WorldWideScience

Sample records for alloy c-22 induced

  1. Passivity of alloy C-22 in NaCl solutions

    International Nuclear Information System (INIS)

    Alloy C-22 has been proposed as the corrosion resistant barrier of high-level waste nuclear containers. This alloy must be resistant to corrosion in multi-ionic solutions for a period of time as long as 10,000 years. The aim of the present work was to study the corrosion behavior of alloy C-22 in NaCl solutions. General and crevice corrosion were studied by means of electrochemical techniques. Open circuit potential was measured over the time, electrochemical impedance spectroscopy (EIS) measurements were carried out at open circuit and passivity potentials, as well as cyclic potentiodynamic polarization curves. Corrosion rates obtained by EIS measurements were acceptable for a waste nuclear container (P) values increased with open circuit potential and polarization time at constant potential. This was attributed to an increase in oxide film thickness and its aging respectively. The passive oxide form on alloy C-22 at the studied conditions presented a n-type semiconductor behavior in the passive potential range. Repassivation potential values (ER1) were determined for alloy C-22 at the studied conditions using PCA probes. (author)

  2. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  3. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  4. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  5. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe50Ni50 and Fe49Ni50Hf1 alloys. (author)

  6. Stress Induced Phase Transition of Iron-Rhodium Alloys

    OpenAIRE

    Takahashi, M; Oshima, R.

    1995-01-01

    Stress-induced phase transitions(B2-L10, B2-fcc) on an FeRh alloy were investigated with X-ray diffraction (XRD) and transmission electron microscopy(TEM). An Fe-50.5at%Rh alloy was rolled to 80µm thickness, and annealed at 1370K for 173ks. Annealed sample sheets were cold rolled at various rolling rates, and changes of the sample alloy on the phase state were investigated with XRD. The L10 phase appeared in the early stage of cold work. With heavy work appearance of the fcc phase and consequ...

  7. Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations

    Science.gov (United States)

    Feng, Xuan-Kai; Shi, Siqi; Shen, Jian-Yun; Shang, Shun-Li; Yao, Mei-Yi; Liu, Zi-Kui

    2016-10-01

    Since Zr-Fe-Sn is one of the key ternary systems for cladding and structural materials in nuclear industry, it is of significant importance to understand physicochemical properties related to Zr-Fe-Sn system. In order to design the new Zr alloys with advanced performance by CALPHAD method, the thermodynamic model for the lower order systems is required. In the present work, first-principles calculations are employed to obtain phonon, thermodynamic and elastic properties of Zr6FeSn2 with C22 structure and the end-members (C22-Zr6FeFe2, C22-Zr6SnSn2 and C22-Zr6SnFe2) in the model of (Zr)6(Fe, Sn)2(Fe, Sn)1. It is found that the imaginary phonon modes are absent for C22-Zr6FeSn2 and C22-Zr6SnSn2, indicating they are dynamically stable, while the other two end-members are unstable. Gibbs energies of C22-Zr6FeSn2 and C22-Zr6SnSn2 are obtained from the quasiharmonic phonon approach and can be added in the thermodynamic database: Nuclearbase. The C22-Zr6FeSn2's single-crystal elasticity tensor components along with polycrystalline bulk, shear and Young's moduli are computed with a least-squares approach based upon the stress tensor computed from first-principles method. The results indicate that distortion is more difficult in the directions normal the c-axis than along to it.

  8. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  9. STRESS INDUCED NITROGEN DIFFUSION IN NITRITED CoCr ALLOY

    Directory of Open Access Journals (Sweden)

    AKVILĖ PETRAITIENĖ

    2015-03-01

    Full Text Available In the present study the nitrogen transport mechanism in plasma nitrited CoCr alloy at moderate temperature ( 400ºC is explained by non-Fickian diffusion model. This mechanism is considered by stress induced diffusion model. The model involves diffusion of nitrogen induced by internal stresses created during nitriding process. The model considers the diffusion of nitrogen in the presence of  internal stresses gradient induced by penetrating nitrogen as the next driving force of diffusion after concentration gradient. This model is commonly used for analysis of stainless steel nitriding, however, in this work it is shown that the same nitrogen penetration mechanism takes place in CoCr alloy. For mathematical description of stress induced diffusion process the equation of baro-diffusion is used which involves concentration dependant baro-diffusion concentration. For calculation of stress gradient it is assumed that stress depth profile linearly relates with nitrogen concentration depth profile. The fitting is done using experimental curves of nitrogen depth profiles for medical grade CoCr alloy (ISO 5831-12 nitrited at 400 ºC temperature. The experimental curves are taken from literature. The nitriding duration was 2h, 6h, 20h. Calculated nitrogen depth profiles in CoCr alloy are in good agreement with experimental nitrogen depth profiles.  The diffusion coefficient D is found from fitting of experimental data.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5711

  10. Octadecabromidobis(dicarbidodecadysprosium, [Dy10Br18(C22

    Directory of Open Access Journals (Sweden)

    Kathrin Daub

    2008-01-01

    Full Text Available Single crystals of [Dy10Br18(C22] were obtained during the reaction of DyBr3 with dysprosium metal and graphite in a sealed tantalum container. In the crystal structure, the Dy atoms form dimers of edge-sharing octahedra, each encapsulating a C2 unit. The metal atoms are surrounded by Br atoms above the cluster edges and vertices, respectively. The dimers are connected to each other by Br atoms, leading to a three-dimensional network. [Dy10Br18(C22] is isotypic with its iodido analogue [Dy10I18(C22].

  11. Kinetic model of induced codeposition of Ni-Mo alloys

    Institute of Scientific and Technical Information of China (English)

    ZENG, Yue; MA, Ming; XIAO, Xiao-Ming; LI, Ze-Lin; LIAN, Shi-Xun; ZHOU, Shao-Min

    2000-01-01

    The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrodeposition. Ihe molybdate (MoO42-) could be firstly electrochemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys.The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1 ( E ) = 1. 23 × 10-9 CNexp( - 0. 198FE/ RT )mol/(dm2. s), k2 (E) = 3.28 × 10-10 CMoexp ( - 0.208FE/RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/RT) mol/(dm2 ·s), where CN and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs, saturated calornel electrode (SCE).The codeposition process could be well simulated by this model.

  12. Radiation-induced segregation in Cu-Au alloys

    International Nuclear Information System (INIS)

    Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford Backscattering Spectrometry. Irradiation with 1.8-MeV He produced nonequilibrium Au atom depletion in the near surface region. The amount of segregation was measured as a function of dose, dose rate and temperature. Segregation was observed between 300 and 5000C. For a calculated dose rate of 3.9 x 10-5 dpa/s, the radiation-induced segregation rate peaked near 4000C. Theoretical analysis based on the Johnson-Lam model predicted that the amount of segregation would be directly proportional to dose at the early stage of irradiation, would deviate from linearity with a continuously decreasing slope at intermediate doses, and finally approach a constant value after high doses. The analysis also predicted that the segregation rate would vary as the -1/4th power of the dose rate at constant dose in the low temperature region. These predictions were all verified experimentally. A procedure for extracting relative defect production efficiencies from similar measurements is discussed

  13. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and Hybrid-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion re-passivation potential (ECO) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy Hybrid-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. ECO showed a linear decrease with temperature. There is a temperature above which ECO does not decrease anymore, reaching a minimum value. This ECO value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice formers. (author)

  14. Positive effect of hydrogen-induced vacancies on mechanical alloying of Fe and Al

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz [Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Prague 8 CZ-18000 (Czech Republic); Lukáč, F.; Procházka, I.; Vlček, M. [Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Prague 8 CZ-18000 (Czech Republic); Jirásková, Y. [Institute of Physics of Materials, AS CR, Žižkova 22, CZ-616 62 Brno (Czech Republic); Švec, P.; Janičkovič, D. [Institute of Physics, Slovak Academy of Science, Dúbravská cesta 9, 84511 Bratislava (Slovakia)

    2015-04-25

    Highlights: • Fe{sub 82}Al{sub 18} nano-powders were prepared by ball milling and mechanical alloying. • Full mechanical alloying of Fe–Al was achieved using hydrogen atmosphere. • Hydrogen segregating at vacancies enhances vacancy concentration in Fe–Al. • Hydrogen-induced vacancies facilitate diffusion of Al atoms into Fe grains. • Nitrogen inhibits Fe–Al alloying by formation of a nitride layer on Fe grains. - Abstract: Nanocrystalline Fe{sub 82}Al{sub 18} powders were prepared by high energy ball milling in various atmospheres. Two preparation techniques were compared: (i) mechanical milling of pre-alloyed Fe{sub 82}Al{sub 18} pieces and (ii) mechanical alloying of pure Fe and Al powders. Single phase Fe{sub 82}Al{sub 18} nano-powder was formed by mechanical alloying in H{sub 2} atmosphere while milling in N{sub 2} or air environment suppressed mechanical alloying due to passivation of Fe surfaces. Positron annihilation spectroscopy revealed that mechanical alloying of Fe and Al in H{sub 2} atmosphere is mediated by hydrogen-induced vacancies.

  15. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.)

  16. Hydrogen-induced hardening of Ti–6Al–4V alloy in β phase field

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen can be retained in Ti–6Al–4V alloy at temperatures up to 1100 °C. • Hydrogen induces increased flow stress and work hardening rate of Ti–6Al–4V alloy. • Hydrogen has a positive effect on the development of twining in Ti–6Al–4V alloy. • Hydrogen-induced twinning plays a key role in the enhancement of work hardening. - Abstract: Isothermal compression tests were conducted to investigate the hot deformation behaviour of a Ti–6Al–4V alloy with different hydrogen contents (0, 0.35 and 0.6 wt.%) at temperatures of 1050–1100 °C, and strain rates of 0.005, 0.01, 0.1 and 1 s−1 respectively. The microstructural evolution was investigated via optical microscope (OM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The mechanism of hydrogen-induced hardening was discussed. The experimental results showed that hydrogen could be retained in Ti–6Al–4V alloy even though the temperature was increased to 1100 °C in air. δ hydride with an face-centred cubic (FCC) crystal structure existed in the deformed matrix, and the size of δ hydride reduced when the deformation temperature was increased from 1050 to 1100 °C. Hydrogen induced the increased flow stress and work hardening rate of Ti–6Al–4V alloy when deformed in β phase field. Hydrogen had a positive effect on the development of twinning in Ti–6Al–4V alloy. Based on the analysis of both hot deformation behaviour and microstructural evolution, it is indicated that the hydrogen-induced twinning plays a key role in the enhancement of work hardening of Ti–6Al–4V alloy in β phase field

  17. Radiation-Induced Dislocation and Growth Behavior of Zirconium and Zirconium Alloys - A Review

    International Nuclear Information System (INIS)

    Zirconium and zirconium alloys are widely used as nuclear reactor core materials such as fuel cladding and guide tubes because they have excellent corrosion- and radiation-resistant properties. In the reactor core, zirconium alloys are subjected to high-energy neutron fluence, causing radiation-induced dislocation and growth. To discern a possible correlation between radiation-induced dislocation and growth, characteristics of dislocation and growth in zirconium and its alloys are examined. The radiation-induced dislocation including and dislocation loops is reviewed in various temperature and fluence ranges, and their growth behavior is examined in the same way. To further a fundamental understanding, radiation-induced growth prediction models are briefly reviewed. This research will assist in the design of zirconium based components as well as the safety analysis of various reactor conditions, in both research and commercial reactors

  18. Nanocrystallization of Coarse Primary Phases in Al- and Mg-Based Alloys Induced by HCPEB Treatment

    OpenAIRE

    Gao Bo; He Jidong; Tu Ganfeng; Hu Liang

    2013-01-01

    This paper reports on a phenomenon associated with high-current pulsed electron beam (HCPEB) treatment: surface nanocrystallization of coarse primary phase in hypereutectic Al17.5Si and quasicrystal alloys after multiple pulses of HCPEB irradiation. The HCPEB treatment induces superfast heating and diffusion of alloying elements and heterogeneous nucleation in a melting solution, followed by rapid solidification and cooling of the material surfaces. Consequently, nanostructured surface layers...

  19. Radiation-induced creep of copper, aluminium and their alloys

    International Nuclear Information System (INIS)

    The results of creep studies on copper, aluminium and their alloys with and without neutron irradiation are presented. The experiments are carried out at the WWR-K reactor at the neutron fluence of 1.4.1016 n/m2.s (2.5.1016 n/m2.s, E>0.1 MeV). Polycrystalline copper (99.99 and 99.95%), aluminium (99.99%) and the alloys of copper with 4 at% of titanium, of aluminium with 4.2% of copper are studied within the temperature interval 0.31-0.51 Tm. (orig.)

  20. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-09-08

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement.

  1. Effects of strain and trapping on hydrogen-induced cracking in high strength low alloy steels

    OpenAIRE

    Bosch, Cédric; Delafosse, David; Longaygue, Xavier

    2010-01-01

    International audience In pearlitic steels, hydrogen trapping at interphase boundaries may induce hydrogen- cracking in the absence of external applied stress such as in blistering and Hydrogen Induced Cracking. However, in low alloy steels containing a much lower density of such trapping sites and/or when hydrogen activity is reduced, most instances of hydrogen-induced cracking involve strong interactions between local plasticity and hydrogen effects. We investigated the effects of these ...

  2. Quantitative analysis of impurities in aluminum alloys by laser-induced breakdown spectroscopy without internal calibration

    Institute of Scientific and Technical Information of China (English)

    LI Hong-kun; LIU Ming; CHEN Zhi-jiang; LI Run-hua

    2008-01-01

    To develop a fast and sensitive alloy elemental analysis method, a laser-induced breakdown spectroscopy(LIBS) system was established and used to carry out quantitative analysis of impurities in aluminum alloys in air at atmospheric pressure. A digital storage oscilloscope was used as signal recording instrument, instead of traditional gate integrator or Boxcar averager, to reduce the cost of the whole system. Linear calibration curves in the concentration range of 4×10-5-10-2 are built for Mg, Cr, Mn, Cu and Zn using absolute line intensity without internal calibrations. Limits of detection for these five elements in aluminum alloy are determined to be (2-90)×10-6. It is demonstrated that LIBS can provide quantitative trace elemental analysis in alloys even without internal calibration. This approach is easy to use in metallurgy industries and relative research fields.

  3. Nanocrystallization of Coarse Primary Phases in Al- and Mg-Based Alloys Induced by HCPEB Treatment

    Directory of Open Access Journals (Sweden)

    Gao Bo

    2013-01-01

    Full Text Available This paper reports on a phenomenon associated with high-current pulsed electron beam (HCPEB treatment: surface nanocrystallization of coarse primary phase in hypereutectic Al17.5Si and quasicrystal alloys after multiple pulses of HCPEB irradiation. The HCPEB treatment induces superfast heating and diffusion of alloying elements and heterogeneous nucleation in a melting solution, followed by rapid solidification and cooling of the material surfaces. Consequently, nanostructured surface layers can be achieved easily. Nano-Si phase and nano-quasicrystal phase formation on the modified surface layer of hypereutectic Al17.5Si alloy and quasicrystal alloy (Mg37Zn60Y3 show a potential for surface nanocrystallization of materials with enhanced properties by HCPEB treatment.

  4. Lead induced intergranular fracture in aluminum alloy AA6262

    NARCIS (Netherlands)

    De Hosson, JTM

    2003-01-01

    The influence of lead on the fracture behavior of aluminum alloy AA6262 is investigated. Under certain conditions, the mode of fracture changes from transgranular microvoid coalescence to an intergranular mechanism. Three different intergranular fracture mechanisms are observed: liquid metal embritt

  5. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  6. 26 CFR 1.381(c)(22)-1 - Successor life insurance company.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Successor life insurance company. 1.381(c)(22)-1...) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(22)-1 Successor life insurance... the following examples: Example 1. X qualified as a life insurance company in 1949. Y qualified as...

  7. Liver-specific cytochrome P450 CYP2C22 is a direct target of retinoic acid and a retinoic acid-metabolizing enzyme in rat liver.

    Science.gov (United States)

    Qian, Linxi; Zolfaghari, Reza; Ross, A Catharine

    2010-07-01

    Several cytochrome P450 (CYP) enzymes catalyze the C4-hydroxylation of retinoic acid (RA), a potent inducer of cell differentiation and an agent in the treatment of several diseases. Here, we have characterized CYP2C22, a member of the rat CYP2C family with homology to human CYP2C8 and CYP2C9. CYP2C22 was expressed nearly exclusively in hepatocytes, where it was one of the more abundant mRNAs transcripts. In H-4-II-E rat hepatoma cells, CYP2C22 mRNA was upregulated by all-trans (at)-RA, and Am580, a nonmetabolizable analog of at-RA. In comparison, in primary human hepatocytes, at-RA increased CYP2C9 but not CYP2C8 mRNA. Analysis of the CYP2C22 promoter region revealed a RA response element (5'-GGTTCA-(n)5-AGGTCA-3') in the distal flanking region, which bound the nuclear hormone receptors RAR and RXR and which was required for transcriptional activation response of this promoter to RA in CYP2C22-luciferase-transfected RA-treated HepG2 cells. The cDNA-expressed CYP2C22 protein metabolized [3H]at-RA to more polar metabolites. While long-chain polyunsaturated fatty acids competed, 9-cis-RA was a stronger competitor. Our studies demonstrate that CYP2C22 is a high-abundance, retinoid-inducible, hepatic P450 with the potential to metabolize at-RA, providing additional insight into the role of the CYP2C gene family in retinoid homeostasis.

  8. Irradiation-induced creep and microstructural development in precipitation-hardened nickel-aluminium alloys

    International Nuclear Information System (INIS)

    Irradiation-induced creep in solid-solution Ni-8.5 at% AL and precipitation-hardened Ni-13.1 at% Al alloys was studied by bombarding miniaturized specimens with 6.2 MeV protons at 3000C under different tensile stresses. After irradiation transmission electron microscopic (TEM) investigations were made to observe the precipitate structure under irradiation for different experimental parameters. Moreover, the irradiation-induced changes in precipitate structure and changes of Al-concentrations in the matrix in Ni-13.1 at% Al alloys were studied by electrical resistivity measurements during irradiation. For comparison, the electrical resistivity of unirradiated specimens was also measured after thermal aging for different times. For correlation, TEM analysis was performed on irradiated and unirradiated aged specimens. Tensile tests on annealed and aged Ni-Al alloys were also done at various temperatures. (orig./RK)

  9. Irradiation-induced precipitation and solute segregation in alloys. Fourth annual progress report, February 1, 1981-March 31, 1982

    International Nuclear Information System (INIS)

    The studies of irradiation-induced solute segregation (IISS) and irradiation-induced precipitation (IIP) in Ni-Si and Pd-Fe alloys have been completed. Progress is reported for several other projects: irradiation damage in binary Pd-Cr, -Mn and -V alloys (15 at. %); IIP in Pd-Mo and Pd-W alloys; IIP in Pd-25 at. % Cr alloy; and irradiation damage effects in proton-bombarded metallic glasses (Ni-65 Zr, 40 Fe 40 Ni 14 P6B). 27 figures

  10. The role of interstitial binding in radiation induced segregation in W-Re alloys

    Science.gov (United States)

    Gharaee, Leili; Marian, Jaime; Erhart, Paul

    2016-07-01

    Due to their high strength and advantageous high-temperature properties, tungsten-based alloys are being considered as plasma-facing candidate materials in fusion devices. Under neutron irradiation, rhenium, which is produced by nuclear transmutation, has been found to precipitate in elongated precipitates forming thermodynamic intermetallic phases at concentrations well below the solubility limit. Recent measurements have shown that Re precipitation can lead to substantial hardening, which may have a detrimental effect on the fracture toughness of W alloys. This puzzle of sub-solubility precipitation points to the role played by irradiation induced defects, specifically mixed solute-W interstitials. Here, using first-principles calculations based on density functional theory, we study the energetics of mixed interstitial defects in W-Re, W-V, and W-Ti alloys, as well as the heat of mixing for each substitutional solute. We find that mixed interstitials in all systems are strongly attracted to each other with binding energies of -2.4 to -3.2 eV and form interstitial pairs that are aligned along parallel first-neighbor strings. Low barriers for defect translation and rotation enable defect agglomeration and alignment even at moderate temperatures. We propose that these elongated agglomerates of mixed-interstitials may act as precursors for the formation of needle-shaped intermetallic precipitates. This interstitial-based mechanism is not limited to radiation induced segregation and precipitation in W-Re alloys but is also applicable to other body-centered cubic alloys.

  11. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

    Science.gov (United States)

    Kolli, R. Prakash; Joost, William J.; Ankem, Sreeramamurthy

    2015-06-01

    In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

  12. 哈氏合金C-22的焊接工艺开发与研究%Welding Technology Development and Research of C-22 Hastelloy

    Institute of Scientific and Technical Information of China (English)

    穆钟涛; 马焕新

    2015-01-01

    For refining joint machine, in order to ensure corrosion resistance of the tank, the tank materials mainly adopt 904L, 254SMO and other stainless steel materials, but with the development of viscose staple fiber production process, there are higher requirements for the corrosion performance of the tank, In order to meet the requirements of new products design & development and manufacturing, this paper explored the processing performance especially welding properties of C-22 Hastelloy, and the welding process was developed. In this paper,the welding performance and characteristics of C-22 materials were summarized,and the technical support for the new product manufacturing was provided based on the Hastelloy C-22welding test.%精炼联合机为保证槽体耐蚀性能,槽体材料主要采用的是904L、254SMO等不锈钢材料,但随着粘胶短纤生产工艺的发展,对槽体耐蚀性能提出了更高的要求,为了满足新产品的设计开发和制造要求,本文对C-22哈氏合金加工性能特别是焊接性能进行了摸索,并进行焊接工艺开发。文章主要针对哈氏合金C-22焊接试验,总结出C-22材料的焊接性能和特点,为新产品制造提供技术支持。

  13. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  14. Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, M.S.; Mørup, Steen; Linderoth, Søren;

    1996-01-01

    The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....

  15. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an-nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es-tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  16. New observations on formation of thermally induced martensite in Fe–30%Ni–1%Pd alloy

    Indian Academy of Sciences (India)

    Gokcen Yildiz; Yasin Gokturk Yildiz; Saffet Nezir

    2013-02-01

    Kinetical, morphological, crystallographical and thermal characteristics of thermally induced martensite in an Fe–30%Ni–1%Pd alloy has been studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction method. Kinetics of transformation was found to be as athermal. SEM and TEM observations and X-ray method revealed ' () martensite formation in the austenite phase of alloy by thermal effect. The crystallographic orientation relationship between austenite and ' () martensite was found to be having Kurdjumov–Sachs (K–S) type relationship. In addition, the lattice parameters of austenite and martensite phases were calculated from X-ray diffraction patterns.

  17. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    Science.gov (United States)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  18. Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

    Directory of Open Access Journals (Sweden)

    Z. Q. Chen

    2013-01-01

    Full Text Available Annealing induced amorphization in sputtered glass-forming thin films was generally observed in the supercooled liquid region. Based on X-ray diffraction and transmission electron microscope (TEM analysis, however, here, we demonstrate that nearly full amorphization could occur in nanocrystalline (NC sputtered NiW alloy films annealed at relatively low temperature. Whilst the supersaturation of W content caused by the formation of Ni4W phase played a crucial role in the amorphization process of NiW alloy films annealed at 473 K for 30 min, nearly full amorphization occurred upon further annealing of the film for 60 min. The redistribution of free volume from amorphous regions into crystalline regions was proposed as the possible mechanism underlying the nearly full amorphization observed in NiW alloys.

  19. On the stability of the CO adsorption-induced and self-organized CuPt surface alloy

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Chorkendorff, Ib

    2010-01-01

    regenerated by reducing the CuOx in 100 mbar CO for 10 min at room temperature. The results show, amongst others, the stability of the CuPt surface alloy in various environments containing CO and how a novel coinage/Pt-group bimetallic surface alloy catalyst induced by CO adsorption can be reactivated before...

  20. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H2SO4, even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni2(Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and P, may

  1. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, P.

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  2. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    Science.gov (United States)

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion. PMID:10496152

  3. On the radiation-induced segregation: Contribution of interstitial mechanism in Fe–Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pechenkin, V.A.; Molodtsov, V.L.; Ryabov, V.A. [Institute of Physics and Power Engineering, 249033 Obninsk (Russian Federation); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2013-02-15

    In this work, we perform molecular dynamics simulations to study the diffusion characteristics of a self-interstitial atom (SIA) in BCC Fe–Cr alloys and corresponding mass transport of Fe and Cr atoms via SIA migration mechanism. The calculations have been performed in the temperature range 600–1000 K in the alloys with Cr content 5–25 at.%, which is relevant for ferritic/martensitic steels. The results of atomistic simulations have been applied to evaluate the contribution of SIA diffusion mechanism to radiation-induced segregation (RIS) phenomenon. An original treatment is proposed in this work to account for the contribution from both vacancy and SIA mechanisms to RIS at sinks for point defects in multi-component system. By combining available experimental data on diffusion of Fe and Cr via vacancy mechanism with the results of MD simulations for SIAs, we demonstrate that enrichment of sinks by Cr atoms is possible in the Fe–Cr alloys containing less than 13% Cr. This result is discussed in the light of available experimental data on the RIS in Fe–Cr alloys and ferritic/martensitic steels. It is predicted that the degree of the Cr enrichment goes up with decreasing Cr content in the alloy and irradiation temperature.

  4. Rank correlation of laser-induced breakdown spectroscopic data for the identification of alloys used in jewelry manufacture

    Science.gov (United States)

    Jurado-López, A.; Luque de Castro, M. D.

    2003-07-01

    The aim of the present study was the rapid identification of alloys used in the manufacture of jewelry pieces with the help of a spectral library. The laser-induced breakdown spectra of 32 alloys were stored, with 25 of them chosen as library standards; the remaining seven spectra were used as samples. The composition of the alloys was obtained by flame atomic absorption spectrometry. A rank correlation method was applied for comparison between spectra, providing good correlation coefficients for the alloys studied. The composition of the samples was also predicted by partial least-squares regression to demonstrate the capability of this technique for the rapid analysis of this type of material.

  5. Comparison of brass alloys composition by laser-induced breakdown spectroscopy and self-organizing maps

    Energy Technology Data Exchange (ETDEWEB)

    Pagnotta, Stefano; Grifoni, Emanuela; Legnaioli, Stefano [Applied and Laser Spectroscopy Laboratory, ICCOM-CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Lezzerini, Marco [Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa (Italy); Lorenzetti, Giulia [Applied and Laser Spectroscopy Laboratory, ICCOM-CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Palleschi, Vincenzo, E-mail: vincenzo.palleschi@cnr.it [Applied and Laser Spectroscopy Laboratory, ICCOM-CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Department of Civilizations and Forms of Knowledge, University of Pisa, Via L. Galvani 1, 56126 Pisa (Italy)

    2015-01-01

    In this paper we face the problem of assessing similarities in the composition of different metallic alloys, using the laser-induced breakdown spectroscopy technique. The possibility of determining the degree of similarity through the use of artificial neural networks and self-organizing maps is discussed. As an example, we present a case study involving the comparison of two historical brass samples, very similar in their composition. The results of the paper can be extended to many other situations, not necessarily associated with cultural heritage and archeological studies, where objects with similar composition have to be compared. - Highlights: • A method for assessing the similarity of materials analyzed by LIBS is proposed. • Two very similar fragments of historical brass were analyzed. • Using a simple artificial neural network the composition of the two alloys was determined. • The composition of the two brass alloys was the same within the experimental error. • Using self-organizing maps, the probability of the alloys to have the same composition was assessed.

  6. Effect of high temperature annealing on ferromagnetism induced by energetic ion irradiation in FeRh alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, S.; Fujita, Nao; Matsui, T.; Hori, F. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency (JAEA-Takasaki), Takasaki, Gunma 370-1292 (Japan); Ishikawa, N.; Okamoto, Y. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai, Ibaraki 319-1195 (Japan); Iwase, A., E-mail: iwase@mtr.osakafu-u.ac.j [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2011-05-01

    Effects of thermal annealing on ion-irradiation induced ferromagnetism of Fe-50at.%Rh bulk alloy and the related structural change were investigated by means of superconducting quantum interference device (SQUID) and extended X-ray absorption fine structure (EXAFS), respectively. Depending on the annealing temperature from 100 to 500 {sup o}C, the magnetization induced by 10 MeV iodine ion irradiation and the lattice structure of the alloy were remarkably changed. After 500 {sup o}C annealing, the magnetization and the lattice ordering of the alloy become similar to the states before the irradiation. The experimental result indicates that the thermal relaxation of irradiation-induced atomic disordering dominates the magnetic state of ion-irradiated Fe-50at.% Rh alloy.

  7. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz; Belasri, A. [Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MB, LPPMCA (Algeria)

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  8. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations CCF-LIBS calculated by CF-LIBS and the certified concentrations Ccertified were very close

  9. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Science.gov (United States)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A.; Belasri, A.

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C CF-LIBS calculated by CF-LIBS and the certified concentrations C certified were very close.

  10. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  11. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    International Nuclear Information System (INIS)

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative

  12. Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHEN Liang; SUN Xue-yin; XU Cheng-yan; GAO Run-sheng; XU Ren-gen; QIN Lu-chang

    2007-01-01

    Structural and magnetic properties of Fe-25Cr-12Co-1Si alloy thermo-magnetically treated under different external magnetic field conditions were investigated. Orientation and morphology of the ferromagnetic α1 phase embedded in α2 phase matrix before and after step ageing are characterized by transmission electron microscope(TEM). The results show that the ellipsoidal particles of ferromagnetic α1 phase are aligned along the direction of external magnetic field during isothermal magnetic ageing. Approximately 28% of the total coercivity can be attributed to the shape anisotropy of α1 phase particles induced by external magnetic field for Fe-25Cr-12Co-1Si alloy thermo-magnetically treated with a parallel magnetic field.

  13. Oxygen-induced Y surface segregation in a CuPdY ternary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tafen, D N.; Miller, J B.; Dogan, O N.; Baltrus, J P.; Kondratyuk, P

    2013-01-01

    We present a comprehensive theoretical and experimental study of the segregation behavior of the ternary alloy CuPdY in vacuum (i.e., the clean surface) and in the presence of oxygen. Theoretical prediction shows that for clean surface, yttrium will substitute first for Cu and then for Pd at the subsurface lattice site before segregating to the surface where it substitutes for Cu. XRD characterization of the surface of CuPdY indicates the presence of two major phases, B2 CuPd and Pd{sub 3}Y. In the presence of adsorbed oxygen, theory predicts that Y preferentially occupies surface sites due to its stronger oxygen affinity compared to Cu and Pd. XPS experiments confirm the computational results in the adsorbed oxygen case, showing that surface segregation of yttrium is induced by the formation of Y-oxides at the top-surface of the alloy.

  14. Coherent potential approximation treatment of the Sm valence transition in SmS induced by alloying

    International Nuclear Information System (INIS)

    The Sm valence transition, similar to the pressure-induced transition in pure SmS, has been observed in a large number of cases by substituting a trivalent rare earth, B, for Sm, thereby forming isostructural alloys with a lattice constant smaller than that of semiconducting SmS. Such substitutions are expected to exert a 'chemical' pressure which simulates the external pressure. However, divalent substitutions (Yb, Eu and Ca), although having a favourable 'size' factor, do not induce any valence transition. Accordingly, band structure effects, essentially due to the relative position of the conduction bands of SmS and BS, should also be taken into consideration. In order to clarify the role which the lattice constant and the electronic structure play in the valence transition, these alloys have been studied using the coherent potential approximation (CPA) including both the crystal field effect and the Coulomb interaction between localised and itinerant states as driving mechanisms. For Sm, the 'homogeneous' picture is considered, each Sm site having the average valence; then the Smsub(1-x)Bsub(x)S system is reduced to a binary alloy. Charge transfer between the f states of Sm and the alloy conduction band (i.e. Sm valence change) is determined self-consistently. The calculations are consistent with the experimental behaviour and allow us to understand qualitatively the variation of the critical concentration xsub(c) for the transition as a function of the difference Δa between the lattice parameters of SmS and BS. (author)

  15. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Was; Brian D. Wirth

    2011-05-29

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400°C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  16. Characteristics of radioactivities induced in aluminum alloys and the effects due to those major and minor components

    International Nuclear Information System (INIS)

    In order to search the usefulness of aluminum alloys as a material for an accelerator and its surrounding apparatus, the characteristics of radioactivities induced in several aluminum alloys (AA 1230, AA 2219, JIS 5052, AA 6063 and AA 7079) and stainless steel (SUS 304) irradiated for a long time with high energy bremsstrahlung have been studied fundamentally and compared with each other. After the concentrations of major alloying elements and impurities in the above samples were determined by means of photon-activation, proton-activation and emission spectrochemical analyses, they were irradiated with 30 and 200 MeV bremsstrahlung. As the results, it was proved that the intensities of radioactivities induced in the aluminum alloys are greatly affected by those major and minor components, but are remarkably lower than that in the stainless steel. (author)

  17. Electrochemically induced surface charge effect on the properties of nanoporous Au-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ajay Kumar; Hahn, Horst [Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe 76021 (Germany); Bansal, Chandrahas [Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe 76021 (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India)

    2008-07-01

    Nanoporous Au-Fe alloys consisting of nanoparticles of about 5 nm diameter were synthesized by inert gas phase condensation. Charge was induced electrochemically on the surface of the nanoparticles, and in-situ measurements of strain, magnetization, and conductivity were carried out during the charging and decharging process taking place in the electrochemical cell. The observed strain could be explained to arise from a Coulomb pressure produced by the surface charge on the metal. The variation of magnetization with charging was also found to be consistent with the effect of this pressure. A charge induced variation in the dc electrical conductivity of about 6 percent was observed. An explanation of the rate of change of conductivity with charge was provided in terms of the additional charge density produced by the induced charge. Similarly at the microscopic level, Moessbauer isomer shift and quadrupole splitting were measured and showed a small but reversible behaviour with charge.

  18. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    Science.gov (United States)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27–61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72–93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  19. Multiscale model of global inner-core anisotropy induced by hcp-alloy plasticity

    CERN Document Server

    Lincot, A; Deguen, R; Merkel, Sébastien

    2016-01-01

    $\\bullet$ Multiscale model of inner-core anisotropy produced by hcp alloy deformation$\\bullet$ 5 to 20% single-crystal elastic anisotropy and plastic deformation by pyramidal slip $\\bullet$ Low-degree inner-core formation model with faster crystallization at the equatorThe Earth's solid inner-core exhibits a global seismic anisotropy of several percents. It results from a coherent alignment of anisotropic Fe-alloy crystals through the inner-core history that can be sampled by present-day seismic observations. By combining self-consistent polycrystal plasticity, inner-core formation models, Monte-Carlo search for elastic moduli, and simulations of seismic measurements, we introduce a multiscale model that can reproduce a global seismic anisotropy of several percents aligned with the Earth's rotation axis. Conditions for a successful model are an hexagonal-close-packed structure for the inner-core Fe-alloy, plastic deformation by pyramidal \\textless{}c+a\\textgreater{} slip, and large-scale flow induced by a low...

  20. Quantitative observations of hydrogen-induced, slow crack growth in a low alloy steel

    Science.gov (United States)

    Nelson, H. G.; Williams, D. P.

    1973-01-01

    Hydrogen-induced slow crack growth, da/dt, was studied in AISI-SAE 4130 low alloy steel in gaseous hydrogen and distilled water environments as a function of applied stress intensity, K, at various temperatures, hydrogen pressures, and alloy strength levels. At low values of K, da/dt was found to exhibit a strong exponential K dependence (Stage 1 growth) in both hydrogen and water. At intermediate values of K, da/dt exhibited a small but finite K dependence (Stage 2), with the Stage 2 slope being greater in hydrogen than in water. In hydrogen, at a constant K, (da/dt) sub 2 varied inversely with alloy strength level and varied essentially in the same complex manner with temperature and hydrogen pressure as noted previously. The results of this study provide support for most of the qualitative predictions of the lattice decohesion theory as recently modified by Oriani. The lack of quantitative agreement between data and theory and the inability of theory to explain the observed pressure dependence of slow crack growth are mentioned and possible rationalizations to account for these differences are presented.

  1. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  2. A study on the behavior of boron in iron-base alloys by neutron induced autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Sung; Rhee, Chang Kyu; Cho, Hae Dong; Han, Chang Hee; Lee, Chang Hee; Jung, Jung Hwan; Kim, Yi Kyung; Lee, Yong Bok

    2001-02-01

    Boron is widely utilized in steel or alloy making to improve certain properties. However, due to its lightness boron is difficult to detect or characterize its behavior even through TEM/EDS or EELS techniques. Although many companies recognize the beneficial effects of boron, the role or mechanism of the boron is not yet clearly understood. Therefore it is required to develop the autoradiography technique to elucidate the boron behavior in alloys. As the only institute operating research reactor in the country, it would be the responsibility of the institute to develop the technique and provide it to the industries. Quantitative analyses of boron in type 316 L stainless steel by neutron induced autoradiography was attempted in this study. Nine experimental reference alloys with different amount of boron were prepared and reliable chemical composition data were obtained. Autoradiographs of reference materials with three different neutron fluences ( 1.9 10{sup 13}, 1.9 10{sup 14} and 1.9 10{sup 15}/cm{sup 2} ) were obtained and a trial calibration curve of boron content vs. track density was acquired.

  3. Enhanced grain refinement through deformation induced {alpha} precipitation in hot working of {alpha} + {beta} titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Institute for Materials Research, Tohoku University, Sendai (Japan); State Key Lab of Powder Metallurgy, Central South University, Changsha (China); Li, Yunping; Matsumoto, Hiroaki; Koizumi, Yuichiro; Chiba, Akihiko [Institute for Materials Research, Tohoku University, Sendai (Japan); Liu, Yong [State Key Lab of Powder Metallurgy, Central South University, Changsha (China)

    2012-09-15

    This study reports a novel forging process to fabricate bulk fine-grained (grain size {approx} 1 {mu}m) Ti-6Al-4V alloy, in which temperatures near the {beta} transus (T{sub {beta}}) and strain rates around 0.15 s{sup -1} are used for the deformation. The formation of fine-grained microstructure is mainly result from the deformation-induced precipitation of {alpha} grains from the {beta} matrix. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Transmutation-induced embrittlement of V-Ti-Ni and V-Ni alloys in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, S.; Takahashi, H. [Hokkaido Univ., Sapparo (Japan); Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States); Pawel, J.E. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    Vanadium, V-1Ni, V-10Ti and V-10Ti-1Ni (at %) were irradiated in HFIR to doses ranging from 18 to 30 dpa and temperatures between 300 and 600C. Since the irradiation was conducted in a highly thermalized neutron spectrum without shielding against thermal neutrons, significant levels of chromium (15-22%) were formed by transmutation. The addition of such large chromium levels strongly elevated the ductile to brittle transition temperature. At higher irradiation temperatures radiation-induced segregation of transmutant Cr and solute Ti at specimen surfaces leads to strong increases in the density of the alloy.

  5. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  6. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  7. Magnetically induced electrodeposition of Zn–Ni alloy coatings and their corrosion behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vaishaka R. [Electrochemistry Research Laboratory, Department of Chemistry, National Institute of Technology Karnataka, NITK, Surathkal, Srinivasnagar 575025, Mangalore, Karnataka (India); Bangera, Kasturi V. [Electrochemistry Research Laboratory, Department of Chemistry, National Institute of Technology Karnataka, NITK, Surathkal, Srinivasnagar 575025, Mangalore, Karnataka (India); Electrochemistry Research Laboratory, Department of Physics, National Institute of Technology Karnataka, NITK, Surathkal, Srinivasnagar, 575025, Mangalore, Karnataka (India); Hegde, A. Chitharanjan, E-mail: hegdeac@rediffmail.com [Electrochemistry Research Laboratory, Department of Chemistry, National Institute of Technology Karnataka, NITK, Surathkal, Srinivasnagar 575025, Mangalore, Karnataka (India)

    2013-11-15

    The less magnetic features of Zn–Ni alloy compared to Fe–Ni and Fe–Co alloys made it interesting to develop them under the influence of applied magnetic field. In this regard, the effects of a magnetic field (B) applied in a direction parallel and perpendicular to the nominal current, during electrodeposition process of Zn–Ni alloy have been investigated by means of X-ray diffraction and EDX analysis. The modification of crystal orientation by superimposition of a varying magnetic field is studied for alloys of constant nickel content (8 a %.), deposited at optimal current density (j) of 3.0 A dm{sup −2}. The effect of magnetic field on crystallographic orientation and hence the corrosion behaviors of the coatings were studied. The preferential orientations (101) and (002) of the zinc phase and (330) γ-Ni{sub 5}Zn{sub 21} phase are always favored to exist with parallel and perpendicular magnetic field. The preferential (321) γ-Ni{sub 5}Zn{sub 21} orientation is found to be the characteristic of perpendicular magnetic field. Further, Zn (100) orientation is found to be non-responsive to the effect of parallel magnetic field. The coatings developed using perpendicular magnetic field is more corrosion resistant compare to that for parallel magnetic field. This is attributed to the additional (321) γ-Ni{sub 5}Zn{sub 21} orientations. The changes in the phase structure of the coatings deposited at different magnetic field are attributed to the effect caused by the magnetic convection induced in the electrolytic solution, called MHD effect (magneto-hydrodynamic effect). The chemical composition of the alloy was found to be same in both natural and magnetically induced deposition due to constant Ni content in the bath. The variation in the surface morphology of the coatings was studied by scanning electron microscopy (SEM). The Zn–Ni alloy coating deposited at 0.8 T perpendicular B showed the highest corrosion resistance (with corrosion rate=0.26×10{sup

  8. Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys

    Directory of Open Access Journals (Sweden)

    Q. Tao

    2012-12-01

    Full Text Available A series of Ni50-xMn41+xSn9 (x = 0–19 alloys from Ni-rich to Mn-rich composition were prepared, and the composition dependence of phase transitions and magnetic properties were investigated. No γ-phase can be observed until x = 17. Martensitic transformation from ferromagnetic austenite to weak-magnetic or ferromagnetic martensite was observed in alloys with Mn content between 52 and 58, and magnetic-field-induced transformation was confirmed. A large magnetization change of 44 Am2/kg across the martensitic transformation is observed in Ni37Mn54Sn9. Our results indicate that Mn-rich Ni-Mn-Sn alloys show promise as metamagnetic shape memory alloys.

  9. Twinning-Induced Elasticity in NiTi Shape Memory Alloys

    Science.gov (United States)

    Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther

    2016-06-01

    Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.

  10. Elemental redistribution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion

    International Nuclear Information System (INIS)

    Highlights: · Elemental distribution of a nc Ni-Fe alloy before and after high-pressure torsion. · The supersaturated Ni-Fe solid solution was stable under HPT. · C and S atoms further segregated to the remaining GBs during grain growth. · GB diffusion and the motion of defects facilitate the elemental redistribution. - Abstract: An electrochemically deposited nanocrystalline supersaturated face-centred-cubic Ni-21 at.% Fe alloy with an initial average grain size of ∼21 nm was processed using high-pressure torsion (HPT) that resulted in grain growth via grain rotation and coalescence to an average grain size of ∼53 nm. Atom probe tomography investigations revealed that the supersaturated Ni-Fe solid solution was stable under HPT and that C and S atoms, which are the major impurities in the material and segregated to the grain boundaries (GBs) of the as-deposited material, migrated from disappearing GBs to the remaining GBs during HPT. We propose that the elemental redistribution was facilitated by GB diffusion and the motion of a large volume of HPT-induced defects at the GB regions during the grain growth process. This elemental redistribution process is different from other HPT-induced elemental redistribution processes reported in the literature.

  11. Strain-induced Precipitation in Ti Micro-alloyed Interstitial-free Steel

    Institute of Scientific and Technical Information of China (English)

    Ya-jun HUI; Yang YU; Lin WANG; Chang WANG; Wen-yuan LI; Bin CHEN

    2016-01-01

    Stress relaxation method was carried out on a Ti micro-alloyed interstitial-free (IF)steel at the tempera-ture ranging from 800 to 1 000 ℃.The results show that the softening kinetics curves of deformed austenite can be divided into three stages.At the first stage,the stress has a sharp drop due to the onset of recrystallization.At the second stage,a plateau appears on the relaxation curves indicating the start and finish of strain-induced precipitation. At the third stage,the stress curves begin to descend again because of coarsening of precipitates.Precipitation-time-temperature (PTT)diagram exhibited a “C”shape,and the nose point of the PTT diagram is located at 900 ℃ and the start precipitation time of 10 s.The theoretical calculation shows that the strain-induced precipitates were con-firmed as almost pure TiC particles.The TiC precipitates were heterogeneously distributed in either a chain-like or cell-like manner observed by transmission electron microscopy (TEM),which indicates the precipitates nucleated on dislocations or dislocation substructures.In addition,a thermodynamic analytical model was presented to describe the precipitation in Ti micro-alloyed IF steel,which shows a good agreement between the experimental observation and the predictions of the model.

  12. Elemental redistribution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Ni, S. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Sha, G., E-mail: gang.sha@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Wang, Y.B. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, X.Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Alhajeri, S.N. [Department of Manufacturing Engineering, College of Technological Studies, PAAET, Shuwaikh 70654 (Kuwait); Li, H.Q. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhu, Y.T. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27659-7919 (United States); Langdon, T.G. [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-25

    Highlights: {center_dot} Elemental distribution of a nc Ni-Fe alloy before and after high-pressure torsion. {center_dot} The supersaturated Ni-Fe solid solution was stable under HPT. {center_dot} C and S atoms further segregated to the remaining GBs during grain growth. {center_dot} GB diffusion and the motion of defects facilitate the elemental redistribution. - Abstract: An electrochemically deposited nanocrystalline supersaturated face-centred-cubic Ni-21 at.% Fe alloy with an initial average grain size of {approx}21 nm was processed using high-pressure torsion (HPT) that resulted in grain growth via grain rotation and coalescence to an average grain size of {approx}53 nm. Atom probe tomography investigations revealed that the supersaturated Ni-Fe solid solution was stable under HPT and that C and S atoms, which are the major impurities in the material and segregated to the grain boundaries (GBs) of the as-deposited material, migrated from disappearing GBs to the remaining GBs during HPT. We propose that the elemental redistribution was facilitated by GB diffusion and the motion of a large volume of HPT-induced defects at the GB regions during the grain growth process. This elemental redistribution process is different from other HPT-induced elemental redistribution processes reported in the literature.

  13. Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding

    International Nuclear Information System (INIS)

    A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg-Gd-Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the twin platelets and residual microbands into sub-microstructures. As a result, homogeneous nanostructure with a grain size of about 10-20 nm is formed through dynamic recrystallization in the topmost surface layer. Based on the experimental observations, a grain refinement mechanism induced by plastic deformation with higher strain rate during the HVOF-SMB treatment in the rare earth Mg-Gd-Y alloy was proposed.

  14. Deuterium ion irradiation induced precipitation in Fe–Cr alloy: Characterization and effects on irradiation behavior

    International Nuclear Information System (INIS)

    Highlights: • A new phase precipitated in Fe–Cr alloy after deuterium ion irradiation at 773 K. • B2 structure was proposed for the Cr-rich new phase. • Strain fields around the precipitate have been measured by GPA. • The precipitate decrease growth rate of dislocation loop under electron irradiation. - Abstract: A new phase was found to precipitate in a Fe–Cr model alloy after 58 keV deuterium ion irradiation at 773 K. The nanoscale radiation-induced precipitate was studied systematically using high resolution transmission electron microscopy (HRTEM), image simulation and in-situ ultrahigh voltage transmission electron microscopy (HVEM). B2 structure is proposed for the new Cr-rich phase, which adopts a cube-on-cube orientation relationship with regard to the Fe matrix. Geometric phase analysis (GPA) was employed to measure the strain fields around the precipitate and this was used to explain its characteristic 1-dimensional elongation along the 〈1 0 0〉 Fe direction. The precipitate was stable under subsequent electron irradiation at different temperatures. We suggest that the precipitate with a high interface-to-volume ratio enhances the radiation resistance of the material. The reason for this is the presence of a large number of interfaces between the precipitate and the matrix, which may greatly reduce the concentration of point defects around the dislocation loops. This leads to a significant decrease in the growth rate

  15. Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding

    Science.gov (United States)

    Xu, Kaidong; Wang, Aihua; Wang, Yang; Dong, Xuanpu; Zhang, Xianglin; Huang, Zaowen

    2009-11-01

    A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg-Gd-Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the twin platelets and residual microbands into sub-microstructures. As a result, homogeneous nanostructure with a grain size of about 10-20 nm is formed through dynamic recrystallization in the topmost surface layer. Based on the experimental observations, a grain refinement mechanism induced by plastic deformation with higher strain rate during the HVOF-SMB treatment in the rare earth Mg-Gd-Y alloy was proposed.

  16. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    Directory of Open Access Journals (Sweden)

    Mushahary D

    2013-08-01

    Full Text Available Dolly Mushahary,1,2 Ragamouni Sravanthi,2 Yuncang Li,2 Mahesh J Kumar,1 Nemani Harishankar,4 Peter D Hodgson,1 Cuie Wen,3 Gopal Pande2 1Institute for Frontier Materials, Deakin University, Geelong, Australia; 2CSIR- Centre for Cellular and Molecular Biology, Hyderabad, India; 3Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia; 4National Institute of Nutrition (ICMR, Tarnaka, Hyderabad, India Abstract: Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. Keywords: osteoblasts, bone mineralization, corrosion, osseointegration, surface energy, peri-implant

  17. Semi-solid process of 2024 wrought aluminum alloy by strain induced melt activation

    Directory of Open Access Journals (Sweden)

    Surachai Numsarapatnuk

    2013-10-01

    Full Text Available The aim of this study is to develop a production process of a fine globular structure feedstock of the 2024 aluminumalloy suitable for subsequent semi-solid forming. The 2024 wrought aluminum alloy was first annealed to reduce the effect ofwork hardening. Then, strain was induced in the alloy by cold compression. After that the microstructural evolution duringpartial melting was investigated. The samples were subjected to full annealing at 415°C for 3 hrs prior to cold compression of40% reduction of area (RA with 3 mm/min strain rate. After that samples were partially melted at 620°C with varying holdingtime from 0 to 60 min followed by water quenching. The grain size and the average grain diameter of solid grains weremeasured using the linear intercept method. The globularization was interpreted in terms of shape factor. Liquid fraction andthe distribution of the eutectic liquid was also investigated. It was found that during partial melting, the globular morphologywas formed by the liquid wetting and fragmentation of high angle boundaries of recrystallized grains. The suitable semi-solidmicrostructure was obtained from a condition of full annealing, 40% cold working and partial melting at 620°C for 6 minholding time. The near globular grains obtained in the range of 0-60 min consisted of uniform spheroid grains with an averagegrain diameter ranged from 73 to 121 m, quenched liquid fraction was approximately 13–27% and the shape factor was greaterthan 0.6. At a holding time of less than 6 min, grain coarsening was dominant by the immigration of high-angle grainboundaries. At a longer holding time, liquid fraction increased and Ostwald ripening was dominant. The coarsening rateconstant for the 2024 Al alloy was 400.36 mm3.s-1. At a soaking time of 60 min, it was found that a minimum diameter differencewas 1.06% with coarsening index n=3 in a power law equation. The non-dendritic slug of 2024 alloy was rapid compressedinto a disc with 90%RA

  18. Transformation mechanism of deformation - induced compact martensite in Fe-Ni-C alloys

    International Nuclear Information System (INIS)

    Compact deformation - induced martensite found in Fe - 25Ni - 0.66C alloys has been studied by using optical, electron and scanning electron microscopy. The compact martensite consists of a large number of martensites with different variants connected closely to form large bulk in which almost no residual austenite remains. Its formation process is by further growth of thin plates to form lenticular plates and possible crossing and coalesence to form bulky martensite. These growth and coalesence are through martensitic twinning or twinning domains during deformation which leads to various interactions between the plates including cross, insert, coalescence and conversion. The substructure of the martensite is a crisscross twinning net. The corresponding deformation modes of the austenite are also studied. (orig.)

  19. The mechanism of radiation-induced segregation in ferritic–martensitic alloys

    International Nuclear Information System (INIS)

    The mechanism of radiation-induced segregation in Fe–Cr alloys was modeled using the inverse Kirkendall mechanism and compared to experimental measurements over a range of temperatures, bulk Cr compositions, and irradiation dose. The model showed that over a large temperature range chromium was enriched at sinks by interstitial migration, and at very high temperatures it was depleted by diffusing opposite to the vacancy flux. Experimental results and model predictions were in good qualitative and quantitative agreement with regard to the temperature dependence of segregation and the crossover from Cr enrichment to Cr depletion. The inverse Kirkendall mechanism was also in agreement with experimental findings that observed a decreasing amount of Cr enrichment with increasing bulk Cr composition. The effects of solute drag were modeled within the inverse Kirkendall framework, but were unable to account for either the crossover from Cr enrichment to Cr depletion or the magnitudes of segregation measured in experiments

  20. Stress induced martensite at the crack tip in NiTi alloys during fatigue loading

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2014-10-01

    Full Text Available Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi were analyzed by Digital Image Correlation (DIC, under fatigue loads. In particular, Single Edge Crack (SEC specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF, starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence.

  1. Fracture toughness of shape memory alloy actuators: effect of transformation-induced plasticity

    Science.gov (United States)

    Jape, Sameer; Solomou, Alexandros; Baxevanis, Theocharis; Lagoudas, Dimitris C.

    2016-04-01

    Numerical analysis of static cracks in a plane strain center-cracked infinite medium shape memory alloy (SMA) panel subjected to cyclic thermal variations and a constant mechanical load is conducted using the finite element method. In solid-state SMA actuators, permanent changes in the material's microstructure in the form of dislocations are caused during cyclic thermomechanical loading, leading to macroscopic irreversible strains, known as transformation induced plastic (TRIP) strains. The influence of these accumulated TRIP strains on mechanical fields close to the crack tip is investigated in the present paper. Virtual crack growth technique (VCCT) in ABAQUS FEA suite is employed to calculate the crack tip energy release rate and crack is assumed to be stationary (or static) so that the crack tip energy release rate never reaches the material specific critical value. Increase in the crack tip energy release rate is observed during cooling and its relationship with accumulation of TRIP due to cyclic transformation is studied.

  2. C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Michael W Holliday

    Full Text Available We previously reported that fenretinide (4-HPR was cytotoxic to acute lymphoblastic leukemia (ALL cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04 and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004, but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001 and cytotoxicity (P ≤ 0.001. These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides

  3. Transformation-induced plasticity in high-temperature shape memory alloys: a one-dimensional continuum model

    Science.gov (United States)

    Sakhaei, Amir Hosein; Lim, Kian-Meng

    2016-07-01

    A constitutive model based on isotropic plasticity consideration is presented in this work to model the thermo-mechanical behavior of high-temperature shape memory alloys. In high-temperature shape memory alloys (HTSMAs), both martensitic transformation and rate-dependent plasticity (creep) occur simultaneously at high temperatures. Furthermore, transformation-induced plasticity is another deformation mechanism during martensitic transformation. All these phenomena are considered as dissipative processes to model the mechanical behavior of HTSMAs in this study. The constitutive model was implemented for one-dimensional cases, and the results have been compared with experimental data from thermal cycling test for actuator applications.

  4. A Stress-Induced Martensitic Transformation in Aged Ti49Ni51 Alloy after High-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Yingying Zhu

    2016-06-01

    Full Text Available The effects of a high-velocity impact on the microstructure, phase transformation and mechanical property of aged Ti49Ni51 alloy are investigated. The transformation behavior and microstructure along the impact direction after impact emerge with regionalization characteristics, including a deformed region near the crater (0–4 mm and an un-deformed region of the distal crater (5–6 mm. Stress-induced martensite is the main deformation mechanism in the deforming region of aged Ti49Ni51 alloy under high-velocity impact.

  5. Structural identification of sedimentary C21 and C22 highly branched isoprenoid alkanes

    OpenAIRE

    Sinninghe Damsté, J.S.; Baas, M.; Geenevasen, J.A.J.; Kenig, F.

    2005-01-01

    C21 and C22 highly branched isoprenoid (HBI) alkanes occurring in high relative abundance in lagoonal sediments of Abu Dhabi have been unambiguously identified as 2,6,10-trimethyl-7-(3-methylpentyl)dodecane and 3,7,11-trimethyl-6- (3-methylpentyl)tridecane, respectively, using NMR spectroscopy. A second C21 HBI isomer is tentatively identified as 3,7,11-trimethyl-6-(3-methylbutyl)tridecane, on the basis of comparison of its mass spectral fragmentation with those of fully identified HBIs. The ...

  6. Nd:YAG laser cladding of marine propeller with hastelloy C-22

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.D.; Kang, K.H.; Kim, J.N. [Dept. of Mechanical Engineering, Inha University, Yonghyundong 253, Namku, 402-751, Incheon (Korea)

    2004-09-01

    Nd:YAG laser cladding with automatic wire feeding (Hastelloy C-22) has been done to increase the lifetime of marine propellers made of HBsC1. The effects of processing parameters on the quality of clad layer have been investigated and clad layers have analyzed by optical microscopy and Vickers hardness tester. The method to overcome the drop transfer problem during the wire feeding has been introduced. A cladding speed that is too fast or too slow influenced the shape of clad. The good clad layer without cracks and with low dilution has been obtained with the optimum processing parameters. (orig.)

  7. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    MJ Danielson; SG Pitman

    2000-02-23

    Both the 316L stainless steel and Hastelloy{reg_sign} C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment.

  8. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yanyun@vt.edu [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Puplampu, S.B. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Summers, P.T.; Lattimer, B.Y. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Penumadu, D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Case, S.W. [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2015-08-12

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep.

  9. Chloride ion effect and alloying effect on dealloying-induced formation of nanoporous AuPt alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan, E-mail: mse_wangy@ujn.edu.cn; Xu, Junling; Wu, Bo

    2013-07-01

    The dealloying of the rapidly solidified Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor in the 5 wt.% HCl or 20 wt.% NaOH solution has been investigated using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy, in order to clarify the chloride ion effect and alloying effect on the formation of nanoporous Au–Pt alloy. The Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor is composed of a single Al{sub 2}Au-type intermetallic compound and only Au(Pt) solid solution can be identified in the as-dealloyed sample. The Pt addition can significantly refine the nanoporous structure during the dealloying of the Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor either in the HCl or NaOH solution. Moreover, the alloying effect of Pt markedly exceeds the coarsening effect of chloride ion adsorption for the formation of nanoporous Au–Pt. The average ligament size is 5.2 ± 0.7 and 3.3 ± 0.4 nm for the nanoporous Au–Pt alloy obtained in the HCl and NaOH solution, respectively. In addition, electrochemical measurements including potentiodynamic polarization and cyclic voltammetry have also been performed on the Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor.

  10. Perpendicular magnetization of Co2FeAl full-Heusler alloy films induced by MgO interface

    Science.gov (United States)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-06-01

    The perpendicular magnetization of Co2FeAl (CFA) full-Heusler alloy films was achieved in the structures of CFA/MgO and MgO/CFA with the perpendicular magnetic anisotropy energy density (KU) of 2-3×106 erg/cm3, which can be used as the perpendicular ferromagnetic electrodes of MgO-based magnetic tunnel junctions (MTJs) with high thermal stability at sub-50-nm dimension. The CFA thickness dependence of KU was investigated at different annealing temperatures, indicating that the perpendicular anisotropy of CFA is contributed by the interfacial anisotropy between CFA and MgO. This letter will open up a way for obtaining perpendicular magnetization of Co-based full-Heusler alloys, which is promising for further reduction in the critical current of current induced magnetization switching in MgO-based MTJ nanopillars with perpendicular full-Heusler alloy electrodes.

  11. Perpendicular Magnetic Anisotropy Induced by Tetragonal Distortion of FeCo Alloy Films Grown on Pd(001)

    Science.gov (United States)

    Winkelmann, Aimo; Przybylski, Marek; Luo, Feng; Shi, Yisheng; Barthel, Jochen

    2006-06-01

    We grew tetragonally distorted FexCo1-x alloy films on Pd(001). Theoretical first-principles calculations for such films predicted a high saturation magnetization and a high uniaxial magnetic anisotropy energy for specific values of the lattice distortion c/a and the alloy composition x. The magnetic anisotropy was investigated using the magneto-optical Kerr effect. An out-of-plane easy axis of magnetization was observed for Fe0.5Co0.5 films in the thickness range of 4 to 14 monolayers. The magnetic anisotropy energy induced by the tetragonal distortion is estimated to be almost 2 orders of magnitude larger than the value for bulk FeCo alloys. Using LEED Kikuchi patterns, a change of the easy axis of magnetization can be related to a decrease of the tetragonal distortion with thickness.

  12. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    Science.gov (United States)

    Wang, Jia X.; Adzic, Radoslav R.

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  13. Impurity-induced host-lattice vacancies in metals and interstitial alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, V.M.; Tatarenko, V.A.; Tsynman, C.L.; Yanchitskii, B.Z. [G.V. Kurdyumov Institute for Metal Physics, Kyyiv (Ukraine). Dept. of Solid State Theory; Maksimchuk, I.M.; Tkachenko, V.G. [I.M. Frantsevich Institute for Problems in Materials Science, Kyyiv (Ukraine)

    1999-02-01

    The concentration of site vacancies ({nu}) is analysed as a function of the concentration of interstitial nonmetallic (X) atoms inside cubic-metal (Me) crystals. Its increasing dependence is established. The {nu} concentration may exceed the concentration of thermally activated vacancies in the `pure` F.C.C.-Me at the same temperature and over a wide interval of X-concentration. Factors assisting the formation of such X-induced {nu} are the following: (1) a strong repulsion of interstitial X-atoms and site Me-cations (2) a sufficient solubility of X-atoms (or clustering that leads to their local accumulation in interstices). On the contrary, an application of the pressure decreases the content of the impurity-induced {nu}. An influence of such {nu} on instability of alloys, that may lead to their polymorphic transformations, is considered. A monotonously increasing dependence is established for the {nu} concentration as a function of H concentration in F.C.C.-Fe. The {gamma}*-phase of F.C.C.-Fe--H is expected to be enriched with vacancies at high H-doping levels. For instance, that is important as a precursor effect of spontaneous deformation (`quasi-liquid state`) near the F.C.C. to B.C.C.-Fe transformation in H atmosphere. (author)

  14. Electron irradiation-induced mechanical property changes in reactor pressure vessel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.E.; Rehn, L.E. [Argonne National Lab., IL (United States); Odette, G.R.; Lucas, G.E. [California Univ., Santa Barbara, CA (United States). Dept. of Mechanical Engineering

    1995-11-01

    High-energy electrons were used to study tensile property changes in simple Fe-Cu and Fe-Cu-Mn alloys irradiated at 288C. A comparison was made with neutron irradiation data on the same alloys. An apparent effect of alloy chemistry was observed in which the presence of Mn affected embrittlement differently for electron and neutron irradiation. Comparison of previous experimental studies with the present experimental results indicates that electrons may be more efficient than fast neutrons at producing embrittlement.

  15. Preparation of AZ91D magnesium alloy semi-solid billet by new strain induced melt activated method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ju-fu; LUO Shou-jing; ZOU Jing-xiang

    2006-01-01

    New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which semi-solid billet with fine spheroidal grains and average grain size of 18 μm can be prepared. Furthermore, average grain size of semi-solid billet is reduced with increasing extrusion pass of AZ91D magnesium alloy obtained in ECAE process. By using semi-solid billet prepared by new SIMA, thixoforged magazine plates component with high mechanical properties such as yield strength of 201.4 MPa, ultimate tensile strength of 321.8 MPa and elongation of 15.3%, can be obtained.

  16. Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy

    International Nuclear Information System (INIS)

    The magnetic field induced reverse martensitic transformation was studied in polycrystalline Ni40Co10Mn41Sn9 with a high martensitic transformation start temperature (Ms, about 410 K). The reverse transformation start temperature (As) dropped by about 34 K when exposed to a magnetic field of 7 T. At room temperature, the microstructure consisted of 14M martensite and γ phase. - Highlights: • The paper demonstrates a magnetic field induced reverse transformation (MFIRT) occurring at high temperature (above 373 K) in polycrystalline Ni40Co10Mn41Sn9. • This high temperature MFIRT, to our knowledge, not reported in the literature for Ni–Co–Mn–Sn and other metamagnetic shape memory alloys. • The study would be expected to extend the practical application of Ni–Co–Mn–Sn alloy

  17. Relating field-induced shift in transition temperature to the kinetics of coexisting phases in magnetic shape memory alloys

    OpenAIRE

    Banerjee, A.; Dash, S.; Lakhani, Archana; Chaddah, P.; Chen, X; Ramanujan, R. V.

    2011-01-01

    In a magnetic shape memory alloy system, we vary composition following phenomenological arguments to tune macroscopic properties. We achieve significantly higher shift in austenite to martensitic phase transition temperature with magnetic field. This enhancement is accompanied by significant broadening of the transition and by field-induced arrest of kinetics, both of which are related to the dynamics of the coexisting phases. This reveals hitherto unknown interrelationship between different ...

  18. Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions

    Science.gov (United States)

    Seifert, H. P.; Ritter, S.

    2008-09-01

    The strain-induced corrosion cracking (SICC) behaviour of different low-alloy reactor pressure vessel (RPV) and piping steels and of a RPV weld filler/weld heat-affected zone (HAZ) material was characterized under simulated boiling water reactor (BWR)/normal water chemistry (NWC) conditions by slow rising load (SRL) and very low-frequency fatigue tests with pre-cracked fracture mechanics specimens. Under highly oxidizing BWR/NWC conditions (ECP ⩾+50 mV SHE, ⩾0.4 ppm dissolved oxygen), the SICC crack growth rates were comparable for all materials (hardness <350 HV5) and increased (once initiated) with increasing loading rates and with increasing temperature with a possible maximum/plateau at 250 °C. A minimum KI value of 25 MPa m 1/2 had to be exceeded to initiate SICC in SRL tests. Above this value, the SICC rates increased with increasing loading rate d KI/d t, but were not dependent on the actual KI values up to 60 MPa m 1/2. A maximum in SICC initiation susceptibility occurred at intermediate temperatures around 200-250 °C and at slow strain rates in all materials. In contrast to crack growth, the SICC initiation susceptibility was affected by environmental and material parameters within certain limits.

  19. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    Science.gov (United States)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  20. Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys

    International Nuclear Information System (INIS)

    Under neutron irradiation, recrystallized zirconium alloys, used as structural materials for Pressurized Water Reactor fuel assemblies, undergo stress-free growth which accelerates for high irradiation doses. This acceleration is correlated to the formation of c-component vacancy dislocation loops. Some feedbacks from neutron irradiations show that the in-service hydrogen pick-up could influence the fuel assembly radiation-induced elongation. 2 MeV proton irradiations were performed on as fabricated materials in M5®, recrystallized Zircaloy-4 and 350 wppm pre-hydrided M5®. The irradiations were conducted on a Tandem Accelerator (MIBL/University of Michigan) at 623 K up to four doses. For both grades, the c-component loops evolution with dose is examined and compared to the neutron irradiated microstructures. As observed under neutron irradiation, the c-loop density in Zy-4 is higher than in M5®. Moreover, TEM observations on 350 wppm pre-hydrided M5® show that c-loop density is higher than without pre-hydriding. It is also seen that c-loops are preferentially located in the surrounding of some delta-hydrides partially or fully dissolved. The role played by hydrogen in solid solution and as precipitated hydrides is discussed

  1. Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tournadre, L. [CEA-DEN, Section for Applied Metallurgy Research, 91191 Gif-sur-Yvette Cedex (France); Onimus, F., E-mail: fabien.onimus@cea.fr [CEA-DEN, Section for Applied Metallurgy Research, 91191 Gif-sur-Yvette Cedex (France); Béchade, J.-L. [CEA-DEN, Section for Applied Metallurgy Research, 91191 Gif-sur-Yvette Cedex (France); Gilbon, D. [CEA-DEN, Nuclear Material Department, 91191 Gif-sur-Yvette Cedex (France); Cloué, J.-M.; Mardon, J.-P. [AREVA AREVA NP SAS Fuel Business Unit 10, Rue Juliette Recamier, 69456 Lyon Cedex 06 (France); Feaugas, X. [LaSIE, FRE CNRS 3474, Université de La Rochelle, 17042 La Rochelle Cedex 1 (France)

    2013-10-15

    Under neutron irradiation, recrystallized zirconium alloys, used as structural materials for Pressurized Water Reactor fuel assemblies, undergo stress-free growth which accelerates for high irradiation doses. This acceleration is correlated to the formation of c-component vacancy dislocation loops. Some feedbacks from neutron irradiations show that the in-service hydrogen pick-up could influence the fuel assembly radiation-induced elongation. 2 MeV proton irradiations were performed on as fabricated materials in M5{sup ®}, recrystallized Zircaloy-4 and 350 wppm pre-hydrided M5{sup ®}. The irradiations were conducted on a Tandem Accelerator (MIBL/University of Michigan) at 623 K up to four doses. For both grades, the c-component loops evolution with dose is examined and compared to the neutron irradiated microstructures. As observed under neutron irradiation, the c-loop density in Zy-4 is higher than in M5{sup ®}. Moreover, TEM observations on 350 wppm pre-hydrided M5{sup ®} show that c-loop density is higher than without pre-hydriding. It is also seen that c-loops are preferentially located in the surrounding of some delta-hydrides partially or fully dissolved. The role played by hydrogen in solid solution and as precipitated hydrides is discussed.

  2. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    Science.gov (United States)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-06-01

    NF616 is a nominal 9Cr ferritic-martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (˜6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (˜3-4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  3. Composition variations induced by g-jitter in Bridgman growth of Sn Bi alloys in microgravity

    Science.gov (United States)

    Garandet, J. P.; Alexander, J. I. D.; Corre, S.; Favier, J. J.

    2001-08-01

    This work is a detailed analysis of the experimental data on g-jitter effects on solute segregation during directional solidification of tinbismuth alloys. The experiments were carried out under microgravity conditions within the framework of the MEPHISTO programme. The MEPHISTO data from the USMP-3 space flight mission represented the first quantitative data on g-jitter effects on a directional solidification experiment that were obtained under well-defined conditions The growth conditions and the results of previous numerical simulations are briefly recalled, along with the predictions of an analytical model for both the g-jitter induced composition variations and the time necessary to get back to steady state conditions. The feasibility of various mitigation strategies, aiming at counterbalancing the deleterious effect of the g-jitters is also discussed. It is concluded that the ability of numerical modelling to provide reliable predictions of g-jitter effects for the interpretation and planning of future space experiments is still limited by a lack of well-documented experimental results that can be used for verification.

  4. Bi-induced band gap reduction in epitaxial InSbBi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D., E-mail: T.Veal@liverpool.ac.uk [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J., E-mail: M.J.Ashwin@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Sallis, S.; Piper, L. F. J. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  5. Irradiation-induced precipitation and mechanical properties of vanadium alloys at <430 C

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Gazda, J.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-09-01

    Recent attention to V-base alloys has focused on the effect of low-temperature (<430 C) irradiation on tensile and impact properties of V-4Cr-4Ti. In previous studies, dislocation channeling, which causes flow localization and severe loss of work-hardening capability, has been attributed to dense, irradiation-induced precipitation of very fine particles. However, efforts to identify the precipitates were unsuccessful until now. In this study, analysis by transmission electron microscopy (TEM) was conducted on unalloyed V, V-5Ti, V-3Ti-1Si, and V-4Cr-4Ti specimens that were irradiated at <430 C in conventional and dynamic helium charging experiments. By means of dark-field imaging and selected-area-diffraction analysis, the characteristic precipitates were identified to be (V,Ti{sub 1{minus}x})(C,O,N). In V-3Ti-1Si, precipitation of (V,Ti{sub 1{minus}x})(C,O,N) was negligible at <430 C, and as a result, dislocation channeling did not occur and work-hardening capability was high.

  6. A layman's guide to radiation-induced deformation processes in zirconium alloys

    International Nuclear Information System (INIS)

    The fuel channel (comprising a pressure tube and a calandria tube fabricated from zirconium alloys) in a CANDU reactor undergoes shape changes because of radiation-induced deformation. This is a consequence of the microstructural modification arising from radiation damage produced by the fast-neutron flux. This report summarizes our current understanding of the physical processes responsible for the deformation. With the non-specialist reader in mind, the underlying mechanisms are described in a manner that avoids much of the associated technical terminology. Thus, the basic concepts of plasticity in a crystalline material are introduced and related to the various microstructural defects created during irradiation. In particular, the mechanisms of creep (a time-dependent strain activated by an applied stress) and growth (a time-dependent strain occurring in the absence of stress) are discussed in a non-technical language assisted by simple diagrams. Reference is made to both theoretical investigations (avoiding mathematical complexity) and experimental measurements. It is shown how the qualitative and quantitative knowledge can be used to derive a predictive model for reactor designers and operators. The current status of such a model is evaluated and suggestions for future improvements made

  7. Bi-induced band gap reduction in epitaxial InSbBi alloys

    International Nuclear Information System (INIS)

    The properties of molecular beam epitaxy-grown InSb1−xBix alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb0.976Bi0.024, a reduction of ∼35 meV/%Bi

  8. Statistical Classification of Soft Solder Alloys by Laser-Induced Breakdown Spectroscopy: Review of Methods

    Science.gov (United States)

    Zdunek, R.; Nowak, M.; Pliński, E.

    2016-02-01

    This paper reviews machine-learning methods that are nowadays the most frequently used for the supervised classification of spectral signals in laser-induced breakdown spectroscopy (LIBS). We analyze and compare various statistical classification methods, such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial least-squares discriminant analysis (PLS-DA), soft independent modeling of class analogy (SIMCA), support vector machine (SVM), naive Bayes method, probabilistic neural networks (PNN), and K-nearest neighbor (KNN) method. The theoretical considerations are supported with experiments conducted for real soft-solder-alloy spectra obtained using LIBS. We consider two decision problems: binary and multiclass classification. The former is used to distinguish overheated soft solders from their normal versions. The latter aims to assign a testing sample to a given group of materials. The measurements are obtained for several laser-energy values, projection masks, and numbers of laser shots. Using cross-validation, we evaluate the above classification methods in terms of their usefulness in solving both classification problems.

  9. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 2400C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.)

  10. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  11. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    J. Muris; R.J. Scheper; C.J. Kleverlaan; T. Rustemeyer; I.M.W. van Hoogstraten; M.E. von Blomberg; A.J. Feilzer

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitr

  12. {gamma}-Fe phase plasma-induced on the surface of thin S3A alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; Garcia-Sosa, I., E-mail: irma.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica (Mexico); Nava, N., E-mail: tnava@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas (Mexico); Camps, E., E-mail: enrique.camps@inin.gob.mx; Escobar, Luis, E-mail: luis.escobar@inin.gov.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica (Mexico); Lopez-Castanarez, R., E-mail: rlc@anuies.mx; Olea-Cardoso, O., E-mail: olc@anuies.mx [Universidad Autonoma del Edo. de Mexico, Facultad de Quimica (Mexico)

    2011-11-15

    Amorphous alloy ribbons of Fe{sub 77}Cr{sub 2}B{sub 16}Si{sub 5} were exposed to cold plasmas of N{sub 2} and Ar-N{sub 2} at temperatures lower than T{sub x} = 808 K. The conversion X-ray Moessbauer spectra of the plasma-exposed ribbons consist of a singlet and a broadened magnetic sextet. The singlet with isomer shift {delta} = -0.11 mm/s can be assigned to {gamma}-Fe austenite phase. Minor bulk magnetic changes in the alloy were measured as a consequence of these treatments; e.g. the relative intensities A23 of the transmission Moessbauer spectra of the untreated and treated samples, were 3.22 and 3.56, respectively, the B{sub hf} values changed from 22.9 T (untreated sample) to 22.4 T (plasma treated samples). Unexpectedly, the {gamma}-Fe phase can also be produced by simply heating the alloy ribbons under N{sub 2} flux at temperatures as low as 423 K. Moessbauer data of the crystallized samples are also reported, and a qualitative assessment on the mechanical properties of the Fe{sub 77}Cr{sub 2}B{sub 16}Si{sub 5} alloy associated with the plasma and/or temperature surface induced {gamma}-Fe phase is given.

  13. Portable, real-time alloy identification of metallic wear debris from machinery lubrication systems: laser-induced breakdown spectroscopy versus x-ray fluorescence

    Science.gov (United States)

    Suresh, Pooja

    2014-05-01

    Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.

  14. A Hydrogen-Induced Decohesion Model for Treating Cold Dwell Fatigue in Titanium-Based Alloys

    Science.gov (United States)

    Chan, Kwai S.; Moody, Jonathan

    2016-05-01

    Cold dwell fatigue in near-alpha Ti alloys is a time-dependent fracture process at ambient temperature that involves fatigue in the presence of creep to produce cracking on low-energy fracture ( e.g., cleavage) facets in hard alpha grains. In this article, cold dwell fatigue is treated as a hydrogen-induced decohesion process by using a nonlinear cohesive stress-strain relation to describe the decrease in the cohesive strength with increasing local hydrogen contents. It is postulated that during cold dwell fatigue, time-dependent deformation occurs by slip that results in dislocation pileups in soft alpha grains. The stress and dilatational fields of the dislocation pileups assist the transport of internal hydrogen atoms from soft grains to neighboring hard grains. The accumulation of internal hydrogen atoms at the trap sites leads to decohesion along crystallographic planes, which can be slip or hydride habit planes. The decohesion model is applied to treat cold dwell fatigue in Ti-6Al-4V with a basal-transverse texture by modeling the effects of hydrogen-induced decohesion on the stress-fatigue life ( S- N f) response, the time-dependent crack growth response (d a/d t), and the fracture toughness ( K c) as functions of grain orientation. A probabilistic time-dependent fatigue crack growth analysis is then performed to assess the influence of microtexture on the dwell fatigue life of a Ti-6Al-4V ring disk subjected to a long-duration hold at the peak stress of the loading cycle. The results of the probabilistic life computations indicate that dwell fatigue resistance in Ti-6Al-4V may be improved and the risk of disk fracture may be reduced significantly by controlling the microtexture or reducing the size and volume fraction of hard alpha grains in the microstructure.

  15. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  16. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed. PMID:27142875

  17. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-05-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  18. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  19. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  20. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  1. Use of neutron diffraction and laser-induced plasma spectroscopy in integrated authentication methodologies of copper alloy artefacts

    International Nuclear Information System (INIS)

    The present study approaches the general problem of the authentication of copper alloy artefacts of art and historical interest using non-invasive analytical techniques. It aims to demonstrate that a suitable combination of time-of-flight neutron diffraction and laser-induced plasma spectroscopy in integrated multidisciplinary authentication methodologies can provide crucial data for discriminating between genuine archaeological objects and modern counterfeits. After introducing the methodology, which is dedicated in particular to copper alloy figurines of ancient style, two representative authentication case studies are discussed. The results of the work provide evidence that the combination of multiphase analysis using TOF-N D and elemental depth profiles provided by Lips makes it possible to solve most of the present authentication problems.

  2. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni–Mn–Ga multifunctional alloy

    International Nuclear Information System (INIS)

    The structural response of coexisting multiple martensites to stress field in a Ni–Mn–Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation. (paper)

  3. Irradiation induced surface segregation in concentrated alloys: a contribution; Contribution a l`etude de la segregation de surface induite par irradiation dans les alliages concentres

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, Y.

    1996-12-31

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe{sub 50}Ni{sub 50} and Fe{sub 49}Ni{sub 50}Hf{sub 1} alloys. (author). 190 refs.

  4. Thermal stability of the induced magnetic anisotropy and structure of the nanocrystalline alloy FeCuNbSiB

    International Nuclear Information System (INIS)

    The magnetic anisotropy induced in the ribbons of the Fe73.5Cu1Nb3Si13.5B9 alloy in the course of stress annealing combined with the nanocrystallising one was investigated. Crystalline phases formed during the above treatments were studied by the Moessbauer method. Analysis of the Moessbauer results showed that the content of the Fe-Si phases depends neither on the exposure time nor on the value of the induced magnetic anisotropy constant. At the same time, in the regions containing, along with Fe, Nb and B the process of redistributing the elements proceeds with time, and the deeper the process, the higher the thermal stability of the induced magnetic anisotropy

  5. Assessment of the radiation-induced loss of ductility in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Alloys based on the V-Cr-Ti system are attractive candidates for structural applications in fusion systems because of their low activation properties, high thermal stress factor (high thermal conductivity, moderate strength, and low coefficient of thermal expansion), and their good compatibility with liquid lithium. The U.S. program has defined a V-4Cr-4Ti (wt %) alloy as a leading candidate alloy based upon evidence from laboratory-scale (30 kg) heats covering the approximate composition range 0-8 wt % Ti and 5 to 15 wt % Cr. A review of the effects of neutron displacement damage, helium, and hydrogen generation on mechanical behavior, and of compatibility with lithium, water, and helium environments was presented at the ICFRM-5 conference at Clearwater in 1991. The results of subsequent optimization studies, focusing on the effects of fast reactor irradiation on tensile and impact properties of a range of alloys, were presented at the ICFRM-6 conference at Stresa in 1993. The primary conclusion of this work was that the V-4Cr-4Ti alloy composition possessed a near-optimal combination of physical and mechanical properties for fusion structural applications. Subsequently, a production-scale (500 kg) heat of V-4Cr-4Ti (Heat No. 832665) was procured from Teledyne Wah-Chang, together with several 15 kg heats of alloys with small variations in Cr and Ti. Further testing has been carried out on these alloys, including neutron irradiation experiments to study swelling and mechanical property changes. This paper discusses ductility measurements from some of these tests which are in disagreement with earlier work.

  6. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Science.gov (United States)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  7. Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions

    International Nuclear Information System (INIS)

    The thickening of Ω phase in Al–Cu–Mg alloys containing various bulk Ag contents during stress aging at 200 °C with a tensile stress of 240 MPa was investigated by a combination of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). TEM characterization confirmed preferred orientation of Ω phase in all stress-aged samples. Corresponding quantitative TEM calculations revealed the thickening kinetics of Ω phase was significantly accelerated during stress aging as compared to that during stress-free aging at 200 °C. HRTEM analysis on the α/Ω interfacial structure confirmed that the applied tensile stress facilitated the rapid nucleation of the growth ledge on the broad face of Ω phase, thereby resulting in the accelerated plate thickening during stress aging at 200 °C. Meanwhile, quantitative TEM analysis highlighted the stress-induced thickening of Ω phase at 200 °C was affected by the bulk Ag content. This was consistent with the HRTEM observation as the ledge nucleation was found to be suppressed with increasing Ag addition. Our APT analysis on different stress-aged samples further suggested the progressive enrichment of Ag atoms in the segregation layer helped to stabilize the interfacial structure and was responsible for the lowest nucleation rate of the ledge in 1.77Ag alloy as compared to that in 0.46Ag alloy

  8. Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity.

    Science.gov (United States)

    Caicedo, Marco S; Pennekamp, Peter H; McAllister, Kyron; Jacobs, Joshua J; Hallab, Nadim J

    2010-06-15

    Aseptic osteolysis has been associated with excessive immune reactivity to particulate implant debris; however, innate and adaptive immune mechanisms that underlie implant debris reactivity remain incompletely understood. Although particulate debris has been implicated as the major type of implant debris mediating macrophage-induced osteolysis, the degree to which metal ions affect a proinflammatory response (if at all) remains unknown. We hypothesized that both soluble and particulate metal implant debris will induce proinflammatory responses in human monocytes resulting in cytokine production and elevated expression of T cell costimulatory molecules, facilitating adaptive immune responses. We tested this hypothesis by characterizing the response of a human monocyte cell line (THP-1), isolated primary human monocytes and PBMCs challenged with Co-Cr-Mo alloy particles and soluble cobalt, chromium, molybdenum, and nickel ions. Our results indicate that soluble cobalt, nickel, and molybdenum can induce monocyte up-regulation of T cell costimulatory molecules (CD80, CD86, ICAM-1) in human monocytes/macrophages. Furthermore, cobalt, molybdenum ions, and Co-Cr-Mo alloy particles similarly induce elevated secretion of IL-1beta, TNFalpha, and IL-6. Antibody blockade of CD80 and CD86, crucial secondary molecules for adaptive responses, abrogated lymphocyte reactivity to metal challenge in metal reactive subjects. Also the addition of IL-1 receptor antagonist (IL-1ra), (which indirectly blocks pro-IL-1beta and thus IL-1beta release), significantly reduced lymphocyte reactivity in metal-reactive subjects. Thus, both soluble and particulate metal implant debris induce monocyte/macrophage proinflammatory responses that are metal and individual specific. This suggests metal-induced up-regulation of costimulatory molecules and proinflammatory cytokine production is necessary to induce lymphocyte activation/proliferation to metal implant debris.

  9. Modelling current-induced magnetization switching in Heusler alloy Co2FeAl-based spin-valve nanopillar

    Science.gov (United States)

    Huang, H. B.; Ma, X. Q.; Liu, Z. H.; Zhao, C. P.; Chen, L. Q.

    2014-04-01

    We investigated the current-induced magnetization switching in a Heusler alloy Co2FeAl-based spin-valve nanopillar by using micromagnetic simulations. We demonstrated that the elimination of the intermediate state is originally resulted from the decease of effective magnetic anisotropy constant. The magnetization switching can be achieved at a small current density of 1.0 × 104 A/cm2 by increasing the demagnetization factors of x and y axes. Based on our simulation, we found magnetic anisotropy and demagnetization energies have different contributions to the magnetization switching.

  10. Modelling current-induced magnetization switching in Heusler alloy Co2FeAl-based spin-valve nanopillar

    International Nuclear Information System (INIS)

    We investigated the current-induced magnetization switching in a Heusler alloy Co2FeAl-based spin-valve nanopillar by using micromagnetic simulations. We demonstrated that the elimination of the intermediate state is originally resulted from the decease of effective magnetic anisotropy constant. The magnetization switching can be achieved at a small current density of 1.0 × 104 A/cm2 by increasing the demagnetization factors of x and y axes. Based on our simulation, we found magnetic anisotropy and demagnetization energies have different contributions to the magnetization switching

  11. Stress-induced large Curie temperature enhancement in Fe(sub 64)Ni(sub 36) Invar alloy.

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, P.; Martinez-Blanco, D.; Perez, M. J.; Blanco, J. A.; Hernando, A.; Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N. M.; Xmith, R. I.; Marshall, W. G.; Garbarino, G.; Mezouar, M.; Fernandez-Martinez, A.; Chaboy, J.; Fernandez Barquin, L.; Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.; Zhang, J.; Llobet, A.; Jiang, J. S.; Univ. de Oviedo; Inst. de Magnetismo Aplicado; ISIS Facility; ESRF; Univ.Grenoble and CNRS; CSIC-Univ. de Zaragoza; Univ. de Cantabria; LANL

    2009-01-01

    We have succeeded in increasing up to 150 K the Curie temperature in the Fe{sub 64}N{sub 36}6 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds.

  12. Measurement and analysis of radioactivity induced in steels and a vanadium alloy by 14-MeV neutrons

    Science.gov (United States)

    Richter, D.; Forrest, R. A.; Freiesleben, H.; Kovalchuk, Va. D.; Kovalchuk D, Vi.; Markovskij, D. V.; Seidel, K.; Tereshkin, V. I.; Unholzer, S.

    2000-12-01

    Samples of the structural material of the International Thermonuclear Experimental Reactor (SS316), of the low-activation steels MANET and F82H, and of the vanadium alloy V4Ti4Cr were irradiated with D-T fusion neutrons. The radioactivities induced were determined after irradiation several times during decay by γ-spectroscopy. The results were analysed with the European Activation System (EASY-97). In order to validate EASY-97, the total activities of the samples are compared, and ratios of calculated-to-experimental values for the individual activities are derived and discussed.

  13. Experimental and Theoretical Investigation of Three Alloy 690 Mockup Components: Base Metal and Welding Induced Changes

    Directory of Open Access Journals (Sweden)

    Rickard R. Shen

    2014-01-01

    Full Text Available The stress corrosion cracking (SCC resistance of cold deformed thermally treated (TT Alloy 690 has been questioned in recent years. As a step towards understanding its relevancy for weld deformed Alloy 690 in operating plants, Alloy 690 base metal and heat affected zone (HAZ microstructures of three mockup components have been studied. All mockups were manufactured using commercial heats and welding procedures in order to attain results relevant to the materials in the field. Thermodynamic calculations were performed to add confidence in phase identification as well as understanding of the evolution of the microstructure with temperature. Ti(C,N banding was found in all materials. Bands with few large Ti(C,N precipitates had negligible effect on the microstructure, whereas bands consisting of numerous small precipitates were associated with locally finer grains and coarser M23C6 grain boundary carbides. The Ti(C,N remained unaffected in the HAZ while the M23C6 carbides were fully dissolved close to the fusion line. Cold deformed solution annealed Alloy 690 is believed to be a better representation of this region than cold deformed TT Alloy 690.

  14. KCl-induced high temperature corrosion of selected commercial alloys. Part I: chromia-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie;

    2015-01-01

    -grained), Sanicro 28 and the nickel-based alloys 625, 263 and C276. Exposure was performed at 600 °C for 168 h in flowing N2(g)+5%O2(g)+15% H2O(g) (vol.%). Samples were covered with KCl powder prior to exposure. A salt-free exposure was also performed for comparison. Corrosion morphology and products were studied....... In the presence of solid KCl, all the alloys showed significant corrosion. Measurement of corrosion extent indicated that alloys EN1.4057, Sanicro 28 and 625 show a better performance compared to the industrial state of the art material TP347HFG under laboratory conditions. An additional test was performed...

  15. In Situ Nanocrystallization-Induced Hardening of Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering

    Science.gov (United States)

    Singh, Ashish; Paul, Tanaji; Katakam, Shravana; Dahotre, Narendra B.; Harimkar, Sandip P.

    2016-07-01

    In situ nanocrystallization of amorphous alloys has recently emerged as a suitable technique for forming nanocomposites with improved mechanical properties. In this paper, we report on the spark plasma sintering (SPS) of Fe-based amorphous alloys with in situ-formed nanocrystals of (Fe,Cr)23(C,B)6. The SPS was performed with a range of sintering temperatures (570-800°C) in and above the supercooled liquid region of the alloy. Significant enhancement in relative density was observed with increasing sintering temperature due to particle deformation and improved interparticle contacts. The formation of nanocrystalline particles and enhanced densification resulted in an increase in the hardness of the nanocomposites from about 1150-1375 VHN.

  16. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  17. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  18. High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy

    International Nuclear Information System (INIS)

    Transmission electron microscopy was used to investigate the microstructural evolution of a hexagonal close-packed Zr alloy subjected to high-pressure torsion at 3.8 GPa. Results show that an inhomogeneous grain size distribution was obtained at the early stages of deformation, which is unique to hexagonal structures. {1-bar 011} deformation twins, which have never been reported in Zr alloys, were observed in coarse grains but not in refined grains. The grain refinement mechanism is discussed based on the experimental observation.

  19. Effect of Residual Strain Induced by Cold Working on PWSCC of Alloy 690

    International Nuclear Information System (INIS)

    PWSCC has been widely reported to occur in the inside of the steam generator (SG) tubing, and in other instrumentation nozzles such as the control rod drive mechanism (CRDM) penetrations, especially on those surfaces having a dissimilar metal welds (DMW) or those heavily machined. Under an abnormal working procedure or without a sufficient post-heat treatment for stress relaxation, a high tensile stress can persist after welding or cold working of the alloys. Variation of a strain field is also accompanied by the cold working or machining process. The conventional method for measuring the residual strain is a micro-hardness test, which has a limitation owing to the presence of precipitates and grain boundaries in the matrix of the test specimen. A new technique of electron backscatter diffraction (EBSD) has recently been applied to residual strain analysis on a micro-scale to overcome this limitation. This work is concerning a quantitative analysis of the local residual strain by EBSD and its effect on the PWSCC of Alloy 690 CRDM materials. In this work, the local residual strain of Alloy 690 CRDM materials cold-worked at various plastic strain levels was quantitatively evaluated using an EBSD analysis. From KAM maps, it was confirmed that the residual strain increased with cold-working, and a higher strain was concentrated at the grain boundary than in the matrix. The severe strain field localized at the grain boundary accelerated the inter-grannular growth of PWSCC of Alloy 690

  20. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman;

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  1. ARXPS and DFT studies of thermally induced Pb surface segregation on Au/Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Völker, Edgar [Chemistry Department, University of Liverpool, Liverpool L69 7ZD (United Kingdom); Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA (Argentina); Williams, Federico J., E-mail: fwilliams@qi.fcen.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA (Argentina); Jacob, Timo [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm (Germany); Schiffrin, David J. [Chemistry Department, University of Liverpool, Liverpool L69 7ZD (United Kingdom)

    2014-02-15

    Highlights: • Surface segregation of Pb impurities in AuCu alloys was studied by ARXPS and DFT. • ARXPS show a 23% surface coverage by Pb atoms. • DFT calculations predict a ¼ ML coverage of Pb atoms in the first atomic layer. • The results show that bulk systems are affected while leaving nanoparticulate systems unaffected. -- Abstract: Surface segregation of Pb has been studied using angle resolved X-ray Photoelectron Spectroscopy (ARXPS) and Density Functional Theory (DFT) modelling in a polycrystalline Au{sub 0.85}Cu{sub 0.15} alloy. Au surface enrichment was found in the alloy surface, whereas Pb surface enrichment was detected after annealing. ARXPS depth profiles show a 23% surface coverage by Pb atoms. DFT calculations predict an approximate coverage of ¼ monolayer (ML) of Pb atoms in the first atomic layer, consistent with the experimental results. The results presented here are an example of the importance of low concentration of impurities in determining the surface composition of bulk alloys.

  2. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.;

    2003-01-01

    By means of first principles simulations we demonstrate that tiny deviations from stoichiometry in the bulk composition of the NiPt-L1(0) ordered alloy have a great impact on the atomic configuration of the (111) surface. We predict that at T=600 K the (111) surface of the Ni51Pt49 and Ni50Pt50 a...

  3. ARXPS and DFT studies of thermally induced Pb surface segregation on Au/Cu alloys

    International Nuclear Information System (INIS)

    Highlights: • Surface segregation of Pb impurities in AuCu alloys was studied by ARXPS and DFT. • ARXPS show a 23% surface coverage by Pb atoms. • DFT calculations predict a ¼ ML coverage of Pb atoms in the first atomic layer. • The results show that bulk systems are affected while leaving nanoparticulate systems unaffected. -- Abstract: Surface segregation of Pb has been studied using angle resolved X-ray Photoelectron Spectroscopy (ARXPS) and Density Functional Theory (DFT) modelling in a polycrystalline Au0.85Cu0.15 alloy. Au surface enrichment was found in the alloy surface, whereas Pb surface enrichment was detected after annealing. ARXPS depth profiles show a 23% surface coverage by Pb atoms. DFT calculations predict an approximate coverage of ¼ monolayer (ML) of Pb atoms in the first atomic layer, consistent with the experimental results. The results presented here are an example of the importance of low concentration of impurities in determining the surface composition of bulk alloys

  4. Effect of Residual Strain Induced by Cold Working on PWSCC of Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Lim, Yun Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    PWSCC has been widely reported to occur in the inside of the steam generator (SG) tubing, and in other instrumentation nozzles such as the control rod drive mechanism (CRDM) penetrations, especially on those surfaces having a dissimilar metal welds (DMW) or those heavily machined. Under an abnormal working procedure or without a sufficient post-heat treatment for stress relaxation, a high tensile stress can persist after welding or cold working of the alloys. Variation of a strain field is also accompanied by the cold working or machining process. The conventional method for measuring the residual strain is a micro-hardness test, which has a limitation owing to the presence of precipitates and grain boundaries in the matrix of the test specimen. A new technique of electron backscatter diffraction (EBSD) has recently been applied to residual strain analysis on a micro-scale to overcome this limitation. This work is concerning a quantitative analysis of the local residual strain by EBSD and its effect on the PWSCC of Alloy 690 CRDM materials. In this work, the local residual strain of Alloy 690 CRDM materials cold-worked at various plastic strain levels was quantitatively evaluated using an EBSD analysis. From KAM maps, it was confirmed that the residual strain increased with cold-working, and a higher strain was concentrated at the grain boundary than in the matrix. The severe strain field localized at the grain boundary accelerated the inter-grannular growth of PWSCC of Alloy 690.

  5. Microstructural features induced by spray forming of a ternary Pb–Sn–Sb alloy

    Indian Academy of Sciences (India)

    V C Srivastava; Anish Upadhyaya; S N Ojha

    2000-04-01

    An alloy containing Pb–12% Sn–12% Sb with small addition of copper and arsenic was spray deposited employing two different atomization gas pressure and nozzle to substrate distances. The temperature of the spray-deposit was measured during deposition at a distance of 2 and 10 mm above the substrate-deposit interface. Thermal profile data indicated small variation in temperature with time during deposition stage whereas during post deposition stage an exponential decrease in temperature was recorded. Second phase particle size along the thickness of the deposit varied from 4 to 8 m compared to 70 to 80 m size of these particles in the as cast alloy. Maximum porosity occurred in the section of the deposit near the contact surface of the substrate and also in its peripheral regions. X-ray diffraction analysis exhibited the formation of additional Cu2Sb phase in the spray-deposit and CuSn and Cu3.3Sb phases in atomized powders compared to that of the as cast alloy. The microstructural evolution during spray deposition of this alloy is discussed.

  6. Neutron-radiation induced changes in electrical resistivity of copper alloys for MFE applications

    International Nuclear Information System (INIS)

    The objective of this work was to identify, by fast-neutron irradiation and post-irradiation testing, one or more mechanically acceptable copper alloys with low yet stable dc electrical resistivity values (rho/sub e/) and thus with attractive thermal conductivity (K) performance for first-wall applications. Values of rho/sub e/ were measured for two elemental (high-purity) coppers and four commercial copper alloys subjected in EBR-II to neutron fluences of 0.4 and 2.0 x 1026 n/m2 at 658K. Relative to annealed controls, two alumina-dispersed alloys gave the best results: increases in rho/sub e/ (and 1/K) of 6-7% at the high fluence, with no significant changes (per paper 8.1 preceding) in the corresponding yield stresses. Changes in rho/sub e/ for MZC and AMZIRC Cu alloys were smaller than this, but the corresponding yield stresses were strongly diminished at the high fluence. Void swelling and accumulation and transmuted Ni and Zn contributed significantly to the observed changes in rho/sub e/

  7. Tailoring the mechanical properties of titanium alloys via plasticity induced transformations

    NARCIS (Netherlands)

    Neelakantan, S.

    2010-01-01

    Titanium alloys possess good corrosion properties, high temperature stability and high strength-to-weight ratio. However, they fall short in providing the optimum strength-ductility relation in the most demanding structural applications, including the aerospace sector. Inspired by the possibility of

  8. Tailoring the Mechanical Properties of Titanium Alloys via Plasticity Induced Transformations

    NARCIS (Netherlands)

    Neelakantan, S.

    2010-01-01

    Titanium alloys possess good corrosion properties, high temperature stability and high strength-to-weight ratio. However, they fall short in providing the optimum strength-ductility relation in the most demanding structural applications, including the aerospace sector. Inspired by the possibility of

  9. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K.; Uhlemann, M.; Engelmann, H.J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  10. Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys

    Science.gov (United States)

    Wells, D. P.; Hunt, A. W.; Tchelidze, L.; Kumar, J.; Smith, K.; Thompson, S.; Selim, F.; Williams, J.; Harmon, J. F.; Maloy, S.; Roy, A.

    2006-06-01

    Radiation damage and other defect studies of materials are limited to thin samples because of inherent limitations of well-established techniques such as diffraction methods and traditional positron annihilation spectroscopy (PAS) [P. Hautojarvi, et al., Positrons in Solids, Springer, Berlin, 1979, K.G. Lynn, et al., Appl. Phys. Lett. 47 (1985) 239]. This limitation has greatly hampered industrial and in-situ applications. ISU has developed new methods that use pair-production to produce positrons throughout the volume of thick samples [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. Unlike prior work at other laboratories that use bremsstrahlung beams to create positron beams (via pair-production) that are then directed at a sample of interest, we produce electron-positron pairs directly in samples of interest, and eliminate the intermediate step of a positron beam and its attendant penetrability limitations. Our methods include accelerator-based bremsstrahlung-induced pair-production in the sample for positron annihilation energy spectroscopy measurements (PAES), coincident proton-capture gamma-rays (where one of the gammas is used for pair-production in the sample) for positron annihilation lifetime spectroscopy (PALS), or photo-nuclear activation of samples for either type of measurement. The positrons subsequently annihilate with sample electrons, emitting coincident 511 keV gamma-rays [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D

  11. Tailoring the mechanical properties of titanium alloys via plasticity induced transformations

    OpenAIRE

    Neelakantan, S.

    2010-01-01

    Titanium alloys possess good corrosion properties, high temperature stability and high strength-to-weight ratio. However, they fall short in providing the optimum strength-ductility relation in the most demanding structural applications, including the aerospace sector. Inspired by the possibility of enhancing the strength-ductility relation in steels through the TRIP effect, the thesis elucidates at: i) identifying and quantifying the key factors that effectively control and/or promote such e...

  12. The magnitude of heat treatment induced residual stresses and the thermal stress relief of aluminium alloys

    OpenAIRE

    Robinson, J S; Tanner, D.A

    2002-01-01

    To produce useful strengthening, precipitation hardenable aluminium alloys rely on rapid quenching from the solution heat treatment temperature to suppress the formation of coarse equilibrium second phases. An unavoidable consequence of the rapid quenching of thick sections is the severe thermal gradients that quickly develop in the material. The attendant inhomogeneous plastic flow can then result in the establishment of residual stresses. Established procedures exist to minim...

  13. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-08-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  14. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  15. The effect of ion flux on plasma-induced modification and deuterium retention in tungsten and tungsten–tantalum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zayachuk, Y., E-mail: yevhen.zayachuk@materials.ox.ac.uk [SCK-CEN, Trilateral Euregio Cluster, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Manhard, A. [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Hoen, M.H.J. ' t [FOM Institute DIFFER, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Jacob, W. [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Aviation Academy, Amsterdam University of Applied Sciences, Weesperzijde 190, 1097 DZ Amsterdam (Netherlands); Van Oost, G. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-09-15

    The paper presents the results of an experimental study of deuterium retention in W and W–Ta alloy that were exposed to first-wall relevant low flux (∼10{sup 20} m{sup −2} s{sup −1}) deuterium plasma in the ECR plasma generator PlaQ. Subsequent analysis included surface imaging by optical microscopy, deuterium depth profiling by nuclear reaction analysis (NRA) and measurements of deuterium content by thermal desorption spectroscopy (TDS). It was found that under investigated exposure conditions the deuterium content was higher in W–Ta alloy than in W. Combined with the previously reported results showing that under high-flux (∼10{sup 24} m{sup −2} s{sup −1}) retention is higher in W instead, this gives rise to a peculiar flux effect – dependence of relative retention between different materials on exposure flux. We interpret this effect as evidence that at different flux ranges different populations of trapping sites determine the retention, namely pre-existing microstructural traps at low-flux exposure and plasma-induced ones at high-flux exposure.

  16. Ion-implantation-induced amorphization of InxGa1-xP alloys as functions of stoichiometry and temperature

    Science.gov (United States)

    Hussain, Z. S.; Wendler, E.; Wesch, W.; Schnohr, C. S.; Ridgway, M. C.

    2016-05-01

    Rutherford Backscattering Spectrometry/Channeling and Extended X-ray Absorption Fine Structure measurements have been combined to investigate the amorphization of InxGa1-xP alloys at 15 and 300 K for selected stoichiometries representative of the entire stoichiometric range. The amorphization kinetics differs considerably for the two temperatures: at 15 K, the amorphization kinetics of InxGa1-xP is intermediate between the two binary extremes while at 300 K, InxGa1-xP is more easily amorphized than both InP and GaP. Direct impact and stimulated amorphization both contribute to the amorphization process at 15 K. Dynamic annealing via thermally induced Frenkel pair recombination reduces the influence of direct impact amorphization at 300 K such that the stimulated amorphization is dominant. At this temperature, stimulated amorphization in ternary InxGa1-xP alloys is supported by the structural disorder inherent from the bimodal bond length distribution.

  17. M(o)ssbauer study of the field induced uniaxial anisotropy in electro-deposited FeCo alloy films

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Wei; Yang Xu; Wang Hai-Bo; Liu Xin; Li Fa-Shen

    2009-01-01

    Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability. The paper reports a M(o)ssbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films. The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition, Vibrating sample magnetometry and M(o)ssbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction, whereas the film deposited without external field does not show any in-plane anisotropy. M(o)ssbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field. Also, the magnetic moments tend to align in the direction of the applied external magnetic field during deposition, indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs.

  18. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  19. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H2 ↔ ZrH2 + ZrCo2. The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  20. Analysis of Electrodeposited Nickel-Iron Alloy Film Composition Using Particle-Induced X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Alyssa A. Frey

    2011-01-01

    Full Text Available The elemental composition of electrodeposited NiFe thin films was analyzed with particle-induced X-ray emission (PIXE. The thin films were electrodeposited on polycrystalline Au substrates from a 100 mM NiSO4, 10 mM FeSO4, 0.5 M H3BO3, and 1 M Na2SO4 solution. PIXE spectra of these films were analyzed to obtain relative amounts of Ni and Fe as a function of deposition potential and deposition time. The results show that PIXE can measure the total deposited metal in a sample over at least four orders of magnitude with similar fractional uncertainties. The technique is also sensitive enough to observe the variations in alloy composition due to sample nonuniformity or variations in deposition parameters.

  1. Cluster Evolution in Undercooled Melt and Solidification of Undercooled Ge-based Alloy Melts Induced by Extrinsic Clusters

    Institute of Scientific and Technical Information of China (English)

    王煦; 景勤; 王文魁

    2003-01-01

    The structure or short-range order of clusters in undercooled metallic melts is influenced, to some extent, by the interfacial free energy between the cluster and the melt. Analyses of the effects of interfacial energy on the cluster structure based on the Gibbs equation show a possibility that atoms in the clusters tend to be packed more loosely with the increasing cluster size (or the undercooling). Nucleation may occur, following these analyses,when clusters reach a definite size and atoms in the clusters relax to some extent to form the crystal structure.Indirect support to this viewpoint is provided by the present results of cluster-induced nucleation experiments on undercooled Ge73.7Ni26.3 alloy melts.

  2. Stress-induced Curie temperature increase in the Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro; Martinez-Blanco, David; Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo (Spain); Boada, Roberto; Chaboy, Jesus [ICMA and Departamento de Fisica de la Materia Condensada, CSIC - Universidad de Zaragoza (Spain); Fernandez-Martinez, Alejandro [LGIT, University of Grenoble and CNRS, Maison des Geosciences, Grenoble (France); Institut Laue-Langevin, Grenoble (France); Garbarino, Gaston; Castro, German R.; Mezouar, Mohamed [European Synchrotron Radiation Facility (ESRF), Grenoble (France); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon (United Kingdom); Alonso, J.I.G. [Department of Physical and Analytical Chemistry, University of Oviedo (Spain); Hernando, Antonio [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Madrid (Spain)

    2009-05-15

    Structural and magnetic changes on invar Fe{sub 64}Ni{sub 36} alloy (T{sub C}=500 K) produced by mechanical milling followed by heating up to 1073 K, were investigated by neutron diffraction, magnetization measurements, X-ray diffraction under high pressures and X-ray absorption at both Fe and Ni K-edges. We argue that the strain induced in the Fe{sub 64}Ni{sub 36} material after this treatment mainly affects the Fe sites due to the magnetovolume coupling, the most notorious feature being the increase of the Curie temperature ({delta}T{sub C}=70 K). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Structural Origin of the Enhanced Glass-Forming Ability Induced by Microalloying Y in the ZrCuAl Alloy

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2016-03-01

    Full Text Available In this work, the structural origin of the enhanced glass-forming ability induced by microalloying Y in a ZrCuAl multicomponent system is studied by performing synchrotron radiation experiments combined with simulations. It is revealed that the addition of Y leads to the optimization of local structures, including: (1 more Zr-centered and Y-centered icosahedral-like clusters occur in the microstructure; (2 the atomic packing efficiency inside clusters and the regularity of clusters are both enhanced. These structural optimizations help to stabilize the amorphous structure in the ZrCuAlY system, and lead to a high glass-forming ability (GFA. The present work provides an understanding of GFAs in multicomponent alloys and will shed light on the development of more metallic glasses with high GFAs.

  4. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated inflammatory and toxicity-like reactions of specific orthopedic implants.

  5. Quench-induced precipitates in Al–Si alloys: Calorimetric determination of solute content and characterisation of microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Philipp, E-mail: philipp.schumacher@uni-rostock.de [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, Albert-Einstein-Str. 2, 18051 Rostock (Germany); University of Rostock, Institute of Physics, Polymer Physics Group, Wismarsche Str. 43-45, 18051 Rostock (Germany); Pogatscher, Stefan, E-mail: stefan.pogatscher@mat.ethz.ch [ETH Zurich, Department of Materials, Laboratory of Metal Physics and Technology, Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland); Starink, Marco J., E-mail: m.j.starink@soton.ac.uk [University of Southampton, Engineering and the Environment, Highfield, SO17 1BJ Southampton (United Kingdom); Schick, Christoph, E-mail: christoph.schick@uni-rostock.de [University of Rostock, Institute of Physics, Polymer Physics Group, Wismarsche Str. 43-45, 18051 Rostock (Germany); Mohles, Volker, E-mail: mohles@imm.rwth-aachen.de [RWTH Aachen University, Institute of Physical Metallurgy and Metal Physics, Kopernikusstr. 14, 52056 Aachen (Germany); Milkereit, Benjamin, E-mail: benjamin.milkereit@uni-rostock.de [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, Albert-Einstein-Str. 2, 18051 Rostock (Germany); University of Rostock, Institute of Physics, Polymer Physics Group, Wismarsche Str. 43-45, 18051 Rostock (Germany); University of Southampton, Engineering and the Environment, Highfield, SO17 1BJ Southampton (United Kingdom)

    2015-02-20

    Highlights: • A new DSC method gives access to the entire cooling rate range of physical interest. • Two precipitation reactions were identified during cooling of pure binary Al–Si. • A physical model for solute and precipitation fraction is presented and validated. • The model allows to control phase transformations by heat treatments. • This enables to produce and mechanically test targeted microstructures. - Abstract: The present study introduces an experimental approach to investigate mechanical properties of well-defined non-equilibrium states of Al–Si alloys during cooling from solution annealing. The precipitation behaviour of binary Al–Si alloys during the cooling process has been investigated in a wide cooling rate range (2–0.0001 K/s) with differential scanning calorimetry (DSC). To access the low cooling rate range close to equilibrium an indirect DSC measurement method is introduced. Based on the enthalpy change measured by DSC a physically-based model for the calculation of remaining solute Si amount as function of temperature and cooling rate is presented. Microstructural analyses via light optical microscopy, scanning electron microscopy, atom probe tomography and X-ray diffraction have been performed to evaluate the introduced model and for information on cooling rate dependent precipitate formation. It was found that quench-induced particles of different morphology are formed during cooling. Thermomechanical analyses on clearly distinct undercooled Al–Si states show that flow stress during cooling is dependent on temperature as well as cooling rate. The mechanical behaviour is therefore influenced by solute Si content and quench-induced precipitates.

  6. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the Ms at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  7. Spectroscopic analysis of element concentrations in aluminum alloy using nanosecond laser-induced breakdown spectroscopy

    Science.gov (United States)

    Luo, Wenfeng; Tang, Jie; Gao, Cunxiao; Wang, Haojing; Zhao, Wei

    2010-06-01

    A plasma generated by 1064 nm Nd:YAG laser irradiation of aluminum alloy in air at atmospheric pressure was studied spectroscopically. The electron density was inferred by measuring the Stark broadened line profile of Cu(I) 324.75 nm, while the electron temperature was determined using the Boltzmann plot method with ten neutral iron lines. Based on the results, local thermodynamic equilibrium was studied. Moreover, calibration curves were presented for samples containing Si, Fe, Cu, Mn, Mg, Ni, Zn and Ti, and the limit of detection of trace elements was calculated based on experimental results.

  8. Atomic-resolution study of homogeneous radiation-induced precipitation in a neutron-irradiated W-10 at. % Re alloy. MSC report No. 5014

    International Nuclear Information System (INIS)

    The phenomenon of radiation-induced precipitation has been investigated in a W-10 at. % Re alloy using the atom-probe field-ion microscope. Results show a significant alteration of the microstructure of this alloy as a result of the fast-neutron irradiation. Precipitates with the composition approx. WRe (sigma phase) were detected at a density of 1016 cm-3. Coherent, semicoherent and possibly incoherent precipitates of the sigma phase have been observed. They were not associated with either linear or planar defects, or with any impurity atoms; i.e. a true homogeneous radiation-induced precipitation occurs in this alloy. A physical argument is presented for the nucleation of the sigma phase precipitates in the vicinity of displacement cascades produced by primary knock-on atoms. It is suggested that the nucleation of the sigma phase is due to the formation of tightly-bound mobil mixed dumbells which react to form an immobile rhenium cluster. The growth of this cluster into a precipitate is most likely driven by the irreversible vacancy: self-interstitial atom (SIA) annihilation reaction, as suggested recently by Cauvin and Martin. A mechanism for the suppression of voids, in this alloy, is presented which is self-consistent with the homogeneous radiation-induced precipitation mechanism

  9. Anisotropic wetting of copper alloys induced by one-step laser micro-patterning

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: michael.hans@mx.uni-saarland.de [Chair of Functional Materials, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany); Mueller, F.; Grandthyll, S.; Huefner, S. [Experimental Physics, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany); Muecklich, F. [Chair of Functional Materials, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer One-step, contactless micro-patterning of copper alloys has been achieved. Black-Right-Pointing-Pointer Anisotropic wetting properties are tailored by line-like structures. Black-Right-Pointing-Pointer Both topographical and chemical patterns contribute to the phenomenon. Black-Right-Pointing-Pointer The topographic shape and homogeneity are found to be governing factors. - Abstract: Copper alloys (CuSn8, CuZn23Al3Co) have been micro-patterned with line-like geometries by Laser Interference Surface Structuring (LISS). In the presented study two high power pulsed laser beams are recombined to create unique, line-like intensity distributions with a chosen, constant periodicity of 10 {mu}m at varying laser fluencies. Anisotropic wetting properties on these surfaces have been confirmed by drop shape analysis and static contact angle measurements, which were conducted parallel and perpendicular to the structures revealing up to 25% difference in contact angle. The topography and chemistry of the tailored line structures have been characterized and analyzed by white light interferometry, spatial frequency distribution, AFM and X-ray photoelectron spectroscopy. The topographic shape and homogeneity are considered as key parameters for anisotropic wetting design, although it is concluded that both, the geometry as well as the locally varying chemical composition of the surface structures contribute to the phenomenon. Parallel capillarity effects and perpendicular contact line pinning are found to be the governing mechanisms.

  10. An experimental study of microstructure-induced ultrasonic signal fluctuations in jet-engine titanium alloys

    International Nuclear Information System (INIS)

    Ultrasonic echoes from identical defects in a metal component will vary due to the influence of the local microstructure in which each defect is embedded. Two effects are responsible: (1) the scattering of sound at nearby crystallite boundaries results in 'grain noise' which is superimposed on the defect echo; and (2) the intervening microstructure modulates or distorts the sonic field that is incident on the defect, thus modifying its echo. Both effects can be significant in engine titanium alloys, and both influence inspection reliability. In this work, a series of experiments is performed to investigate signal fluctuations primarily arising from the second effect. Arrays of nominally identical no. 1 flat-bottomed holes (FBHs) in Ti-17 and Ti 6-4 specimens are scanned using a 10-MHz, broadband, focused transducer. The peak echo amplitude of each FBH in the array is measured, and the ratio of the standard deviation of the peak amplitudes to their mean serves as a dimensionless measure of the fluctuation level. Similar measurements are performed on a fine-grained nickel specimen that serves as a reference. The fluctuation level and the apparent average ultrasonic attenuation are measured as functions of alloy, propagation direction, frequency, and inspection water path (i.e., degree of beam focusing). In addition, beam distortions are studied by analyzing the sizes and shapes of the C-scan images of the FBHs. - Specimens used in this work were supplied by the Engine Titanium Consortium under the Federal Aviation Administration Grant No. 94-G-048

  11. An experimental study of microstructure-induced ultrasonic signal fluctuations in jet-engine titanium alloys

    Science.gov (United States)

    Margetan, Frank J.; Wasan, Harpreet; Thompson, R. Bruce

    2000-05-01

    Ultrasonic echoes from identical defects in a metal component will vary due to the influence of the local microstructure in which each defect is embedded. Two effects are responsible: (1) the scattering of sound at nearby crystallite boundaries results in "grain noise" which is superimposed on the defect echo; and (2) the intervening microstructure modulates or distorts the sonic field that is incident on the defect, thus modifying its echo. Both effects can be significant in engine titanium alloys, and both influence inspection reliability. In this work, a series of experiments is performed to investigate signal fluctuations primarily arising from the second effect. Arrays of nominally identical #1 flat-bottomed holes (FBHs) in Ti-17 and Ti 6-4 specimens are scanned using a 10-MHz, broadband, focused transducer. The peak echo amplitude of each FBH in the array is measured, and the ratio of the standard deviation of the peak amplitudes to their mean serves as a dimensionless measure of the fluctuation level. Similar measurements are performed on a fine-grained nickel specimen that serves as a reference. The fluctuation level and the apparent average ultrasonic attenuation are measured as functions of alloy, propagation direction, frequency, and inspection water path (i.e., degree of beam focusing). In addition, beam distortions are studied by analyzing the sizes and shapes of the C-scan images of the FBHs.—Specimens used in this work were supplied by the Engine Titanium Consortium under the Federal Aviation Administration Grant No. 94-G-048.

  12. Point defect induced segregation of alloying solutes in α-Fe

    Science.gov (United States)

    You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2016-10-01

    Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom dumbbell is also found to tightly bind with multiple solute atoms. The -S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.

  13. Surface nanocrystallization of 7A04 aluminium alloy induced by circulation rolling plastic deformation

    Institute of Scientific and Technical Information of China (English)

    YE Hui-qiong; FAN Xin-min

    2006-01-01

    The surface nanocrystalline microstructures of 7A04 aluminium alloy was obtained by means of circulation rolling plastic deformation(CRPD),the grain refinement behavior and the hardness variation were examined. X-ray diffraction(XRD) and transmission electron microscopy(TEM) were applied to characterize the microstructure of the surface layer. The experimental evidences show that,after the CRPD treatment,the mean grain size in the surface layer is about 50 nm. The microhardness of the nanostructured surface layers is enhanced significantly after CRPD compared with that of the matrix,which can be attributed primarily to the grain refinement. The microhardness at the top surface can reach about HV0.05335,while the value of the matrix is HV0.05160 or so. The surface hardening effect is obtained obviously. Besides,the thermal stability of nanocrystalline layer was investigated. The results of the XRD analysis and the microhardness measurement show that the nanocrystalline layer has better thermal-stability than the matrix. And the DSC measurement shows that the synthesis of nanostructured surface layer has influence on the phase transformation of 7A04 aluminum alloy.

  14. Heat Capacity and Enthalpy of Fusion of Crystalline Pyrimethanil Decylate (C22 H33 N3 O2)

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-hong; LIU Yuan-fa; TAN Zhi-cheng; WANG Mei-han; JIA Ying-qi

    2005-01-01

    Low-temperature heat capacities of pyrimethanil decylate (C22 H33 N3 O2) were precisely measured with an automated adiabatic calorimeter over the temperature range from 78 to 373 K. The sample was observed to melt at(311.04 ±0.06) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments is (311.204±0.035) K.

  15. On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni-Ti-based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Stefanie; Maass, Burkhard; Frenzel, Jan; Schmidt, Marvin; Ullrich, Johannes; Seelecke, Stefan; Schuetze, Andreas; Kastner, Oliver; Eggeler, Gunther [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2015-10-15

    It is well known that a good crystallographic compatibility between austenite and martensite in Ni-Ti-based shape memory alloys results in narrow thermal hystereses (e.g. Ball and James, Arch. Ration. Mech. Anal., 1987). The present work suggests that a good crystallographic fit is moreover associated with a small mechanical hysteresis width, observed during a forward and reverse stress-induced transformation. Furthermore, shape memory alloys with a good crystallographic fit show smaller transformation strains. The results obtained in the present study suggest that these correlations are generic and apply to binary Ni-Ti (with varying Ni contents) and quaternary Ni-Ti-Cu-X (X = Cr, Fe, V) alloys. For binary Ni-Ti, it was observed that Ni-rich compositions (good lattice fit) show a lower accumulation of irreversible strains during pseudoelastic cycling.

  16. Stress-induced martensitic transformation in (Ni47Ti44)100-xNbx shape memory alloys with wide hysteresis

    Institute of Scientific and Technical Information of China (English)

    HE Xiang-ming; ZHAO Long-zhi; DUO Shu-wang; ZHANG Rong-fa; RONG Li-jian

    2006-01-01

    The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100-xNbx (x=3,9,15,20,30,mole fraction,%) shape memory alloys was investigated in detail by differential scanning calorimetry (DSC) after performing cryogenic tensile tests at a temperature of Ms+30 ℃. The results show that Nb-content has obvious effect on the process of stress-induced martensitic transformation. It is also observed that the stress-induced martensite is stabilized relative to the thermally-induced martensite (TIM) formed on cooling,and Nb-content in Ni-Ti-Nb alloy has great influence on the reverse transformation start temperature and transformation temperature hysteresis of stress-induced martensite(SIM). The mechanism of wide transformation temperature hysteresis was fully explained based on the microscopic structure and the distribution of the elastic strain energy of (Ni47Ti44)100-xNbx alloys.

  17. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  18. In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2016-01-10

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated prior to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.

  19. Biologically-Induced Micropitting of Alloy 22, a Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment (or microcosm) consisting of crushed rock (tuff) from the Yucca Mountain repository site and a continual flow of simulated groundwater for periods up to five years at room temperature and 30 C. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis by scanning electron microscopy of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Room temperature, biotically-incubated coupons show a wide distribution of pores covering the coupon surface, while coupons incubated at 30 C show the pores restricted to polishing ridges

  20. Induced effects in Fe-Ni-Cr austenitic alloys by electron irradiation

    International Nuclear Information System (INIS)

    Materials behaviour under high energetic particles exposure has to be know for technological aspects, but also for microscopic material state physics. Large macroscopic investigations have been developed but reliability with theoretical calculations or fundamental physics measurements is not clear. We present four experimental procedures in order to characterize austenitic Fe-Ni-Cr synthetic alloys in the atomic scale. First, results obtained about vacancy and interstitial, after electrical resistivity measurements and monoenergetical or classical positron annihilation process, are discussed. Then, defects clustering and microstructural evolution is investigated using positron lifetime measurements and high resolution electronic microscopy. In this study, special care has been taken to understand the composition effect as a function of the irradiation conditions

  1. In vivo apatite formation induced on titanium metal and its alloys by chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, T.; Kim, H.M. [Kyoto Univ. (Japan). Dept. of Material Chemistry; Nishiguchi, S.; Nakamura, T. [Kyoto Univ. (Japan). Dept. of Orthopaedic Surgery

    2001-07-01

    NaOH and heat treatments form an amorphous sodium titanate layer with a graded structure on the surfaces of titanium metal and its alloys. These treatments give no adverse effect on mechanical properties of the metals. Thus treated metals form an apatite layer on their surfaces in the living body by taking the calcium and phosphate ions from the surrounding fluid. This apatite layer is tightly integrated to the metal substrates through a graded structure, and bonds to the living bone in a short period, because of its structure and composition analogous to those of the bone mineral. This kind of bioactive metals are believed to be useful as bone substitutes even under load bearing conditions such as hip joints and dental implants. (orig.)

  2. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Martin [Corrosion and Metals Research Institute (KIMAB), Drottning Kristinas vaeg 48, SE-114 28 Stockholm (Sweden)]. E-mail: martin.jonsson@kimab.com; Persson, Dan [Corrosion and Metals Research Institute (KIMAB), Drottning Kristinas vaeg 48, SE-114 28 Stockholm (Sweden); Thierry, Dominique [Institut de la Corrosion, 220 Rue Rivoalon, 29200 Brest (France)

    2007-03-15

    Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 {mu}g/cm{sup -2} NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg{sub 5} (CO{sub 3}){sub 4} (OH){sub 2}4H{sub 2}O) and nesquehonite (MgCO{sub 3} 3H{sub 2}O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH{sub 2})) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO{sub 2} and O{sub 2} to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na{sup +} and Cl{sup -} ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface.

  3. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 μg/cm-2 NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg5 (CO3)4 (OH)24H2O) and nesquehonite (MgCO3 3H2O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH2)) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO2 and O2 to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na+ and Cl- ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface

  4. Stress-Induced Martensite in Front of Crack Tips in NiTi Shape Memory Alloys: Modeling Versus Experiments

    Science.gov (United States)

    Maletta, C.; Young, M. L.

    2011-07-01

    NiTi-based shape memory alloys (SMAs) exhibit an unusual stress distribution at the crack tip as compared to common engineering materials, due to a stress-induced martensitic transformation resulting from highly localized stresses. Understanding the fracture mechanics of NiTi-based SMAs is critical to many of their applications. Here, we develop an analytical model, which predicts the boundaries of the transformation region in the crack tip vicinity of NiTi-based SMAs. The proposed model is based on a recent analytical approach which uses modified linear elastic fracture mechanics concepts to predict the crack tip stress distribution and transformation region in SMAs but, unfortunately, it applies only to the plane stress condition. To overcome this limitation, the proposed model accounts for stress triaxiality, which plays an important role in restricting crack tip plastic deformations in common ductile metals as well as the stress-induced martensite in NiTi SMAs. The effects of triaxial stress at the crack tip are taken into account by including a new parameter, the transformation constraint factor, which is based on the plastic constraint factor of elasto-plastic materials. The predictions of the model are compared with synchrotron x-ray micro-diffraction observations and satisfactory agreement is observed between the two results. Finally, the evolution of crack tip transformation boundaries during fracture tests of miniature compact tension specimens is predicted and the effects of applied load and crack length are discussed.

  5. The influence of pre-irradiation heat treatments on thermal non-equilibrium and radiation-induced segregation behavior in model austenitic stainless steel alloys

    International Nuclear Information System (INIS)

    The effect of pre-irradiation heat treatments on thermal non-equilibrium grain boundary segregation (TNES) and subsequent radiation-induced grain boundary segregation (RIS) is studied in a series of model austenitic stainless steels. The alloys used for this study are based on AISI 316 stainless steel and have the following nominal compositions: Fe-16Cr-13Ni-1.25Mn (base 316), Fe-16Cr-13Ni-1.25Mn-2.0Mo (316+ Mo) and Fe-16Cr-13Ni-1.25Mn-2.0Mo-0.07P (316+ Mo+ P). Samples were heat treated at temperatures ranging from 1100 to 1300 C and cooled at 4 different rates (salt brine quench, water quench, air cool and furnace cool) to evaluate the effect of annealing temperature and quench rate on TNES. The alloys were than processed with the treatment (temperature and cooling rate) that resulted in the maximum Cr enrichment. Alloys with and without the heat treatment to enrich the grain boundaries with Cr were characterized following irradiation to 1 dpa at 400 C with high-energy protons in order to understand the influence of alloying additions and pre-irradiation grain boundary chemistry on irradiation-induced elemental enrichment and depletion profiles. Various mechanistic models will be examined to explain the observed behavior

  6. Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Luechinger, Roger [University and ETH Zurich, Institute for Biomedical Engineering, Zurich (Switzerland); Frauenfelder, Thomas; Guggenberger, Roman; Farshad-Amacker, Nadja; Andreisek, Gustav [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Beck, Stefan [Synthes GmbH, Zuchwil (Switzerland)

    2015-06-01

    To evaluate metal artifacts induced by biodegradable magnesium - a new class of degradable biomaterial that is beginning to enter the orthopedic routine - on CT and MRI compared to standard titanium and steel controls. Different pins made of titanium, stainless steel, and biodegradable magnesium alloys were scanned using a second-generation dual-energy multidetector CT and a 1.5-T MR scanner. In CT, quantitative assessment of artifacts was performed by two independent readers by measuring the noise in standardized regions of interest close to the pins. In MRI, the artifact diameter was measured. Interobserver agreement was evaluated using intraclass correlation coefficients. Artifacts were compared using Mann Whitney U tests. In comparison to stainless steel, biodegradable magnesium alloys induced significantly fewer artifacts in both 1.5-T MRI (p = 0.019-0.021) and CT (p = 0.003-0.006). Compared to titanium, magnesium induced significantly less artifact-related noise in CT (p = 0.003-0.008). Although artifacts were less on MRI for biodegradable magnesium compared to titanium, this result was not statistically significant. Biodegradable magnesium alloys induce substantially fewer artifacts in CT compared to standard titanium and stainless steel, and fewer artifacts in MRI for the comparison with stainless steel. (orig.)

  7. Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls

    International Nuclear Information System (INIS)

    To evaluate metal artifacts induced by biodegradable magnesium - a new class of degradable biomaterial that is beginning to enter the orthopedic routine - on CT and MRI compared to standard titanium and steel controls. Different pins made of titanium, stainless steel, and biodegradable magnesium alloys were scanned using a second-generation dual-energy multidetector CT and a 1.5-T MR scanner. In CT, quantitative assessment of artifacts was performed by two independent readers by measuring the noise in standardized regions of interest close to the pins. In MRI, the artifact diameter was measured. Interobserver agreement was evaluated using intraclass correlation coefficients. Artifacts were compared using Mann Whitney U tests. In comparison to stainless steel, biodegradable magnesium alloys induced significantly fewer artifacts in both 1.5-T MRI (p = 0.019-0.021) and CT (p = 0.003-0.006). Compared to titanium, magnesium induced significantly less artifact-related noise in CT (p = 0.003-0.008). Although artifacts were less on MRI for biodegradable magnesium compared to titanium, this result was not statistically significant. Biodegradable magnesium alloys induce substantially fewer artifacts in CT compared to standard titanium and stainless steel, and fewer artifacts in MRI for the comparison with stainless steel. (orig.)

  8. Magnetic field-induced phase transformation and variant reorientation in nickel-manganese-gallium and nickel-manganese-cobalt-indium magnetic shape memory alloys

    Science.gov (United States)

    Karaca, Haluk Ersin

    The purpose of this work is to reveal the governing mechanisms responsible for the magnetic field-induced (i) martensite reorientation in Ni 2MnGa single crystals, (ii) stress-assisted phase transformation in Ni2MnGa single crystals and (iii) phase transformation in NiMnCoIn alloys. The ultimate goal of utilizing these mechanisms is to increase the actuation stress levels in magnetic shape memory alloys (MSMAs). Extensive experimental work on magneto-thermo-mechanical (MTM) characterization of these materials enabled us to (i) better understand the ways to increase the actuation stress and strain and decrease the required magnetic field for actuation in MSMAs, (ii) determine the effects of main MTM parameters on reversible magnetic field induced phase transformation, such as magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), stress hysteresis, thermal hysteresis, critical stress for the stress induced phase transformation and crystal orientation, (iii) find out the feasibility of employing polycrystal MSMAs, and (iv) formulate a thermodynamical framework to capture the energetics of magnetic field-induced phase transformations in MSMAs. Magnetic shape memory properties of Ni2MnGa single crystals were characterized by monitoring magnetic field-induced strain (MFIS) as a function of compressive stress and stress-induced strain as a function of magnetic field. It is revealed that the selection of the operating temperature with respect to martensite start and Curie temperatures is critical in optimizing actuator performance. The actuation stress of 5 MPa and work output of 157 kJm-3 are obtained by the field-induced variant reorientation in NiMnGa alloys. Reversible and one-way stress-assisted field-induced phase transformations are observed in Ni2MnGa single crystals under low field magnitudes (NiMnGa alloys. Reversible field-induced phase transformation and shape memory characteristics of NiMnCoIn single crystals are also studied. Reversible field-induced

  9. Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys

    Science.gov (United States)

    Peyre, P.; Fabbro, R.

    1995-12-01

    The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d

  10. Thermal Stress Analysis of Welded Joint in 1420 Al-Li Alloy Induced by Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    Hongbin GENG; Song HE; Dezhuang YANG

    2003-01-01

    A model of double grains under plane stress state has been established. According to the double grain model, thermal stress induced by thermal cycling in welding fusion zone is numerically simulated by finite element method, and the microstructures before

  11. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  12. Cool-down induced hydride reorientation of hydrogen-charged Zirconium alloy cladding tubes

    International Nuclear Information System (INIS)

    250 and 500ppm hydrogen-charged Zirconium alloy tubes were employed to investigate hydride reorientation behaviors when they were cool down from 400 to 300, 200degC and room temperature with various cooling rates of 0.3, 2.0, 4.0, 7.0 and 15.0degC/min under a tensile hoop stress of 150MPa. These cool-down tests indicate that the slower cooling rate and the lower terminal cool-down temperature produced the more hydrides precipitated along with the larger fraction and the longer length of radial hydrides. These phenomena may be explained by terminal solid solubility of hydrogen for dissolution and precipitation and cooling rate-dependent hydride nucleation and growth rates. On the other hand, a dramatic decrease of ultimate tensile strength and plastic strain of the cool-down tested specimens may be explained by the amount of the radial hydrides precipitated during the cool-down process. (author)

  13. Identical mechanism of isochronal and isothermal embrittlement in Ni(Bi) alloy: Thermo-induced non-equilibrium grain-boundary segregation of Bi

    International Nuclear Information System (INIS)

    Highlights: • Both isochronal and isothermal plasticity of Ni(Bi) alloy show minima. • Existing interpretations for isochronal and isothermal embrittlement are inadequate. • Both embrittlement is caused by thermo-induced non-equilibrium grain-boundary segregation of Bi. - Abstract: Isochronal and isothermal plasticity after thermal pre-treatments are obtained by tensile tests to characterize the embrittling behaviors of Ni(Bi) alloy. Both isochronal and isothermal plasticity show evident minima. Fractography observed by scanning electron microscopy displays intergranular fracture for samples of low plasticity. The microstructure is found to be free of precipitates within grains and at grain boundaries by focused ion beam and transmission electron microscopy. Atom probe analysis indicates a strong tendency of Bi segregation to grain boundaries. By these results, the existing interpretations are discussed to be inadequate and both embrittlement are confirmed to be identical in mechanism, i.e. thermo-induced non-equilibrium grain-boundary segregation of Bi

  14. The difference between the crystallization processes induced by mechanical milling and annealing under normal and high pressure in amorphous Fe-N alloy

    CERN Document Server

    LiuLi; Guo Xing Yuan; Zhao Xu Dong; Yao Bin; Su Wen Hui

    2002-01-01

    An amorphous Fe-N alloy was prepared by ball milling a mixture of Fe and h-BN. Its crystallization processes induced by mechanical milling (MM) and annealing under normal and high pressure were studied. The crystallization product of the amorphous Fe-N alloy induced by MM and annealing at temperatures between 690 and 800 K under pressures of 3-4 GPa is epsilon-Fe sub x N, while the thermal crystallization product under normal pressure is gamma'-Fe sub 4 N. The difference between the crystallization products produced by mechanical and thermal crystallization is attributed to the effects of local pressure and local temperature produced by ball collisions.

  15. Martensitic Transformation and Magnetic-Field-Induced Strain in Magnetic Shape Memory Alloy NiMnGa Melt-Spun Ribbon

    Institute of Scientific and Technical Information of China (English)

    Shihai GUO; Yanghuan ZHANG; Jianliang LI; Baiyun QUAN; Yan QI; Xinlin WANG

    2005-01-01

    A magnetic shape memory alloy with nonstoichiometric Ni5oMn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt-spun ribbon were investigated. The experimental results showed that the melt-spun ribbons underwent thermal-elastic martensitic transformation and reverse transformation in cooling and heating process and exhibited typical thermoelastic shape memory effect. However the start temperature for martensitic transformation decreased from 286 K for as-cast alloy to 254 K for as-quenched ribbon and Curie temperature remains approximately constant. A particular internal stress induced by melt-spinning resulted in the formation of a texture structure in the ribbons, which made the ribbons obtain larger martensitic transformation strain and MFIS. The internal stress was released substantially after annealing, which resulted in a decrease of MFIS of the ribbons.

  16. Development of Computational Tools for Predicting Thermal- and Radiation-Induced Solute Segregation at Grain Boundaries in Fe-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Radiation induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe based alloys found that metalloids elements such as P, S, Si, Ge, Sn etc. embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr- Ni based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.

  17. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy.

    Science.gov (United States)

    Petrov, Yu N; Prokopenko, G I; Mordyuk, B N; Vasylyev, M A; Voloshko, S M; Skorodzievski, V S; Filatova, V S

    2016-01-01

    In this work, biomedical Co-28Cr-6Mo alloy is subjected to ultrasonic impact treatment (UIT). XRD, TEM and SAED analyses show that the plastic deformation induced by the UIT process results in a complex microstructural formation in surface layer of Co-28Cr-6Mo alloy. The peculiar feature observed in the alloy structure by TEM is the formation of Lomer-Cottrell locks originated by simultaneous sliding of Shockley partial dislocations in intersecting planes. At the beginning of the UIT process (till the strain extent e ≈ 0.2), dislocation pile-ups are gathered in front of the Lomer-Cottrell locks stimulating the formation of a great number of chaotic stacking faults (SFs) packets (incompletely transformed martensite), which are predominant with regard to the occurrence of ε-martensite and micro-twins. The incompletely transformed martensite hinders the shear translation through the twin boundaries and suppresses grain subdivision in surface layer of Co-28Cr-6Mo alloy at the UIT process used. On-going deformation to e ≈ 0.4 leads to further modification of microstructure in the micron-scale γ-grains, which consists of numerous Lomer-Cottrell locks, chaotic subtraction SFs, intersected nano-twins and fine lathes of ε-martensite with average size of approx. 50-100 nm. The observed structural features (at e ≈ 0.4) allow adequately explaining noticeable increase in microhardness without any cracks/cleavages in surface layer. Enhanced corrosion resistance of Co-28Cr-6Mo alloy, which manifests itself with less negative corrosion potential and lower corrosion and passivity currents in potentiodynamic curve, is promoted by the UIT induced oxide films and the following structural features: the CSL type of γ/ε interfacial boundaries, uniformly distributed fine carbides, and high fraction of the grains oriented with close packed (111)γ and (0002)ε planes parallel to the surface of the UIT-processed specimen. PMID:26478400

  18. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy.

    Science.gov (United States)

    Petrov, Yu N; Prokopenko, G I; Mordyuk, B N; Vasylyev, M A; Voloshko, S M; Skorodzievski, V S; Filatova, V S

    2016-01-01

    In this work, biomedical Co-28Cr-6Mo alloy is subjected to ultrasonic impact treatment (UIT). XRD, TEM and SAED analyses show that the plastic deformation induced by the UIT process results in a complex microstructural formation in surface layer of Co-28Cr-6Mo alloy. The peculiar feature observed in the alloy structure by TEM is the formation of Lomer-Cottrell locks originated by simultaneous sliding of Shockley partial dislocations in intersecting planes. At the beginning of the UIT process (till the strain extent e ≈ 0.2), dislocation pile-ups are gathered in front of the Lomer-Cottrell locks stimulating the formation of a great number of chaotic stacking faults (SFs) packets (incompletely transformed martensite), which are predominant with regard to the occurrence of ε-martensite and micro-twins. The incompletely transformed martensite hinders the shear translation through the twin boundaries and suppresses grain subdivision in surface layer of Co-28Cr-6Mo alloy at the UIT process used. On-going deformation to e ≈ 0.4 leads to further modification of microstructure in the micron-scale γ-grains, which consists of numerous Lomer-Cottrell locks, chaotic subtraction SFs, intersected nano-twins and fine lathes of ε-martensite with average size of approx. 50-100 nm. The observed structural features (at e ≈ 0.4) allow adequately explaining noticeable increase in microhardness without any cracks/cleavages in surface layer. Enhanced corrosion resistance of Co-28Cr-6Mo alloy, which manifests itself with less negative corrosion potential and lower corrosion and passivity currents in potentiodynamic curve, is promoted by the UIT induced oxide films and the following structural features: the CSL type of γ/ε interfacial boundaries, uniformly distributed fine carbides, and high fraction of the grains oriented with close packed (111)γ and (0002)ε planes parallel to the surface of the UIT-processed specimen.

  19. Acoustic assisted, field-induced strain in ferromagnetic shape memory alloys

    Science.gov (United States)

    Peterson, Bradley W.; Feuchtwanger, Jorge; Chambers, Joshua M.; Bono, David; Hall, Steven R.; Allen, Samuel M.; O'Handley, Robert C.

    2004-06-01

    A technique has been developed that uses acoustic energy to assist a magnetic field in driving twin boundary motion in a NiMnGa single crystal. Acoustic assisted magnetic-field-induced strain has been observed to increase the magnetic-field-induced strain response by up to one order of magnitude. This effect is most pronounced for magnetic field drives near the twin boundary threshold field. Increasing frequency of the acoustic wave input is shown to increase strain up to about 4 kHz after which there is a small decline in FSMA strain for higher frequencies.

  20. C-atom-induced bandgap modulation in two-dimensional (100) silicon carbon alloys

    Science.gov (United States)

    Mizuno, Tomohisa; Nagamine, Yoshiki; Omata, Yuhsuke; Suzuki, Yuhya; Urayama, Wako; Aoki, Takashi; Sameshima, Toshiyuki

    2016-04-01

    We experimentally studied the effects of the C atom on bandgap E G modulation in two-dimensional (2D) silicon carbon alloys, Si1- Y C Y , fabricated by hot C+ ion implantation into the (100) SOI substrate in a wide range of Y (4 × 10-5 ≤ Y ≤ 0.13), in comparison with the characteristics of 3D silicon carbide (SiC). X-ray photoelectron spectroscopy (XPS) and UV-Raman analysis confirm the Si-C, C-C, and Si-Si bonds in the 2D-Si1- Y C Y layer. The photoluminescence (PL) method shows that the E G and PL intensity I PL of 2D-Si1- Y C Y drastically increase with increasing Y for high Y (≥0.005), and thus we demonstrated a high E G of 2.5 eV and a visible wavelength λPL less than 500 nm. Even for low Y (<10-3), I PL of 2D-Si1- Y C Y also increases with increasing Y, owing to the compressive strain of the 2D-Si1- Y C Y layer caused by the C atoms, but the Y dependence of E G is very small. E G of 2D-Si1- Y C Y can be controlled by changing Y. Thus, the 2D-Si1- Y C Y technique is very promising for new E G engineering of future high-performance CMOS and Si photonics.

  1. Strain-induced precipitation in a Ti micro-alloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhenqiang, E-mail: wangzhe19840203@163.com [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China) and Institute for Structural Materials, Central Iron and Steel Research Institute, No. 76, Xueyuan Nanlu, Beijing 100081 (China); Mao Xinping [Guangzhou Zhujiang Steel Co. Ltd, Guangzhou 510730 (China); Yang Zhigang [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Sun Xinjun; Yong Qilong [Institute for Structural Materials, Central Iron and Steel Research Institute, No. 76, Xueyuan Nanlu, Beijing 100081 (China); Li Zhaodong [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Institute for Structural Materials, Central Iron and Steel Research Institute, No. 76, Xueyuan Nanlu, Beijing 100081 (China); Weng Yuqing [Chinese Society for Metals, No. 46, Dongsixi Street, Beijing 100371 (China)

    2011-11-25

    Highlights: {yields} Strain induces TiC precipitation in austenite. {yields} TiC precipitation occurs on dislocations and dislocation sub-structures. {yields} Severe deformation brings out more dislocations in steel. {yields} Higher dislocation density results in faster kinetics of precipitation. - Abstract: The strain-induced precipitation kinetics of TiC in a 0.05% C-0.10% Ti HSLA steel was investigated by two-stage interrupted compression method. The precipitation-time-temperature (PTT) diagram for TiC precipitation was obtained by analyzing the softening kinetics curves of deformed austenite, which was confirmed to be of validity by employing transmission electron microscopy (TEM). Experimental results showed that the PTT diagram for TiC precipitation exhibited a typical 'C' shaped and the nucleation of strain-induced TiC precipitation was a very rapid process in the temperature range 900-925 deg. C. The relatively severe deformation applied on the steel was considered to be the main factor resulting in the fast kinetics of TiC precipitation. The TiC precipitates were heterogeneously distributed in either a chain-like or a cell like manner, implying that the precipitates nucleated on dislocations or on dislocation sub-structures, which were produced by deformation. The growth of TiC precipitates approximately followed a parabolic law. In addition, the coarsening of strain-induced TiC precipitates had already started before the completion of precipitation.

  2. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: alberto.sandoval@inin.gob.mx; asandovalj@correo.unam.mx; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)

    2009-09-15

    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  3. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie;

    2016-01-01

    potassium-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion...

  4. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape memory alloys - a new actuation mechanism with large work output.

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, H. E.; Karaman, I.; Basaran, B.; Ren, Y.; Chumlyakov, Y. I.; Maier, H. J.; X-Ray Science Division; Texsas A& M Univ.; Univ. of Kentucky; Siberian Physical-Technical Inst.; Univ. of Paderborn

    2009-04-09

    Magnetic shape memory alloys (MSMAs) have recently been developed into a new class of functional materials that are capable of magnetic-field-induced actuation, mechanical sensing, magnetic refrigeration, and energy harvesting. In the present work, the magnetic field-induced martensitic phase transformation (FIPT) in Ni{sub 45}Mn{sub 36.5}Co{sub 5}In{sub 13.5} MSMA single crystals is characterized as a new actuation mechanism with potential to result in ultra-high actuation work outputs. The effects of the applied magnetic field on the transformation temperatures, magnetization, and superelastic response are investigated. The magnetic work output of NiMnCoIn alloys is determined to be more than 1 MJ m{sup -3} per Tesla, which is one order of magnitude higher than that of the most well-known MSMAs, i.e., NiMnGa alloys. In addition, the work output of NiMnCoIn alloys is orientation independent, potentially surpassing the need for single crystals, and not limited by a saturation magnetic field, as opposed to NiMnGa MSMAs. Experimental and theoretical transformation strains and magnetostress levels are determined as a function of crystal orientation. It is found that [111]-oriented crystals can demonstrate a magnetostress level of 140 MPa T{sup -1} with 1.2% axial strain under compression. These field-induced stress and strain levels are significantly higher than those from existing piezoelectric and magnetostrictive actuators. A thermodynamical framework is introduced to comprehend the magnetic energy contributions during FIPT. The present work reveals that the magnetic FIPT mechanism is promising for magnetic actuation applications and provides new opportunities for applications requiring high actuation work-outputs with relatively large actuation frequencies. One potential issue is the requirement for relatively high critical magnetic fields and field intervals (1.5-3 T) for the onset of FIPT and for reversible FIPT, respectively.

  5. Alloying elemental change of SS-316 and Al-5754 during laser welding using real time laser induced breakdown spectroscopy (LIBS) accompanied by EDX and PIXE microanalysis

    Science.gov (United States)

    Jandaghi, M.; Parvin, P.; Torkamany, M. J.; Sabbaghzadeh, J.

    Experimental studies of pulsed laser welding of stainless steel 316 in keyhole mode was done to examine a vaporization model based on the kinetic theory of gases and the thermodynamic laws. A long pulsed Nd:YAG laser with variable duration of 1-12 ms and 9-17 Gw/cm2 was employed. The undesirable loss of volatile elements affects on the weld metal compositions and the alloy properties. The model predicts that the loss of alloying elements strongly takes place at higher peak powers and longer pulse durations. On the other hand, the model shows the rapid migration of Mn and Cr based on the pressure and concentration gradients from the molten pool. Accordingly, the concentrations of iron, chromium, nickel and manganese were determined in the weld pool by means of the energy dispersive x-ray analysis (EDX) and proton induced X ray characteristics (PIXE) microanalysis. The change of weld metal composition of aluminium alloy 5754 in keyhole mode laser welding, was investigated using the model and was supported by the successive measurements. The model predicts that the concentration of magnesium in the weld metal decreases, while the aluminium concentration increases. Moreover, the real time concentrations of aluminium and magnesium elements in the weld metal were determined by laser induced breakdown spectroscopy (LIBS) at different conditions. We conclude that variation of the Al to Mg concentration ratio is negligible with various laser power densities while it is strongly correlated to the pulse duration.

  6. Al{sub 2}O{sub 3} nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al-20Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hongseok; Konishi, Hiromi [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Li Xiaochun, E-mail: xcli@engr.wisc.edu [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Size of primary Si particles decreased by 80% after addition of Al{sub 2}O{sub 3} nanoparticles. Black-Right-Pointing-Pointer Eutectic Si particles were also simultaneously modified by Al{sub 2}O{sub 3} nanoparticles. Black-Right-Pointing-Pointer Morphology of eutectic Si changed from large thin plate into coralline-like shape. Black-Right-Pointing-Pointer The ductility of hypereutectic Al-20Si alloy was enhanced by 365%. - Abstract: It is well known that the mechanical properties of hypereutectic Al-Si alloys are affected by the size, volume fraction, and distribution of primary and eutectic Si particles. However, it is very difficult to simultaneously refine and modify Si particles in hypereutectic Al-Si alloys by conventional means. This study investigates an effect of nanoparticles on Si particles during solidification in hypereutectic Al-Si alloys. Various contents of {gamma}-Al{sub 2}O{sub 3} nanoparticles were added in hypereutectic Al-20Si alloy melt and further dispersed through an ultrasonic cavitation based technique. The cast hypereutectic Al-20Si alloy with the nanoparticle addition showed a significant enhancement in both strengths and ductility. The ductility of the cast hypereutectic Al-20Si alloy was increased from 0.37% to 1.72% with an addition of 0.5 wt% {gamma}-Al{sub 2}O{sub 3} nanoparticles. Yield strength and ultimate tensile strength of the nanocomposite also showed an improvement of about 6% and 26%, respectively. Study suggests that {gamma}-Al{sub 2}O{sub 3} nanoparticles effectively induced simultaneous refinement of primary Si and modification of eutectic Si, resulting in superior ductility enhancement that is much higher than that conventional methods can offer. Microstructural analysis with optical and scanning electron microscope (SEM) revealed that the primary Si particles were refined from large star shapes with small features to polygon or blocky shapes with smooth edges and corners

  7. Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy

    International Nuclear Information System (INIS)

    Highlights: ► Size of primary Si particles decreased by 80% after addition of Al2O3 nanoparticles. ► Eutectic Si particles were also simultaneously modified by Al2O3 nanoparticles. ► Morphology of eutectic Si changed from large thin plate into coralline-like shape. ► The ductility of hypereutectic Al–20Si alloy was enhanced by 365%. - Abstract: It is well known that the mechanical properties of hypereutectic Al–Si alloys are affected by the size, volume fraction, and distribution of primary and eutectic Si particles. However, it is very difficult to simultaneously refine and modify Si particles in hypereutectic Al–Si alloys by conventional means. This study investigates an effect of nanoparticles on Si particles during solidification in hypereutectic Al–Si alloys. Various contents of γ-Al2O3 nanoparticles were added in hypereutectic Al–20Si alloy melt and further dispersed through an ultrasonic cavitation based technique. The cast hypereutectic Al–20Si alloy with the nanoparticle addition showed a significant enhancement in both strengths and ductility. The ductility of the cast hypereutectic Al–20Si alloy was increased from 0.37% to 1.72% with an addition of 0.5 wt% γ-Al2O3 nanoparticles. Yield strength and ultimate tensile strength of the nanocomposite also showed an improvement of about 6% and 26%, respectively. Study suggests that γ-Al2O3 nanoparticles effectively induced simultaneous refinement of primary Si and modification of eutectic Si, resulting in superior ductility enhancement that is much higher than that conventional methods can offer. Microstructural analysis with optical and scanning electron microscope (SEM) revealed that the primary Si particles were refined from large star shapes with small features to polygon or blocky shapes with smooth edges and corners. Moreover, the large plate eutectic Si particles were also modified into the fine coralline-like ones. The results could have great potential for numerous applications.

  8. An investigation of concentrated and distributed strain inducing constraints for training shape memory alloys

    Science.gov (United States)

    Parent, Pauline Marie

    Borderline personality disorder (BPD) is a severe mental illness characterized by high rates of engagement in distress-induced risk behavior. Unfortunately, extant laboratory-based risk paradigms have failed to account for the role of distress in precipitating risk behavior, so many questions remain about processes mechanisms that underlie this behavior. The current study examined affect as a moderator of the relationship between diagnostic status and risk behavior, as measured by a behavioral risk task, and affective and non-affective neurocognitive functioning as potential mediators of this relationship. Results indicated that individuals with BPD engaged in more risk behavior in the distress condition than in the neutral condition, whereas individuals without BPD showed a decrease in risk behavior across the two conditions. However, corresponding changes in executive functioning were not observed, suggesting the need for continued research to identify alternative mechanisms (e.g., neurocognitive, motivational) to explain this effect.

  9. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure

    International Nuclear Information System (INIS)

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of random grain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  10. Femtosecond laser induced X-ray emission from metal alloys, polymers and color filters

    Science.gov (United States)

    Hatanaka, Koji; Yomogihata, Ken-ichiro; Ono, Hiroshi; Fukumura, Hiroshi

    2005-07-01

    Various material surfaces were irradiated on a moving stage with focused laser pulses from a conventional 1 kHz femtosecond laser system, and X-ray emission spectra were measured during the laser ablation of the materials. Sharp K or L characteristic X-ray lines from the elements contained in the materials were clearly observed in a range of 2-15 keV. Signals due to copper and zinc were recognizable within a few minutes when a brass surface was irradiated. Poly(vinyl chloride) gave a marked emission originating from chlorine. When a color glass filter was irradiated, the detection of cobalt and arsenic was possible even though the amounts of these components were estimated to be less than 1 wt.% by using an electron probe microanalyzer. Time-integrated emission spectra in the visible region were also monitored during the femtosecond laser ablation of these materials. The emission spectra in the visible region were complicated owing to peaks originating from air components and white continuum emissions. Thus, the elemental analysis by femtoseond laser induced X-ray is considered to be useful for some samples. The etched trenches left at the surfaces after the laser ablation were examined with an optical microscope. The trench width varied with the materials, which may be attributed to changes in the irradiation area giving maximum counts of X-ray emission.

  11. Phase-field crystal study of segregation induced grain-boundary premelting in binary alloys

    International Nuclear Information System (INIS)

    The segregation-induced grain boundary (GB) premelting is studied by phase-field crystal model. We investigate the microstructure evolution of GBs with different misorientation angles and the variation of concentration distribution during premelting process. The liquid film thickness is calculated by an excessive mass technique. The results show that for low-angle GBs, the liquid phase first appears at individual dislocations region where the solute atoms segregate, and there exist two structural transitions during premelting process, which behave as two inflection points in the curve of w versus ΔB0. For high-angle GBs, the liquid film is rather uniform and its thickness diverges logarithmically when the melting point is approached. Moreover, the higher misorientation angle and segregation the GB has, the lower temperature the liquid film occurs. The concentration variation law indicates that GB segregation and GB premelting promote each other when the liquid phase appears. The critical wetting angle is almost equal to 12.5° and this value is much closer to the reality

  12. Induction of Mitochondrial Changes Associated with Oxidative Stress on Very Long Chain Fatty Acids (C22:0, C24:0, or C26:0-Treated Human Neuronal Cells (SK-NB-E

    Directory of Open Access Journals (Sweden)

    Amira Zarrouk

    2012-01-01

    Full Text Available In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0, substrates for peroxisomal β-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1–20 μM; 48 h, an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψm with DiOC6(3. A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions.

  13. Martensitic transformation and magnetic-field-induced strain in magnetic shape memory alloy NiMnGa melt-spun ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Guo Shihai; Zhang Yanghuan; Quan Baiyun; Li Jianliang; Wang Xinlin [Dept. of Functional Material Research, Central Iron and Steel Research Inst., Beijing, BJ (China)

    2005-07-01

    A non-stoichiometric polycrystalline Ni{sub 50}Mn{sub 27}Ga{sub 23} magnetic shape memory alloy was prepared by melt-spinning technology. The effects of melt-spinning on the martensitic transformation and magnetic-field-induced strain (MFIS) of the melt-spun ribbon were investigated. The experimental results show that the melt-spun ribbon undergoes the thermal-elastic martensitic transformation and exhibits the thermo-elastic shape memory effect. But the martensitic transformation temperature decreases and Curie temperature remains unchanged. A particular internal stress induced by melt-spinning made a texture structure in the melt-spun ribbon, which made the melt-spun ribbon obtain larger transition-induced strain and MFIS. The internal stress was released under cycling of magnetic field. This resulted in a decrease of MFIS of the melt-spun ribbon. (orig.)

  14. Use of conventional electrochemical techniques to produce crystalline FeRh alloys induced by Ag seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Noce, R.D., E-mail: rodrnoce@iq.unesp.br [Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-900 Araraquara, SP (Brazil); Benedetti, A.V. [Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-900 Araraquara, SP (Brazil); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES (Brazil); Kumar, H.; Cornejo, D.R. [Instituto de Física, Universidade de São Paulo, USP, 05508-090 São Paulo, SP (Brazil); Magnani, M. [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-970 Campinas, SP (Brazil)

    2013-10-05

    Highlights: •Production of FeRh alloys by electrodeposition. •Use of Ag seed layer causes crystallization in electrodeposited Fe{sub 20}Rh{sub 80} alloy. •Mössbauer spectroscopy indicates that the FeRh/Ag alloy has a long range atomic order structure. -- Abstract: By combining galvanic displacement and electrodeposition techniques, an ordered Fe{sub 20}Rh{sub 80} structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe–Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe–Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe{sub 20}Rh{sub 80} alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data.

  15. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  16. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  17. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A

    Directory of Open Access Journals (Sweden)

    Vinita G. Chittoor

    2013-12-01

    Full Text Available Charcot–Marie–Tooth disease type 1A (CMT1A is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22 gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS, autophagosomes and heat-shock proteins (HSPs. Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins.

  18. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61 in Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Loto Iris

    2012-10-01

    Full Text Available Abstract Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved. Results In this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase, was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants. Conclusions These results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.

  19. Fs–ns double-pulse Laser Induced Breakdown Spectroscopy of copper-based-alloys: Generation and elemental analysis of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guarnaccio, A.; Parisi, G.P.; Mollica, D. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy)

    2014-11-01

    Evolution of nanoparticles ejected during ultra-short (250 fs) laser ablation of certified copper alloys and relative calibration plots of a fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration is presented. All work was performed in air at atmospheric pressure using certified copper-based-alloy samples irradiated by a fs laser beam and followed by a delayed perpendicular ns laser pulse. In order to evaluate possible compositional changes of the fs induced nanoparticles, it was necessary to consider, for all samples used, comparable features of the detected species. With this purpose the induced nanoparticles black-body-like emission evolution and their relative temperature decay have been studied. These data were exploited for defining the distance between the target surface and the successive ns laser beam to be used. The consequent calibration plots of minor constituents (i.e. Sn, Pb and Zn) of the certified copper-based-alloy samples have been reported by taking into account self-absorption effects. The resulting linear regression coefficients suggest that the method used, for monitoring and ruling the fs laser induced nanoparticles, could provide a valuable approach for establishing the occurrence of potential compositional changes of the detected species. All experimental data reveal that the fs laser induced nanoparticles can be used for providing a coherent composition of the starting target. In the meantime, the fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration here used can be considered as an efficient technique for compositional determination of the nanoparticles ejected during ultra-short laser ablation processes. - Highlights: • Laser induced NP continuum black-body-like emission was used for T determination. • Invariable composition of generated NPs was assumed in the range of 20 μs. • Fs-ns DP-LIBS was employed for the compositional characterization of NPs. • NPs obtained by fs

  20. Modelling current-induced magnetization switching in Heusler alloy Co{sub 2}FeAl-based spin-valve nanopillar

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. B. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Ma, X. Q.; Liu, Z. H.; Zhao, C. P. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Chen, L. Q. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-04-07

    We investigated the current-induced magnetization switching in a Heusler alloy Co{sub 2}FeAl-based spin-valve nanopillar by using micromagnetic simulations. We demonstrated that the elimination of the intermediate state is originally resulted from the decease of effective magnetic anisotropy constant. The magnetization switching can be achieved at a small current density of 1.0 × 10{sup 4} A/cm{sup 2} by increasing the demagnetization factors of x and y axes. Based on our simulation, we found magnetic anisotropy and demagnetization energies have different contributions to the magnetization switching.

  1. Field-induced-moment nuclear coupling for {sup 59}Co in a Heusler alloy Co{sub 2}TiGa

    Energy Technology Data Exchange (ETDEWEB)

    Furutani, Y; Nishihara, H [Faculty of Science and Technology, Ryukoku University, Otsu 520-2194 (Japan); Kanomata, T [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Kobayashi, K; Ishida, K [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kainuma, R [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Koyama, K; Watanabe, K [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Goto, T, E-mail: nishihara@rins.ryukoku.ac.j [Faculty of Science and Technology, Sophia University, Tokyo 102-8554 (Japan)

    2009-03-01

    The positive hyperfine field at Co nucleus in a Heusler alloy Co{sub 2}TiGa is discussed to be not dominated by the orbital hyperfine field from a quite different point of view from former studies. Field-induced-moment nuclear coupling for {sup 59}Co via spin-orbit interaction on Co atom in Co{sub 2}TiGa is discussed to be small from the observed high-field shift of the NMR of {sup 59}Co in the ferromagnetic state of only +0.83 % in contrast to the case of CoCl{sub 2}.2H{sub 2}O with +29%.

  2. Cold-rolling behavior of biomedical Ni-free Co-Cr-Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena.

    Science.gov (United States)

    Mori, Manami; Yamanaka, Kenta; Chiba, Akihiko

    2015-03-01

    Ni-free Co-Cr-Mo alloys are some of the most difficult-to-work metallic materials used commonly in biomedical applications. Since the difficulty in plastically deforming them limits their use, an in-depth understanding of their plastic deformability is of crucial importance for both academic and practical purposes. In this study, the microstructural evolution of a Co-29Cr-6Mo-0.2N (mass%) alloy during cold rolling was investigated. Further, its work-hardening behavior is discussed while focusing on the strain-induced face-centered cubic (fcc) γ→hexagonal close-packed (hcp) ε martensitic transformation (SIMT). The planar dislocation slip and subsequent SIMT occurred even in the initial stage of the deformation process owing to the low stability of the γ-phase and contributed to the work hardening behavior. However, the amount of the SIMTed ε-phase did not explain the overall variation in work hardening during cold rolling. It was found that the intersecting of the SIMTed ε-plates enhanced local strain evolution and then produced fine domain-like deformation microstructures at the intersections. Consequently, the degree of work hardening was reduced during subsequent plastic deformation, resulting in the alloy exhibiting a two-stage work hardening behavior. The results obtained in this study suggest that the interaction between ε-martensites, and ultimately its relaxation mechanism, is of significant importance; therefore, this aspect should be addressed in detail; the atomic structures of the γ-matrix/ε-martensite interfaces, the phenomenon of slip transfer at the interfaces, and the slipping behavior of the ε-phase itself are needed to be elucidated for further increasing the cold deformability of such alloys.

  3. Abnormal mechanical property evolution induced by heat treatment for a semi-solid forming hypereutectic Al-Fe base alloy

    Directory of Open Access Journals (Sweden)

    Run-xia Li

    2015-05-01

    Full Text Available In the present study, Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn alloy samples were prepared by electromagnetic stirring and semi-solid forming processing, and then the effects of T6 and T1 heat treatments on the microstructures and mechanical properties of the semi-solid forming samples were investigated. The results indicate that after semi-solid forming, the mechanical properties of the sample improved significantly compared to that of the merely electromagnetically stirred sample. The grains of semi-solid forming alloy became almost fine equiaxed; big long strip-shaped Al3Fe phases became short rod-like morphology and distributed uniformly in the matrix. However, the mechanical properties of the T6-treated semi-solid forming sample decreased significantly instead of increasing and, with solution temperature rising, the tensile strength of the alloy decreased further. The results of EDS show that after high temperature solid-solution treatment, the Cu element in the semi-solid forming alloy sample is mainly concentrated at the boundaries of the Al3Fe phases instead of being dissolved in the matrix. At the same time, the grains of the semi-solid forming sample grew slightly after solid-solution treatment. Therefore, the growth of the grains and the accumulation of Cu element at Al3Fe phase boundaries during solution treatment of the semi-solid forming alloy were the main reasons for the mechanical properties decreasing after T6 treatment. The mechanical properties of the alloy were improved after T1 heat treatment due to aging strengthening phase being precipitated in the matrix.

  4. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  5. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys - A new actuation mechanism with large work output

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Haluk E. [Department of Mechanical Engineering, Texas A and M University College Station, TX (United States); Department of Mechanical Engineering, University of Kentucky Lexington, KY 40506 (United States); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A and M University College Station, TX (United States); Materials Science and Engineering Graduate Program, Texas A and M University College Station, TX 77843 (United States); Basaran, Burak [Materials Science and Engineering Graduate Program, Texas A and M University College Station, TX 77843 (United States); Ren, Yang [Advanced Photon Source Argonne National Laboratory Argonne, Illinois 60439 (United States); Chumlyakov, Yuny I. [Siberian Physical-Technical Institute Tomsk, 634050 (Russian Federation); Maier, Hans J. [Lehrstuhl fuer Werkstoffkunde, University of Paderborn 33095 Paderborn (Germany)

    2009-04-09

    Magnetic shape memory alloys (MSMAs) have recently been developed into a new class of functional materials that are capable of magnetic-field-induced actuation, mechanical sensing, magnetic refrigeration, and energy harvesting. In the present work, the magnetic and hyphen; field-induced martensitic phase transformation (FIPT) in Ni{sub 45}Mn{sub 36.5}Co{sub 5}In{sub 13.5} MSMA single crystals is characterized as a new actuation mechanism with potential to result in ultra-high actuation work outputs. The effects of the applied magnetic field on the transformation temperatures, magnetization, and superelastic response are investigated. The magnetic work output of NiMnCoIn alloys is determined to be more than 1 MJ m{sup -3} per Tesla, which is one order of magnitude higher than that of the most well-known MSMAs, i.e., NiMnGa alloys. In addition, the work output of NiMnCoIn alloys is orientation independent, potentially surpassing the need for single crystals, and not limited by a saturation magnetic field, as opposed to NiMnGa MSMAs. Experimental and theoretical transformation strains and magnetostress levels are determined as a function of crystal orientation. It is found that [111]-oriented crystals can demonstrate a magnetostress level of 140 MPa T{sup -1} with 1.2% axial strain under compression. These field-induced stress and strain levels are significantly higher than those from existing piezoelectric and magnetostrictive actuators. A thermodynamical framework is introduced to comprehend the magnetic energy contributions during FIPT. The present work reveals that the magnetic FIPT mechanism is promising for magnetic actuation applications and provides new opportunities for applications requiring high actuation work-outputs with relatively large actuation frequencies. One potential issue is the requirement for relatively high critical magnetic fields and field intervals (1.5-3 T) for the onset of FIPT and for reversible FIPT, respectively. (Abstract Copyright

  6. Microstructure Evolution and High-Temperature Compressibility of Modified Two-Step Strain-Induced Melt Activation-Processed Al-Mg-Si Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Chia-Wei Lin

    2016-05-01

    Full Text Available A two-step strain-induced melt activation (TS-SIMA process that omits the cold working step of the traditional strain-induced melt activation (SIMA process is proposed for 6066 Al-Mg-Si alloy to obtain fine, globular, and uniform grains with a short-duration salt bath. The results show that increasing the salt bath temperature and duration leads to a high liquid phase fraction and a high degree of spheroidization. However, an excessive salt bath temperature leads to rapid grain growth and generates melting voids. The initial degree of dynamic recrystallization, which depends on the extrusion ratio, affects the globular grain size. With an increasing extrusion ratio, the dynamic recrystallization becomes more severe and the dynamic recrystallized grain size becomes smaller. It results in the globular grains becomes smaller. The major growth mechanism of globular grains is Ostwald ripening. Furthermore, high-temperature compressibility can be improved by the TS-SIMA process. After a 4 min salt bath at 620 °C, the high-temperature compression ratio become higher than that of a fully annealed alloy. The results show that the proposed TS-SIMA process has great potential.

  7. Crystallography and morphology of antiphase boundary-like structure induced by martensitic transformation in Ti–Pd–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda@alpha.msre.kumamoto-u.ac.jp [Department of Materials Science and Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nishimura, S.; Tsurekawa, S.; Takashima, K. [Department of Materials Science and Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Mitsuhara, M.; Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-01-05

    Highlights: • The APB-like structure are observed in both 9R and B19 martensite of Ti–Pd–Fe alloy. • Atomic displacement on APB-like structure reflects the microdomain by pre-martensite. • The density of APB-like contrasts are affected by Fe content in Ti–Pd–Fe alloy. - Abstract: The antiphase boundary (APB)-like structure of both 9R and B19 martensites in the Ti–Pd–Fe alloy was investigated by means of transmission electron microscopy. Some APB-like structures with curved and wide contrasts along the (0 0 1){sub 9R} basal plane are observed in 9R martensitic plates. The atomic displacement on the APB-like structure reflects the atomic movement stemming from the microdomains formed as a pre-martensitic transformation. The displacement vector of the APB-like structure in the B19 martensite can be expressed as R = 〈1/3 0 −1/2〉{sub B19}. The density of APB-like contrasts increases by the substitution of Fe for Pd in Ti–Pd–Fe alloy.

  8. Environmentally induced fracture of nickel alloys: a comparison of hydrogen and mercury embrittlement with respect to temperature

    International Nuclear Information System (INIS)

    Previous studies have compared electrolytic hydrogen embrittlement (HE) and liquid metal embrittlement (LME) by mercury for numerous nickel alloys. All alloys tested exhibited embrittlement to some degree with HE and LME having similar fractographies. This study examines the effect of temperature on He and LME of Monel 400 over the range -30 and 800C. Slow strain rate tensile tests were conducted at two strain rates, 1.6 x 10-5s-1 and 1.6 x 10-3s-1, and two grain sizes, 35 μm and 250 μm. Behavior of Monel 400 is compared with previously studied nickel alloys. Results showed that intergranular, tranogranular, and microvoid-coalescence fractures can be obtained in both hydrogen and mercury. Fracture mode is governed by strain at fracture. Embrittlement ceases below -200 in both environment, believed due to lack of mobility of adsorbed hydrogen and lack of wetting by mercury. LME is more severe than HE because hydrogen blunts cracks by promoting plasticity. HE ceases at about 800C because excess plasticity promotes crack blunting and inhibits initiation. LME fractures remain brittle to 800C. An incubation period is normally needed for adsorption of the embrittler or for penetration of the crack through the plane stress surface zone. Otherwise ductile failures in mercury often exhibit longitudinal splitting, believed to be due to the combination of high normal stress, low shear stress, and a clean surface. The existence of a temperature window for LME can be explained on the basis of strain activated localized wetting. Results of this study are consistent with a decohesion mechanism producing intergranular fracture; competing with an enhanced dislocation nucleation mechanism producing transgranular fracture. Monel 400 exhibited the range of features observed for other nickel base alloys at appropriate conditions of temperature, strain rate, and grain size

  9. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    Science.gov (United States)

    Pramanick, S.; Chatterjee, S.; Giri, S.; Majumdar, S.

    2014-09-01

    Present work reports on the observation of large magnetoresistance (˜-30% at 80 kOe) and magnetocaloric effect (˜12 J.kg-1.K-1 for 0-50 kOe) near room temperature (˜290 K) on the Ni-excess ferromagnetic shape memory alloy Ni2.04Mn1.4Sn0.56. The sample can be thought of being derived from the parent Ni2Mn1.4Sn0.6 alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni2.04Mn1.4Sn0.56 it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  10. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, S.; Giri, S.; Majumdar, S., E-mail: sspsm2@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Chatterjee, S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700 098 (India)

    2014-09-15

    Present work reports on the observation of large magnetoresistance (∼−30% at 80 kOe) and magnetocaloric effect (∼12 J·kg{sup −1}·K{sup −1} for 0–50 kOe) near room temperature (∼290 K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  11. On the stress-assisted magnetic-field-induced phase transformation in Ni{sub 2}MnGa ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, H.E. [Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843 (United States); Karaman, I. [Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: ikaraman@tamu.edu; Basaran, B. [Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843 (United States); Lagoudas, D.C. [Department of Aerospace Engineering, Texas A and M University, College Station, TX 77843 (United States); Chumlyakov, Y.I. [Siberian Physical-Technical Institute, Tomsk 634050, Russia (Russian Federation); Maier, H.J. [Lehrstuhl fuer Werkstoffkunde, University of Paderborn, 33095 Paderborn (Germany)

    2007-08-15

    The effect of magnetic field on the martensitic phase transformation in Ni{sub 2}MnGa single crystals was investigated under compression. Reversible and one-way stress-assisted field-induced phase transformations were observed under low field magnitudes. The total work output levels achieved during reversible stress-assisted field-induced phase transformation are similar to that attained using field-induced martensite reorientation in NiMnGa magnetic shape memory alloys (MSMAs). However, the actuation stress levels are an order of magnitude higher. Possible magneto-microstructural mechanisms and necessary magnetic and mechanical conditions to accomplish field-induced phase transformation are discussed. A thermodynamical description is introduced to understand magnetic energy contributions to trigger the phase transformation. Materials design and selection guidelines are proposed to search for this new mechanism in other ferromagnetic materials that undergo thermoelastic martensitic phase transformation. The present work output levels achieved in the Ni{sub 2}MnGa MSMA and the possibility of further increase place MSMAs above many currently available high frequency active materials.

  12. Crystallographic Characterization of the Novel Inorganic-organic Hybrid Coordinated Polymer:[(C22H50N2)(Ag2I4)]n

    Institute of Scientific and Technical Information of China (English)

    李浩宏; 陈之荣; 黄长沧; 肖光参; 任永刚

    2004-01-01

    A novel coordinated polymer [(C22H50N2)(Ag2I4)]n([C22H50N2]2+ = N,N′-1,2- ethylence-bis(N,N′-dimethyl octane ammonium) (EDO)) was synthesized by the reaction of AgI and EDO at room temperature with pH = 6.8, and structurally characterized by means of X-ray single- crystal diffraction. It crystallizes in triclinic, space group P1 with a = 9.6080(1), b = 12.7643(2), c = 7.2157(8)A,α = 100.835(8), β = 91.030(3), γ = 91.297(9)°, (C21.50H48.50Ag2I4N2), Mr = 1058.46, V = 868.71(19)A3, Z = 1, Dc = 2.023g/cm3, F(000) = 497.5, μ(MoKα) = 4.692 mm-1, the final R = 0.0623 and wR = 0.1949 for 2641 observed reflections with I > 2((I). The title compound consists of cations ([C22H50N2]2+) and anion chain (Ag2I42-)∞ which are combined by static attracting forces in the crystal to form the so-called organic-inorganic hybrid material.

  13. Crevice corrosion kinetics of nickel alloys bearing chromium and molybdenum

    International Nuclear Information System (INIS)

    Highlights: ► The crevice corrosion resistance of the tested alloys increased with PREN, which is mainly affected by their Mo content. ► Crevice corrosion kinetics was controlled by ohmic drop only in the more dilute chloride solutions. ► Charge transfer control was observed in concentrated chloride solutions. ► A critical ohmic drop was not necessary for crevice corrosion to occur. ► Ohmic drop was a consequence of the crevice corrosion process in certain conditions. - Abstract: The crevice corrosion kinetics of alloys C-22, C-22HS and HYBRID-BC1 was studied in several chloride solutions at 90 °C. The crevice corrosion resistance of the alloys increased with PREN (Pitting Resistance Equivalent Number), which is mainly affected by the Mo content in the alloys. The crevice corrosion kinetics of the three alloys was analyzed at potentials slightly higher than the repassivation potential. Crevice propagation was controlled by ohmic drop in the more dilute chloride solutions, and by charge transfer in the more concentrated chloride solutions. Ohmic drop was not a necessary condition for crevice corrosion to occur.

  14. Microstructure and Wear Behaviour of Laser-Induced Thermite Reaction Al2O3 Ceramic Coatings on Pure Aluminum and AA7075 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Kaijin; LIN Xin; XIE Changsheng; T M Yue

    2008-01-01

    Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding(one-step method)and laser cladding followed by laser re-melting(two-step method)using mixed powders CuO-Al-SiO2 in order to improve the wear properties of aluminum and aluminum alloy,respectively.The microstructure of the coatings was characterized by scanning electron microscopy(SEM)and X-ray diffraction(XRD).The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature.Owing to the presence of hard a-Al2O3 and γ-Al2O,3phases,the coatings exhibited excellent wear resistance.In addition,the wear resistance of the coatings fabricated by two-step method is superior to that of the coatings fabricated by one-step method.

  15. Nucleation of cracks from shear-induced cavities in an {alpha}/{beta} titanium alloy in fatigue, room-temperature creep and dwell-fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Lefranc, P. [LMPM, UMR CNRS 6617, ENSMA, 86961 Futuroscope, Chasseneuil Cedex (France); LMS, UMR CNRS 7649, Ecole Polytechnique, 91128 Palaiseau Cedex (France); SNECMA Groupe SAFRAN, 77550 Moissy Cramayel (France); Doquet, V. [LMS, UMR CNRS 7649, Ecole Polytechnique, 91128 Palaiseau Cedex (France)], E-mail: doquet@lms.polytechnique.fr; Gerland, M.; Sarrazin-Baudoux, C. [LMPM, UMR CNRS 6617, ENSMA, 86961 Futuroscope, Chasseneuil Cedex (France)

    2008-10-15

    In titanium alloys, dwell periods during room-temperature stress-controlled fatigue tests are responsible for substantial reductions in lifetime compared to pure fatigue loading. The mechanisms of such a creep-fatigue interaction have been investigated for alloy Ti-6242. Scanning and transmission electron microscopy observations revealed crack initiation by coalescence of shear-induced cavities nucleated at {alpha}/{beta} interfaces in large colonies of {alpha} laths nearly parallel to the loading axis. The density and average size of cavities were larger in dwell-fatigue and creep than in fatigue. A qualitative micromechanical model of cavity nucleation based on discrete dislocation dynamics was developed. The number of cycles for cavity nucleation was computed as a function of the applied stress range. A finite threshold, dependent on the size of {alpha} laths colonies with similar orientation, was found. The simulations predict earlier cavity nucleation in creep or dwell-fatigue than in pure fatigue, which is consistent with the performed experiments.

  16. The Effect of Applied Stress on Environment-Induced Cracking of Aluminum Alloy 5052-H3 in 0.5 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Osama M. Alyousif

    2012-01-01

    Full Text Available The environment-induced cracking (EIC of aluminum alloy 5052-H3 was investigated as a function of applied stress and orientation (Longitudinal rolling direction—Transverse: LT and Transverse—Longitudinal rolling direction: TL in 0.5 M sodium chloride solution (NaCl using a constant load method. The applied stress dependence of the three parameters (time to failure; tf, steady-state elongation rate, Iss, and transition time at which a linear increase in elongation starts to deviate, tss obtained from the corrosion elongation curve showed that these relationships were divided into three regions, the stress-dominated region, the EIC- dominated region, and the corrosion-dominated region. Aluminum alloy 5052-H3 with both orientations showed the same EIC behavior. The value of tss/tf in the EIC-dominated region was almost constant with 0.57±0.02 independent of applied stress and orientation. The fracture mode was transgranular for 5052-H3 with both orientations in the EIC-dominated region. The relationships between log Iss and log tf for 5052-H3 in the EIC-dominated region became a good straight line with a slope of −2 independent of orientation.

  17. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Science.gov (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  18. Thermodynamic Analyses of Strain-induced Martensite Transformation in Fe-7Mn-1.2C Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Ms temperature, ΔGγ→α, ΔGγ→M and mechanical energy under a non-severe impact loading in a medium manganese steel (Fe-7Mn-1.2C) have been calculated by means of Xu's Fe-X-C model. The relation between the yield strength of austenite and the driving force for martensite transformation has been established. It is proved that the martensite transformation can take place in a medium manganese steel (Fe-7Mn-1.2C alloy) under a non-severe impact loading.

  19. Irradiation-induced changes of martensitic transformation temperatures in a TiNiNb shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mo, H.Q. [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Material Forming and Controlling Engineering, Sichuan University, Chengdu 610065 (China); Zu, X.T. [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: xiaotaozu@yahoo.com; Huo, Y. [Department of Mechanics, Fudan University, Shanghai 200433 (China)

    2005-04-15

    Effects of electron irradiations on the transition behavior of 1123 K annealed Ti{sub 44}Ni{sub 47}Nb{sub 9} shape memory alloy specimens were studied. The transformation temperatures and the latent heat of phase transformation were measured by differential scanning calorimeter (DSC). The microstructure changes were determined by XRD and TEM. The 1.7 MeV electron irradiation increases the martensitic transformation start temperature, finish temperature, austenite transformation start, finish temperature by {approx}20 K. The XRD and TEM observation showed that the volume fraction of {beta}-Nb precipitate increased after electron irradiation, which contributed to the observed changes of the transformation temperatures.

  20. Crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    The crevice corrosion re passivation potential was determined by the Potentiodynamic- Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloys 625, C-22, C-22HS and HYBRID-BC1 were used. Specimens contained 24 artificially creviced spots formed by a ceramic washer (crevice former) wrapped with a PTFE tape. Crevice corrosion tests were performed in 0,1 mol/L and 1 mol/L NaCl solutions at temperatures between 20 and 90ºC, and CaCl2 5 mol/L solution at temperatures between 20 and 117°C. The crevice corrosion resistance of the alloys increased in the following order: 625 < C-22 < C-22HS < HYBRID-BC1. The repassivation potential (ECO) showed the following relationship with temperature (T) and chloride concentration ([Cl-]) ECO = (A + B T) log [Cl-] + C T + D; where A, B, C and D are constants. At temperatures above 90°C, ECO for alloy 625 stabilized at a minimum value of -0.26 VSCE (author)

  1. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.

    Science.gov (United States)

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-06-01

    The springback behavior of Ti-12Cr and Ti-29Nb-13Ta-4.6Zr (TNTZ) during deformation by bending was investigated; and the microstructures of the non-deformed and deformed parts of both alloys were systematically examined to clarify the relationship between microstructure and springback behavior. For the deformed Ti-12Cr alloy, deformation-induced ω-phase transformation occurs in both the areas of compression and tension within the deformed part, which increases the Young׳s modulus. With the deformed TNTZ alloy, deformation-induced ω-phase transformation is observed in the area of compression within the deformed part; while a deformation-induced α″ martensite transformation occurs in the area under tension, which is likely to be associated with the pseudoelasticity of TNTZ. Among these two alloys, Ti-12Cr exhibits a smaller springback and a much greater bending strength when compared with TNTZ; making Ti-12Cr the more advantageous for spinal fixation applications.

  2. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel

    Science.gov (United States)

    Kim, Dae Whan

    2012-01-01

    Tensile, fatigue, and creep tests were conducted to investigate the effect of grain refinement by the addition of nitrogen on mechanical properties of nitrogen alloyed type 316LN stainless steel. Grain size was reduced from 100 μm to 47 μm as nitrogen concentration was increased from 0.04% (N04) to 0.10% (N10). When nitrogen concentration was increased, there was a 20% increase in yield stress and a 14% increase in UTS, respectively. Elongation was not significantly changed with increasing nitrogen concentration. As nitrogen concentration was increased, there was a 41% increase in fatigue life and an approximately sixfold increase in the time to rupture. As grain size was reduced from 100 μm to 47 μm, there was an 8% increase in yield stress and a 3% increase in UTS, respectively. Elongation was little changed with decreasing grain size. As grain size was reduced from 100 μm to 47 μm, there was a 9% increase in fatigue life and a 23% increase in the time to rupture. The grain refinement achieved by the addition of nitrogen improved the high temperature mechanical properties of nitrogen alloyed type 316LN stainless steel but was not the main mechanism for improvement of mechanical properties.

  3. Low-temperature stress-assisted germanium-induced crystallization of silicon-germanium alloys on flexible polyethylene terephtalate substrates

    Science.gov (United States)

    Hekmatshoar, B.; Shahrjerdi, D.; Mohajerzadeh, S.; Khakifirooz, A.; Robertson, M.; Tonita, A.; Bennett, J. C.

    2004-05-01

    The application of mechanical-compressive stress during low-temperature annealing has been investigated for the crystallization of SiGe alloys on plastic substrates. It was observed that crystallization of an amorphous Ge/Cu/Ge ``sandwich'' can occur at temperatures as low as 130 °C with the application of an equivalent compressive strain of 0.05%. By using this sandwich as a seed for crystallization of an underlying amorphous SiGe film, partial crystallization of the film was observed to occur at a temperature of 180 °C, again under an equivalent compressive strain of 0.05%. Without the application of the compressive strain, crystallization was not observed for either system at the temperatures investigated. The atomic percentage of Si in the SiGe alloy was 35% as confirmed by Rutherford backscattering spectroscopy and the partial crystallization of the SiGe layer was verified by scanning electron microscopy, x-ray diffraction, and transmission-electron microscopy analyses. .

  4. Effect of hardening induced by cold expansion on damage fatigue accumulation and life assessment of Aluminum alloy 6082 T6

    Directory of Open Access Journals (Sweden)

    Bendouba Mostefa

    2012-12-01

    Full Text Available Hole cold expansion (HCE is an effective method to extend the fatigue life of mechanical structures. During cold expansion process compressive residual stresses around the expanded hole are generated. The enhancement of fatigue life and the crack initiation and growth behavior of a holed specimen were investigated by using the 6082 Aluminum alloy. The present study suggests a simple technical method for enhancement of fatigue life by a cold expansion hole of pre-cracked specimen. Fatigue damage accumulation of cold expanded hole in aluminum alloy which is widely used in transportation and in aeronautics was analyzed. Experimental tests were carried out using pre-cracked SENT specimens. Tests were performed in two and four block loading under constant amplitude. These tests were performed by using two and four blocks under uniaxial constant amplitude loading. The increasing and decreasing loading were carried. The experimental results were compared to the damage calculated by the Miner's rule and a new simple fatigue damage indicator. This comparison shows that the 'damaged stress model', which takes into account the loading history, yields a good estimation according to the experimental results. Moreover, the error is minimized in comparison to the Miner's model.

  5. Oxidation-induced strains in thermally grown alumina scales on Ni-base alloys: An in situ synchrotron radiation study

    Science.gov (United States)

    Reddy, Kancharla-Arun K.

    The stresses developed during the formation of alpha-Al2O 3 on Ni-base alloy bond coats can lead to premature failure of thermal barrier systems, which have been used for almost three decades to extend the life of gas turbine systems. Conventional X-ray diffraction techniques are difficult and have not been totally satisfactory for measuring the stresses in situ in Al2O3 scales. In this work, in situ evolution of growth strains in Al2O3 scales formed on a variety of Ni-base alloys, as well as thermal mismatch strains developed during cooling have been studied using 21.6 keV X-ray synchrotron radiation. The lattice strains in the Al 2O3 scales were obtained by analyzing the elliptical distortions of Debye-Scherrer (DS) diffraction rings which develop in response to the presence of in-plane stresses in the oxide. A model NiCrAlY bond coat alloy was investigated in air at four oxidation temperatures: 950, 1000, 1050 and 1100°C. While the growth stresses in alpha-Al 2O3 were tensile at all temperatures, stress relaxation is observed only at 1050 and 1100°C. Stresses in the TGOs in these samples at room temperature were also measured by piezospectroscopy and laboratory XRD, with good agreement between all three methods. A quasi-peritectoid phase transformation in the bond coat leads to a greatly increased room temperature compressive stresses in the samples oxidized at 1050 and 1100°C. The evolution of growth stresses in single crystal NiAl at 1100°C is dependent on crystallographic orientation. Epitaxial issues at the NiAl/Al 2O3 interface appear to govern initial formation of gamma- or theta-Al2O3 and its subsequent transformation to the stable and denser alpha-Al2O3 polymorph. This transformation generates tensile stresses in alpha-Al2O 3, which relax with further oxidation. The present work also independently confirms an error in the sign of one of the elastic constants reported in the literature. The value of c14 reported in the literature is -22 GPa but this

  6. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice

    Science.gov (United States)

    Liu, Jing Miao; Park, Soon Ju; Huang, Jin; Lee, Eun Jin; Xuan, Yuan Hu; Je, Byoung Il; Kumar, Vikranth; Priatama, Ryza A.; Raj K, Vimal; Kim, Sung Hoon; Min, Myung Ki; Cho, Jun Hyeon; Kim, Tae Ho; Chandran, Anil Kumar Nalini; Jung, Ki Hong; Takatsuto, Suguru; Fujioka, Shozo; Han, Chang-deok

    2016-01-01

    Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice. PMID:26826218

  7. Simulation of thermos-solutal convection induced macrosegregation in a Sn-10%Pb alloy benchmark during columnar solidification

    Science.gov (United States)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-03-01

    In order to investigate the effect of thermo-solutal convection on the formation of macrosegregation during columnar solidification, simulations with a liquid-columnar two phase model were carried out on a 2D rectangular benchmark of Sn-10%Pb alloy. The solidification direction in the benchmark is unidirectional: (') downwards from top to bottom or (2) upwards from bottom to top. Thermal expansion coefficient, solutal expansion coefficient and liquid diffusion coefficient of the melt are found to be key factors influencing the final macrosegregation. The segregation range and distribution are also strongly influenced by the benchmark configurations, e.g. the solidifying direction (upwards or downwards) and boundary conditions, et al. The global macrosegregation range increases with the velocity magnitude of the melt during the process of solidification.

  8. Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation

    International Nuclear Information System (INIS)

    Long-ns-duration, single pulse laser-induced breakdown spectroscopy (LIBS) is known to be an effective method to observe well resolved spectra from samples immersed in water at high hydrostatic pressures. The aim of this study is to investigate whether the signals obtained using this method are suitable for quantitative analysis of chemical composition. Six certified brass alloys consisting of copper (Cu), zinc (Zn) and lead (Pb) were measured underwater using a laser pulse of duration 250 ns, and their compositions were determined using calibration-free LIBS (CF-LIBS) and corrected CF-LIBS (CCF-LIBS) methods. The mass fractions of Cu and Zn calculated using CF-LIBS showed better agreement with the certified values than those determined using CCF-LIBS, with relative errors of Cu 4.2 ± 3.3 % and Zn 7.2 ± 6.4 %. From the results, it can be said that the difference of preferential evaporation and ablation among elements does not need to be considered for underwater measurements with the long-pulse LIBS setup used in this work. While the results indicate that the CF-LIBS method can be applied for in situ quantitative analysis of major elements with concentrations > ~ 10 %, the mass fractions determined for Pb, with concentrations < 5 % had large relative errors, suggesting that an alternative method is required to quantify minor elements. - Highlights: • The spectra of submerged metal alloys obtained using a long pulse is suitable for CF-LIBS. • CF-LIBS determines the mass fractions of major elements of submerged brass targets in water. • The compositions of Cu and Zn are determined within 10 % relative error. • The preferential evaporation and ablation among elements do not have a significant influence on the quantitative analysis of brass samples submerged in water using a long-ns-duration laser pulse

  9. Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tomoko, E-mail: takahas@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Thornton, Blair [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ohki, Koichi [OK Lab. Co., Ltd. 8-7-3 Shimorenjyaku, Mitaka, Tokyo 181-0013 (Japan); Sakka, Tetsuo [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2015-09-01

    Long-ns-duration, single pulse laser-induced breakdown spectroscopy (LIBS) is known to be an effective method to observe well resolved spectra from samples immersed in water at high hydrostatic pressures. The aim of this study is to investigate whether the signals obtained using this method are suitable for quantitative analysis of chemical composition. Six certified brass alloys consisting of copper (Cu), zinc (Zn) and lead (Pb) were measured underwater using a laser pulse of duration 250 ns, and their compositions were determined using calibration-free LIBS (CF-LIBS) and corrected CF-LIBS (CCF-LIBS) methods. The mass fractions of Cu and Zn calculated using CF-LIBS showed better agreement with the certified values than those determined using CCF-LIBS, with relative errors of Cu 4.2 ± 3.3 % and Zn 7.2 ± 6.4 %. From the results, it can be said that the difference of preferential evaporation and ablation among elements does not need to be considered for underwater measurements with the long-pulse LIBS setup used in this work. While the results indicate that the CF-LIBS method can be applied for in situ quantitative analysis of major elements with concentrations > ~ 10 %, the mass fractions determined for Pb, with concentrations < 5 % had large relative errors, suggesting that an alternative method is required to quantify minor elements. - Highlights: • The spectra of submerged metal alloys obtained using a long pulse is suitable for CF-LIBS. • CF-LIBS determines the mass fractions of major elements of submerged brass targets in water. • The compositions of Cu and Zn are determined within 10 % relative error. • The preferential evaporation and ablation among elements do not have a significant influence on the quantitative analysis of brass samples submerged in water using a long-ns-duration laser pulse.

  10. On the porosity induced by externally solidified crystals in high-pressure die-cast of AM60B alloy and its effect on crack initiation and propagation

    International Nuclear Information System (INIS)

    The porosity induced by the externally solidified crystals (ESCs) in high pressure die casting of AM60B magnesium alloy was investigated. Attention was focused on the formation of the porosity due to the presence of ESCs and its effect on the crack initiation and propagation during tensile deformation. Based on experimental observations using optical microscopy, scanning electron microscopy and the 3-D high resolution X-ray tomography, it was found that the porosity induced by ESCs could be categorized into two types. The first type of porosity was relatively small in size, globular in geometry and dispersed inside the microstructure, whereas the second type was larger in size with an interconnected structure. During the in situ observation of tensile deformation, significant crack could be observed at grain boundaries where the second type of porosity was present. The crack propagated by connecting the neighboring porosities towards a direction perpendicular to the tensile stress. The interdendritic shrinkage during solidification at the ESC boundaries was shown to be the primary reason for the formation of the second type of porosity

  11. Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Shi, Tonglei; Yu, Aiqun; Li, Ming; Ou, Xiuyuan; Xing, Laijun; Li, Mingchun

    2012-12-01

    Isochrysis galbana, produces long chain polyunsaturated fatty acids including docosahexaenoic acid (DHA, 22:6n-3). A novel gene (IgFAD4-2), encoding a C22-∆4 polyunsaturated fatty acid specific desaturase, has been isolated and characterized from I. galbana. A full-length cDNA of 1,302 bp was cloned by LA-PCR technique. The IgFAD4-2 encoded a protein of 433 amino acids that shares 78 % identity with a previously reported ∆4-desaturase (IgFAD4-1) from I. galbana. The function of IgFAD4-2 was deduced by its heterologous expression in Saccharomyces cerevisiae, which then desaturated docosapentaenoic acid (DPA, 22:5n-3) to DHA. The conversion ratio of DPA to DHA was 34 %, which is higher than other ∆4-desaturases cloned from algae. However, IgFAD4-2 did not catalyze the desaturation or elongation reactions with other fatty acids. These results confirm that IgFAD4-2 has C22-∆4-PUFAs-specific desaturase activity.

  12. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  13. Laser-induced spallation of aluminum and Al alloys at strain rates above 2x106 s-1

    International Nuclear Information System (INIS)

    Material microstructure is a significant determinant of the tensile stress at which materials fail. Using a high-energy laser to drive shocks in thin slabs, we have explored the role material microstructure plays on the spall strength of high-purity and alloyed aluminum at strain rates of (2-7.5)x106 s-1. Slabs of pure recrystallized Al and recrystallized or cold worked Al+3 wt % Mg were shock driven using the Z-Beamlet Laser at Sandia National Laboratories. Velocity interferometer measurements determined the spall strength of the materials, and postshot target analysis explored the microscopic fracture morphology. We observed the greatest spall strength for large-grained, recrystallized high-purity aluminum, with the dominant failure mode being ductile and transgranular. We observe for the first time at these strain rates fracture features for a fine-grained Al+3 wt % Mg that were a combination of brittle intergranular and ductile transgranular fracture types. Postshot analysis of target cross sections and hydrocode simulations indicate that this mixed-mode failure results from spall dynamics occurring on spatial scales on the order of the grain size. Differences in spall strength between these Al samples were experimentally significant and correlate with the damage morphologies observed

  14. Mechanistic understanding of irradiation-induced corrosion of zirconium alloys in nuclear power plants: Stimuli, status, and outlook

    International Nuclear Information System (INIS)

    Failures in the basic materials used in nuclear power plants continue to be costly and insidious, despite increasing industry vigilance to catch failures before they degrade safety. For instance, the overall costs to the US industry from materials problems could amount to as much as $10 billion annually. Moreover, estimates indicate that the cost of a pipe failure in a nuclear plant is one hundred times greater than the cost of a similar failure in a coal-fired plant. There are important practical stimuli and much scope for further understanding of the effects of irradiation on Zr-alloys (and other materials used in nuclear installations) by careful experimentation. Moreover, these studies need to address the effect of irradiation on all components of heterogeneous systems: the metal, the oxide and the environment, and especially those processes recurring at the interphases between these components. The present paper is aimed at providing specialists with some systematic information on the subject and with important considerations on the key items for further experimentation

  15. Co-Cr-Mo Alloy Particles Induce Tumor Necrosis Factor Alpha Production in MLO-Y4 Osteocytes: A Role for Osteocytes in Particle Induced Inflammation

    OpenAIRE

    Kanaji, Arihiko; Caicedo, Marco S.; Virdi, Amarjit S.; Sumner, D. Rick; Hallab, Nadim J.; Sena, Kotaro

    2009-01-01

    Wear debris-induced osteolysis is purportedly the limiting problem affecting the long term results of joint arthroplasty. Pathogenic effects of wear debris in peri-implant cells such as macrophages, osteoblasts and osteoclasts have been well studied. In contrast, the affects of wear-debris on osteocytes, which make up over 90% of all bone cells, remains unknown. We hypothesized that metal implant debris can induce the proinflammatory response in osteocytes. This study demonstrated the effects...

  16. Study of the Induced Anisotropy in Field Annealed Hitperm Alloys by Mössbauer Spectroscopy and Kerr Microscopy

    Science.gov (United States)

    Blázquez, J. S.; Marcin, J.; Andrejka, F.; Franco, V.; Conde, A.; Skorvanek, I.

    2016-08-01

    Samples of Fe39Co39Nb6B15Cu1 alloy were nanocrystallized under zero field annealing (ZF) and transverse field annealing (TF) conditions. A reduction in coercivity for TF samples with respect to ZF sample (16 and 45 A/m, respectively) is observed. Kerr microscopy images show a well-defined parallel domain structure, transversally oriented to the ribbon axis for the TF sample unlike for the ZF sample, for which a complex pattern is observed with large and small domains at the surface of the ribbon. Although Mössbauer spectra are clearly different for the two studied samples, Mössbauer studies confirm that there is no significant difference between the hyperfine field distributions of TF and ZF samples but only the relative intensity of the 2nd and 3rd lines A 23 (related to the angle between the gamma radiation and the magnetic moments, α). However, for TF annealed samples α = 90 deg ( A 23 = 4), indicating that the magnetic moments lay on the plane of the ribbon in agreement with the well-defined domain structure observed by Kerr microscopy, ZF annealed samples show A 23 = 1.8. This value is close to that of a random orientation ( A 23 = 2) but smaller, indicating a slight preference for out of plane orientations. Moreover, it is clearly smaller than that of the as-cast amorphous samples A 23 = 2.8, with a preference to in-plane orientations. The application of the law of approach to saturation yields a larger effect of the inhomogeneities in ZF sample with respect to TF one.

  17. Underwater Superoleophobicity Induced by the Thickness of the Thermally Grown Porous Oxide Layer on C84400 Copper Alloy

    Directory of Open Access Journals (Sweden)

    Aniedi Nyong

    2014-02-01

    Full Text Available The underwater contact angle behavior on oxide layers of varying thicknesses was studied. These oxide layers were grown by thermally oxidizing C84400 copper alloys in N2-0.75 wt.% O2 and N2-5 wt.% O2 gas mixtures at 650 °C. Characterization of the oxidized specimens was effected using X-ray diffraction, scanning electron microscope (SEM and contact angle goniometer. The results from the X-ray diffraction analyses confirmed the formation of CuO, ZnO and PbO. The average sizes of the oxide granules were in the range of 70 nm to 750 nm, with the average thickness of the oxide layer increasing with the increase in the weight percent of oxygen in the N2-O2 gas mixtures. The results showed that the oxide layer growth followed the parabolic law. The underwater oil contact angles increased, due to the change in the surface morphology and porosity of the oxide layer. The small sizes and irregular packing of the oxide granules cause hierarchical rough surface layers with pores. The estimated pore sizes, in the range of 88 ± 40 to 280 ± 76, were predominant on the oxide layers of the samples processed in the N2-5 wt.% O2 gas mixture. The presence of these pores caused an increase in the porosities as the thickness of the oxide layers increased. At oxide layer thickness above 25 microns, the measured contact angle exceeded 150° as underwater superoleophobicity was recorded.

  18. Annealing-induced alloy formation in Pd/Fe bilayers on Si(1 1 1) for hydrogen sensing

    Science.gov (United States)

    Mudinepalli, Venkata Ramana; Tsai, Cheng-Jui; Chuang, Ying-Chin; Chang, Po-Chun; Plusnin, N.; Lin, Wen-Chin

    2016-03-01

    The bilayers of Pd and Fe with different thickness and relative positions were grown on Si(1 1 1)-7 × 7 surface at room temperature. For the investigation of the thermal annealing induced inter-diffusion and the corresponding magnetic behavior, Auger electron spectroscopy (AES) measurement was carried out after various annealing processes, including the variation of annealing duration and temperature. With the annealing temperature of 300-500 K, the Pd/Fe bilayers were stable. Slight Si segregated into the thin film at around 700 K. Above 700 K, more serious Si segregation occurred and most of the Pd/Fe bilayer was mixed with Si, forming a silicide layer. 700-800 K annealing also induced change of Pd/Fe AES ratio, indicating the inter-diffusion between Pd and Fe layers. To overcome the unavoidable silicide formation induced magnetic dead layer, a relative thick Fe film of 20 ML capped with 1.5 ML Pd was chosen for the investigation of magnetism. The magnetic coercivity (Hc) increased by 2-3 times with the annealing temperature up to 740 K. Obvious hydrogenation effect was observed in 710 K-annealed sample; the in-plane Hc increased by more than 10% when the hydrogen pressure was above 200 mbar. After further annealing at 740-800 K, the hydrogenation effect on Hc became nearly unobservable. The annealing induced Pd-rich magnetic interface is supposed to dominate the hydrogenation effect on magnetism.

  19. Temperature based segmentation for spectral data of laser-induced plasmas for quantitative compositional analysis of brass alloys submerged in water

    Science.gov (United States)

    Takahashi, Tomoko; Thornton, Blair; Sato, Takumi; Ohki, Toshihiko; Ohki, Koichi; Sakka, Tetsuo

    2016-10-01

    This study describes a method to quantify the composition of brass alloys submerged in water using laser-induced plasmas. Principal component regression (PCR) analysis and partial least squares (PLS) regression analysis are applied to spectral measurements of plasmas generated using a long-ns duration pulse. The non-linear effects of excitation temperature fluctuations on the signals are treated as systematic errors in the analysis. The effect of these errors on the analytical performance is evaluated by applying PCR and PLS with a temperature segmented database. The results of the analysis are compared to conventional methods that do not consider the excitation temperature and it is demonstrated that the proposed database segmentation improves accuracy, with root-mean square errors of prediction (RMSEP) of 2.7% and 2.8% for Cu and Zn in the PCR model and 2.9% and 1.8% for Cu and Zn in the PLS model, respectively. The results indicate that systematic effects contribute to fluctuation of underwater plasmas, where appropriate database segmentation can improve the performance of the PCR and PLS methods.

  20. Use of ns and fs pulse excitation in laser-induced breakdown spectroscopy to improve its analytical performances: A case study on quaternary bronze alloys

    Energy Technology Data Exchange (ETDEWEB)

    Almaviva, Salvatore [ENEA, UTAPRAD, V. E. Fermi 45, 00044 Frascati (Italy); Fantoni, Roberta, E-mail: roberta.fantoni@enea.it [ENEA, UTAPRAD, V. E. Fermi 45, 00044 Frascati (Italy); Caneve, Luisa; Colao, Francesco [ENEA, UTAPRAD, V. E. Fermi 45, 00044 Frascati (Italy); Fornarini, Lucilla [ENEA,UTTAMB, SP Anguillarese 301, Roma (Italy); Santagata, Antonio [CNR-IMIP, UOS Potenza, Zona Industriale, 85050 Tito Scalo (PZ) (Italy); Teghil, Roberto [Università degli Studi della Basilicata, Dipartimento di Scienze, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy)

    2014-09-01

    Analytical performances of Laser Induced Breakdown Spectroscopy (LIBS) resulted not fully satisfactory in some cases such as historical bronzes, therefore, efforts should be focussed on improving ablation efficiency and on better understanding the plasma parameter evolution. To this aim a set of double pulse experiments have been carried out in almost collinear geometry at about 530 nm laser excitation. The first emitting source was either a ns or a fs laser the second a ns one. Data were collected as a function of the interpulse delay, in order to determine the ablation efficiency increase, to study the kinetics of plasma parameters (temperature, electron density) and the decay of atomic and ionic intensities with respect to the optical background. In parallel a previously developed model for laser ablation, ionization and following plasma decay, was implemented, adding a second laser pulse, to analyse the double pulse excitation in the considered geometry, and the time evolution of the same variables was investigated. Model results are able to reproduce the observed experimental trends and support the possibility of improving analytical performances by using the double pulse technique with inter-pulse delays in the entire investigated range. - Highlights: • The Double Pulse LIBS technique is applied to a quaternary metal alloy sample. • Two different Double Pulse LIBS configurations are investigated. • Signal enhancement was experimentally verified in the Double Pulse technique. • Comparison of the experimental results with the proposed theoretical model • Dependence of the LIBS signal by some experimental parameters.

  1. Finite Element Analysis of Residual Stress in Ti-6Al-4V Alloy Plate Induced by Deep Rolling Process under Complex Roller Path

    Directory of Open Access Journals (Sweden)

    J. J. Liou

    2014-01-01

    Full Text Available The kinematics of the deep rolling tool, contact stress, and induced residual stress in the near-surface material of a flat Ti-6Al-4V alloy plate are numerically investigated. The deep rolling tool is under multiaxis nonlinear motion in the process. Unlike available deep rolling simulations in the open literature, the roller motion investigated in this study includes penetrative and slightly translational motions. A three-dimensional finite element model with dynamic explicit technique is developed to simulate the instantaneous complex roller motions during the deep rolling process. The initial motion of the rollers followed by the penetration motion to apply the load and perform the deep rolling process, the load releasing, and material recovery steps is sequentially simulated. This model is able to capture the transient characteristics of the kinematics on the roller and contacts between the roller and the plate due to variations of roller motion. The predictions show that the magnitude of roller reaction force in the penetration direction starts to decrease with time when the roller motion changes to the deep rolling step and the residual stress distributions in the near-surface material after the material recovery step varies considerably along the roller path.

  2. Effect of H{sub 2}S partial pressure and pH of test solution on hydrogen induced cracking of high strength low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Keun; Koh, Seong Ung; Kim, Kyoo Young [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yang, Boo Young; Jung, Hwan Kyo [Pohang Iron and Steel Co., Pohang (Korea, Republic of)

    2005-12-15

    Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of line pipe steels caused by H{sub 2}S gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different H{sub 2}S pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is H{sub 2}S partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution

  3. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Science.gov (United States)

    Ren, Cui-Lan; Han, Han; Gong, Wen-Bin; Wang, Cheng-Bin; Zhang, Wei; Cheng, Cheng; Huai, Ping; Zhu, Zhi-Yuan

    2016-09-01

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong Fsbnd Cr interaction. The Nisbnd Cr bond is elongated and weakened due to the new formed Fsbnd Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  4. An overview of hazard and risk assessment of the OECD high production volume chemical category--long chain alcohols [C(6)-C(22)] (LCOH).

    Science.gov (United States)

    Sanderson, Hans; Belanger, Scott E; Fisk, Peter R; Schäfers, Christoph; Veenstra, Gauke; Nielsen, Allen M; Kasai, Yutaka; Willing, Andreas; Dyer, Scott D; Stanton, Kathleen; Sedlak, Richard

    2009-05-01

    This review summarizes the findings of the assessment report for the category, long chain alcohols (LCOH) with a carbon chain length range of C(6)-C(22) covering 30 substances, and >1.5million tonnes/year consumed globally. The category was evaluated under the Organization for Economic Co-operation and Development (OECD) high production volume chemicals program in 2006. The main findings of the assessment include: (1) no unacceptable human or environmental risks were identified; (2) these materials are rapidly and readily biodegradable; (3) a parabolic relationship was demonstrated between carbon chain length and acute and chronic aquatic toxicity; (4) category-specific (quantitative) structure-activity relationships were developed enabling prediction of properties across the entire category; (5) LCOH occur naturally in the environment in an equilibrium between synthesis and degradation; (6) industry coming together and sharing resources results in minimizing the need for additional animal tests, produces cost savings, and increases scientific quality of the assessment. PMID:19038453

  5. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  6. Quantitative Analysis of Dynamic Softening Behaviors Induced by Dynamic Recrystallization for Ti-10V-2Fe-2Al Alloy

    Science.gov (United States)

    Quan, Guozheng; Pu, Shiao; Wen, Hairong; Zou, Zhenyu; Zhou, Jie

    2015-10-01

    In order to investigate the effect of dynamic recrystallization (DRX) behavior on dynamic softening behavior of wrought Ti-10V-2Fe-3Al titanium alloy, a series of laboratory scale isothermal hot compression tests with a height reduction of 60% were performed in a temperature range of 948 K 1023 K in the (σ + β) phase field, and a strain rate range of 0.01 10 s-1 on a Gleeble-3500 thermo-mechanical simulator. The flow curves show a continuous softening at all strain rate after peak stress. The constitutive equation and the DRX kinetic mold were established to study the dynamic softening based on the flow curves. By the regression analysis for conventional hyperbolic sine equation, the activation energy was determined as Q = 479.4169 kJ·mol-1, According to the strain hardening rate curves (dσ/dɛ versus σ), two characteristic parameters including the critical strain for DRX initiation (ɛc) and the strain for peak stress (ɛp) were identified, and the linear dependence of the critical strain (ɛc) for DRX initiation on the strain for peak stress (ɛp) can be specified by the equation: ɛc = 0.5667ɛp. A modified Avrami type equation X_{DRX} = 1 - exp[-β_{d}(\\varepsilon - \\varepsilon_c over \\varepsilon_{0.5})k_d] was introduced to characterize the evolution of DRX volume fraction. The evolution of DRX volume was described as the following: for a fixed strain rate, the strain required for the same amount of DRX volume fraction increases with decreasing deformation temperature, in contrast, for a fixed temperature, it increases with increasing strain rate. Finally, the impact of dynamic recrystallized behavior on degree of dynamic softening became weaker and weaker with the increasing of temperature for the strain rate of 0.01 s-1, 0.1 s-1, 1 s-1 and 10 s-1, due to the volume of α phase decreased with the increasing of temperature.

  7. Deformation behavior after stress-induced martensite transformation in a Ti-50.8 at.% Ni alloy

    Directory of Open Access Journals (Sweden)

    Wang Xiebin

    2015-01-01

    Full Text Available In this study, the deformation behavior of a Ti-50.8 at.% Ni thin wire, which was subjected to different heat treatments, was investigated by means of uniaxial tensile tests. Considerable ductility (tensile elongation >50% and a large variation of the stress-strain relations are observed after different heat treatments, especially in the stage after the stress-induced martensite transformation plateau. A possible explanation for the observed phenomenon is discussed in this work.

  8. Analytical capability of the plasma induced by IR TEA CO2 laser pulses on copper based alloys

    Directory of Open Access Journals (Sweden)

    Momčilović Miloš

    2015-01-01

    Full Text Available The applicability of nanosecond infrared (IR transversely excited atmospheric (TEA CO2 laser, operating at 10.6 μm and 100 ns pulse length (initial spike, induced plasma under reduced air pressure for spectrochemical analysis of bronze and brass samples was investigated. The plasma consisted of two clearly distinguished and spatially separated regions and expanded to a distance of about 10 mm from the surface. Elemental composition of the samples was determined using a time-integrated space-resolved laser-induced plasma spectroscopy (TISR-LIPS technique. Sharp and well resolved spectral lines mostly atomic, and negligibly low background emission, were obtained from a plasma region 7 mm from the target surface. Good signal to background and signal to noise ratios were obtained. Estimated detection limits for trace elements Mg, Fe, Al and Ca were in the order of 10 ppm in bronze and around 50 ppm in brass. Damage on the investigated samples induced by TEA CO2 laser radiation was negligible. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  9. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    Science.gov (United States)

    Mao, Ho-kwang; Mao, Wendy L.

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  10. Nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9. Its structure and magnetic properties. II. Thermal stability of the induced magnetic anisotropy

    International Nuclear Information System (INIS)

    The specimens of alloy Fe73.5Cu1Nb3Si13.5B9 produced as amorphous ribbons by quenching from the melt to a rotating wheel are used to study thermal stability of a constant of magnetic anisotropy Ku, induced in the process of thermomechanical or thermomagnetic treatments. The conditions of magnetic anisotropy induction (holding time and the intensity of external action) for obtaining expected thermal stability of Ku, are elucidated. Transmission electron microscopical studies show some distinctions in the alloy microstructure after different treatments. A comparison of results of magnetic and structural investigations, carried out by Moessbauer method, permits the assumption that the phases containing niobium and boron along with iron are responsible for thermal stability of Ku

  11. The stability of magnetic-field-induced strain in a NiMnGa ferromagnetic shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng; Gao Zhiyong; Cai Wei; Zhao Liancheng [School of Materials Science and Engineering, Harbin Inst. of Tech. (China)

    2005-07-01

    The stability of magnetic field induced strain (MFIS) in Ni{sub 52}Mn{sub 24}Ga{sub 24} single crystal under temperature and magnetic field cycling is investigated and the corresponding micro-mechanism is also discussed. It shows that the saturated MFIS is very sensitive to temperature. Below martensitic transformation temperature(T{sub m}), with increasing temperature, the saturated MFIS increases almost linearly. Besides, the saturated MFIS initially decreases with increasing the field cycling number less than four times, then does not change with further increasing the number of field cycles. The decrease of saturated MFIS can be attributed to the decrease of twin boundary mobility, which is related to the crystal defect introduced by immigration of twin boundary under field cycling. (orig.)

  12. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  13. Mechanically driven nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy induced by high-energy ball milling

    International Nuclear Information System (INIS)

    The mechanically driven nanocrystallization of amorphous Finemet alloy caused by high-energy ball milling was investigated by XRD, DSC and TEM techniques. A structural relaxation occurred in the amorphous Finemet alloy after milling for 0.5-2 h. Further milling for more than 3.5 h, uniformly and randomly distributed nanocrystalline α-Fe with grain size from ∝2 nm to ∝5 nm formed. The kinetics of the mechanical nanocrystallization of amorphous Finemet alloy was described by JMA model with the Avrami exponent n=1.55, which indicates a zero-nucleation rate and grain growth in all shapes from very small dimensions. In addition, the mechanical crystallization of amorphous Finemet alloys is mainly due to the severe deformation and local temperature rise during ball milling. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arnab, E-mail: asarkar@ymail.com [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Karki, Vijay; Aggarwal, Suresh K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K. [Department of Physics, University of Allahabad, Allahabad 211002 (India); Mao, Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-06-01

    Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with “NORM” parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4–9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ). - Highlights: • The quantification of Cr, Ni, Mn, Si, Co and Mo in steel by LIBS was carried out. • PLSR1 based multivariate calibration was used for construction of calibrations. • Alternative spectral pre-treatment procedures were applied on spectra. • The effect of selected regions of interest on PLSR1 was studied. • The effect of the number of laser shots per spectrum was studied.

  15. Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na and 36Cl in the atmosphere: Altitudinal profiles of yield functions

    CERN Document Server

    Poluianov, Stepan; Mishev, Alexander L; Usoskin, Ilya G

    2016-01-01

    New consistent and precise computations of the production of five cosmogenic radio-isotopes, 7Be, 10Be, 14C, 22Na and 36Cl, in the Earth's atmosphere by cosmic rays are presented in the form of tabulated yield functions. For the first time, a detailed set of the the altitude profiles of the production functions is provided which makes it possible to apply the results directly as input for atmospheric transport models. Good agreement with most of the earlier published works for columnar and global isotopic production rates is shown. Altitude profiles of the production are important, in particular for such tasks as studies of strong solar particle events in the past, precise reconstructions of solar activity on long-term scale, tracing air-mass dynamics using cosmogenic radio-isotopes, etc. As an example, computations of the $^{10}$Be deposition flux in the polar region are shown for the last decades and also for a period around 780 AD and confronted with the actual measurements in Greenland and Antarctic ice c...

  16. Distributions of C22 C30 even-carbon-number n-alkanes in Ocean Anoxic Event 1 samples from the Basque-Cantabrian Basin

    Science.gov (United States)

    Chaler, R.; Dorronsoro, C.; Grimalt, J. O.; Agirrezabala, L. M.; Fernández-Mendiola, P. A.; García-Mondejar, J.; Gómez-Pérez, I.; López-Horgue, M.

    2005-05-01

    The Ocean Anoxic Event 1 (OAE-1) in central sites of the Basque-Cantabrian Basin exhibits very reducing depositional conditions of sedimentation. These sedimentation events have left a distinct mixture of hydrocarbons that are represented by C22 C30 n-alkanes with a predominance of the even-carbon-number homologues, high relative proportions of squalane and C16 C24 n-alkylcyclopentanes predominated by n-undecyl-, n-tridecyl- and n-pentadecylcyclopentane. Other minor compounds encompass a series of C18 C21 n-alkylcyclohexanes and C18 C24 dimethyl n-alkylcyclohexanes maximized by the even-carbon-number homologues as well as iso- and anteiso-alkanes. This unusual distribution of n-alkanes in this environment provides a new case for comparison with previously reported hypersaline and phosphorite sedimentary deposits where the occurrence of similar n-alkane distributions was reported. In the present case, these major n-alkanes and squalane are indicative of transformation under strong reducing conditions. In contrast, the occurrence of the alkylcyclopentanes, irrespective of the presence of even-carbon-number n-alkanes or squalane, suggests that reductive cyclization of fatty acids is less dependent on strong reducing conditions.

  17. Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions

    Science.gov (United States)

    Poluianov, S. V.; Kovaltsov, G. A.; Mishev, A. L.; Usoskin, I. G.

    2016-07-01

    New consistent and precise computations of the production of five cosmogenic radioisotopes, 7Be, 10Be, 14C, 22Na, and 36Cl, in the Earth's atmosphere by cosmic rays are presented in the form of tabulated yield functions. For the first time, a detailed set of the altitude profiles of the production functions is provided which makes it possible to apply the results directly as input for atmospheric transport models. Good agreement with most of the earlier published works for columnar and global isotopic production rates is shown. Altitude profiles of the production are important, in particular for such tasks as studies of strong solar particle events in the past, precise reconstructions of solar activity on long-term scale, tracing air mass dynamics using cosmogenic radioisotopes, etc. As an example, computations of the 10Be deposition flux in the polar region are shown for the last decades and also for a period around 780 A.D. and confronted with the actual measurements in Greenland and Antarctic ice cores.

  18. Influences of hydrogen-induced amorphization and annealing treatment on gaseous hydrogen storage properties of La{sub 1−x}Pr{sub x}MgNi{sub 3.6}Co{sub 0.4} (x = 0–0.4) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Tingting [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); College of Science, Northeastern University, Shenyang 110819 (China); Yang, Tai; Yuan, Zeming; Xu, Sheng; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Qi, Yang [College of Science, Northeastern University, Shenyang 110819 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2015-08-05

    Highlights: • The La–Mg–Ni-based AB{sub 2}-type alloys were prepared by casting. • La was substituted by a small amount of Pr in the experimental alloys. • The hydrogen absorption/desorption cycling properties of the alloys were studied. • The influences of hydrogen-induced amorphization were investigated in details. • The annealing treatment was applied to recover hydrogen storage capacity. - Abstract: La{sub 1−x}Pr{sub x}MgNi{sub 3.6}Co{sub 0.4} (x = 0–0.4) alloys are prepared by vacuum induction melting. The phase composition and microstructure of the as-cast alloys is characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The gaseous hydrogen absorption capacity of the alloys was measured by an automatically controlled Sieverts apparatus. The results indicate that the as-cast alloys consist of two phases of LaMgNi{sub 4} and LaNi{sub 5}. The maximum gaseous hydrogen storage capacity of the La{sub 1−x}Pr{sub x}MgNi{sub 3.6}Co{sub 0.4} (x = 0–0.4) alloys is 1.768, 1.745, 1.721, 1.681 and 1.653 wt%, respectively, under 3 MPa H{sub 2} at 373 K. But the hydrogen storage capacity after 20 cycles decays off to 0.746, 0.843, 0.947, 1.003 and 1.10 wt%, respectively. In order to reveal the mechanism of rapid degradation of the capacity, the structures of the alloys before and after hydrogen absorption/desorption cycle were analyzed. SEM observation displays that the micro-cracks can be clearly seen on the surface of the alloy particles after 20 cycles. XRD detection finds that the repeated hydrogen absorption/desorption cycles give rise to a obvious broadening of the diffraction peaks of the alloys, exhibiting a typical amorphous structure, which is termed as hydrogen-induced amorphization. The La{sub 1−x}Pr{sub x}MgNi{sub 3.6}Co{sub 0.4} (x = 0–0.4) alloys after 20 cycles were annealed at 623 K for 8 h, finding that the hydrogen storage capacity of the alloys recovers to 1.348, 1.365, 1.50, 1.485 and 1.30 wt

  19. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  20. Functional characterization of CYP71D443, a cytochrome P450 catalyzing C-22 hydroxylation in the 20-hydroxyecdysone biosynthesis of Ajuga hairy roots.

    Science.gov (United States)

    Tsukagoshi, Yuki; Ohyama, Kiyoshi; Seki, Hikaru; Akashi, Tomoyoshi; Muranaka, Toshiya; Suzuki, Hideyuki; Fujimoto, Yoshinori

    2016-07-01

    20-Hydroxyecdysone (20HE), a molting hormone of insects, is also distributed among a variety of plant families. 20HE is thought to play a role in protecting plants from insect herbivores. In insects, biosynthesis of 20HE from cholesterol proceeds via 7-dehydrocholesterol and 3β,14α-dihydroxy-5β-cholest-7-en-6-one (5β-ketodiol), the latter being converted to 20HE through sequential hydroxylation catalyzed by four P450 enzymes, which have been cloned and identified. In contrast, little is known about plant 20HE biosynthesis, and no biosynthetic 20HE gene has been reported thus far. We recently proposed involvement of 3β-hydroxy-5β-cholestan-6-one (5β-ketone) in 20HE biosynthesis in the hairy roots of Ajuga reptans var. atropurpurea (Lamiaceae). In this study, an Ajuga EST library was generated from the hairy roots and P450 genes were deduced from the library. Five genes with a high expression level (CYP71D443, CYP76AH19, CYP76AH20, CYP76AH21 and CYP716D27) were screened for a possible involvement in 20HE biosynthesis. As a result, CYP71D443 was shown to have C-22 hydroxylation activity for the 5β-ketone substrate using a yeast expression system. The hydroxylated product, 22-hydroxy-5β-ketone, had a 22R configuration in agreement with that of 20HE. Furthermore, labeling experiments indicated that (22R)-22-hydroxy-5β-ketone was converted to 20HE in Ajuga hairy roots. Based on the present results, a possible 20HE biosynthetic pathway in Ajuga plants involved CYP71D443 is proposed. PMID:27017303

  1. Dynamic precipitation of Mg{sub 2}Si induced by temperature and strain during hot extrusion and its impact on microstructure and mechanical properties of near eutectic Al–Si–Mg–V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuna; Liao, Hengcheng, E-mail: hengchengliao@seu.edu.cn; Liu, Yabing; Zhou, Kexin

    2014-09-22

    Dynamic precipitation of Mg{sub 2}Si and its impact on the microstructures and mechanical properties of Al–12.5 wt% Si–0.6 wt% Mg–0.1 wt% V alloy were studied by applying different extrusion temperatures and extrusion ratios. Optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) observations were used to characterize the microstructure evolution. Tensile properties and the Brinell hardness were tested. Results show that both decreasing extrusion temperature (temperature-induced) and increasing extrusion ratio (strain-induced) of the alloy will result in dynamic precipitation of Mg{sub 2}Si particles. Dynamic precipitation of Mg{sub 2}Si leads to a considerable coarsening of the recrystallized grains. Yield strength (YS) and ultimate tensile strength (UTS) of the sample extruded at lower temperature (400 °C) are more than 50% lower than that extruded at higher temperature (540 °C) with the same extrusion ratio of 16. With increasing of extrusion ratio from 16 to 50, both YS and UTS of the samples decrease nearly 30% when extruded at the same temperature of 540 °C.

  2. Metal alloy identifier

    Science.gov (United States)

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  3. Short-chain (C 21 and C 22) diasteranes in petroleum and source rocks as indicators of maturity and depositional environment

    Science.gov (United States)

    Requejo, A. G.; Hieshima, G. B.; Hsu, C. S.; McDonald, T. J.; Sassen, R.

    1997-07-01

    Geochemical analysis of steranes in source rocks from the Western Canada Basin has allowed the identification of several C 21 and C 22 short-chain sterane isomers. The principal compounds in carbonates from the U. Jurassic Nordegg Formation have been identified as diginane and homodiginane, more thermodynamically-stable isomers of the compounds pregnane and homopregnane that have 5α,14β,17β(H) stereochemistry. The Triassic Doig formation also contains two compounds tentatively identified on the basis of geologic and geochemical data as diapregnane and diahomopregnane, rearranged isomers of pregnane and homopregnane with methyl substitution at the 5- and 14-carbon positions. The distribution of these compounds parallels that of the higher molecular weight diasteranes. A well-defined relationship is evident between the ratio Fe/S and short-chain diasterane content: samples with Fe/S approximately diasterane contents, while those with Fe/S approximately >0.90 exhibit high diasterane content. This threshold Fe/S value is nearly equal to the value associated with stoichiometric pyrite (0.87) and suggests that the abundance of short-chain diasteranes is related to excess iron associated with detrital clays. This is consistent with the accepted mechanism of sterane rearrangement, which is thought to proceed via catalysis of clay minerals. In contrast to the higher molecular-weight diasteranes, which increase in abundance relative to other sterane isomers with increasing thermal maturation, the abundance of the rearranged short-chain compounds varies little relative to diginane or homodiginane in a maturity suite from the U. Devonian Duvernay Formation. Predicted stabilities based on computational chemistry agree with the observed distributions; diginane/diapregnane and homodiginane/homodiapregnane represent compound pairs with similar thermal stabilities. The relative invariance of short-chain sterane distributions with maturity suggest that these compounds may be

  4. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz, M.; Pelletier, J; Vannes, A.; Bignonnet, A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  5. In vitro and in vivo studies on biodegradable magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Lida Hou; Zhen Li; Yu Pan; Li Du; Xinlin Li; Yufeng Zheng; Li Li

    2014-01-01

    The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™) were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7%for the as-cast alloy to 2.9%for the as-extruded one, both below 5%. BioDe MSM™alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  6. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  7. Alloyed steel

    International Nuclear Information System (INIS)

    The composition and properties are listed of alloyed steel for use in the manufacture of steam generators, collectors, spacers, emergency tanks, and other components of nuclear power plants. The steel consists of 0.08 to 0.11% w.w. C, 0.6 to 1.4% w.w. Mn, 0.35 to 0.6% w.w. Mo, 0.02 to 0.07% w.w. Al, 0.17 to 0.37% w.w. Si, 1.7 to 2.7% w.w. Ni, 0.03 to 0.07% w.w. V, 0.005 to 0.012% w.w. N, and the rest is Fe. The said steel showed a sufficiently low transition temperature between brittle and tough structures, a greater depth of hardenability, and better weldability than similar steels. (B.S.)

  8. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    OpenAIRE

    Khushaim, Muna; Gemma, Ryota; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser ene...

  9. Effect of Carbon on DA718 Alloy with P Addition

    Institute of Scientific and Technical Information of China (English)

    Na LI; Shouren GUO; Dezhong LU; Wenru SUN; Yan XU; Zhuangqi HU

    2003-01-01

    Lower content of carbon can further improve the stress rupture life of p-modified DA 718 alloy up to more than 270%.Meanwhile, the ductility of the alloy decreased a little. More boron atoms dissociate due to decreasing carbon content and interact with phosphorus which brings the longer stress rupture life of the alloy. Less carbon may induce more phosphorus segregating in the grain boundary and result in brittleness.

  10. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    OpenAIRE

    Hamilta de Oliveira Santos; Marilene Morelli Serna; Nelson Batista de Lima; Isolda Costa; Jesualdo Luiz Rossi

    2005-01-01

    Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken f...

  11. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E-Wen [ORNL; Barabash, Rozaliya [ORNL; Wang, Yandong [ORNL; Clausen, Bjorn [ORNL; Li, Li [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK); Ice, Gene E [ORNL; Yang, Dr Ren [Argonne National Laboratory (ANL); Choo, Hahn [ORNL; Pike, Lee M [ORNL; Klarstrom, Dwaine L [ORNL

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  12. Minor alloying behavior in bulk metallic glasses and high-entropy alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of minor alloying on several bulk metallic glasses and high-entropy al-loys was studied. It was found that minor Nb addition can optimize the interface structure between the W fiber and the Zr-based bulk metallic glass in the compos-ites,and improve the mechanical properties. Minor Y addition can destabilize the crystalline phases by inducing lattice distortion as a result to improve the glass-forming ability,and the lattice distortion energy is closely related to the effi-ciency of space filling of the competing crystalline phases. A long-period ordered structure can precipitate in the Mg-based bulk metallic glass by yttrium alloying. For the high-entropy alloys,solid solution can be formed by alloying,and its me-chanical properties can be comparable to most of the bulk metallic glasses.

  13. Mechanical alloying in immiscible alloy systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In recent years, mechanical alloying (MA) of immiscible alloy systems characterized by positive heat of mixing has been extensively investigated. The present article reviews the latest progress in MA of immiscible alloy systems including the mechanisms of non-equilibrium phase transformation and metastable phase formation of the MA-driven supersaturated solid solutions, amorphous phases and nanophase composites as well as their mechanical and physical properties related to those metastable phases.

  14. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  15. Printability of alloys for additive manufacturing

    Science.gov (United States)

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  16. Application of the Eyring Equation in the Evaluation of Semi-Solid Forming-Induced Si Particle Refinement in the Hypereutectic Al-Si Alloys

    Science.gov (United States)

    Fukui, Yasuyoshi; Nara, Daisaku; Fushimi, Kazuyo; Kumazawa, Noriyoshi

    2015-12-01

    On the basis of Eyring's theory of absolute reaction rate, an approach to modeling Si particle refinement acceleration in the semi-solid forming of a hypereutectic Al-Si alloy has been developed. The acceleration variable data used in the present analysis were obtained from a semi-solid compression test using Al-25 mass pct Si alloy cylindrical specimens with a diameter of 15 mm and a height of 15 mm; the test conditions comprised a combination of compression displacements ∆ h = 5, 10, and 12 mm; compression rates v = 5, 25, and 125 mm/min; and test temperatures T = 853 K and 863 K (580 °C and 590 °C). The coarse primary Si particle refinement depends on a complex interaction among variables, such as compression displacement, compression rate, and test temperature. The performance of Si particle refinement degraded under higher temperature, slower strain rates, and slower shear rates. The results of the Si particle size are suitably summarized by the Eyring equation as a function of the temperature and the shear rate. The baseline Si particle size and the baseline temperature of Si particle refinement, i.e., the reference temperature, were G N = 0.27 mm and T N = 866.4 K (593.4 °C), respectively. The calculated results using this equation correlated well with the observed results. An acceleration factor of Si particle refinement was successfully derived on the basis of this equation and indicated that operating at a higher shear rate and a temperature just above the melting point of eutectic Al-Si alloy are the optimum conditions for refining Si particles.

  17. Effect of geometrical stress concentrators on the current-induced suppression of the serrated deformation in an aluminum-magnesium AlMg5 alloy

    Science.gov (United States)

    Shibkov, A. A.; Zolotov, A. E.; Zheltov, M. A.; Denisov, A. A.; Gasanov, M. F.; Kochegarov, S. S.

    2016-05-01

    The effect of an electric current on the band formation and the serrated deformation of planar specimens made of an aluminum-magnesium AlMg5 alloy and weakened by holes is experimentally studied. It is found that the concentration of elastic stress fields and the self-localized unstable plastic deformation field near a hole decreases the critical strain of appearance of the first stress drop and hinders the currentinduced suppression of band formation and the serrated Portevin-Le Chatelier deformation. These results are shown not to be related to the concentration of Joule heat near a hole.

  18. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  19. Plastic Instabilities Induced by the Portevin - Le Châtelier Effect and Fracture Character of Deformed Mg-Li Alloys Investigated Using the Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Pawełek A.

    2016-06-01

    Full Text Available The results of the investigation of both mechanical and acoustic emission (AE behaviors of Mg4Li5Al and Mg4Li4Zn alloys subjected to compression and tensile tests at room temperature are compared with the test results obtained using the same alloys and loading scheme but at elevated temperatures. The main aim of the paper is to investigate, to determine and to explain the relation between plastic flow instabilities and the fracture characteristics. There are discussed the possible influence of the factors related with enhanced internal stresses such as: segregation of precipitates along grain boundaries, interaction of solute atoms with mobile dislocations (Cottrell atmospheres as well as dislocation pile-ups which may lead to the microcracks formation due to the creation of very high stress concentration at grain boundaries. The results show that the plastic flow discontinuities are related to the Portevin-Le Châtelier phenomenon (PL effect and they are correlated with the generation of characteristic AE pulse trains. The fractography of broken samples was analyzed on the basis of light (optical, TEM and SEM images.

  20. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gaob@smm.neu.edu.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Hu, Liang [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Li, Shi-wei [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hao, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Yu-dong [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France); Tu, Gan-feng [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Grosdidier, Thierry [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France)

    2015-08-15

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1){sub Al}//(0 0 1){sub Si} with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys.

  1. Study on the nanostructure formation mechanism of hypereutectic Al-17.5Si alloy induced by high current pulsed electron beam

    Science.gov (United States)

    Gao, Bo; Hu, Liang; Li, Shi-wei; Hao, Yi; Zhang, Yu-dong; Tu, Gan-feng; Grosdidier, Thierry

    2015-08-01

    This work investigates the nanostructure forming mechanism of hypereutectic Al-17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1)Al//(0 0 1)Si with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al-Si alloys.

  2. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    International Nuclear Information System (INIS)

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1)Al//(0 0 1)Si with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys

  3. Predicting the properties of the lead alloys from DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix for low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.

  4. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  5. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  6. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  7. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  8. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    Science.gov (United States)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial

  9. A Detailed Observation on Successive Stress-Induced Martensite Transformation in CuAlMnZnZr Alloy Polycrystalline Above Af

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Wang Ming-pu; Tang Wang; Guo Ming-xing

    2004-01-01

    The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform β1 matrix, two or more orientation plates of M18R martensite are stress-induced in a grain. With further increasing stress, one orientation plate depletes the other and coalesces into a single region in some view field. The mechanisms by which these are developed have been ascertained, and include variant-variant coalescence, stress-induced martensite to martensite transformation and the complicated cross-like stress-induced martensite formation.

  10. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  11. Correlation between thermal induced structural and magnetic transformations in Si-rich Fe73Cu1Si16B7Nb3 metal alloy

    International Nuclear Information System (INIS)

    Properties of amorphous Fe73Cu1Si16B7Nb3 foil, the Si rich metal alloy, and the foils partly crystallised after annealing, were analysed structurally and magnetically in the temperature range from 4 to 1000 K. The Fe (Si) and Fe (B) structures were identified and characterised with the crystallisation temperatures: 750 and 893 K, activation energies 460 and 580 kJ/mol. The Curie temperatures for amorphous structure: 613 K and for crystalline structures: 820, 875, 920 and 980 K were determined. It was found and analysed a delay of the sample magnetisation, determined by thermomagnetometry, with respect to structural crystallisation, determined by scanning calorimetry, which was correlated with magnetic hyperfine field, determined by transmission Mössbauer spectroscopy.

  12. Ion irradiation induced structural modifications of Fe{sub 81}Mo{sub 8}Cu{sub 1}B{sub 10} NANOPERM-type alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava (Slovakia); Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague (Czech Republic); Hasiak, Mariusz [Department of Mechanics and Materials Science, Wroclaw University of Technology (Poland)

    2016-05-15

    Structural modifications and their impact upon magnetic properties are studied in amorphous NANOPERM-type {sup 57}Fe{sub 81}Mo{sub 10}Cu{sub 1}B{sub 10} metallic glass exposed to irradiation with 130 keV N{sup +} ions to the total fluencies of up to 2.5 x 10{sup 17} ions/cm{sup 2}. Using surface sensitive technique of Moessbauer spectrometry, traces of crystalline phases are found already in the as-quenched state after the sample production. On the air side of the ribbons, bcc-Fe dominates whereas on the opposite wheel side, also a presence of Fe{sub 3}O{sub 4} is unveiled. The amount of surface crystallization is higher on the wheel side of the ribbons. After ion irradiation, mostly the air side is affected because it was facing the incident ions. Gradual formation of iron nitrides is observed with increasing ion fluence. Though the radiation damage exhibits itself only at this side of the ribbons, its influence upon bulk magnetic properties is clearly identified by the help of magnetic measurements. Hysteresis loops exhibit changes in their shape as well as coercive field. Along with the formation of magnetic crystalline phases (bcc-Fe and nitrides), they are caused by structural rearrangement which takes place also inside the amorphous residual phase. Structural modifications are confirmed via evolution of hyperfine magnetic fields with ion fluence. Structural modification of the {sup 57}Fe{sub 81}Mo{sub 10}Cu{sub 1}B{sub 10} alloy caused by ion irradiation as demonstrated by microstructural (Moessbauer spectrometry (a,b)) and macroscopic (hysteresis loops (c,d)) measurements. As-quenched (a,c) and 2.5 x 10{sup 17} N{sup +}/cm{sup 2} irradiated (b,d) alloys are compared. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Nanoprecipitation in a beta-titanium alloy

    International Nuclear Information System (INIS)

    Highlights: • In-situ SANS has been applied to study precipitation in β -Ti alloy. • Rate of precipitation is far more rapid in the cold-rolled alloy than non cold-rolled. • The rapid precipitation dramatically improves the alloy hardness. • Extensive ω phase is present after 400 °C/16 h heat-treatment. • SANS modelling and TEM-EDX shows the precipitates are Ti rich. - Abstract: This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in β-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal ω can be induced by cold-rolling Gum metal, a β-Ti alloy. During thermal exposure at 400°C, isothermal ω particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6nm after thermal exposures up to 16h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the β matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy

  14. Nanoprecipitation in a beta-titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, James, E-mail: j.coakley06@imperial.ac.uk [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom); Vorontsov, Vassili A. [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom); Littrell, Kenneth C. [Oak Ridge National Laboratory, Chemical and Engineering Materials Division, Oak Ridge, TN 37831 (United States); Heenan, Richard K. [Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England (United Kingdom); Ohnuma, Masato [Laboratory of Quantum Beam System Engineering, Hokkaido University, Sapporo 060-0808 (Japan); Jones, Nicholas G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England (United Kingdom); Dye, David [Department of Materials, Imperial College, South Kensington, London SW7 2AZ, England (United Kingdom)

    2015-02-25

    Highlights: • In-situ SANS has been applied to study precipitation in β -Ti alloy. • Rate of precipitation is far more rapid in the cold-rolled alloy than non cold-rolled. • The rapid precipitation dramatically improves the alloy hardness. • Extensive ω phase is present after 400 °C/16 h heat-treatment. • SANS modelling and TEM-EDX shows the precipitates are Ti rich. - Abstract: This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in β-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal ω can be induced by cold-rolling Gum metal, a β-Ti alloy. During thermal exposure at 400°C, isothermal ω particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6nm after thermal exposures up to 16h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the β matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy.

  15. Corrosion of alloy 22 in phosphate and chloride containing solutions

    International Nuclear Information System (INIS)

    Alloy C-22 is a Ni-based alloy (22% Cr, 13% Mo, 3% W y 3% Fe in weight per cent) that exhibits an excellent uniform and localized corrosion resistance due to its protective passive film. It was designed to resist the most aggressive environments for industrial applications. Alloy 22 is one of the candidates to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes. The effect of phosphate ion in chloride containing solutions at 90 C degrees was studied under aggressive conditions were this material might be susceptible to crevice corrosion. The electrolyte solution, which consisted of 1M NaCl and different phosphate concentrations (between 10-3M and 1M), was deoxygenated by bubbling with nitrogen. Electrochemical tests, electron microscope observations (SEM) and energy dispersive spectrometer analysis (EDS) were conducted. Crevice corrosion was not detected and the comparison of the potentiodynamic polarization tests showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm2 approximately in all the tests that were performed in this work. The differences in composition of the anodic film formed on the samples suggest that phosphate is responsible for the increase of the passivity range by incorporation to the passive film. (author)

  16. Formation and reversion of strain induced martensite on Fe-Cr-Ni alloys Formação e reversão da martensita em ligas ferro-cromo-níquel

    Directory of Open Access Journals (Sweden)

    Gabriela Lujan Brollo

    2013-06-01

    Full Text Available Austenitic stainless steels represent a significant portion of the alloys used in the aeronautical, chemical, shipbuilding, food processing and biomechanical industries. They combine good mechanical properties with high corrosion resistance. When subjected to cold deformation, these steels exhibit a metastable phase called: strain induced martensite (ferromagnetic, whose formation increases mechanical strength and formability, allowing for a wide range of applications. Heated from room temperature, the strain induced martensite transforms to austenite (non-magnetic. It is easy to find information in literature about the strain induced martensite for 18Cr/8Ni austenitic steels, but there is no data for high nickel alloys like A286 (26Ni, 15Cr, Incoloy 800 (30-40 Ni, 21Cr and Inconel (50Ni, 19Cr. Therefore, this study aimed to verify the formation of strain induced martensite after cold working in Fe-18Cr base alloys with the addition of up to 60 %Ni. The reversion of this phase to austenite after annealing up to 600 ºC was also studied. Optical microscopy, magnetic characterization tests, and x-ray diffraction were used to analyze the transformations.Os aços inoxidáveis austeníticos são materiais de alto valor agregado, representando uma parcela importante das ligas usadas, principalmente, nas indústrias aeronáutica, química, naval, alimentícia e biomecânica. Apresentam boas propriedades mecânicas aliadas à elevada resistência à corrosão. Quando submetido à deformação a frio, esses aços exibem uma fase metaestável denominada martensita induzida por deformação (ferromagnética, cuja formação aumenta a resistência mecânica e conformabilidade, permitindo sua ampla gama de aplicações. Aquecida acima da temperatura ambiente, a martensita induzida por deformação se transforma em austenita. Existem dados na literatura sobre a formação da martensita induzida por deformação em aços austeníticos 18Cr/8Ni, mas não h

  17. Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner

    Energy Technology Data Exchange (ETDEWEB)

    Haghparast, Amin [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nourimotlagh, Masoud [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of); Alipour, Mohammad, E-mail: Alipourmo@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-09-15

    In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

  18. 某履带式自行火炮铝合金诱导轮有限元分析%Finite Element Analysis of Aluminium Alloy Inducer of a Crawler-type Self- propelled Gun

    Institute of Scientific and Technical Information of China (English)

    石强; 潘玉田; 方东旭

    2014-01-01

    以国防科技工业精密塑性成形技术研究应用中心为某履带式自行火炮设计制造的用于替换旧式钢制结构的7A04型铝合金诱导轮为例,使用UG NX软件建立几何模型,将其导入ANSYS Workbench建立有限元模型,按工况约束加载,系统地计算和分析了其应力应变分布规律、变形量、疲劳特性等。结果表明,7A04型铝合金诱导轮完全满足设计和实际工作要求,为工程试验、结构改进、优化设计和应用拓展等提供了理论依据。%Taking precision plastic forming technology and industry for national defense technology research center for the de-sign and fabrication of a crawler self-propelled guns used to replace the old steel structure induced type of 7 a04 aluminum alloy wheel for an example, establishing geometric model by using UG NX software, importing into ANSYS Workbench to build finite element model; according to the working condition of constraint load, systematically calculation and analysis the stress and strain distribution rule, the deformation and fatigue characteristics. The results showed that the type of 7 a04 alu-minum alloy idler completely meet the requirements of design and practical work, and at the same time provided theoretical basis for engineering test, structural improvement, optimization design and application development.

  19. 激光诱导Cu合金等离子体光谱特性实验研究%Experimental investigation on the properties of laser induced plasma spectroscopy of cuprum alloy

    Institute of Scientific and Technical Information of China (English)

    董少龙; 董开虎; 张金平; 李旭; 郭庆林

    2012-01-01

    Laser induced plasma of cuprum alloy was excited by Nd: YAG laser. Temporal characteristic of spectroscopy and influence that different ambient atmospheres worked to the intensity of spectroscopy were systemic investigated. The experimental result suggests that the choice of time to acquire the best spectrum is hardly related to ambient atmosphere, the melting point and boiling point of elements, it rests with the excitation potential of the spectral line; Compared with air, argon and mixture consisted of helium and argon makes the intensity of laser induced plasma spectroscopy increased significantly.%采用调Q Nd:YAG激光器激发诱导Cu合金的等离子体,系统研究了等离子体光谱强度随时间演化特性,并探究了不同环境气氛对激光诱导等离子体光谱强度的影响.实验结果表明:信噪比最佳的延时选择与分析光谱线激发电位密切相关,而受环境气氛、分析元素的熔点、沸点影响不大;氩气和氦-氩混合气体环境与空气环境相比,激光诱导等离子体光谱强度明显增强.

  20. A jumping shape memory alloy under heat

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  1. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  2. Thermal cycling behavior of as-quenched and aged Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, H.; He, S.; Lei, T. [Harbin Inst. of Tech. (China). School of Materials Science and Engineering

    1997-09-01

    Thermal cycling tests between 77 and 623 K were performed on Ti-6Al-4V alloy; the tensile properties were evaluated, and transmission electron microscopy (TEM) microstructural analysis was performed both before and after thermal cycling. Thermal cycling (1,000 cycles) promptly increases the strength of the as-quenched alloy, induces a slight decrease in strength for the near-peak-aged alloy, and makes no change for that of the overaged alloy. The elongation of the alloy in all heat-treated conditions decreases after 1,000 thermal cycles. The loss of fracture elongation of the as-quenched alloy is the largest, but the residual ductility is the highest. The loss of fracture elongation for the near-peak-aged alloy is lower, and the residual plasticity is higher than those for the overaged alloy.

  3. Effects of Te on intergranular embrittlement of a Ni-16Mo-7Cr alloy

    Science.gov (United States)

    Cheng, Hongwei; Han, Fenfen; Jia, Yanyan; Li, Zhijun; Zhou, Xingtai

    2015-06-01

    Te was deposited on the surface of a Ni-16Mo-7Cr alloy by thermal evaporation at 700 °C, and the effect of Te on the intergranular cracking behavior and the tensile properties of the alloy was investigated. The results show that the reaction products formed on the surface of the alloy, the diffusion depth of Te in the alloy, and the yield strength of the alloy attacked by Te at room temperature are not changed remarkably with Te content increasing, whereas the ultimate tensile strength and elongation of the alloy is decreased distinctly. The primary surface reaction product are mainly composed of Ni3Te2, CrTe, and MoTe2, and the diffusion depth of Te in the alloys is about 50 μm. The intergranular embrittlement mechanism of the alloy induced by Te of is also discussed in this paper.

  4. Superplasticity in titanium alloys

    OpenAIRE

    J. Sieniawski; Motyka, M.

    2007-01-01

    Purpose: The paper reports characteristic of superplasticity phenomenon in titanium alloys and possibility of its applications.Design/methodology/approach: The main objective of the paper is to show features of superplastic forming of titanium alloys and current research trends aiming at widespread application of this technology.Findings: In the paper characteristic of selected superplastic titanium alloys was presented. The effect of microstructural parameters on superplasticity was consider...

  5. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  6. Kinetics behaviour of metastable equiatomic Cu–Fe solid solution as function of the number of collisions induced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Contini, A., E-mail: alessandro.contini@hotmail.com [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Garroni, S.; Mulas, G.; Enzo, S. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari (Italy)

    2014-12-05

    Graphical abstract: - Highlights: • Cu–Fe powders were studied as a function of the number of hits during MA. • An impulsive model describes the kinetics curves of solid solution formation. • The kinetic curve indicates that powders must undergo 6 critical events to transform. - Abstract: We have addressed a new study by mechanical alloying on the nominally immiscible Cu{sub 50}Fe{sub 50} system with the aim of relating the solid state transformation process, with formation of a disordered unstable solid solution having the face centered cubic habit, to parameters reflecting the impulsive, discontinuous nature of the process. The milling set-up, tools and powder were adjusted in order to ensure completely anelastic hits. Phase analysis, structure and microstructure parameters of such powder system have been followed accurately in the course of the kinetics by X-ray Diffraction using the Rietveld method. The experimental kinetics data points of the amount of transformed solid solution show a typical sigmoidal behavior. It was assumed that dissolution only occurs in the volumes of material that have undergone the necessary critical loading conditions, which is accounted by a discrete series expansion. The mass fraction effectively processed at each collision can be regarded as an apparent rate constant for the microstructural refinement and phase transformation processes. Analysis of model curves fitting the experimental data suggests that it takes up an average of 6 impacts of coupled powder particles to drive the system to the new unstable nano-crystalline state.

  7. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae

    Science.gov (United States)

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-07-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications.

  8. Transmission electron microscopy investigation of the microstructure of Fe-Cr alloys induced by neutron and ion irradiation at 300 °C

    Science.gov (United States)

    Hernández-Mayoral, M.; Heintze, C.; Oñorbe, E.

    2016-06-01

    Four Fe-Cr binary alloys, with Cr content from 2.5 up to 12wt%, were neutron or ion irradiated up to a dose of 0.6 dpa at 300 °C. The microstructural response to irradiation has been characterised using Transmission Electron Microscopy (TEM). Both, neutrons and ions, gave rise to the formation of dislocation loops. The most striking difference between ion and neutron irradiation is the distribution of these loops in the sample. Except for the lowest Cr content, loops are distributed mainly along grain boundaries and dislocations in the neutron irradiated samples. The inhomogeneous distribution of dislocation loops could be related to the presence of α‧ precipitates in the matrix. In contrast, a homogeneous distribution is observed in all ion irradiated samples. This important difference is attributed to the orders of magnitude difference in dose rate between these two irradiation conditions. Moreover, the density of loops depends non-monotonically on Cr content in case of neutron irradiation, while it seems to increase with Cr content for ion implantation. Differences are also observed in terms of cluster size, with larger sizes for neutron irradiation than for ion implantation, again pointing towards an effect of the dose rate.

  9. Microstructure and Wear Behaviour of Laser-induced Thermite Reaction Al2O3 Ceramic Coating on AA7075 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    Kaijin HUANG; Xin LIN; Changsheng XIE; T.M. Yue

    2007-01-01

    The microstructure and wear behaviour of the thermite reaction coating produced by the hybrid laser claddingremelting on AA7075 aluminum alloy for the systems of Al-CuO-SiO2, Al-Cr2O3-SiO2, Al-Fe2O3-SiO2, and Al-TiO2-SiO2 were studied. The results of the X-ray diffraction (XRD) analysis show that in all the four reaction coatings, α-Al2O3 and γ-Al2O3 phases were present at the top surface, together with various intermetallic phases, the corresponding reduced metal and Al phase in the fusion zone. Under the dry sliding condition, the wear resistance, in terms of weight loss, of the laser-clad specimens was considerably higher than that of the untreated specimen. The predominant wear mechanism of the former specimens was abrasive wear, while for the latter, it was the adhesive wear that prevailed.

  10. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae

    Science.gov (United States)

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-01-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications. PMID:27469931

  11. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  12. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  13. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  14. Rheological properties and microstructure of the alloy AA 6063 obtained by semisolid processing using magnetohydrodynamic agitation and activated fusion induced by stress (SIMA process)

    International Nuclear Information System (INIS)

    The rheological behavior and the microstructural evolution of the alloy AA6063 submitted to two different processes, cold deformation and partial fusion, SIMA process and magnetohydrodynamic agitation during solidification, are studied. The evolution of the microstructure during the isothermal maintenance was studied in order to verify if the classic Ostwald ripening, growth and coalescence mechanisms are applicable to alloys made by these processes. The rheological properties were evaluated using a compression rheometer between parallel plates with data on time and position collected digitally. The procedure included the full metallographic characterization of the samples for SIMA and MHD processes as well as the study of the microstructural evolution during isothermal maintenance at various solid fractions. Compression tests were performed of short cylinders extracted from cast ingots with a dendritic microstructure, cold deformed material and obtained by the MHD process. These test pieces were tested at different solid fractions under constant load, to determine the equation that governs the rheological behavior of the material in semisolid state, according to two parameters of the Ostwald-de-Waele power law. Based on the results obtained, the morphology of the primary phase in the microstructure is deduced to be highly relevant to its rheological behavior. A globular microstructure has the typical behavior of a fluid when it is formed in a semi-solid state, but this does not hold true for a cast dendritic microstructure. The mechanisms that operate in the microstructural evolution during the isothermal maintenance were proven by metallographic analysis. The differences in rheological behavior are possibly due to the morphological differences of the AlFeSI intermetallics. These intermetallics are located in the inter dendritic zones and prepare the formation of the incipient liquid phase and the effective amount of liquid that participates in the deformation

  15. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  16. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  17. Copper-tantalum alloy

    Science.gov (United States)

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  18. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  19. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  20. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  1. Alloys in energy development

    International Nuclear Information System (INIS)

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems

  2. Ductile Fe-based amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Kyu; Lee, Kwang-Bok [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jae-Chul, E-mail: jclee001@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Fe-based amorphous alloy with a strength and fracture strain of 4.7 GPa and 8.0% was synthesized. Black-Right-Pointing-Pointer Addition of a minute amount of V promoted the phase separation of the constituent elements. Black-Right-Pointing-Pointer Phase separation lowered alloys' packing density and alleviated the degree of strain localization. - Abstract: Experiments demonstrated that the addition of a minute amount of V to Fe{sub 52}Co{sub (20-x)}B{sub 20}Si{sub 4}Nb{sub 4}V{sub x} amorphous alloy induces atomic-scale phase separation, which dramatically enhances the plasticity. Especially, Fe{sub 52}Co{sub 17.5}B{sub 20}Si{sub 4}Nb{sub 4}V{sub 2.5} amorphous alloy exhibited a strength of 4.7 GPa and a fracture strain of 8.0%, which is the largest strain reported for Fe-based amorphous alloys. In this study, the structural origin of the enhanced plasticity is explored by examining the role played by the phase separating element on the packing density and strain localization.

  3. Temperature dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Petersen, Jan Raagaard

    1994-01-01

    Making use of the stress induced magnetic anisotropy in some iron-rich FeCuNbSiB nanocrystalline materials we studied the thermal dependence of their magnetostriction which becomes zero below the Curie temperature. The choice of a suitable composition and annealing temperature results in materials...... with zero magnetostriction at room temperature. Due to the low magnetostriction these materials have very promising fluxgate properties which were studied as well...

  4. Defect generation and analysis in mechanically alloyed stoichiometric Fe–Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yunlong, E-mail: gengyunlong@gmail.com [Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Ablekim, Tursunjan [Center for Materials Research, Washington State University, Pullman, WA 99164 (United States); Koten, Mark A. [Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Weber, Marc; Lynn, Kelvin [Center for Materials Research, Washington State University, Pullman, WA 99164 (United States); Shield, Jeffrey E. [Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2015-06-05

    Highlights: • An initial increase in strain followed by decrease with further alloying was studied. • A decrease of the net concentration with mechanical alloying was revealed by DBPAS. • Decrease of relative permeability μ{sub r} with internal strain was observed. - Abstract: FeNi, with the chemically-ordered L1{sub 0} tetragonal structure, is a promising material for next-generation rare-earth-free permanent magnets. Due to the extremely low atomic Fe and Ni mobility below the critical chemical order/disorder temperature of 320 °C, no conventional metallurgical methods are able to induce its formation. Diffusion rates could be enhanced with the creation of excessive vacancies. High-energy mechanical alloying was employed to produce a nanocrystalline Fe–50 at.%Ni alloy. The high energy mechanical milling is expected to change the defect characteristics that would be used to study the effect that mechanical alloying has on the defect concentrations. X-ray diffraction revealed that over the entirety of the milling period, the Fe and Ni powders formed an fcc solid solution. The Williamson–Hall equation and Scherrer equation revealed that reductions in grain sizes were caused during alloying. The initial increase in internal strain, and by extension dislocations, was followed by a decrease in strain with further alloying, which was due to the combination effect of creation of dislocation from mechanical deformation and annihilation of dislocations at increasing grain boundaries. Doppler broadening positron annihilation spectroscopy (DB-PAS) showed that the overall number of open-volume defects decreased with increased milling time. Finally, changes of relative permeability, for the mechanically alloyed FeNi phase, were explained by the pinning effect of dislocations.

  5. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  6. Structure evolution of AZ61 magnesium alloy in SIMA process

    Institute of Scientific and Technical Information of China (English)

    YAN Hong; ZHANG Fa-yun; JIE Xiao-ping

    2005-01-01

    The effect of prior compressive deformation, isothermal temperature and holding time on the structure of AZ61 magnesium alloy fabricated by strain-induced melt activation(SIMA) processing was investigated. The specimens were subjected under deformation ratios of 0%, 22% and 40% and various heat treatment time and temperature regions. The results indicate that the ideal technological parameters of semi-solid AZ61 alloy produced with non-dendrites are recommended as 22% (prior compressive deformation), 595 ℃ (heat treatment temperature) and 40 min(time). The as-cast AZ61 magnesium alloy isn't fit for semi-solid forming.

  7. Laser synthesis of germanium tin alloys on virtual germanium

    Science.gov (United States)

    Stefanov, S.; Conde, J. C.; Benedetti, A.; Serra, C.; Werner, J.; Oehme, M.; Schulze, J.; Buca, D.; Holländer, B.; Mantl, S.; Chiussi, S.

    2012-03-01

    Synthesis of heteroepitaxial germanium tin (GeSn) alloys using excimer laser processing of a thin 4 nm Sn layer on Ge has been demonstrated and studied. Laser induced rapid heating, subsequent melting, and re-solidification processes at extremely high cooling rates have been experimentally achieved and also simulated numerically to optimize the processing parameters. "In situ" measured sample reflectivity with nanosecond time resolution was used as feedback for the simulations and directly correlated to alloy composition. Detailed characterization of the GeSn alloys after the optimization of the processing conditions indicated substitutional Sn concentration of up to 1% in the Ge matrix.

  8. Correlation effects driven by reduced dimensionality in magnetic surface alloys

    Indian Academy of Sciences (India)

    U Manju

    2015-06-01

    The evolution of electronic properties and correlation effects in manganese-based two-dimensional magnetic surface alloys are discussed. Enhanced correlations resulting from the reduced dimensionality of the surface alloys lead to the modification of the core level and valence band electronic structures resulting in the appearance of distinct satellite features. Apart from this, surface alloying-induced strong modifications in the substrate surface states arising from charge reorganization and electron transfer to the surface states as well as band-gap openings are also discussed.

  9. Local phase transformation in alloys during charged-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R.

    1984-10-01

    Among the various mechanisms and processes by which energetic irradiation can alter the phase stability of alloys, radiation-induced segregation is one of the most important phenomena. Radiation-induced segregation in alloys occurs as a consequence of preferential coupling between persistent fluxes of excess defects and solute atoms, leading to local enrichment or depletion of alloying elements. Thus, this phenomenon tends to drive alloy systems away from thermodynamic equilibrium, on a local scale. During charged-particle irradiations, the spatial nonuniformity in the defect production gives rise to a combination of persistent defect fluxes, near the irradiated surface and in the peak-damage region. This defect-flux combination can modify the alloy composition in a complex fashion, i.e., it can destabilize pre-existing phases, causing spatially- and temporally-dependent precipitation of new metastable phases. The effects of radiation-induced segregation on local phase transformations in Ni-based alloys during proton bombardment and high-voltage electron-microscope irradiation at elevated temperatures are discussed.

  10. Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys

    Indian Academy of Sciences (India)

    Svetlana Nestorovic

    2005-08-01

    This paper reports results of investigation carried out on sintered copper alloys (Cu, 8 at%; Zn, Ni, Al and Cu–Au with 4 at%Au). The alloys were subjected to cold rolling (30, 50 and 70%) and annealed isochronally up to recrystallization temperature. Changes in hardness and electrical conductivity were followed in order to investigate the anneal hardening effect. This effect was observed after secondary annealing also. Au and Al have been found to be more effective in inducing anneal hardening effect.

  11. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  12. Study on irradiation-induced magnetic transition in FeRh alloys by means of Fe K-edge XMCD spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)]. E-mail: iwase@mtr.osakafu-u.ac.jp; Fukuzumi, M. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Zushi, Y. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Suzuki, M. [Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198 (Japan); Takagaki, M. [Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198 (Japan); Kawamura, N. [Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198 (Japan); Chimi, Y. [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan); Ishikawa, N. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan); Mizuki, J. [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo, Hyogo 679-5148 (Japan); Ono, F. [Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2007-03-15

    We have studied the effects of swift heavy ion irradiation on the magnetic properties of Fe-50at.%Rh intermetallic compound by using Fe K-edge X-ray magnetic circular dichroism (XMCD) at 20 K. For an unirradiated specimen, no signal of XMCD spectrum has been observed because Fe-50at.%Rh intermetallic compound is intrinsically anti-ferromagnetic below room temperature. For the specimens irradiated with 120-200 MeV Ni, Kr, Xe or Au ions, we have found XMCD spectra which are characterized by a dispersion-type profile with a positive peak and a negative peak near Fe K-edge. The intensity of XMCD spectra remarkably depends on ion-fluence and ion-mass. The experimental result implies that the ferromagnetic state is induced by the swift heavy ion irradiation. The change in magnetic state of Fe element is discussed in terms of energy deposition through the elastic and electronic processes.

  13. Femtosecond laser-induced phase transformations in amorphous Cu{sub 77}Ni{sub 6}Sn{sub 10}P{sub 7} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Zou, G.; Wu, A.; Bai, H. [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, L., E-mail: liulei@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Chen, N. [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhou, Y. [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-01-14

    In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.

  14. Temperature-induced liquid state change and its effects on solidiifcation of thermoelectric alloy Bi0.3Sb1.7Te3

    Institute of Scientific and Technical Information of China (English)

    Zhang Wenjin; Wu Zhan; Yu Yuan; Zu Fangqiu

    2014-01-01

    The behaviors of electrical resistivityvs temperature (ρ-T) of the molten p-type thermoelectric aloy Bi0.3Sb1.7Te3 (at.%) were explored in heating and cooling processes. An obvious hump appeared on theρ-T curve from 932℃ to 1,020℃ at the heating process, while the curve became smooth in the folowing cooling, which suggests an irreversible temperature-induced liquid-liquid structure transition (TI-LLST) occurred in the liquid aloy. Based on this judgment, solidiifcation experiments were carried out to ifnd out the effects of the different liquid states. It was veriifed that, for the melt experiencing the presumed TI-LLST, both the nucleation and growth undercooling degrees were elevated and the solidiifcation time was remarkably prolonged. On the other hand, the conifguration of Bi0.3Sb1.7Te3 phase was reifned, and its preferential orientation was weakened.

  15. Fe-Ni恒弹合金激光冲击力学性能异化现象研究%Study on mechanical properties in the laser spot center of Fe-Ni elastic alloy induced by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    裴旭; 吴建华; 蒋素琴; 许兆美

    2012-01-01

    In order to study the rebound phenomenon of mechanical properties in the spot center of metallic material induced by laser shock processing, Ni42CrTiAl, a Fe-Ni elastic alloy material, was processed by high-energy neodymium glass pulse laser. Then the distribution of the residual stress on the elastic alloy surface was tested with an X-ray strain gauge. The results showed that there was a high distribution of residual cotnpressive stress in the shocked region and there was a rebound phenomenon of mechanical properties in the spot center region where the residual stress values slightly less than its surrounding area. And then for the purpose of further studying the distribution of the residual stress induced by laser shock processing, the finite elementsimulation software was introduced to simulate the shocking experiment. The simulation results showed that there was also a high distribution of residual compressive stress in the shocked region and a rebound phenomenon of mechanical properties in the spot center region. The simulation results are in good agreement with the measurement Finally the formation mechanism of rebound phenomenon of the material mechanical properties in the center region was explored from the angle of the movement, the reflection and the reverse effect of the shock wave. This study result is benefit to optimize the process of the laser shock processing and laser parameter selection.%为了研究激光冲击金属材料后,光斑中心区域材料力学性能异化现象,采用钕玻璃脉冲激光器产生的高能脉冲激光冲击强化型Fe-Ni恒弹合金(Ni42CrTiAl)材料.冲击后采用X射线应力仪对恒弹合金试样冲击区域表面进行了X射线衍射分析,测试了冲击区域残余应力分布情况.结果表明,在试样冲击区域产生了很高的残余压应力,且在光斑中心区域,残余应力值要略小于中心周围区域,出现了力学性能反弹现象.采用有限元模拟软件对冲击试验进行有限

  16. Characterization for Fusion Candidate Vanadium Alloys

    Institute of Scientific and Technical Information of China (English)

    T. Muroga; T. Nagasaka; J. M. Chen; Z. Y. Xu; Q. Y. Huang; y. C. Wu

    2004-01-01

    This paper summarizes recent achievements in the characterization of candidate vanadium alloys obtained for fusion in the framework of the Japan-China Core University Program.National Institute for Fusion Science (NIFS) has a program of fabricating high-purity V-4Cr4Ti alloys. The resulting products (NIFS-HEAT-1,2), were characterized by various research groups in the world including Chinese partners. South Western Institute of Physics (SWIP) fabricated a new V-4Cr-4Ti alloy (SWIP-Heat), and carried out a comparative evaluation of hydrogen embrittlement of NIFS-HEATs and SWIP-Heat. The tensile test of hydrogen-doped alloys showed that the NIFS-HEAT maintained the ductility to relatively high hydrogen levels.The comparison of the data with those of previous studies suggested that the reduced oxygen level in the NIFS-HEATs should be responsible for the increased resistance to hydrogen embrittlement.Based on the chemical analysis data of NIFS-HEATs and SWIP-Heats, neutron-induced activation was analyzed in Institute of Plasma Physics (IPP-CAS) as a function of cooling time after the use in the fusion first wall. The results showed that the low level of Co dominates the activity up to 50 years followed by a domination of Nb or Nb and Al in the respective alloys. It was suggested that reduction of Co and Nb, both of which are thought to have been introduced via cross-contamination into the alloys from the molds used should be crucial for reducing further the activation.

  17. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  18. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  19. On the mechanical properties of TiNb based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Georgarakis, K. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Yokoyama, Y. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Yavari, A.R., E-mail: euronano@minatec.inpg.fr [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France)

    2013-09-15

    Highlights: •Systematic study of compressive behaviors of TiNb based alloys in different states. •Comparison between X-ray diffraction results in reflection and transmission mode. •High melting temperature TiNb based alloys were fabricated by copper mold casting. •Textures of studied alloys are analyzed through synchrotron radiation data. -- Abstract: A series of TiNb(Sn) alloys were synthesized by copper mold suction casting and subjected to different heat treatments (furnace cooling or water quenching). The microstructure, thermal and mechanical properties of the as-cast and heat treated samples were investigated. For the Ti–8.34 at.% Nb alloy, the as-cast and water quenched samples possess martensitic α′′ phase at room temperature and compression tests of these samples show occurrence of shape memory effect. For β phase Ti–25.57 at.% Nb alloys, stress-induced martensitic transformation was found during compression in the as-cast and water quenched samples. For the ternary Ti–25.05 at.%Nb–2.04 at.%Sn alloy, conventional linear elastic behavior was observed. It is shown that the addition of Sn increases the stability of the β phase. The Young’s moduli of these alloys were also measured by ultrasonic measurements. Water-quenched Ti–25.57 at.%Nb alloy was found to exhibit the lowest Young’s modulus value. Sn addition has small impact on the Young’s moduli of the TiNb alloys.

  20. Oxidation behavior of nickel-base superalloys and High Strength Low Alloy (HSLA) steels at elevated temperatures

    Science.gov (United States)

    Talekar, Anjali S.

    Alloy C-22 (UNS N06022) and High Strength Low Alloy (HSLA) steels are candidate materials for use in outer layer of waste storage packages and as rock bolts in the underground roof supports at Yucca Mountain nuclear waste repository respectively. Oxidation kinetics of three Ni-base Superalloys and two HSLA Steels, Split Set Friction Rock Stabilizers (SS-46) and Swellex Mn-24, have been determined by isothermal high temperature continuous measurement thermogravimetry at temperatures ranging between 600°C to 1100°C in pure oxygen atmosphere for predetermined periods of exposures (48 hours for the Superalloys and 100 hours for HSLA steels). The two other Ni-base Superalloys selected were Alloy-263 (UNS N07263) and Alloy-282. These are similar in their Cr composition to Alloy C-22 and have variations in the contents of other alloying elements namely Co and Mo. The alloys were selected for comparison of their oxidation resistance with C-22 as a baseline material. All three Superalloys are known chromia formers. All the superalloys were evaluated for determining their kinetic parameters and the activation energies for the superalloys were also calculated. The activation energy for the parabolic regime of Alloy-282 is found to be 232 kJ/mol. The slope of the curves on a plot of kp as a function of (1/T) show Alloy-282 to have better oxidation resistance up to 980°C and thereafter the rate constants are similar for all three alloys, but when activation energies over the whole temperature range are calculated, Alloy-263 shows the best average oxidation resistance. Surface characterization by means of microscopy as well as X-ray photoelectron spectroscopy showed the nature of oxides formed. Based on the kinetics and the characterization, proposed mechanisms for oxidation of these alloys at high temperatures are put forth. Temperature modulated thermogravimetry was used for studies on HSLA steels. The imposed sinusoidal temperature modulations on the isothermal temperature

  1. Refractory alloy component fabrication

    International Nuclear Information System (INIS)

    Purpose of this report is to describe joining procedures, primarily welding techniques, which were developed to construct reliable refractory alloy components and systems for advanced space power systems. Two systems, the Nb-1Zr Brayton Cycle Heat Receiver and the T-111 Alloy Potassium Boiler Development Program, are used to illustrate typical systems and components. Particular emphasis is given to specific problems which were eliminated during the development efforts. Finally, some thoughts on application of more recent joining technology are presented. 78 figures

  2. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  3. Neutron Diffraction Study on Plastic behavior of a Nickel-Based Alloy Under the Monotonic-Tension and the Low-Cyclic-Fatigue Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E.-W.; Barabash, R.; Clausen, B.; Wang, Y.; Yang, R.; Li, L.; Choo, H.; Liaw, P.K. (ORNL)

    2007-11-02

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  4. NEUTRON-DIFFRACTION STUDY ON PLASTIC BEHAVIOR OF A NICKEL-BASED ALLOY UNDER THE MONOTONIC-TENSION AND THE LOW-CYCLE-FATIGUE EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E-Wen [ORNL; Barabash, Rozaliya [ORNL; Clausen, Bjorn [ORNL; Wang, Yandong [ORNL; Yang, Dr Ren [Argonne National Laboratory (ANL); Li, Li [ORNL; Choo, Hahn [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK)

    2007-01-01

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  5. Effects of alloying elements on nitrogen diffusion behavior around TiN/Ti interface α region in as-cast titanium alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To characterize the effects of alloying elements on inclusion dissolution of titanium nitride, the content profiles of elements around TiN/Ti boundary α phase regions in liquid titanium alloys have been experimentally carried out. Four kinds of commercial alloys of CpTi, Ti64, Ti17 and Ti6242 containing different α-stabilizing or β-stabilizing elements are examined through artificially embedding the TiN sponge particle into liquid alloys in VAR conditions. The content profiles of nitrogen and alloying elements around TiN/Ti boundary were measured by WDX and microprobe for as-cast samples. The content profiles of nitrogen and alloying elements around N-containing solid in αTi region of these alloys show a common features of a steep change. In particular, the content profiles of elements for Ti6242 demonstrate unique change of a more gentle change tendency and further deeper into the alloy matrix. The experiment results show that, the differences among composite effects of alloying elements in different alloys within nitrogen-induced diffusion α region result in different dissolution and diffusion behaviors to overcome the α phase region barriers.

  6. Evaluation of luminol chemiluminescence based on simultaneous introducing of coumarin derivatives as green fluorophores and chitosan-induced Au/Ag alloy nanoparticle as catalyst for the sensitive determination of glucose.

    Science.gov (United States)

    Chaichi, M J; Alijanpour, S O; Asghari, S; Shadlou, S

    2015-03-01

    We report herein the development of a novel chemiluminescence system based on simultaneous introducing of synthetic coumarin derivatives and chitosan-induced Au/Ag alloy NPs on the luminol CL system and suggest how it may be useful for determination of glucose. Chitosan-induced Au/Ag nanoalloys in the coumarin derivatives intensified-luminol CL system, in addition to catalyze CL reaction can make a change in the process of coumarin derivatives effect as fluorophore on the luminol CL system. This phenomenon is caused by interaction between active functional groups of coumarin derivatives and chitosan. The interaction strength depends on the coumarin derivatives' structure and their substituents. Considering the inevitable trend luminol radical and superoxide anion radical to absorption on the surface of the embedded Au/Ag nanoalloy in the chitosan matrix, it can be concluded that chitosan acts as a platform for all reagents involved in the CL reaction including coumarin derivatives, Au/Ag nanoalloy and luminol, and electron-transfer taking place on it; Placing all chemiluminescent reagents together on the chitosan network can lead to a powerful CL due to increasing rigidity of CL system. The most efficient coumarin derivative on the Au/Ag nanoalloy-fluorophore-luminol-H2O2 CL system, in relation to interaction capability with chitosan' functional groups, was selected and the CL condition in presence of it was optimized. Whereas the glucose oxidase-mediated oxidation of glucose yields gluconic acid and H2O2, under optimum condition the most efficient CL system was applied to detection of glucose due to enzymatically production of hydrogen peroxide. The linear response range of 1.5 × 10(-6)-5.0 × 10(-3) M and the detection limit (defined as the concentration that could be detected at the signal-to-noise ratio of 3) of 7.5 × 10(-7) M was found for the glucose standards. Also, the developed method was successfully applied to determination of glucose in

  7. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  8. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    International Nuclear Information System (INIS)

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H2S and CO2) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering

  9. Titanium alloys. Advances in alloys, processes, products and applications

    OpenAIRE

    Blenkinsop, P.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in "older" alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments ...

  10. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  11. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash

    2007-04-01

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and Harrison interatomic potential is used to calculate the atomic force constants, the dynamical matrix and the impurity-induced forces. We have thoroughly investigated the atomic displacements using impurities from 3d, 4d and 5d series in the same host metal and the same impurity in different hosts. We have observed a systematic pattern in the atomic displacements for Cr-, Fe-, Nb-, Mo-, Ta- and W-based dilute alloys. The atomic displacements are found to increase with increase in the number of d electrons for all alloys considered except for V dilute alloys. The 3d impurities are found to be more easily dissolved in the 3d host metals than 4d or 5d TMs whereas 4d and 5d impurities show more solubility in 4d and 5d TMs. In general, the relaxation energy calculation suggests that impurities may be easily solvable in 5d TM hosts when compared to 3d or 4d TMs.

  12. Ageing of zirconium alloy components

    International Nuclear Information System (INIS)

    India has two types (pressurized heavy water reactors (PHWRs) and boiling water reactors (BWRs)) of commercial nuclear reactors in operation, in addition to research reactors. Many of the life limiting critical components in these reactors are fabricated from zirconium alloys. The progressive degradation of these components caused by the cumulative exposure of high energy neutron irradiation with increasing period of reactor operation was monitored to assess the degree of ageing. The components/specimens examined included fuel element claddings removed from BWRs, pressure tubes and garter springs removed from PHWRs and calandria tube specimens used in PHWRs. The tests included tension test (for cladding, garter spring), fracture toughness test (for pressure tube), crush test (for garter spring), and measurement of irradiation induced growth (for calandria tube). Results of various tests conducted are presented and applications of the test results are elaborated for residual life estimation/life extension of the components

  13. Zirconium-Induced Softening in Hyperstoichiometric Ni3Al

    Institute of Scientific and Technical Information of China (English)

    Yufang LI; Jianting GUO; Hengqiang YE

    2005-01-01

    The room temperature compressive properties and microhardness of Ni3Al alloys doped with Zr were studied. For the hypostoichiometric Ni3Al alloys, the compressive strength and microhardness increased with an increase in Zr content, while softening behavior induced by doping with a certain amount of Zr was observed in hyperstoichiometric Ni3Al alloy. Possible mechanisms for the softening effect were suggested.

  14. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  15. Nonhysteretic superelasticity of shape memory alloys at the nanoscale.

    Science.gov (United States)

    Zhang, Zhen; Ding, Xiangdong; Sun, Jun; Suzuki, Tetsuro; Lookman, Turab; Otsuka, Kazuhiro; Ren, Xiaobing

    2013-10-01

    We perform molecular dynamics simulations to show that shape memory alloy nanoparticles below the critical size not only demonstrate superelasticity but also exhibit features such as absence of hysteresis, continuous nonlinear elastic distortion, and high blocking force. Atomic level investigations show that this nonhysteretic superelasticity results from a continuous transformation from the parent phase to martensite under external stress. This aspect of shape memory alloys is attributed to a surface effect; i.e., the surface locally retards the formation of martensite and then induces a critical-end-point-like behavior when the system is below the critical size. Our work potentially broadens the application of shape memory alloys to the nanoscale. It also suggests a method to achieve nonhysteretic superelasticity in conventional bulk shape memory alloys.

  16. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  17. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  18. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    OpenAIRE

    Berat Barıs BULDUM; Aydın SIK; Iskender OZKUL

    2013-01-01

    Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attra...

  19. Productive Machining of Titanium Alloys

    OpenAIRE

    Čejka, Libor

    2013-01-01

    This diploma thesis is focused on a productive machining of titanium alloys. At the beginning it deals about titanium and its alloys. It describes chip generation mechanism, tool blunting and surface quality. Further it contains modern strategies of efficient titanium alloys machining. Then it analyzes contemporary manufacturing technology of hinge made of titanium alloy Ti-6Al-4V in Frentech Aerospace s.r.o. company, and at the end finds possibility of savings by inovation of roughing process.

  20. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  1. Dynamic precipitation of Al-Zn alloy during rolling and accumulative roll bonding

    Science.gov (United States)

    Liu, C. Y.; Yu, L.; Ma, M. Z.; Liu, R. P.; Ma, Z. Y.

    2015-11-01

    In this study, cold rolling was performed on a binary Al-20 wt%Zn alloy and dynamic precipitation identified for the first time in Al alloys under cold rolling. Zn clusters formed after application of 0.6 strain, and the Zn phase precipitated upon further increasing strain. Both grain refinement and rolling-induced defects are considered to promote Zn precipitation. The hardness of Al-Zn alloy initially increased with strain up to a strain of 2.9 and then decreased with increasing rolling strain. Dynamic precipitation greatly affects the strengthening mechanism of the rolled Al-Zn alloy under various strains.

  2. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    Science.gov (United States)

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  3. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  4. Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys. Part II: Mechanical Properties

    Science.gov (United States)

    Manda, Premkumar; Chakkingal, Uday; Singh, A. K.

    2016-07-01

    This paper describes the tensile properties, flow and work-hardening behavior of four metastable β-titanium alloys Ti-5Al-5Mo-5V-3Cr (A1), Ti-5Al-3.5Mo-7.2V-3Cr (A2), Ti-5Al-5Mo-8.6V-1.5Cr (A3), and Ti-5Al-3.5Mo-5V-3.94Cr (A4) in α+β hot-rolled condition. The decreasing order of average strength parameters ( σ YS and σ UTS) is A4, A2, A1, and A3. The maximum strength observed in alloy A4 is due to the presence of highest wt. fraction of Cr. The elongation is the maximum and minimum in alloys A3 and A4, respectively. These alloys display moderate to high percent in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values. Both the A IP and δ values are maximum and minimum in alloys A1 and A3, respectively. The yield locus plots also exhibit the presence of anisotropy due to relatively large differences in yield strength values along tension and compression directions. The flow behavior of alloys A1, A2, and A4 follows Swift equation, while the alloy A3 displays best fit with Holloman equation. The presence of prestrain ( ɛ 0) in hot-rolled materials before tensile testing has an important bearing on the flow curves of A1, A2, and A4 alloys. The instantaneous work-hardening rate curves of the alloys A1, A2, and A3 exhibit all the three typical stages (stage I, stage II, and stage III) in RD samples, while the alloy A4 shows the presence of only stage I and stage III. The 45 deg to RD and TD samples of alloys A1, A2, and A4 display only stage I. The stages I and III as well as I and II are present in alloy A3 in 45 deg to RD and TD samples, respectively. Dislocation-controlled strain hardening occurs in all the three stages of these alloys in the absence of stress-induced martensitic transformation (α″) and twinning. Slip is the predominant deformation mechanism during tensile testing. Three types of slip lines, i.e., planar, wavy, and intersecting have been observed close to fracture surfaces of post tensile-tested specimens.

  5. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  6. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    Science.gov (United States)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  7. Mg Sheet Metal Forming: Lessons Learned from Deep Drawing Li and Y Solid-Solution Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Sean R [University of Virginia; Senn, Jeremy W. [University of Virginia; Horton Jr, Joe A [ORNL

    2006-01-01

    The sheet formability of current magnesium alloys at ambient temperatures is poor; however, the formability at moderately elevated temperatures can be excellent. Cylindrical cup drawing tests are used to compare the warm forming characteristics of conventional alloy AZ31B with alloys containing lithium oryttrium solid solutions. While both types of experimental alloy can have better room-temperature ductility ({epsilon}{sub f}-25-30%) than AZ31B, only the lithium alloy has comparable or better deep-drawing capacity. The results are discussed in terms of the sheet anisotropy. Particular attention is drawn to the fact that magnesium alloys exhibit poor bending ductility due to their anisotropy and mechanical twinning-induced tension-compression strength asymmetry.

  8. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  9. Effects of service-induced ageing processes on the fatigue lifetime and toughness of low-alloy steel WB 36; Auswirkungen betrieblicher Alterungsprozesse auf Ermuedungslebensdauer und Werkstoffzaehigkeit des niedrig legierten Stahles WB 36

    Energy Technology Data Exchange (ETDEWEB)

    Szielasko, K.; Altpeter, I.; Dobmann, G. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren (IZFP), Saarbruecken (Germany); Willer, D.; Ruoff, H. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2008-07-01

    The heat-resistant copper alloyed ferritic steel WB 36 (15NiCuMoNb5, Material number 1.6368) is applied in German nuclear and conventional power plants for temperatures around 300 deg C as piping and pressure vessel material. The advantageous properties are due to the copper precipitates that develop during the production and manufacture processes. A thermally induced additional precipitation of copper during operation entails increased hardness, embrittlement and thus reduced toughness. Additional mechanical fatigue with high strain amplitudes and simultaneous relatively low load cycles (low cycle fatigue LCF), esp. in the temperature range 200 - 300 deg C, cause an accelerated deterioration of the material characteristics. This load situation is very common at specific piping locations in nuclear power plants. In the frame of reactor safety research IZFP in cooperation with MPA investigated the superposed effects if temperature and cyclic deformation in the material WB 36. Experimental results on the changes of micromagnetic characteristics due to different thermal and mechanical load parameters are correlated with reference data and mechano-technological characteristics determined by MPA. There are indications of possibilities to separate fatigue and embrittlement effects. [German] Der warmfeste kupferlegierte ferritische Stahl WB 36 (15NiCuMoNb5, Werkstoffnummer 1.6368) wird in deutschen Kern- und konventionellen Kraftwerken bei Temperaturen um 300 C in hohem Umfang als Rohrleitungs- und Behaelterwerkstoff eingesetzt. Seine vorteilhaften Werkstoffeigenschaften sind Kupferausscheidungen zuzuschreiben, die im Herstellungs- und Verarbeitungsprozess entstehen. Eine thermisch bedingte Nachausscheidung von Kupfer waehrend des Betriebs fuehrt hingegen zu hoeherer Haerte, Versproedung und damit zu verringerter Zaehigkeit. Bei zusaetzlicher mechanischer Ermuedung mit grossen Dehnungsamplituden bei gleichzeitig relativ wenigen Lastzyklen (Low Cycle Fatigue, LCF

  10. Machining of Titanium Alloys

    OpenAIRE

    Karásek, Jan

    2008-01-01

    The main goal of this work is the analysis of manufacturing costs for the component of wheel´s blower. Followed by setting up the size of specific cutting force for milling operation of the titanium alloy Ti-Al6-Mo2-Cr2-Fe-Si, the used tool was a milling cutter which is made out of sintered carbide with conical and spherical face. The final values which are at intervals of 1500 to 1800 MPa were compared with the values of the Sandvik Coromant firm kc = 1690 MPa, for titanium alloy with the st...

  11. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  12. Crack injection in silver gold alloys

    Science.gov (United States)

    Chen, Xiying

    Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the

  13. Effects of V Addition on Microstructure and Hardness of Fe-C-B-Ni-V Hardfacing Alloys Cast on Steel Substrates

    Science.gov (United States)

    Rovatti, L.; Lemke, J. N.; Emami, A.; Stejskal, O.; Vedani, M.

    2015-12-01

    Fe-based hardfacing alloys containing high volume fraction of hard phases are a suitable material to be deposited as wear resistant thick coatings. In the case of alloys containing high amount of interstitial alloying elements, a key factor affecting the performance is dilution with the substrate induced by the coating process. The present research was focused on the analysis of V-bearing Fe-based alloys after calibrated carbon and vanadium additions (in the range from 3 to 5 wt.%) to a commercial Fe-C-B-Ni hardfacing alloy. Vanadium carbides with a petal-like morphology were observed in the high-V hypereutectic alloys allowing to reach hardness values above 700 HV. The solidification range shifted to higher temperatures with increasing amount of vanadium addition and in the case of hypereutectic alloys, the gap remains close to that of the original alloy. In the last step of the research, the microstructural evolution after dilution was analyzed by casting the V-rich alloys on a steel substrate. The dilution, caused by the alloying element diffusion and the local melting of the substrate, modified the microstructure and the hardness for a relevant volume fraction of the hardfacing alloys. In particular, the drop of interstitial elements induced the transition from the hypereutectic to the hypoeutectic microstructure and the formation of near-spherical V-rich carbides. Even after dilution, the hardness of the new alloys remained higher than that measured in the original Fe-C-B-Ni alloy.

  14. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  15. Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shyni, P.C.; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2015-11-05

    We report the structural and magnetic properties of nanocrystalline Fe{sub 100−x−y}Co{sub y}Si{sub x} (x = 10, 15, y = 0–20) alloy powders prepared by mechanical alloying process in a planetary ball mill. All the as-milled powders exhibit non-equilibrium α-Fe(Co,Si) solid solution with average crystallite size of 7–11 nm. The lattice constant increases initially up to 10 at.% Co and then decreases with further increase in Co content due to delay in dissolution of Co into Fe lattice by the introduction of more Si. The variations of structural parameters such as average crystallite size, dislocation density and fraction of grain boundary as a function of Co content show good correlations among them. The substitution of Co in Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powder increases both saturation magnetization and coercivity due to atomic ordering which induce additional magnetic anisotropy. Thermomagnetization studies reveal that Curie temperature (T{sub C}) increases at a rate of 4 K per at.% Co for Co content up to 10 at.% and the rate of increase in T{sub C} reduces to 1.4 K per at.% Co for higher Co addition. The variation of structural and magnetic parameters reveals a strong dependence on the composition of Fe–Co–Si alloy. The observed results show the improvement in soft magnetic properties of nanocrystalline Fe–Co–Si alloy powders by proper substitution of Co and Si for Fe. - Graphical abstract: Structural and magnetic properties of nanocrystalline Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powders prepared by mechanical alloying process in a planetary ball mill are reported. The non-equilibrium solid solution with nanosized crystallites could be obtained for all the alloy powders. The substitution of Co in Fe{sub 100−x−y}Co{sub y}Si{sub x} alloy powder increases both saturation magnetization and coercivity. The Curie temperature also increases with increasing Co content. The observed results show the improvement in soft magnetic

  16. High strength ferritic alloy

    International Nuclear Information System (INIS)

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  17. Lattice thermal conductivity of multi-component alloys

    Energy Technology Data Exchange (ETDEWEB)

    Caro, M., E-mail: magda@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Béland, L.K.; Samolyuk, G.D.; Stoller, R.E. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 54321 (United States); Caro, A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-11-05

    High entropy alloys (HEA) have unique properties including the potential to be radiation tolerant. These materials with extreme disorder could resist damage because disorder, stabilized by entropy, is the equilibrium thermodynamic state. Disorder also reduces electron and phonon conductivity keeping the damage energy longer at the deposition locations, eventually favoring defect recombination. In the short time-scales related to thermal spikes induced by collision cascades, phonons become the relevant energy carrier. In this work, we perform a systematic study of phonon thermal conductivity in multiple component solid solutions represented by Lennard-Jones (LJ) potentials. We explore the conditions that minimize phonon mean free path via extreme alloy complexity, by varying the composition and the elements (differing in mass, atomic radii, and cohesive energy). We show that alloy complexity can be tailored to modify the scattering mechanisms that control energy transport in the phonon subsystem. Our analysis provides a qualitative guidance for the selection criteria used in the design of HEA alloys with low phonon thermal conductivity. - Highlights: • We show coupling between phonon scattering sources in multicomponent alloys. • We find criteria for combination of atomic masses and sizes to maximize scattering. • We show that more alloy components does not necessarily reduce conductivity.

  18. A Simplified Test for Blanching Susceptibility of Copper Alloys

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald; Setlock, John

    2003-01-01

    GRCop-84 (Cu-8Cr-4Nb) is a dispersion-strengthened alloy developed for space-launch rocket engine applications, as a liner for the combustion chamber and nozzle ramp. Its main advantage over rival alloys, particularly NARloy-Z (Cu-Ag-Zr), the current liner alloy, is in high temperature mechanical properties. Further validation required that the two alloys be compared with respect to service performance and durability. This has been done, under conditions resembling those expected in reusable launch engine applications. GRCop-84 was found to have a superior resistance to static and cyclic oxidation up to approx. 700 C. In order to improve its performance above 700 C, Cu-Cr coatings have also been developed and evaluated. The major oxidative issue with Cu alloys is blanching, a mode of degradation induced by oxidation-reduction fluctuations in hydrogen-fueled engines. That fluctuation cannot be addressed with conventional static or cyclic oxidation testing. Hence, a further evaluation of the alloy substrates and Cu-Cr coating material necessitated our devising a test protocol that involves oxidaton-reduction cycles. This paper describes the test protocols used and the results obtained.

  19. Halo formation in arc-melted Cr-Nb alloys

    Science.gov (United States)

    Li, K. W.; Li, S. M.; Xue, Y. L.; Fu, H. Z.

    2012-10-01

    Haloes of Laves phase Cr2Nb around the primary dendrites Cr were observed in the arc-melted Cr-12% Nb hypoeutectic alloy, while no halo of non-faceted Cr phase around the Cr2Nb Laves phase occurred in the Cr-20% Nb hypereutectic alloy. This observation differs from the haloes formed in metal-intermetallic alloy systems. An explanation on the formation of Cr2Nb halo was presented by considering the solidification behavior of the leading phase and non-reciprocal nucleation characteristics of the Cr2Nb/Cr eutectic. In the Cr-12% Nb alloy, primary dendrites Cr worked as a good nucleant available for the occurrence of the halo Cr2Nb that subsequently solidified as the leading phase in the eutectic. For the Cr-20% Nb alloy, primary dendrites Cr2Nb first precipitated as the leading phase inducing the eutectic formation, resulting in no halo growth. In addition, the coupled zone of the Cr-Nb alloy was theoretically predicted in agreement with the experimental results.

  20. New Ni-free superelastic alloy for orthodontic applications.

    Science.gov (United States)

    Arciniegas, M; Manero, J M; Espinar, E; Llamas, J M; Barrera, J M; Gil, F J

    2013-08-01

    A potential new Ni-free Ti alloy for biomedical applications was assessed in order to investigate the superelastic behavior, corrosion resistance and the biocompatibility. The alloy studied was Ti19.1Nb8.8Zr. The chemical composition was determined by X-ray microanalysis, the thermoelastic martensitic transformation was characterized by high sensitivity calorimeter. The critical stresses were determined by electromechanical testing machine and the corrosion behavior was analyzed by potentiostatic equipment in artificial saliva immersion at 37°C. The results were compared with six different NiTi orthodontic archwire brands. The biocompatibility was studied by means of cultures of MG63 cells. Ni-free Ti alloy exhibits thermoelastic martensitic transformation with Ms=45°C. The phase present at 37°C was austenite which under stress can induce martensite. The stress-strain curves show a superelastic effect with physiological critical stress (low and continuous) and a minimal lost of the recovery around 150 mechanical cycles. The corrosion resistance improves the values obtained by different NiTi alloys avoiding the problem of the Ni adverse reactions caused by Ni ion release. Cell culture results showed that adhered cell number in new substrate was comparable to that obtained in a commercially pure Ti grade II or beta-titanium alloy evaluated in the same conditions. Consequently, the new alloy presents an excellent in-vitro response.

  1. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  2. The effects of low doses of 14 MeV neutrons on the properties of various commercial copper alloys

    International Nuclear Information System (INIS)

    Miniature tensile specimens of high purity copper and five copper alloys were irradiated with D-T fusion neutrons in the RTNS-II to fluences up to 2.5x1022 n/m2 at 900C and 2900C. The series of alloys includes solution-strengthened, precipitate-strengthened and dispersion-strengthened alloys. To compare fission and fusion neutron effects, some of the alloys were also irradiated at the same temperatures to similar damage levels of the Omega West Reactor. Tensile tests were performed at room temperature, and the radiation-induced changes in tensile properties are examined as functions of fluence and displacements per atom (dpa). All the alloys sustain less irradiation-induced strengthening than pure copper. In contrast to pure copper, the effects of fission and fusion neutrons on the yield stress changes in the copper alloys correlate well on the basis of dpa. (orig.)

  3. The effects of low doses of 14 MeV neutrons on the properties of various commercial copper alloys

    International Nuclear Information System (INIS)

    Miniature tensile specimens of high purity copper and five copper alloys were irradiated with D-T fusion neutrons in the RINS-II to fluences up to 2.5 x 1022 n/m2 at 90 and 2900C. The series of alloys includes solution-strengthened, precipitate-strengthened and dispersion-strengthened alloys. To compare fission and fusion neutron effects, some of the alloys were also irradiated at the same temperatures to similar damage levels in the Omega West Reactor. Tensile tests were performed at room temperature, and the radiation-induced changes in tensile properties are examined as functions of fluence and displacements per atom (dpa). All the alloys sustain less irradiation-induced strengthening than pure copper. In contrast to pure copper, the effects of fission and fusion neutrons on the yield stress changes in the copper alloys correlate well on the basis of dpa

  4. Effects of alloying elements on the formation of < c >-component loops in Zr alloy Excel under heavy ion irradiation.

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen; Korinek, Andreas; Kirk, Marquis A.; Sattari, Mohammad; Preuss, Michael; Daymond, M. R.

    2015-05-14

    We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmission electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced

  5. Kinetic process of mechanical alloying in Fe50Cu50

    DEFF Research Database (Denmark)

    Huang, J.Y.; Jiang, Jianzhong; Yasuda, H.;

    1998-01-01

    It is shown that mechanical alloying in the immiscible Fe-Cu system is governed by the atomic shear event and shear-induced diffusion process. We found that an alpha-to-gamma phase transformation, as evidenced by the Nishiyama-Wasserman orientation relationship, occurs by simultaneous shearing...

  6. Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al–Zn–Mg–Cu alloys

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) behavior of Al–Zn–Mg–Cu alloys with different Sc, Zr contents and heat treatments was studied using slow strain rate test. Grain boundary microstructures were identified by transmission electron microscopy (TEM) and statistical analysis. It was found that the SCC resistance of alloys is improved by increasing Sc, Zr contents and aging degree. Grain boundary precipitates (GBPs) area fraction was found to be an important parameter to evaluate the SCC susceptibility. The results reveal that for Al–Zn–Mg–Cu–0.25Sc–0.10Zr (wt%) alloy with different aging degrees, hydrogen induced cracking dominates the SCC when the area fraction of GBPs is relatively low. For peak-aged Al–Zn–Mg–Cu alloy and Al–Zn–Mg–Cu–0.10Sc–0.10Zr (wt%) alloy, anodic dissolution dominates the SCC when the area fraction of GBPs is sufficiently high

  7. Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al–Zn–Mg–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yunjia [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin, E-mail: csupql@163.com [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Hunan, Changsha 410083 (China); Li, Mengjia; Huang, Xing; Li, Bo [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China)

    2015-01-05

    Stress corrosion cracking (SCC) behavior of Al–Zn–Mg–Cu alloys with different Sc, Zr contents and heat treatments was studied using slow strain rate test. Grain boundary microstructures were identified by transmission electron microscopy (TEM) and statistical analysis. It was found that the SCC resistance of alloys is improved by increasing Sc, Zr contents and aging degree. Grain boundary precipitates (GBPs) area fraction was found to be an important parameter to evaluate the SCC susceptibility. The results reveal that for Al–Zn–Mg–Cu–0.25Sc–0.10Zr (wt%) alloy with different aging degrees, hydrogen induced cracking dominates the SCC when the area fraction of GBPs is relatively low. For peak-aged Al–Zn–Mg–Cu alloy and Al–Zn–Mg–Cu–0.10Sc–0.10Zr (wt%) alloy, anodic dissolution dominates the SCC when the area fraction of GBPs is sufficiently high.

  8. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  9. Microstructure evolution of 7050 Al alloy during age-forming

    International Nuclear Information System (INIS)

    The microstructure evolution of the 7050 Al alloy treated by age-forming was studied using a designed device which can simulate the age-forming process. The grain shape, grain boundary misorientation and grain orientation evolution of 7050 Al alloy during age-forming have been quantitatively characterized by electron backscattering diffraction technique. The results show that age-forming produced abundant low-angle boundaries and elongated grains, which attributed to stress induced dislocation movement and grain boundary migration during the age-forming process. On the other side, the stress along rolling direction caused some unstable orientation grains to rotate towards the Brass and S orientations during the age-forming process. Hence, the intensity of the rolling texture orientation in age-formed samples is enhanced. But this effect decays gradually with increasing aging time, since stress decreases and precipitation hardening occurs during the age-forming process. - Highlights: • Quantitative analysis of grain evolution of 7050 Al alloys during age-forming • Stress induces some grain rotation of 7050 Al alloys during age-forming. • Creep leads to elongate grain of 7050 Al alloys during age-forming. • Obtains a trend on texture evolution during age-forming applied stress

  10. Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khovaylo, Vladimir, E-mail: khovaylo@misis.ru [National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation)

    2013-11-15

    Highlights: ► Critical analysis of the available experimental results on isothermal magnetic entropy change in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. ► Based on available in literature experimental data on total entropy change at martensitic transformation it is shown that the isothermal magnetic entropy change in Ni–Mn–X (X = Ga, In, Sn, Sb) should not greatly exceed 30 J/kg K. -- Abstract: Critical analysis available in the literature experimental results on magnetocaloric effect in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. Based on a model developed by Pecharsky et al. [22], it is shown that the isothermal magnetic field-induced entropy change in the Ni–Mn–X alloys should not greatly exceed 30 J/kg K. Considering thermodynamics of temperature- and magnetic field-induced martensitic transformations, it is demonstrated that a contribution of the structural subsystem to the magnetocaloric effect in the Ni–Mn–X alloys studied so far is irreversible in magnetic fields below 5 T. This makes ferromagnetic shape memory alloys an inconvenient system for the practical application in modern magnetic refrigeration technology.

  11. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  12. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  13. Corrosion kinetics of alloy Ni-22Cr-13Mo-3W as structural material in high level nuclear waste containers

    International Nuclear Information System (INIS)

    Alloy Ni-22Cr-13Mo-3W (also known as C-22) is one of the candidates to fabricate high level nuclear waste containers. These containers are designed to maintain isolation of the waste for a minimum of 10,000 years. In this period, the material must be resistant to corrosion. If the containers were in contact with water, it is assumed that alloy C-22 may undergo three different corrosion mechanisms: general corrosion, localized corrosion and stress corrosion cracking. This thesis discusses only the first two types of degradation. Electrochemical techniques such as amperometry, potentiometry, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) and non-electrochemical techniques such as microscopic observation, X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS) were applied to study the corrosion behavior of alloy C-22 in 1 M NaCl, 25 C degrees saturated NaF (approximately 1 M) and 0,5 M NaCl + 0,5 M NaF solutions. Effects of temperature, pH and alloy thermal aging were analyzed. The corrosion rates obtained at 90 C degrees were low ranging from 0.04 μm/year to 0.48 μm /year. They increased with temperature and decreased with solution pH. Most of the impedance measurements showed a simply capacitive behavior. A second high-frequency time constant was detected in some cases. It was attributed to the formation of a nickel oxide and/or hydroxide at potentials near the reversible potential for this reaction. The active/passive transition detected in some potentiodynamic polarization curves was attributed to the same process. The corrosion potential showed an important increase after 24 hours of immersion. This increase in the corrosion potential was associated with an improvement of the passive film. The corrosion potential was always lower than the re-passivation potential for the corresponding media. The trans passive behavior of alloy C-22 was mainly influenced by temperature and solution chemistry. A clear trans passive peak

  14. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  15. Electrocatalytic activity and electrochemical hydrogen storage of Ni-La alloy prepared by electrodeposition from aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    陈卫祥; 成旦红; 刘淑兰; 郭鹤桐

    2002-01-01

    Ni-La alloy coating was prepared by electrodeposition.The effect of cathodic current density on the La content of the alloy coatings was discussed.It is found that the content of La in the alloy increases with increasing the cathodic current density.The microstructures and codeposition mechanism of Ni-La alloy coatings were investigated by means of X-ray diffraction (XRD) and cyclic voltammetry (CV).The results demonstrate that the Ni-La alloy is FCC and codeposited by the induced mechanism.The hydrogen evolution reaction (HER) on the electrodeposited Ni-La alloy electrodes in alkaline solution was evaluated by Tafel polarization curves.It is found that La-Ni alloy coating exhibites much higher exchange current density for HER than pure Ni electrode,and that the exchange current density increases with increasing the La content of alloys.The good electrocatalytic activity for HER of this Ni-La alloy is attributed to the synergism of the electronic structure of La and Ni.The electrodeposited La-Ni alloys have a certain electrochemical hydrogen storage capacity of 34~143 mAh/g,which increases with increasing the La content of alloys.

  16. Novel Concepts for Damage-Resistant Alloys in Next Generation Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Bruemmer; Peter L. Andersen; Gary Was

    2002-12-27

    The discovery of a damage-resistant alloy based on Hf solute additions to a low-carbon 316SS is the highlight of the Phase II research. This damage resistance is supported by characterization of radiation-induced microstructures and microchemistries along with measurements of environmental cracking. The addition of Hf to a low-carbon 316SS reduced the detrimental impact of radiation by changing the distribution of Hf. Pt additions reduced the impact of radiation on grain boundary segregation but did not alter its effect on microstructural damage development or cracking. Because cracking susceptibility is associated with several material characteristics, separate effect experiments exploring strength effects using non-irradiated stainless steels were conducted. These crack growth tests suggest that irradiation strength by itself can promote environmental cracking. The second concept for developing damage resistant alloys is the use of metastable precipitates to stabilize the microstructure during irradiation. Three alloys have been tailored for evaluation of precipitate stability influences on damage evolution. The first alloy is a Ni-base alloy (alloy 718) that has been characterized at low neutron irradiation doses but has not been characterized at high irradiation doses. The other two alloys are Fe-base alloys (PH 17-7 and PH 17-4) that have similar precipitate structures as alloy 718 but is more practical in nuclear structures because of the lower Ni content and hence lesser transmutation to He.

  17. Rare earth ferrosilicon alloy

    International Nuclear Information System (INIS)

    In order to obtain RE ferrosilicon alloy with good quality and competitive price, it is essential that proper choice of raw materials, processing technology and equipments should be made based on the characteristics of Bai-Yun-Ebo mineral deposits. Experimental work and actual production practice indicate that pyrometallurgical method is suitable for the extraction and isolation of the rare earths and comprehensive utilization of the metal values contained in the feed material is capable of reducing cost of production of RE ferrosilicon alloy. In the Bai-Yun-Ebo deposit, the fluorite type medium lean ore (with respect to iron content) makes a reserve of considerable size. The average content of the chief constituents are given

  18. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  19. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  20. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei;

    2003-01-01

    Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties and the ......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....

  1. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  2. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  4. Mechanical alloying nanotechnology, materials science and powder metallurgy

    CERN Document Server

    El-Eskandarany, M Sherif

    2015-01-01

    This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new a

  5. Mechanical biocompatibilities of titanium alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo

    2008-01-01

    Young's modulus as well as tensile strength, ductility, fatigue life, fretting fatigue life, wear properties, functionalities, etc., should be adjusted to levels that are suitable for structural biomaterials used in implants that replace hard tissue. These factors may be collectively referred to as mechanical biocompatibilities. In this paper, the following are described with regard to biomedical applications of titanium alloys: the Young's modulus, wear properties, notch fatigue strength, fatigue behaviour on relation to ageing treatment, improvement of fatigue strength, fatigue crack propagation resistance and ductility by the deformation-induced martensitic transformation of the unstable beta phase, and multifunctional deformation behaviours of titanium alloys.

  6. Magnetic domain observations in Fe–Ga alloys

    DEFF Research Database (Denmark)

    Mudivarthi, Chaitanya; Na, Suok-Min; Schaefer, Rudolf;

    2010-01-01

    The domain structure of Fe–Ga bulk alloys is investigated with magnetic force (MFM) and magneto-optic Kerr microscopy. Published domain observations on this class of materials predominantly reveal maze-like domain patterns that indicate out-of-plane magnetization, i.e. out-of-plane anisotropy....... Contrary to the belief that this anisotropy is due to the presence of nanoscale heterogeneities [1,2] (Bai et al., 2005, 2009), we show that it is due to a damaged surface layer caused by standard mechanical polishing. The surface conditions in Fe–Ga alloys are more sensitive to stress-induced damage than...

  7. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys

    NARCIS (Netherlands)

    Zhang, L.; Eskin, D.G.; Katgerman, L.

    2011-01-01

    Ultrasonic melt treatment (UST) is known to induce grain refining in aluminum alloys. Previous studies have clearly shown that in Al–Zr–Ti alloys, the primary Al3Zr intermetallics were dramatically refined by cavitation-assisted fragmentation, and a good refinement effect was achieved. In this artic

  8. Creep performance and microstructure of the iron alloy Alloy 800 HT

    International Nuclear Information System (INIS)

    The examination of the high-temperature properties of the alloy Alloy 800HT has shown that both the creep performance and the microstructure of the material can be purposefully set by the initial heat treatment. At the high temperatures applied, (700-900 C), a rapid softening process sets in induced by carbide precipitation, stabilization, and coarsening. This softening process causes creep velocities strongly accelerating as a function of duration of the heat treatment prior to the creep test. The identified cause of the softening effect is a change in particle size that could be verified by SEM and TEM. It is shown that two different carbide precipitate size classes are responsible for the softening effect. While the precipitates dectable by TEM become effective primarily via interactions with dislocations, the carbide precipitates detectable only by SEM contribute to a hardening of the grain boundaries and the matrix.(orig./CB)

  9. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  10. Investigations of mechanically alloyed nanocrystalline materials by microacoustic techniques

    Science.gov (United States)

    Dubief, P.; Hunsinger, J. J.; Gaffet, E.

    1996-09-01

    The purpose of this work is to determine whether yes or no, there is a difference between the physico-chemical properties of the nanocrystalline and the microcrystalline materials. This paper deals with the acoustical behavior of nanocrystalline materials which were prepared by ball- milling and mechanical alloying. Based on two specific techniques (acoustic microinterferometry and acoustic microechography), some of the mechanical properties (elastic ones) may be determined, related to a materials volume of about a few micrometers 3 (for the high frequency 600 MHz apparatus). Thus the mechanically alloyed powders (typically 200 micrometers in diameter), behave as massive materials in this range of frequency. The measurements are directly obtained on the grains and do not take into account the voids induced by further sinthering process. The result of such a micromechanical approach will be given for pure ball-milled elements (Fe) and for the supersaturated solid phase Fe(Si) obtained by mechanical alloying.

  11. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  12. MICROSTRUCTURE AND PROPERTIES OF ZL201 ALLOY OBTAINED BY NEAR-LIQUIDUS ELECTROMAGNETIC CASTING

    Institute of Scientific and Technical Information of China (English)

    P. Wang; L.F. Sh; G.M. Lu; J.Z. Cui

    2005-01-01

    The microstructures of ZL201 alloy slurry prepared by near-liquidus electromagnetic casting(NLEMC), electromagnetic casting(EMC), and near-liquidus casting(NLC) were investigated by means of electron microscopy and image analysis. Mechanical properties of as-cast alloys were determined. The results show that the NLEMC induces a fine, uniform, and equiaxed grain structure with a mean equal-area-circle grain diameter of 32.8μm. The as-cast alloy has a hardness of HV122.8 and a tensile strength of 368MPa. Both of them are better than those of the alloys prepared by EMC and by NLC. The mechanism of grain refinement in the NLEMC alloy slurry was discussed.

  13. Study the Magnetic Properties of Invar Alloys by Using High Pressure Mössbaur Spectroscopy

    Directory of Open Access Journals (Sweden)

    N. A. Khalefa

    2015-12-01

    Full Text Available High pressure 57F MÖssbaur spectroscopy measurement ( up to 42 Gpa at room temperature have been carried out for investigation the magnetic properties of Ɣ(f.c.c Fe78Ni22 alloys using diamond anvil cell (DAC technique. The mÖssbaur spectrum at 0 Gpa shows a six line magnetic pattern with broad outer peaks and an average hyperfine field of ~32T characteristic of a disordered alloys. In the pressure rang (2alloys (25-35 at % Ni. Our data indicate a pressure induced invar effect for Fe78Ni22 alloy at ~7-12 Gpa. Above 20 Gpa the hyperfine field break down and the alloy becomes non-magnetic showing only a single line MÖsbauer spectrum.

  14. The development and application of a thermodynamic database for magnesium alloys

    Science.gov (United States)

    Shang, Shunli; Zhang, Hui; Ganeshan, Swetha; Liu, Zi-Kui

    2008-12-01

    The available thermodynamic databases for magnesium alloys are discussed in this paper. Of particular interest are the features of a magnesium database developed by the authors with 19 elements: Mg-Al-Ca-Ce-Cu-Fe-KLa-Li-Mn-Na-Nd-Pr-Si-Sn-Sr-Y-Zn-Zr. Using this database, two applications are presented. One is the phase evolution in AZ61 magnesium alloy including the variations of phase fractions, alloying compositions, and partition coefficients of alloying elements as a function of temperature (or solid fraction). The other is to understand sodium-induced high-temperature embrittlement in the Al-Mg alloy, which is ascribed to the formation of a liquid phase due to the presence of sodium traces.

  15. Fracture mechanics of pseudoelastic NiTi alloys: review of the research activities carried out at University of Calabria

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2013-01-01

    Full Text Available This paper reports a brief review of the research activities on fracture mechanics of nickel-titanium based shape memory alloys carried out at University of Calabria. In fact, this class of metallic alloys show a unusual fracture response due to the reversible stress-induced and thermally phase transition mechanisms occurring in the crack tip region as a consequence of the highly localized stresses. The paper illustrates the main results concerning numerical, analytical and experimental research activities carried out by using commercial NiTi based pseudoelastic alloys. Furthermore, the effect of several thermo-mechanical loading conditions on the fracture properties of NiTi alloys are illustrated.

  16. Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy

    Indian Academy of Sciences (India)

    G Durashevich; V Cvetkovski; V Jovanovich

    2002-02-01

    The CuCrZr alloy undergoes processes of precipitation during ageing. Besides precipitation hardening the strength is affected by cold deformation which is performed before and after ageing. The cold deformation (1) before ageing accelerates the process of strength hardening, since it induces higher rate of precipitation from the saturated -solid solution. Cold deformation (2) after ageing primarily affects the alloy strength. In this paper the results of the effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy are presented. The aim of the paper was to evaluate the most suitable combination of thermomechanical treatment and alloy properties.

  17. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  18. Shape memory alloy thaw sensors

    Science.gov (United States)

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  19. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  20. Glass formation in eutectic alloys

    International Nuclear Information System (INIS)

    We have analyzed the glass forming ability around eutectic composition in terms of the competitive growth/formation of primary dendrites, eutectic and glass. It is concluded that the glass forming ability of a eutectic alloy system depends on the type of the eutectics, i.e. symmetric or asymmetric eutectic coupled zone. For the alloy systems with symmetric eutectic coupled zone, the best glass forming alloys should be at or very close to the eutectic composition. For the alloys with asymmetric eutectic coupled zone, which is associated with the irregular eutectic, the best glass forming alloys should be at off-eutectic compositions, probably towards the side of the faceted phase with a high entropy in the phase diagram. (orig.)

  1. Structural Defects In The FeCoYB Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Błoch K.

    2015-09-01

    Full Text Available The aim of this work was to determine the nature of the structural defects that have a major influence on the magnetisation process within the investigated alloys. The structure of the alloys in the as-quenched state was investigated by means of X-ray diffractometry. It was confirmed that the samples were amorphous. The magnetisation was measured within magnetic fields ranging from 0 to 2T using a vibrating sample magnetometer (VSM. The investigation of the ‘magnetisation in the area close to ferromagnetic saturation’ showed that, for this class of alloys, the magnetisation process in strong magnetic fields is connected with the following two influences: 1 Firstly, the rotation of the magnetic moments in the vicinity of the defects, which are the sources of the short-range stresses, and, 2 The dumping of the thermally-induced spin waves by the magnetic field. In the case of the Fe63Co10Y7B20 alloy, the magnetisation process is connected with both point and linear defects, whereas for the Fe64Co10Y6B20 alloy, only with linear defects. This suggests that the size of the defects, determining the character of the magnetisation in the vicinity of ferromagnetic saturation, depends on the atomic packing density. On the basis of analysis of the magnetisation curves, the spin wave stiffness parameter (Dsp was calculated.

  2. Swelling and tensile properties of neutron-irradiated vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600{degree}C to neutron fluences ranging from 0.3 to 1.9 {times} 10{sup 27} neutrons/m{sup 2} (17 to 114 atom displacements per atom (dpa)).

  3. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  4. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    International Nuclear Information System (INIS)

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism

  5. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2013-10-25

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism.

  6. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    Science.gov (United States)

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  7. Surface characterization of hydrogen charged and uncharged alpha-2 and gamma titanium aluminide alloys using AES and REELS

    Science.gov (United States)

    Shanabarger, M. R.

    1990-01-01

    The surfaces of selected uncharged and hydrogen charged alpha-2 and gamma titanium aluminide alloys with Nb additions were characterized by Auger electron (AES) and reflected electron energy loss (REELS) spectroscopy. The alloy surfaces were cleaned before analysis at room temperature by ion sputtering. The low energy (500 eV) ion sputtering process preferentially sputtered the surface concentration. The surface concentrations were determined by comparing AES data from the alloys with corresponding data from elemental references. No differences were observed in the Ti or Nb Auger spectra for the uncharged and hydrogen charged alloys, even though the alpha-2 alloy had 33.4 atomic percent dissolved hydrogen. Also, no differences were observed in the AES spectra when hydrogen was adsorbed from the gas phase. Bulk plasmon energy shifts were observed in all alloys. The energy shifts were induced either by dissolved hydrogen (alpha-2 alloy) or hydrogen adsorbed from the gas phase (alpha-2 and gamma alloys). The adsorption induced plasmon energy shifts were greatest for the gamma alloy and cp-Ti metal.

  8. Wedlable nickel aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  9. Heating uranium alloy billets

    International Nuclear Information System (INIS)

    Data were obtained for the surface heat transfer coefficient of uranium and the alloys of uranium-0.75 wt percent titanium, uranium-6 wt percent niobium, and uranium-7.5 wt percent niobium-2.5 wt percent zirconium. Samples were heated to 8500C in both a molten salt bath and an argon-purged air furnace, then the samples were cooled in air. Surface heat transfer coefficients were calculated from the experimental data for both heating and cooling of the metals. 4 fig, 4 tables

  10. Effect of Nd on microstructure and wear resistance of hypereutectic Al-20%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, W.X. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning Province 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.c [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning Province 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning Province 110004 (China)

    2010-10-22

    Research highlights: Firstly, the sizes of primary silicon of hypereutectic Al-20%Si alloy after modified were apparently refined. Secondly, wear resistance of hypereutectic Al-20%Si alloy modified by Nd was significantly improved. Thirdly, the dominant wear mechanisms for the alloy before after modification were different. Finally, a new ternary Al-Si-Nd phase forms after 0.3wt.%Nd modification. - Abstract: In this paper, pure Nd was adopted to modify hypereutectic aluminum-silicon alloy (Al-20%Si). The morphology of eutectic and primary silicon phases was analyzed by OM and SEM. OM and SEM results show that pure Nd (0.3 wt.%) can significantly refine both eutectic and primary silicon of hypereutectic Al-20%Si alloy. Morphology of primary silicon was transformed from star-shaped and irregular morphology to fine polyhedral and grain size of primary silicon was refined from 80-120 {mu}m to 20-50 {mu}m. TEM results show that a new needle shape ternary phase (AlSi{sub x}Nd{sub y}) forms in modified alloy. XRD results show that three little unknown diffraction peaks appear after Nd modification and it is induced that they should be diffraction peaks of ternary AlSi{sub x}Nd{sub y} intermetallic phase in the modified alloy by analyzing both TEM and XRD results. Friction and wear resistance tests show that friction coefficient of Al-20%Si alloy decreases after Nd modification. Wear resistance of Al-20%Si alloy after 0.3 wt.%Nd modification was significantly improved as compared to the initial sample. The improvement of wear resistance was mainly attributed to change of morphology, size and distribution of eutectic silicon and primary silicon after Nd modification. The dominant wear mechanism for 0.3 wt.%Nd modified alloy was abrasive wear, adhesive wear and oxidative wear mechanism, but wear mechanism for unmodified alloy was abrasive wear and adhesive wear mechanism.

  11. Stable palladium alloys for diffusion of hydrogen

    Science.gov (United States)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  12. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  13. Optical processes in dilute nitrides Semiconductors; Alloys

    CERN Document Server

    Potter, R J

    2003-01-01

    This thesis is concerned with the narrow bandgap semiconductor alloys known as dilute nitrides. The initial part of this project was concerned with characterisation of chemical beam epitaxy (CBE) grown samples so that growth techniques could be refined. Early samples show evidence of structural/compositional disorder resulting from the large miscibility gap induced by nitrogen. Non-equilibrium growth was employed to overcome this, eventually resulting in improved material. In the second part of this project, steady-state and time-resolved photoluminescence, along with photomodulated reflectance were employed to investigate the optical properties of molecular beam epitaxy (MBE) grown GalnNAs, GaNAs and InGaAs quantum wells (QWs). Low temperature results show evidence of carrier localization, which was interpreted in terms of structural/compositional fluctuations induced by the nitrogen incorporation. Poor photoluminescence efficiency and rapid decay of emission kinetics indicate the presence of strong non-radi...

  14. Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys

    Science.gov (United States)

    Bai, Q. L.; Li, Y.; Li, H. X.; Du, Q.; Zhang, J. S.; Zhuang, L. Z.

    2016-08-01

    During the production of high-strength 7××× aluminum alloys, hot tearing has set up serious obstacles for attaining a sound billet/slab. In this research, some typical 7××× alloys were studied using constrained rod casting together with the measurement of thermal contraction and load development in the freezing range, aiming at investigating their hot tearing susceptibility. The results showed that the hot tearing susceptibility of an alloy depends not only on the thermal contraction in freezing range, which can decide the accumulated thermal strain during solidification, but also on the amount of nonequilibrium eutectics, which can effectively accommodate the thermally induced deformation. Our investigations reveal that Zn content has very profound effect on hot tearing susceptibility. The Zn/Mg ratio of the alloys also plays a remarkable role though it is not as pronounced as Zn content. The effect of Zn/Mg ratio is mainly associated with the amount of nonequilibrium eutectics. Grain refinement will considerably reduce the hot tearing susceptibility. However, excessive addition of grain refiner may promote hot tearing susceptibility of semi-solid alloy due to deteriorated permeability which is very likely to be caused by the heavy grain refinement and the formation of more intermetallic phases.

  15. Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Calle Vallejo, Federico; Rossmeisl, Jan;

    2009-01-01

    Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu to the sur......Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu...... to apply to a range of coinage (Cu, Ag)/Pt-group bimetallic surface alloys, open up new possibilities in selective and dynamical engineering of alloy surfaces for catalysis....

  16. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  17. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132464

  18. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132470

  19. Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy

    Institute of Scientific and Technical Information of China (English)

    SU Yan-qing; LIU Xin-wang; ZHAO Long; WANG Liang; GUO Jing-jie; FU Heng-zhi

    2009-01-01

    Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy were studied. The stress-strain curves demonstrate that the plastic deformation of the hydrogenated alloys becomes more remarkable than that of the unhydrogenated alloy.Meanwhile, the compression strength and maximum strain are reduced. Both the hydride and hydrogen atoms in the interstices affect the compression deformation behaviors. The reason of the hydrogen-induced embrittlement is that the hydride is easy to become the nucleus of the cracks. And the variation of plastic deformation process is attributed to hydrogen-promoted emission, multiplication and motion of dislocation.

  20. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  1. Laser Shock Peening of Aluminum Alloy 7050 for Fatigue Life Improvement

    Institute of Scientific and Technical Information of China (English)

    Qian; Ming; Lian; Ying; Zou; Shikun; Gong; Shuili

    2007-01-01

    The effects of laser shock peening (LSP) on improving fatigue life of aluminum alloy 7050 are investigated.Surface hardness is increased corresponding to a high dislocation density induced by LSP.The X-ray diffraction stress measurement shows that LSP results in prominent increase of surface compressive stress,quasi-symmetrically distributed in the laser peened region.The fatigue life of the alloy 7050 in rivet fastener hole structure is notably improved owing to LSP.The sequence of LSP and fastener hole preparation also influence the fatigue cycle life of the alloy.

  2. Effect of rolling temperature on the deformation and recrystallization texture in nickel and its alloys

    International Nuclear Information System (INIS)

    Unalloyed nickel, some nickel base alloys with d-transition metals (Cr, Mo, W) and stainless steel 10Kh18N10T are used to show specific features of texture formation on warm rolling and subsequent annealings. The use of warm rolling results in formation of copper-type deformation-induced texture and production of acute texture of {100} on subsequent annealing. It is concluded that the application of warm rolling makes it possible to increase an alloying element content in nickel alloys resulting in an enhancement of operational properties of substrates for high-temperature superconductor

  3. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  4. The Fifth International Ural seminar. Radiation damage physics of metals and alloys. Abstracts

    International Nuclear Information System (INIS)

    Presented are the abstracts of The Fifth International Ural seminar Damage physics of metals and alloys. General problems of radiation damage physics, radiation effect on change of microstucture and the properties of metals and alloys, as well as materials for nuclear and thermonuclear energetics are considered. The themes of reports are the following: correlation effects in cascades of atom-atomic collisions; radiation-induced strengthening critical current density in YBa2Cu3O7-x superconductors; conditions of forming and hydrides growth in irradiated zirconium alloys

  5. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  6. Local order dynamics: its application to the study of atomic mobility, of point defects in crystalline alloys, and of structural relaxation in amorphous alloys

    International Nuclear Information System (INIS)

    This research thesis addressed the study of the atomic mobility mechanism and of the atom movement dynamics in the case of crystalline alloys and of amorphous alloys. The first part is based on a previous study performed on an α-Cu70-Zn30 crystalline alloy, and addresses the case of an α-Au70-Ni30 alloy. The specificity of this case relies in the fact that the considered solid solution is metastable and susceptible to de-mixing in the considered temperature range. This case of off-equilibrium crystalline alloy is at the crossroad between steady crystalline alloys and metallic glasses which are studied in the second part. The third part addresses the irradiation of metallic amorphous alloys by fast particles (neutrons or electrons). The author tried to characterise atomic defects induced by irradiation and to compare them with pre-existing ones. He studied how these defects may change atomic mobility, and, more generally, to which extent the impact of energetic particles could modify local order status

  7. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  8. Influence of A1 Content on the Atmospheric Corrosion Behaviour of Magnesium-Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Ruiling Jia; Chuanwei Yan; Fuhui Wang

    2009-01-01

    The influence of Al content on the Mg-Al alloys corrosion performance during sodium chloride induced atmospheric corrosion has been studied. It was found that the corrosion rate of three Mg-Al alloys was accelerated with increasing Al content. The poor corrosion resistance was attributed to the galvanic coupling between the β phase and eutectic phase or α phase and the formation of porous corrosion products.

  9. Synthesis of TiB2+TiC by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The process of the mechanical alloying reaction between B4C and Ti during ball milling was studied by EPMA and X-ray diffraction. It is revealed that the reaction of 3Ti+B4C=2TiB2+TiC can be induced by mechanical alloying within 90  min of ball milling. The XRD peaks of TiB2+TiC are broadened with increasing ball milling time.

  10. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  11. Molecular basis of carcinogenicity of tungsten alloy particles

    International Nuclear Information System (INIS)

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  12. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  13. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  14. Analysis Of Transport Properties of Mechanically Alloyed Lead Tin Telluride

    Science.gov (United States)

    Krishna, Rajalakshmi

    conductivity at temperatures above 400 K in these alloys, though they do dramatically impact electronic mobility at room temperature. It is shown that, at temperatures above 400 K, electrons are scattered predominantly by optical and acoustical phonons rather than by an alloy scattering mechanism or the inclusions. The experimental electrical conductivity and Seebeck coefficient data at elevated temperatures were found to be within 10 % of what would be expected for material without inclusions. The inclusions were not found to reduce the lattice thermal conductivity at elevated temperatures. The experimentally measured thermal conductivity data was found to be consistent with the lattice thermal conductivity that would arise due to two scattering processes: Phonon-phonon scattering (Umklapp scattering) and the scattering of phonons by the disorder induced by the formation of a PbTe-SnTe solid solution (alloy scattering). (Abstract shortened by UMI.)

  15. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  16. Effect of solution hardening on the shape memory effect of Fe-Mn based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzaki, K.; Natsume, Y.; Maki, T. [Kyoto Univ. (Japan). Dept. of Materials Science and Engineering; Tomota, Y. [Ibaraki Univ., Hitachi (Japan)

    1995-10-01

    Fe-high Mn-Si alloys, which undergo {gamma} (fcc) to {var_epsilon} (hcp) martensitic transformation, exhibit a pronounced shape memory effect. The origin of shape memory effect of these alloys is the reversion of stress-induced {var_epsilon} martensite. A shape change must hence be accomplish3ed by stress-induced martensitic transformation without permanent slip in austenite ({gamma}) in order to obtain a good shape memory effect. It is clear that the intrusion of permanent slip can be suppressed by increasing the strength of austenite and by decreasing the applied stress required for a shape change due to stress-induced martensitic transformation. It has been reported that the addition of the interstitial elements of C and N as well as the substitutional elements of Mo and V increases the 0.2% proof stress of austenite in Fe-high Mn alloys. However, there have been few studies on the effect of these alloying elements on the shape memory effect of Fe-high Mn based alloys. In the present study, it was aimed to improve the shape memory effect of Fe-high Mn based alloys by the strengthening of austenite through solution hardening due to C and Mo.

  17. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    Science.gov (United States)

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction. PMID:20364362

  18. MICROSTRUCTURE NEAR SCRATCH ON ALLOY 690TT AND STRESS CORROSION INDUCED BY SCRATCHING%690TT合金划痕显微组织及划伤诱发的应力腐蚀

    Institute of Scientific and Technical Information of China (English)

    孟凡江; 王俭秋; 韩恩厚; 庄子哲雄; 柯伟

    2011-01-01

    测试表明,690TT合金划痕周围形成了加工硬化区,范围可达100 μm.TEM及EBSD-OIM组织观察发现,划痕沟槽处的基体组织出现了一定程度的纳米化.在330℃碱溶液中的浸泡实验表明,划伤诱发了690TT合金应力腐蚀裂纹的萌生和扩展,划伤过程中形成的变形晶界、孪晶界以及产生的微观裂纹成为应力腐蚀裂纹优先萌生的位置.Pb的存在使氧化膜变得疏松,加速了基体的溶解和氧化.随着溶液中Pb含量的增加,划伤诱发的应力腐蚀裂纹长度随之增加.690TT合金表面划伤严重降低了材料抵抗应力腐蚀开裂的能力.%The microstructure and stress corrosion cracking (SCC) behavior of scratched zone on alloy 690TT were studied by using microhardness, TEM, EBSD-OIM and immersion experiment in caustic solution. It was found that a deformed hardening layer with a dimension range of 100 /xm was produced near the scratch. TEM and EBSD-OIM observations showed that the grains at shallow surface of scratch groove were refined to nano-size. SCC tests for scratched alloy 690TT were performed in caustic solution at high temperature with or without addition of lead oxides. The results showed that SCC cracks initiated and propagated at scratch banks and scratch grooves. Grain boundaries, twin boundaries deformed and microcracks produced during scratching process are preferential sites for SCC. The oxide films formed on scratch groove were loosed by lead. The SCC crack length increased with increase of lead content. Scratched alloy 690TT is susceptible to SCC.

  19. Dislocation Formation in Alloys

    Science.gov (United States)

    Minami, Akihiko; Onuki, Akira

    2006-05-01

    An interaction between dislocations and phase transitions is studied by a phase field model both in two and three dimensional systems. Our theory is a simple extension of the traditional linear elastic theory, and the elastic energy is a periodic function of local strains which is reflecting the periodicity of crystals. We find that the dislocations are spontaneously formed by quenching. Dislocations are formed from the interface of binary alloys, and slips are preferentially gliding into the soft metals. In three dimensional systems, formation of dislocations under applied strain is studied in two phase state. We find that the dislocation loops are created from the surface of hard metals. We also studied the phase separation above the coexisting temperature which is called as the Cottrell atmosphere. Clouds of metals cannot catch up with the motion of dislocations at highly strained state.

  20. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  1. Effect of radiation on bulk swelling of plutonium alloys

    International Nuclear Information System (INIS)

    Several studies show that plutonium alloys present bulk swelling. More precisely, length (as measured by dilatometry) and lattice parameter (as measured by X-ray diffraction) increase with time and seems to reach saturation after a few months for the microscopic scale. This bulk swelling can be correlated to self-induced radiation due to the decay of the different plutonium isotopes (238Pu, 239Pu, 241Pu and 242Pu) which also induce helium that tends to forms clusters, then bubbles. Many experimental and theoretical results have already been published on this topic. The goal of this paper is to review some of the results and to propose a strategy for both experiments and modelling to try to answer some of the remaining questions regarding swelling and more generally self-irradiation defects in plutonium alloys

  2. Correlation between thermal induced structural and magnetic transformations in Si-rich Fe{sub 73}Cu{sub 1}Si{sub 16}B{sub 7}Nb{sub 3} metal alloy

    Energy Technology Data Exchange (ETDEWEB)

    Brzozowski, Romuald, E-mail: rbrzozowski@phys.uni.lodz.pl [Uniwersytet Lodzki, Katedra Fizyki Jadrowej, Pomorska 149, PL 90-236 Lodz (Poland); Moneta, Marek E. [Uniwersytet Lodzki, Katedra Fizyki Ciala Stalego, Pomorska 149, PL 90-236 Lodz (Poland)

    2012-05-15

    Properties of amorphous Fe{sub 73}Cu{sub 1}Si{sub 16}B{sub 7}Nb{sub 3} foil, the Si rich metal alloy, and the foils partly crystallised after annealing, were analysed structurally and magnetically in the temperature range from 4 to 1000 K. The Fe (Si) and Fe (B) structures were identified and characterised with the crystallisation temperatures: 750 and 893 K, activation energies 460 and 580 kJ/mol. The Curie temperatures for amorphous structure: 613 K and for crystalline structures: 820, 875, 920 and 980 K were determined. It was found and analysed a delay of the sample magnetisation, determined by thermomagnetometry, with respect to structural crystallisation, determined by scanning calorimetry, which was correlated with magnetic hyperfine field, determined by transmission Moessbauer spectroscopy.

  3. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  4. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  5. The Effect of Al and Fe on the Intergranular Embrittlement of Co3Ti Alloys by Hydrogen Transport from the External Surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some observation relating to the solubility, diffusivity and intergranular cracking by hydrogen transport from the external surface in Co3Ti, Co3Ti-Al and Co3Ti-Fe alloys have been carried out. The results show that the addition of alloying elements Al or Fe to Co3Ti alloy can increase the critical hydrogen concentration for changing from transgranular to brittle intergranular fracture, therefore suppress the moisture induced environmental embrittlement.

  6. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  7. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  8. Friction surfacing of aluminium alloys

    OpenAIRE

    Pereira, Diogo Jorge O. A.

    2012-01-01

    Friction surfacing is a solid state joining process that has attracted much interest in the past decades. This technology allows joining dissimilar metallic materials while avoiding the brittle intermetallic formations, involving temperatures bellow melting point and producing like forged metal structures. Much research using different steels has been made but the same does not happen with aluminium alloys, specially using different aluminium alloys. Friction surface coatings using cons...

  9. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置*%Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn∗

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      合成了一系列Ni50−xCoxMn39Sn11(8 x 10)样品,并对它们的结构和磁性进行了研究.发现随Co含量的增加,样品的饱和磁化强度逐渐增强,并在Ni42Co8Mn39Sn11中实现了磁场诱发马氏体相变.另外,在Co大于8.0的成分中探测到了超自旋玻璃,并且观察到交换偏置现象.证实了超自旋玻璃的马氏体相和铁磁奥氏体母相共存,这也是产生交换偏置的原因.我们猜测超自旋玻璃的形成可能是来源于Mn-Mn团簇的存在,这和之前报道的Mn2Ni1.6Sn0.4的结果相一致[1].%The crystal structures and magnetic properties of Ni50−xCoxMn39Sn11 (8 x 10) Heusler alloys are investigated. As a result, we achieve the magnetic field induced martensitic transformation in Ni42Co8Mn39Sn11. It is found that the saturation magnetic moments of alloys increase with Co content increasing. Moreover, a superspin glass behavior and a large exchange bias effect are also found in samples with Co content being higher than 8. We confirm the coexistence of superspin glass of the martensite and ferromagnetic parent phase, which is the physical origin of the exchange bias effect. On the other hand, we propose that the origin of superspin glass in our NiMnCoSn system is due to the occurence of Mn-Mn cluster as reported by Ma et al. in Heusler Mn2Ni1.6Sn0.4 alloys [Ma L, Wang W H, Liu J B, Li J Q, Zhen M, Hou D L and Wu G H 2011 Appl. Phys. Lett. 99 182507].

  10. TEM microstructure investigations of aluminium alloys used for laser alloying

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2012-12-01

    Full Text Available Purpose: In this paper there are presented results of Transmission Electron Microscope investigation concerning the structure of the AlSi7Cu4 cast aluminium alloy using for alloying and remelting with the high power diode laser (HPDL. There are also presented the results of the thermo-derivative analysis performed using the UMSA (Universal Metallurgical Simulator and Analyser device, allowing to determine the specific points of the solidifying alloy, what is helpful for phase determination occurred in this alloy. In this work especially the changes of the precipitation type, size and shape were determined.Design/methodology/approach: The investigations were performed using electron microscopy for the microstructure and phases determination. By mind of the transmission electron microscopy, especially selected area diffraction method appliance it was possible to determine the phases occurred in the alloy in the as cast state. The morphology and size of the Mg2Si was also possible to determine as well the lattice parameters for this phase.Findings: : The reason of this work was also to present the laser treatment technology, which will be used for further alloying and remelting with ceramic powders – especially carbides and oxides. Particularly the overview will be directed on the laser power to achieve good layer hardness for protection of this hot work tool steel from losing their work stability and to make the tool surface more resistant to action in external conditions. The structure of the surface laser tray changes in a way, that there are very high roughness of the surface zone and the flatness or geometry changes in an important manner, crucial for further investigation.Research limitations/implications: The aluminium samples were examined metallographically using transmission electron microscope with different image techniques.Practical implications: Developing of new technology with appliance of Al alloys, High Power Diode Laser and

  11. Surface Crystallization in a Liquid AuSi Alloy

    OpenAIRE

    Shpyrko, Oleg G.; Streitel, Reinhard; Balagurusamy, V. S. K.; Grigoriev, Alexei Y.; Deutsch, Moshe; Ocko, Benjamin M; Meron, Mati; Lin, Binhua; Pershan, Peter S.

    2006-01-01

    X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au_{82}Si_{18}, at temperatures above the alloy's melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concen...

  12. State diagram of copper-aluminium alloys after neutron irradiation

    International Nuclear Information System (INIS)

    It is ascertained that under reactor irradiation of copper-aluminium alloys (18.0-31.2 at% of Al) radiation-induced phase transformations occur, alpha-phase is decomposed into two ones with alpha'-phase precipitation, in gamma2-phase separate regions of its high-temperature disordered modification (gamma1-phase) are formed. Thermal stability of precipitations is investigated, regions of their existence are defined on the state diagram

  13. Laser synthesis of germanium tin alloys on virtual germanium

    OpenAIRE

    Stefanov, S; Conde, J. C.; Chiussi, S; De Benedetti, A.; Serra, C.; Werner, J.; Oehme, M.; Schulze, J.; Buca, D.; Holländer, B; Mantl, S.

    2012-01-01

    Synthesis of heteroepitaxial germanium tin (GeSn) alloys using excimer laser processing of a thin 4 nm Sn layer on Ge has been demonstrated and studied. Laser induced rapid heating, subsequent melting, and re-solidification processes at extremely high cooling rates have been experimentally achieved and also simulated numerically to optimize the processing parameters. "In situ" measured sample reflectivity with nanosecond time resolution was used as feedback for the simulations and directly co...

  14. Microstructural studies on Alloy 693

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R.; Dutta, R.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, P., E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Mater. Sci., Indian Institute of Technology Bombay, Mumbai 400 072 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni{sub 3}Al precipitates distributed within austenitic matrix. M{sub 6}C primary carbide, M{sub 23}C{sub 6} type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni{sub 3}Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  15. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  16. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  17. Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 gas at 818 °C

    International Nuclear Information System (INIS)

    Highlights: •CO2 gas is more corrosive than dry air for Fe–Cr and Fe–Cr–Ni alloys at 818 °C. •Chromia scale grows faster in CO2 than in air. •Cerium has no significant effect on reducing oxidation rate of the alloys in CO2. •Manganese significantly improves oxidation resistance of Fe–20Cr and Fe–20Cr–20Ni alloys in CO2. -- Abstract: Model alloys Fe–9Cr, Fe–20Cr and Fe–20Cr–20Ni (wt.%) with Ce (0.05%, 0.1%) or Mn (1%, 2%) were exposed to Ar–20CO2 gas at 818 °C. Scales on Fe–9Cr alloys consisted of FeO and FeCr2O4, Fe–20Cr–(Ce) alloys formed only Cr2O3, and Fe–20Cr–(Mn) alloys formed Cr2O3 and MnCr2O4. All Fe–20Cr–20Ni alloys formed Fe3O4, FeCr2O4 and FeNi3. Cerium additions had little effects, but additions of 2% Mn significantly improved oxidation resistance of Fe–20Cr and Fe–20Cr–20Ni alloys. Most alloys also carburized. All alloys developed protective chromium-rich oxide scales in air. Different behavior in the two gases is attributed to faster Cr2O3 scaling rates induced by CO2

  18. Novel Concepts for Damage-Resistant Alloys in Next Generation Nuclear Power Systems - Final Report , Project 99-0280

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Simonen, Edward P.; Gan, Jian; Garner, Francis A.; Gelles, David S.; Edwards, Danny J.; Andresen, Peter L.; Young, Lisa M.; Was, Gary S.; Fournier, L.; Sencer, Bulent H.

    2002-12-27

    The discovery of a damage-resistant alloy based on Hf solute additions to a low-carbon 316SS is the highlight of the Phase II research. This damage resistance is supported by characterization of radiation-induced microstructures and microchemistries along with measurements of environmental cracking. The addition of Hf to a low-carbon 316SS reduced the detrimental impact of radiation by changing the distribution of Hf. Pt additions reduced the impact of radiation on grain boundary segregation but did not alter its effect on microstructural damage development or cracking. Because cracking susceptibility is associated with several material characteristics, separate effect experiments exploring strength effects using non-irradiated stainless steels were conducted. These crack growth tests suggest that irradiation strength by itself can promote environmental cracking. The second concept for developing damage resistant alloys is the use of metastable precipitates to stabilize the microstructure during irradiation. Three alloys have been tailored for evaluation of precipitate stability influences on damage evolution. The first alloy is a Ni-base alloy (alloy 718) that has been characterized at low neutron irradiation doses but has not been characterized at high irradiation doses. The other two alloys are Fe-base alloys (PH 17-7 and PH 17-4) that have similar precipitate structures as alloy 718 but is more practical in nuclear structures because of the lower Ni content and hence lesser transmutation to He.

  19. Alloy metal nanoparticles for multicolor cancer diagnostics

    Science.gov (United States)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  20. A comparative study of enhanced electrochemical stability of tin–nickel alloy anode for high-performance lithium ion battery

    International Nuclear Information System (INIS)

    Highlights: • Sn and Sn–Ni alloy nanoparticles are synthesized by chemical co-precipitation method. • Sn–Ni alloy particles show different phase structure and morphology from Sn particles. • Cyclic voltammetry reveals distinct redox reaction behaviors at Sn and alloy anodes. • Impedance analyses show better stability of alloy electrodes over prolonged cycling. - Abstract: Sn and Sn–Ni alloy nanoparticles are synthesized readily by co-precipitation method for their applications in Li-ion batteries. It is found that nickel not only affects the phase structure and morphology of the alloy, but also impacts Li–Sn alloying and dealloying behaviors. In Li-ion batteries, the alloy electrodes deliver stronger cycling stability than the pure Sn anode. In tests the former exhibits a final capacity of 228.5 mA h g−1 over 50 cycles, while the latter displays 14.3 mA h g−1. Smaller current for battery cycles increases capacities of the alloys beyond 408.4 mA h g−1. The mechanism of enhanced stability of Sn–Ni alloys is examined. Redox reaction characteristics and Li-ion transfer kinetics at these anodes after different cycles are investigated by cyclic voltammetry and electrochemical impedance spectroscopy, which are considered to associate with buffering effects of nickel and structural integrity of electrodes. Li–Sn alloying and dealloying reactions cause volume changes and induce stress that releases in the formation of tiny cracks within the particles. The cracks accelerate side reactions and decelerate charge transport, detrimental to the electrode stability. Nickel cushions the volume variations and reduces the stress and cracks at Sn–Ni alloy anodes to allow them to maintain better electrode integrity and smaller charge resistance, thus yielding their improved Li-ion intercalation stability during long-term cycling