet, M J; Hulme-Smith, C N; Guo, L; Zhuang, L

    2018-02-14

    Understanding the nature of the magnetic-field-induced precipitation behaviors represents a major step forward towards unravelling the real nature of interesting phenomena in Fe-based alloys and especially towards solving the key materials problem for the development of fusion energy. Experimental results indicate that the applied high magnetic field effectively promotes the precipitation of M 23 C 6 carbides. We build an integrated method, which breaks through the limitations of zero temperature and zero external field, to concentrate on the dependence of the stability induced by the magnetic effect, excluding the thermal effect. We investigate the intimate relationship between the external field and the origins of various magnetics structural characteristics, which are derived from the interactions among the various Wyckoff sites of iron atoms, antiparallel spin of chromium and Fe-C bond distances. The high-magnetic-field-induced exchange coupling increases with the strength of the external field, which then causes an increase in the parallel magnetic moment. The stability of the alloy carbide M 23 C 6 is more dependent on external field effects than thermal effects, whereas that of M 2 C, M 3 C and M 7 C 3 is mainly determined by thermal effects.

  3. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  4. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  5. Pressure-induced structural change in liquid GaIn eutectic alloy

    DEFF Research Database (Denmark)

    Yu, Q.; Ahmad, A. S.; Ståhl, Kenny

    2017-01-01

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase...... remains almost unchanged until it transforms to the liquid state at around 2.3 GPa. The ab initio molecular dynamics calculations can reproduce the low pressure crystallization and give some hints on the understanding of the transition between the liquid and the crystalline phase on the atomic level...

  6. Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Bowu Zhu

    2017-06-01

    Full Text Available The purpose of this work is to improve the cytocompatibility and corrosion resistance of magnesium alloy in the hope of preparing a biodegradable medical material. The aminated hydroxyethyl cellulose-induced biomimetic hydroxyapatite coating was successfully prepared on AZ31 magnesium alloy surface with a sol-gel spin coating method and biomimetic mineralization. Potentiodynamic polarization tests and electrochemical impedance spectroscopy showed that the hydroxyapatite/aminated hydroxyethyl cellulose (HA/AHEC coating can greatly improve the corrosion resistance of AZ31 magnesium alloy and reduce the degradation speed in simulated body fluid (SBF. The MTT [3-(4,5-dimethylthiazol-2-yl-2,5-Diphenyltetrazolium bromide] method and cell morphology observation results showed that the HA/AHEC coating on AZ31 magnesium alloy has excellent cytocompatibility and biological activity.

  7. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2016-01-01

    Laboratory testing on selected alumina and silica-forming alloys was performed to evaluate their performance against high temperature corrosion induced by potassium chloride (KCl). The alloys studied were FeCrAlY, Kanthal APM, Nimonic 80A, 214, 153MA and HR160. Exposure was conducted at 600 °C......-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion mechanism, Nimonic 80A was exposed...... for 168 h in flowing N2(g)+5%O2(g)+15%H2O(g) (vol.%) with samples covered under KCl powder. A KCl-free exposure was also performed for comparison.Corrosion morphology and products were studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD...

  8. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    International Nuclear Information System (INIS)

    Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang

    2017-01-01

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  9. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    International Nuclear Information System (INIS)

    Li, X.J.; He, L.L.; Li, Y.S.; Yang, Q.; Hirose, A.

    2017-01-01

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  10. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-01-01

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  11. Uniform and pitting corrosion events induced by SCN- anions on Al alloys surfaces and the effect of UV light

    International Nuclear Information System (INIS)

    Amin, Mohammed A.

    2011-01-01

    The influence of the alloying elements on the uniform and pitting corrosion processes of Al-6061, Al-4.5%Cu, Al-7.5%Cu, Al-6%Si and Al-12%Si alloys was studied in 0.50 M KSCN solution at 25 o C. Open-circuit potential, Tafel polarization, linear polarization resistance (LPR) and ICP-AES measurements were used to study the uniform corrosion process on the surfaces of the tested alloys. Cyclic polarization, potentiostatic current-time transients and impedance techniques were employed for pitting corrosion studies. Obtained results were compared with pure Al. Passivation kinetics of the tested Al samples were also studied as a function of applied potential, [SCN - ] and sample composition by means of potentiostatic current transients. The induction time, after which the growth of stable pits occurs, decreased with increasing applied potential and [SCN - ]. Regarding to uniform corrosion, alloyed Cu was found to enhance the corrosion rate, while alloyed Si suppressed it. Alloying elements of the tested samples diminished pitting attack to an extent depending on the percentage of the alloying element in the sample. Among the investigated materials, Al-Si alloys exhibited the highest corrosion resistance towards uniform and pitting corrosion processes in KSCN solutions. The passive and dissolution behaviour of Al was also studied under the conditions of continuous illumination (300-450 nm) based on cyclic polarization and potentiostatic techniques. The incident photons had a little influence on pit initiation and a marked effect on pit growth. These explained in terms of a photo-induced modification of the passive film formed on the anode surface, which render it more resistant to pitting. The effects of UV photons energy and period of illumination on the morphology of the pitted surfaces were also studied.

  12. Ab initio defect properties for modeling radiation-induced segregation in Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Tucker, J.D.; Allen, T.R.; Morgan, D.; Najafabadi, R.

    2007-01-01

    Radiation-induced segregation (RIS) has been studied with experimental and theoretical methods for over 30 years and many models have been built in an attempt to understand the mechanisms involved. Input parameters for these models are often not available experimentally, limiting the model's predictive capabilities. In an effort to obtain more accurate input parameters we have calculated formation and migration energies for both vacancies and interstitials using ab initio methods in face-centered cubic (fcc) Fe-Ni-Cr alloys, with an emphasis on Ni-based alloys with dilute concentrations of Cr and Fe. The data gives new insight into a number of properties including species dependence of migration barriers and binding energies for both vacancies and interstitials. We predict species dependent vacancy migration barriers for Cr (0.82 eV), Fe (0.95 eV), and Ni (1.08 eV) and interstitial migration barriers for Cr (0.08 eV), Fe (0.11 eV), and Ni (0.14 eV) in a Ni matrix. Significant binding between Cr and the interstitial dumbbell was also observed. Further work will build on this data to create a rate theory models for RIS. (author)

  13. Phase transformations in a Cu−Cr alloy induced by high pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Korneva, Anna, E-mail: a.korniewa@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow (Poland); Straumal, Boris [Institute of Solid State Physics, Russian Academy of Sciences, Ac. Ossipzn Str. 2, Chernogolovka 142432 (Russian Federation); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Laboratory of Hybrid Nanomaterials, National University of Science and Technology «MISIS», Leninskii prosp. 4, 119049 Moscow (Russian Federation); Kilmametov, Askar [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chulist, Robert [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow (Poland); Straumal, Piotr [Laboratory of Hybrid Nanomaterials, National University of Science and Technology «MISIS», Leninskii prosp. 4, 119049 Moscow (Russian Federation); Zięba, Paweł [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow (Poland)

    2016-04-15

    Phase transformations induced by high pressure torsion (HPT) at room temperature in two samples of the Cu-0.86 at.% Cr alloy, pre-annealed at 550 °C and 1000 °C, were studied in order to obtain two different initial states for the HPT procedure. Observation of microstructure of the samples before HPT revealed that the sample annealed at 550 °C contained two types of Cr precipitates in the Cu matrix: large particles (size about 500 nm) and small ones (size about 70 nm). The sample annealed at 1000 °C showed only a little fraction of Cr precipitates (size about 2 μm). The subsequent HPT process resulted in the partial dissolution of Cr precipitates in the first sample and dissolution of Cr precipitates with simultaneous decomposition of the supersaturated solid solution in another. However, the resulting microstructure of the samples after HPT was very similar from the standpoint of grain size, phase composition, texture analysis and hardness measurements. - Highlights: • Cu−Cr alloy with two different initial states was deformed by HPT. • Phase transformations in the deformed materials were studied. • SEM, TEM and X-ray diffraction techniques were used for microstructure analysis. • HPT leads to formation the same microstructure independent of the initial state.

  14. Artificial patina formation onto copper-based alloys: Chloride and sulphate induced corrosion processes

    Science.gov (United States)

    Di Carlo, G.; Giuliani, C.; Riccucci, C.; Pascucci, M.; Messina, E.; Fierro, G.; Lavorgna, M.; Ingo, G. M.

    2017-11-01

    Naturally grown patinas are typically detected onto the surface of modern copper-based artefacts and strictly affect their surface reactivity and appearance. The production of representative patinas is a key issues in order to obtain model systems which can be used for the development and validation of appropriate conservation materials and methods. In this study, we have prepared different artificial representative patinas by using a quaternary Cu-Sn-Zn-Pb alloy with chemical composition and metallurgical features similar to those of valuable modern works of art. In order to produce degradation products usually observed onto their surface, chloride and sulphate species were used to induce corrosion processes. Different patinas were produced by changing the nature of corrosive species and the set-up for the accelerated degradation. The composition and structural properties of the patinas were investigated by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, optical microscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy. The results allow to identify degradation products and to distinguish copper hydroxychloride polymorphs and copper hydroxysulphates with similar structure. Our findings show that patina composition can be tailored by modifying the degradation procedure and patinas representative of modern artefacts made of quaternary Cu-Sn-Zn-Pb alloy can be obtained.

  15. Semi-solid process of 2024 wrought aluminum alloy by strain induced melt activation

    Directory of Open Access Journals (Sweden)

    Surachai Numsarapatnuk

    2013-10-01

    Full Text Available The aim of this study is to develop a production process of a fine globular structure feedstock of the 2024 aluminumalloy suitable for subsequent semi-solid forming. The 2024 wrought aluminum alloy was first annealed to reduce the effect ofwork hardening. Then, strain was induced in the alloy by cold compression. After that the microstructural evolution duringpartial melting was investigated. The samples were subjected to full annealing at 415°C for 3 hrs prior to cold compression of40% reduction of area (RA with 3 mm/min strain rate. After that samples were partially melted at 620°C with varying holdingtime from 0 to 60 min followed by water quenching. The grain size and the average grain diameter of solid grains weremeasured using the linear intercept method. The globularization was interpreted in terms of shape factor. Liquid fraction andthe distribution of the eutectic liquid was also investigated. It was found that during partial melting, the globular morphologywas formed by the liquid wetting and fragmentation of high angle boundaries of recrystallized grains. The suitable semi-solidmicrostructure was obtained from a condition of full annealing, 40% cold working and partial melting at 620°C for 6 minholding time. The near globular grains obtained in the range of 0-60 min consisted of uniform spheroid grains with an averagegrain diameter ranged from 73 to 121 m, quenched liquid fraction was approximately 13–27% and the shape factor was greaterthan 0.6. At a holding time of less than 6 min, grain coarsening was dominant by the immigration of high-angle grainboundaries. At a longer holding time, liquid fraction increased and Ostwald ripening was dominant. The coarsening rateconstant for the 2024 Al alloy was 400.36 mm3.s-1. At a soaking time of 60 min, it was found that a minimum diameter differencewas 1.06% with coarsening index n=3 in a power law equation. The non-dendritic slug of 2024 alloy was rapid compressedinto a disc with 90%RA

  16. Stress induced martensite transformation in Co–28Cr–6Mo alloy during room temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S., E-mail: song_cai@fwmetals.com [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Avenue, Fort Wayne, IN 46809 (United States); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Nicol Hall, 60 Union Street, Kingston, Ontario, Canada K7L 3N6 (Canada); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, 433/D008, Argonne, IL 60439 (United States)

    2013-09-15

    The phase transformation and texture change of two Co–28Cr–6Mo alloys during room temperature deformation were studied by using the in-situ synchrotron X-ray diffraction. It is found that a slight difference in chemical compositions can significantly change the phase constitutions and the mechanical properties. For the material with less Ni, C and N (lower α-phase stability), increasing the grain size promotes the athermal martensite transformation during cooling. The kinetics of the Stress Induced Martensite (SIM) phase transformation may be more affected by the athermal martensite instead of the grain size of the α-phase. After deformation, similar textures are produced in samples regardless the differences in the initial structures such as the phase constitution and the grain size; while a relatively strong {111} texture and a weak {100} texture are produced in the α-phase, a {101"¯1} fiber texture is gradually developed in the ε-phase during uniaxial tension.

  17. Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis

    Science.gov (United States)

    Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo

    2017-11-01

    Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.

  18. Stress induced martensite at the crack tip in NiTi alloys during fatigue loading

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2014-10-01

    Full Text Available Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi were analyzed by Digital Image Correlation (DIC, under fatigue loads. In particular, Single Edge Crack (SEC specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF, starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence.

  19. Pressure-induced Novel Electronic State of Fe70Ni30 Invar Alloy

    Science.gov (United States)

    Oomi, Gendo; Saito, Ryohei; Ohashi, Masashi; Nakano, Tomohito

    The electrical resistance and magnetoresistance of Fe70Ni30 Invar alloy have been measured at high pressure up to 15 GPa. It is found that the coefficients of T2 term in the electrical resistance increases with increasing pressure but tends to saturate above 12 GPa suggesting a peak above 15 GPa, which implies a pressure-induced quantum phase transition. We found for the first time that the magnetoresistance at 4.2 K is negative below 11 GPa but becomes positive above 12 GPa. This corresponds to a crossover in the electronic state from localized moment regime to a paramagnetic or new magnetic state. The origins will be discussed briefly in connection with the recent experimental results and theoretical calculation.

  20. Early antihepatitis C virus response with second-generation C200/C22 ELISA

    NARCIS (Netherlands)

    van der Poel, C. L.; Bresters, D.; Reesink, H. W.; Plaisier, A. A.; Schaasberg, W.; Leentvaar-Kuypers, A.; Choo, Q. L.; Quan, S.; Polito, A.; Houghton, M.

    1992-01-01

    Detection of early antibody to hepatitis C virus (HCV) by a new second-generation C200/C22 anti-HCV enzyme-linked immunosorbent assay (ELISA) and a four-antigen recombinant immunoblot assay (4-RIBA) was compared with the first-generation anti-HCV C100 ELISA using sequential serum samples of 9

  1. Atom redistribution and multilayer structure in NiTi shape memory alloy induced by high energy proton irradiation

    Science.gov (United States)

    Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong

    2017-10-01

    The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.

  2. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Heuser, Brent; Hosemann, Peter; Liu, Xiang

    2018-04-24

    This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study. Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (>10 dpa) can be carried out to compare with ion-irradiated A709. The radiation-induced

  3. Determination of the penetration hardness and analysis of stainless steel alloys by means of Laser Induced Breakdown Spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    mohamad Vahid Dastjerdi

    2017-11-01

    Full Text Available A significant feature of alloys is the surfaces hardness that is always accompanied by challenges when it’s measured by common mechanical techniques. In this investigation, we used Laser Induced Breakdown Spectroscopy (LIBS as a replacement method for common mechanical techniques to measure the surfaces hardness of different alloys. After recording the spectrum of alloy samples in order to identify the surface hardness of analyzed sample, K-Nearest Neighbors method (KNN was used and obtained results showed that the LIBS-KNN method can separate and identify the surfaces hardness of samples with precision of 93.3%. In addition, in order to identify the percentage of constituent elements of alloys and their hardness, calibration approach was investigated that showed there is an appropriate linear relation between recorded emission lines from the LIB spectra of sample alloys and the percentage of their constituent elements and also their Vickers hardness numbers. Therefore, According to exclusive advantages of LIBS technique i.e. high speed analysis, non-destructive analysis and being portable, some of available difficulties in conventional mechanical techniques can be removed.

  4. Report on fundamental modeling of irradiation-induced swelling and creep in FeCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dasgupta, Dwaipayan [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-23

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, the material response must be demonstrated to provide suitable radiation stability, in order to ensure that there will not be significant dimensional changes (e.g., swelling), as well as quantifying the radiation hardening and radiation creep behavior. In this report, we describe the use of cluster dynamics modeling to evaluate the defect physics and damage accumulation behavior of FeCrAl alloys subjected to neutron irradiation, with a particular focus on irradiation-induced swelling and defect fluxes to dislocations that are required to model irradiation creep behavior.

  5. Enhanced caloric effect induced by magnetoelastic coupling in NiMnGaCu Heusler alloys: Experimental study and theoretical analysis

    Science.gov (United States)

    Zhao, Dewei; Castán, Teresa; Planes, Antoni; Li, Zongbin; Sun, Wen; Liu, Jian

    2017-12-01

    On the basis of a phenomenological Landau model combined with comprehensive experimental studies, the magnetostructural transition behavior and field induced caloric effects for NiMnGaCu Heusler alloys have been investigated. In Ni50Mn25 -xGa25Cux alloys with x =5.5 , 6, and 6.5, both magnetocaloric entropy change (Δ S ) and elastocaloric temperature change (Δ T ) increase with the increment of Cu content. The maximum Δ S of 1.01 J /mol K and Δ T of 8.1 K are obtained for the alloy with x =6.5 . In order to explore the physical origin behind the large caloric effect, here we quantitatively propose a crucial coefficient of magnetoelastic coupling κ ˜ by utilizing a thermodynamic formalism within the framework of the Landau approach. It has been verified that the enhancement of the strength of magnetoelastic coupling between lattice and magnetic freedoms results in the increased caloric response for NiMnGaCu alloys. Thus, the strengthened coupling of the magnetoelastic effect can be considered as an effective way to improve the caloric performance for these alloys having the same sign of magnetic and elastic entropy changes contributed to the total caloric effect.

  6. Strain induced decomposition and precipitation of carbides in a molybdenum–hafnium–carbon alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pöhl, C., E-mail: Christopher.Poehl@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Lang, D. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Christian Doppler Laboratory for Early Stages of Precipitation, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Schatte, J. [PLANSEE SE, Metallwerk-Plansee-Straße 71, 6600 Reutte (Austria); Leitner, H. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Christian Doppler Laboratory for Early Stages of Precipitation, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2013-12-05

    Highlights: •We revealed the precipitation mechanism of Hf-carbides in a Mo–Hf–C alloy. •Dislocations and boundaries are acting as heterogeneous nucleation sites. •Strain must be introduced to decompose Mo{sub 2}C which delivers C for the Hf-carbides. •Atom probe reveals early stages of precipitation at dislocations and boundaries. •Carbon enrichment at dislocations and (sub)grain boundaries occurs. -- Abstract: In the present study of a sintered and thermo-mechanically processed Mo–Hf–C (MHC) alloy the strain induced decomposition of Mo–carbides and subsequent precipitation of Hf-carbides was revealed. The microstructural characterization was performed with atom probe tomography (APT), transmission electron microscopy (TEM), X-ray diffraction (XRD) and optical light microscopy (OLM). During annealing of deformed conditions it can be shown by TEM analysis that Hf-carbides were preferentially formed on dislocations and occasionally on (sub)grain boundaries. XRD and OLM investigations revealed that the required C for the Hf-carbides was delivered by the decomposition of Mo–carbides which are originally located at former grain boundaries in the as-sintered condition. It has been shown that for this decomposition mechanical strain prior to annealing was required. In the early stages of precipitation APT analyses revealed a significant segregation of C and Hf atoms to dislocations and boundaries. Finally, the authors deduced that due to the dislocation–precipitation interaction the misfit strain was effectively reduced and therefore, the Hf-carbides are located on dislocations and (sub)grain boundaries.

  7. Modelling of radiation induced segregation in austenitic Fe alloys at the atomistic level

    International Nuclear Information System (INIS)

    Piochaud, Jean-Baptiste

    2013-01-01

    In pressurized water reactors, under irradiation internal structures are subject of irradiation assisted stress corrosion cracking which is influenced by radiation induced segregation (RIS). In this work RIS of 316 stainless steels is modelled considering a model ternary Fe-10Ni-20Cr alloy. For this purpose we have built an Fe-Ni-Cr pair interaction model to simulate RIS at the atomistic level using an atomistic kinetic Monte Carlo approach. The pair interactions have been deduced from density functional theory (DFT) data available in the pure fcc systems but also from DFT calculations we have performed in the Fe-10Ni-20Cr target alloy. Point defect formation energies were calculated and found to depend strongly on the local environment of the defect. As a consequence, a rather good estimation of these energies can be obtained from the knowledge of the number and respective positions of the Ni and Cr atoms in the vicinity of the defect. This work shows that a model based only on interaction parameters between elements positioned in perfect lattice sites (solute atoms and vacancy) cannot capture alone both the thermodynamic and the kinetic aspect of RIS. A more accurate of estimating the barriers encountered by the diffusing species is required than the one used in our model, which has to depend on the saddle point environment. This study therefore shows thus the need to estimate point defect migration energies using the DFT approach to calibrate a model that can be used in the framework of atomic kinetic Monte Carlo simulations. We also found that the reproduction by our pair interaction model of DFT data for the self-interstitial atoms was found to be incompatible with the modelling of RIS under electron irradiation. (author)

  8. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    International Nuclear Information System (INIS)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-01-01

    Highlights: ► The ferritic–martensitic alloy NF616 was irradiated in situ with 1 MeV Kr ions at 50 K and 473 K. ► The defect cluster density increases with dose and saturates at ∼6 dpa at 50 K and 473 K. ► The defect size distributions do not change with dose at this temperature range. ► Results indicate that defect cluster formation and destruction is governed by cascade impact. - Abstract: NF616 is a nominal 9Cr ferritic–martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (∼6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (∼3–4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  9. Aggregation in thin-film silver: Induced by chlorine and inhibited by alloying with two dopants

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Shimada, Koichi; Fukuda, Shin

    2009-01-01

    The Ag aggregation mechanism triggered by chlorine (Cl) is discussed. The frontier orbital theory by K. Fukui is applied in order to determine the growing point in the silver (Ag) cluster. Ag in the thin-film silver would grow to Ag n Cl and stack, triggered by Cl from the outside according to the mechanism described. This would lead to an aggregate with a high Ag density. It is suggested that this would be the generating mechanism of the silver-gray aggregate consisting mostly of Ag, which is generated by exposing it to Cl. Two tactics in order to prevent restrain aggregation induced by Cl according to the mechanism are proposed. Tactic 1 is a restraining of structure change to a plane in the process of Ag 6 Cl + Ag → Ag 7 Cl. Tactic 2 is the trapping of Cl before it generates a bond to Ag. The ability of the two combined dopants with the abilities of tactics 1 and 2, such as in an Ag alloy including palladium and copper (APC), and including neodymium and gold (ANA) is expected to be very high. The aggregation resistance of an Ag alloy including two dopants is evaluated by a salt water immersion test. The APC and ANA demonstrated a very high resistance to Cl, because of the combination of the dopants working with tactic 1 (Pd, Au) and tactic 2 (Cu, Nd). The multilayer sputter coating with an ANA layer demonstrated a very interesting profile where the light transmittance and the electrical sheet resistance are almost the same as the multilayer sputter coating with a pure Ag. The multilayer sputter coating with AIS also demonstrates a very interesting profile, where the light transmittance is higher than the multilayer sputter coating with a pure Ag.

  10. Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys

    International Nuclear Information System (INIS)

    Stupkiewicz, S.; Petryk, H.

    2006-01-01

    A micromechanical model of stress-induced martensitic transformation in single crystals of shape memory alloys is developed. This model is a finite-strain counterpart to the approach presented recently in the small-strain setting [S. Stupkiewicz, H. Petryk, J. Mech. Phys. Solids 50 (2002) 2303-2331]. The stress-induced transformation is assumed to proceed by the formation and growth of parallel martensite plates within the austenite matrix. Propagation of phase transformation fronts is governed by a rate-independent thermodynamic criterion with a threshold value for the thermodynamic driving force, including in this way the intrinsic dissipation due to phase transition. This criterion selects the initial microstructure at the onset of transformation and governs the evolution of the laminated microstructure at the macroscopic level. A multiplicative decomposition of the deformation gradient into elastic and transformation parts is assumed, with full account for the elastic anisotropy of the phases. The pseudoelastic behavior of Cu-Zn-Al single crystal in tension and compression is studied as an application of the model

  11. On the stability of the CO adsorption-induced and self-organized CuPt surface alloy

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Chorkendorff, Ib

    2010-01-01

    The stability of the recently discovered CO-induced and self-organized CuPt surface alloy was explored at near ambient pressures of O-2 (200 mbar) at room temperature, in a CO + H-2 mix (P-tot = 220 mbar, 4% CO) from room temperature to 573 K, as well as in a CO + H2O mix (P-tot = 17 mbar, 50% CO...

  12. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  13. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  14. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.

    2003-01-01

    alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure. Such a drastic change in the segregation behavior is due to the presence...

  15. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    Muris, J.; Scheper, R.J.; Kleverlaan, C.J.; Rustemeyer, T.; van Hoogstraten, I.M.W.; von Blomberg, M.E.; Feilzer, A.J.

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and

  16. Portable, real-time alloy identification of metallic wear debris from machinery lubrication systems: laser-induced breakdown spectroscopy versus x-ray fluorescence

    Science.gov (United States)

    Suresh, Pooja

    2014-05-01

    Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.

  17. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  18. A layman's guide to radiation-induced deformation processes in zirconium alloys

    International Nuclear Information System (INIS)

    Dutton, R.

    1990-07-01

    The fuel channel (comprising a pressure tube and a calandria tube fabricated from zirconium alloys) in a CANDU reactor undergoes shape changes because of radiation-induced deformation. This is a consequence of the microstructural modification arising from radiation damage produced by the fast-neutron flux. This report summarizes our current understanding of the physical processes responsible for the deformation. With the non-specialist reader in mind, the underlying mechanisms are described in a manner that avoids much of the associated technical terminology. Thus, the basic concepts of plasticity in a crystalline material are introduced and related to the various microstructural defects created during irradiation. In particular, the mechanisms of creep (a time-dependent strain activated by an applied stress) and growth (a time-dependent strain occurring in the absence of stress) are discussed in a non-technical language assisted by simple diagrams. Reference is made to both theoretical investigations (avoiding mathematical complexity) and experimental measurements. It is shown how the qualitative and quantitative knowledge can be used to derive a predictive model for reactor designers and operators. The current status of such a model is evaluated and suggestions for future improvements made

  19. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  20. Waste package degradation expert elicitation panel: Input on the corrosion of CRM alloy C-22. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.

    1998-03-14

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 10. Exposed patches of the CRM could see this environment.

  1. Waste package degradation expert elicitation panel: Input on the corrosion of CRM alloy C-22. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.

    1998-02-26

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 10. Exposed patches of the CRM could see this environment.

  2. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    International Nuclear Information System (INIS)

    Danielson, M.J.; Pitman, S.G.

    2000-01-01

    Both the 316L stainless steel and Hastelloy C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment

  3. Defects induced by swift heavy ions in the 18R martensite of Cu-Zn-Al alloy

    International Nuclear Information System (INIS)

    Zelaya, Eugenia; Tolley, Alfredo; Condo, Adriana; Lovey, Francisco; Schumacher, G

    2003-01-01

    The swift heavy ion incidence over the surface of a given material produces a strong energy deposition in a nanometric scale.Swift heavy ions, of the order of one thousand of MeV, deposit their energy as electronic excitations.This highly localized deposition can induce metastable transformations within the material. For example, in martensitic NiTi alloys irradiated with swift heavy ions, it has been observed changes on the martensitic transformation temperature and amorphous areas induced by the irradiation.In this work, the effects produced by swift heavy ions on the martensitic 18R structure of Cu-Zn-Al alloy (Cu - 12.17 Zn - 17.92 Al, in %at) were analyzed.Crystalline samples were irradiated in a direction close to the [2 1 0] of 18R with Xe + 230 MeV, Au + of 350 MeV and Kr + of 200 MeV ion beams.Defects of the order of nanometers induced by the irradiation were observed by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM).It was also observed, that the average size of the irradiation defects induced by Au + ion is larger than those induced by Xe + and Kr + ions.In this case, no relationship between the observed defects and the energy deposition was found in the 23 keV/nn to 48 keV/nn range

  4. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses.

    Science.gov (United States)

    Muris, Joris; Scheper, Rik J; Kleverlaan, Cornelis J; Rustemeyer, Thomas; van Hoogstraten, Ingrid M W; von Blomberg, Mary E; Feilzer, Albert J

    2014-08-01

    Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitro immune responses. The investigated population consisted of three groups: 26 non-metal-allergic volunteers, 25 metal-allergic patients, and 20 oral disease patients. Medical histories were taken, oral examinations were carried out, and compositions of all dental alloys were determined. Then, Au and Pd patch tests and in vitro assays were performed, revealing cytokine production by peripheral blood mononuclear cells [T helper (Th)1, interferon-γ; Th2, interleukin (IL)-5 and IL-13] and lymphocyte proliferation (LTT-MELISA(®) ). Non-plaque-related gingivitis was associated with the presence of Pd-based dental alloys, and Pd-positive patch tests and in vitro assays. Collectively, participants with Pd-based dental alloys showed increased Pd patch test reactivity (p alloys (p dental alloys. However, most oral disease patients did not show positive patch test results or in vitro signs of specific immunoreactivity, suggesting local toxic reactions or the involvement of innate immune responses. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Lead-induced SCC of alloy 600 in plausible steam generator crevice environments

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Manolescu, A. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Mirzai, M. [Ontario Hydro, Toronto, Ontario (Canada)

    1998-07-01

    Laboratory stress corrosion cracking (SCC) test environments developed to simulate representative BNGS-A steam generator (SG) crevice chemistries have been used to determine the susceptibility of Alloy 600 to lead-induced SCC under plausible SG conditions. Test environments were based on plant SG hideout return data and analysis of removed tubes and deposits. Deviations from the normal near neutral crevice pH environment were considered to simulate possible faulted excursion crevice chemistry and to bound the postulated crevice pH range of 3-9 (at temperature). The effect of lead contamination up to 1000 ppm, but with an emphasis on the 100 to 500 ppm range, was determined. SCC susceptibility was investigated using constant extension rate tensile (CERT) tests and encapsulated C-ring tests. CERT tests were performed at 305 degrees C on tubing representative of BNGS-A SG U-bends. The C-ring test method allowed a wider test matrix covering three temperatures (280, 304 and 315 degrees C), three strain levels (0.2%, 2% and 4%) and tubing representative of U-bends plus tubing given a simulated stress relief to represent material at the tubesheet. The results of this test program confirmed that in the absence of lead contamination, cracking does not occur in these concentrated, 3.3 to 8.9 pH range, crevice environments. Also, it appears that the concentrated crevice environments suppress lead-induced cracking relative to that seen in all-volatile-treatment (AVT) water. For the (static) C-ring tests, lead-induced SCC was only produced in the near-neutral crevice environment and was more severe at 500 ppm than 100 ppm PbO. This trend was also observed in CERT tests but some cracking/grain boundary attack occurred in acidic (pH 3.3) and alkaline (pH 8.9) environments. The C-ring tests indicated that a certain amount of resistance to cracking was imparted by simulated stress relief of the tubing. This heat treatment, confirmed to have resulted in sensitization, promoted

  6. Lead-induced stress-corrosion cracking of alloy 600 in plausible steam generator crevice environments

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Manolescu, A. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Mirzai, M. [Ontario Hydro, Toronto, Ontario (Canada)

    1999-03-01

    Laboratory stress-corrosion cracking (SCC) test environments were developed to simulate crevice chemistries representative of Bruce Nuclear Generating Station A (BNPD A) steam generators (SGs); these test environments were used to determine the susceptibility of Alloy 600 to lead-induced SCC under plausible SG conditions. Test environments were based on plant SG hideout return data and analysis of removed tubes and deposits. Deviations from the normal near-neutral crevice pH environment were considered to simulate possible faulted excursion crevice chemistry and to bound the postulated crevice pH range of 3 to 9 (at temperature). The effect of lead contamination up to 1000 ppm, but with an emphasis on the 100- to 500-ppm range, was determined. SCC susceptibility was investigated using constant extension rate tensile (CERT) tests and encapsulated C-ring tests. CERT tests were performed at 305 degrees C on tubing representative of BNPD A SG U-bends. The C-ring test method allowed a wider test matrix, covering 3 temperatures (280 degrees C, 304 degrees C and 315 degrees C), 3 strain levels (0.2%, 2% and 4%), and tubing representative of U-bends plus tubing given a simulated stress relief to represent material at the tube sheet. The results of this test program confirmed that in the absence of lead contamination, cracking does not occur in these concentrated, 3.3 to 8.9 pH range, crevice environments. Also, it appears that the concentrated crevice environments suppress lead-induced cracking relative to that seen in all-volatile-treatment (AVT) water. For the (static) C-ring tests, lead-induced SCC was only produced in the near-neutral crevice environment and was more severe at 500 ppm than at 100 ppm PbO. This trend was also observed in CERT tests, but some cracking-grain boundary attack occurred in acidic (pH 3.3) and alkaline (pH 8.9) environments. The C-ring tests indicated that a certain amount of resistance to cracking was imparted by simulated stress relief of

  7. Use of neutron diffraction and laser-induced plasma spectroscopy in integrated authentication methodologies of copper alloy artefacts

    International Nuclear Information System (INIS)

    Siano, S.; Bartol, L.; Mencaglia, A.A.; Agresti, J.; Miccio, M.

    2009-01-01

    The present study approaches the general problem of the authentication of copper alloy artefacts of art and historical interest using non-invasive analytical techniques. It aims to demonstrate that a suitable combination of time-of-flight neutron diffraction and laser-induced plasma spectroscopy in integrated multidisciplinary authentication methodologies can provide crucial data for discriminating between genuine archaeological objects and modern counterfeits. After introducing the methodology, which is dedicated in particular to copper alloy figurines of ancient style, two representative authentication case studies are discussed. The results of the work provide evidence that the combination of multiphase analysis using TOF-N D and elemental depth profiles provided by Lips makes it possible to solve most of the present authentication problems.

  8. Effect of Si on the reversibility of stress-induced martensite in Fe-Mn-Si shape memory alloys

    International Nuclear Information System (INIS)

    Stanford, N.; Dunne, D.P.

    2010-01-01

    Fe-Mn-Si is a well-characterized ternary shape memory alloy. Research on this alloy has consistently shown that the addition of 5-6 wt.% Si is desirable to enhance the reversibility of stress-induced martensite vis-a-vis shape memory. This paper examines the effect of Si on the morphology and the crystallography of the martensite in the Fe-Mn-Si system. It is concluded that the addition of Si increases the c/a ratio of the martensite, reduces the transformation volume change and decreases the atomic spacing difference between the parallel close-packed directions in the austenite-martensite interface (habit) plane. It is proposed that, in addition to austenite strengthening, Si enhances reversibility by reducing the volume change and the interfacial atomic mismatch between the martensite and the austenite. Although shape memory is improved, transformation reversibility remains limited by the necessary misfit dislocations that accommodate the atomic spacing differences in the interface.

  9. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  10. C22:0- and C24:0-dihydroceramides Confer Mixed Cytotoxicity in T-Cell Acute Lymphoblastic Leukemia Cell Lines

    Science.gov (United States)

    Holliday Jr., Michael W.; Cox, Stephen B.; Kang, Min H.; Maurer, Barry J.

    2013-01-01

    We previously reported that fenretinide (4-HPR) was cytotoxic to acute lymphoblastic leukemia (ALL) cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES) inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74–0.81, P ≤ 0.04) and C24:0-dihydroceramide (ρ = 0.84–0.90, P ≤ 0.004), but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay) in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001) and cytotoxicity (P ≤ 0.001). These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides may

  11. C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Michael W Holliday

    Full Text Available We previously reported that fenretinide (4-HPR was cytotoxic to acute lymphoblastic leukemia (ALL cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04 and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004, but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001 and cytotoxicity (P ≤ 0.001. These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides

  12. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation.

    Science.gov (United States)

    Terentyev, D; Bakaev, A

    2013-07-03

    The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe-Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2 and loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2 and loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2 loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally 'invisible' nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed.

  13. Irradiation induced surface segregation in concentrated alloys: a contribution; Contribution a l`etude de la segregation de surface induite par irradiation dans les alliages concentres

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, Y.

    1996-12-31

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe{sub 50}Ni{sub 50} and Fe{sub 49}Ni{sub 50}Hf{sub 1} alloys. (author). 190 refs.

  14. Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Zhou, Xuanwei; Xia, Peng; Liu, Meng

    2014-01-01

    The thickening of Ω phase in Al–Cu–Mg alloys containing various bulk Ag contents during stress aging at 200 °C with a tensile stress of 240 MPa was investigated by a combination of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). TEM characterization confirmed preferred orientation of Ω phase in all stress-aged samples. Corresponding quantitative TEM calculations revealed the thickening kinetics of Ω phase was significantly accelerated during stress aging as compared to that during stress-free aging at 200 °C. HRTEM analysis on the α/Ω interfacial structure confirmed that the applied tensile stress facilitated the rapid nucleation of the growth ledge on the broad face of Ω phase, thereby resulting in the accelerated plate thickening during stress aging at 200 °C. Meanwhile, quantitative TEM analysis highlighted the stress-induced thickening of Ω phase at 200 °C was affected by the bulk Ag content. This was consistent with the HRTEM observation as the ledge nucleation was found to be suppressed with increasing Ag addition. Our APT analysis on different stress-aged samples further suggested the progressive enrichment of Ag atoms in the segregation layer helped to stabilize the interfacial structure and was responsible for the lowest nucleation rate of the ledge in 1.77Ag alloy as compared to that in 0.46Ag alloy

  15. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Science.gov (United States)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  16. Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Laplanche, G.; Pfetzing-Micklich, J.; Eggeler, G.

    2014-01-01

    In the present work we used nanoindentation with a spherical indenter tip to study the formation of stress-induced martensite in NiTi shape memory alloys. Prior to nanoindentation, orientation imaging was performed to select austenite grains with specific crystallographic orientations, including the principal crystallographic directions [0 0 1], [1 0 1] and [1 1 1]. We studied a material where stress-induced martensite is stable at room temperature and found surface patterns with four-, two- and threefold symmetries for the [0 0 1], [1 0 1] and [1 1 1] crystallographic indentation directions, respectively. Atomic force microscopy investigations of the topography showed that the surface patterns were associated with sink-ins. The crystallographic sink-in patterns disappeared during heating, which proved their martensitic origin. Our results provide clear experimental evidence which shows that the crystallographic anisotropy of nanoindentation is governed by the crystallographic anisotropy of the stress-induced formation of martensite

  17. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...... and bulk Pt contributions. The study provides direct evidence on how it is possible to monitor the surface structure under near operation conditions. © 2014 Elsevier B.V. All rights reserved.......Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights...... for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  18. Role of grain boundary diffusion on ion-induced composition change in alloys at elevated temperatures. [A/sup +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Hayashibara, M.; Ohno, H.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1984-05-01

    We prepared nickel specimens which contain gold impurity only near the grain boundaries and measured thermal segregation of gold onto the surface and the change in the composition induced by bombardment with Ar/sup +/ ions. It is found that irradiation causes composition change over a depth much larger than the thickness of the altered layer for Ni-Au alloys. It is also found that when a two-layered Ni-Au film is bombarded with gold atoms from the nickel side at elevated temperatures, the nickel is protected by a thin gold film segregated on the nickel surface.

  19. Stress-induced large Curie temperature enhancement in Fe(sub 64)Ni(sub 36) Invar alloy.

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, P.; Martinez-Blanco, D.; Perez, M. J.; Blanco, J. A.; Hernando, A.; Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N. M.; Xmith, R. I.; Marshall, W. G.; Garbarino, G.; Mezouar, M.; Fernandez-Martinez, A.; Chaboy, J.; Fernandez Barquin, L.; Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.; Zhang, J.; Llobet, A.; Jiang, J. S.; Univ. de Oviedo; Inst. de Magnetismo Aplicado; ISIS Facility; ESRF; Univ.Grenoble and CNRS; CSIC-Univ. de Zaragoza; Univ. de Cantabria; LANL

    2009-01-01

    We have succeeded in increasing up to 150 K the Curie temperature in the Fe{sub 64}N{sub 36}6 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds.

  20. Corrosion of zirconium alloys in nuclear reactors: A model for irradiation induced enhancement by local radiolysis in the porous oxide

    International Nuclear Information System (INIS)

    Lemaignan, C.; Salot, R.

    1997-01-01

    An analysis has been undertaken of the various cases of local enhancement of corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic β - is present leading to a local energy deposition rate higher than the core average. This suggests that the local transient radiolytic oxidizing species produced in the coolant by the β - particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, and in front of Pt inserts or Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionizing species like α from Ni-rich alloys and fission products in homogeneous reactors. Due to the changes induced by the irradiation intensity on the concentration of the radiolytic species, the coolant chemistry, that controls the boundary conditions for oxide growth, has to be analyzed with respect to the local value of the energy deposition rate. An analysis has been undertaken which shows that, in a porous media, the water is exposed to a higher intensity than bulk water. This leads to a higher concentration of oxidizing radiolytic species at the root of the cracks of the porous oxide, and increases the corrosion rate under irradiation. This mechanism, deduced from the explanation proposed for localized irradiation enhanced corrosion, can be extended to the whole reactor core, where the general enhancement of Zr alloys corrosion under irradiation could be attributed to the general radiolysis in the porous zirconia. (author). 18 refs, 3 figs, 3 tabs

  1. A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys

    International Nuclear Information System (INIS)

    Birbilis, N.; Zhu, Y.M.; Kairy, S.K.; Glenn, M.A.; Nie, J.-F.; Morton, A.J.; Gonzalez-Garcia, Y.; Terryn, H.; Mol, J.M.C.; Hughes, A.E.

    2016-01-01

    Highlights: • Constituent particle in AA2024-T3 uniquely characterised as multiphase. • High resolution electron microscopy reveals structural and chemical complexity of constituent particle. • Unambiguous characterisation reveals unreported constituent particle crystal structure. • Localised corrosion related to constituent particle composition. - Abstract: The role of constituent intermetallic particles in the pitting corrosion of aluminium (Al) alloys is well recognised. A definitive quantification of the role of unique constituent particles has contributed towards an enhanced understanding of Al-alloy corrosion, however the complexity of Al-alloy microstructures warrants further attention. In the present work we identify a unique intermetallic type in contemporary versions of AA2024-T3, which has a two-phase structure, defined by two distinct crystal types, and distinct compositions. Detailed characterisation is used to unambiguously define this constituent, along with its role in localised corrosion.

  2. Elemental segregation in titanium alloys induced by plasma-surface interaction

    International Nuclear Information System (INIS)

    Raveh, A.

    1990-07-01

    The microstructure and surface composition of nitrided titanium alloys (Ti-6Al-4V and Ti-8Al-1V-Mo) were investigated after plasma nitriding with nitrogen, hydrogen and argon. The composition of the plasma, near the surface of the sample (plasma layer) was examined by optical emission spectroscopy and mass spectrometry, while the composition of the surface of the alloy after the process, the structure and microstructure of the layers were studied by auger electron spectrometry, scanning auger microprobe, x-ray difraction, scanning electron microscope,transmission electron microscope and high resolution transmission electron microscope. It was observed that elemental segregation occurs in titanium alloys at the interface between compound layer and diffusion layer. Based on the present results, a mechanism for the formation of the nitrided layers in the plasma was suggested

  3. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  4. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation

    Science.gov (United States)

    Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan

    2017-11-01

    Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.

  5. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  6. Disorder-induced critical phenomena in magnetically glassy Cu-Al-Mn alloys

    Czech Academy of Sciences Publication Activity Database

    Marcos, J.; Vives, E.; Manosa, L.; Acet, M.; Duman, E.; Morin, M.; Novák, Václav; Planes, A.

    2003-01-01

    Roč. 67, č. 22 (2003), 224406/1-224406/5 ISSN 0163-1829 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-Mn-Al alloys * magnetic hysteresis loops Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  7. Tailoring the mechanical properties of titanium alloys via plasticity induced transformations

    NARCIS (Netherlands)

    Neelakantan, S.

    2010-01-01

    Titanium alloys possess good corrosion properties, high temperature stability and high strength-to-weight ratio. However, they fall short in providing the optimum strength-ductility relation in the most demanding structural applications, including the aerospace sector. Inspired by the possibility of

  8. Tailoring the Mechanical Properties of Titanium Alloys via Plasticity Induced Transformations

    NARCIS (Netherlands)

    Neelakantan, S.

    2010-01-01

    Titanium alloys possess good corrosion properties, high temperature stability and high strength-to-weight ratio. However, they fall short in providing the optimum strength-ductility relation in the most demanding structural applications, including the aerospace sector. Inspired by the possibility of

  9. Positive effect of hydrogen-induced vacancies on mechanical alloying of Fe and Al

    Czech Academy of Sciences Publication Activity Database

    Čížek, J.; Lukáč, F.; Procházka, I.; Vlček, M.; Jirásková, Yvonna; Švec, P.; Janičkovič, D.

    2015-01-01

    Roč. 629, APR (2015), s. 22-26 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/1350 Institutional support: RVO:68081723 Keywords : Nanostructured materials * Mechanical alloying * Vacancy formation * Positron spectroscopies * Mössbauer spectroscopy * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  10. Intermetallic particles-induced pitting corrosion in 6061-T651 aluminium alloy

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-07-01

    Full Text Available The polished 6061-T651 aluminium alloy was immersed in 3.5% NaCl solution with about 7 ppm dissolved oxygen. Scanning Electron Microscopy equipped with Energy dispersive Xray Spectroscopy revealed the presence of Al-Si-Fe-containing particles...

  11. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21 a...

  12. Thermally induced crystallization of amorphous Fe40Ni40P14B6 alloy

    Czech Academy of Sciences Publication Activity Database

    Vasić, M.; Blagojević, V. A.; Begović, N. N.; Žák, Tomáš; Pavlović, V. B.; Minić, Dragica M.

    2015-01-01

    Roč. 614, AUG (2015), s. 129-136 ISSN 0040-6031 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Amorphous alloy * Crystallization * Kinetics * Deconvolution * Impingement * Surface morphology Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.938, year: 2015

  13. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  14. In-situ synchrotron diffraction and digital image correlation technique for characterizations of retained austenite stability in low-alloyed transformation induced plasticity steel

    International Nuclear Information System (INIS)

    Brauser, S.; Kromm, A.; Kannengiesser, Th.; Rethmeier, M.

    2010-01-01

    Direct measurement and quantification of phase transformation in a low-alloyed transformation induced plasticity steels depending on the tensile load as well as determination of the real true stress and true strain values were carried out in-situ using high energy synchrotron radiation. Digital image correlation technique was used to quantify more precisely the true strain values. The aim of the work was to obtain a better understanding of the phase transformation of commercial low-alloyed transformation induced plasticity steel depending on the true strain and true stress values.

  15. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K.; Uhlemann, M.; Engelmann, H.J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  16. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    International Nuclear Information System (INIS)

    Commin, Loreleï; Dumont, Myriam; Rotinat, René; Pierron, Fabrice; Masse, Jean-Eric; Barrallier, Laurent

    2012-01-01

    Highlights: ► Study of AZ31 FSW mechanical behaviour. ► Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. ► Texture gradient in the TMAZ localises the deformations in this area. ► Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  17. A model for hydride-induced embrittlement in zirconium-based alloys

    International Nuclear Information System (INIS)

    Waeppling, D.; Massih, A.R.; Staahle, P.

    1997-01-01

    The critical stress intensity factor for hydrided zirconium-alloys is calculated using a Dugdale type model for a finite crack. The hydride platelets are assumed to surround the ends of the crack. They are located in the process region of the crack tip. The model is used to calculate the temperature dependence of the critical stress intensity factor and the results are compared with measurements performed on Zr-2.5Nb and Zircaloy. The model in general describes the experimental data satisfactorily, nevertheless, it gives implausible results for a certain range of temperatures. The deficiency is attributed to the lack of appropriate constitutive relations for the hydrided zirconium-based alloys. (orig.)

  18. Na2SOsub(-)induced corrosion of some nimonic alloys at 650 to 10000C

    International Nuclear Information System (INIS)

    Malik, A.U.; Ahmad, S.

    1983-01-01

    The high temperature oxidation behaviour of four Nimonic alloys (75, 80A, 90 and 105) has been investigated in presence of varying amounts of Na 2 SO 4 in air. The effect of Cr 2 (SO 4 ) 3 , NiSO 4 or CoSO 4 additions in presence or absence of Na 2 SO 4 has also been investigated. Upto 800 0 C, the lower oxidation rates for Na 2 SO 4 coated alloys have been attributed to a scale morphology consisting of inner scales of Cr 2 O 3 acting as a protective oxide film and external scales of NiO. This morphology is maintained at higher temperatures. The formation of a protective transition metal oxide film upto 800 0 C or a mixed oxide film at higher temperatures is the main reason of lowering in oxidation rates in the presence of transition metal sulphates. (orig.) [de

  19. Structural transformations of Fe81B13Si4C2 amorphous alloy induced by heating

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Minić, Dušan M.; Žák, Tomáš; Roupcová, Pavla; David, Bohumil

    2011-01-01

    Roč. 323, č. 5 (2011), s. 400-404 ISSN 0304-8853 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : Amorphous material * Metallic glass * Metal and alloy * Phase transition * Thermal analysis * Mössbauer spectrum * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2011

  20. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  1. Structural evolution of alloy 800 induced by thermal aging and their consequences of the mechanical properties of the material

    International Nuclear Information System (INIS)

    Pozarnik, F.

    1984-03-01

    One of the main characteristics of alloy 800 (used for steam generators of LMFBR reactors), an austenitic stainless steel containing Ni: 33%, Cr: 21% and addition of titanium and aluminium, is its susceptibility to secondary hardening by formation of γ' precipitates Ni 3 (Ti,Al). The very first stages of this precipitation have been studied using X ray diffraction and dilatometry techniques. It has been shown that the γ' phase appears during the first 500 hours between 500 and 650 0 C, without any time of incubation. The γ' precipitation leads to a decrease in the parameter of the austenitic matrix, this phenomena being more important with a higher (Ti+Al) content. In addition, the γ' formation induce an increase in the tensile properties at room temperature, of alloy 800 higher with a higher Ti content. Experimental results allow to drawn a graph expressing the threshold of the γ' apparition as a function of temperature. Finally, it has been shown by electronic micrography studies, that the mean radius of the particles (which remain under 200 A) follows a cubic law type r 3 = Kt. The activate energy of the phenomena is about 250 KJ.mole -1 [fr

  2. Mössbauer study of the field induced uniaxial anisotropy in electro-deposited FeCo alloy films

    International Nuclear Information System (INIS)

    Zhi-Wei, Li; Xu, Yang; Hai-Bo, Wang; Xin, Liu; Fa-Shen, Li

    2009-01-01

    Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability. The paper reports a Mössbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films. The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition. Vibrating sample magnetometry and Mössbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction, whereas the film deposited without external field does not show any in-plane anisotropy. Mössbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field. Also, the magnetic moments tend to align in the direction of the applied external magnetic field during deposition, indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs. (atomic and molecular physics)

  3. The effect of ion flux on plasma-induced modification and deuterium retention in tungsten and tungsten–tantalum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zayachuk, Y., E-mail: yevhen.zayachuk@materials.ox.ac.uk [SCK-CEN, Trilateral Euregio Cluster, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Manhard, A. [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Hoen, M.H.J. ' t [FOM Institute DIFFER, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Jacob, W. [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Aviation Academy, Amsterdam University of Applied Sciences, Weesperzijde 190, 1097 DZ Amsterdam (Netherlands); Van Oost, G. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-09-15

    The paper presents the results of an experimental study of deuterium retention in W and W–Ta alloy that were exposed to first-wall relevant low flux (∼10{sup 20} m{sup −2} s{sup −1}) deuterium plasma in the ECR plasma generator PlaQ. Subsequent analysis included surface imaging by optical microscopy, deuterium depth profiling by nuclear reaction analysis (NRA) and measurements of deuterium content by thermal desorption spectroscopy (TDS). It was found that under investigated exposure conditions the deuterium content was higher in W–Ta alloy than in W. Combined with the previously reported results showing that under high-flux (∼10{sup 24} m{sup −2} s{sup −1}) retention is higher in W instead, this gives rise to a peculiar flux effect – dependence of relative retention between different materials on exposure flux. We interpret this effect as evidence that at different flux ranges different populations of trapping sites determine the retention, namely pre-existing microstructural traps at low-flux exposure and plasma-induced ones at high-flux exposure.

  4. Classification of wrought aluminum alloys by Artificial Neural Networks evaluation of Laser Induced Breakdown Spectroscopy spectra from aluminum scrap samples

    Science.gov (United States)

    Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Sorrentino, F.; Palleschi, V.

    2017-08-01

    Every year throughout the world > 50 million vehicles reach the end of their life, producing millions of tons of automotive waste. The current strategies for the separation of the non-ferrous waste fraction, contain mainly aluminum, magnesium, zinc and copper alloys, involve high investment and operational costs, and pose environmental concerns. The European project SHREDDERSORT, in which our research group was actively involved, aimed to overcome this issue by developing a new dry sorting technology for the shredding of non-ferrous automotive wastes. This work represents one step of the complex SHREDDERSORT project, dedicated to the development of a strategy based on Laser Induced Breakdown Spectroscopy (LIBS) for the sorting of light alloys. LIBS was here applied in laboratory for the analysis of stationary aluminum shredder samples. To process the LIBS spectra a methodological approach based on artificial neural networks was used. Although separation could in principle be based on simple emission line ratios, the neural networks approach enables more reproducible results, which can accommodate the unavoidable signal variations due to the low intrinsic reproducibility of the LIBS systems. The neural network separated samples into different clusters and estimates their elemental concentrations.

  5. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  6. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    Science.gov (United States)

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  7. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  8. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  9. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  10. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1 and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL. Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate

  11. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated

  12. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated inflammatory and toxicity-like reactions of specific orthopedic implants.

  13. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  14. Structural Origin of the Enhanced Glass-Forming Ability Induced by Microalloying Y in the ZrCuAl Alloy

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2016-03-01

    Full Text Available In this work, the structural origin of the enhanced glass-forming ability induced by microalloying Y in a ZrCuAl multicomponent system is studied by performing synchrotron radiation experiments combined with simulations. It is revealed that the addition of Y leads to the optimization of local structures, including: (1 more Zr-centered and Y-centered icosahedral-like clusters occur in the microstructure; (2 the atomic packing efficiency inside clusters and the regularity of clusters are both enhanced. These structural optimizations help to stabilize the amorphous structure in the ZrCuAlY system, and lead to a high glass-forming ability (GFA. The present work provides an understanding of GFAs in multicomponent alloys and will shed light on the development of more metallic glasses with high GFAs.

  15. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  16. On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys

    International Nuclear Information System (INIS)

    Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.

    1993-01-01

    Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)

  17. Stress-induced Curie temperature increase in the Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro; Martinez-Blanco, David; Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo (Spain); Boada, Roberto; Chaboy, Jesus [ICMA and Departamento de Fisica de la Materia Condensada, CSIC - Universidad de Zaragoza (Spain); Fernandez-Martinez, Alejandro [LGIT, University of Grenoble and CNRS, Maison des Geosciences, Grenoble (France); Institut Laue-Langevin, Grenoble (France); Garbarino, Gaston; Castro, German R.; Mezouar, Mohamed [European Synchrotron Radiation Facility (ESRF), Grenoble (France); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon (United Kingdom); Alonso, J.I.G. [Department of Physical and Analytical Chemistry, University of Oviedo (Spain); Hernando, Antonio [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Madrid (Spain)

    2009-05-15

    Structural and magnetic changes on invar Fe{sub 64}Ni{sub 36} alloy (T{sub C}=500 K) produced by mechanical milling followed by heating up to 1073 K, were investigated by neutron diffraction, magnetization measurements, X-ray diffraction under high pressures and X-ray absorption at both Fe and Ni K-edges. We argue that the strain induced in the Fe{sub 64}Ni{sub 36} material after this treatment mainly affects the Fe sites due to the magnetovolume coupling, the most notorious feature being the increase of the Curie temperature ({delta}T{sub C}=70 K). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. A Study of Undercooling Behavior Of Immiscible Metal Alloys in the Absence of Crucible-Induced Nucleation

    Science.gov (United States)

    Robinson, Michael B.; Rathz, Thomas J.; Li, Delin; Workman, Gary

    1998-01-01

    The purpose of this study is to investigate the question: Would eliminating the crucible eliminate the wall-induced nucleation of one of the liquid phases in an immiscible alloy and result in undercooling of the liquid into the metastable region thereby producing significant differences in the separation process and the microstructure upon solidification. Another primary objective of this research is to study systems with a metastable miscibility gap and to directly determine the metastable liquid miscibility gap by undercooling experiments. Nucleation and growth of droplets in these undercooled metallic liquid-liquid mixtures is also being studied. Results of this investigation indicate that containerless processing of immiscibles may not promote the undercooling of the single-phase liquid into the metastable region. Although no recalescence event was observed for this liquid-liquid transition, undercooling did occur across the miscibility gap for the solidification of the Ti phase that eventually separated.

  19. Study of neutron induced outgassing from tungsten alloy for ATLAS FCAL

    CERN Document Server

    Leroy, C; Cheplakov, A P; Golikov, V; Golubyh, S M; Kulagin, E; Kukhtin, V; Luschikov, V

    1999-01-01

    The use of sintered tungsten alloy slugs as absorber in the ATLAS Forward Calorimeter (FCAL) raised concern that it could possibly poison the liquid argon during the detector operation in the hard radiation environment expected at LHC. A vacuum container filled with tungsten slugs was exposed to the fast neutron fluence of 1.5$\\cdot$10$^{16}$~n~cm$^{-2}$ at the IBR-30 reactor of JINR, Dubna. The residual gas pressure was analysed. The study was completed by mass spectrometer measurements. An upper limit value of 0.1~ppm was determined for the pollution of liquid argon in FCAL due to outgassing from tungsten slugs under irradiation.

  20. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy

    Science.gov (United States)

    He, Xiaoyong; Dong, Bo; Chen, Yuqi; Li, Runhua; Wang, Fujuan; Li, Jiaoyang; Cai, Zhigang

    2018-03-01

    In order to improve the analytical speed and performance of laser-ablation based atomic emission spectroscopy, high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first developed. Magnesium and copper in aluminum alloys were analyzed with this technique. In the experiments, the fundamental output of an acousto-optically Q-switched Nd:YAG laser operated at 1 kHz repetition rate with low pulse energy and 120 ns pulse width was used to ablate the samples and the plasma emission was enhanced by spark discharge. The spectra were recorded with a compact fiber spectrometer with non-intensified charge-coupled device in non-gating mode. Different parameters relative with analytical performance, such as capacitance, voltage, laser pulse energy were optimized. Under current experimental conditions, calibration curves of magnesium and copper in aluminum alloys were built and limits of detection of them were determined to be 14.0 and 9.9 ppm by HRR LA-SIBS, respectively, which were 8-12 folds better than that achieved by HRR LA under similar experimental condition without spark discharge. The analytical sensitivities are close to those obtained with conventional LIBS but with improved analytical speed as well as possibility of using compact fiber spectrometer. Under high repetition rate operation, the noise level can be decreased and the analytical reproducibility can be improved obviously by averaging multiple measurements within short time. High repetition rate operation of laser-ablation spark-induced breakdown spectroscopy is very helpful for improving analytical speed. It is possible to find applications in fast elements analysis, especially fast two-dimension elemental mapping of solid samples.

  1. Ion implantation induced defects in Fe-Cr alloys studied by conventional positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, V [Joint Research Centre, Institute for Energy, European Commission, PO Box 2, 1755 ZG Petten (Netherlands); Sojak, S; Slugen, V; Petriska, M, E-mail: vladimir.krsjak@ec.europa.eu [Department of Nuclear Physics and Technology, FEI, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2011-01-10

    The influence of chromium on the radiation damage resistance of the iron based alloys has been studied using conventional positron annihilation lifetime spectroscopy (PALS). Experimental data evaluation has been supported by the former theoretical calculation of positron lifetimes in the studied materials and well-defined types of defects. For this purpose, density functional theory (DFT) computation method has been applied. The spectrum of used {sup 22}Na positron source was decomposed into discrete fractions to better calculate efficiency of near surface layers study. For the experimental simulation of a-radiation and obtaining of defined cascade collisions in the materials, helium implantation was used. Different level of the implanted dose (6.24x10{sup 17} - 3.12x10{sup 18} cm{sup -2}) corresponds to local damage up to 90 DPA acquired in thin <1 {mu}m region. Experimental measurement has been performed using the PALS technique on the four different Fe-Cr binary alloys (2.36; 4.62; 8.39; 11.62 wt% of Cr). The results showed that chromium has a significant effect on the size and density of the implanted defects and specific Cr content should prevent the vacancy clusters formation.

  2. Atomic-resolution study of homogeneous radiation-induced precipitation in a neutron-irradiated W-10 at. % Re alloy. MSC report No. 5014

    International Nuclear Information System (INIS)

    Herschitz, R.; Seidman, D.N.

    1983-06-01

    The phenomenon of radiation-induced precipitation has been investigated in a W-10 at. % Re alloy using the atom-probe field-ion microscope. Results show a significant alteration of the microstructure of this alloy as a result of the fast-neutron irradiation. Precipitates with the composition approx. WRe (sigma phase) were detected at a density of 10 16 cm -3 . Coherent, semicoherent and possibly incoherent precipitates of the sigma phase have been observed. They were not associated with either linear or planar defects, or with any impurity atoms; i.e. a true homogeneous radiation-induced precipitation occurs in this alloy. A physical argument is presented for the nucleation of the sigma phase precipitates in the vicinity of displacement cascades produced by primary knock-on atoms. It is suggested that the nucleation of the sigma phase is due to the formation of tightly-bound mobil mixed dumbells which react to form an immobile rhenium cluster. The growth of this cluster into a precipitate is most likely driven by the irreversible vacancy: self-interstitial atom (SIA) annihilation reaction, as suggested recently by Cauvin and Martin. A mechanism for the suppression of voids, in this alloy, is presented which is self-consistent with the homogeneous radiation-induced precipitation mechanism

  3. Application of the Taguchi technique for the optimization of surface roughness and tool life during the milling of Hastelloy C22

    Energy Technology Data Exchange (ETDEWEB)

    Kivak, Turgay; Mert, Senol [Duezce Univ. (Turkey). Dept. of Manufacturing Engineering

    2017-02-01

    In this study, the effects of machining parameters on surface roughness (Ra) and tool life (Tl) were investigated in the milling of Hastelloy C22 alloy with TiAlN-coated carbide inserts. A number of milling experiments were conducted using the L{sub 27} (3{sup 3}) Taguchi orthogonal array on a CNC milling machine under different cutting conditions (dry, compressed air and wet). The cutting condition, cutting speed and feed rate were determined as the essential machining parameters. Analysis of variance (ANOVA) and signal-to-noise (S/N) ratio were employed to evaluate the effects of the machining parameters on Ra and Tl, and prediction models were created using quadratic regression analyses. The results revealed that the feed rate and cutting condition were the most influential factors on surface roughness and flank wear. The maximum tool life was achieved under wet cutting condition using a cutting speed of 30 x min{sup -1} and a feed rate of 0.08 mm x rev{sup -1}, while the minimum surface roughness value was obtained under wet cutting condition using a cutting speed of 50 m x min{sup -1} and the same feed rate. Using the optimum cutting parameters for Tl (30 m x min{sup -1}, 0.08 mm x rev{sup -1}), increases of 234 % and 67 % in tool life were observed under wet and compressed air cutting conditions, respectively, compared to the dry cutting condition.

  4. Anodic characteristics and stress corrosion cracking behavior of nickel rich alloys in bicarbonate and buffer solutions

    International Nuclear Information System (INIS)

    Zadorozne, Natalia S.; Giordano, Mabel C.; Ares, Alicia E.; Carranza, Ricardo M.; Rebak, Raul B.

    2016-01-01

    Highlights: • We investigate which element in alloy C-22 may be responsible for the cracking susceptibility of the high nickel alloy. • Six nickel based alloys with different amount of Cr and Mo were selected for the electrochemical tests and response to SSRT. • Polarization tests showed that an anodic peak appear in the passive region in Cr containing alloys. • Cracking of Ni alloys in carbonate solutions seem to be a consequence of the instability of the passivating chromium oxide. • Alloys containing both Cr and Mo have the highest susceptibility. - Abstract: The aim of this work is to investigate which alloying element in C-22 is responsible for the cracking susceptibility of the alloy in bicarbonate and two buffer solutions (tungstate and borate). Six nickel based alloys, with different amount of chromium (Cr) and molybdenum (Mo) were tested using electrochemical methods and slow strain rate tests (SSRT) at 90 °C. All Cr containing alloys had transgranular cracking at high anodic potential; however, C-22 containing high Cr and high Mo was the most susceptible alloy to cracking. Bicarbonate was the most aggressive of three tested environments of similar pH.

  5. Phase transition induced anelasticity in Fe–Ga alloys with 25 and 27%Ga

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, I.S., E-mail: i.golovin@misis.ru [National University of Science and Technology “MISIS”, Leninsky ave. 4, 119049, Moscow (Russian Federation); Balagurov, A.M., E-mail: bala@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation); Bobrikov, I.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation); Palacheva, V.V. [National University of Science and Technology “MISIS”, Leninsky ave. 4, 119049, Moscow (Russian Federation); Cifre, J. [Universitat de les Illes Balears, Ctra. De Valldemossa, km.7.5, E-07122, Palma de Mallorca (Spain)

    2016-08-05

    Neutron diffraction and mechanical spectroscopy techniques were applied to study phase transitions in Fe–Ga alloys with 25 and 27 at.% Ga. The following sequences of phase transitions at continuous heating and subsequent cooling in the 20–900 °C temperature range were recorded: D0{sub 3} → L1{sub 2} (limited amount) → A2(B2) was recorded at heating and A2(B2) → D0{sub 3} at cooling for Fe-24.8Ga alloy, and the D0{sub 3} → L1{sub 2} → D0{sub 19} → A2(B2) was recorded at heating and A2(B2) → L1{sub 2} at cooling for Fe-27.4Ga alloy. Thus, the difference in 2.6 at.%Ga between two studied compositions with D0{sub 3} structure leads to their different structures after heating to 900 °C. These transition sequences determine different temperature dependencies of elastic and anelastic properties. The D0{sub 3} → A2(B2) transition (in Fe-25Ga) does not lead to a well-pronounced anelastic effect, in contrast the D0{sub 3} → L1{sub 2} transition (in Fe-27Ga) generates internal stresses due to a different rate of an increase in the lattice parameter with temperature and leads to a well-pronounced transient internal friction effect. - Highlights: • Neutron diffraction technique is used to study in situ phase transitions in Fe-25 and 27 at.% Ga. • D0{sub 3} → L1{sub 2} → D0{sub 19} → A2/B2 transitions were recorded at instant heating in Fe-27 at.% Ga. • D0{sub 3} → L1{sub 2} (limited amount) → A2(B2) was recorded at instant heating in Fe-25 at.% Ga • The D0{sub 3} → L1{sub 2} transition generates internal stresses and leads to elastic and anelastic response.

  6. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  7. Mechanical alloying: a pressure induced reaction for obtaining zinc blende GaSb and multiphase states.

    Science.gov (United States)

    Campos, C E M; de Lima, J C; Grandi, T A; Schmitt, M; Pizani, P S

    2006-09-20

    The cubic zinc blende GaSb phase was produced by a mechanical alloying technique, which is a solid state route based on the action of non-hydrostatic pressures. The thermal stability of this phase was tested using the differential scanning calorimetry technique and, in order to clarify the results, an annealing process was performed. Comparing x-ray diffraction patterns for as-prepared and annealed samples, the improvement in crystallinity of the cubic phase and Sb segregation and/or crystallization can be easily seen. Optical phonons frequencies were measured for both as-milled and annealed samples by means of the Raman spectroscopy technique. Raman profiles of as-milled samples showed typical zinc blende GaSb optical modes and revealed new features that can be associated with multiphase states.

  8. Induced effects in Fe-Ni-Cr austenitic alloys by electron irradiation

    International Nuclear Information System (INIS)

    Huguenin, D.

    1989-01-01

    Materials behaviour under high energetic particles exposure has to be know for technological aspects, but also for microscopic material state physics. Large macroscopic investigations have been developed but reliability with theoretical calculations or fundamental physics measurements is not clear. We present four experimental procedures in order to characterize austenitic Fe-Ni-Cr synthetic alloys in the atomic scale. First, results obtained about vacancy and interstitial, after electrical resistivity measurements and monoenergetical or classical positron annihilation process, are discussed. Then, defects clustering and microstructural evolution is investigated using positron lifetime measurements and high resolution electronic microscopy. In this study, special care has been taken to understand the composition effect as a function of the irradiation conditions [fr

  9. Numerical Study of the Plasticity-Induced Stabilization Effect on Martensitic Transformations in Shape Memory Alloys

    Science.gov (United States)

    Junker, Philipp; Hempel, Philipp

    2017-12-01

    It is well known that plastic deformations in shape memory alloys stabilize the martensitic phase. Furthermore, the knowledge concerning the plastic state is crucial for a reliable sustainability analysis of construction parts. Numerical simulations serve as a tool for the realistic investigation of the complex interactions between phase transformations and plastic deformations. To account also for irreversible deformations, we expand an energy-based material model by including a non-linear isotropic hardening plasticity model. An implementation of this material model into commercial finite element programs, e.g., Abaqus, offers the opportunity to analyze entire structural components at low costs and fast computation times. Along with the theoretical derivation and expansion of the model, several simulation results for various boundary value problems are presented and interpreted for improved construction designing.

  10. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1980-01-01

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 10 22 n/cm 2 (E > 0.1 MeV at temperatures ranging from 400 0 C to 600 0 C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  11. A Monte-Carlo Model for Microstructure-Induced Ultrasonic Signal Fluctuations in Titanium Alloy Inspections

    International Nuclear Information System (INIS)

    Yu Linxiao; Thompson, R.B.; Margetan, F.J.; Wang Yurong

    2004-01-01

    In ultrasonic inspections of some jet-engine alloys, microstructural inhomogeneities act to significantly distort the amplitude and phase profiles of the incident sonic beam, and these distortions lead in turn to ultrasonic amplitude variations. For example, in pulse/echo inspections the back-wall signal amplitude is often seen to fluctuate dramatically when scanning a transducer parallel to a flat specimen. The stochastic nature of the ultrasonic response has obvious implications for both flaw characterization and probability of detection, and tools to estimate fluctuation levels are needed. In this study, as a first step, we develop a quantitative Monte-Carlo model to predict the back-wall amplitude fluctuations seen in ultrasonic pulse/echo inspections. Inputs to the model include statistical descriptions of various beam distortion effects, namely: the lateral 'drift' of the center-of-energy about its expected position; the distortion of pressure amplitude about its expected pattern; and two types of wave-front distortion ('wrinkling' and 'tilting'). The model inputs are deduced by analyzing through-transmission measurements in which the sonic beam emerging from an immersed metal specimen is mapped using a small receiver. The mapped field is compared to the model prediction for a homogeneous metal, and statistical parameters describing the differences are deduced using the technique of 'maximum likelihood estimation' (MLE). Our modeling approach is demonstrated using rectangular coupons of jet-engine Titanium alloys, and predicted back-wall fluctuation levels are shown to be in good agreement with experiment. As a new way of modeling ultrasonic signal fluctuations, the approach outlined in this paper suggests many possibilities for future research

  12. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.

    Science.gov (United States)

    Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas

    2017-11-01

    The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

    Science.gov (United States)

    Hu, Qiaodan; Zhou, Zhenni; Yang, Liang; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-11-01

    The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z ( Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

  14. Characterization of laser peening-induced effects on a biomedical Ti6Al4V alloy by thermoelectric means

    Science.gov (United States)

    Carreón, Hector; Barriuso, Sandra; Porro, Juan Antonio; González-Carrasco, Jose Luis; Ocaña, José Luis

    2014-12-01

    Laser peening has recently emerged as a useful technique to overcome detrimental effects associated with other well-known surface modification processes such as shot peening or grit blasting used in the biomedical field. It is worthwhile to notice that besides the primary residual stress effect, thermally induced effects might also cause subtle surface and subsurface microstructural changes that might influence corrosion resistance and fatigue strength of structural components. In this work, plates of Ti-6Al-4V alloy of 7 mm in thickness were modified by laser peening without using a sacrificial outer layer. Irradiation by a Q-switched Nd-YAG laser (9.4-ns pulse length) working at the fundamental 1064-nm wavelength at 2.8 J/pulse and with water as a confining medium was used. Laser pulses with a 1.5-mm diameter at an equivalent overlapping density of 5000 cm-2 were applied. Attempts to analyze the global-induced effects after laser peening were addressed by using the contacting and noncontacting thermoelectric power techniques.

  15. Morphological stabilization and KPZ scaling by electrochemically induced co-deposition of nanostructured NiW alloy films.

    Science.gov (United States)

    Orrillo, P A; Santalla, S N; Cuerno, R; Vázquez, L; Ribotta, S B; Gassa, L M; Mompean, F J; Salvarezza, R C; Vela, M E

    2017-12-21

    We have assessed the stabilizing role that induced co-deposition has in the growth of nanostructured NiW alloy films by electrodeposition on polished steel substrates, under pulsed galvanostatic conditions. We have compared the kinetic roughening properties of NiW films with those of Ni films deposited under the same conditions, as assessed by Atomic Force Microscopy. The surface morphologies of both systems are super-rough at short times, but differ at long times: while a cauliflower-like structure dominates for Ni, the surfaces of NiW films display a nodular morphology consistent with more stable, conformal growth, whose height fluctuations are in the Kardar-Parisi-Zhang universality class of rough two-dimensional interfaces. These differences are explained by the mechanisms controlling surface growth in each case: mass transport through the electrolyte (Ni) and attachment of the incoming species to the growing interface (NiW). Thus, the long-time conformal growth regime is characteristic of electrochemical induced co-deposition under current conditions in which surface kinetics is hindered due to a complex reaction mechanism. These results agree with a theoretical model of surface growth in diffusion-limited systems, in which the key parameter is the relative importance of mass transport with respect to the kinetics of the attachment reaction.

  16. Processing and alloying of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.

    1993-01-01

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper

  17. The anti-corrosion behavior under multi-factor impingement of Hastelloy C22 coating prepared by multilayer laser cladding

    Science.gov (United States)

    Chen, Lin; Bai, Shu-Lin

    2018-04-01

    Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.

  18. Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys

    Science.gov (United States)

    Peyre, P.; Fabbro, R.

    1995-12-01

    The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d

  19. Radiation-induced erosion of titanium alloy surface and hydrogen adsorption under H+ and He+ ion bombardment

    International Nuclear Information System (INIS)

    Guseva, M.I.; Vinogradova, N.K.; Lemke, N.G.; Mansurova, A.N.; Martynenko, Yu.V.; Smirnov, V.N.; Starshin, E.P.; Syshchikov, V.I.; Chelnokov, O.I.; Fefelov, P.A.

    1982-01-01

    Results of studying hydrogen absorption by titanium alloys (Ti-Al-V and Ti-Al-Zr) and the effect of helium ion- and hydrogen ion bombardment on the character and degree of alloy surface erosion are given. The published data on permeability, solubility and diffusion of hydrogen isotopes into metals are systematized in the Appendix. Results of studying tritium permeability and solubility in a number of scantily studied alloys, titanium alloys included, that can be promising construction materials for different thermonuclear reactor units are presented

  20. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Tang, Guangze; Luo, Dian; Fan, Guohua; Ma, Xinxin; Wang, Liqin

    2017-01-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  1. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  2. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  3. Martensitic transformation in Cu-2be alloys induced by explosive cladding

    Science.gov (United States)

    Ganin, E.; Weiss, B. Z.; Komem, Y.

    1986-11-01

    Formation of a lath-type structure was observed at a distance greater than 100 ώm from the bond interface created by explosive cladding. The laths were found to have a strong deviation from cubic symmetry and to contain numerous internal faults. The electron diffraction patterns do not fit any equilibrium or metastable phase known to exist in a Cu-2Be alloy. Crystallographic analysis based on electron diffraction showed that the laths have an orthorhombic structure. It is postulated that the orthorhombic phase results from a shear (martensitic) transformation which takes place in the a (fcc) phase during cladding. The proposed model assumes that shear occurs on the (111) plane in the [112] direction, and the orientation relationship is suggested to be [100]ORTH(M)∥[110]α and (001)ORTH(M) II (111)α, which is consistent with electron diffraction results. The transformation causes a volume decrease of 1.1 pct. Formation of the new phase was observed only in the solution-treated specimens of Cu-2Be and not in those aged prior to cladding. It is suggested that this may be a result of different stacking fault energies.

  4. Determination of strain localization in aluminum alloys using laser-induced photoelectron emission

    Science.gov (United States)

    Cai, M.; Langford, S. C.; Levine, L. E.; Dickinson, J. T.

    2004-12-01

    Uniaxial tensile deformation of oxidized aluminum produces low work-function patches of fresh metal which can be probed by measurements of photoelectron emission during exposure to ultraviolet light. We report measurements of photoelectron emission during uniaxial testing of polycrystalline Al(1200), Al-Mn(3003), Al-Mg(5052), and Al-Mg-Si(6061) alloys where the broad face of the gauge section is exposed to pulsed excimer laser radiation (248nm). We show that strain localization alters the distribution of fresh surface metal produced by subsequent deformation. The transition from more homogenous deformation to the principally localized deformation associated with shear bands is associated with a discontinuity in the growth rate of photoelectron intensities versus time. At this transition, the rate of fresh metal production along the illuminated portion of gauge section decreases. In all four materials, the strain at the discontinuity is somewhat below the strain given by the Considère criterion, consistent with the role of microstructural effects in strain localization. We suggest that these photoelectron measurements constrain quantitative models of strain localization.

  5. The difference between the crystallization processes induced by mechanical milling and annealing under normal and high pressure in amorphous Fe-N alloy

    CERN Document Server

    LiuLi; Guo Xing Yuan; Zhao Xu Dong; Yao Bin; Su Wen Hui

    2002-01-01

    An amorphous Fe-N alloy was prepared by ball milling a mixture of Fe and h-BN. Its crystallization processes induced by mechanical milling (MM) and annealing under normal and high pressure were studied. The crystallization product of the amorphous Fe-N alloy induced by MM and annealing at temperatures between 690 and 800 K under pressures of 3-4 GPa is epsilon-Fe sub x N, while the thermal crystallization product under normal pressure is gamma'-Fe sub 4 N. The difference between the crystallization products produced by mechanical and thermal crystallization is attributed to the effects of local pressure and local temperature produced by ball collisions.

  6. Identical mechanism of isochronal and isothermal embrittlement in Ni(Bi) alloy: Thermo-induced non-equilibrium grain-boundary segregation of Bi

    International Nuclear Information System (INIS)

    Zheng, Lei; Chellali, Reda; Schlesiger, Ralf; Meng, Ye; Baither, Dietmar; Schmitz, Guido

    2015-01-01

    Highlights: • Both isochronal and isothermal plasticity of Ni(Bi) alloy show minima. • Existing interpretations for isochronal and isothermal embrittlement are inadequate. • Both embrittlement is caused by thermo-induced non-equilibrium grain-boundary segregation of Bi. - Abstract: Isochronal and isothermal plasticity after thermal pre-treatments are obtained by tensile tests to characterize the embrittling behaviors of Ni(Bi) alloy. Both isochronal and isothermal plasticity show evident minima. Fractography observed by scanning electron microscopy displays intergranular fracture for samples of low plasticity. The microstructure is found to be free of precipitates within grains and at grain boundaries by focused ion beam and transmission electron microscopy. Atom probe analysis indicates a strong tendency of Bi segregation to grain boundaries. By these results, the existing interpretations are discussed to be inadequate and both embrittlement are confirmed to be identical in mechanism, i.e. thermo-induced non-equilibrium grain-boundary segregation of Bi

  7. Development of Computational Tools for Predicting Thermal- and Radiation-Induced Solute Segregation at Grain Boundaries in Fe-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Radiation-induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation-induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe-based alloys found that metalloids elements such as P, S, Si, Ge, Sn, etc., embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr-Ni-based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.

  8. Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation

    OpenAIRE

    Takahashi, Tomoko; Thornton, Blair; Ohki, Koichi; Sakka, Tetsuo

    2015-01-01

    Long-ns-duration, single pulse laser-induced breakdown spectroscopy (LIBS) is known to be an effective method to observe well resolved spectra from samples immersed in water at high hydrostatic pressures. The aim of this study is to investigate whether the signals obtained using this method are suitable for quantitative analysis of chemical composition. Six certified brass alloys consisting of copper (Cu), zinc (Zn) and lead (Pb) were measured underwater using a laser pulse of duration 250 ns...

  9. Stress-induced martensitic transformations in a Cu-Al-Ni shape memory alloy studied by in situ transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperlová, Juliana; Gärtnerová, Viera; Gemperle, Antonín

    481-482, č. 5 (2008), s. 457-461 ISSN 0921-5093 R&D Projects: GA ČR GA202/04/2016; GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : in situ TEM straining * CuAlNi shape memory alloy * stress -induced formation of martensite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  10. Hydrogen absorption and hydrogen-induced phase-separation in amorphous Zr[sub 50]Ni[sub 50-x]Cu[sub x] alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bakonyi, I. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Toth-Kadar, E. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Nagy, I. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Toth, J. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Tompa, K. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Lovas, A. (Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Solid State Physics); Cziraki, A. (Eoetvoes Univ., Budapest (Hungary). Inst. for Solid State Physics); Fogarassay, B. (Eoetvoes Univ., Budapest (Hungary). Inst. for Solid State Physics); Wiesinger, G. (Technische Univ., Vienna (Austria). Inst. fuer Experimentalphysik)

    1994-01-01

    The hydrogen absorption from the gas phase was investigated for melt-quenched Zr[sub 50]Ni[sub 50-x]Cu[sub x] (0[<=]x[<=]25) amorphous alloys by weighing, by thermoelectric power (TEP) and magnetization measurements aand by electron microscopy. A strongly nonmonotonous behaviour been observed, both as a function of the charging time and the Cu-content, for several materials characteristics and also for the nature of the hydrogen-induced phase-separation. (orig.)

  11. Study of Aging-Induced Degradation of Fracture Resistance of Alloy 617 Toward High-Temperature Applications

    Science.gov (United States)

    Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Sasikala, G.; Dasgupta, Arup; Bhaduri, A. K.

    2017-07-01

    For the Alloy 617, the effect of aging on the fracture energy degradation has been investigated after aging for different time periods at 1023 K (750 °C). A sharp reduction in impact energy (by 55 pct vis-à-vis the as-received material) after 1000 hours of aging, as evaluated from room-temperature Charpy impact tests, has been observed. Further aging up to 10,000 hours has led to a degradation of fracture energy up to 78 pct. Fractographic examinations using scanning electron microscopy (SEM) have revealed a change in fracture mode from fibrous-ductile for the un-aged material to intergranular mode for the aged one. The extent of intergranular fracture increases with the increasing aging time, indicating a tendency of the material to undergo grain boundary embrittlement over long-term aging. Analysis of the transmission electron microscopy (TEM) micrographs along with selected area diffraction (SAD) patterns for the samples aged at 10,000 hours revealed finely dispersed γ' precipitates of size 30 to 40 nm, rich in Al and Ti, along with extensive precipitation of M23C6 at the grain boundaries. In addition, the presence of Ni3Si of size in the range of 110 to 120 nm also has been noticed. The extensive precipitation of M23C6 at the grain boundaries have been considered as a major reason for aging-induced embrittlement of this material.

  12. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: alberto.sandoval@inin.gob.mx; asandovalj@correo.unam.mx; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)

    2009-09-15

    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  13. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  14. Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field

    International Nuclear Information System (INIS)

    Wang, Y. D.; Ren Yang; Huang, E. W.; Nie, Z. H.; Wang, G.; Liu, Y. D.; Deng, J. N.; Zuo, L.; Choo, H.; Liaw, P. K.; Brown, D. E.

    2007-01-01

    The magnetoelasticity and magnetoplasticity behaviors of a Ni-Co-Mn-In ferromagnetic shape memory alloy (FSMA) induced by the reverse phase transformation interplayed under multiple (temperature, magnetic, and stress) fields were captured directly by high-energy synchrotron x-ray diffraction technique. The experiments showed the direct experimental evidence of that a stress (∼50 MPa) applied to this material made a complete recovery of the original orientations of the martensite variants, showing a full shape memory effect. This finding offers the in-depth understanding the fundamental properties and applications of the Ni-Co-Mn-In FSMA with the magnetic-field-induced reverse transformation

  15. C28 sterols with a cyclopentane ring at C-22 and 26 from cape gooseberry (berries of Physalis pubeacens L.).

    Science.gov (United States)

    Xu, Qiong-Ming; Liu, Yan-Li; Feng, Yu-Lin; Li, Xiao-Ran; Yang, Shi-Lin

    2010-09-01

    Two new C28 sterols with a cyclopentane ring at C-22 and 26, alkesterol A (1) and alkesterol B (2), along with β-sitosterol (3), were isolated from the berries of Physalis pubeacens L. (cape gooseberry). The structures of the new compounds were established by HR-EI-MS, 1D and 2D (1H-1H COSY, HSQC, HMBC) NMR experiments. The known compound was identified by comparison of spectral data with published references. The two new compounds showed some cytotoxic activities by MTT assay.

  16. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. BMP-7 ameliorates cobalt alloy particle-induced inflammation by suppressing Th17 responses.

    Science.gov (United States)

    Chen, Fengrong; Chen, Ruisong; Liu, Haoyuan; Sun, Rupeng; Huang, Jianming; Huang, Zheyuan; Jian, Guojian

    2017-10-01

    Metal wear debris has been shown to activate an aseptic osteolytic process that causes failure in total joint arthroplasty (TJA). This osteolysis is characterized by a proinflammatory, self-propagating immune response involving primarily macrophages, dendritic cells, and activated osteoclasts, as well as T cells and B cells. The human bone morphogenic protein (BMP)-7, on the other hand, was shown to promote osteoblast survival, and reversed the downregulation of anabolic Smad proteins and Runx2 following cobalt injury. Therefore, we investigated the effect and mechanism of BMP-7 on the proinflammatory immune responses in osteoarthritis patients with previous TJA. Cobalt-treated monocytes/macrophages presented significantly elevated levels of interleukin 6 (IL-6) and tumor necrosis factor (TNF), both of which were suppressed by the addition of exogenous BMP-7. In patients with TJA, the serum BMP-7 level was inversely associated with the level of IL-6 and TNF secreted by monocytes/macrophages. Cobalt-treated monocytes/macrophages effectively supported Th17 inflammation, by an IL-6-dependent but not TNF-dependent mechanism. BMP-7, however, significantly suppressed cobalt-induced Th17 inflammation. In patients with TJA, the risk of osteolysis development was positively associated with the frequency of Th17 cells and negatively associated with the level of BMP-7. Together, these results demonstrated that BMP-7 could serve as a therapeutic agent in treating patients with metal wear debris-induced inflammation. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  18. Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering

    International Nuclear Information System (INIS)

    Zhang, S.; Kohlbrecher, J.; Tichelaar, F.D.; Langelaan, G.; Brück, E.; Zwaag, S. van der; Dijk, N.H. van

    2013-01-01

    Nanoscale Au precipitation in high-purity Fe–Au and Fe–Au–B–N alloys has been studied by in situ small-angle neutron scattering during isothermal aging at 550 °C and complementary ex situ transmission electron microscopy. The high temperature precipitation behavior in samples having received different degrees of cold deformation has been studied to explore the potential self-healing of deformation-induced defects by Au precipitation. It is found that dislocations induced by prior plastic deformation strongly facilitate the formation of Au precipitates, as no significant precipitation is observed for undeformed samples. Defect-induced Au precipitates are formed both at dislocations and along grain boundaries where the defect density is high. The fact that the Au atoms only precipitate on deformation-induced defects demonstrates that solute gold atoms act as efficient self-healing agents in the ferrous matrix. The addition of B and N is found to retard the Au precipitation

  19. An investigation of concentrated and distributed strain inducing constraints for training shape memory alloys

    Science.gov (United States)

    Parent, Pauline Marie

    Borderline personality disorder (BPD) is a severe mental illness characterized by high rates of engagement in distress-induced risk behavior. Unfortunately, extant laboratory-based risk paradigms have failed to account for the role of distress in precipitating risk behavior, so many questions remain about processes mechanisms that underlie this behavior. The current study examined affect as a moderator of the relationship between diagnostic status and risk behavior, as measured by a behavioral risk task, and affective and non-affective neurocognitive functioning as potential mediators of this relationship. Results indicated that individuals with BPD engaged in more risk behavior in the distress condition than in the neutral condition, whereas individuals without BPD showed a decrease in risk behavior across the two conditions. However, corresponding changes in executive functioning were not observed, suggesting the need for continued research to identify alternative mechanisms (e.g., neurocognitive, motivational) to explain this effect.

  20. Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2018-04-01

    Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.

  1. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  2. Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    Science.gov (United States)

    Ferrante, J.; Pepper, S. V.

    1983-01-01

    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy.

  3. Ultrasound-induced martensitic transition in ferromagnetic Ni2.15Mn0.81Fe0.04Ga shape memory alloy

    International Nuclear Information System (INIS)

    Buchelnikov, V.; Dikshtein, I.; Grechishkin, R.; Khudoverdyan, T.; Koledov, V.; Kuzavko, Y.; Nazarkin, I.; Shavrov, V.; Takagi, T.

    2004-01-01

    The experimental observation of direct and reverse martensitic transformation due to ultrasound processing of Ni-Mn-Ga alloy is discussed. It was found that martensite-austenite as well as austenite-martensite structural transitions can be induced by the intense ultrasound at constant temperature. During the experiments low magnetic field susceptibility measurements and optical detection of twin domains arising due to martensitic transformation were performed in situ. The non-thermal nature of the effect is confirmed making use of the pulsed ultrasound technique

  4. The Effect of Applied Stress on Environment-Induced Cracking of Aluminum Alloy 5052-H3 in 0.5 M NaCl Solution

    OpenAIRE

    Osama M. Alyousif; Rokuro Nishimura

    2012-01-01

    The environment-induced cracking (EIC) of aluminum alloy 5052-H3 was investigated as a function of applied stress and orientation (Longitudinal rolling direction—Transverse: LT and Transverse—Longitudinal rolling direction: TL) in 0.5 M sodium chloride solution (NaCl) using a constant load method. The applied stress dependence of the three parameters (time to failure; tf, steady-state elongation rate, Iss, and transition time at which a linear increase in elongation starts to deviate, tss) o...

  5. Nanoparticle Delivery of miR-34a Eradicates Long-term-cultured Breast Cancer Stem Cells via Targeting C22ORF28 Directly.

    Science.gov (United States)

    Lin, Xiaoti; Chen, Weiyu; Wei, Fengqin; Zhou, Binhua P; Hung, Mien-Chie; Xie, Xiaoming

    2017-01-01

    Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning protocol. Tissue microarray analysis has been used to study 217 cases of clinical breast cancer specimens. Results: Here, we have successfully established four long-term maintenance BCSC that retain their tumor-initiating biological properties. Our analyses of microarray and qRT-PCR explored that miR-34a is the most pronounced microRNA for investigation of BCSC. We establish hTERT promoter-driven VISA delivery of miR-34a (TV-miR-34a) plasmid that can induce high throughput of miR-34a expression in BCSC. TV-miR-34a significantly inhibited the tumor-initiating properties of long-term-cultured BCSC in vitro and reduced the proliferation of BCSC in vivo by an efficient and safe way. TV-miR-34a synergizes with docetaxel, a standard therapy for invasive breast cancer, to act as a BCSC inhibitor. Further mechanistic investigation indicates that TV-miR-34a directly prevents C22ORF28 accumulation, which abrogates clonogenicity and tumor growth and correlates with low miR-34 and high C22ORF28 levels in breast cancer patients. Conclusion: Taken together, we generated four long-term maintenance BCSC derived from either clinical specimens or cell lines, which would be greatly beneficial to the research progress in breast cancer patients. We

  6. Multiple allergies to metal alloys

    Directory of Open Access Journals (Sweden)

    Mei-Eng Tu

    2011-06-01

    Conclusions: Metal alloys may induce multiple metal allergies. Patients suspected of having a metal allergy should be patch tested with an extended series of metals. We recommend adding palladium and gold, at least, to the standard series.

  7. Microstructure Evolution and High-Temperature Compressibility of Modified Two-Step Strain-Induced Melt Activation-Processed Al-Mg-Si Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Chia-Wei Lin

    2016-05-01

    Full Text Available A two-step strain-induced melt activation (TS-SIMA process that omits the cold working step of the traditional strain-induced melt activation (SIMA process is proposed for 6066 Al-Mg-Si alloy to obtain fine, globular, and uniform grains with a short-duration salt bath. The results show that increasing the salt bath temperature and duration leads to a high liquid phase fraction and a high degree of spheroidization. However, an excessive salt bath temperature leads to rapid grain growth and generates melting voids. The initial degree of dynamic recrystallization, which depends on the extrusion ratio, affects the globular grain size. With an increasing extrusion ratio, the dynamic recrystallization becomes more severe and the dynamic recrystallized grain size becomes smaller. It results in the globular grains becomes smaller. The major growth mechanism of globular grains is Ostwald ripening. Furthermore, high-temperature compressibility can be improved by the TS-SIMA process. After a 4 min salt bath at 620 °C, the high-temperature compression ratio become higher than that of a fully annealed alloy. The results show that the proposed TS-SIMA process has great potential.

  8. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari (Italy); Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Dell' Aglio, M. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Gaudiuso, R., E-mail: rosalba.gaudiuso@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Santagata, A. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Potenza, Via S. Loja, Zona Ind., 85050 Tito Scalo (PZ) (Italy); Senesi, G.S. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Rossi, M.; Ghiara, M.R. [Department of Earth Sciences, University of Naples ' Federico II' , Via Mezzocannone 8, 80134 Naples (Italy); Capitelli, F. [Institute of Crystallography - CNR, Via Salaria Km 29.300, 00015 Monterotondo (Roma) (Italy); De Pascale, O. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy)

    2012-04-04

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: Black-Right-Pointing-Pointer Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. Black-Right-Pointing-Pointer LIBS enables elemental analysis with self-calibrated LTE-based methods. Black-Right-Pointing-Pointer Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  9. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    International Nuclear Information System (INIS)

    De Giacomo, A.; Dell’Aglio, M.; Gaudiuso, R.; Santagata, A.; Senesi, G.S.; Rossi, M.; Ghiara, M.R.; Capitelli, F.; De Pascale, O.

    2012-01-01

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: ► Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. ► LIBS enables elemental analysis with self-calibrated LTE-based methods. ► Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  10. Microstructural characterization of stress-induced martensites evolved at low temperature in deformed powders of Fe-Mn-C alloys by the Rietveld method

    International Nuclear Information System (INIS)

    Sahu, P.; De, M.; Kajiwara, S.

    2002-01-01

    The present study considers X-ray characterization of the microstructures of deformation-induced martensites of Fe-Mn-C alloy powders of grain size ∼50 μm (hand-filed) having compositions 5.6, 5.8 and 6.0 Mn and 1.0 C (mass%). The cold-worked powders were further subjected to transformation at low temperatures close to M s and the evolved phases were again characterized microstructurally. The methodology applied for characterization involves Rietveld's whole X-ray profile fitting technique adopting the most recently developed software, MAUD (Materials Analysis Using Diffraction) which incorporates Popa model for crystallite (domain) size and microstrain (root mean square, r.m.s.) and preferred orientation of the crystallites. The analysis also considers lattice defect-related features of the microstructure viz. stacking, twin, compound fault probabilities and dislocation density value. The cold-worked powders (hand-filed at room temperature) revealed the highest degree of transformation with 47, 43 and 42% volume fractions of martensites with increasing Mn concentration which for the bulk state of the same alloys transformed at low temperatures are 36, 40 and 47%. The same deformed alloy powders when subjected to low temperature transformation, evolved a maximum of 60, 68 and 62% volume fractions of martensites at 170, 175 and 190 K. The analysis reveals the occurrence of a high propensity of stacking faults in the deformed austenites (10 -2 -10 -3 ) and high values of dislocation densities (10 12 -10 13 cm -2 ) in the austenite and martensitic phases which assist in the formation of such a high concentration of martensites in the low temperature-treated deformed powder samples

  11. Large plastic stability in magnesium alloys: crystalline vs. amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boissiere, R.; Puech, S.; Blandin, J.J. [Institut National Polytechnique de Grenoble (INPG), SIMaP Laboratory - GPM2 group, CNRS/UJF, Domaine Universitaire, Saint-Martin d' Heres (France)

    2008-04-15

    Except if strain induces damage, the plastic stability can be roughly estimated thanks to the value of the strain rate sensitivity parameter m. In conventional magnesium alloys, moderate values of m (typically close to 0.3) can be frequently obtained during high temperature deformation. Such values allow reaching significant elongations to fracture. For alloys displaying fine grains, superplastic properties associated with values of m of about 0.5 or more are achievable leading to large elongations to fracture in optimized conditions for which damage processes remain limited. Quite recently, amorphous magnesium alloys have been produced in bulk conditions. In appropriate conditions of deformation, these alloys display Newtonian behaviour (i.e. m=1). With such rheologies, the plastic stability is expected to be maximal. In this presentation, features in relation with high temperature deformation of amorphous and crystalline magnesium alloys will be compared and apparent similitudes and differences will be discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Berveiller, S.; Malard, B.; Wright, J.; Patoor, E.; Geandier, G.

    2011-01-01

    Highlights: → 3DXRD, Laue microdiffraction measurements of grain rotation in a shape memory alloy. → During stress-induced martensitic transformation, the austenite grains rotate. → This rotation reverses with the reverse transformation. → The austenite grains splits into various orientations with martensite formation. - Abstract: Two synchrotron diffraction techniques, three-dimensional X-ray diffraction and Laue microdiffraction, are applied to studying the deformation behaviour of individual grains embedded in a Cu 74 Al 23 Be 3 superelastic shape memory alloy. The average lattice rotation and the intragranular heterogeneity of orientations are measured during in situ tensile tests at room temperature for four grains of mean size ∼1 mm. During mechanical loading, all four grains rotate and the mean rotation angle increases with austenite deformation. As the martensitic transformation occurs, the rotation becomes more pronounced, and the grain orientation splits into several sub-domains: the austenite orientation varies on both sides of the martensite variant. The mean disorientation is ∼1 o . Upon unloading, the sub-domains collapse and reverse rotation is observed.

  13. Nucleation of cracks from shear-induced cavities in an {alpha}/{beta} titanium alloy in fatigue, room-temperature creep and dwell-fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Lefranc, P. [LMPM, UMR CNRS 6617, ENSMA, 86961 Futuroscope, Chasseneuil Cedex (France); LMS, UMR CNRS 7649, Ecole Polytechnique, 91128 Palaiseau Cedex (France); SNECMA Groupe SAFRAN, 77550 Moissy Cramayel (France); Doquet, V. [LMS, UMR CNRS 7649, Ecole Polytechnique, 91128 Palaiseau Cedex (France)], E-mail: doquet@lms.polytechnique.fr; Gerland, M.; Sarrazin-Baudoux, C. [LMPM, UMR CNRS 6617, ENSMA, 86961 Futuroscope, Chasseneuil Cedex (France)

    2008-10-15

    In titanium alloys, dwell periods during room-temperature stress-controlled fatigue tests are responsible for substantial reductions in lifetime compared to pure fatigue loading. The mechanisms of such a creep-fatigue interaction have been investigated for alloy Ti-6242. Scanning and transmission electron microscopy observations revealed crack initiation by coalescence of shear-induced cavities nucleated at {alpha}/{beta} interfaces in large colonies of {alpha} laths nearly parallel to the loading axis. The density and average size of cavities were larger in dwell-fatigue and creep than in fatigue. A qualitative micromechanical model of cavity nucleation based on discrete dislocation dynamics was developed. The number of cycles for cavity nucleation was computed as a function of the applied stress range. A finite threshold, dependent on the size of {alpha} laths colonies with similar orientation, was found. The simulations predict earlier cavity nucleation in creep or dwell-fatigue than in pure fatigue, which is consistent with the performed experiments.

  14. The Effect of Applied Stress on Environment-Induced Cracking of Aluminum Alloy 5052-H3 in 0.5 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Osama M. Alyousif

    2012-01-01

    Full Text Available The environment-induced cracking (EIC of aluminum alloy 5052-H3 was investigated as a function of applied stress and orientation (Longitudinal rolling direction—Transverse: LT and Transverse—Longitudinal rolling direction: TL in 0.5 M sodium chloride solution (NaCl using a constant load method. The applied stress dependence of the three parameters (time to failure; tf, steady-state elongation rate, Iss, and transition time at which a linear increase in elongation starts to deviate, tss obtained from the corrosion elongation curve showed that these relationships were divided into three regions, the stress-dominated region, the EIC- dominated region, and the corrosion-dominated region. Aluminum alloy 5052-H3 with both orientations showed the same EIC behavior. The value of tss/tf in the EIC-dominated region was almost constant with 0.57±0.02 independent of applied stress and orientation. The fracture mode was transgranular for 5052-H3 with both orientations in the EIC-dominated region. The relationships between log Iss and log tf for 5052-H3 in the EIC-dominated region became a good straight line with a slope of −2 independent of orientation.

  15. Study of the evolution of irradiation induced defects in FeCrx model alloys for fusion applications by means of in-situ resistivity techniques

    International Nuclear Information System (INIS)

    Gómez-Ferrer Ferrán, B.

    2014-01-01

    Reduced activation ferritic/martensitic steels are candidate structural materials for future fusion reactors. These steels can, to a first approximation, be modelled by considering the behavior of binary Fe-Cr alloys. It has been shown that a significant amount of Cr, in the range of 6-14at%, is necessary to provide good mechanical properties of radiation and corrosion resistance. The microstructure evolution induced by neutron irradiation is known to depend on the Cr content. Current knowledge of the role of Cr in the effects of neutron radiation is therefore essential, but still incomplete. The current objective is to extend the experimental study of the point-defect interaction and kinetics in concentrated alloys. This would allow increasing a reliable database of experimental results for validation of computational simulations in order to consolidate the development of models. Thus, to this end, a suitable experimental set-up has been designed and built and subsequently Resistivity Recovery experiments have been run in Fe1-x-Crx (x = 0, 0.05, 0.10, 0.14)...(Author)

  16. Biochemical Characterization of Protein Quality Control Mechanisms during Disease Progression in the C22 Mouse Model of CMT1A

    Directory of Open Access Journals (Sweden)

    Vinita G. Chittoor

    2013-10-01

    Full Text Available Charcot–Marie–Tooth disease type 1A (CMT1A is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22 gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS, autophagosomes and heat-shock proteins (HSPs. Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins.

  17. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  18. H-induced dangling bonds in H-isoelectronic-impurity complexes formed in GaAs1-yNy alloys.

    Science.gov (United States)

    Amore Bonapasta, A; Filippone, F; Mattioli, G

    2007-05-18

    Complexes formed by H and the isoelectronic impurity N in GaAs1-yNy alloys have been widely investigated because the significant effects of N on the GaAs properties and their passivation by H represent a unique tool for a defect engineering of semiconductors. However, available results still present a quite puzzling picture. Both the N-H2* and C2v complexes proposed by theory were challenged indeed by experimental results. In the present Letter, we disclose a double-faced behavior of a H atom interacting with an isoelectronic impurity: while H, on one side, binds to N and induces the formation of dangling bonds (DB) on its Ga neighbors, on the other side, it saturates these DBs, thus permitting the formation of multiple-H complexes. This peculiar H behavior fully explains the experimental findings and likely represents a general feature of H-isoelectronic-impurity interactions.

  19. Induction of Mitochondrial Changes Associated with Oxidative Stress on Very Long Chain Fatty Acids (C22:0, C24:0, or C26:0-Treated Human Neuronal Cells (SK-NB-E

    Directory of Open Access Journals (Sweden)

    Amira Zarrouk

    2012-01-01

    Full Text Available In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0, substrates for peroxisomal β-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1–20 μM; 48 h, an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψm with DiOC6(3. A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions.

  20. Examination of temperature-induced shape memory of uranium--5.3-to 6.9 weight percent niobium alloys

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-niobium alloy system was examined in the range of 5.3-to-6.9 weight percent niobium with respect to shape memory, mechanical properties, metallography, Coefficients of linear thermal expansion, and differential thermal analysis. Shape memory increased with increasing niobium levels in the study range. There were no useful correlations found between shape memory and the other tests. Coefficients of linear thermal expansion tests of as-quenched 5.8 and 6.2 weight percent niobium specimens, but not 5.3 and 6.9 weight percent niobium specimens, had a contraction component on heating, but the phenomenon was not a contributor to shape memory

  1. Grain size effect on the structural parameters of the stress induced epsilonhcp: martensite in iron-based shape memory alloy

    Directory of Open Access Journals (Sweden)

    Fabiana Cristina Nascimento

    2008-03-01

    Full Text Available The aim of this work was to study the effect of austenitic grain size (GS reduction on the structural parameters of the epsilonhcp - martensite in stainless shape memory alloy (SMA. Rietveld refinement data showed an expansion in c-axis and a reduction in a and b-axis with thermo-mechanical cycles for all samples analyzed. Samples with 75 < GS (µm < 129 were analyzed. It was also observed an increase of the unit cell volume in this phase with GS reduction. The smallest grain size sample (GS = 75 µm presented a c/a ratio of 1.649, and approximately 90% of total shape memory recovery.

  2. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Science.gov (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  3. Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe{sub 3}Ni alloy microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul, E-mail: arif.inji.chem1986@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 106 (India)

    2017-05-01

    Magnetic Bimetallic alloy nanoparticles of 3d elements are known for their tunable shape, size and magnetic anisotropy and find extensive applications ranging from magneto-mechanical to biomedical devices. This paper reports the polyol-mediated synthesis of Fe-rich polyacrylic acid (PAA)-Fe{sub 3}Ni alloyed microspheres and its morphological and structural characterizations with scanning electron microscopy and X-ray diffraction studies. Magnetorheological fluid was prepared by dispersing the 10 vol% microparticles in silicone oil. The room temperature viscoelastic characterization of the fluid was performed under different magnetic fields. The field-dependent yield stresses were scaled using Klingenberg model and found that static yield stress was more accurately described by an ~M{sup 3} dependence, where M is particle magnetization. We proposed a multipolar contribution and ascertained the fact that simple dipolar description was insufficient to describe the trend in a complex rheological fluid. Temperature-dependent oscillatory rheological studies under various fields were also investigated. This demonstrated a strong temperature-induced thinning effect. The temperature-thinning in complex moduli and viscosity were more pronounced for the samples at higher magnetic field owing to quasi-solid behavior. - Highlights: • Novel one-pot chemical synthesis of Fe-rich PAA-Fe{sub 3}Ni microspheres. • Room temperature steady shear magnetorheology revealed viscoelastic behavior. • Rheometer magnetic fields can be replaced by powder particle magnetization (M) for better stress scaling. • Higher order scaling relations (~M{sup 3}) to particle magnetization (M) were observed for static yield stress. • Temperature-induced, field-dependent oscillatory rheology indicated pronounced thinning behavior, owing to predominantly quasi-solid behavior at high field density.

  4. Magnetic Field-Induced Reverse Martensitic Transformation and Thermal Transformation Arrest Phenomenon of Ni41Co9Mn39Sb11 Alloy

    Directory of Open Access Journals (Sweden)

    Rie Y. Umetsu

    2014-12-01

    Full Text Available In order to investigate behavior of magnetic field-induced reverse martensitic transformation for Ni-Co-Mn-Sb, magnetization experiments up to a static magnetic field of 18 T and a pulsed magnetic field of 40 T were carried out. In the thermomagnetization curves for Ni41Co9Mn39Sb11 alloy, the equilibrium transformation temperature T0 was observed to decrease with increasing applied magnetic field, μ0H, at a rate of dT0/dμ0H = 4.6 K/T. The estimated value of entropy change evaluated from the Clausius-Clapeyron relation was about 14.1 J/(K·kg, which was in good agreement with the value obtained by differential scanning calorimetric measurements. For the isothermal magnetization curves, metamagnetic behavior associated with the magnetic field-induced martensitic transformation was observed. The equilibrium magnetic field, μ0H0 = (μ0HAf + μ0HMs/2, of the martensitic transformation tended to be saturated at lower temperature; that is, transformation arrest phenomenon was confirmed for the Ni-Co-Mn-Sb system, analogous with the Ni(Co-Mn-Z (Z = In, Sn, Ga, Al alloys. Temperature dependence of the magnetic field hysteresis, μ0Hhys = μ0HAf − μ0HMs, was analyzed based on the model for the plastic deformation introduced by the dislocations. The behavior can be explained by the model and the difference of the sweeping rate of the applied magnetic field was well reflected by the experimental results.

  5. Neutron diffraction study of stress-induced martensitic transformation and variant change in Fe-Pd shape memory alloy

    International Nuclear Information System (INIS)

    Oliver, E.C.; Mori, T.; Daymond, M.R.; Withers, P.J.

    2003-01-01

    Neutron diffraction spectra were recorded during tensile testing of Fe-30.5 at.% Pd shape memory alloy at temperatures above M s and below M f . Peak intensity changes indicate that the application of tensile stress to initially fully austenitic material results in the preferential martensitic transformation of grains oriented with austenite parallel to the tensile axis. Tensile stress applied to initially fully martensitic material causes the greatest extent of reorientation in those variants oriented with martensite lying parallel to the tensile axis. These results are interpreted using a simple elasticity-based theory. Additionally, diffraction peak shifts provide information on the development of lattice strain in differently oriented grain families during loading. This indicates that above M s the alloy exhibits high single crystal elastic anisotropy. Below M f the apparent stiffnesses of different grain families suggest that axially compressive internal stresses develop in those grain families in which most variant reorientation occurs. These stresses act to reverse the variant changes upon subsequent unloading

  6. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  7. Resistance to abrasive wear and mechanical properties of ferritic-martensitic and ferritic-austenitic structures of the steels C 22, C 45, and X 2 CrNiMoN 22 5 3

    International Nuclear Information System (INIS)

    Rosenheinrich, M.

    1989-01-01

    Two-phase, ferritic-martensitic structures were produced with the help of the unalloyed carbon steels C 22 and C 45, and ferritic-austenitic structures were produced by thermal and/or thermo-mechanical treatment with the help of the high-alloy steel X2CrNiMoN 22 5 3. The phase portion, distribution, form and size were varied. The structures were analyzed quantitatively and described with the help of structure factors such as duplex and dispersion parameters. The mechanical characteristics of structures in tensile, impact and rolling tests were studied. The abrasive wear resistance of the structures against flint was determined in a tribological system in accordance with the abrasive-paper method. The mechanical characteristics were influenced by the structure factors. An optimum of wear resistance was exhibited by ferritic-martensitic structures with an island-shaped coarse and hard martensite stored in a ferritic matrix. The abrasive wear resistance of the ferrite-austenite structure increased as the percentage of austenite increased, although the structure hardness decreased. (orig.) With 62 figs., 28 tabs [de

  8. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  9. One-dimensional constitutive model of stress-induced transitions between Ms and Mf in shape memory alloys

    Science.gov (United States)

    Luo, Yun; Okuyama, Takeshi; Takagi, Toshiyuki

    2002-07-01

    Traditionally smart material actuation has been reserved for high technology industries such as space and aerospace; however, as the field matures more and more instances are found in low-cost, high production areas. This paper describes one such instance - the application of shape memory alloys to auxiliary functions in appliances. This investigation focused on lid locks for washing machines because it is representative of several other applications found in appliances including valves, dispensers, locks, brakes, etc. Several competing concepts for SMA actuated lid locks are discussed including simple analytical design models and experimental characterization of proof-of-concept prototypes. A comparison of these designs based on performance (force, response times), energy (power requirements) and economic metrics is given. From this study, a final concept was developed based upon the best attributes of the different concepts. The resulting proof-of-concept prototype demonstrated improved performance over the current state with a potential for cost reduction.

  10. Computational modeling of alloys at the atomic scale: from ab initio and thermodynamics to radiation-induced heterogeneous precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Caro, A; Caro, M; Klaver, P; Sadigh, B; Lopasso, E M; Srivilliputhur, S G

    2007-02-02

    We describe the path we are following in the development of a computational approach to simulate radiation damage in FeCr ferritic steels. In these alloys magnetism introduces an anomaly in the heat of formation of the solid solution that has implications on the way excess Cr precipitates in the {alpha}{prime} phase in presence of heterogeneities. These complexities represent a challenge for atomistic (empirical) approaches that we address: (i) by proposing a modified many body potential, (ii) by using a thermodynamic package that determines free energy and phase diagrams, and (iii) by using a displacement Monte Carlo code in the transmutation ensemble that can deal with millions of atoms in parallel computational environments. This approach predicts that grain boundaries, dislocations and free surfaces are not preferential sites for precipitation of {alpha}{prime}.

  11. Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys

    International Nuclear Information System (INIS)

    Wang, Y. D.; Brown, D. W.; Choo, H.; Liaw, P. K.; Benson, M. L.; Cong, D. Y.; Zuo, L.

    2007-01-01

    The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigations provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community

  12. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  13. Stress-induced martensitic transformation in nanometric NiTi shape memory alloy strips: An in situ TEM study of the thickness/size effect

    International Nuclear Information System (INIS)

    Mao, S.C.; Li, H.X.; Liu, Y.; Deng, Q.S.; Wang, L.H.; Zhang, Y.F.; Zhang, Z.; Han, X.D.

    2013-01-01

    Highlights: •An in situ deformation technique in TEM was designed. •The martensitic transformation shows strong size effect. •The size effect is attributed to the effect of damaged surfaces. •The “size effect” is not an intrinsic but of extrinsic influences. -- Abstract: Ultrathin NiTi miniature strips of 40–83 nm in thickness were fabricated by means of focused ion beam milling from a polycrystalline NiTi shape memory alloy. The NiTi strips were subjected to tensile deformation inside a transmission electron microscope using a self-designed tension apparatus for in situ examination of the effect of thickness on the stress induced martensitic transformation behavior in the strips. The study revealed that the transformation was completely suppressed in a strip of 40 nm in thickness whereas it was possible in thicker strips. In these strips, the stress induced martensitic transformation was found to commence sequentially in thicker strips first and then in thinner strips at higher strain (stress) levels, demonstrating the size effect. This size effect is attributed to the effect of damaged surfaces, including a Ga + -impregnated amorphous layer on one side of the strip caused by sample fabrication using FIB and oxidation affected layers on both sides. This means that the observed “size effect” is not an intrinsic behavior of the martensitic transformation in NiTi but of extrinsic influences

  14. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  15. Crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, E. C.; Carranza, R. M.; Giordano, C. M.; Rodríguez, M. A.; Rebak, R. B.

    2013-01-01

    The crevice corrosion re passivation potential was determined by the Potentiodynamic- Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloys 625, C-22, C-22HS and HYBRID-BC1 were used. Specimens contained 24 artificially creviced spots formed by a ceramic washer (crevice former) wrapped with a PTFE tape. Crevice corrosion tests were performed in 0,1 mol/L and 1 mol/L NaCl solutions at temperatures between 20 and 90ºC, and CaCl2 5 mol/L solution at temperatures between 20 and 117°C. The crevice corrosion resistance of the alloys increased in the following order: 625 < C-22 < C-22HS < HYBRID-BC1. The repassivation potential (ECO) showed the following relationship with temperature (T) and chloride concentration ([Cl-]) ECO = (A + B T) log [Cl-] + C T + D; where A, B, C and D are constants. At temperatures above 90°C, ECO for alloy 625 stabilized at a minimum value of -0.26 VSCE (author)

  16. Computerized simulation study of the influence of the different parameters inducing crevice corrosion propagation of passivable alloys in chloride medium

    International Nuclear Information System (INIS)

    Girardin, G.; Proust, A.; Combrade, P.; Vuillemin, B.; Oltra, R.

    2006-01-01

    The most frequent case of crevice corrosion concerns passivable alloys, and particularly stainless steels in oxidizing chloride media. In order to be sure that its propagation is not possible, the corrosion potential has to be inferior to a critical value called 're-passivation potential'. An easy and flexible computerized simulation of the propagation of an active crevice in chloride medium has been developed to give a parametric study of the local medium and of the re-passivation conditions. This modeling allows to establish the stability domains of the solid and gaseous phases inside the crevice and to assess the influence of the potential of the free surfaces, of the amount of chloride in the exterior medium and the geometry on the local chemistry. It appears that the deepest crevices are not necessarily the strongest. The introduction, in crevice tip, of an easy re-passivation criteria shows the existence of a re-passivation potential depending of the crevice geometry. (O.M.)

  17. Modification of local order in the austenic alloys Fe-Cr-Ni subject to tensile strain-induced plastic deformation

    International Nuclear Information System (INIS)

    Aidi, B.; Bertrand, C.; Viltange, M.; Dimitrov, O.

    1993-01-01

    The influence of plastic deformation, by extension at room temperature, on electrical resistivity has been determined in four austenitic Fe-Cr-Ni alloys with 16 wt% Cr and 20, 25, 45 or 75 wt% Ni, in two different states of local order. Two experimental methods have been used (4.2 K resistance measurements before and after deformation, continuous resistance measurements during room-temperature extension tests); the possibilities of the second method and the corrections to be applied are particulary discussed. Resistivity is found to slightly increase at the beginning of deformation (e<0.05), then to strongly decrease. The amplitude of the observed effects increases with the nickel content, and with the initial degree of local order. In the high deformation range (e=0.15), the resistivity decrease varies linearly with the initial contribution of local order to electrical resistivity. These effects are attributed to a destruction of the local order existing in the solid solutions, by the glide of dislocations during plastic deformation. (orig.)

  18. Mechanistic understanding of irradiation-induced corrosion of zirconium alloys in nuclear power plants: Stimuli, status, and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Ishigure, K.; Nechaev, A.F.; Reznichenko, E.A.; Cox, B.; Lemaignan, C.; Petrik, N.G.

    1990-05-01

    Failures in the basic materials used in nuclear power plants continue to be costly and insidious, despite increasing industry vigilance to catch failures before they degrade safety. For instance, the overall costs to the US industry from materials problems could amount to as much as $10 billion annually. Moreover, estimates indicate that the cost of a pipe failure in a nuclear plant is one hundred times greater than the cost of a similar failure in a coal-fired plant. There are important practical stimuli and much scope for further understanding of the effects of irradiation on Zr-alloys (and other materials used in nuclear installations) by careful experimentation. Moreover, these studies need to address the effect of irradiation on all components of heterogeneous systems: the metal, the oxide and the environment, and especially those processes recurring at the interphases between these components. The present paper is aimed at providing specialists with some systematic information on the subject and with important considerations on the key items for further experimentation.

  19. Critical survey of the neutron-induced creep behaviour of steel alloys for the fusion reactor materials programme

    International Nuclear Information System (INIS)

    Hausen, H.

    1985-01-01

    The differences between the irradiation environment of a fission reactor and that of a fusion reactor are respectively described in relation to the radiation damage found and expected in the two types of nuclear reactor. It is shown that the microstructure developing for instance in stainless steel alloys is almost invariant to whether the production rate of helium is high or low. The finding is valid up to neutron doses corresponding to about 60 dpa. For this reason, irradiation creep data obtained in fission reactors may be used, with caution, for predicting creep behaviour in fusion reactors.It was further recognized that irradiation creep performed with high energy particles from an accelerator, yields results which are comparable to those obtained in fission reactors. For this reason, simulation creep experiments are found to be valuable for the development of irradiation creep resistant materials using, for example, high energy electrons or protons. Such kind of experiments are performed in many laboratories. For irradiation doses larger than 60 dpa, predictions with respect to creep rates in fission and fusion reactors are difficult. In end-of-life tests, which concern swelling, ductility, tensile properties, rupture, fatigue and embrittlement, the presence of helium, due to its production rate being much higher in most materials exposed to 14 MeV neutrons than to fission neutrons, may be of great importance

  20. Underwater Superoleophobicity Induced by the Thickness of the Thermally Grown Porous Oxide Layer on C84400 Copper Alloy

    Directory of Open Access Journals (Sweden)

    Aniedi Nyong

    2014-02-01

    Full Text Available The underwater contact angle behavior on oxide layers of varying thicknesses was studied. These oxide layers were grown by thermally oxidizing C84400 copper alloys in N2-0.75 wt.% O2 and N2-5 wt.% O2 gas mixtures at 650 °C. Characterization of the oxidized specimens was effected using X-ray diffraction, scanning electron microscope (SEM and contact angle goniometer. The results from the X-ray diffraction analyses confirmed the formation of CuO, ZnO and PbO. The average sizes of the oxide granules were in the range of 70 nm to 750 nm, with the average thickness of the oxide layer increasing with the increase in the weight percent of oxygen in the N2-O2 gas mixtures. The results showed that the oxide layer growth followed the parabolic law. The underwater oil contact angles increased, due to the change in the surface morphology and porosity of the oxide layer. The small sizes and irregular packing of the oxide granules cause hierarchical rough surface layers with pores. The estimated pore sizes, in the range of 88 ± 40 to 280 ± 76, were predominant on the oxide layers of the samples processed in the N2-5 wt.% O2 gas mixture. The presence of these pores caused an increase in the porosities as the thickness of the oxide layers increased. At oxide layer thickness above 25 microns, the measured contact angle exceeded 150° as underwater superoleophobicity was recorded.

  1. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  2. Finite Element Analysis of Residual Stress in Ti-6Al-4V Alloy Plate Induced by Deep Rolling Process under Complex Roller Path

    Directory of Open Access Journals (Sweden)

    J. J. Liou

    2014-01-01

    Full Text Available The kinematics of the deep rolling tool, contact stress, and induced residual stress in the near-surface material of a flat Ti-6Al-4V alloy plate are numerically investigated. The deep rolling tool is under multiaxis nonlinear motion in the process. Unlike available deep rolling simulations in the open literature, the roller motion investigated in this study includes penetrative and slightly translational motions. A three-dimensional finite element model with dynamic explicit technique is developed to simulate the instantaneous complex roller motions during the deep rolling process. The initial motion of the rollers followed by the penetration motion to apply the load and perform the deep rolling process, the load releasing, and material recovery steps is sequentially simulated. This model is able to capture the transient characteristics of the kinematics on the roller and contacts between the roller and the plate due to variations of roller motion. The predictions show that the magnitude of roller reaction force in the penetration direction starts to decrease with time when the roller motion changes to the deep rolling step and the residual stress distributions in the near-surface material after the material recovery step varies considerably along the roller path.

  3. Characterization and modeling of the magnetic field-induced strain and work output in Ni2MnGa magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Kiefer, B.; Karaca, H.E.; Lagoudas, D.C.; Karaman, I.

    2007-01-01

    This paper is concerned with the experimental characterization and the constitutive modeling of magnetic shape memory alloys (MSMA), in terms of their applicability as actuator materials. The key properties that determine the actuation characteristics are the magnetic field-induced strain (MFIS) and the blocking stress. With the goal of increasing the corresponding actuation output, a material selection strategy was followed which was aimed at obtaining a higher magnetocrystalline anisotropy energy, while keeping the detwinning stress low. This was achieved by choosing a composition in which the separation of the Curie temperature and the martensitic transformation temperatures was large, and then selecting an operating temperature just below the phase transformation temperature. In the selected Ni 51.1 Mn 24.0 Ga 24.9 composition a more than 50% increase of the actuation work output was observed, compared to corresponding data reported in the literature for other off-stoichiometric compositions of the Ni 2 MnGa intermetallic compound. The second part of the paper describes a phenomenological constitutive model that predicts the MFIS hysteresis curves observed in the first part. The model is concerned with the field-induced reorientation of martensitic variants and changes in the magnetic microstructure. Dissipative effects are captured by introducing internal state variables into the free energy function. In its most general form the contributing energy terms are the elastic strain energy, the Zeeman energy, the magnetocrystalline anisotropy energy and appropriate mixing terms. Typical loading cases are considered and the accuracy of the model predictions is evaluated by comparison with the experimental data presented in the first part of this work

  4. Analytical capability of the plasma induced by IR TEA CO2 laser pulses on copper based alloys

    Directory of Open Access Journals (Sweden)

    Momčilović Miloš

    2015-01-01

    Full Text Available The applicability of nanosecond infrared (IR transversely excited atmospheric (TEA CO2 laser, operating at 10.6 μm and 100 ns pulse length (initial spike, induced plasma under reduced air pressure for spectrochemical analysis of bronze and brass samples was investigated. The plasma consisted of two clearly distinguished and spatially separated regions and expanded to a distance of about 10 mm from the surface. Elemental composition of the samples was determined using a time-integrated space-resolved laser-induced plasma spectroscopy (TISR-LIPS technique. Sharp and well resolved spectral lines mostly atomic, and negligibly low background emission, were obtained from a plasma region 7 mm from the target surface. Good signal to background and signal to noise ratios were obtained. Estimated detection limits for trace elements Mg, Fe, Al and Ca were in the order of 10 ppm in bronze and around 50 ppm in brass. Damage on the investigated samples induced by TEA CO2 laser radiation was negligible. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  5. High-temperature steam oxidation testing of select advanced replacement alloys for potential core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-19

    Coupons from a total of fourteen commercial and custom fabricated alloys were exposed to 1 bar full steam with ~10 ppb oxygen content at 600 and 650°C. The coupons were weighed at 500-h intervals with a total exposure time of 5,000 h. The fourteen alloys are candidate alloys selected under the ARRM program, which include three ferritic steels (Grade 92, 439, and 14YWT), three austenitic stainless steels (316L, 310, and 800), seven Ni-base superalloys (X750, 725, C22, 690, 625, 625 direct-aging, and 625- plus), and one Zr-alloy (Zr–2.5Nb). Among the alloys, 316L and X750 are served as reference alloys for low- and high-strength alloys, respectively. The candidate Ni-base superalloy 718 was procured too late to be included in the tests. The corrosion rates of the candidate alloys can be approximately interpreted by their Cr, Ni and Fe content. The corrosion rate was significantly reduced with increasing Cr content and when Ni content is above ~15 wt%, but not much further reduced when Fe content is less than ~55 wt%. Simplified thermodynamics analyses of the alloy oxidation provided reasonable indications for the constituents of oxide scales formed on the alloys and explanations for the porosity and exfoliation phenomena because of the nature of specific types of oxides.

  6. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    Science.gov (United States)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  7. Low activation vanadium alloys

    International Nuclear Information System (INIS)

    Witzenburg, W. van.

    1991-01-01

    The properties and general characteristics of vanadium-base alloys are reviewed in terms of the materials requirements for fusion reactor first wall and blanket structures. In this review attention is focussed on radiation response including induced radioactivity, mechanical properties, compatibility with potential coolants, physical and thermal properties, fabricability and resources. Where possible, properties are compared to those of other leading candidate structural materials, e.g. austenitic and ferritic/martensitic steels. Vanadium alloys appear to offer advantages in the areas of long-term activation, mechanical properties at temperatures above 600 deg C, radiation resistance and thermo-hydraulic design, due to superior physical and thermal properties. They also have a potential for higher temperature operation in liquid lithium systems. Disadvantages are associated with their ability to retain high concentrations of hydrogen isotopes, higher cost, more difficult fabrication and welding. A particular concern regarding use of vanadium alloys relates their reactivity with non-metallic elements, such as oxygen and nitrogen. (author). 33 refs.; 2 figs.; 2 tabs

  8. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  9. Stress and annealing induced changes in the Curie temperature of amorphous and nanocrystalline FeZr and FeNb based alloys

    International Nuclear Information System (INIS)

    Gorria, P.; Orue, I.; Fernandez-Gubieda, M.L.; Plazaola, F.; Zabala, N.; Barandiaran, J.M.

    1996-01-01

    The stress and annealing dependence of the Curie temperature in FeZrBCu alloys is presented. A change of about 50 /GPa has been observed. The change in amorphous matrix composition upon crystallization produces an expected increase in T C (about 200 C) which is similar to the experimentally observed increase. This behaviour is opposite to that observed in Fe-Nb based alloys. (orig.)

  10. Evaluation of Conditions for Hydrogen Induced Degradation of Zirconium Alloys during Fuel Operation and Storage. Final Report of a Coordinated Research Project 2011-2015

    International Nuclear Information System (INIS)

    2015-12-01

    This publication reports on the work carried out in 2011–2015 in the coordinated research project (CRP) on the evaluation of conditions for hydrogen induced degradation of zirconium alloys during fuel operation and storage. The CRP was carried out to evaluate the threshold condition for delayed hydride cracking (KIH) in pressurized water reactors and zircaloy-4 and E635M fuel claddings, with application to in-pile operation and spent fuel storage. The project consisted of adding hydrogen to samples of cladding and measuring K IH by one of four methods. The CRP was the third in the series, of which the results of the first two were published in IAEA-TECDOC-1410 and IAEA-TECDOC-1649, in 2004 and 2010, respectively. This publication includes all of the research work performed in the framework of the CRP, including details of the experimental procedures that led to a set of data for tested materials. The research was conducted by representatives from 13 laboratories from all over the world. In addition to the basic goal to transfer the technology of the testing techniques from experienced laboratories to those unfamiliar with the methods, the CRP was set up to develop experimental procedures to produce consistent sets of data, both within a single laboratory and among different laboratories. The material condition and temperature history were prescribed, and laboratories chose one or two of four methods of loading that were recommended in an attempt to develop standard sets of experimental protocols so that consistent results could be obtained. Experimental discrepancies were minimized through careful attention to details of microstructure, temperature history and stress state in the samples, with the main variation being the mode of loading

  11. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  12. Stress-induced non-equilibrium grain boundary segregation of phosphorus in a Cr-Mo low alloy steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Wu, J.; Wang, D.-Y.; Weng, L.-Q.; Zheng, L.

    2006-01-01

    Grain boundary segregation of phosphorus under a 40 MPa tensile stress at 520 deg. C in a 0.025 wt.% P-doped 2.25Cr1Mo steel, which has already been thermally equilibrated, is examined using Auger electron spectroscopy. The segregation of phosphorus during stress-ageing has a non-equilibrium characteristic, i.e. it is non-equilibrium segregation. The segregation level first increases with increasing stress-ageing time until about 0.5 h and then diminishes with further increasing stress-ageing time, leading the boundary concentration of phosphorus to return to its thermal equilibrium value after ageing for about 15 h. Therefore, the critical time for this non-equilibrium grain boundary segregation of phosphorus is about 0.5 h at which the segregation is peaked. At this critical time, the boundary concentration of phosphorus is about 20.5 at.%, which is about 4.5 at.% higher than its thermal equilibrium level. Xu's kinetic model for stress-induced grain boundary segregation [T.D. Xu, Philos. Mag. 83 (2003) 889-899; T.D. Xu, B.-Y. Cheng, Prog. Mater. Sci. 49 (2) (2004) 109-208] is used to analyse the experimental results, demonstrating that the measured data may be well simulated by the model

  13. Pressure induced structural phase transitions and mechanical properties of PtX alloys (X= Sc, Y) investigated by ab initio calculations

    Science.gov (United States)

    Bautista-Hernández, A.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2004-03-01

    In this work we present ab initio structural and electronic calculations for the A_c, B1, B2, L1_0, L1_1, and B32 structures of the PtX alloys. The calculations are based on the Density Functional Theory within the Local Density Approximation (LDA) using the Troullier-Martins pseudopotentials. Our predicted geometries for the ground state of PtSc and PtY alloys are the B2 and Ac structures, respectively, in agreement to the experimental phase diagram. The energy and enthalpy curves show a phase transition from B2 to B32 structure at 59 GPa approximately, for the PtSc alloy, and two phase transitions for the PtY alloy: B1 to L10 at 27 GPa and B2 to B32 at 47 GPa. Additionally, we calculate the theoretical tensile strength for the B2 phase of PtX alloys along the [001] and [111] directions.

  14. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  15. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  16. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  17. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  18. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  19. On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides

    International Nuclear Information System (INIS)

    Kelly, R.

    1980-01-01

    The bombardment of alloys, oxides, and halides often leads to marked compositional changes at the surface, and these changes have been attributed to an interplay of mass-dependent effects, chemical bonding, electronic processes, and diffusion. We attempt here to answer the limited question of whether, considering only alloys and oxides, mass or bonding is normally more important. The relevant theory is reviewed and extended, with mass effects being shown to be associated most explicitly with recoil sputtering and bonding effects being shown to be associated with all three of cascade sputtering, thermal sputtering, and surface segregation. As far as experimental examples are concerned, mass correlations are found to be quite unsuccessful, whereas most observations can be understood rather well in terms of bonding. Nevertheless, there is a basic problem in that the cascade component of sputtering, normally judged to be predominant, should give significantly less compositional change than is observed. Thermal sputtering would lead to more significant changes, but there is a new problem that, at least with alloys, the absolute yields are probably rather small. A combination of surface segregation with sputtering would also lead to more significant changes, but it is unclear whether segregation is rapid enough to be important in room-temperature bombardments. (orig.)

  20. Thermally induced alloying processes in a bimetallic system at the nanoscale: AgAu sub-5 nm core-shell particles studied at atomic resolution.

    Science.gov (United States)

    Lasserus, Maximilian; Schnedlitz, Martin; Knez, Daniel; Messner, Roman; Schiffmann, Alexander; Lackner, Florian; Hauser, Andreas W; Hofer, Ferdinand; Ernst, Wolfgang E

    2018-01-25

    Alloying processes in nanometre-sized Ag@Au and Au@Ag core@shell particles with average radii of 2 nm are studied via high resolution Transmission Electron Microscopy (TEM) imaging on in situ heatable carbon substrates. The bimetallic clusters are synthesized in small droplets of superfluid helium under fully inert conditions. After deposition, they are monitored during a heating cycle to 600 K and subsequent cooling. The core-shell structure, a sharply defined feature of the TEM High-Angle Annular Dark-Field images taken at room temperature, begins to blur with increasing temperature and transforms into a fully mixed alloy around 573 K. This transition is studied at atomic resolution, giving insights into the alloying process with unprecedented precision. A new image-processing method is presented, which allows a measurement of the temperature-dependent diffusion constant at the nanoscale. The first quantification of this property for a bimetallic structure <5 nm sheds light on the thermodynamics of finite systems and provides new input for current theoretical models derived from bulk data.

  1. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  2. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    Science.gov (United States)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  3. Castability of Magnesium Alloys

    Science.gov (United States)

    Bowles, A. L.; Han, Q.; Horton, J. A.

    There is intense research effort into the development of high pressure die cast-able creep resistant magnesium alloys. One of the difficulties encountered in magnesium alloy development for creep resistance is that many additions made to improve the creep properties have reportedly resulted in alloys that are difficult to cast. It is therefore important to have an understanding of the effect of alloying elements on the castability. This paper gives a review of the state of the knowledge of the castability of magnesium alloys.

  4. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  5. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  6. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gaob@smm.neu.edu.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Hu, Liang [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Li, Shi-wei [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hao, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Yu-dong [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France); Tu, Gan-feng [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Grosdidier, Thierry [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France)

    2015-08-15

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1){sub Al}//(0 0 1){sub Si} with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys.

  7. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher.

    Science.gov (United States)

    Wang, C-C; Hsu, Y C; Su, F C; Lu, S C; Lee, T M

    2009-02-01

    Passivation treatments of titanium alloy alter not only its nanosurface characteristics of oxides and ion release but also surface roughness (Ra), and wettability as well, where nanosurface characteristics of oxides include chemistries of oxides, amphoteric-OH groups adsorbed on oxides, and oxide thickness. Consequently, the passivation treatment affects the alloy's cyto-comparability. In this study, we polish specimens to achieve nanometric scale roughness. In addition, treatment effects are evaluated for surface topology, roughness, wettability, and responses of fibroblasts consisting of MTT assay, initial adhesion strength, and morphology. The initial adhesion strength is measured using a cyto-detacher that achieves nano-Newton resolution. Results reveal that (1) the treatment effects on the percentage of Ti--OH basic groups and wettability are nearly collinear; (2) the Ra of passivated Ti-6Al-4V ranges from 1.9 to 7.4 nm; (3) the initial adhesion strength of fibroblast ranges from 58 to 143 nN, and it is negatively correlated to the Ra; (4) the passivation results in distinguishable morphologies, which further substantiate the negative correlation between cell initial adhesion force and Ra; and (5) our results fall short of confirming previous reports that found positively charged functional groups promoting fibroblast attachment and spread. Potential causes of the inconsistency are addressed.

  8. Plastic Instabilities Induced by the Portevin - Le Châtelier Effect and Fracture Character of Deformed Mg-Li Alloys Investigated Using the Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Pawełek A.

    2016-06-01

    Full Text Available The results of the investigation of both mechanical and acoustic emission (AE behaviors of Mg4Li5Al and Mg4Li4Zn alloys subjected to compression and tensile tests at room temperature are compared with the test results obtained using the same alloys and loading scheme but at elevated temperatures. The main aim of the paper is to investigate, to determine and to explain the relation between plastic flow instabilities and the fracture characteristics. There are discussed the possible influence of the factors related with enhanced internal stresses such as: segregation of precipitates along grain boundaries, interaction of solute atoms with mobile dislocations (Cottrell atmospheres as well as dislocation pile-ups which may lead to the microcracks formation due to the creation of very high stress concentration at grain boundaries. The results show that the plastic flow discontinuities are related to the Portevin-Le Châtelier phenomenon (PL effect and they are correlated with the generation of characteristic AE pulse trains. The fractography of broken samples was analyzed on the basis of light (optical, TEM and SEM images.

  9. In Situ Neutron Diffraction Analyzing Stress-Induced Phase Transformation and Martensite Elasticity in [001]-Oriented Co49Ni21Ga30 Shape Memory Alloy Single Crystals

    Science.gov (United States)

    Reul, A.; Lauhoff, C.; Krooß, P.; Gutmann, M. J.; Kadletz, P. M.; Chumlyakov, Y. I.; Niendorf, T.; Schmahl, W. W.

    2018-02-01

    Recent studies demonstrated excellent pseudoelastic behavior and cyclic stability under compressive loads in [001]-oriented Co-Ni-Ga high-temperature shape memory alloys (HT-SMAs). A narrow stress hysteresis was related to suppression of detwinning at RT and low defect formation during phase transformation due to the absence of a favorable slip system. Eventually, this behavior makes Co-Ni-Ga HT-SMAs promising candidates for several industrial applications. However, deformation behavior of Co-Ni-Ga has only been studied in the range of theoretical transformation strain in depth so far. Thus, the current study focuses not only on the activity of elementary deformation mechanisms in the pseudoelastic regime up to maximum theoretical transformation strains but far beyond. It is shown that the martensite phase is able to withstand about 5% elastic strain, which significantly increases the overall deformation capability of this alloy system. In situ neutron diffraction experiments were carried out using a newly installed testing setup on Co-Ni-Ga single crystals in order to reveal the nature of the stress-strain response seen in the deformation curves up to 10% macroscopic strain.

  10. Nanoprecipitation in a beta-titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, James, E-mail: j.coakley06@imperial.ac.uk [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom); Vorontsov, Vassili A. [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom); Littrell, Kenneth C. [Oak Ridge National Laboratory, Chemical and Engineering Materials Division, Oak Ridge, TN 37831 (United States); Heenan, Richard K. [Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England (United Kingdom); Ohnuma, Masato [Laboratory of Quantum Beam System Engineering, Hokkaido University, Sapporo 060-0808 (Japan); Jones, Nicholas G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England (United Kingdom); Dye, David [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom)

    2015-02-25

    Highlights: • In-situ SANS has been applied to study precipitation in β -Ti alloy. • Rate of precipitation is far more rapid in the cold-rolled alloy than non cold-rolled. • The rapid precipitation dramatically improves the alloy hardness. • Extensive ω phase is present after 400 °C/16 h heat-treatment. • SANS modelling and TEM-EDX shows the precipitates are Ti rich. - Abstract: This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in β-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal ω can be induced by cold-rolling Gum metal, a β-Ti alloy. During thermal exposure at 400°C, isothermal ω particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6nm after thermal exposures up to 16h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the β matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy.

  11. Phonon broadening in high entropy alloys

    Science.gov (United States)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  12. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  13. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  14. High strength alloy

    International Nuclear Information System (INIS)

    Smelikov, V.G.; Obukhov, A.S.; Ryzhkov, I.V.; Koshelev, V.I.

    1995-01-01

    The magnesium-based alloy in question contains alloy components in the form of elements chosen from the Al, Zn, Mn, Zr and rare earth group, and compounds of nitrogen and oxygen with any of these elements in the following proportions (wt%): alloy components chosen from the Al, Zn, Mn, Zr, Th and rare earth group 0.6-8.0, compound of nitrogen and oxygen with any of the above 0.1-6.0, magnesium the remainder. (author)

  15. Field-induced non-collinear magnetic structures in amorphous Co{sub 80-x}Dy {sub x}B{sub 20} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Annouar, F. [Laboratoire de Physique des Materiaux et de Micro-electronique, Universite Hassan II, Faculte des Sciences Ain Chock, B.P. 5366, Route d' El Jadida, km-8, Casablanca (Morocco)]. E-mail: annouarfouad@yahoo.fr; Roky, K. [Faculte des Sciences et Technique de Tanger, Departement de Physique (Morocco); Faculte des Sciences de Tetouan, Departement de Physique (Morocco); Lassri, H. [Laboratoire de Physique des Materiaux et de Micro-electronique, Universite Hassan II, Faculte des Sciences Ain Chock, B.P. 5366, Route d' El Jadida, km-8, Casablanca (Morocco); Elmoussaoui, A. [Faculte des Sciences de Tetouan, Departement de Physique (Morocco); Driouch, L. [Laboratoire de Physique des Materiaux et de Micro-electronique, Universite Hassan II, Faculte des Sciences Ain Chock, B.P. 5366, Route d' El Jadida, km-8, Casablanca (Morocco); Ayadi, M. [Laboratoire de Physique des Materiaux et de Micro-electronique, Universite Hassan II, Faculte des Sciences Ain Chock, B.P. 5366, Route d' El Jadida, km-8, Casablanca (Morocco); Omri, M. [Laboratoire de Physique des Materiaux et de Micro-electronique, Universite Hassan II, Faculte des Sciences Ain Chock, B.P. 5366, Route d' El Jadida, km-8, Casablanca (Morocco); Krishnan, R. [Laboratoire de Magnetisme et d' Optique de l' Universite de Versailles, Ba-hat timent Fermat, 45 Avenue des Etats-Unis 78035 Versailles cedex (France)

    2005-07-25

    Amorphous Co{sub 80-x}Dy {sub x}B{sub 20} alloys have been prepared by melt spinning technique and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. High-field magnetization studies performed at 4.2 K in magnetic fields up to 38 T have revealed, for samples with stoichiometry close to that of a compensated ferrimagnet, a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Co sublattices. From the non-collinear regime the exchange interactions between the Co and Dy magnetic sublattices and the magnetic anisotropy constants have been evaluated.

  16. Machinability of Titanium Alloys

    Science.gov (United States)

    Rahman, Mustafizur; Wong, Yoke San; Zareena, A. Rahmath

    Titanium and its alloys find wide application in many industries because of their excellent and unique combination of high strength-to-weight ratio and high resistance to corrosion. The machinability of titanium and its alloys is impaired by its high chemical reactivity, low modulus of elasticity and low thermal conductivity. A number of literatures on machining of titanium alloys with conventional tools and advanced cutting tool materials is reviewed. The results obtained from the study on high speed machining of Ti-6Al-4V alloys with cubic boron nitride (CBN), binderless cubic boron nitride (BCBN) and polycrystalline diamond (PCD) are also summarized.

  17. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  18. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  19. Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner

    Energy Technology Data Exchange (ETDEWEB)

    Haghparast, Amin [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nourimotlagh, Masoud [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of); Alipour, Mohammad, E-mail: Alipourmo@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-09-15

    In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

  20. [Effects of four dental alloys on apoptosis related gene and protein expression of fibroblast L929].

    Science.gov (United States)

    Meng, He; Ding, Jie; Li, Ren; Liang, Ruiying; Wu, Wenhui

    2013-06-01

    To investigate the effects of the leaching liquids of 4 differents kinds of dental alloys (Au alloy, Ag-Pd alloy, Co-Cr alloy, Ni-Cr alloy) on apoptosis related gene and protein of fibroblast L929. The L929 cells of mouse were treated in vitro with leaching liquids of 4 different kinds of dental alloys, Au alloy (group A), Ag-Pd alloy(group B), Co-Cr alloy(group C) and Ni-Cr alloy(group D). The RPMI1640 cell medium containing 10% fetal calf serum was served as a control(group E). The effects of these alloys on the expression of caspase-3, 8, 9 of L929 cells were examined by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry method. Results After 48 h culture, the mRNA levels of caspase-3 and caspase-9 demonstrated significant differences between the groups expect group A and group E. The mRNA levels of caspase-8 had no change in all groups. The expression of caspase-3 and caspase-9 were significant differences between the groups expect group A and C, group B and D. The expression of caspase-8 had no change in all grotps. The leaching liquids of 4 different kinds of dental alloys expect Au alloy may induce cell appotosis through mitochondrion pathway.

  1. Corrosion of alloy 22 in phosphate and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2007-01-01

    Alloy C-22 is a Ni-based alloy (22% Cr, 13% Mo, 3% W y 3% Fe in weight per cent) that exhibits an excellent uniform and localized corrosion resistance due to its protective passive film. It was designed to resist the most aggressive environments for industrial applications. Alloy 22 is one of the candidates to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes. The effect of phosphate ion in chloride containing solutions at 90 C degrees was studied under aggressive conditions were this material might be susceptible to crevice corrosion. The electrolyte solution, which consisted of 1M NaCl and different phosphate concentrations (between 10 -3 M and 1M), was deoxygenated by bubbling with nitrogen. Electrochemical tests, electron microscope observations (SEM) and energy dispersive spectrometer analysis (EDS) were conducted. Crevice corrosion was not detected and the comparison of the potentiodynamic polarization tests showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests that were performed in this work. The differences in composition of the anodic film formed on the samples suggest that phosphate is responsible for the increase of the passivity range by incorporation to the passive film. (author)

  2. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  3. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  4. Aluminum battery alloys

    Science.gov (United States)

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  5. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  6. Alloys in energy development

    Energy Technology Data Exchange (ETDEWEB)

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  7. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  8. Degassing of molten alloys with the assistance of ultrasonic vibration

    Science.gov (United States)

    Han, Qingyou; Xu, Hanbing; Meek, Thomas T.

    2010-03-23

    An apparatus and method are disclosed in which ultrasonic vibration is used to assist the degassing of molten metals or metal alloys thereby reducing gas content in the molten metals or alloys. High-intensity ultrasonic vibration is applied to a radiator that creates cavitation bubbles, induces acoustic streaming in the melt, and breaks up purge gas (e.g., argon or nitrogen) which is intentionally introduced in a small amount into the melt in order to collect the cavitation bubbles and to make the cavitation bubbles survive in the melt. The molten metal or alloy in one version of the invention is an aluminum alloy. The ultrasonic vibrations create cavitation bubbles and break up the large purge gas bubbles into small bubbles and disperse the bubbles in the molten metal or alloy more uniformly, resulting in a fast and clean degassing.

  9. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  10. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  11. Structural Transformation in Fe73.5Nb3Cu1Si15.5B7 Amorphous Alloy Induced by Laser Heating

    Science.gov (United States)

    Nykyruy, Yu. S.; Mudry, S. I.; Kulyk, Yu. O.; Zhovneruk, S. V.

    2018-03-01

    The effect of continuous laser irradiation (λ = 1.06 μm) with laser power of 45 W on the structure of Fe73.5Nb3Cu1Si15.5B7 amorphous alloy has been studied using X-ray diffraction and SEM methods. The sample of the ribbon has been placed at a distance from the focal plane of the lens, so a laser beam has been defocused and the diameter of laser spot on the ribbon surface has been about 10 mm. An exposure time τ varied within interval 0.25-0.70 s. Under such conditions structural transformation processes, which depend on the exposure time, have occurred in an irradiated zone. Crystallization process has started at τ = 0.35 s with the formation of α-Fe(Si) nanocrystalline phase, while complete crystallization has occurred at τ = 0.55 s with formation of two nanocrystalline phases: α-Fe(Si) and a hexagonal H-phase.

  12. Nanoscale spheroidized cementite induced ultrahigh strength-ductility combination in innovatively processed ultrafine-grained low alloy medium-carbon steel.

    Science.gov (United States)

    Jia, N; Shen, Y F; Liang, J W; Feng, X W; Wang, H B; Misra, R D K

    2017-06-02

    We describe here innovative processing of low alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized cementite (Fe 3 C) in an ultrafine-grained (UFG) ferritic steel. After multi-pass rolling and intermittent annealing at 550 °C for 300 s, the obtained UFG-1 steel showed an average ferrite grain size of ~430 nm, containing nanoscale spheroidized cementite (Fe 3 C) particles with an average size of ~70 nm. On annealing at 600 °C for 300 s, the average size of ferritic grains was increased to ~680 nm and the average size of spheroidized Fe 3 C particles increased to ~90 nm, referred as UFG-2 steel. Tensile tests indicated that UFG-1 steel had high yield strength (σ y ) of 1260 MPa, and ultimate tensile strength (σ UTS ) of 1400 MPa. These values are higher than that of UFG-2 steel (σ y  = 1080 MPa and σ UTS  = 1200 MPa), suggesting that the strengthening contribution is a cumulative effect of decrease in ferrite grain size and nanoscale cementite. The incoherent interfaces between nanosized particles and the matrix acted as a strong barrier to dislocation motion. The study underscores that nanosized precipitates not only provide strength but also contribute to ductility, which is very encouraging for improving the ductility of medium-carbon steels.

  13. Microstructure of shear-induced thixoformed Al- 4.5Cu-1.5Mg alloy via RAP and SSTT processes

    Directory of Open Access Journals (Sweden)

    Siamak Nikzad

    2017-07-01

    Full Text Available In this research, the effect of the thixoforming temperature on the microstructure and mechanical properties was investigated in the thixoforming of the feedstock produced by the RAP (recrystallization and partial melting and SSTT (semi-solid thermal transformation processes for Al-4.5Cu-1.5Mg alloy. In the RAP process, the percentage reduction in area was approximately 35%. Thixoforming was done at 610, 620, and 630 °C. Globular microstructure was observed at all temperatures and conditions. The minimum average globule size was 39 μm, and it was obtained in the thixoforming of the feedstock produced by the RAP process in the section of 4 mm in diameter at 620 ° C after applying shear. Its corresponding compressive strength was -877.44 MPa. The maximum average globule size was 136 μm, and it was obtained in the thixoforming of the feedstock produced by the SSTT process in the section of 10 mm in diameter at 630 °C before applying shear. Its corresponding compressive strength was -769.18 MPa. The finest and most spherical globules, as well as the highest compressive strength were obtained at 620 °C in both RAP and SSTT states.

  14. Kinetics behaviour of metastable equiatomic Cu–Fe solid solution as function of the number of collisions induced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Contini, A., E-mail: alessandro.contini@hotmail.com [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Garroni, S.; Mulas, G.; Enzo, S. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari (Italy)

    2014-12-05

    Graphical abstract: - Highlights: • Cu–Fe powders were studied as a function of the number of hits during MA. • An impulsive model describes the kinetics curves of solid solution formation. • The kinetic curve indicates that powders must undergo 6 critical events to transform. - Abstract: We have addressed a new study by mechanical alloying on the nominally immiscible Cu{sub 50}Fe{sub 50} system with the aim of relating the solid state transformation process, with formation of a disordered unstable solid solution having the face centered cubic habit, to parameters reflecting the impulsive, discontinuous nature of the process. The milling set-up, tools and powder were adjusted in order to ensure completely anelastic hits. Phase analysis, structure and microstructure parameters of such powder system have been followed accurately in the course of the kinetics by X-ray Diffraction using the Rietveld method. The experimental kinetics data points of the amount of transformed solid solution show a typical sigmoidal behavior. It was assumed that dissolution only occurs in the volumes of material that have undergone the necessary critical loading conditions, which is accounted by a discrete series expansion. The mass fraction effectively processed at each collision can be regarded as an apparent rate constant for the microstructural refinement and phase transformation processes. Analysis of model curves fitting the experimental data suggests that it takes up an average of 6 impacts of coupled powder particles to drive the system to the new unstable nano-crystalline state.

  15. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  16. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  17. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  18. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  19. Precipitation hardened nickel-base alloys for sour gas environments

    International Nuclear Information System (INIS)

    Igarashi, M.; Mukai, S.; Kudo, T.; Okada, Y.; Ikeda, A.

    1987-01-01

    SCC (Stress Corrosion Cracking) in sour gas environments of γ'(gamma prime: Ni/sub 3/(Ti and/or Al)) and γ''(gamma double prime: Ni/sub 3/Nb) precipitation hardened nickel-base alloys has been studied using the SSRT (Slow Strain Rate Tensile) test, anodic polarization measurement and transmission electron microscopy (TEM). The γ'-type alloy containing Ti was more susceptible to SCC in the SSRT tests up to 350 0 F(450 K) than the γ''-type alloy containing Nb. The susceptibility to SCC was related to their deformation structures in terms of stress localization and sensitivity to pitting corrosion in H/sub 2/S solutions. TEM observation showed the γ'-type alloy deformed by the superlattice dislocations in coplanar structures. This mode of deformation induced the stress localization to some boundaries such as grain boundary and as a result the susceptibility to SCC of the γ'-type alloy was increased. On the other hand, the γ''-type alloy deformed by the massive dislocation not in coplanar structures so that it was less susceptible to SCC in terms of the stress localization. The anodic polarization measurement suggested the γ'-type alloy was more susceptible to pitting corrosion compared with the γ''-type alloy

  20. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  2. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  3. Uranium-Niobium alloys

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1985-01-01

    The basic characteristics of the phase diagram of the U-Nb alloy are presented. Structural and morphological aspects of the kinectics of phase transformation are discussed, based in the phase diagram. (Author) [pt

  4. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  5. Refractory alloy component fabrication

    International Nuclear Information System (INIS)

    Young, W.R.

    1984-01-01

    Purpose of this report is to describe joining procedures, primarily welding techniques, which were developed to construct reliable refractory alloy components and systems for advanced space power systems. Two systems, the Nb-1Zr Brayton Cycle Heat Receiver and the T-111 Alloy Potassium Boiler Development Program, are used to illustrate typical systems and components. Particular emphasis is given to specific problems which were eliminated during the development efforts. Finally, some thoughts on application of more recent joining technology are presented. 78 figures

  6. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  7. Texture in low-alloyed uranium alloys

    International Nuclear Information System (INIS)

    Sariel, J.

    1982-08-01

    The dependence of the preferred orientation of cast and heat-treated polycrystalline adjusted uranium and uranium -0.1 w/o chromium alloys on the production process was studied. The importance of obtaining material free of preferred orientation is explained, and a survey of the regular methods to determine preferred orientation is given. Dilatometry, tensile testing and x-ray diffraction were used to determine the extent of the directionality of these alloys. Data processing showed that these methods are insufficient in a case of a material without any plastic forming, because of unreproducibility of results. Two parameters are defined from the results of Schlz's method diffraction test. These parameters are shown theoretically and experimentally (by extreme-case samples) to give the deviation from isotropy. Application of these parameters to the examined samples showes that cast material has preferred orientation, though it is not systematic. This preferred orientation was reduced by adequate heat treatments

  8. Mechanochemical processing for metals and metal alloys

    Science.gov (United States)

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  9. Induced 3d and 4f magnetism in Gd{sub 1-x}Pr{sub x}Ni{sub 2} Laves phase alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khodh 123 (Oman); Carboni, C [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khodh 123 (Oman); Morrison, C [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2008-01-16

    The series of Gd{sub 1-x}Pr{sub x}Ni{sub 2} (x = 0.25, 0.40, and 0.60) polycrystalline samples has been investigated using x-ray diffraction and magnetometry. The x-ray diffraction measurements showed that the lattice constant and the relative intensities of the C15 superstructure I{sub 511}/I{sub 440} and I{sub 511}/I{sub 220} increase with the praseodymium content, reflecting an increasing number of ordered vacancies at the 4a sites. The temperature dependences of the zero-field cooled (M{sub ZFC}(T)) and field cooled (M{sub FC}(T)) magnetizations show that a moment is induced by the gadolinium on the Pr{sup 3+} ion and on the nickel subsystem. In the ordered phase both induced moments are antiparallel to that of the Gd{sup 3+} ion. A cusp is observed at a temperature T{sub max} in the M{sub ZFC}(T) curve. Both critical temperatures T{sub c} and T{sub max} are found to decrease with increasing praseodymium content, indicating a reduction in strength of the antiparallel coupling for Gd-Pr and Gd-Ni pairs.

  10. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  11. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  12. Contribution to depth profiling by particle induced X-ray emission application to the study of zinc diffusion in AgZn alloy

    International Nuclear Information System (INIS)

    Frontier, J.P.

    1987-08-01

    A contribution of the study of the capacities of Particle Induced X-ray Emission (P.I.X.E.) for depth profiling, in the range of 1 to 10 micrometers and over, is presented here. It is shown that, in a non destructuve way, the concentration profile of a given element can be obtained, in principle, by deconvoluting the X-ray yields of this element, measured in a set of experiments in which the energy of the impinging protons, hence their range, is systematically varied. Direct deconvolution procedure, which leads to the inversion of an ill-conditionned matrix is unsuitable. So we generalized the iterative procedure previously used by Vegh to solve a similar problem. Alternatively we also used a fitting procedure of several parameters which gave us somewhat better than those of the iterative procedure. Both algorithms where applied to a set of X-ray yields induced by protons of energy between 0.45 to 2 MeV, corresponding to the first 6 micrometers of various depletion profiles of zinc in an initially homogeneous Ag-3 at % Zn annealed under vacuum. For investigation of deeper layers, a sectionning technique which consists in analysing thin film hydroxide targets by specific chemistry of tiny turning, was developped with success. Cross-reference of all the obtained profiles was made with electron microprobe determination on transverse section, and with the predictions of the theory of atomic diffusion. In addition, the possibilities of increasing the depth resolution by developping techniques either of controled sanding of the surface, or analysis of the sample is discussed [fr

  13. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  14. Ageing of zirconium alloy components

    Science.gov (United States)

    Chatterjee, S.; Shah, Priti Kotak; Dubey, J. S.

    2008-12-01

    India has two types (pressurized heavy water reactors (PHWRs) and boiling water reactors (BWRs)) of commercial nuclear reactors in operation, in addition to research reactors. Many of the life limiting critical components in these reactors are fabricated from zirconium alloys. The progressive degradation of these components caused by the cumulative exposure of high energy neutron irradiation with increasing period of reactor operation was monitored to assess the degree of ageing. The components/specimens examined included fuel element claddings removed from BWRs, pressure tubes and garter springs removed from PHWRs and calandria tube specimens used in PHWRs. The tests included tension test (for cladding, garter spring), fracture toughness test (for pressure tube), crush test (for garter spring), and measurement of irradiation induced growth (for calandria tube). Results of various tests conducted are presented and applications of the test results are elaborated for residual life estimation/life extension of the components.

  15. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  16. Shape memory alloy engine

    International Nuclear Information System (INIS)

    Tanaka, M.

    1992-01-01

    This paper discusses a shape memory alloy engine, developed for the purpose of extracting the mechanical energy from a small difference in temperature. The engine is mainly composed of two pulleys (high temperature and low temperature) and single belt made of the nickel titanium shape memory alloy. The alloy memorizes a shape arcing in the direction opposite to the direction of the belt arc around the pulleys. When the temperature of the belt which is in contact with the high temperature pulley rises above the transformation temperature, a return to the memorized shape generates a force which rotates the pulleys. To make the heat transfer more effective, the engine was designed so that the lower part of the two pulleys are embedded in hot and cold water, respectively. To predict the performance of the shape memory alloy engine, the stress change of the shape memory alloy caused by temperature change has been also investigated with the bending stress test, and a torque loss of the engine system was measured. The predicted results were coincident with the output power experiment

  17. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    OpenAIRE

    Berat Barıs BULDUM; Aydın SIK; Iskender OZKUL

    2013-01-01

    Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attra...

  18. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  19. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  20. Shape Memory Alloys (Part I: Significant Properties

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    Full Text Available Shape memory alloys (SMAs belong to a group of functional materials with the unique property of “remembering” the shape they had before pseudoplastic deformation. Such an effect is based on crystallographic reversible thermo-elastic martensitic transformation. There are two crystal phases in SMAs: the austenite phase (stable at high temperature and the martensite phase (stable at low temperature. Austenite to martensite phase transformation can be obtained by mechanical (loading and thermal methods (heating and cooling. During martensitic transformation, no diffusive process is involved, only inelastic deformation of the crystal structure. When the shape memory alloy passes through the phase transformation, the alloy transforms from high ordered phase (austenite to low ordered phase (martensite. There are two types of martensite transformations. First is temperature-induced martensite, which is also called self-accommodating (twinned martensite. The second is stress-induced martensite, also called detwinned martensite. The entire austenite to martensite transformation cycle can be described with four characteristic temperatures: Ms – martensite start temperature, Mf – martensite finish temperature, As – austenite start temperature, and Af – austenite finish temperature. The main factors influencing transformation temperatures are chemical composition, heat treatment procedure, cooling speed, grain size, and number of transformation cycles. As a result of martensitic transformation in SMAs, several thermomechanical phenomena may occur: pseudoelasticity, shape memory effect (one-way and two-way SME and rubber-like behavior. Pseudoelasticity occurs when the SMA is subjected to a mechanical loading at a constant temperature above Af. The second thermomechanical behaviour that can be observed in SMA is the shape memory effect (SME, mainly one-way SME, which is the most commonly used SME. When the sample is subjected to a mechanical

  1. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  2. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  3. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1992-01-01

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  4. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  5. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  6. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    International Nuclear Information System (INIS)

    Cabral P, A.; Garcia S, I.; Contreras V, J. A.; Garcia S, F.; Nava, N.

    2010-01-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  7. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Riesgo, O.; Bianchi, G.L.; Duffo, G.S.

    1993-01-01

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  8. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  9. Fracture of Shape Memory Alloys

    OpenAIRE

    Miyazaki, Shuichi; Otsuka, Kazuhiro

    1981-01-01

    The initiation and the propagation of cracks during both quenching and deformation in polycrystalline Cu-Al-Ni alloys have been investigated under various conditions. The fracture surfaces of Ti-Ni and Cu-Al-Ni alloys were also observed by a scanning electron microscope. From these results, it was concluded that the brittleness of Cu-Al-Ni alloy and other β phase alloys are due to large elastic anisotropy and large grain sizes, while that the large ductility in Ti-Ni alloy being due to the sm...

  10. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  11. [Effects of different dental alloys on cytotoxic and apoptosis related genes expression of mouse fibroblast cells L929].

    Science.gov (United States)

    Meng, He; Han, Dong; Zhan, De-Song

    2009-08-01

    To investigate effects of the leaching liquids of 5 different kinds of dental alloys on L929 cells at cell level and molecular level. The fibroblast L929 cells of mouse were cultivated in vitro in leaching liquids of 5 different kinds of dental alloys, Au alloy (n = 8), Ag-Pt alloy (n = 8), Co-Cr alloy (n = 8), Ni-Cr alloy (n = 8), and Cu alloy (n = 8). The RPMI 1640 cell medium containing 10% fetal beef serum was used as control. The cytotoxicities of the 5 dental alloys were evaluated by means of methyl thiazolyl tetrazolium (MTT), and the effects of these alloys on the expression of caspase-3, caspase-8, and caspase-9 mRNA of L929 cells were examined using reverse transcription polymerase chain reaction (RT-PCR) method. After 48 hours culture the cytotoxicity of Cu alloy group was in Grade 4 and those of the other groups were all in Grade 0. The mRNA levels of caspase-8 had no change in all groups (P > 0.05). The mRNA levels of caspase-3 were as follows: Cu alloy (0.474 +/- 0.001), the negative control (0.527 +/- 0.003), Au alloy (0.528 +/- 0.013), Co-Cr alloy (0.615 +/- 0.007), Ag-Pd alloy (0.673 +/- 0.009), and Ni-Cr alloy (0.803 +/- 0.037). The mRNA levels of caspase-9 were as follows: Cu alloy (0.532 +/- 0.041), Au alloy (0.574 +/- 0.013), the negative control (0.578 +/- 0.010), Co-Cr alloy (0.617 +/- 0.009), Ag-Pd alloy (0.703 +/- 0.018), and Ni-Cr alloy (0.811 +/- 0.037). There were significant differences between the groups except the negative control group and Au alloy group. The Cu alloy shows the highest cytotoxicity, and the leaching liquids of 5 different kinds of dental alloys may induce cell apoptosis through mitochondrion pathway.

  12. Immunostimulatory capacity of dental casting alloys on endotoxin responsiveness.

    Science.gov (United States)

    Rachmawati, Dessy; von Blomberg, B Mary E; Kleverlaan, Cornelis J; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2017-05-01

    Oral metal exposure has been associated with systemic and local adverse reactions, probably due to elemental release from the alloys. Although supraphysiological concentrations of salts from dentally applied metals can activate innate cells through TLR4 (Ni, Co, Pd) and TLR3 (Au), whether direct exposure to solid alloys can also trigger innate immune reactivity is still unknown. The purpose of this in vitro study was to determine whether dental cast alloy specimens can activate innate cells and influence their responsiveness to bacterial endotoxin. Human monocyte-derived dendritic cells (MoDC) and THP-1 cells were cultured on top of different alloy specimens (Ni-Cr, Co-Cr, Pd-Cu, Pd-Ag, Ti-6Al-4V, amalgam, gold, and stainless steel) or in alloy-exposed culture medium with or without endotoxin (lipopolysaccharide [LPS]; Escherichia coli 055:B5). Interleukin-8 (IL-8) production was used as the parameter for innate stimulation and evaluated by enzyme-linked immunosorbent assay after 24 hours of culture. The statistical significance of the effects of various casting alloys on the secretion of IL-8 was analyzed by using the nonparametric Wilcoxon rank sum test (α=.05). Dental cast alloys induced IL-8 production in MoDC and THP-1 cells, with Au and Pd-Cu providing the strongest stimulation. The alloy-exposed culture media tested contained sufficient stimulatory metal ions to induce detectable IL-8 production in THP-1 cells, except for the Ni-Cr and stainless steel exposed media. Au and Pd-Cu alloys were also most effective in potentiating LPS responsiveness as measured by IL-8 production. Using an in vitro culture system to expose MoDC and THP-1 cells to different alloy specimens this study showed that contact with the solid alloys, in particular when they contain Pd or Au, can trigger innate immune responses and augment responsiveness to bacterial endotoxin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  13. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  14. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  15. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    International Nuclear Information System (INIS)

    Gdowski, G.E.

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H 2 S and CO 2 ) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering

  16. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  17. Electrodeposition of Transition Metal-Aluminum Alloys from Chloroaluminate Molten Salts

    National Research Council Canada - National Science Library

    Hussey, Charles

    2004-01-01

    .... Many of these alloys, notably Al-Mo and Al-W, exhibited outstanding resistance to chloride-induced pitting corrosion, making them useful corrosion protective coatings for Air Force applications in high-salt environments.

  18. A Simplified Test for Blanching Susceptibility of Copper Alloys

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald; Setlock, John

    2003-01-01

    GRCop-84 (Cu-8Cr-4Nb) is a dispersion-strengthened alloy developed for space-launch rocket engine applications, as a liner for the combustion chamber and nozzle ramp. Its main advantage over rival alloys, particularly NARloy-Z (Cu-Ag-Zr), the current liner alloy, is in high temperature mechanical properties. Further validation required that the two alloys be compared with respect to service performance and durability. This has been done, under conditions resembling those expected in reusable launch engine applications. GRCop-84 was found to have a superior resistance to static and cyclic oxidation up to approx. 700 C. In order to improve its performance above 700 C, Cu-Cr coatings have also been developed and evaluated. The major oxidative issue with Cu alloys is blanching, a mode of degradation induced by oxidation-reduction fluctuations in hydrogen-fueled engines. That fluctuation cannot be addressed with conventional static or cyclic oxidation testing. Hence, a further evaluation of the alloy substrates and Cu-Cr coating material necessitated our devising a test protocol that involves oxidaton-reduction cycles. This paper describes the test protocols used and the results obtained.

  19. Multiple parameter cytotoxicity index on dental alloys and pure metals.

    Science.gov (United States)

    Hornez, J C; Lefèvre, A; Joly, D; Hildebrand, H F

    2002-08-01

    Palladium (Pd) is a metal frequently used for dental alloys. In order to elucidate controversial options about Pd concerning its biological performances, our study consists in the evaluation of commercial and experimental PFM and C&B precious and semi-precious dental alloys. This investigation was also designated to the establishment of a cytotoxicity index (CI) such as it was described for hemocompatibility testing. The following materials were tested: 36 commercial alloys (Au-, Pd- and Ag-base), 14 experimental alloys (Pd-base established by an experience plan) and pure metals (Ag, Au, Cu, Ni, Cr, In, Sn, Pt, Ti, Zn). The cells culture experiments were carried out with epithelial L132 cells and NIH 3T3 fibroblasts. In vitro cell viability tests show that Pt, Sn, In, Ti, Au and Pd have no cytotoxic effect; Cr, Cu and Ag are toxic, Ni, Zn, and Co are highly toxic. An identical ranking was found with the inflammatory and proliferation tests. Toxic and highly toxic metals induced slight or strong prosthetic dental restoration morphological alterations after 3-days cultures and mostly cell death after 6-days cultures. These effects are dependent on the leakage of the element into the culture medium as revealed by ICP. The addition of Au gives benefit to Pd-Ag alloys, but does not produce any major effect on Pd-Cu alloys. This qualitative ranking can quantitatively be confirmed by cytocompatibility testing after application of a CI.

  20. Amorphization of equimolar alloys with HCP elements during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Liang [Materials and Electro-Optics Research Division, Chung-Shan Institute of Science and Technology, Armaments Bureau, MND, P.O. Box 90008-8-5, Lung-Tan, Tao-Yuan 32599, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tsai, Che-Wei; Juan, Chien-Chang; Chuang, Ming-Hao [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Yeh, Jien-Wei, E-mail: jwyeh@mx.nthu.edu.t [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chin, Tsung-Shune [Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan (China); Chen, Swe-Kai [Center for Nanotechnology, Materials Science and Microsystems, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2010-09-10

    This study prepares two equimolar alloys, entirely composed of HCP elements, BeCoMgTi and BeCoMgTiZn, from elemental powders by mechanical alloying. No crystalline solid solutions and compounds formed during milling except an amorphous phase formed gradually until full amorphization was attained. The amorphization processes of these two alloys conform to type II according to the Weeber and Bakker classification based on binary alloys. The inhibition of crystalline solid solutions and compounds before amorphization relates to chemical compatibility, high entropy effect and large atomic size difference effect.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  2. Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al–Zn–Mg–Cu alloys

    International Nuclear Information System (INIS)

    Shi, Yunjia; Pan, Qinglin; Li, Mengjia; Huang, Xing; Li, Bo

    2015-01-01

    Stress corrosion cracking (SCC) behavior of Al–Zn–Mg–Cu alloys with different Sc, Zr contents and heat treatments was studied using slow strain rate test. Grain boundary microstructures were identified by transmission electron microscopy (TEM) and statistical analysis. It was found that the SCC resistance of alloys is improved by increasing Sc, Zr contents and aging degree. Grain boundary precipitates (GBPs) area fraction was found to be an important parameter to evaluate the SCC susceptibility. The results reveal that for Al–Zn–Mg–Cu–0.25Sc–0.10Zr (wt%) alloy with different aging degrees, hydrogen induced cracking dominates the SCC when the area fraction of GBPs is relatively low. For peak-aged Al–Zn–Mg–Cu alloy and Al–Zn–Mg–Cu–0.10Sc–0.10Zr (wt%) alloy, anodic dissolution dominates the SCC when the area fraction of GBPs is sufficiently high

  3. Contribution to comprehensive study of aluminium alloy Aa 5083 ...

    African Journals Online (AJOL)

    Corrosion induced by elemental mercury in aqueous media of industrial Aluminium alloys AA5083 used in heat exchanger industries of natural gas liquefaction has been studied by linear sweep voltammétry on rotating amalgamated disk electrode. Corrosion process depends on: • Chemical processes of amalgamation of ...

  4. Phase transformations of amorphous semiconductor alloys under high pressures

    CERN Document Server

    Antonov, V E; Fedotov, V K; Harkunov, A I; Ponyatovsky, E G

    2002-01-01

    The paper reviews the results of experimental studies and thermodynamical modelling of metastable T-P diagrams of initially amorphous GaSb-Ge and Zn-Sb alloys which provide a new insight into the problem of pressure-induced amorphization.

  5. Kinetic process of mechanical alloying in Fe50Cu50

    DEFF Research Database (Denmark)

    Huang, J.Y.; Jiang, Jianzhong; Yasuda, H.

    1998-01-01

    It is shown that mechanical alloying in the immiscible Fe-Cu system is governed by the atomic shear event and shear-induced diffusion process. We found that an alpha-to-gamma phase transformation, as evidenced by the Nishiyama-Wasserman orientation relationship, occurs by simultaneous shearing...

  6. Two phase titanium aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deevi, Seetharama C. (Midlothian, VA); Liu, C. T. (Oak Ridge, TN)

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  7. Rare earth ferrosilicon alloy

    International Nuclear Information System (INIS)

    Caiquan, L.; Zeguang, T.; Zaizhang, L.

    1985-01-01

    In order to obtain RE ferrosilicon alloy with good quality and competitive price, it is essential that proper choice of raw materials, processing technology and equipments should be made based on the characteristics of Bai-Yun-Ebo mineral deposits. Experimental work and actual production practice indicate that pyrometallurgical method is suitable for the extraction and isolation of the rare earths and comprehensive utilization of the metal values contained in the feed material is capable of reducing cost of production of RE ferrosilicon alloy. In the Bai-Yun-Ebo deposit, the fluorite type medium lean ore (with respect to iron content) makes a reserve of considerable size. The average content of the chief constituents are given

  8. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  9. Progress for reducing desorption by an alloy of a rare gas, formed by transmutation of an element of the alloy, and alloy thereby obtained

    International Nuclear Information System (INIS)

    Bach, Pierre.

    1980-01-01

    The invention concerns a process for reducing the desorption by an alloy of a rare gas formed by transmutation of an element of the alloy. This alloy can exhibit one or more phases according to the concentration of the transmutable element obtained in this way. The applications examplified are non-restrictive. Example 1 - Very long life tritiated targets for sealed neutron tubes working in pulses. These targets are employed for generating neutrons according to reaction T (d, n) He 4 . Example 2 - Continuous long duration operation tritiated targets for sealed tube neutron generators. These targets are subjected to intense and continuous bombardment by deuterium ions. The tritium bombarded in this manner changes into helium 4 that tends to degas from the target. This case is like example 1, save that the spontaneous formation of helium 3 or the induced formation of helium 4 have a different time scale [fr

  10. Informatics Aided Design for Alloys

    Science.gov (United States)

    2009-02-28

    alloying discoveries/ predictions of new ternary cobalt based alloys that can have improved properties from conventional nickel based superalloys ...Using this approach we have proposed new ternary alloy additions for binary cobalt based intermetallics. Through comparison with some recent...that are even better than nickel base superalloys . This strategy has also been extended to the development of new type of design maps that identify

  11. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei

    2003-01-01

    Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties and the ......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....

  12. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  13. Aluminum Alloy 7050 Extrusions.

    Science.gov (United States)

    1977-03-01

    tooling used in the 25-inch diameter casting trials at the laboratory was transferred to Lafayette Works and installed at a ladle casting station. The...for the laboratory casting trials was transferred to Alcoa’s Lafayette Works and installed on a ladle pour casting unit. After some minor adjustments...Fatigue Alloy Compressive Modulus of Elasticity Crack Propagation Ingot Fabricating Stress-Strain Stress-Corrosion Casting Heat

  14. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  15. Novel Concepts for Damage-Resistant Alloys in Next Generation Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Bruemmer; Peter L. Andersen; Gary Was

    2002-12-27

    The discovery of a damage-resistant alloy based on Hf solute additions to a low-carbon 316SS is the highlight of the Phase II research. This damage resistance is supported by characterization of radiation-induced microstructures and microchemistries along with measurements of environmental cracking. The addition of Hf to a low-carbon 316SS reduced the detrimental impact of radiation by changing the distribution of Hf. Pt additions reduced the impact of radiation on grain boundary segregation but did not alter its effect on microstructural damage development or cracking. Because cracking susceptibility is associated with several material characteristics, separate effect experiments exploring strength effects using non-irradiated stainless steels were conducted. These crack growth tests suggest that irradiation strength by itself can promote environmental cracking. The second concept for developing damage resistant alloys is the use of metastable precipitates to stabilize the microstructure during irradiation. Three alloys have been tailored for evaluation of precipitate stability influences on damage evolution. The first alloy is a Ni-base alloy (alloy 718) that has been characterized at low neutron irradiation doses but has not been characterized at high irradiation doses. The other two alloys are Fe-base alloys (PH 17-7 and PH 17-4) that have similar precipitate structures as alloy 718 but is more practical in nuclear structures because of the lower Ni content and hence lesser transmutation to He.

  16. Corrosion behaviour of alloy 31 - UNS N08031 - under conditions of oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Kloewer, J. [ThyssenKrupp VDM France SARL, Rueil-Malmaison (France); Schlerkmann, H.; Poepperling, R. [Mannesmann Forschungsinstitut, Duisburg (Germany)

    2002-10-01

    The corrosion behaviour of alloy 31 (UNS N08031-31Ni-27Cr-6.5Mo-1.2Cu-0.2N-bal.Fe) was tested in laboratory and field tests in seawater with and without additions of CO{sub 2} and/or H{sub 2}S in slow strain rate tests, and in SSC (Sulphide Stress Corrosion) tests according to NACE MR0175. The results demonstrate a high resistance of alloy 31 to localised corrosion. Due to the high chromium and molybdenum concentration, its resistance to pitting and crevice corrosion in chloride-contaminated seawater is significantly higher than that of alloy 28 and alloy 825 and it equals that of typical nickel base alloys like alloy 625. Alloy 31 is not sensitive to chloride-induced stress corrosion cracking, either with or without H{sub 2}S, or sulphide stress cracking. Alloy 31 is approved for sour gas applications up to LEVEL VI in NACE MR0175. The combination of properties makes alloy 31 an attractive choice for components in oil and gas production including wirelines, umbilicals, tubing, piping and topside application. (orig.)

  17. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  18. Mechanical properties of martensitic alloy AISI 422

    International Nuclear Information System (INIS)

    Huang, F.H.; Hu, W.L.; Hamilton, M.L.

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs

  19. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  20. Mechanical alloying nanotechnology, materials science and powder metallurgy

    CERN Document Server

    El-Eskandarany, M Sherif

    2015-01-01

    This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new a

  1. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  2. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  3. Strength and deformation behaviour of magnesium die casting alloys

    International Nuclear Information System (INIS)

    Regener, D.; Schick, E.; Wagner, I.; Heyse, H.

    1999-01-01

    Modern magnesium die casting alloys are used for the manufacturing of automotive parts due to their low density, fortunate mechanical and physical properties as well as good castability and machinability. However, in comparison to other materials the automotive application of these alloys is still low. The reasons for this are among other things the shortage of relevant materials values, insufficient knowledge concerning the correlation between the microstructure and the mechanical properties as well as deficits in relation to the die cast technology. This paper investigates the influence of the microstructure and manufacture-induced defects like micro-shrinkage and gas pores on the strength and deformability of the alloys AZ91, AM50 and AE42 under tensile and bend loading. To characterise the microstructure in the dependence on the wall thickness, the investigations are mainly carried out using in situ specimens obtained from die castings. (orig.)

  4. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  5. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  6. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  7. Long-term effects of Ag-containing alloys on mucous tissue present in biopsy samples.

    Science.gov (United States)

    Aoyagi, Hidekazu; Katagiri, Masataka

    2004-09-01

    The aim of this study was to investigate the long-term effects of alloys containing silver (mainly Ag-Sn alloy) on oral mucous tissue. We observed biopsy tissue specimens from patients diagnosed as having amalgam tattoo and/or metal pigmentation by light and electron microscopy and electron-probe microanalysis (EPMA). In most cases, Ag-Sn alloy was present in the tissue but it could not be confirmed if the alloy originated from amalgam. Distributions of both Ag-S and Ag-Sn have typical patterns. Most Ag forms Ag2S and is stably deposited in three patterns along the collagen, basement membrane, and fibrous cells without inducing any host reaction. On the other hand, Sn forms large granules that contain Ag, S, C, N, P, and Ca, and is in soft state in the tissue. Tissue reactions to the alloy become weaker as time passes.

  8. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  9. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  10. Characterization of mechanical properties of pseudoelastic shape memory alloys under harmonic excitation

    Science.gov (United States)

    Böttcher, J.; Jahn, M.; Tatzko, S.

    2017-12-01

    Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.

  11. Fracture mechanics of pseudoelastic NiTi alloys: review of the research activities carried out at University of Calabria

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2013-01-01

    Full Text Available This paper reports a brief review of the research activities on fracture mechanics of nickel-titanium based shape memory alloys carried out at University of Calabria. In fact, this class of metallic alloys show a unusual fracture response due to the reversible stress-induced and thermally phase transition mechanisms occurring in the crack tip region as a consequence of the highly localized stresses. The paper illustrates the main results concerning numerical, analytical and experimental research activities carried out by using commercial NiTi based pseudoelastic alloys. Furthermore, the effect of several thermo-mechanical loading conditions on the fracture properties of NiTi alloys are illustrated.

  12. Compact Models for Defect Diffusivity in Semiconductor Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Lee, Stephen R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department

    2017-09-01

    Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE

  13. SCC behaviour of nickel based alloys in the nuclear industry

    International Nuclear Information System (INIS)

    Gras, J.M.

    1993-08-01

    SCC of nickel-based alloys (alloys 600, X-750, 182, 82...) is of great concern to the nuclear power industry. Misjugement on the susceptibility of the alloys to SCC and underestimation of the actual stress level caused a world-wide economical problem for the nuclear reactors. An up-to-date review of the phenomenon is presented on the basis of literature data, with an emphasis on the influence of mechanical, microstructural and chemical parameters on alloy 600 SCC in PWR's environments. The effect of stress and strain rate on crack initiation and propagation is also considered. Further to this survey, the contribution of mechanisms likely to be involved (slip dissolution model, hydrogen-induced-cracking, corrosion-deformation interactions) is examined. Better knowledge of the effect of parameters, such as temperature, stress and the alloy structure, makes it possible to predict fairly well the initiation and propagation time of the cracks and to evaluate the remedial actions to be taken. (author). 41 refs., 8 figs

  14. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  15. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  16. Neodymium alloys and their fabrication process

    International Nuclear Information System (INIS)

    Seon, F.; Boudot, B.

    1985-01-01

    Neodymium alloys, particularly neodymium-iron alloys, are prepared by reduction of a neodymium halogenide, preferentially neodymium fluoride by a reducing metal (e.g. Ca) with the addition of the metal M to introduce in the final alloy. From these alloys metallic neodymium can be obtained [fr

  17. Interaction Of Hydrogen With Metal Alloys

    Science.gov (United States)

    Danford, M. D.; Montano, J. W.

    1993-01-01

    Report describes experiments on interaction of hydrogen with number of metal alloys. Discusses relationship between metallurgical and crystallographic aspects of structures of alloys and observed distributions of hydrogen on charging. Also discusses effect of formation of hydrides on resistances of alloys to hydrogen. Describes attempt to correlate structures and compositions of alloys with their abilities to resist embrittlement by hydrogen.

  18. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  19. Amorphous Semiconductor Alloys

    Science.gov (United States)

    Madan, Arun

    1985-08-01

    Amorphous silicon (a-Si) based alloys have attracted a considerable amount of interest because of their applications in a wide variety of technologies. However, the major effort has concentrated on inexpensive photovoltaic device applications and has moved from a laboratory curiosity in the early 1970's to viable commercial applications in the 1980's. Impressive progress in this field has been made since the group at University of Dundee demonstrated that a low defect, device quality hydrogenated amorphous silicon (a-Si:H) 12 material could be produced using the radio frequency (r.f.) glow discharge in SiH4 gas ' and that the material could be doped n- and p-type.3 These results spurred a worldwide interest in a-Si based alloys, especially for photovoltaic devices which has resulted in a conversion efficiency approaching 12%. There is now a quest for even higher conversion efficiencies by using the multijunction cell approach. This necessitates the synthesis of new materials of differing bandgaps, which in principle amorphous semiconductors can achieve. In this article, we review some of this work and consider from a device and a materials point of view the hurdles which have to be overcome before this type of concept can be realized.

  20. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    Science.gov (United States)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  1. Formation behavior of BexZn1−xO alloys grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chen, Mingming; Zhu, Yuan; Su, Longxing; Zhang, Quanlin; Chen, Anqi; Ji, Xu; Xiang, Rong; Gui, Xuchun; Wu, Tianzhun; Pan, Bicai; Tang, Zikang

    2013-01-01

    We report the phase formation behavior of Be x Zn 1−x O alloys grown by plasma-assisted molecular beam epitaxy. We find the alloy with low- and high-Be contents could be obtained by alloying BeO into ZnO films. X-ray diffraction measurements shows the c lattice constant value shrinks, and room temperature absorption shows the energy band-gap widens after Be incorporated. However, the alloy with intermediate Be composition are unstable and segregated into low- and high-Be contents BeZnO alloys. We demonstrate the phase segregation of Be x Zn 1−x O alloys with intermediate Be composition resulted from large internal strain induced by large lattice mismatch between BeO and ZnO.

  2. XHM-1 alloy as a promising structural material for water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Solonin, M.I.; Alekseev, A.B.; Kazennov, Yu.I.; Khramtsov, V.F.; Kondrat'ev, V.P.; Krasina, T.A.; Rechitsky, V.N.; Stepankov, V.N.; Votinov, S.N.

    1996-01-01

    Experience gained in utilizing austenitic stainless steel components in water-cooled power reactors indicates that the main cause of their failure is the steel's propensity for corrosion cracking. In search of a material immune to this type of corrosion, different types of austenitic steels and chromium-nickel alloys were investigated and tested at VNIINM. This paper presents the results of studying physical and mechanical properties, irradiation and corrosion resistance in a water coolant at <350 C of the alloy XHM-1 as compared with austenitic stainless steels 00Cr16Ni15Mo3Nb, 00Cr20Ni25Nb and alloy 00Cr20Ni40Mo5Nb. Analysis of the results shows that, as distinct from the stainless steels studied, the XHM-1 alloy is completely immune to corrosion cracking (CC). Not a single induced damage was encountered within 50 to 350 C in water containing different amounts of chlorides and oxygen under tensile stresses up to the yield strength of the material. One more distinctive feature of the alloy compared to steels is that no change in the strength or total elongation is encountered in the alloy specimens irradiated to 32 dpa at 350 C. The XHM-1 alloy has adequate fabricability and high weldability characteristics. As far as its properties are concerned, the XHM-1 alloy is very promising as a material for water-cooled fusion reactor components. (orig.)

  3. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  4. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  5. Lightweight Multifunctional Linear Cellular Alloy Ballistic Structures

    Science.gov (United States)

    2006-04-26

    densities of 10, 15 and 20 % with the dimensions shown in Table 1. The alloy compositions were high strength maraging steel (M200) and Super Invar ... alloys made from LCA processing3 are shown in Table 3. Super Invar in the as-reduced state is a ductile (25-30%) austenitic alloy . When cooled to...Final Report for Lightweight Multifunctional Linear Cellular Alloy Ballistic Structures from Structured Alloys , Inc. Joe K

  6. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system

    International Nuclear Information System (INIS)

    Chen, Y.-L.; Hu, Y.-H.; Hsieh, C.-A.; Yeh, J.-W.; Chen, S.-K.

    2009-01-01

    The competition between the constituent elements of the Cu 0.5 NiAlCoCrFeTiMo alloy system during mechanical alloying was investigated and ranked with their alloying rates in getting alloyed in the mixture. By using XRD analysis, EDS mapping, extended X-ray absorption fine structure technique, and synchrotron radiation diffraction, the alloying sequence for the present alloy system is determined as Al → Cu → Co → Ni → Fe → Ti → Cr → Mo in the order of decreasing alloying rate. The alloying rate is found to correlate best with the melting point of the elements among metallurgical factors. The mechanism for this correlation is explained through the effect of melting point on solid-state diffusion and mechanical disintegration which are critical for the final alloying. This finding is valuable in predicting the alloying sequence of elements, and thus the phase evolution in multi-component alloys during mechanical alloying.

  7. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  8. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements on t...

  9. A coupled model between hydrogen diffusion and mechanical behavior of superelastic NiTi alloys

    Science.gov (United States)

    Elkhal Letaief, W.; Hassine, T.; Gamaoun, F.

    2017-07-01

    The undesirable effects of hydrogen show significant alterations to the thermomechanical behavior of superelastic NiTi shape memory alloys. Through experimental results, the presence of hydrogen induces a delay of forward transformation. Added to that, hydrogen-induced expansion is clearly noticed. We also remark a loss of superelasticity. These effects occur according to the hydrogen absorption by the NiTi alloy. The aim of this paper is to develop a coupled diffusion-mechanical model of shape memory alloys, which regards the aforesaid effects of hydrogen on the thermomechanical behavior and the transformation mechanism of NiTi alloys. The model is derived from the relationship between the chemical potential of hydrogen and the thermodynamics laws. Furthermore, we introduce a special transformation hardening function that predicts stress-strain behavior well during the transformation plateau. The model is implemented in ABAQUS finite element analysis software through the UMAT and UMATHT subroutines. The simulation results present good concordance with the experiments.

  10. Corrosion kinetics of alloy Ni-22Cr-13Mo-3W as structural material in high level nuclear waste containers

    International Nuclear Information System (INIS)

    Rodriguez, Martin A.

    2004-01-01

    Alloy Ni-22Cr-13Mo-3W (also known as C-22) is one of the candidates to fabricate high level nuclear waste containers. These containers are designed to maintain isolation of the waste for a minimum of 10,000 years. In this period, the material must be resistant to corrosion. If the containers were in contact with water, it is assumed that alloy C-22 may undergo three different corrosion mechanisms: general corrosion, localized corrosion and stress corrosion cracking. This thesis discusses only the first two types of degradation. Electrochemical techniques such as amperometry, potentiometry, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) and non-electrochemical techniques such as microscopic observation, X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS) were applied to study the corrosion behavior of alloy C-22 in 1 M NaCl, 25 C degrees saturated NaF (approximately 1 M) and 0,5 M NaCl + 0,5 M NaF solutions. Effects of temperature, pH and alloy thermal aging were analyzed. The corrosion rates obtained at 90 C degrees were low ranging from 0.04 μm/year to 0.48 μm /year. They increased with temperature and decreased with solution pH. Most of the impedance measurements showed a simply capacitive behavior. A second high-frequency time constant was detected in some cases. It was attributed to the formation of a nickel oxide and/or hydroxide at potentials near the reversible potential for this reaction. The active/passive transition detected in some potentiodynamic polarization curves was attributed to the same process. The corrosion potential showed an important increase after 24 hours of immersion. This increase in the corrosion potential was associated with an improvement of the passive film. The corrosion potential was always lower than the re-passivation potential for the corresponding media. The trans passive behavior of alloy C-22 was mainly influenced by temperature and solution chemistry. A clear trans passive peak

  11. In vitro cytotoxicity of metallic ions released from dental alloys.

    Science.gov (United States)

    Milheiro, Ana; Nozaki, Kosuke; Kleverlaan, Cornelis J; Muris, Joris; Miura, Hiroyuki; Feilzer, Albert J

    2016-05-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm-1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions.

  12. Laser surface alloying on aluminum and its alloys: A review

    Science.gov (United States)

    Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong

    2018-01-01

    Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.

  13. Alloying and Casting Furnace for Shape Memory Alloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  14. The Primary Water Stress Corrosion Cracking Mechanism of Alloy 600 Steam Generator Tubes: Materials Perspective

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kim, Sungsoo; Kim, Daewhan

    2013-01-01

    The problem is that intergranular (IG) cracking of austenitic Fe-Cr-Ni alloys occurs even in Ar with no corrosion or oxidation of grain boundaries being accompanied. This fact suggests that IG cracking has nothing to do with grain boundary (GB) corrosion or oxidation. This fact cast a doubt about the current notion that applied stresses are required to initiate IG cracking or PWSCC. These facts indicate that PWSCC is closely related to internal factors of materials, not to external factors such as grain boundary oxidation or corrosion or applied stresses. Given that austenitic alloys including Alloy 600 are a kind of solid solution alloys with alloying elements dissolved in the matrix as solutes, ordering of alloying elements of Fe, Cr and Ni occur in Alloy 600 during exposure to reactor operating condition. We suggest that atomic ordering is the main internal factor to govern PWSCC or IG cracking of austenitic Fe-Cr-Ni alloys because lattice contraction due to atomic ordering induces internal stresses which are large enough to cause GB cracking. The aim of this work is to provide experimental evidence for our suggestion. To this end, water quenching (WQ) or air cooling (AC) or furnace cooling (FC) was applied respectively to Alloy 600 after solution treatment at 1095 .deg. C for 0.5h to make Alloy 600 with either disorder (DO) or different degrees of short range order, respectively. Alloy 600 showed lattice contraction upon aging at 400 .deg. C whose extent increased with increasing cooling rate: the water-quenched (WQ) Alloy 600 exhibited the largest amount of lattice contraction than the furnace-cooled (FC) or air-cooled (AC) one. Yonezawa's experiments have indeed shown that the WQ-Alloy 600 with the largest amount of lattice contraction upon aging at 400 .deg. C is the most susceptible to PWSCC when compared to the AC- or FC-Alloy 600 with the lesser amount of lattice contraction. These observations demonstrate, for the first time, that PWSCC of Alloy 600 is

  15. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-08-11

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

  16. Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor

    International Nuclear Information System (INIS)

    Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.

    1993-01-01

    The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)

  17. Local order dynamics: its application to the study of atomic mobility, of point defects in crystalline alloys, and of structural relaxation in amorphous alloys

    International Nuclear Information System (INIS)

    Balanzat, Emmanuel

    1983-01-01

    This research thesis addressed the study of the atomic mobility mechanism and of the atom movement dynamics in the case of crystalline alloys and of amorphous alloys. The first part is based on a previous study performed on an α-Cu 70 -Zn 30 crystalline alloy, and addresses the case of an α-Au 70 -Ni 30 alloy. The specificity of this case relies in the fact that the considered solid solution is metastable and susceptible to de-mixing in the considered temperature range. This case of off-equilibrium crystalline alloy is at the crossroad between steady crystalline alloys and metallic glasses which are studied in the second part. The third part addresses the irradiation of metallic amorphous alloys by fast particles (neutrons or electrons). The author tried to characterise atomic defects induced by irradiation and to compare them with pre-existing ones. He studied how these defects may change atomic mobility, and, more generally, to which extent the impact of energetic particles could modify local order status

  18. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75 Alloys

    Directory of Open Access Journals (Sweden)

    Amel Laref

    2017-07-01

    Full Text Available Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75 ternary alloys. In order to perceive viable half-metallic (HM states and unprecedented diluted magnetic semiconductors (DMSs such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA. In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level (EF in the spin–down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga1−xMnxP alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  19. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1-xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys.

    Science.gov (United States)

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-07-07

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  20. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys

    Science.gov (United States)

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-01-01

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level (EF) in the spin–down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga1−xMnxP alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices. PMID:28773127

  1. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    Science.gov (United States)

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.

  2. Hydride phase equilibria in V-Ti-Ni alloy membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Michael D., E-mail: michael.dolan@csiro.au [CSIRO Energy, Pullenvale, Queensland (Australia); Kochanek, Mark A.; Munnings, Christopher N. [CSIRO Energy, Pullenvale, Queensland (Australia); McLennan, Keith G. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland (Australia); Viano, David M. [CSIRO Energy, Pullenvale, Queensland (Australia)

    2015-02-15

    Highlights: • V{sub 70}Ti{sub 15}Ni{sub 15} (at.%) comprises a vanadium solid solution plus NiTi and NiTi{sub 2}. • Dissolution of Ni and Ti into vanadium solid solution increase critical temperature for BCT β-hydride formation. • Three V{sub SS} hydride phase fields were observed: BCC, BCC + BCT, BCT + BCT. • NiTi and NiTi{sub 2} phases do not stabilise the alloy against brittle failure. - Abstract: Vanadium is highly permeable to hydrogen which makes it one of the leading alternatives to Pd alloys for hydrogen-selective alloy membrane applications, but it is prone to brittle failure through excessive hydrogen absorption and transitions between the BCC α and BCT β phases. V-Ti-Ni alloys are a prospective class of alloy for hydrogen-selective membrane applications, comprising a highly-permeable vanadium solid solution and several interdendritic Ni-Ti compounds. These Ni-Ti compounds are thought to stabilise the alloy against brittle failure. This hypothesis was investigated through a systematic study of V{sub 70}Ti{sub 15}Ni{sub 15} by hydrogen absorption and X-ray diffraction under conditions relevant to membrane operation. Dissolved hydrogen concentration in the bulk alloy and component phases, phase identification, thermal and hydrogen-induced expansion, phase quantification and hydride phase transitions under a range of pressures and temperatures have been determined. The vanadium phase passes through three different phase fields (BCC, BCC + BCT, BCT + BCT) during cooling under H{sub 2} from 400 to 30 °C. Dissolution of Ni and Ti into the vanadium phase increases the critical temperature for β-hydride formation from <200 to >400 °C. Furthermore, the Ni-Ti phases also exhibit several phase transitions meaning their ability to stabilise the alloy is questionable. We conclude that this alloy is significantly inferior to V with respect to its stability when used as a hydrogen-selective membrane, but the hydride phase transitions suggest potential

  3. Micro structural characterization of two way memory effect obtained by stabilised stress induced martensite in a smart Cu base shape memory alloys. Caracterizacion estructural del efecto doble memoria de forma obtenido mediante martensita estabilizada en aleaciones inteligentes base cobre

    Energy Technology Data Exchange (ETDEWEB)

    Guilemany, J.M.; Fernandez, J. (Departamento de Ingenieria Quimica Metalurgia Facultad de Quimica, Barcelona (Spain))

    1994-01-01

    The processes that take place during the training of a smart CuZnAlCo shape memory alloy to get Two Way Memory Effect (TWME) have been studied by scanning and transmission electron microscopy. The results show gamma precipitation during thermomechanical training. This process is facilitated by previous precipitation of cobalt which supersaturates the matrix. The presence of these gamma precipitates gives rise to local reduction of the solute content in the matrix involving a locally increase of the martensitic transformation M[sub s], stabilizing the martensite plates and thus providing TWME. Author (19 refs.)

  4. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys

    OpenAIRE

    Amel Laref; Abeer AlMudlej; Slimane Laref; Jun Tao Yang; Yong-Chen Xiong; Shi Jun Luo

    2017-01-01

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga1?x Mn x P (x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states ...

  5. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  6. Microstructure and mechanical properties of Al-xMg alloys processed by room temperature ECAP

    OpenAIRE

    Chen, Yongjun; Chai, YC; Roven, Hans Jørgen; Subbarayan, Sapthagireesh; Yu, Yingda; Hjelen, Jarle

    2012-01-01

    Microstructure development and mechanical properties of Al–xMg alloys (x = 0, 1, 5–10 wt%), processed by ECAP at room temperature, have been investigated. The results show that the microstructures of Al–xMg alloys are refined by the interaction of shear bands and their increase in number during ECAP. The addition of magnesium to aluminum promotes the grain refinement. Misorientation increase induced by particles along grain boundaries is observed by using high resolution EBSD. As ECAP strain ...

  7. Overview of research trends and problems on Cr-Mo low alloy steels for pressure vessel

    International Nuclear Information System (INIS)

    Chi, Byung Ha; Kim, Jeong Tae

    2000-01-01

    Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding

  8. The pseudoelasticity and the shape memory effect in CoNiAl alloys

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Jarošová, Markéta; Jurek, Karel; Heczko, Oleg

    2014-01-01

    Roč. 21, č. 1 (2014), s. 43-48 ISSN 1335-0803 R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional support: RVO:68378271 Keywords : shape memory alloys * co-alloys * metallography * martensitic transition * stress induced martensite Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Stress Relaxation Of Superelastic Shape Memory Alloy Under Bending And Torsional Load

    Directory of Open Access Journals (Sweden)

    Sakib Tanvir

    2017-04-01

    Full Text Available Stress Relaxation of Superelastic Shape memory NiTi Alloy under bending and torsion is uncommon in literature. Therefore experimental set up has been devised and test results are obtained for superelastic SMA.Unlike the other common engineering materials superelastic SMA it gives dramatic reduction in stress. In this paper therefore results of stress relaxation of superelastic shape memory alloy under bending and torsion are presented graphically and interpreted in terms of stress induced martensitic transformation.

  10. Enhanced stress corrosion cracking resistance and electrical conductivity of a T761 treated Al-Zn-Mg-Cu alloy thin plate

    Science.gov (United States)

    Chen, Xu; Zhai, Sudan; Gao, Di; Liu, Ye; Xu, Jing; Liu, Yang

    2018-01-01

    The stress corrosion cracking (SCC) behavior, electrical conductivity and mechanical properties of an Al-Zn-Mg-Cu alloy pre-stretched thin plate for wing skin were researched in this paper. The microstructures and SCC fracture surfaces of the alloy treated at different conditions were characterized by transmission electron microscopy, optical microscopy and scanning electron microscopy. Results indicated that with the increasing of aging temperature, the electrical conductivity and the elongation increased greatly, while the strength decreased gradually which were closely associated with the type and morphology of the precipitates. Compared with the T6 treated alloy, the SCC resistance of the T761 treated Al-Zn-Mg-Cu alloy was improved greatly. The SCC behavior of the T6 treated alloy was dominated by anodic dissolution theory, whereas the hydrogen induced cracking controlled the fracture behavior of the T761 treated alloy which was influenced by the morphology of grain boundary precipitates in this investigated alloy.

  11. Manufacturing of High Entropy Alloys

    Science.gov (United States)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  12. Magnetoimpedance effect in Nanoperm alloys

    International Nuclear Information System (INIS)

    Hernando, B.; Alvarez, P.; Santos, J.D.; Gorria, P.; Sanchez, M.L.; Olivera, J.; Perez, M.J.; Prida, V.M.

    2006-01-01

    The influence of isothermal annealing (1 h at 600 deg. C in Ar atmosphere) on the soft magnetic properties and magnetoimpedance (MI) effect has been studied in ribbons of the following Nanoperm alloys: Fe 91 Zr 7 B 2 , Fe 88 Zr 8 B 4 , Fe 87 Zr 6 B 6 Cu 1 and Fe 8 Zr 1 B 1 . A maximum MI ratio of about 27% was measured for the nanocrystalline alloy Fe 87 Zr 6 B 6 Cu 1 at a driving frequency of 0.2 MHz. The thermal annealing led to magnetic softening for this alloy, while a hardening is observed for the Fe 8 Zr 1 B 1 alloy

  13. Castable hot corrosion resistant alloy

    Science.gov (United States)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  14. The microstructures of ordered alloys

    International Nuclear Information System (INIS)

    Sarma, G.M.K.; Ranganathan, S.

    1977-01-01

    The phenomenon of ordering in substitutional alloys confers special properties on them by introducing various types of structures and structural defects. Some of the important structural defects (translational and rotational antiphase boundaries, dissociated antiphase boundaries and superdislocations) and their observation by various microscopical methods, with particular emphasis on the applications of the electron microscope are described with illustrations drawn from the studies on nickel-molybdenum and nickel-tungsten alloys. (M.G.B.)

  15. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Yussouff, M.

    1983-06-01

    Starting from the augmented space formalism by one of us, and the use of the Ward identity and Bethe Salpeter equation, a complete formalism for the calculation of the electrical conductivity in tight-binding models of random binary alloys has been developed. The formalism is practical in the sense that viable calculations may be carried out with its help for realistics models of alloy systems. (author)

  16. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Thakur, P.K.; Yussouff, M.

    1984-12-01

    Based on the augmented space formalism introduced by one of us and the use of the Ward identity and the Bethe-Sapeter equation, a formalism has been developed for the calculation of electrical conductivity for random alloys. A simple application is made to a model case, and it is argued that the formalism enables us to carry out viable calculations on more realistic models of alloys. (author)

  17. Derivative spectrophotometry of cobalt alloys

    International Nuclear Information System (INIS)

    Spitsyn, P.K.

    1985-01-01

    The method of derivative spectrophotometry is briefly described, and derivative absorption spectra are presented for samarium, cobalt, and commercial Sm-Co alloys. It is shown that the use of derivative spectrophotometry not only improves the accuracy and selectivity of element determinations but also simplifies the analysis of alloys. Results of a statistical evaluation of the metrological characteristics of the analytical procedure described here are presented. 8 references

  18. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Science.gov (United States)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M. I.; Hou, M.

    2009-09-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  19. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M.I.; Hou, M.

    2009-01-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  20. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be; Bonny, G. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Laboratory of Theoretical Physics, Universiteit Gent, Proeftuinstraat 86, B-9000 Gent (Belgium); Pascuet, M.I. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); CAC-CNEA, Departamento de Materiales, Avda. Gral. Paz 1499, 1650 San Martin, Pcia. Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Hou, M. [Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium)

    2009-09-15

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  1. Skin contact with gold and gold alloys.

    Science.gov (United States)

    Rapson, W S

    1985-08-01

    3 types of reaction to gold merit discussion. First, there is the effect known as black dermographism, in which stroking with certain metals immediately produces well-defined black lines on the skin. Some gold alloys are amongst such metals. The evidence indicates that the effect is the result of impregnation of the skin with black metallic particles generated by mechanical abrasion of the metal by contaminants of the skin. There is no positive and unequivocal evidence of the ability of metals to mark uncontaminated skin so rapidly that it is possible to write upon it. Secondly there are the 2 related phenomena of the wear of gold jewelry, and the susceptibility to certain individuals to blackening of the skin where it is in contact with such jewelry. The occurrence of smudge, as it is often called, is not very common, but is brought to the attention of most jewelers from time to time. In extreme cases it may make it embarrassing for the person concerned to wear metallic jewelry. It would appear as if gold smudge also results mainly from mechanical abrasion of jewelry, though this may be aided and/or supplemented in some instances by corrosion of gold or gold alloy induced by certain components of the sweat. Finally, there is the question of true allergic responses to contact of the skin with gold and its alloys. Judging from the very few cases which have been recorded, such responses are extremely rare. Some recent observations on the reactions of metallic gold with amino acids and of reaction to contact of the skin with gold on the part of rheumatoid arthritis patients undergoing gold therapy, are, however, relevant in this connection.

  2. Microstructural studies on Alloy 693

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R.; Dutta, R.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, P., E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Mater. Sci., Indian Institute of Technology Bombay, Mumbai 400 072 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni{sub 3}Al precipitates distributed within austenitic matrix. M{sub 6}C primary carbide, M{sub 23}C{sub 6} type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni{sub 3}Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  3. Wettability of magnesium based alloys

    Science.gov (United States)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  4. Material synthesis and hydrogen storage of palladium-rhodium alloy.

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, Enrique J. (University of California, Davis); Yang, Nancy Y. C.; Ong, Markus D. (Whithworth University, Spokane, WA)

    2011-08-01

    Pd and Pd alloys are candidate material systems for Tr or H storage. We have actively engaged in material synthesis and studied the material science of hydrogen storage for Pd-Rh alloys. In collaboration with UC Davis, we successfully developed/optimized a supersonic gas atomization system, including its processing parameters, for Pd-Rh-based alloy powders. This optimized system and processing enable us to produce {le} 50-{mu}m powders with suitable metallurgical properties for H-storage R&D. In addition, we studied hydrogen absorption-desorption pressure-composition-temperature (PCT) behavior using these gas-atomized Pd-Rh alloy powders. The study shows that the pressure-composition-temperature (PCT) behavior of Pd-Rh alloys is strongly influenced by its metallurgy. The plateau pressure, slope, and H/metal capacity are highly dependent on alloy composition and its chemical distribution. For the gas-atomized Pd-10 wt% Rh, the absorption plateau pressure is relatively high and consistent. However, the absorption-desorption PCT exhibits a significant hysteresis loop that is not seen from the 30-nm nanopowders produced by chemical precipitation. In addition, we observed that the presence of hydrogen introduces strong lattice strain, plastic deformation, and dislocation networking that lead to material hardening, lattice distortions, and volume expansion. The above observations suggest that the H-induced dislocation networking is responsible for the hysteresis loop seen in the current atomized Pd-10 wt% Rh powders. This conclusion is consistent with the hypothesis suggested by Flanagan and others (Ref 1) that plastic deformation or dislocations control the hysteresis loop.

  5. Alloy dissolution in argon stirred steel

    Science.gov (United States)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  6. Electronic and transport properties of BCN alloy nanoribbons

    Science.gov (United States)

    Darvishi Gilan, Mahdi; Chegel, Raad

    2018-03-01

    The dependence of the carbon (C) concentration on the electronic and transport properties of boron carbonitride (BCN) alloy nanoribbons have been investigated using surface Green's functions technique and random Hamiltonian model by considering random hopping parameters including first and second nearest neighbors. Our calculations indicate that substituting boron (nitrogen) sites with carbon atoms induces a new band close to conduction (valence) band and carbon atoms behave like a donor (acceptor) dopants. Also, while both nitrogen and boron sites are substituted randomly by carbon atoms, new bands are induced close to both valence and conduction bands. The band gap decreases with C substituting and the number of charge carriers increases in low bias voltage. Far from Fermi level in the higher range of energy, transmission coefficient and current of the system are reduced by increasing the C concentration. Based on our results, tuning the electronic and transport properties of BCN alloy nanoribbons by random carbon dopants could be applicable to design nanoelectronics devices.

  7. Temperature profiles of low-temperature alloy irradiated by pulsed ion beams

    International Nuclear Information System (INIS)

    Zhang, Guoliang; Wang, Boyu; Shi, Lei; Tan, Xiaohua; Xiang, Wei

    2013-01-01

    While alloy materials is irradiated by the high-intensity pulsed ion beams (HIPIB), the temperature distributions surrounding the primary heated regions used numerical analysis has been studied extensively over the past few years. Compared with the temperature distributions induced by HIPIB, few information is known about the temperature distributions on alloy materials used in practice as it is irradiated by the pulsed ion beams which possess characteristics of lower energy density and longer pulse width. The main reason is that the interaction between the alloy materials and the pulsed ion beams is only a few microseconds. It is difficult to detect temperature changes on alloy materials used in practice through traditional test. Ablation, melting, defects of microstructure on alloy materials are always used to validate the results of numerical analysis about the temperature distributions indirectly. In order to evaluate the temperature distributions directly, the dynamic thermal-dependent temperature behavior of the low-temperature alloy irradiated by the pulsed ion beams is investigated by experimental observation and finite element method (FEM) simulation in this paper. The temperature profiles generated from the interaction of μs-size between the alloy materials and the pulsed ion beams are evaluated by coupling characteristics of the low melting point and the pulsed ion beams. The FEM simulation results of the maximum temperature agree well with the experimental results on the surface of the low-temperature alloy. Results gained show that the maximum temperature on the surface of the low-temperature alloy irradiated by the pulsed ion beams can be applied to deduce the maximum temperature on alloy materials used in practice

  8. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...... and hydrogen uptake points of view, to the above-mentioned alloys. This alloy is of particular interest because the addition of MgO leads to no neutron penalty and the dispersion-strengthening entails the possibility of tailoring an alloy with the desired mechanical properties....

  9. Hot Corrosion Degradation of Metals and Alloys - A Unified Theory

    Science.gov (United States)

    1979-06-01

    of chromium, aluminum , molybdenum and tungsten constituted the principal materials studied. The hot corrosion attack of alloys has been found to...polished through 600 grit silicon carbide abrasive paper, ultrasonically agitated in ethylene trichloride , rinsed in ethyl alcohol and dried. SI I S- 4...Figure 3 show that the length of the initiation stage for hot corrosion induced by Na2SO4 in air is increased as the aluminum content of nickel

  10. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-09

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  11. Mechanisms affecting swelling in alloys with precipitates

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites; and preciwill come from waste wood available locally requiring minimal energy for recovery and transportation to the site. The applicant is strongly considering the use of a solar preheating unit anium southward as well as to deeper dened al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  12. A comparative study of enhanced electrochemical stability of tin–nickel alloy anode for high-performance lithium ion battery

    International Nuclear Information System (INIS)

    Guan, Dongsheng; Li, Jianyang; Gao, Xianfeng; Yuan, Chris

    2014-01-01

    Highlights: • Sn and Sn–Ni alloy nanoparticles are synthesized by chemical co-precipitation method. • Sn–Ni alloy particles show different phase structure and morphology from Sn particles. • Cyclic voltammetry reveals distinct redox reaction behaviors at Sn and alloy anodes. • Impedance analyses show better stability of alloy electrodes over prolonged cycling. - Abstract: Sn and Sn–Ni alloy nanoparticles are synthesized readily by co-precipitation method for their applications in Li-ion batteries. It is found that nickel not only affects the phase structure and morphology of the alloy, but also impacts Li–Sn alloying and dealloying behaviors. In Li-ion batteries, the alloy electrodes deliver stronger cycling stability than the pure Sn anode. In tests the former exhibits a final capacity of 228.5 mA h g −1 over 50 cycles, while the latter displays 14.3 mA h g −1 . Smaller current for battery cycles increases capacities of the alloys beyond 408.4 mA h g −1 . The mechanism of enhanced stability of Sn–Ni alloys is examined. Redox reaction characteristics and Li-ion transfer kinetics at these anodes after different cycles are investigated by cyclic voltammetry and electrochemical impedance spectroscopy, which are considered to associate with buffering effects of nickel and structural integrity of electrodes. Li–Sn alloying and dealloying reactions cause volume changes and induce stress that releases in the formation of tiny cracks within the particles. The cracks accelerate side reactions and decelerate charge transport, detrimental to the electrode stability. Nickel cushions the volume variations and reduces the stress and cracks at Sn–Ni alloy anodes to allow them to maintain better electrode integrity and smaller charge resistance, thus yielding their improved Li-ion intercalation stability during long-term cycling

  13. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  14. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system.

    Directory of Open Access Journals (Sweden)

    Lumei Liu

    Full Text Available Magnesium (Mg-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys' surface and simulated physiological environment using a microfluidic system. The degradation properties of Mg-based alloys WE43, AZ31, ZWEK-L, and ZWEK-C were evaluated in complete culture medium and their thrombosis potentials in platelet rich plasma, respectively. The results show that 1 physiological shear stress increased the corrosion rate and decreased platelets adhesion rate as compared to static immersion; 2 secondary phases and impurities in material composition induced galvanic corrosion, resulting in higher corrosion resistance and platelet adhesion rate; 3 Mg-based alloys with higher corrosion rate showed higher platelets adhesion rate. We conclude that a microfluidic-based in vitro system allows evaluation of biodegradation behaviors and platelets responses of Mg-based alloys under specific shear stress, and degradability is related to platelets adhesion.

  15. Effect of mechanical vibrations on the wear behavior of AZ91 Mg alloy

    Science.gov (United States)

    Chaturvedi, V.; Pandel, U.; Sharma, A.

    2018-02-01

    AZ91 Mg alloy is the most promising alloy used for structural applications. The vibration induced methods are effective and economic viable in term of mechanical properties. Sliding wear tests were performed on AZ91 Mg alloy using a pin-on- disc configuration. Wear rates were measured at 5 N and 10N at a sliding velocity of 1m/s for varied frequency within the range of 5- 25Hz and a constant amplitude of 2mm. Microstructures of worn surfaces and wear debris were characterized by field emission scanning electron microscopy (FESEM). It is observed that wear resistance of vibrated AZ91 alloy at 15Hz frequency ad 2mm amplitude was superior than cast AZ91 Mg alloy. Finer grain size and equiaxed grain shape both are important parameters for better wear resistance in vibrated AZ91 Mg alloys. FESEM analysis revealed that wear is considerably affected due to frictional heat generated by the relative motion between AZ91 Mg alloy and EN31 steel surface. No single mechanism was responsible for material loss.

  16. Crystallographic, hyperfine and magnetic characterization of a maraging-400 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alves, T. J. B.; Nunes, G. C. S. [Universidade Estadual de Maringá (Brazil); Sarvezuk, P. W. C. [Universidade Tecnológica Federal do Paraná (Brazil); Ivashita, F. F. [Universidade Estadual de Maringá (Brazil); Andrade, A. M. H. de [Universidade Federal do Rio Grande do Sul (Brazil); Viegas, A. [Universidade Federal de Santa Catarina (Brazil); Paesano, A., E-mail: andrea.paesano@pq.cnpq.br [Universidade Estadual de Maringá (Brazil)

    2017-11-15

    Maraging400-like alloys were made by arc-melting iron with the alloy elements (i.e., Ni, Co, Ti and Mo), followed by a high temperature heat-treatment for solubilization. The solubilized alloys were further heat-treated (480 °C and 580 °C, by 3 h), for aging. The samples were finely characterized by X-ray diffraction (Rietveld refinement), Mössbauer spectroscopy and magnetization techniques. The results revealed that the as-solubilized sample is martensitic and ferromagnetic. Its residual induction and coercive field increase monotonically with the maximum applied field of a magnetization minor loop and both curves presented very similar shapes. The area of the minor loops varies parabolically with this maximum applied field. The aging induced an atomic rearrangement in the martensite phase, involving change in the composition and lattice parameters, reversion of austenite and the formation of the Fe {sub 3} Mo {sub 2} intermetallic compound. Comparisons are presented between the results obtained by us for these alloys and those obtained for Maraging-350 steel samples.

  17. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    Unknown

    alloyed intermetallics were susceptible to galvanic corrosion, due to the presence of carbides. Keywords. Corrosion; iron aluminides; Fe3Al; potentiodynamic polarization. 1. Introduction. Ordered intermetallic alloys based on iron aluminides of.

  18. The comparison of corrosion resistance between Baosteel's alloy 690 tube and foreign alloy 690 tube

    International Nuclear Information System (INIS)

    Ma Mingjuan; Zhang Lefu; Li Yan

    2012-01-01

    Alloy 690 having excellent corrosion resistance is widely used for SG tubes. The intergranular corrosion and pitting corrosion resistance of Baosteel's alloy 690 tube, Country A alloy 690 tube and Country B alloy 690 tube have been analysed by comparison. It shows that: The intergranular corrosion of Baosteel's alloy 690 tube tested complied with ASTM G28 Standard could satisfy the technical requirement. However.some of Baosteel's alloy 690 tube in intergranular corrosion resistance had less performance than Country A. In addition, pitting corrosion tested with ASTM G48 Standard shown the Baosteel's alloy 690 tube better than Country B. (authors)

  19. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1981-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt % niobium, uranium - 2.0 wt % molybdenum, and uranium - 0.75 wt % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed

  20. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  1. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  2. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  3. New Theoretical Technique for Alloy Design

    Science.gov (United States)

    Ferrante, John

    2005-01-01

    During the last 2 years, there has been a breakthrough in alloy design at the NASA Lewis Research Center. A new semi-empirical theoretical technique for alloys, the BFS Theory (Bozzolo, Ferrante, and Smith), has been used to design alloys on a computer. BFS was used, along with Monte Carlo techniques, to predict the phases of ternary alloys of NiAl with Ti or Cr additions. High concentrations of each additive were used to demonstrate the resulting structures.

  4. Microstructural and technological optimisation of magnesium alloys

    OpenAIRE

    Facchinelli, Nicola

    2013-01-01

    Magnesium is one of the most abundance element in nature, and it's characterised by a lower density than aluminium. These characteristics confer great potential to magnesium alloys, which are so used for specialised applications, like for military purposes and in the aerospace industry. While some magnesium alloys, including the AM60B alloy, are historically associated to high pressure die casting, for such applications the magnesium alloy components are usually produced by the gravity castin...

  5. Self-disintegrating Raney metal alloys

    Science.gov (United States)

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  6. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  7. Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Calle Vallejo, Federico; Rossmeisl, Jan

    2009-01-01

    Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu to the sur......Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu...... to the surface of a CuPt near-surface alloy. The Cu surface segregation is driven by the formation of a stable self-organized CO/CuPt surface alloy structure and is rationalized in terms of the radically stronger Pt−CO bond when Cu is present in the first surface layer of Pt. The results, which are expected...... to apply to a range of coinage (Cu, Ag)/Pt-group bimetallic surface alloys, open up new possibilities in selective and dynamical engineering of alloy surfaces for catalysis....

  8. Influence of Shot Peening on Failure of an Aluminum Alloy Exposed to Aggressive Aqueous Environments

    Science.gov (United States)

    Lv, Shengli; Cu, You; Zhang, Wei; Tong, Xiaoyan; Srivatsan, T. S.; Gao, Xiaosheng

    2013-06-01

    Pre-corrosion damage tests were performed on the high strength aluminum alloy (Al-Zn-Mg-Cu) that was subject to shot peening surface treatment. The tests were performed for different time levels and compared one-on-one with the performance and characteristics of the non-shot-peened alloy. The residual stress induced by the shot peening surface treatment for two different intensity levels was measured using the method of incremental drilling of holes. Based on an observation of morphology of corrosion experienced by the aluminum alloy the depth of corrosion was measured using a laser displacement sensor. The surface of the aluminum alloy that was shot peened revealed an overall better resistance to pitting while concurrently revealing evidence of partial degradation. The depth of degradation is related to the residual stress that is induced in the aluminum alloy sample by the shot peening treatment. The key mechanisms that control damage during corrosion of the shot-peened aluminum alloy can be divided into the distinct stages of (a) initial occurrence of uniform corrosion followed by (b) the generation of degradation, and (c) culminating in the initiation of pitting once the depth of degradation reaches a certain level.

  9. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  10. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  11. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  12. Shape memory alloys – characterization techniques

    Indian Academy of Sciences (India)

    Abstract. Shape memory alloys are the generic class of alloys that show both thermal and mechan- ical memory. The basic physics involved in the shape memory effect is the reversible thermoelastic martensitic transformation. In general, there exists two phases in shape memory alloys, viz., a high- temperature phase or ...

  13. Shape memory alloys – characterization techniques

    Indian Academy of Sciences (India)

    Shape memory alloys are the generic class of alloys that show both thermal and mechanical memory. The basic physics involved in the shape memory effect is the reversible thermoelastic martensitic transformation. In general, there exists two phases in shape memory alloys, viz., a hightemperature phase or austenitic ...

  14. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  15. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Louthan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); PNNL, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  16. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.

    Science.gov (United States)

    Zhu, Yongfeng; Wang, Liqiang; Wang, Minmin; Liu, Zhongtang; Qin, Jining; Zhang, Di; Lu, Weijie

    2012-08-01

    The microstructure and phase constitutions of TixNb3Zr2Ta alloys (x=35, 31, 27, 23) (wt%) were studied. With a lower niobium content the grain size of β phase in TixNb3Zr2Ta alloys increased significantly, and the TixNb3Zr2Ta system was more likely to form α″ phase and even α phase. Tensile tests showed that UTS of TixNb3Zr2Ta alloys improved as the Nb content was decreased. Cyclic loading-unloading tensile tests were carried on TixNb3Zr2Ta alloys. Ti23Nb3Zr2Ta and Ti27Nb3Zr2Ta alloys featured the best superelasticity among the alloys studied. The pseudoelastic strain ratio of Ti35Nb3Zr2Ta alloy decreased a lot as the cycle number increased. Ti31Nb3Zr2Ta alloy showed only minimum superelasticity. This is because Ti23Nb3Zr2Ta and Ti27Nb3Zr2Ta alloys had higher yield strength than Ti31Nb3Zr2Ta did, which allowed martensite phase to be induced. On the contrary, Ti31Nb3Zr2Ta alloy exhibited better shape memory property than Ti27Nb3Zr2Ta, Ti23Nb3Zr2Ta and Ti35Nb3Zr2Ta titanium alloys. β phase, α phase and α″ phase were found in Ti23Nb3Zr2Ta alloy by TEM observation. The dislocation density of α phase was much lower than that of β phase due to their crystal structure difference. This may explained why Ti23Nb3Zr2Ta with α phase possessed higher tensile strength. The incomplete shape recovery of Ti23Nb3Zr2Ta alloy after unloading resulted from two sources. Plastic deformation occurred in β phase, α phase and even α″ phase under dislocation slip mechanism, and incomplete decomposition of α″ martensitic phase resulted in unrecovered strain as well. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  18. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites and the c......We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  19. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases

    Science.gov (United States)

    Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang

    2013-01-01

    Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705

  20. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys.

    Science.gov (United States)

    Liu, R; Zhang, Z J; Li, L L; An, X H; Zhang, Z F

    2015-04-01

    In this study, the concept of "twinning induced plasticity (TWIP) alloys" is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, "TWIP copper alloys" was proposed following the concept of "TWIP steels", as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. "dynamic development", "planarity", as well as "orientation selectivity" were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general "TWIP effect". Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general "TWIP effect", may provide useful strategies for designing high-performance engineering materials.

  1. The precipitation process in Mg-Ca-(Zn) alloys investigated by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Yanicet [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)], E-mail: yanicet@fis.ucm.es; Monge, Miguel Angel; Pareja, Ramiro [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2008-09-08

    Coincidence doppler broadening (CDB) spectroscopy has been applied to study the precipitation process induced by aging in Mg-1.0 wt.% Ca and Mg-1.0 wt.% Ca-1.0 wt.% Zn alloys. In addition positron lifetime experiments and microhardness measurements have been performed. A peak centered at {approx}11.5 x 10{sup -3}m{sub 0}c is found in the CDB ratio spectra of the alloys aged at 473 K. It is attributed to annihilations with the core electrons of Ca. The results indicate the formation of a particle dispersion that hardens the alloys. This dispersion is correlated with the appearance of the peak attributed to Ca atoms. Zn atoms in the Mg matrix inhibit the formation of quenched-in vacancies bound to Ca atoms in the aged ternary alloy producing the dispersion refinement.

  2. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Martinez, J.; Savoini, B.; Monge, M.A.; Munoz, A.; Pareja, R.

    2011-01-01

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La 2 O 3 or Y 2 O 3 as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  3. The precipitation process in Mg-Ca-(Zn) alloys investigated by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Ortega, Yanicet; Monge, Miguel Angel; Pareja, Ramiro

    2008-01-01

    Coincidence doppler broadening (CDB) spectroscopy has been applied to study the precipitation process induced by aging in Mg-1.0 wt.% Ca and Mg-1.0 wt.% Ca-1.0 wt.% Zn alloys. In addition positron lifetime experiments and microhardness measurements have been performed. A peak centered at ∼11.5 x 10 -3 m 0 c is found in the CDB ratio spectra of the alloys aged at 473 K. It is attributed to annihilations with the core electrons of Ca. The results indicate the formation of a particle dispersion that hardens the alloys. This dispersion is correlated with the appearance of the peak attributed to Ca atoms. Zn atoms in the Mg matrix inhibit the formation of quenched-in vacancies bound to Ca atoms in the aged ternary alloy producing the dispersion refinement

  4. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Savoini, B.; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Munoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-15

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La{sub 2}O{sub 3} or Y{sub 2}O{sub 3} as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  5. Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited)

    International Nuclear Information System (INIS)

    Flohrer, Sybille; Herzer, Giselher

    2010-01-01

    In amorphous and nanocrystalline transition metal based alloys with low magnetostriction, the soft magnetic properties are mainly determined by magneto-elastic and annealing-induced anisotropies which are uniform on a scale much larger than the exchange correlation length. Though, in the nanocrystalline case, there are situations where the random magneto-crystalline anisotropy of the grains becomes relevant. The present paper surveys the interplay between the random magneto-crystalline and the uniform field-induced anisotropy in nanocrystalline FeCuNbSiB soft magnets. Typical examples where the contribution of the random anisotropy becomes particularly visible in the magnetic domain structure will be reviewed.

  6. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... at the moment. It was the intention of this study to investigate whether the mentioned alloy processes are able to substitute conventional deposition techniques for wear and corrosion resistance, namely Ni-P produced by electroless deposition and electrodeposited hard chromium. The considerations...... for substitution focussed on were increased deposition rates as well as improved corrosion and wear resistance.Some systems exhibited interesting deposition rates. Examples are 178 µm per hour of Ni-P(6), 85 µm per hour of Ni-P(15), 142 µm per hour of Ni-W(44) and 62 µm per hour of Ni-B(0.8) (weight percentages...

  7. Magnesium and related low alloys

    International Nuclear Information System (INIS)

    Bernard, J.; Caillat, R.; Darras, R.

    1959-01-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent ≤ Zr ≤ 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent ≤ Zn ≤ 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [fr

  8. Microstructural evolution and tensile mechanical properties of thixoformed AZ91D magnesium alloy with the addition of yttrium

    International Nuclear Information System (INIS)

    Zhao Zude; Chen Qiang; Kang Feng; Shu Dayu

    2009-01-01

    The microstructure evolution of AZ91D magnesium alloy in the semi-solid state has been proposed or reported in previous literature. However, no detailed investigation has been conducted regarding the relationship between the microstructure and tensile mechanical properties of the thixoformed AZ91D magnesium alloy. In this paper, the microstructure of AZ91D alloy with the addition of yttrium was produced by the semi-solid thermal transformation (SSTT) route and the strain-induced melt activation (SIMA) route, respectively. Isothermal holding experiments investigated grain coarsening and the degree of spheroidization as a function of holding time in the semi-solid state. The SSTT route and the SIMA route were used to obtain the semi-solid feedstock for thixoforming. The results show that solid particles of the SSTT alloy are spheroidized to some extent but the previous irregular shape is still obvious in some of them. While the SIMA alloy exhibits ideal, fine microstructure, in which completely spheroidized solid particles contain little entrapped liquid. The microstructure of the SSTT alloy is less spheroidized compared with the SIMA alloy under the similar isothermal holding condition. As the holding time increases, the mean solid particle size of the SSTT alloy decreases initially, then increases, while the mean solid particle size of the SIMA alloy increases monotonously at 560 deg. C. Compared with the SSTT alloy, the SIMA alloy obtains finer grains under the similar isothermal holding condition. The mechanical properties of the thixoformed AZ91D alloy with the addition of yttrium produced by the SIMA route are better than those of the thixoformed alloy produced by the SSTT route. The ultimate tensile strength, yield strength and elongation for the thixoformed alloy produced by the SIMA route are 303.1 MPa, 147.6 MPa and 13.27%, respectively. The tensile properties for the AZ91D alloy with the addition of yttrium thixoformed from starting material produced by

  9. Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid

    Science.gov (United States)

    Wang, Fengwu; Cai, Shu; Shen, Sibo; Yu, Nian; Zhang, Feiyang; Ling, Rui; Li, Yue; Xu, Guohua

    2017-09-01

    In order to decrease the corrosion rate and improve the bioactivity of magnesium alloy, phytic acid/saline hybrid coatings were synthesized on AZ31 magnesium alloys by sol-gel dip-coating method. It was found that the mole ratio of phytic acid to γ-APS had a great influence on coating morphology and the corresponding corrosion resistance of the coated magnesium alloys. When the mole ratio of phytic acid to γ-APS was 1:1, the obtained hybrid coating was integral and without cracks, which was ascribed to the strong chelate capability of phytic acid and Si-O-Si network derived from silane. Electrochemical test result indicated that the corrosion resistance of the coated magnesium alloy was about 27 times larger than that of the naked counterpart. In parallel, immersion test showed that the phytic acid/silane hybrid coating could induce CaP-mineralized product deposition, which offered another protection for magnesium alloy.

  10. The role of nickel content and the magnetic remanence in iron-nickel alloys of lunar composition

    Science.gov (United States)

    Wasilewski, P.

    1974-01-01

    Lunar samples are magnetic primarily due to the body centered cubic (BCC) iron and iron-nickel alloys they contain. Presented for the first time are results which demonstrate that the magnitude of the martensitic thermal remanence (MTRM) induced on quenching iron-nickel alloy in the geomagnetic field depends on the nickel content of the alloy. High magnetic stability is due to the increasing dislocation density and increasingly complex microstructures associated with increasing nickel content in the alloys. The results agree with the mechanical and structural properties of the alloys. The characteristic quench martensite microstructure observed on metallographic examination provides a recognition criterion for the MTRM mechanism. These results are important for lunar and meteoritic research intending to ascertain the paleofield responsible for the observed remanent magnetization.-

  11. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A., E-mail: mauger@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Munoz, A., E-mail: amunoz@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Castro, V. de, E-mail: vanessa.decastro@materials.ox.ac.uk [Department of Materials, University of Oxford, OX1 3PH (United Kingdom); Fernandez, P., E-mail: pilar.fernandez@ciemat.es [National Fusion Laboratory-CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Garces, G., E-mail: ggarces@cenim.csic.es [Departamento de Metalurgia Fisica, CENIM (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Pareja, R., E-mail: rpp@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain)

    2011-10-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y{sub 2}O{sub 3} alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y{sub 2}O{sub 3} developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y{sub 2}O{sub 3} free alloy. Strengthening induced by the Y{sub 2}O{sub 3} dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  12. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    International Nuclear Information System (INIS)

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  13. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  14. Theoretical studies of metallic alloys

    International Nuclear Information System (INIS)

    Faulkner, J.S.; Wille, L.T.

    1991-07-01

    A new method to predict and understand the structure and phase stability of solid-solution alloys from a knowledge only of the atomic numbers of the constituent atoms is being developed. The coherent potential approximation will be used to obtain the electronic contribution to the energy and the Monte Carlo method of statistical mechanics will be used for the thermodynamic part of the calculation. An improved coherent potential approximation will be developed by combining the standard approach with the quadratic KKR (QKKR) band theory method. This will make it easier to predict the properties of alloys from first principles. The QKKR method will be developed further

  15. Alloys studied by neutron scattering

    International Nuclear Information System (INIS)

    Morii, Yukio

    1993-01-01

    Neutron scattering study on the martensitic transformation and spinodal decomposition of alloys is described. Lattice vibration mode [110]TA 1 in various noble metal bcc-based alloys was measured. An analysis of the (110) interplanar force constants revealed a relation between the force constants and the martensite phase at low temperatures. Time resolved experiments of spinodal decomposition of MnCu were carried out to investigate how the separated (decomposed) phase grows in time. In the late regime of the decomposition, the size of the precipitate increased with a power law oft 0.37 while the crystallite grew as t 0.236 . (author)

  16. ALLOY DESIGN AND PROPERTY EVALUATION OF TI ALLOY ...

    African Journals Online (AJOL)

    eobe

    Abstract. Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal ω phase and significantly.

  17. Ferromagnetic shape memory alloys

    Indian Academy of Sciences (India)

    ugc

    field, faster than conventional stress or temperature induced SMA. This demo is ... Nice agreement between structural, magnetic and thermal techniques. Small width of hysteresis 14-38 K implies highly thermoelastic (mobile interface), low twinning stress. Ms=TM. Mf. As ..... [Nobel prize for discovery of quasicrystal to Prof.

  18. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  19. Nd:YAG laser welding aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  20. Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles.

    Science.gov (United States)

    Valenti, Marco; Venugopal, Anirudh; Tordera, Daniel; Jonsson, Magnus P; Biskos, George; Schmidt-Ott, Andreas; Smith, Wilson A

    2017-05-17

    The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO 2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies.

  1. Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles

    Science.gov (United States)

    2017-01-01

    The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies. PMID:29354665

  2. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  3. Optical Characterization of AlAsSb Digital Alloy and Random Alloy on GaSb

    Directory of Open Access Journals (Sweden)

    Bor-Chau Juang

    2017-10-01

    Full Text Available III-(As, Sb alloys are building blocks for various advanced optoelectronic devices, but the growth of their ternary or quaternary materials are commonly limited by spontaneous formation of clusters and phase separations during alloying. Recently, digital alloy growth by molecular beam epitaxy has been widely adopted in preference to conventional random alloy growth because of the extra degree of control offered by the ordered alloying. In this article, we provide a comparative study of the optical characteristics of AlAsSb alloys grown lattice-matched to GaSb using both techniques. The sample grown by digital alloy technique showed stronger photoluminescence intensity, narrower peak linewidth, and larger carrier activation energy than the random alloy technique, indicating an improved optical quality with lower density of non-radiative recombination centers. In addition, a relatively long carrier lifetime was observed from the digital alloy sample, consistent with the results obtained from the photoluminescence study.

  4. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  5. Mechanical properties of biomedical titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niinomi, M. [Toyohashi Univ. of Technol. (Japan). Sch. of Production Syst. Eng.

    1998-03-15

    Titanium alloys are expected to be much more widely used for implant materials in the medical and dental fields because of their superior biocompatibility, bioaffinity, corrosion resistance and specific strength compared with other metallic implant materials. Pure titanium and Ti-6Al-4V, in particular, Ti-6Al-4V ELI have been, however, mainly used for implant materials among various titanium alloys to date. V free alloys like Ti-6Al-7Nb and Ti-5Al-2.5Fe have been recently developed for biomedical use. More recently V and Al free alloys have been developed. Titanium alloys composed of non-toxic elements like Nb, Ta, Zr and so on with lower modulus have been started to be developed mainly in the USA. The {beta} type alloys are now the main target for medical materials. The mechanical properties of the titanium alloys developed for implant materials to date are described in this paper. (orig.) 17 refs.

  6. Requirements of titanium alloys for aeronautical industry

    Science.gov (United States)

    Ghiban, Brânduşa; Bran, Dragoş-Teodor; Elefterie, Cornelia Florina

    2018-02-01

    The project presents the requirements imposed for aeronatical components made from Titanium based alloys. Asignificant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys). For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  7. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  8. Aeronautical Industry Requirements for Titanium Alloys

    Science.gov (United States)

    Bran, D. T.; Elefterie, C. F.; Ghiban, B.

    2017-06-01

    The project presents the requirements imposed for aviation components made from Titanium based alloys. A significant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys).For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  9. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  10. Magnetic alloys with vanishing anisotropies

    International Nuclear Information System (INIS)

    Couderchon, G.

    1991-01-01

    Co-based amorphous alloys and 80 Ni Permalloys have vanishingly-low anisotropies and show the highest permeabilities and lowest losses among commercial magnetic materials. In spit of their different atomic arrangements, these two types of material show close similarities in domain structure and in their temperature and frequency behavior. Information is also given concerning material technology and applications. (orig.)

  11. Iron-nickel-chromium alloys

    International Nuclear Information System (INIS)

    Karenko, M.K.

    1981-01-01

    A specification is given for iron-nickel-chromium age-hardenable alloys suitable for use in fast breeder reactor ducts and cladding, which utilize the gamma-double prime strengthening phase and are characterized in having a delta or eta phase distributed at or near grain boundaries. A range of compositions is given. (author)

  12. Palladium alloys for hydrogen diffusion

    International Nuclear Information System (INIS)

    1977-01-01

    A palladium-base alloy with tin and/or a silicon addition and its use in the production of hydrogen from water via a cycle of chemical reactions, of which the decomposition of HI into H 2 and I 2 is the most important, is described

  13. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  14. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  15. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  16. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    (Duerig et al 1990) of the alloy. Unlike conventional materials, which show only, limited effect on stress–strain behaviour (Duerig et al 1990; Mellor 1989), SMA shows marked temperature dependence, because of reversible austenite to martensite transformation. The underlying phenomenon of the shape memory effect is ...

  17. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  18. A new class of natural magnetic materials - The ordering alloys

    Science.gov (United States)

    Wasilewski, Peter

    1988-01-01

    It is shown that tetrataenite (approximately FeNi), found in many meteorites, and Josephinite (approximately FeNi3), found in many serpentinized peridotites and possibly in Allende, are atomically ordered alloys. Data are presented, showing magnetic hysteresis loops, coercivity-temperature behavior at cryogenic temperatures, and thermomagnetic curves, that show that these ordered magnetic materials have unique magnetic properties and do not fit the conventional rock magnetism paradigms represented by Fe3O4 serpentinites. The ordered state is characterized by induced magnetic anisotropy, reaching the extreme for the tetragonal truly uniaxial anisotropy in FeNi. It is suggested that these ordered magnetic alloys should be considered a new class of natural magnetic materials.

  19. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    Hua, F.; Gordon, G.M.; Rebak, R.B.

    2005-01-01

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking

  20. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance