WorldWideScience

Sample records for alloy aluminum solidification

  1. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  2. Solidification crack susceptibility of aluminum alloy weld metals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The susceptibilities of the three aluminum alloys to solidification crack were studied with trans-varestraint tests and tensile tests at elevated temperature. Their metallurgical characteristics, morphologies of the fractured surface and dynamic cracking behaviors at elevated temperature were analyzed with a series of micro-analysis methods. The results show that dynamic cracking models can be classified into three types. The first model has the healing effect which is called type A. The second is the one with deformation and breaking down of metal bridge, called type B. The last one is with the separation of liquid film along grain boundary, called type C.Moreover, the strain rate has different effects on crack susceptibility of aluminum alloys with different cracking models. ZL101 and 5083 alloys belong to type A and type C cracking model respectively, in which strain rate has greater effect on eutectic healing and plastic deformation of metal bridge. 6082 alloy is type B cracking model in which the strain rate has little effect on the deformation ability of the liquid film.

  3. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  4. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  5. Simulation of unconstrained solidification of A356 aluminum alloy on distribution of micro/macro shrinkage

    Directory of Open Access Journals (Sweden)

    Hossein Bayani

    2014-01-01

    Full Text Available In the condition of Newtonian heat transfer, A356 aluminum alloy is solidified with randomly distributed equiaxed dendrites. Ability of interdendritic liquid flow is described by permeability parameter using Darcy's law and this parameter is used to predict the micro-shrinkages. In this study the interdendritic liquid flow during nucleation and grain growth are simulated in a 1 mm × 1 mm domain. Temperature gradient is zero in the initial condition of the unconstrained solidification. The numerical simulation procedure includes two stages; first, numerical evolution of the shape, number, size, and distribution of dendrites during solidification using a novel Cellular Automation Finite Volume (CA-FV method, and second, numerical determination of the micro-permeability by a Computational Fluid Dynamics (CFD technique. Subsequently, the effect of Reynolds number, cooling rate and solidification rate on a critical permeability range was investigated in order to predict the micro/macro shrinkage distribution. Results showed that it is possible to propose a mathematical model to relate the Reynolds number and liquid flow rate, in the creeping flow range, on the micro-permeability during unconstrained solidification.

  6. In-Situ Analysis of Coarsening during Directional Solidification Experiments in High-Solute Aluminum Alloys

    NARCIS (Netherlands)

    Ruvalcaba, D.; Mathiesen, R.H.; Eskin, D.G.; Arnberg, L.; Katgerman, L.

    2009-01-01

    Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidif

  7. Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy

    International Nuclear Information System (INIS)

    Hot tearing is a complex phenomenon attributed to alloy solidification, microstructure and stress/strain development within a casting. In this research, the conditions associated with the formation of hot tears in B206 aluminum alloy were investigated. Neutron diffraction strain mapping was carried out on three B206 castings with varying levels of titanium (i.e. unrefined, 0.02 and 0.05 wt%). Titanium additions effectively reduced grain size and transformed grain morphology from coarse dendrites to fine globular grains. Further, thermal analysis suggested that grain refinement delayed the onset of dendrite coherency in B206 and therefore enhanced the duration of bulk liquid metal feeding for the refined casting conditions. As a result, the interactive effects of such factors resulted in a more uniform distribution of strain, and subsequent higher resistance to hot tearing for the grain refined castings

  8. Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    D’Elia, F., E-mail: f.delia10@gmail.com [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. East, Toronto, Ontario, Canada M5B 2K3 (Canada); Ravindran, C. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. East, Toronto, Ontario, Canada M5B 2K3 (Canada); Sediako, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, Canada K0J 1J0 (Canada)

    2015-01-29

    Hot tearing is a complex phenomenon attributed to alloy solidification, microstructure and stress/strain development within a casting. In this research, the conditions associated with the formation of hot tears in B206 aluminum alloy were investigated. Neutron diffraction strain mapping was carried out on three B206 castings with varying levels of titanium (i.e. unrefined, 0.02 and 0.05 wt%). Titanium additions effectively reduced grain size and transformed grain morphology from coarse dendrites to fine globular grains. Further, thermal analysis suggested that grain refinement delayed the onset of dendrite coherency in B206 and therefore enhanced the duration of bulk liquid metal feeding for the refined casting conditions. As a result, the interactive effects of such factors resulted in a more uniform distribution of strain, and subsequent higher resistance to hot tearing for the grain refined castings.

  9. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  10. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    Science.gov (United States)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  11. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  12. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    Science.gov (United States)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  13. Casting of aluminum-copper based alloy by controlled diffusion solidification

    Directory of Open Access Journals (Sweden)

    Li Fan

    2015-03-01

    Full Text Available A quaternary alloy (Al-5.0Cu-0.35Mn-0.25Ti, wt.%, having a similar chemical component with ZL205A, was prepared using a controlled diffusion solidification (CDS process and a conventional casting process. The effect of the casting process on microstructure and hardness was investigated. The grain morphology and casting defects of the alloy prepared via the conventional casting and CDS were observed and compared at various pouring temperatures. Results show that the CDS process can alleviate the hot tearing defects and reduce the density of porosity, while getting rid of the riser that is generally used for feeding during conventional casting. Structure observations show that the grain morphology of the conventional cast alloy is mainly dendritic, and the grain size decreases when the pouring temperature is decreased, while the CDS cast alloy consists of a large number of spherical grains, which can decrease the thermal cracking tendency and segregation defect, and enhance the hardness of the alloy.

  14. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2015-10-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing aluminum alloy components. Repair process on the Al alloy sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminum alloy component repair by turbulence flow casting. The model is designed based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that analytical modeling has good agreement with the experimental result.

  15. Solidification, growth mechanisms, and associated properties of aluminum-silicon and magnesium lightweight casting alloys

    Science.gov (United States)

    Hosch, Timothy Al

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  16. Flow simulation and solidification phenomena of AC4CH aluminum alloy in semi-solid forging process by explicit MPS method

    Science.gov (United States)

    Regmi, Amit; Shintaku, Hiroki; Sasaki, Tsutomu; Koshizuka, Seiichi

    2015-09-01

    Semi-solid forging (SSF) is a powerful manufacturing technology to fabricate near-net shaped products in automotive industries. During SSF process, the filling behavior and solidification process of AC4CH aluminum alloy is presented in this paper. The explicit MPS method program solving Navier-Stokes equation is coupled with heat transfer and solidification has been used to predict the filling pattern and temperature distribution of semi-solid material (SSM). The non-Newtonian rheological model was used as the constitutive equation of SSM. In this study, numerical analysis of SSF was carried out in box cavity with various flange thickness (4, 8, 12 and 16 mm) and corresponding experiments were undertaken for AC4CH aluminum alloy with solid fraction less than 0.5. The numerical results of SSM filling pattern and solidification phenomena in flange were validated with the experimental results. During solidification process, flow calculation was stopped and only thermal calculation was carried out. The shrinkage defect was well predicted near the lower mid area of the box cavity with flange thickness 16 mm.

  17. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    Science.gov (United States)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  18. In Situ Observation of Solidification Conditions in Pulsed Laser Welding of AL6082 Aluminum Alloys to Evaluate Their Impact on Hot Cracking Susceptibility

    Science.gov (United States)

    von Witzendorff, Philipp; Kaierle, Stefan; Suttmann, Oliver; Overmeyer, Ludger

    2015-04-01

    The influence of laser pulse parameters on solidification conditions and hot crack formation in pulsed laser welding of Al6082 aluminum alloys was studied with the aid of high-speed cameras capturing visible and infrared radiation. Hot cracking was evaluated with respect to strain rate, strain, and metallurgical outcome. The strain rate was approximated by the product of interface velocity and temperature gradient at the interface. The temperature gradient decreases during the course of solidification and followed a specific course. The interface velocity was therefore used as an indicator for the strain rate, which increased in a logarithmic manner with respect to the slope of the laser pulse's cooling time. The accumulated strain was calculated by measuring the spot weld deformation during solidification. Within the heat-conduction welding regime, hot cracking can be reduced by lowering the interface velocity leading to a reduced strain rate and enhanced permeability of the dendritic microstructure. An over-proportional increase of the accumulated strain was observed for keyhole welding, which led to a high susceptibility to hot cracking regardless of the interface velocity. At low interface velocities, hot cracking was induced by extensive hydrogen diffusion at the solid-liquid interface, which promotes crack initiation.

  19. Heat transport and solidification in the electromagnetic casting of aluminum alloys: Part II. Development of a mathematical model and comparison with experimental results

    Science.gov (United States)

    Prasso, D. C.; Evans, J. W.; Wilson, I. J.

    1995-02-01

    In this second article of a two-part series, a mathematical model for heat transport and solidification of aluminum in electromagnetic casting is developed. The model is a three-dimensional one but involves a simplified treatment of convective heat transport in the liquid metal pool. Heat conduction in the solid was thought to play a dominant role in heat transport, and the thermal properties of the two alloys used in measurements reported in Part I (AA 5182 and 3104) were measured independently for input to the model. Heat transfer into the water sprays impacting the sides of the ingot was approximated using a heat-transfer coefficient from direct chill casting; because this heat-transfer step appears not to be rate determining for solidification and cooling of most of the ingot, there is little inaccuracy involved in this approximation. Joule heating was incorporated into some of the computations, which were carried out using the finite element software FIDAP. There was good agreement between the computed results and extensive thermocouple measurements (reported in Part I) made on a pilot-scale caster at Reynolds Metals Company (Richmond, VA).

  20. Solidification shrinkage of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Feng [Materials Interfacial Physical-Chemistry Research Institute, Chongqing Institute of Technology, No. 4 Xingsheng Road, Yangjiaping, Chongqing 400050 (China); Yang Renhui [Materials Interfacial Physical-Chemistry Research Institute, Chongqing Institute of Technology, No. 4 Xingsheng Road, Yangjiaping, Chongqing 400050 (China)]. E-mail: yangrh2004@21cn.com; Fang Liang [Department of Applied Physics, Chongqing University, No. 174 Shazhong Road, Shapingba, Chongqing 400044 (China); Zhang Chi [Materials Interfacial Physical-Chemistry Research Institute, Chongqing Institute of Technology, No. 4 Xingsheng Road, Yangjiaping, Chongqing 400050 (China)

    2006-07-25

    Ni-Cr superalloy is widely used in casting of critical components in gas-turbine engines. Because of the significant change in density of alloy in mushy state, porosity is likely to arise in the alloy parts due to the solidification shrinkage. On the other hand, because Ni-Cr alloy is very hard and difficult to be machined, the net-shape casting of the alloy is a cheap process. Therefore, it is essential to measure the solidification shrinkage of mushy alloy for obtaining low-cost net-shape casting ingot without inner porosity. However, there have been a few reports on the solidification shrinkage of the liquid Ni-Cr alloy. In this work, the solidification shrinkage of Ni-Cr alloy was calculated by measuring its density using modified sessile drop method. It has been found that, for Ni-(0-24.53)% Cr alloys, the solidification shrinkage value fluctuates in the range of 0.91-2.02% and it tends to increase with increasing Cr concentration in 0-10% Cr. However, for Cr concentration more than 10%, the solidification shrinkage holds on a certain value of 2.00%.

  1. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  2. Numerical simulation on melting and solidification process of aluminum-silicon alloy%铝硅合金相变材料凝固/熔化过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    崔海亭; 张改; 蒋静智

    2012-01-01

    利用计算流体力学软件FLUENT的凝固/熔化模型,对双层壁圆筒内填充的铝硅合金相变材料的熔化/凝固过程进行了数值模拟,得到了在第3类边界条件下圆筒内相变材料在凝固/熔化过程中的动态温度场分布、相界面移动规律及凝固/熔化时间等,对蓄热装置的设计及实验研究提供了重要的参考价值.%By using the solidification/melting model of FLUENT software, the melting and solidification process of the aluminum-silicon alloy in a cylinder heat storage with double wall were simulated numerically. Considering the third kind of boundary condition, the dynamic temperature field distribution and the position of the phase interface change moving with time are obtained. And the melting and solidification duration time is also calculated. The results have important reference value for the numerical simulation of the phase change problem and the design of phase change energy storage device.

  3. In-situ observation of porosity formation during directional solidification of Al-Si casting alloys

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    2011-02-01

    Full Text Available In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si was made by using of micro-focus X-ray imaging. In both alloys, small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L interface and then grow and coagulate during solidification. Some pores can float and escape from the solidifying melt front at a relatively high velocity. At the end of solidification, the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy. This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys. The mechanism of the porosity formation is briefly discussed in this paper.

  4. Microstructure Development during Solidification of Aluminium Alloys

    NARCIS (Netherlands)

    Ruvalcaba Jimenez, D.G.

    2009-01-01

    This Thesis demonstrates studies on microstructure development during the solidification of aluminium alloys. New insights of structure development are presented here. Experimental techniques such as quenching and in-situ High-brilliance X-ray microscopy were utilized to study the microstructure evo

  5. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  6. Die Casting Mold Design of the Thin-walled Aluminum Case by Computational Solidification Simulation

    Institute of Scientific and Technical Information of China (English)

    Young-Chan Kim; Chang-Seog Kang; Jae-Ik Cho; Chang-Yeol Jeong; Se-Weon Choi; Sung-Kil Hong

    2008-01-01

    Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1 mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.

  7. Solidification of Al alloys under electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    崔建忠

    2003-01-01

    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  8. Study made of ductility limitations of aluminum-silicon alloys

    Science.gov (United States)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  9. Novel Directional Solidification of Hypermonotectic Alloys

    Science.gov (United States)

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    There are many metal alloy systems that separate into two different liquids upon cooling from a higher temperature. Uniform microstructural development during solidification of these immiscible liquids on Earth is hampered by inherent density differences between the phases. Microgravity processing minimizes settling but segregation still occurs due to gravity independent wetting and coalescence phenomena. Experiments with the transparent organic, metal analogue, succinonitrile-glycerol system were conducted in conjunction with applied ultrasonic energy. The processing parameters associated with this technique have been evaluated in view of optimizing dispersion uniformity. Characterization of the experimental results in terms of an initial modeling effort will also be presented.

  10. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    Science.gov (United States)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  11. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Science.gov (United States)

    Geng, D. L.; Xie, W. J.; Wei, B.

    2012-10-01

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition.

  12. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D.L.; Xie, W.J.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2012-10-15

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition. (orig.)

  13. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  14. Laser treatment of aluminum copper alloys: A mechanical enhancement

    International Nuclear Information System (INIS)

    Aluminum-copper alloys are commonly used as structural components for the car and aircraft industry. They combine low density, high strength, high fracture toughness and good machinability. Moreover, the strength and wear-resistance of the surface of alloys are improved by a high power laser beam. In this way the molten surface will be self-quenched by conduction of heat into the bulk. This technique ensures solidification velocities of 0.01--1 m/s. These high solidification velocities have a significant influence on the size and distribution of the morphology. This work concentrates on Al-Cu alloys, in which the Cu content ranges between 0--40 wt.%, and is aimed at describing the mechanical and microstructural properties of these alloys upon variation of the laser scan velocity in the range of 0.0125 to 0.125 m/s

  15. Fluid flow solidification simulation of molten alloys

    International Nuclear Information System (INIS)

    In an effort to minimize costs and to obtain optimum designs, computer simulation of shape casting processes is more and more used as a development tool. Accurate predictions are possible by means of three dimensional fluid flow and solidification modelling. The bases of the model are the transient laminar Navier-Stokes-equations for a Newtonian fluid including the tracking of the free surface. They are describing the melt flow pattern during the mold filling sequence. Simultaneously, the temperature development in the alloy and mold is calculated using Fourier's heat transfer equation. At OEGI, a commercial software package (MAGMAsoft) with a finite difference equation solver is used for improvement of casting processes. Different examples of industrial applications will be shown. (author)

  16. Quantification of the impact of strontium on the solidification path of the aluminum-silicon-copper alloys using thermal analysis technique; Quantifizierung des Einflusses von Strontium auf den Erstarrungsweg der Aluminium-Silicium-Kupfer-Legierungen mit dem Thermoanalyseverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Mile; Byczynski, Glenn [Nemak Europe, Dillingen (Germany); Schechowiak, Carola; Stieler, Hagen [Nemak Wernigerode (Germany); Pavlovic, Jelena [Magdeburg Univ. (Germany). Inst. fuer Fertigungstechnik und Qualitaetssicherung

    2009-07-01

    The impact of strontium on the solidification path of the AlSi6Cu4 aluminium alloy was examined. Strontium levels up to 210 ppm have been considered. The purpose of this study is: (i) to optimize the amount of strontium additions in AlSi6Cu4 melt in order to achieve the necessary degree of silicon modification and (ii) to observe the effects of strontium level on the other characteristic solidification temperatures of this alloy, with special emphasis on the nucleation temperature of copper rich phases. This investigation showed that a strontium level of approximately 140 ppm was sufficient to modify eutectic morphology of silicon in thermal analysis test samples. Increasing the strontium levels up to 210 ppm raises the nucleation temperature of copper rich phases, leading also to the higher area fraction of those phases. (orig.)

  17. Functions and mechanism of modification elements in eutectic solidification of Al-Si alloys: A brief review

    Directory of Open Access Journals (Sweden)

    Zu Fangqiu

    2014-07-01

    Full Text Available Being used more and more widely in engineering, Al-Si alloys comprise about 80% of all kinds of aluminum alloys, which are the most widely utilized nonferrous alloys. Although most Al-Si alloys consist of multiple components, the eutectics in the structure accounts for 50%-90% of the sum volume of such alloys. Therefore, understanding the modification mechanism and function rules of the Al-Si eutectic solidification is the technical key in controlling the structures and properties of such casting alloys. The present paper chiefly reviews recent investigation developments and important conclusions along the lines of the functions of modification elements and their modification mechanism in the eutectic solidification of Al-Si alloys.

  18. Competitive growth of high purity aluminum grains in directional solidification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiao; SHU Da; WANG De-lin; SUN Bao-de; CHEN Gang

    2006-01-01

    A self-made directional solidification setup was used to prepare high purity aluminum ingots of 100mm in diameter. The morphology of the growth interface was detected by SEM and AFM, and the grain lattice orientation was detected by XRD. The results indicate that the grains suffer competitive growth under any conditions in experiments. The lattice orientation of the preferred grains is determined by the flow field above the solid-liquid interface. The horizontal lattice position does not change during the growth process. However, the lattice orientation in the growth direction varies with the growth velocity and approaches to [100]gradually during the growth process.

  19. Topological dependence of mechanical responses of solidification microstructures in aluminum brazed joints

    Institute of Scientific and Technical Information of China (English)

    GAO Feng(高峰); QIAN Yi-yu(钱乙余); D.P.Sekulic; MA Xin(马鑫); F.Yoshida

    2003-01-01

    The main objective is to provide an evidence of spatial dependence of mechanical responses of a heterogeneous aluminum brazed joint re-solidified clad,and to confirm a sufficient sensitivity of a nano-indentation--load curve method for identifying the dependence.Topological features of a network of solidification microstructures(αphase and eutectic),formed during quench in a brazing process of aluminum alloy,influence significantly dynamic mechanical responses of resulting heterogeneous material.Nano/micro indentation depth vs load characteristics of differing phases suggest a spatially sensitive mechanical response of a re-solidified fillet in the joint zone.Hence,a spatial distribution,pattern formations and other morphological characteristics of microstructures have a direct impact on an ultimate joint integrity.Topology-induced variations of indentation-load curves was presented.A hypothesis involving microstructures'spatial distribution vs mechanical response was formulated.

  20. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  1. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  2. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  3. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  4. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  5. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  6. Evolution of eutectic spacing during unidirectional solidification of Al-Ni alloys

    Directory of Open Access Journals (Sweden)

    Igor Jefferson Cabral Araujo

    2011-01-01

    Full Text Available Hypoeutectic Al-Ni alloys show a ductile phase α distributed with a β phase Al3Ni fragile where β serves as reinforcement of the structure of the material. The eutectic composition alloys obey the relationship: λ2.v = C, where λ is the eutectic spacing, v is a tip growth rate and C is a constant. The aim of this study is to establish correlations between λ and v for hypoeutectic Al-1%, 3% and 5% Ni alloys. Unsteady-state upward directional solidification experiments were performed, as well as metallography, dissolution of the aluminum matrix and scanning electron microscopy (SEM. The interphase spacing of the three Al-Ni alloys decreased with increasing tip growth rate, with a predominance of a rod-like morphology on intermetallic. It was observed that parameters such as tip growth rate, cooling rate and temperature gradient decreases as the solidification front advances. It was further observed that a single experimental law λ = 1.2 v-0, 5 illustrates the evolution of the interphase spacing for any examined alloy.

  7. Effects of High Magnetic Field on Solidification and Corrosion Behaviors of Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCl by measuring electrochemical polarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer.The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the a- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.

  8. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  9. Growth restriction effects during solidification of aluminium alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-wei; HE Zhi; JIE Wan-qi

    2009-01-01

    The effects of solute elements during solidification on the grain size are very important and can be quantified by the growth-restriction parameter Q, and Q possesses the better correlation with the grain size. Based on the constitutional undercooling generated by the growth of an adjacent grain during the initial solidification, the growth-restriction parameter Q is deduced and a comprehensive physical basis of Q is obtained by using an initial solute distributing equation. For the alloys with more potent nucleants, Q is a suitable predictor of the grain size. For less potent nucleants, the relative grain size(RGS) is a more accurate prediction of the grain size. This prediction coincides with the experimental behaviors for Al-Ti and Al-Cu alloys with lower solute content.

  10. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  11. Novel Directional Solidification Processing of Hypermonotectic Alloys

    Science.gov (United States)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  12. Divorced Eutectic Solidification of Mg-Al Alloys

    Science.gov (United States)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  13. Rapid solidification of undercooled Al-Cu-Si eutectic alloys

    Institute of Scientific and Technical Information of China (English)

    RUAN Ying; WEI BingBo

    2009-01-01

    Under the conventional solidification condition,a liquid aluminium alloy can be hardly undercooled because of oxidation.In this work,rapid solidification of an undercooled liquid Al,80.4Cu,13.6Si,6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating.The re-lationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt.The maximum undercooling is 147 K (0.18 TE).The undercooled ternary eutectic is composed of α(Al) solid solution,(Si) semiconductor and β(CuAl,2) intermetallic compound.In the (Al+Si+θ) ternary eutectic,(Si) faceted phase grows independently,while (Al) and θ non-faceted phases grow coopera-tively in the lamellar mode.When undercooling is small,only (Al) solid solution forms as the leading phase.Once undercooling exceeds 73 K,(Si) phase nucleates firstly and grows as the primary phase.The alloy microstructure consists of primary (Al) dendrite,(Al+9) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling,while at large undercooling primary (Si) block,(Al+θ) pseudo-binary eutectic and (Al+Si+θ) ternary eutectic coexist.As undercooling increases,the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases.

  14. Materials data handbook: Aluminum alloy 2219

    Science.gov (United States)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  15. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  16. Grain refining potency of LaB6 on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Pengting; TIAN Wenjie; WANG Dong; LIU Xiangfa

    2012-01-01

    Al-LaB6 alloy was successfully prepared by aluminum melt reaction method.Microstructure analysis of this alloy was carried out by field emission scanning electron microscopy (FESEM),Raman spectroscopy and transmission electron microscopy (TEM).It was found that cubic LaB6 particles were highly dispersed in aluminum matrix with a uniform edge length of about 4.5 μm.Grain refining potency of LaB6 on commercial pure aluminum was also investigated.It was shown that LaB6 could act as an effective and stable nucleation substrate for α-Al during solidification process,due to their crystallographic similarity.The coarse grains of commercial pure aluminum were obviously refined to small equiaxed ones by addition of 0.5% Al-5LaB6 alloy at 720 ℃.

  17. Two-dimensional cellular automaton model for simulating structural evolution of binary alloys during solidification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; ZHANG Cai-bei

    2006-01-01

    Two-dimensional cellular automaton(CA) simulations of phase transformations of binary alloys during solidification were reported. The modelling incorporates local concentration and heat changes into a nucleation or growth function, which is utilized by the automaton in a probabilistic fashion. These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification. The simulated results show that the final morphology during solidification is related with the cooling conditions. The established model can be used to evaluate the phase transformation of binary alloys during solidification.

  18. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  19. Computer modelling of solidification of pure metals and alloys

    CERN Document Server

    Barkhudarov, M R

    1995-01-01

    differencing advection algorithm used in the simulations, the Leith's method is incorporated into the public domain two-dimensional SOLA code. It is shown that the resulting scheme is unconditionally stable despite being explicit. Two numerical models have been developed to describe the volumetric changes during solidification in pure metals and alloys and to predict shrinkage defects in the castings of general three-dimensional configuration. The first model is based on the full system of the Continuity, Navier-Stokes and Enthalpy Equations. Volumetric changes are described by introducing a source term in the Continuity Equation which is a function of the rate of local phase transformation. The model is capable of simulating both volumetric shrinkage and expansion. The second simplified shrinkage model involves the solution of only the Enthalpy Equation. Simplifying assumptions that the feeding flow is governed only by gravity and solidification rate and that phase transformation proceeds only from liquid to...

  20. Phase field simulation of equiaxed solidification in technical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, B. [RWTH-Aachen, Access e.V., Intzestrasse 5, 52072 Aachen (Germany); Eiken, J. [RWTH-Aachen, Access e.V., Intzestrasse 5, 52072 Aachen (Germany); Steinbach, I. [RWTH-Aachen, Access e.V., Intzestrasse 5, 52072 Aachen (Germany)]. E-mail: I.Steinbach@access.rwth-aachen.de

    2006-06-15

    It is shown how the phase field method can be applied to simulate the equiaxed solidification of commercial alloys in technical processes. A multicomponent multiphase field model is coupled to thermodynamic databases. To handle the complex phase diagrams a local quasi-binary extrapolation is applied. Nucleation is treated by statistically distributed seed particles, taking into account the shielding of nucleation sites by recalescence, solute diffusion and growth of solid phases. To reduce computation time it is discussed how three-dimensional phenomena can be approximated by two-dimensional simulations, and the model for latent heat release is adjusted accordingly. As examples, simulations are presented of the commercial Mg-Al-Zn alloy AZ31, a hypereutectic Al-Si-Cu-Mg-Ni piston alloy and AlCu{sub 4}Si{sub 17}Mg.

  1. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  2. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  3. Melting and solidification behavior of Pb–Sn embedded alloy nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Patan Yousaf [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India); Bhattacharya, Victoria [Indian Institute of Science, Department of Materials Engineering (India); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India); Chattopadhyay, Kamanio [Indian Institute of Science, Department of Materials Engineering (India)

    2013-11-15

    Nano-sized bimetallic dispersoids consisting of (Pb) and β-(Sn) phases of eutectic composition (Pb{sub 26.1}Sn{sub 73.9}) embedded in aluminum and Al–Cu–Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, β-(Sn) solid solution co-exist in all the embedded nano-particles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and β-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

  4. Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys

    Science.gov (United States)

    Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo

    2003-01-01

    Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well

  5. Numerical modelling of the binary alloys solidification with solutal undercooling

    Directory of Open Access Journals (Sweden)

    T. Skrzypczak

    2008-03-01

    Full Text Available In thc papcr descrip~ion of mathcmn~icaI and numerical modcl of binay alloy sot idification is prcscntcd. Mctal alloy consisting of maincomponent and solulc is introduced. Moving, sharp solidification rmnt is assumcd. Conaitulional undcrcooling phcnomcnon is tnkcn intoconsidcralion. As a solidifica~ionf ront advances, solutc is rcdistributcd at thc intcrfacc. Commonly, solutc is rejccted into Itlc liquid. whcrcit accumuIatcs into solittc boundary laycr. Depending on thc tcmpcrature gradient, such tiquid may be undcrcoolcd hclow its mclting point,cvcn though it is hot~crth an liquid at thc Front. This phcnomcnon is orten callcd constitutional or soIr~talu ndcrcool ing, to cmphasizc that itariscs from variations in solutal distribution or I iquid. An important conscqucncc of this accurnulntion of saIutc is that it can cause thc frontto brcak down into cclls or dendri~csT. his occurs bccausc thcrc is a liquid ahcad of thc front with lowcr solutc contcnt, and hcncc a highcrme1 ting tcmpcraturcs than liquid at thc front. In rhc papcr locarion and shapc of wndcrcoolcd rcgion dcpcnding on solidification pararnctcrsis discussed. Nurncrical mcthod basing on Fini tc Elelncnt Mctbod (FEM allowi~lgp rcdiction of breakdown of inoving planar front duringsolidification or binary alloy is proposed.

  6. Investigation of solidification dynamics of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2013-07-01

    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  7. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  8. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  9. Superior metallic alloys through rapid solidification processing (RSP) by design

    Energy Technology Data Exchange (ETDEWEB)

    Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  10. Numerical simulation of freckle formation in directional solidification of binary alloys

    Science.gov (United States)

    Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.

    1992-01-01

    A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.

  11. Partially melted zone in aluminum welds -- Liquation mechanism and directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.; Kou, S.

    2000-05-01

    Aluminum Alloy 2219 was welded by gas metal arc welding and the microstructure was examined in the partially melted zone (PMZ), which is a narrow region immediately outside the fusion zone. Extensive liquation was observed at three different locations: at large {theta} (Al{sub 2}Cu) particles, along grain boundaries (GBs) and at numerous isolated points within grains. Liquation was initiated at the eutectic temperature T{sub E}, by the eutectic reaction {alpha} + {theta} {r_arrow} L{sub E} and intensified by further melting, above T{sub E}, of the {alpha} matrix surrounding the eutectic liquid (L{sub E}). The microstructure of the liquated-and-solidified GB material is intriguing. First, the material consisted of a new GB of mostly thin, divorced eutectic and a eutectic-free strip of {alpha} immediately next to it. Second, within an individual grain, the strip was along the top and the side facing the weld. Third, with respect to the weld, the strip was always behind the new GB. These three characteristics point to an important phenomenon, that is, solidification of the liquated GB is directional - upward and toward the weld, as a result of the temperature gradients across the PMZ. A thin, brittle eutectic GB and a soft ductile {alpha} strip side by side are expected to be much weaker than a normal GB before welding.

  12. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  13. Microstructural Development during Directional Solidification of Peritectic Alloys

    Science.gov (United States)

    Lograsso, Thomas A.

    1996-01-01

    A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences

  14. The Solidification Velocity of Undercooled Nickel and Titanium Alloys with Dilute Solute

    Science.gov (United States)

    Algoso, Paul R.; Altgilbers, A. S.; Hofmeister, William H.; Bayuzick, Robert J.

    2003-01-01

    The study of solidification velocity is important for two reasons. First, understanding the manner in which the degree of undercooling of the liquid and solidification velocity affect the microstructure of the solid is fundamental. Second, there is disagreement between theoretical predictions of the relationship between undercooling and solidification velocity and experimental results. Thus, the objective of this research is to accurately and systematically quantify the solidification velocity as a function of undercooling for dilute nickel-and titanium-based alloys. The alloys chosen for study cover a wide range of equilibrium partition coefficients, and the results are compared to current theory.

  15. Solidification Processing of Te–Sb–Pb Alloys For Thermoelectric Applications

    OpenAIRE

    Ikeda, Teruyuki; Azizgolshani, Hesham; Haile, Sossina; Snyder, G. Jeffrey; Ravi, Vilupanur

    2005-01-01

    A solidification processing approach to the refinement of lead-tellurium-antimony alloy microstructure is described. Liquid alloys with eutectic, hyper-eutectic and hypo-eutectic compositions (relative to lead) were cooled to the solid state in three distinct ways, i.e. by water quenching, air cooling and furnace cooling. The structures of the alloys resulting from the three different solidification paths were examined using electron microscopy and the micrographs were quantified. Classical s...

  16. Effect of partition coefficient on microsegregation during solidification of aluminium alloys

    Institute of Scientific and Technical Information of China (English)

    MH Avazkonandeh-Gharavol; M Haddad-Sabzevar; H Fredriksson

    2014-01-01

    In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum-copper alloys. The sam-ples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidifica-tion. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experi-mental profiles, compared to those calculated using the equilibrium partition coefficients.

  17. [The corrosion resistance of aluminum and aluminum-based alloys studied in artificial model media].

    Science.gov (United States)

    Zhakhangirov, A Zh; Doĭnikov, A I; Aboev, V G; Iankovskaia, T A; Karamnova, V S; Sharipov, S M

    1991-01-01

    Samples of aluminum and its alloys, designed for orthodontic employment, were exposed to 4 media simulating the properties of biologic media. The corrosion resistance of the tested alloys was assessed from the degree of aluminum migration to simulation media solutions, which was measured by the neutron activation technique. Aluminum alloy with magnesium and titanium has shown the best corrosion resistance. PMID:1799002

  18. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  19. Solidification mechanism of highly undercooled metal alloys. [tin-lead and nickel-tin alloys

    Science.gov (United States)

    Shiohara, Y.; Chu, M. G.; Macisaac, D. G.; Flemings, M. C.

    1982-01-01

    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation.

  20. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  1. First analysis of a numerical benchmark for 2D columnar solidification of binary alloys

    OpenAIRE

    Arquis, Eric; Bellet, Michel; Combeau, Hervé; Fautrelle, Yves; Gobin, Dominique; Budenkova, Olga; Dussoubs, Bernard; Duterrail, Yves; Kumar, Arvind; Mosbah, Salem; Rady, Mohamed; Gandin, Charles-André; Goyeau, Benoit; Zaloznik, Miha

    2011-01-01

    During the solidification of metal alloys, chemical heterogeneities at the product scale (macrosegregation) develop. Numerical simulation tools are beginning to appear in the industry, however their predictive capabilities are still limited. We present a numerical benchmark exercise treating the performance of models in the prediction of macrosegregation. In a first stage we defined a "minimal" (i.e. maximally simplified) solidification model, describing the coupling of the solidification of ...

  2. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  3. Solidification of hypermonotectic Al-In alloys under microgravity conditions

    Science.gov (United States)

    Potard, C.

    1982-01-01

    Four samples of the Al-In system having monotectic and hypermonotectic compositions that were solidified under microgravity during the NASA-SPAR IX flight of January 20, 1981, are considered. The experimental thermal and physicochemical conditions that were actually achieved are analyzed. Radiographic and metallographic observations of the samples reveal a nonregular dispersed primary phase inside the monotectic matrix. These observations are discussed in relation to capillarity and solidification aspects. A key finding is the preservation of a certain degree of dispersion of the indium primary phase. This result differs fundamentally from the results obtained under microgravity conditions on the same system and compositions (Gelles and Markworth, 1980; Alborn and Loehberg, 1979). The results are seen as clearly establishing that the space environment can be used to obtain dispersed structures from hypermonotectic alloys.

  4. Modelling of binary alloy solidification in the MEPHISTO experiment

    Science.gov (United States)

    Leonardi, Eddie; de Vahl Davis, Graham; Timchenko, Victoria; Chen, Peter; Abbaschian, Reza

    2004-05-01

    A modified enthalpy method was used to numerically model experiments on solidification of a bismuth-tin alloy which were performed during the 1997 flight of the MEPHISTO-4 experiment on the US Space Shuttle Columbia. This modified enthalpy method was incorporated into an in-house code SOLCON and a commercial CFD code CFX; Soret effect was taken into account by including an additional thermo-diffusion term into the solute transport equation and the effects of thermal and solutal convection in the microgravity environment and of concentration-dependent melting temperature on the phase change processes were also included. In this paper an overview of the results obtained as part of MEPHISTO project is presented. The numerical solutions are compared with actual microprobe results obtained from the MEPHISTO experiment. To cite this article: E. Leonardi et al., C. R. Mecanique 332 (2004).

  5. Galvanic aspects of aluminum sacrificial anode alloys in seawater.

    OpenAIRE

    Cummings, Jon Richard

    2012-01-01

    Galvanic aspects of aluminum sacrificial anode alloys in artificial seawater were investigated. Specifically, two mercury-bearing alloys and one tin-bearing alloy were studied. The polarization behavior of the aluminum sacrificial anode alloys coupled to HY-80 steel is discussed. Current versus time curves were obtained for aluminum/steel galvanic couples immersed in artificial seawater for specific intervals. Scanning elecron microscopy was used to characterize the anode dissolution patt...

  6. Effect of chemical composition and cooling conditions on solidification hot cracking of Ni-based alloys

    International Nuclear Information System (INIS)

    Ni-based alloys 690 present solidification hot cracks during welding of vapour generators. Hot cracks are qualitatively known to be due to the formation of inter-dendritic liquid films and of secondary phases down to low temperatures. This study aims at establishing the link between thermodynamics, solidification and hot cracking. Experimental solidification paths of high purity alloys (with varying Nb and Si contents) are obtained from quenching during directional solidification and TIG-welding experiments. They are compared to Thermo-Calc computations, assuming no diffusion in the solid. From directional solidification samples, good agreement between computed and experimental solidification paths is shown in the quenched liquid. Secondary arms of dendrites are affected by solid state diffusion of Nb. Combined effect of diffusion and solute build-up in the liquid phase modifies micro-segregation in the solid region. Solidification paths from welding specimens are similar to those of the solid region of quenched samples. Nb solid state diffusion is negligible but undercooling compensates the effect of solid state diffusion in directional solidification. Evolution of liquid fraction at the end of the solidification is in accordance with the hot cracking classification of the alloys. Nb favours formation of inter-dendritic liquid films and eutectic-like phases down to low temperature. (author)

  7. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  8. Microstructure Characteristics of Ni-Nb Near Eutectic Alloy during EBFZM Directional Solidification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the zone melting rate on the microstructure has also been studied.

  9. Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics

    Science.gov (United States)

    Minakov, A. V.; Pervukhin, M. V.; Platonov, D. V.; Khatsayuk, M. Yu.

    2015-12-01

    A complex mathematical model of aluminum casting and solidification in a variable electromagnetic field is constructed. The model is based on the solution of magnetohydrodynamic equations and the VOF method. Test results are presented for the model and the numerical algorithm proposed. The numerical results are compared with experimental data and computations of other authors and are found to be in good agreement. The model is used to simulate aluminum solidification under an electromagnetic field. The physical processes influencing ingot formation are analyzed.

  10. Solidification of binary alloy in a finned enclosure from the bottom

    Energy Technology Data Exchange (ETDEWEB)

    Tan, F.L. [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore)

    2009-01-15

    This paper presents experimental findings on the phenomenon of solidification of a binary alloy in a finned enclosure using aqueous ammonium chloride solution. Solidification experiments are carried out over a wide range of initial composition of binary alloy solution from hypoeutectic to hypereutectic concentration ranging from 8, 16 and 24% of ammonium chloride are discussed. An interesting ''snowing'' phenomenon is observed for the hypereutectic concentration in a finned enclosure. (orig.)

  11. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  12. Development on research of advanced rare-earth aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    聂祚仁; 金头男; 邹景霞; 付静波; 杨军军; 左铁镛

    2003-01-01

    The active mechanisms of rare earth element erbium ( Er ) in part of aluminum alloys were investigated. Based on the investigation of the effect of the unitary rare earth elements (Er, La, Y, Ce, Nd, Gd, and Sc) and the transition element zirconium on the aluminum alloys, it is concluded that, with Er alloyed, high purity aluminum and Al-Mg alloys are featured with refined grain structure, superior heat stability and even higher hardness or tensile strength with unchanged ductility; but Er is not beneficial to the mechanical property of Al-Cu alloy, so is Sc. It may also be concluded, to most of the aluminum alloys, Er can be an effective alloying element, like Sc; and for the lower price of Er, the cost of modifying aluminum alloys by Er will be reduced.

  13. A Model for Evaluation of Grain Sizes of Aluminum Alloys with Grain Refinement Additions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the assumption that the nucleation substrates are activated by constitutional undercooling generated by an adjacent grain growth and solute distribution during the initial solidification, a model for calculation of the grain size of aluminum alloys with the grain refinement is developed, where the nucleation is dominated by two parameters, I.e. Growth restriction factor Q and the undercooling parameter P. The growth restriction factor Q is proportional to the initial rate of constitutional undercooling development and can be used directly as a criterion of the grain refinement in the alloys with strong potential nucleation particles. The undercooling parameter P can be regarded as the maximum of constitutional undercooling △TC. For weak potential nucleation particles, the use of RGS would be more accurate. The experimental data of the grain refinement of pure aluminum and AISi7 alloys are coincident predicted results with the model.

  14. Microstructures, micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy

    Directory of Open Access Journals (Sweden)

    Liang-shun Luo

    2016-03-01

    Full Text Available To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb (at.% alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated. The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm•s-1 under the temperature gradients of 15-20 K•mm-1, and the primary phase is transformed into an α phase at relatively higher growth rates (V >20 μm•s-1. The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm•s-1 under a temperature gradient of 15 K•mm-1. The increase of temperature gradient to 20 K•mm-1 can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as , in which βR and γR mean the residual β and γ.

  15. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  16. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  17. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy.

    Science.gov (United States)

    Siquieri, R; Doernberg, E; Emmerich, H; Schmid-Fetzer, R

    2009-11-18

    In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al(3)Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.

  18. Numerical simulation on directional solidification of Al-Ni-Co alloy based on FEM

    Directory of Open Access Journals (Sweden)

    Yang Zhili

    2010-02-01

    Full Text Available The ratio, of the temperature gradient at the solidification front to the solidification rate of solid-liquid interface, plays a large part in columnar grain growth. The transient temperature fields of directional solidification of Al-Ni-Co alloy were studied by employing a finite element method. The temperature gradient at the solidification front and the solidification rate were analyzed for molten steels pouring at different temperatures. The results show that with different initial pouring temperatures, the individual ratio of the temperature gradient at solidification front to the solidification rate soars up in the initial stage of solidification, then varies within 2,000-6,000 ℃·s·cm-2, and finally goes down rapidly and even tend to be closed to each other when the solidification thickness reaches 5-6 cm. The simulation result is consistent with the practical production which can provide an available reference for process optimization of directional solidified Al-Ni-Co alloy.

  19. Torsional Stability of Aluminum Alloy Seamless Tubing

    Science.gov (United States)

    Moore, R L; Paul, D A

    1939-01-01

    Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.

  20. Deuterium transport and trapping in aluminum alloys

    International Nuclear Information System (INIS)

    A simple model of diffusion and evolution of the density of deuterium in metals is presented. A model of the deuterium evolution in the presence of uniform and nonuniform distributions of traps, as well as perfectly reflecting and partially permeable boundary conditions is discussed. Computers are compared with experimental results describe deuterium distribution after fatigue crack growth of 2219 and 7075 aluminum alloys in a D2O water vapor environment and after ion implantation

  1. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    S Rusu; A Buzaianu; D G Galusca; L Ionel; D Ursescu

    2013-11-01

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, femtolaser marking has been carried out, besides the standard commercial nanosecond engraving. All the marks have been analysed using profilometry, overhead and cross-section SEM microscopy, respectively and EDAX measurements.

  2. Solidification microstructure selection of the peritectic Nd-Fe-B alloys

    Institute of Scientific and Technical Information of China (English)

    ZHONG Hong; LI ShuangMing; L(U) HaiYan; LIU Lin; ZOU GuangRong; FU HengZhi

    2007-01-01

    Bridgman directional solidification and laser remelting experiments were carried out on Nd11.76Fe82.36B5.88 and Nd13.5Fe79.75B6.75 alloys. Microstructure evolutions along with solidification parameters (temperature gradient G, growth velocity V and initial alloy composition C0) were investigated. A solidification microstructure selection map was established, based on the consideration of solidification characteristics of peritectic T1 phase. In Bridgman directional solidification experiments, with the increasing growth velocities, the morphology of T1 phase changed from plane front or faceted plane front to dendrites. In laser remelting experiments, a transition from primary γ-Fe dendrites to T1 dendrites was found. Theoretical predictions are in good agreement with experimental results.

  3. Solidification microstructure selection of the peritectic Nd-Fe-B alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bridgman directional solidification and laser remelting experiments were carried out on Nd11.76Fe82.36B5.88 and Nd13.5Fe79.75B6.75 alloys.Microstructure evolutions along with solidification parameters(temperature gradient G,growth velocity V and initial alloy composition C0)were investigated.A solidification microstructure selection map was established,based on the consideration of solidification characteristics of peritectic T1 phase.In Bridgman directional solidification experiments,with the increasing growth velocities,the morphology of T1 phase changed from plane front or faceted plane front to dendrites.In laser remelting experiments,a transition from primary γ-Fe dendrites to T1 dendrites was found.Theoretical predictions are in good agreement with experimental results.

  4. Thermal coatings for titanium-aluminum alloys

    Science.gov (United States)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  5. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  6. China’s Aluminum Alloy Cable Market has Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aluminum alloy cable is a mature product and technology that has been used for nearly fifty years in the U.S.Through six years’promotion,it has been widely recognized and accepted in the China market since 2013,which laid the foundation for the development of the aluminum alloy cable market.Aluminum alloy cable is widely applied in the fields of civil construction and industrial and mining enterprises,especially in real estate,steel and metallurgy.

  7. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  8. Influence of solidification rate on microstructure of gravity cast AZ91 magnesium alloy

    Directory of Open Access Journals (Sweden)

    K.N. Braszczyńska-Malik

    2010-01-01

    Full Text Available Derivative thermal (ATD and microstructure analyses of gravity cast AZ91 magnesium alloy are presented. The alloy was cast into cold steel and sand moulds with the same dimensions. ATD curves – solidification curves and their first derivative – are presented. The investigated alloy exhibited a strong alloying elements segregation and the presence of solid solution and (Mg17Al12 eutectic mixture. Discontinuous precipitates of phase were also observed in the microstructure of AZ91 cast into sand mould.

  9. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  10. Technique of Aluminum Alloy Composite by Inversion Casting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the temperature of liquid aluminum alloy, the dipping time in liquid alloy and the thickness of base strips on the solidified layer was studied during the process of producing aluminum alloy composite strips used in automobile radiator with inversion casting. It is concluded that there is welding as well as diffusion of alloying elements between the base strip and the coating. Experiments proved that the interface has a good bonding.

  11. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  12. Numerical simulation on rapid melting and nonequilibrium solidification of pure metals and binary alloys

    Institute of Scientific and Technical Information of China (English)

    惠希东; 陈国良; 杨院生; 胡壮麒

    2002-01-01

    A heat and mass transfer modelling containing phase transformation dynamics is made for pure metals and binary alloys under pulsed laser processing. The nonequilibrium effects of processing parameters and physical properties are evaluated on the melting and solidification of pure metals (Al, Cu, Fe and Ni) and Al-Cu alloys. It is shown that the energy intensity of laser beam and physical properties of metals and the solute concentration of alloys have important effect on the interface temperature, melting and solidification velocity, melting depth and non-equilibrium partition coefficient. This situation is resulted from the interaction of heat transfer, redistribution of solute, solute trapping and growth kinetics.

  13. Study on the solidification microstructure in AZ91D Mg alloy after laser surface melting

    International Nuclear Information System (INIS)

    Laser surface melting (LSM) is known to enhance the wear and corrosion resistance of Mg alloys, but its effect on microstructural evolution of Mg alloys is not well understood. An effort has been made to study the effect of rapid solidification following LSM on the microstructural evolution of AZ91D Mg alloy. The results of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy indicated that the solidification microstructure in the laser-melted zone was mainly cellular/dendrite structure of primarily α-Mg phase and continuous network of β-Mg17Al12 phase. Numerical prediction of the laser-melted zone suggested that cooling rates increased strongly from the bottom to the top surface in the irradiated regions. An attempt has been made to correlate dendrite cell sizes of the solidification microstructure with the cooling rates in the laser-treated AZ91D Mg alloy.

  14. Modelling of solidification processing and continuous strip casting for copper-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Jafar [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Processing

    2000-04-01

    An experimental and numerical study was carried out to investigate the solidification process in a copper continuous strip casting process. Heat flow and solidification process has been experimentally studied. Cooling curves during solidification were registered using a thermocouple of type K connected to a data acquisition system. Temperature measurements in the mould and cooling water were also performed. The numerical model considers a generalized set of mass, momentum and heat equations that is valid for the solid, liquid and solidification interval in the cast. A k-{epsilon} turbulence model, produced with the commercial program CFX, is used to analyse the solidification process of pure copper in the mould region of the caster. The fluid flow, temperature and heat flux distributions in the mould region of the caster were computed. The shape and location of the solidification front were also determined. The effects of the parameters such as heat transfer coefficient, casting speed, casting temperature, heat of fusion and specific heat on the shape and location of the solidification front and the heat transport at the mould-cast interface were investigated. The predicted temperature and heat flux distributions were compared with experimental measurements, and reasonable agreement was obtained. The solidification behaviour of pure copper and different copper base alloys has been studied. A series of solidification experiments using DTA furnace, mirror furnace and levitation technique were performed on different copper-base alloys. The undercooling, cooling rates of the liquid and the solid states, solidification times and temperatures were evaluated from the curves. The cooling curves for different samples were simulated using a FEM solidification program. It was found that the calculated values of the heat of fusion were much lower than the tabulated ones. The fraction of solid formed before quenching, in the DTA experiments, has been observed to be much higher

  15. Laser perforation of aluminum alloy sheet

    Science.gov (United States)

    Migliore, Leonard; Nazary, George

    2010-02-01

    Recent advances in the design of gain modules for diode-pumped solid-state lasers have allowed the manufacture of high-powered Q-switched products. The high available pulse energy and good mode quality enable highly efficient harmonic conversion, enabling the generation of several hundred watts of average power at a wavelength of 532nm. Among the applications for which this class of product may be suited is the rapid drilling of small-diameter holes in aluminum sheet. To investigate this application, plates of several aluminum alloys were drilled under a variety of conditions. The drilled plates were sectioned and subjected to analysis by optical metallography. The initial results indicate ways in which the process may be optimized.

  16. In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

    Science.gov (United States)

    Sediako, Dimitry G.; Kasprzak, Wojciech

    2015-09-01

    Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

  17. Front tracking in the numerical simulation of binary alloy solidification

    Science.gov (United States)

    Simpson, James Edward

    2000-12-01

    A model for directional solidification in dilute binary alloys is presented. The energy equation is solved for the temperature field, while the species equation is solved for the solute distribution. Either the vorticity-vector potential formulation or the pressure-velocity formulation is used to solve the governing equations for the velocity field. The constitutive equations are solved using a fully transient scheme. A variety of fast numerical schemes for solving sparse systems are used in the solution procedure. A single domain approach is used for the solution scheme for the energy and concentration equations. The effects of phase-change (energy equation) and solute rejection at the advancing solid/liquid interface (concentration equation) are handled via the introduction of appropriate source terms. The numerical approach was validated by comparing numerical results to data from a series of experiments of the Bridgman growth of pure succinonitrile. These experiments were performed as part of this work and are explained in detail. The numerical results agree well with the experimental data in terms of interface shape, temperature and velocity data. The key contribution of this work is the investigation of the Bridgman crystal growth of bismuth-tin in support of NASA's MEPHISTO project. The simulations reported in this work are among the first fully transient simulations of the process; no simplifying steady state approximations were used. Results are obtained for Bi-Sn alloys at a variety of initial concentrations and gravity levels. For most of the work, the solid/liquid interface temperature is assumed to be constant. For the richer alloy (Bi-1.0 at.% Sn) the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. At lower gravity levels, convection-induced segregation is

  18. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.G.

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100--1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  19. Structural and physicomechanical properties of directionally crystallized aluminum-silicon alloys

    Science.gov (United States)

    Nikanorov, S. P.; Derkachenko, L. I.; Kardashev, B. K.; Korchunov, B. N.; Osipov, V. N.; Shpeizman, V. V.

    2013-06-01

    Aluminum-silicon alloys (from 8 to 25 wt % Si) have been prepared by directional crystallization of shaped samples by the Stepanov growth at a solidification rate of 103 μm s-1. The dependences of the microhardness, Young's modulus, internal friction, yield stress, and ultimate tensile stress of the alloys on the silicon content have been studied. It has been shown that the ultimate tensile stress has a maximum, and the yield stress has a kink at 15 wt % Si; the composition corresponds to the eutectic composition at the solidification rate used. The silicon content in the eutectics increases with an increase in the solidification rate. The increase in the ultimate tensile stress is explained by an increase in the volume fraction of the more strength fine-crystalline structure of the eutectics as a result of the decrease in the volume fraction of more plastic dendrites of the primary crystals of the α-Al solid solution. The decrease in the ultimate tensile stress of the hypereutectic alloy is determined by the increase in the volume fraction of brittle primary silicon crystals of various shapes.

  20. Modeling of Alternative Compositions of Recycled Wrought Aluminum Alloys

    Science.gov (United States)

    Kevorkijan, Varužan

    2013-08-01

    Nowadays, a significant part of postconsumed wrought aluminum scrap is still used for the production of comparatively cheaper cast alloys, in that way losing an important part of the potential added value. The share of postconsumed scrap in wrought aluminum alloys could be increased either by sorting to fractions with the required chemical composition and/or by broadening the standard compositional tolerance limits of alloying elements. The first solution requires hand or automatic sorting of postconsumed scrap as alloys or groups of alloys to the degree of separation sufficient to enable the blending of standard compositions of wrought alloys; the second solution is much more radical, predicting changes in the existing standards for wrought aluminum alloys toward nonstandard alloys but yet having properties acceptable for customers. In this case, the degree of separation of incoming postconsumed scrap required is much less demanding. The model presented in this work enables the design of optimal (standard and nonstandard recycling-friendly) compositions and properties of wrought aluminum alloys with significantly increased amounts of postconsumed scrap. The following two routes were modeled in detail: (I) the blending of standard and nonstandard compositions of wrought aluminum alloys starting from postconsumed aluminum scrap sorted to various degrees simulated by the model and (II) changing the initial standard composition of wrought aluminum alloys to nonstandard "recycling-friendly" ones, with broader concentration tolerance limits of alloying elements and without influencing the selected alloy properties, specified in advance. The applied algorithms were found to be very useful in the industrial design of both procedures: (I) the computation of the required chemical composition of the scrap streams obtained by sorting (or, in other words, the postconsumed scrap sorting level), necessary for achieving the standard wrought alloy composition and (II) the

  1. Numerical calculation on temperature field of FGH95 alloy droplet during rapid solidification

    Institute of Scientific and Technical Information of China (English)

    Huanming Chen; Benfu Hu

    2003-01-01

    The temperature field of FGH95 alloy droplet atomized by plasma rotating electrode processing (PREP) during solidifica-tion has been calculated through numerical analysis based on equivalent sensible heat capacity method. And thus the relational cul-ves among temperature gradient of solid-liquid interface, moving velocity of solid-liquid interface and solid fraction during solidifi-cation have been presented. The results indicate that the relation between average temperature gradient of solid-liquid interface anddroplet size, and the relation between average moving velocity of solid-liquid interface and droplet size can be expressed during solidification.

  2. Melt Flow Control in the Directional Solidification of Binary Alloys

    Science.gov (United States)

    Zabaras, Nicholas

    2003-01-01

    Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.

  3. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  4. Review of the Maxus 8 Sounding Rocket Experiment to Investigate Solidification in a Ti-Al-Nb Alloy

    OpenAIRE

    Mooney, Robin; Browne, David; Budenkova, Olga; Fautrelle, Yves R; Froyen, Ludo; Kartavykh, Andrey; Rex, Stephan; Schmitz, Burkhard; Voss, Daniella; McFadden, Shaun

    2011-01-01

    A review of the MAXUS 8 sounding rocket microgravity experiment to investigate solidification structures in a Ti-Al-Nb intermetallic alloy is presented. The experiment was part of the Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS) EU FP6 project. Key objectives were to investigate columnar and equiaxed solidification, and to achieve Columnar-to-Equiaxed Transition (CET) in the alloy. A microgravity experiment was designed to achieve this using a con...

  5. The Elastic Constants for Wrought Aluminum Alloys

    Science.gov (United States)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  6. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    Science.gov (United States)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  7. Processing of Aluminum Alloys Containing Displacement Reaction Products

    OpenAIRE

    Stawovy, Michael Thomas

    1998-01-01

    Aluminum and metal-oxide powders were mixed using mechanical alloying. Exothermic displacement reactions could be initiated in the powders either by mechanical alloying alone or by heat treating the mechanically alloyed powders. Exponential relationships developed between the initiation time of the reaction and the mechanical alloying charge ratio. The exponential relationships were the result of changes in the intensity and quantity of collisions occurring during mechanical alloying. Di...

  8. Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219

    Science.gov (United States)

    Brice, Craig A.; Dennis, Noah

    2015-05-01

    Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.

  9. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  10. The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhenzhong CHEN; Ping HE; Liqing CHEN

    2007-01-01

    Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high AK region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.

  11. The effects of solidification and atomization on rare-earth alloys

    Science.gov (United States)

    Anderson, Iver E.; Osborne, M. G.; Ellis, T. W.

    1996-03-01

    This article discusses the results of experiments involving the application of atomization techniques to the production of three selected rare-earth intermetallic (REI) materials. High-pressure gas atomization and centrifugal atomization into a rotating quench bath have been used to process the alloys. Rapid-solidification processing by atomization techniques is of great benefit since optimum performance of these REI materials demands chemical and structural homogeneity. The results demonstrate that such careful solidification microstructure control is required if the benefits of REI-alloy properties are to be realized with maximum processing efficiency.

  12. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    Science.gov (United States)

    Du, Qiang; Li, Yanjun

    2015-06-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.

  13. Fundamentals of Alloy Solidification Applied to Industrial Processes

    Science.gov (United States)

    1984-01-01

    Solidification processes and phenomena, segregation, porosity, gravity effects, fluid flow, undercooling, as well as processing of materials in the microgravity environment of space, now available on space shuttle flights were discussed.

  14. Eutectic Solidification in Al-13.0%Si Alloys with Combined Addition of Strontium and Boron

    Institute of Scientific and Technical Information of China (English)

    Hengcheng Liao; Ke Ding; Juanjuan Bi; Min Zhang; Huipin Wang; Lei Zhao

    2009-01-01

    The influence of addition of boron (B) on eutectic solidification in a near-eutectic AI-13.0%Si alloy modified with strontium (Sr) was investigated using thermal analysis and macro/microstructure observation. Addition of B in the Sr-modified alloy leads to a considerable increase in nucleation temperature (Tn, the minimum temperature prior to recalescence (TM) and growth temperature (TG). In the Sr-modified alloy, nucleation of eutectic might originate at the heterogeneous sites on the mold wall or in the melt near the wall, and eutectic solidification proceeds gradually towards the center, controlled by undercooling of melt. However, with addition of B in the Sr-modified alloy, undercooling required for eutectic nucleation became small, and hence eutectic solidification might occur almost simultaneously within whole casting, controlled by amount of heterogeneous sites. With excessive addition of B in the Sr-modified alloy, nucleation of eutectic grains was explosive within the whole casting and the power of Sr on eutectic solidification was completely poisoned.

  15. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    Science.gov (United States)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  16. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-08-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  17. Some effects of solidification kinetics on microstructure formation in aluminium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2005-12-15

    The development of rapid solidification technologies and their effects has provided a stimulus to seek a deeper understanding of the mechanisms by which kinetics determine solidification microstructure formation, including its scale, morphology and phase constitution. Successful application of model predictions to real situations involves coupling of heat and fluid flow considerations to the thermodynamics and kinetics of competing solidification reactions. A key element in this competition is the formation temperature of the contending constituents and their morphologies which is beyond the present scope of experimental determination at the extremes of most rapid solidification processes. The present contribution focuses on recent work on measurements of formation temperature of constituents in Al-based alloys during Bridgman solidification for comparison with model predictions. Together with associated microstructural observations, the results indicate control by heterogeneous nucleation in the case of polygonal primary silicon in hypereutectic Al-Si alloys, while competitive growth is controlling for aluminide dendrites in Al-Fe, Al-Ni and Al-Ce or Al-La alloys, for which measured tip undercoolings accord well with values calculated from dendrite growth models. Also, values of equilibrium eutectic temperature obtained by extrapolation to zero growth velocity of growth temperatures in such systems agree well with reliable values obtained by other methods and values of kinetic constants for dendrites and eutectics derived from measured velocities for extinction of the dendritic constituent are shown to be in good accord with direct measurements.

  18. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  19. Alkaline oxide conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  20. Numerical simulation of continuous roll-casting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    XIE Shui-sheng; YANG Hao-qiang; HUANG Guo-jie

    2006-01-01

    In order to improve the strip quality of continuous roll-casting process (CRP) of aluminum alloy, the investigations of the flow behavior within the metal pool, the heat transfer condition between roll and strip, the pouring temperature of molten alloy, the roll-casting speed and the control of the position of solidification final point are important. The finite volume method was applied to the analysis of the continuous roll-casting process. A two-dimensional incompressible non-Newtonian fluid flow with heat transfer was considered, which was described by the continuity equation, the Navier-Stokes equation and the energy equation. With this mathematical model, the flow patterns, temperature fields and solid fraction distributions in the metal pool between two rolls were simulated. From the calculated results, the effects of technical parameters to the position of solidification final point are obtained.The simulated results show that the roll-casting speed and pouring temperature have an enormous effect on the temperature distribution and the position of solidification final point.

  1. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    Directory of Open Access Journals (Sweden)

    BALASUBRAMANIAN.K

    2011-01-01

    Full Text Available The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot cracking. In this work, an attempt is made to reduce the hot cracking and to refine the fusion zone grains in welding of aluminum alloys through vibratory treatment. The material used for the investigation is AA7075 aluminum alloy, which is highly prone for hot cracking. Vibratory treatment was carried out in the frequency range of 100Hz to 2050Hz. Weldments made with and without vibratory treatment were compared using weld cracking tests and other characterization tests like micro structural analysis, hardness measurements. Test results show that by applying vibratory treatment, hot cracking can be largely controlled in arc welding.

  2. XRMON-SOL: Isothermal equiaxed solidification of a grain refined Al-20 wt%Cu alloy

    Science.gov (United States)

    Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Zimmermann, G.; Melville, N.; Browne, D. J.

    2016-04-01

    A novel isothermal solidification furnace (XRMON-SOL) has been developed for operation under terrestrial and microgravity conditions, using aluminium-based alloys, in conjunction with real-time in situ X-radiography. The furnace is scheduled to fly on board the MASER 13 Sounding Rocket with a view to investigating isothermal equiaxed solidification under microgravity conditions. The present work provides details of the furnace design as well as detailed analysis of pre-flight terrestrial solidification experiments investigating nucleation and growth characteristics of a thin sample of grain refined Al-20 wt%Cu alloy isothermally solidified at a constant cooling rate of -0.05 K/s. Measurements of nucleation density, nucleation undercooling, grain orientation, grain envelope evolution, primary tip growth velocities, and equiaxed grain interactions are provided. Although the effects of gravity were minimised by choice of sample orientation, we show that such effects can only be eliminated in a microgravity environment.

  3. Experimental study on directional solidification of Al-Si alloys under the influence of electric currents

    Science.gov (United States)

    Räbiger, D.; Zhang, Y.; Galindo, V.; Franke, S.; Willers, B.; Eckert, S.

    2016-07-01

    The application of electric currents during solidification can cause grain refinement in metallic alloys. However, the knowledge about the mechanisms underlying the decrease in grain size remains fragmentary. This study considers the solidification of Al-Si alloys under the influence of electric currents for the configuration of two parallel electrodes at the free surface. Solidification experiments were performed under the influence of both direct currents (DC) and rectangular electric current pulses (ECP). The interaction between the applied current and its own induced magnetic field causes a Lorentz force which produces an electro-vortex flow. Numerical simulations were conducted to calculate the Lorentz force, the Joule heating and the induced melt flow. The numerical predictions were confirmed by isothermal flow measurements in eutectic GaInSn. The results demonstrate that the grain refining effect observed in our experiments can be ascribed solely to the forced melt flow driven by the Lorentz force.

  4. Solidification Features of Ti45Al Alloys with Different Boron Addition

    Institute of Scientific and Technical Information of China (English)

    Weidong Wang; Yingche Ma; Bo Chen; Ming Gao; Kui Liu; Yiyi Li

    2009-01-01

    The effects of boron on the solidification behaviors of Ti45AlxB alloys were studied by high temperature samples. These samples were melted at 1823 K, followed by cooling to the designated temperature, and then quickly water-quenched to preserve the solidification features. Optical microscopy and scanning electron microscopy analysis shows that the solidus temperature of Ti45AI was really reduced by 20 K when adding 0.8 at. pct B, and it was also observed that boride precipitated before the appearance of β phase. Besides, solidification structure confirmed that B addition does not obviously refine β phase, α grain refinement by certain amount of B in alloy probably clarifies the mechanism of B refining lamellar microstructure at room temperature.

  5. Finite element simulations of thermosolutal convection in vertical solidification of binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.

    1989-01-01

    Dendritic vertical solidification of a binary alloy is modeled using the finite element method to assess the effect of thermosolutal convection in macrosegregation. The mathematical model assumes steady-state solidification with a planar, undeformable surface defined by the dendrite tips and the eutectic isotherm. The dendritic region is assumed to advance at a constant solidification velocity v. The stability of the modeled system has been investigated and nonlinear calculations performed that show finger-like convection when the system is unstable. Results for lead-tin alloys show that when the system is unstable, convection is only significant in the uppermost part of the mush and is entirely driven by convection in the bulk fluid.

  6. Directional solidification studies in Ni-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je-hyun

    1993-05-01

    Three solid phases are involved in the phase equilibria of the intermetallic compound Ni{sub 3}Al near its melting point, {beta}, {gamma}{prime}(Ni{sub 3}Al), and {gamma}. The generally-accepted phase diagram involves a eutectic reaction between {beta}{prime} and {gamma}, but some recent studies agree with an older diagram due to Schramm, which has a eutectic reaction between the {beta} and {gamma}{prime} phases. The phase equilibria near Ni{sub 3}Al compositions was evaluated using quenched directional solidification experiments, that preserve the microstructures tonned at the solidification front, and using diffusion couple experiments. These experiments show that eutectic forms between {beta} and {gamma}{prime} phases, as in the Schramm diagram. Growth and phase transformations of these three phases are also studied in the directional solidification experiments. Microstructure analysis shows that etching of Ni{sub 3}Al({gamma}{prime}) is very sensitive to small composition variations and crystallographic orientation changes. The eutectic solidification study confirms that the equilibrium eutectic is {gamma}{prime}+{beta}, and that the metastable {gamma}+{beta} eutectic might be also produced in this system according to the impurities, solidification rates, and composition variations.

  7. Solidification microstructure of AZ91D Mg alloy after laser surface melting

    Science.gov (United States)

    Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.

    2010-11-01

    The solidification microstructure plays a critical role in determining the surface properties of laser-treated magnesium alloys. The purpose of this paper is to study the solidification microstructures of AZ91D Mg alloy following millisecond- and nanosecond-pulse Nd:YAG laser irradiation. The solidification microstructural evolution of laser-melt AZ91D Mg alloy was investigated using X-ray diffractometry, scanning electron microscopy, energy-dispersive X-ray spectrometer and transmission electron microscopy. Much refined α-Mg phase and β-Mg17Al12 intermetallics were observed in the microstructure after laser surface melting. Periodic and successive structure was observed in the millisecond irradiated surface and the melt depth was more than 100 μm. The solidification microstructure was mainly cellular/dendrite structures together with a large number of β-Mg17Al12 nano-particles. Micron holes were found in the nanosecond irradiated surface and the melt depth was shallow at 50 μm. Millisecond-pulse Nd:YAG laser was found to be more suitable for Mg alloy surface treatment due to sufficient melt depth.

  8. Segregation effects and phase developments during solidification of alloy 625

    DEFF Research Database (Denmark)

    Højerslev, Christian; Tiedje, Niels Skat; Hald, John

    2006-01-01

    , the material that experienced planar front solidification corresponded accurately to that of dendrites tens of microns in width adopting an equivalent dendrite arm width approach. Eventually, the planar solidification front broke down, where after the residual liquid solidified eutectic-like. This material...... in the entire matrix material. Addition of carbon did not cause detectable alterations of the material that experienced planar front solidification. However, it promoted the formation of niobium rich carbides in the material that solidified eutectic-like. Thus, this material differed from that of the pure...... sample in constitution, and consequently in gamma-phase composition. Niobium rich carbides formed prior to Laves phase; in carbon rich volumes only the carbides form. As compared to the pure sample, the sample enriched in iron had decreased global minimal solute concentration in the material...

  9. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  10. Effect of phosphor addition on eutectic solidification and microstructure of an Al-13%Si alloy

    Directory of Open Access Journals (Sweden)

    Liao Hengcheng

    2011-11-01

    Full Text Available As the refiner or modifier, the master alloys containing high concentration phosphor are widely used in preparing eutectic or hypereutectic Al-Si alloys. To study the effect of phosphor addition on the eutectic solidification and microstructure of the Al-13%Si alloy, an investigation has been undertaken by means of thermal analysis and micro/macro-structure observation. Results indicate that addition of phosphor in near eutectic Al-Si alloy promotes the nucleation of eutectic but has little refinement impact on primary Si particles as expected. Conversely, both primary Si particles and eutectic Si flakes become slightly coarser in P-rich alloys. The coarsening of eutectic Si flakes ties closely to the increased eutectic growth temperature with phosphor addition. The eutectic solidification of the alloy proceeds from the near mold zone towards the center, and it is also found that a few independent nucleation regions emerge in liquid at the solidification front due to the addition of phosphor.

  11. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    Science.gov (United States)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  12. Modelling of convection during solidification of metal and alloys

    Indian Academy of Sciences (India)

    A K Singh; R Pardeshi; B Basu

    2001-02-01

    The role of convection during solidification is studied with the help of a mathematical model. The effect of various mush models on convection and consequent macrosegregation is examined with the help of numerical simulations. The predicted macrosegregation profiles are compared with published experimental data. Subsequently, the importance of proper auxiliary relationship for thermo-solutal coupling in the mushy region is highlighted through some careful numerical simulations. Finally, the role of material parameters on double-diffusive convection is illustrated through comparative study of solidification of aqueous ammonium chloride, iron-carbon and lead-tin binary systems. Important results of these studies are presented and discussed.

  13. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    Science.gov (United States)

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  14. Paint-Bonding Improvement for 2219 Aluminum Alloy

    Science.gov (United States)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  15. The development of recycle-friendly automotive aluminum alloys

    Science.gov (United States)

    Das, Subodh K.; Green, J. A. S.; Kaufman, J. Gilbert

    2007-11-01

    The continuing growth of aluminum alloy usage in transportation applications, notably passenger automobiles and minivans, and the demonstrated economic benefits of recycling aluminum-rich vehicles increase the need to seriously consider the desirability of designing recycling-friendly alloys. This article focuses on that aspect of the recycling process for passenger vehicles. The goals are to illustrate the opportunities afforded by identifying and taking full advantage of potential metal streams in guiding the development of new alloys that use those streams. In speculating on several possible aluminum recovery practices and systems that might be used in recycling passenger vehicles, likely compositions are identified and preliminary assessments of their usefulness for direct recycling are made. Specific compositions for possible new recycle-friendly alloys are suggested. In addition, recommendations on how the aluminum enterprise, including industry, academia, and government, can work together to achieve the aggressive but important goals described here are discussed.

  16. Thixoforming of an ECAPed Aluminum A356 Alloy: Microstructure Evolution, Rheological Behavior, and Mechanical Properties

    Science.gov (United States)

    Campo, Kaio Niitsu; Zoqui, Eugênio José

    2016-04-01

    Thixoforming depends upon three aspects: (a) solid to liquid transformation; (b) size and morphology of the remaining solid phase in the semisolid state, and (c) the effect of both input factors on rheology of the semisolid slurry. The aluminum A356 alloy presents an ideal solid to liquid transformation, but the solidification process generates coarse aluminum dendrites surrounded by eutectic. In this regard, Equal Channel Angular Pressing (ECAP) has great potential as a method for manufacturing thixotropic raw material due to its grain refining effect. Therefore, the microstructure evolution and rheological behavior in the semisolid state of an ECAPed aluminum A356 alloy were investigated. Samples were heated up to 853 K (580 °C) and held for 0, 30, 60, 90, 210, and 600 seconds at this temperature. The isothermal heat treatment caused the globularization of the solid phase without any significant microstructure coarsening. Compression tests were carried out at the same temperature and holding times using an instrumented mechanical press. Apparent viscosities values close to 250 Pa s were obtained, revealing the exceptional rheological behavior of the produced samples. The thixoformed material also presented good mechanical properties, with high yield and ultimate tensile strength values (YS = 110/122 MPa, UTS = 173/202), and good ductility (E = 6.9/7.5 pct). These results indicate that the production of the A356 alloy via the ECAP process increases its thixoformability.

  17. The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

    2003-06-30

    the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

  18. Ultrasound assisted solidification process of ternary Cu–Sn–Sb alloy

    Directory of Open Access Journals (Sweden)

    Zhai Wei

    2016-02-01

    Full Text Available It is well-known that the application of ultrasound during liquid to solid transitions for alloys can refine the solidification microstructure and thus improves the mechanical properties. However, most published work focuses on single phase dendritic growth, whereas little has been conducted on the multiphase alloys with complicated phase transformations during solidification. In this work, the solidification process of ternary Cu40Sn45Sb15 alloy was realized within intensive ultrasonic field with a resonant frequency of 20 kHz and ultrasound power from 0 W to 1000 W. The ultrasound refines the size of the primary ε(Cu3Sn intermetallic compound by two orders of magnitudes. If the ultrasound power increases to 1000 W, η(Cu6Sn5 phase nucleates and grows directly from parent liquid phase without the occurrence of peri-eutectic reaction on the top of the alloy sample where the ultrasound intensity is sufficiently high. These microstructural variations lead to the enhancement of compressive strength and elasticity modulus of ternary Cu40Sn45Sb15 alloy.

  19. Ultrasound assisted solidification process of ternary Cu-Sn-Sb alloy

    Institute of Scientific and Technical Information of China (English)

    Zhai Wei; Hong Zhenyu; Liu Haiman; Wei Bingbo

    2016-01-01

    It is well-known that the application of ultrasound during liquid to solid transitions for alloys can refine the solidification microstructure and thus improves the mechanical properties. How-ever, most published work focuses on single phase dendritic growth, whereas little has been con-ducted on the multiphase alloys with complicated phase transformations during solidification. In this work, the solidification process of ternary Cu40Sn45Sb15 alloy was realized within intensive ultra-sonic field with a resonant frequency of 20 kHz and ultrasound power from 0 W to 1000 W. The ultrasound refines the size of the primary e(Cu3Sn) intermetallic compound by two orders of mag-nitudes. If the ultrasound power increases to 1000 W, g(Cu6Sn5) phase nucleates and grows directly from parent liquid phase without the occurrence of peri-eutectic reaction on the top of the alloy sam-ple where the ultrasound intensity is sufficiently high. These microstructural variations lead to the enhancement of compressive strength and elasticity modulus of ternary Cu40Sn45Sb15 alloy.

  20. Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of the liquid-liquid structure transition(L-LST) on the solidification behaviors and morphologies of Sn-Bi alloys was studied further. The results show that the undercooling of the primary and eutectic phase increases and the microstructure becomes finer after solidifying from the melt experiencing the L-LST. In the meantime, in hypoeutectic alloy, when solidifying from the melt experiencing the L-LST, the morphology of primary phase changes from the fir-tree crystal into the equiaxed crystal, and less primary phase and more eutectic structure are observed. Moreover, in eutectic alloy, the spacing of eutectic phase decreases markedly. These investigations would be beneficial to further exploration of the correlation between the melt structure and the micro mechanism of solidification.

  1. Optimization of Squeeze Casting for Aluminum Alloy Parts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important

  2. Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys

    Science.gov (United States)

    Bai, Q. L.; Li, Y.; Li, H. X.; Du, Q.; Zhang, J. S.; Zhuang, L. Z.

    2016-08-01

    During the production of high-strength 7××× aluminum alloys, hot tearing has set up serious obstacles for attaining a sound billet/slab. In this research, some typical 7××× alloys were studied using constrained rod casting together with the measurement of thermal contraction and load development in the freezing range, aiming at investigating their hot tearing susceptibility. The results showed that the hot tearing susceptibility of an alloy depends not only on the thermal contraction in freezing range, which can decide the accumulated thermal strain during solidification, but also on the amount of nonequilibrium eutectics, which can effectively accommodate the thermally induced deformation. Our investigations reveal that Zn content has very profound effect on hot tearing susceptibility. The Zn/Mg ratio of the alloys also plays a remarkable role though it is not as pronounced as Zn content. The effect of Zn/Mg ratio is mainly associated with the amount of nonequilibrium eutectics. Grain refinement will considerably reduce the hot tearing susceptibility. However, excessive addition of grain refiner may promote hot tearing susceptibility of semi-solid alloy due to deteriorated permeability which is very likely to be caused by the heavy grain refinement and the formation of more intermetallic phases.

  3. Domain of oscillatory growth in directional solidification of dilute binary alloys.

    Science.gov (United States)

    Babushkina, Evgenia; Bessonov, Nicholas M; Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi

    2013-04-01

    The oscillatory growth of a dilute binary alloy has recently been described by a nonlinear oscillator equation that applies to small temperature gradients and large growth velocities in the setup of directional solidification. Based on a one-dimensional stability analysis of stationary solutions of this equation, we explore in the present paper the complete region where the solidification front propagates in an oscillatory way. The boundary of this region is calculated exactly, and the nature of the oscillations is evaluated numerically in several segments of the region.

  4. Phase field modeling of multiple dendrite growth of AI-Si binary alloy under isothermal solidification

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Yutuo; Cui Haixia; Wang Chengzhi

    2008-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Ai-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  5. A phase-field model for the solidification of multicomponent and multiphase alloys

    Science.gov (United States)

    Qin, R. S.; Wallach, E. R.; Thomson, R. C.

    2005-05-01

    A phase-field model for the simulation of solidification of a multicomponent and multiphase systems has been developed, which is based on an earlier developed multiphase field model for binary alloys and a phase-field multicomponent model for single-solid-phase systems. After incorporation with alloy thermodynamics and commercial software for the calculation of phase equilibria, the model has been implemented to study the microstructural evolution of an Al-11.5 mol% Si-0.9 mol% Cu-0.4 mol% Fe alloy. Numerical results for the morphological evolution of primary aluminium, silicon and AlFeSi intermetallic phases agree with experimental observations very well.

  6. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  7. Effect of Microalloying on Wettability, Oxidation and Solidification Morphology of Sn-9Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Wei Xiuqin; Huang Huizhen; Zhou Lang; Zhang Meng

    2005-01-01

    Eutectic alloy Sn-9Zn is an attractive candidate for lead-free solders. However, its wettability to copper is poor thus,its development was limited. Effects of less than 1% (mass fraction) additions of mischmetal consisting mainly of La and Ce, heavy rare earth Y, pure P, Al, Mg and Ti elements on the wetting/adhesion behavior of Sn-9Zn alloy to copper, as well as the associated oxidation and solidification morphology of this alloy were examined. The results show that harmful effect on the wettability can be found when adding Al and Ti elements, while the wettability can be improved slightly by adding Mg and Y elements. The adhesion of the alloy to copper can be decreased by Mg element. The RE and P are found to significantly improve the wettability. In addition, oxidation of the alloy can be increased by adding RE, while little effect on the oxidation behavior can be found by adding P element. As-solidified Sn-9Zn alloy has a rough surface with protrusions and cavities shaped by coarse needle-like crystallites, while the Sn-37Pb sample has a rather smooth surface, which indicates the different solidification behavior of Sn-9Zn alloy and the Sn-37Pb one. The additions of the different elements investigated in this study do not alter Sn-9Zn's as-solidified morphology.

  8. Challenges for research and development of new aluminum alloys

    Directory of Open Access Journals (Sweden)

    D. Vojtĕch

    2010-07-01

    Full Text Available Modern trends in research and development of new aluminum alloys are characterized in the present work. Although conventional wrought and casting Al-based alloys show good specific strength, as compared to steels or Ti-based alloys, there is still a potential for significant improvement of their performance. It consists in application of new alloying elements, mainly transition metals, and uncommon processing routes, for example powder metallurgy. By this way, qualitatively new materials with ultra high strength and excellent thermal stability can be developed. However, there are many questions to be answered before new alloys can be competitive to conventional Al-based materials.

  9. Geometrical thermodynamics analysis of the change in the Gibbs energy during the nonequilibrium solidification of eutectic alloys

    Science.gov (United States)

    Aleksandrov, V. D.; Sobolev, A. Yu.; Sobol', O. V.; Frolova, S. A.; Shchebetovskaya, N. V.

    2015-09-01

    Geometrical thermodynamics is used to analyze the possible dependences of the Gibbs energy on temperature and component concentration in the two-phase region during nonequilibrium solidification of eutectic alloys.

  10. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  11. Effect of Rectangle Wave Pulse Current on Solidification Structure of ZA27 Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied.The results show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current within the frequency range of pulse current.Imposed pulse current could induce the solidification system to oscillate.The frequency range and the relevant energy distribution of pulse current exert an influence on the amount of atoms involved for forming critical nucleus, the surface states of clusters in melt, the oscillating state of melt on the surface of clusters, the active energy of atom diffusion , the frequnce response of the resonance of bulk melt and the absorbability of the solidification system to the external work.Rectangle wave pulse current involves rich harmonic waves; the amplitudes of high order of harmonic waves are higher and reduce slowly, so it has a better effect on inoculation and modification.

  12. Numerical Simulation of Morphology and Microsegregation Evolution during Solidification of Al-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    Dayong GUO; Yuansheng YANG; Wenhui TONG; Zhuangqi HU

    2004-01-01

    A stochastic model coupled with transient calculations for the distributions of temperature, solute and velocity during the solidification of binary alloy is presented. The model can directly describe the evolution of both morphology and segregation during dendritic crystal growth. The model takes into account the curvature and growth anisotropy of dendritic crystals. Finite difference method is used to explicitly track the sharp solid liquid (S/L) interface on a fixed Cartesian grid. Two-dimensional mesoscopic calculations are performed to simulate the evolution of columnar and equiaxed dendritic morphologies of an Al-7 wt pct Si alloy. The effects of heat transfer coefficient on the evolution of both the dendrite morphology and segregation patterns during the solidification of binary alloys are analyzed. This model is applied to the solidification of small casting. Columnar-to-equiaxed transition is analyzed in detail. The effects of heat transfer coefficient on final casting structures are also studied. Final casting structures changing from wholly columnar dendrites to wholly equiaxed dendrites are described. The effect of melt flow on the morphological development during Al-7 wt pct Si alloy soilidification is also described.

  13. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kenel, C., E-mail: Christoph.Kenel@empa.ch; Leinenbach, C.

    2015-07-15

    Highlights: • Rapid solidification studies with varying cooling rates were realized for Ti–Al. • Experiments were combined with finite element simulations of heat transfer. • The resulting microstructure of Ti–Al alloys is strongly dependent on the Al content. • The microstructure and phase transformation behavior can be predicted. • The method allows alloy development for processes involving rapid solidification. - Abstract: Titanium aluminides as structural intermetallics are possible candidates for a potential weight reduction and increased performance of high temperature components. A method for the characterization of the microstructure formation in rapidly solidified alloys was developed and applied for binary Ti–(44–48)Al (at.%). The results show a strong dependency of the microstructure on the Al content at cooling rates between 6 ⋅ 10{sup 2} and 1.5 ⋅ 10{sup 4} K s{sup −1}. The formation of α → α{sub 2} ordering, lamellar α{sub 2} + γ colonies and interdendritic TiAl γ-phase were observed, depending on the Al amount. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach taking into account the non-equilibrium conditions. The presented method provides a useful tool for alloy development for processing techniques involving rapid solidification with varying cooling rates.

  14. Tailored microstructure creation of TiAl-based refractory alloys within VGF solidification

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, A.V., E-mail: karta@korolev-net.ru [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation); Technological Institute for Superhard and Novel Carbon Materials (TISNCM), 7a Centralnaya str., 142190 Troitsk, Moscow (Russian Federation); Tcherdyntsev, V.V.; Gorshenkov, M.V.; Podgorny, D.A.; Borisova, Yu.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2013-09-16

    The work is aimed at the study of the formation and refinement of primary microstructure appearing in the refractory lightweight structural TiAl-based intermetallics during their solidification from the melt. The alloy with Ti–46Al–8Nb (at.%) nominal composition is selected for applied study in microstructure engineering. For tailored microstructure development, the Directional Solidification (DS) of pre-synthesized alloy was performed in the vertical multizone electro-furnace by Vertical Gradient Freezing (VGF) power-down technique in pure argon environment. Both columnar-dendrite, and equiaxed-granular reproducible as-cast microstructures have been produced in DS ingots, basing onto Columnar-to-Equiaxed Transition (CET) diagram exploration. Particular attention was paid further to equiaxed microstructure improvement by combination of modifying doping of alloy with boron grain refiner and VGF processing. As a result the perfect inoculated microstructure of Ti–44Al–7Nb–2B (at.%) ingots was produced with 120 μm mean grain diameter, low scattering of dimensional characteristics and high tolerance to DS process parameters variation. DS samples were examined by SEM microanalysis along with EBSD and Auger spectrometry of boride particles in the alloy matrix. The nature, state and exact composition of precipitated borides are discussed along with the nucleation mechanism in relation to the literature data. - Highlights: • Columnar-dendrite and granular structures created by directional solidification in Ti–46Al–8Nb ingots. • Ti–44Al–7Nb–2B (at.%) grain refined alloy produced at TiB{sub 2} alloying. • TiB{sub 2} dissolved and re-precipitated into (Ti,Nb)B phase, where Ti/Nb ratio is 1:1. • Hypothesis: Nb from heavily alloyed melt can substitute Ti in TiB precipitates up to NbB. • State and nucleation efficacy of (Ti,Nb)B can depend on Nb content through Ti/Nb ratio.

  15. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  16. Non-equilibrium solidification of undercooled Ni-31.44%Pb monotectic alloy melts

    Institute of Scientific and Technical Information of China (English)

    郑红星; 谢辉; 郭学锋

    2002-01-01

    By using the method of molten glass denucleating combined with superheating cycling, solidification behavior of the bulk undercooled Ni-31.44%Pb monotectic alloy melts was systematically investigated. The results indicated that the undercooled monotectic alloy solidifies in form of dendrite essentially during the stage of rapid solidification and after recalescence, the residual melts between the dendrites solidify in the equilibrium mode. Within the achieved undercooling range, the solidification structures are classified into three categories. When the undercooling is less than 50K, the structures are composed of coarse dendrites and interdendritic lead phase. With the undercooling increasing into the range of 70~232K, the dendrite clusters are refined and fine lead particles separate out from the supersaturated primary dendrite arms because of solute trapping. When the undercooling exceeds 242K, the granular grains form and fine lead particles homogeneously distribute in the whole sample. Based on the observation of the solidification structures and the calculated results with BCT model, it is found that the granulation mechanism of the granular grains is owing to the primary dendrite disintegration and recrystallization.

  17. The role of solidification rate in the corrosion resistance of a directionally solidified novel aluminium-lanthanum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dzib-Perez, L. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico); Gonzalez-Sanchez, J. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico)]. E-mail: jagonzal@uacam.mx; Perez, T. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico); Bartolo-Perez, P. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico); CINVESTAV-Merida, Applied Physics Department, Carr. antigua a Progreso, km 6, CP 97310 Merida, Yucatan (Mexico); Juarez, A. [CIATEQ. Calzada del Retablo 150, CP 76150 Queretaro, Queretaro (Mexico)

    2006-08-15

    The corrosion resistance of a novel Al-12.6 wt.%La alloy manufactured using unidirectional solidification was studied by sensitive electrochemical techniques. It was found that the electrochemical behaviour of the alloy depends upon the formation of non-passive corrosion product layers. Different solidification rates produced dissimilar microstructures which promoted selective dissolution when the alloy was anodically polarized in distilled water. A model for the electrochemical behaviour of this alloy was proposed based on an equivalent circuit that simulated the impedance results.

  18. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  19. Solidification characteristics of Pb-Sb hypereutectic alloy within ultrasonic field

    Institute of Scientific and Technical Information of China (English)

    ZHAI Wei; HONG ZhenYu; XIE WenJun; WEI BingBo

    2007-01-01

    The solidification of Pb-16 %Sb hypereutectic alloy is investigated within ultrasonic field with a frequency of 15 kHz. It is found that the ultrasonic field promotes crystal nucleation and terminates the further bulk undercooling of the alloy melt. Theoretical analysis shows that the cavitation effect and the forced bulk vibration are the main factors that reduce the undercooling level. With the increase of ultrasound intensity, the primary (Sb) phase experiences a growth mode transition from faceted to non-faceted branched growth, and the macrosegregation of primary (Sb) phase is gradually suppressed. In addition, the microstructures of Pb-Sb eutectic exhibit a conspicuous coarsening with increasing ultrasound intensity, and a structural transition of "lamellar eutectic-anomalous eutectic"occurs when ultrasound intensity rises up to 1.6 W/cm2. The ultrasonic field also changes the solute distribution adjacent to the solidification front, which lowers the Pb contents in primary (Sb) phase.

  20. Rheological behavior of Al-Mg-Si-Cu alloys in the mushy state obtained by partial remelting and partial solidification at high cooling rate

    Science.gov (United States)

    Fabrègue, D.; Deschamps, A.; Suéry, M.; Poole, W. J.

    2006-05-01

    This work investigates the mechanical behavior of two aluminum alloys in the mushy state, the alloy AA6056 and an alloy based on mixing AA6056 and AA4047. These alloys have been studied to give insight into the susceptibility to hot tearing, which occurs during laser welding of AA6056 with 4047 filler wire. Two types of isothermal tensile tests have been conducted: (1) tests during partial remelting and (2) tests after partial solidification at a high cooling rate. Results show that the maximum tensile stress increases with increasing solid volume fraction. Both materials exhibit visco-plastic behavior for solid fractions in the range 0.9 to 0.99, except for a critical solid fraction of 0.97, where the semisolid material also shows minimum ductility. The stress levels observed for the remelting experiments are larger than those found for partial solidification experiments at the same solid fraction due to the influence of the microstructure. The influence of temperature and strain rate on the maximum stress is described by using a constitutive law that takes into account the fraction of grain boundaries wetted by the liquid.

  1. Influence of hydrogen content on the behavior of grain refinement in hypereutectic aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    Lina Hu; Xiufang Bian; Youfeng Duan

    2004-01-01

    Dissolved hydrogen is harmful to mechanical properties of refined hypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and the hydrogen-detecting instrument HYSCAN Ⅱ, the relationship between the initial hydrogen content in the melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy was investigated. The experimental results show that the cooling rate, the hydrogen content and the grain refinement effect are three interactive factors. When the hydrogen content is above 0.20 mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in the alloy melt influences the grain refinement effect. With increasing the cooling rate, the critical hydrogen content increases too. It is expected that much hydrogen in the melt make the net interfacial energy larger than or equal to zero, resulting in the shielding of the particles AlP during solidification and that the critical gas content is closely related to the critical radius of embryo bubbles.

  2. Influence of Mo and Ta additions on solidification behavior of Ni3Al single crystal alloys

    Directory of Open Access Journals (Sweden)

    Cheng Ai

    2015-08-01

    Full Text Available Ni3Al (Ni75Al25 and Ni3Al–2Mo/Ta (Ni73.5Al24.5Mo/Ta2 single crystals were prepared by the Bridgman method under high temperature gradient (~170 °C/cm at the withdrawal rates of 5 and 20 μm/s. The experimental results showed that the addition of Mo decreased the liquidus and solidus temperatures, and the addition of Ta increased the liquidus and solidus temperatures. Meanwhile, both Mo and Ta additions were found to increase the solidification range of experimental alloy. It has been found that for solidification of stoichiometric Ni3Al at low withdrawal rate (5 μm/s, β/γ′ eutectic first solidified from liquid (L→β+γ′ and then β phase completely transformed into pure γ′ (β→γ′ after the completion of solidification. However, at high withdrawal rate of 20 μm/s, the remaining β phase was found in the as-cast microstructure of Alloy Ni3Al. Different from stoichiometric Ni3Al, the solidification sequence of Alloy Ni3Al–2Mo was identified as L→β+γ′+Mo-rich phase (ternary eutectic reaction. In addition, the addition of Ta led to the formation of primary γ′ phase and then subsequent intercellular/interdendritic β/γ′ eutectic microstructure. Based on above study, a new Ta and Mo containing Ni3Al based single crystal alloy with superior tensile strength at ultra-high temperature (>1100 °C was designed.

  3. Nonlinear equations on controlling interface patterns during solidification of a dilute binary alloy

    Institute of Scientific and Technical Information of China (English)

    王自东; 周永利; 常国威; 胡汉起

    1999-01-01

    In nonequilibrium nonlinear region, by assuming that there is local equilibrium at the solid/liquid interface, and considering that curvature, temperature and composition at the solid/liquid interface which are related to perturbation amplitude are nonlinear, nonlinear equations of the time dependence of the perturbation amplitude of the solid/liquid interface during solidification of a dilute binary alloy are established. Crystal growth from nonsteady state to steady state can be controlled by these nonlinear equations.

  4. Investigation of microgravity effect on solidification of medium-low-melting-point alloy by drop tube experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The solidification microstructure of Al-Ni, Al-Cu, Ag-Cu, Al-Pb and Cu-Co alloys quenched in silicone oil before and after free fall in evacuated 50 m drop tube were investigated contrastively. The effect of microgravity on the solidification process of medium-low-melting-point eutectic, monotectic and peritectic alloys were ana-lyzed and discussed. The results indicated that the effects of microgravity on the eutectic cell shape, the pattern in eutectic cell and the inter-eutectic spacing were different for different types of eutectic systems; the size distribution of Pb particles in Al-5wt% Pb monotectic alloy was significantly changed by microgravity; and the shape of retained primary α-Co phase in Cu-10wt%Co peritectic alloy was also changed by microgravity. These results are beneficial for people to further identify and analyze the solidification behavior of multiphase alloys under microgravity.

  5. Macrosegregation in Al-7Si alloy caused by abrupt cross-section change during directional solidification

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-09-01

    Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.

  6. Characterization of the Al-3wt.%Si alloy in unsteady-state horizontal directional solidification

    Directory of Open Access Journals (Sweden)

    Diego Brito Carvalho

    2013-01-01

    Full Text Available The main purpose of this paper is to investigate both the columnar to equiaxed transition and primary dendritic arm spacings of Al-3wt.%Si alloy during the horizontal directional solidification. The transient heat transfer coefficient at the metal-mold interface is calculated based on comparisons between the experimental thermal profiles in castings and the simulations provided by a finite difference heat flow program. Simulated curve of the interfacial heat transfer coefficient was used in another numerical solidification model to determine theoretical values of tip growth rates, cooling rates and thermal gradients that are associated with both columnar to equiaxed transition and primary dendritic arm spacings. A good agreement was observed between the experimental values of these thermal variables and those numerically simulated for the alloy examined. A comparative analysis is carried out between the experimental data of this work and theoretical models from the literature that have been proposed to predict the primary dendritic spacings. In this context, this study may contribute to the understanding of how to manage solidification operational parameters aiming at designing the microstructure of Al-Si alloys.

  7. Influence of sub-rapid solidification on microstructure and mechanical properties of AZ61A magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The microstructure of sub-rapid solidification processed AZ61A magnesium alloy was presented and discussed. The results show that the grain size of the foil is significantly refined, and the grain morphology is cellular or globular. The eutectic transformation L→α-Mg+β-Mg17Al12 and microsegregation in conventionally solidified AZ61A alloy are suppressed to a great extent.The β-Mg17Al12 phases located in the α-Mg grain boundaries are largely decreased due to high solidification cooling rate. As a consequence, the alloying elements Al, Zn, Mn show much higher solid solubility and the sub-rapid solidification microstructure dominantly consists of supersaturated α-Mg solid solution. The mechanical properties and fractographic analysis reveal that the fracture mechanism and corresponding morphology of the rapture surface of tensile bars are linked to the microstructure obtained and depend on the sub-solidification processes.

  8. China’s Aluminum Alloy Die Castings Industry has Promising Prospects

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Engine aluminum alloy engine block die casting experienced rapid development in recent years. Domestic enterprises introduced large die casting machine automatic production lines, and developed large aluminum alloy die cast-

  9. Phase-field simulations of solidification of AI-Cu binary alloys

    Institute of Scientific and Technical Information of China (English)

    龙文元; 蔡启舟; 陈立亮; 魏伯康

    2004-01-01

    The dendrite growth process during the solidification of the Al-4.5 %Cu binary alloy was simulated using the phase-field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved simultaneously. The effects of the noise on the dendrite growth, solute and temperature profile in the undercooled alloy melt were investigated. The results indicate that the noise can trigger the growth of the secondary arms, and increase the highest temperature and solute concentration, but not influence the tip operating state. The solute and temperature gradients in the tip are the highest.

  10. Crossover scaling of wavelength selection in directional solidification of binary alloys.

    Science.gov (United States)

    Greenwood, Michael; Haataja, Mikko; Provatas, And Nikolas

    2004-12-10

    We simulate cellular and dendritic growth in directional solidification in dilute binary alloys using a phase-field model solved with adaptive-mesh refinement. The spacing of primary branches is examined for a wide range of thermal gradients and alloy compositions and is found to undergo a maximum as a function of pulling velocity, in agreement with experimental observations. We demonstrate that wavelength selection is unambiguously described by a nontrivial crossover scaling function from the emergence of cellular growth to the onset of dendritic fingers. This result is further validated using published experimental data, which obeys the same scaling function.

  11. Microstructure and solidification behavior of Ni-Mn-Ga magnetic shape memory alloys

    Science.gov (United States)

    Chen, Jian; Gharghouri, Michael A.; Hyatt, Calvin V.

    2004-07-01

    In order to understand the solidification behavior of Ni-Mn-Ga alloys, ingots with different compositions were prepared by arc melting. Two series of compositions were investigated: Ni100-2xMnxGax (15NiMnGa from the liquid, and solidification of β-NiMnGa phase via a peritectic reaction. It was found that the γ-Ni liquidus surface covers a large area of the ternary phase diagram. The γ-Ni liquidus boundary is located between Ni50Mn25Ga25 and Ni45Mn27.5Ga27.5 in the equal Mn and Ga alloy series, and between Ni50Mn5Ga45 and Ni50Mn10Ga40 in the 50 at.% Ni alloy series. The alloys with compositions close to the stoichiometric Ni2MnGa composition that show the magnetic shape memory effect are all covered by the γ-Ni liquidus surface. The β-NiMnGa liquidus surface covers the remaining alloy compositions.

  12. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  13. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  14. Microstructural evolution of aluminum alloy 3003 during annealing

    Institute of Scientific and Technical Information of China (English)

    WU Wen-xiang; ZHANG Xin-ming; SUN De-qin; HU Guo-qiang; LIU Guo-jin

    2006-01-01

    The microstructural evolution of cold-rolled aluminum alloy 3003 during annealing was investigated by means of micro-hardness measurement, electrical resistivity measurement, optical microscopy and transmission electron microscopy. The interaction of recrystallization and precipitation of aluminum alloy 3003 was also discussed. The results show that the recrystallized grain size of cold-rolled aluminum alloy 3003 is strongly affected by precipitation during annealing. When precipitation occurs prior to recrystallization at low temperature(300 ℃), the grain structure becomes coarse, and the precipitation process is affected by the presence of lattice defects, i.e. high cold reduction results in a large number of precipitates. When annealing at 500 ℃, however, for the recrystallization is prior to precipitation, the precipitation is independent of cold deformation reduction and a fine, equiaxed grain structure is obtained.

  15. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  16. Low activation R-tokamak with aluminum alloy

    International Nuclear Information System (INIS)

    An aluminum alloy system is considered as an alternative of the first phase design of the R-tokamak. The 1-D calculation showed that the radiation level outside the vacuum vessel could be reduced by a factor of 30 about half a month after a D-T shot, when the aluminum alloy system is adopted instead of a stainless steel system. The aluminum system has weak mechanical strength, is highly conductive, and shows overaging effect at a certain low temperature. Accordingly, it is necessary to overcome these points. The highly conductive aluminum case leads to considerable increase in power consumption. Various problems on the toroidal coils, the vacuum system, and the limiter were studied. The optimization of the device parameters was investigated. (Kato, T.)

  17. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  18. Forming analysis and application for aluminum-alloy material

    Institute of Scientific and Technical Information of China (English)

    Wei Yuansheng

    2012-01-01

    The increase in car ownership brought about by energy shortages, and environmental crises became more acute. The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency. In addition to that, lightweight body is the key. Aluminum, magnesium alloy as significant materials of lightweight, and the application amount in the car body is a significant upward trend. However, there is high cost of material, with im- mature applied technology and a series of bottleneck problems. All of them affect general application of lightweight mate- rials. This paper focuses on forming process issues for aluminum, magnesium alloy and the solutions to achieve.

  19. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  20. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula...... was presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....

  1. Aluminum Alloy Semisolid Strip Casting Using an Unequal Diameter Twin Roll Caster

    Directory of Open Access Journals (Sweden)

    T. Haga

    2005-12-01

    Full Text Available Purpose: A Purpose of the present study was to break through the disadvantage of the twin roll caster for aluminum alloy. They were slow casting speed and limitation of alloy. For example, the casting speed was slower than 5 m/min, and casting of hypereutectic Al-Si alloy was difficult. In order to break through the disadvantages, semisolid casting using an unequal diameter twin roll caster was tested its ability.Design/methodology/approach: The specification of the unequal diameter twin roll caster is as below. The diameter of the upper roll was 250 mm, and that of the lower roll was 1000 mm. The width of the roll was 100 mm. The semisolid slurry was made by a cooling slope.Findings: The microstructure of the strip became very fine. Especially, primary and eutectic Si became very fine. This was the effect of rapid solidification. As the result, the ductility of Al-16%Si was improved.Research limitations/implications: 6111 aluminum alloy strip was cast at speeds of 5, 10 and 20 m/min. This caster could cast the strip at the speeds higher than the conventional twin roll caster. Start of casting was very easy. The hypereutectic Al-16%Si alloy, which has wide freezing zone, could be cast in to the strip by the unequal diameter twin roll caster. This was the effect of the cooling of the strip on the lower roll.Originality/value: The roll cast Al-16mass%Si strip had good ductility, and could be cold rolled. Annealed 0.5 mm thick Al-16mass%Si could be bent at radius of 0.75mm.

  2. Preparation of semi-solid slurry containing fine and globular particles for wrought aluminum alloy 2024

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotation speed of barrel, can give rise to a transition of the growth morphology of primary α(Al) from coarse-dendritic to coarse-particle-like and further to fine-globular. The combined effects of both localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation and nuclei survival, which leads to the formation of fine-globular primary α(Al). By using semi-solid slurry prepared by LSPSF, direct squeeze cast cup-shaped component with improved mechanical properties such as yield strength of 198MPa, ultimate tensile strength of 306 MPa and elongation of 10.4%, can be obtained.

  3. A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al-Cu-Sn alloy

    Science.gov (United States)

    Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.

    2015-07-01

    The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.

  4. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  5. Minimizing Segregation During the Controlled Directional Solidification of Dendritic Alloys Publication: Metallurgical and Materials Transactions

    Science.gov (United States)

    Grugel, R. N.; Fedoseyev, A. I.; Kim, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Gravity-driven thermosolutal convection that arises during controlled directional solidification (DS) of dendritic alloys promotes detrimental macro-segregation (e.g. freckles and steepling) in products such as turbine blades. Considerable time and effort has been spent to experimentally and theoretically investigate this phenomena; although our knowledge has advanced to the point where convection can be modeled and accurately compared to experimental results, little has been done to minimize its onset and deleterious effects. The experimental work demonstrates that segregation can be. minimized and microstructural uniformity promoted when a slow axial rotation is applied to the sample crucible during controlled directional solidification processing. Numerical modeling utilizing continuation and bifurcation methods have been employed to develop accurate physical and mathematical models with the intent of identifying and optimizing processing parameters.

  6. Effects of G-Jitter on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Benjapiyaporn, C.; Timchenko, V.; deVahlDavis, G.; deGroh, H. C., III

    1999-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermo-solutal convection in the liquid region. In this paper we present a numerical simulation of g-jitter. A background gravity of 1 microgram has been assumed, and new results for the effects of periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  7. An investigation on supercooling directional solidification process of Cu-Ni single phase alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Supercooling directional solidification (SDS) is put forward by combination of melt supercooling and conventional solidification by application of supercooling inheritance. On the self-designed SDS equipment, SDS of Cu-Ni alloy was achieved successfully. The results are as follows: (ⅰ) The primary arm spacing is about 30 m m, the growth of secondary arms are strongly suppressed. The primary arm spacing is nearly the same as LMC method (GL=25 K/mm, V=500 m m/s), the primary stems are straight, fine and completed, with an inclination angle of about 5.8o. (ⅱ) A semi-quantitative T-T model is brought forward to describe the dendrite growth rate V vs. undercooling D T. The prediction of T-T model agrees well with experimental results. The formation of fine equiaxed dendrites, transition region and dendrite region can be explained successfully by D T-V-x relation of T-T model.

  8. Modeling of solidification grain structure for Ti-45%Al alloy ingot by cellular automaton

    Institute of Scientific and Technical Information of China (English)

    WU Shi-ping; LIU Dong-rong; GUO Jing-jie; FU Heng-zhi

    2005-01-01

    A cellular automaton model for simulating grain structure formation during solidification processes of Ti45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of heat transfer and a cellular automaton technique for microscopic modeling of nucleation, growth, solute redistribution and solute diffusion. The relation between the growth velocity of a dendrite tip and the local undercooling,which consists of constitutional, thermal, curvature and attachment kinetics undercooling is calculated according to the Kurz-Giovanola-Trivedi model. The effect of solidification contraction is taken into consideration. The influence of process variables upon the resultant grain structures was investigated. Special moving allocation technique was designed to minimize the computation time and memory size associated with a large number of cells. The predicted grain structures are in good agreement with the experimental results.

  9. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  10. Lead induced intergranular fracture in aluminum alloy AA6262

    NARCIS (Netherlands)

    De Hosson, JTM

    2003-01-01

    The influence of lead on the fracture behavior of aluminum alloy AA6262 is investigated. Under certain conditions, the mode of fracture changes from transgranular microvoid coalescence to an intergranular mechanism. Three different intergranular fracture mechanisms are observed: liquid metal embritt

  11. Testing of 2219-T87 aluminum alloy at 40K

    International Nuclear Information System (INIS)

    The tensile and fracture properties of heavy section (1.5 inches thick) 2219-T87 plate aluminum alloy at 40K were determined. Transverse and longitudinal crack growth parameters were measured. Tensile specimens were taken at L, T, and ST orientations and tensile data is tabulated. K/sub Ic/ tests results and fatigue-crack growth data are summarized

  12. Fracture behavior of low-density replicated aluminum alloy foams

    NARCIS (Netherlands)

    Amsterdam, E.; Goodall, R.; Mortensen, A.; Onck, P. R.; De Hosson, J. Th. M.

    2008-01-01

    Tensile tests have been performed on replicated aluminum alloy foams of relative density between 4.5% and 8%. During the test the electrical resistance was measured with a four-point set-up and the displacements along the gage section were measured using a digital image correlation (DIC) technique.

  13. NUMERICAL SIMULATION OF AL-SI ALLOYS WITH AND WITHOUT A DIRECTIONAL SOLIDIFICATION

    Directory of Open Access Journals (Sweden)

    Michael Roland

    2014-03-01

    Full Text Available Numerical simulations are presented to analyze the influence of the casting process on the resulting strength of Strontium modified Al–Si alloys. A relationship is identified between the mechanical behavior and the different 3D morphologies of the eutectic silicon of the samples obtained by the die cast procedure and the directional solidification. It is shown that the mechanical behavior of the die cast alloy is isotropic in all three directions. In contrary, for the directional solidified alloy, the mechanical strength in the direction of the temperature gradient is higher than in the transverse direction. This fact has to be taken into account when analyzing structures issued from different casting processes. The volume meshes for the simulations are generated from experimental 3D FIB/SEM data sets. The influence of several levels of coarsening of the meshes as well as the order of the Lagrange element in the finite element setup are also analyzed.

  14. Experimental investigation of the natural and forced convection on solidification of Sn-3wt. %Pb alloy using a benchmark experiment

    OpenAIRE

    Hachani, Lakhdar; Boussaa, Redouane; Saadi, Bachir; X. D. Wang; Zaidat, Kader; Belgacem Bouzida, Aissaa; Henry, D.; Henry, Dominique; Botton, Val‚éry; Ben Hadid, H.; Fautrelle, Yves

    2012-01-01

    International audience We deal with the development of a solidification benchmark experiment in order to investigate the structure formation as well as solute macro-mesosegregation, by means of a well-controlled solidification experiment. The experiment consists in solidifying a rectangular ingot of Sn-3wt.%Pb alloy, by using two lateral heat exchangers which allow extraction of the heat flux from one or two vertical sides of the sample. The domain is a quasi two dimensional parallepipedic...

  15. New all aluminum alloy ultrahigh vacuum system and fittings

    International Nuclear Information System (INIS)

    The Al-ICF ALFLAT FLANGE corresponds to the ordinary stainless steel Conflat flange. The Al-ICF ALFLAT FLANGE is made of special aluminum alloy 2219-T87 by forging. It has the highest strength at elevated high temperature among all aluminum alloys as well as superior weldability and stress corrosion cracking resistivity. CrN or TiC coating on the flange surface by ion plating. The CrN or TiC treatment on the surface gave nearly protection against sticking between the knife edge of the flange and the aluminum gasket and surface scratching. Sealing surface of the knife edge for the Helicoflex is finished to a smooth mirror surface by a diamond tool. (author)

  16. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  17. System for ultra high vacuum made of aluminum alloys

    International Nuclear Information System (INIS)

    We have developed the system for ultra high vacuum made of aluminum alloys for proton and electron synchrotron. This is the first system for ultra high vacuum in which bakable metal seal flange and small diametral bellows of aluminum alloys have been put to practical use. The system consists of the flange protected by a CrN thin film and made of 2219-T87 alloy, the chamber made of 6063-T6 alloy, the aluminum metal gasket of Helico Flex and the bellows made of 5052 alloy. As a result of experiments at the National Laboratory for High Energy Physics (KEK), it had been confirmed that this system shows the special qualities of ultra high vacuum operation, resistance to hard radiation and baking and cooling operations. Up to now, this system has been widely used for the beam lines of the booster synchrotron utilization facility, K1, K2, linac, PI 1 and EP2-B extension of the KEK proton synchrotron. We investigate that this system is applicable to nuclear energy utilization facility and general vacuum apparatus. (author)

  18. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  19. Undercooling and rapid solidification of Nb-Si eutectic alloys studied by long drop tube

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ren; DONG Shu-yong; WEI Bing-chen; LI Wei-huo

    2006-01-01

    Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 m drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.

  20. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  1. Segregation and evaporation behaviors of aluminum and calcium in silicon during solidification process induced by electron beam

    International Nuclear Information System (INIS)

    An experimental investigation into the removal of aluminum (Al) and calcium (Ca) from molten silicon by using electron beam melting was carried out. Based on the distributions of Al and Ca along the growth direction of the ingot under different solidification conditions, the influence of segregation and evaporation behaviors on the removal of such impurities with both high saturated vapor pressure and low segregation coefficients was investigated. The results showed that the distributions of impurities depend upon the interaction between segregation and evaporation, so that the removal efficiency can be further improved by adjusting the melting parameters. Compared with the traditional electron beam melting process, the energy consumption decreases by 20% during the whole melting and solidification process. It is considered to be a more effective way for the purification of silicon and the reduction of energy consumption by electron beam melting. (paper)

  2. Project Explorer: Get Away Special #007. [alloy solidification, seed germination, crystal growth, and radio transmission of payload data

    Science.gov (United States)

    Henderson, A. J., Jr.

    1984-01-01

    Tentatively scheduled to fly on STS-17 (41G), this get away special aims to demonstrate amateur radio transmissions to global ground stations in the English language. Experiments No. 1, 2, and 3 use the micro-gravity of space flight to study the solidification of lead-antimony and aluminum-copper alloys, the germination of radish seeds, and the growth of potassium-tetracyanoplatinate hydrate crystals in an aqueous solution. Flight results are to be compared with Earth-based data. Experiment No. 4 (the Marshall Amateur Radio Club Experiment - MARCE) features radio transmissions and also provides timing for the start of all other experiments. A microprocessor obtains real-time data from all experiments as well as temperature and pressure measurements within the GAS canister. These data are to be transmitted on previously announced amateur radio frequencies after they are converted into the English language by a digitalker for general reception. The support structure for the G #007 experiments consists of two primary plates and four bumper assemblies.

  3. DEFINITION OF THE CASTING MECHANISMS OF ALUMINUM-SILICON ALLOYS WITH SUPERFINE AND INVERTED MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2013-01-01

    Full Text Available The basic mechanisms of Al-Si alloysmodifying are determined. Fast solidification and inheritance modification are major in casting of alloys with a highly dispersed and inverted microstructure.

  4. Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields

    Science.gov (United States)

    Stelian, Carmen; Delannoy, Yves; Fautrelle, Yves; Duffar, Thierry

    2004-05-01

    Numerical simulations of the vertical Bridgman solidification of Ga 1- xIn xSb concentrated alloys are performed by using the commercial codes FIDAP ® and FLUENT ®. The transient axi-symmetric simulation of heat, mass and species transport during highly doped ( x=0.2) crystal growth, shows a strong solute effect on the melt convection. The thermally driven flow is damped by the heavier solute (InSb) rejected at the solid-liquid interface. A diffusive transport regime is established in the melt a short time after the beginning of solidification and as a consequence, the radial segregation increases. This leads to a significant increase of the interface curvature because of the melting point dependency on the interface composition. Finally, the crystals are not chemically homogeneous with large variations of InSb concentration on the axial and radial directions. In order to improve the chemical homogeneity of highly doped Ga 1- xIn xSb crystals, it is proposed to apply an alternating magnetic field in the vicinity of the solid-liquid interface. The magnetic parameters for which an optimal level of convection arises in the melt are derived from the numerical simulation. It is shown that during solidification under optimized electromagnetic stirring, the radial segregation and interface deflection can be maintained at low values.

  5. Dendrite fragmentation in alloy solidification due to sidearm pinch-off.

    Science.gov (United States)

    Neumann-Heyme, H; Eckert, K; Beckermann, C

    2015-12-01

    Dendrite sidebranch detachment is an important fragmentation mechanism during the solidification of alloys. The detachment occurs at the junction between a sidearm and its parent stem. While this pinching process is driven by capillarity, the presence of solidification opposes the instability. Using a simple numerical model of a single sidearm, we are able to capture the essential dynamics of dendrite sidebranch development and the resulting morphological transitions. While shortly before pinch-off the neck itself obeys well-known universal scaling relations, the overall evolution of the sidearm shape sensitively depends on its initial geometry and the rate of solidification. It is found that pinch-off only occurs over limited ranges of geometrical parameters and cooling rates and is generally bounded by sidearm retraction and coalescence regimes. Simple scaling relations are identified that provide the bounds for the pinch-off regime. Pinching at the branching point is shown to be faster than the Rayleigh-Plateau instability of an infinitely long cylinder. PMID:26764615

  6. Experimental research on solidification structure of alloy 800H by linear electromagnetic stirring

    Institute of Scientific and Technical Information of China (English)

    Jiang En; Wang Engang; Deng Anyuan

    2014-01-01

    The solidification structures of al oy 800H fabricated with and without linear electromagnetic stirring (L-EMS) were investigated. The results show that the solidification structure of the alloy can be obviously affected by the forced convection in melt caused by L-EMS. The average size of equiaxed grains of the al oy with L-EMS decreases from 3.5 mm to 2.3 mm, and the ratio of equiaxed grain increases from 5% to 43%compared with that without L-EMS. The microstructure of the al oy without L-EMS is composed of fine equiaxed dendrites in the outermost layer and columnar dendrites in other areas, whereas that with L-EMS contains equiaxed dendrites, columnar dendrites and cross dendrites. In addition, the mechanism of dendrite fragment drift was proved by examining the composition change of the main al oying elements in the dendrite trunks at different solidification stage using an electron probe micro-analyzer (EPMA).

  7. Deformation and Damage of Two Aluminum Alloys from Ballistic Impact

    Science.gov (United States)

    Anderson, Charles E., Jr.; Dannemann, Kathryn A.

    2002-07-01

    A series of impact experiments were conducted on 4.76-mm-thick aluminum plates to investigate the deformation and damage behavior of two aluminum alloys, 6061-T6 and 7075-T6. The Sierra 165 lead-filled bullet was used to load the plates. Impact velocities were varied from approximately 260 m/s to 370 m/s. The flow stress for 7075-T6 aluminum is approximately twice that for 6061-T6 aluminum; however, the ballistic limit velocities differ by only 10%. The 7075-T6 aluminum plates exhibit less deformation than the 6061-T6 plates at the same impact velocity, but at some critical velocity, a through-thickness crack appears in the 7075-T6 plate, ultimately leading to plate perforation. In contrast, the 6061-T6 plates continue to deform and fail by ductile tearing. These differences in damage/failure result in the two alloys having much closer ballistic limit velocities than expected based on differences in strength.

  8. Microstructures of erbium modified aluminum-copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berghof-Hasselbaecher, Ellen; Schmidt, Gerald; Galetz, Mathias; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt am Main (Germany); Masset, Patrick J. [Fraunhofer UMSICHT-ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Zhang, Ligang [Technische Univ. Bergakademie Freiberg (Germany). ZIK Virtuhcon; Liu, Libin; Jin, Zhanpeng [Central South Univ., Changsha, Hunan (China)

    2012-07-01

    Alloying with rare earth metals improves to the mechanical properties and corrosion resistance of aluminium base alloys at high temperatures. The rare earth metal erbium may be used for grain refinement. Within a project of computer-aided alloy development based on the CALPHAD (CALculation of PHAse Diagrams) method various alloys were melted on the Al-rich side of the ternary system Al-Cu-Er under argon atmosphere and their microstructures were characterized in the as-cast state or after long-term isothermal annealing (400 C/960 h) by means of different investigation techniques. As a result, the phases fcc (Al), {tau}{sub 1}-Al{sub 8}Cu{sub 4}Er, {theta}-CuAl{sub 2}, {eta}-CuAl, and Al{sub 3}Er were identified, their compositions and fractions were quantified, and their hardnesses were determined. The experimental obtained microstructures agree very well with the calculated solidification behaviors of the cast alloys. The knowledge gained from this work about the phase compositions and microstructures can also be utilized for the fine optimization of the phase diagram. (orig.)

  9. Thermodynamic calculation on metallic thermoreduction during preparation of aluminum-rare master alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A thermodynamic calculation method on metallic thermoreduction during preparation of aluminum-rare metal alloys was presented. Taking preparation of aluminum-scandium master alloys using aluminum and magnesium thermoreduction of scandiumchloride as an example, this method was applied and the results were testified by experiment.

  10. Progress in research on cold crucible directional solidification of titanium based alloys

    Directory of Open Access Journals (Sweden)

    Chen Ruirun

    2014-07-01

    Full Text Available Cold crucible directional solidification (CCDS is a newly developed technique, which combines the advantages of the cold crucible and continuous melting. It can be applied to directionally solidify reactive, high purity and refractory materials. This paper describes the principle of CCDS and its characteristics; development of the measurement and numerical calculation of the magnetic field, flow field and temperature field in CCDS; and the CCDS of Ti based alloys. The paper also reviews original data obtained by some scholars, including the present authors, reported in separate publications in recent years. In Ti based alloys, Ti6Al4V, TiAl alloys and high Nb-containing TiAl alloys, have been directionally solidified in different cold crucibles. The crosssections of the cold crucibles include round, near rectangular and square with different sizes. Tensile testing results show that the elongation of directionally solidified Ti6Al4V can be improved to 12.7% from as cast 5.4%. The strength and the elongation of the directionally solidified Ti47Al2Cr2Nb and Ti44Al6Nb1.0Cr2.0V are 650 MPa/3% and 602.5 MPa/1.20%, respectively. The ingots after CCDS can be used to prepare turbine or engine blades, and are candidates to replace Ni super-alloy at temperatures of 700 to 900 °C.

  11. Crystal Growth of HgZnTe Alloy by Directional Solidification in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Szofran, F. R.; Gillies, D. C.; Scripa, R. N.; Cobb, S. D.; Wang, J. C.

    2002-01-01

    An Hg(0.84)Zn(0.16)Te alloy crystal was back-melted and partially re-solidified during the first United States Microgravity Laboratory mission in the Marshall Space Flight Center's Crystal Growth Furnace. The experiment was inadvertently terminated at about 30% of planned completion. Nonetheless, it was successfully demonstrated that a HgZnTe alloy ingot partially grown and quenched on the ground can be back-melted and re-grown in space under nearly steady-state growth conditions. An identical "ground-truth" experiment was performed following the mission and a comparison between the properties of the crystals is described. The results indicate the importance of residual microgravity acceleration (less than or approx. equal to 0.4 micro-grams) even in the sub-microgravity range for the slow solidification velocities and large density gradients.

  12. Modeling solute segregation during the solidification of γ-phase U-Mo alloys

    Science.gov (United States)

    Steiner, M. A.; Garlea, E.; Agnew, S. R.

    2016-06-01

    Using first principles calculations, it is demonstrated that solute segregation during U-Mo solidification can be modeled using the classic Brody-Fleming limited diffusion framework. The necessary supporting equations specific to the U-Mo alloy, along with careful verification of the assumptions underpinning the Brody-Fleming model are developed, allowing for concentration profile predictions as a function of alloy composition and cooling rate. The resulting model is compared to experimental solute concentration profiles, showing excellent agreement. Combined with complementary modeling of dendritic feature sizes, the solute segregation model can be used to predict the complete microstructural state of individual U-Mo volume elements based upon cooling rates, informing ideal processing routes.

  13. Modified cellular automaton model for modeling of microstructure and microsegregation in solidification of ternary alloys

    Institute of Scientific and Technical Information of China (English)

    ZHU Ming-fang; CAO Wei-sheng; CHEN Shuang-lin; XIE Fan-you; HONG Chunpyo; CHANG Y. Austin

    2006-01-01

    A modified cellular automaton (MCA) model has been extended to the ternary alloy system by coupling thermodynamic and phase equilibrium calculation engine PanEngine. In the present model the dendrite growth is driven by the difference between the local equilibrium liquidus temperature and local actual temperature, incorporating the effect of curvature. The local equilibrium liquidus temperature is calculated with PanEngine according to the local liquid concentrations of two solutes, which are determined by numerically solving the species transport equation in the domain. Model validation was carried out through the comparison of the simulated values to the prediction of the Scheil model for solute profiles in the primary dendrites. The simulated data with zero solid diffusivity and limited liquid diffusivity were increasingly close to the Scheil profiles as the solidification rate decreased. The simulated microstructure and microsegregation in an Al-Cu-Mg ternary alloy were compared with those obtained experimentally.

  14. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Incropera, F.P.; Prescott, P.J. [Purdue Univ., West Lafayette, IN (United States)

    1995-12-31

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, by reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.

  15. Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap

    Institute of Scientific and Technical Information of China (English)

    Sun Zhenqi; Huang Minghui

    2013-01-01

    A new type of aluminum lithium alloy (A1-Li alloy) Al-Li-S-4 was investigated by test in this paper.Alloy plate of 400 mm × 140 mm × 6 mm with single edge notch was made into samples bonded with Ti-6Al-4V alloy (Ti alloy) strap by FM 94 film adhesive after the surface was treated.Fatigue crack growth of samples was investigated under cyclic loading with stress ratio (R) of 0.1 and load amplitude constant.The results show that Al-Li alloy plate bonded with Ti alloy strap could retard fatigue crack propagation.Retardation effect is related with width and thickness of strap.Flaws have an observable effect on crack propagation direction.

  16. Overheating temperature of 7B04 high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Feng-hua; LI Nian-kui; TIAN Ni; SUN Qiang; LIU Xian-dong; ZHAO Gang

    2008-01-01

    The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.

  17. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  18. Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys

    International Nuclear Information System (INIS)

    To better understand the influence of Fe-rich intermetallics on solidification defect formation, fast in situ synchrotron X-ray tomographic microscopy experiments were performed on a commercial A319 alloy (Al–7.5Si–3.5Cu, wt.%) with 0.2 and 0.6 wt.% Fe. Real-time observations during solidification and semi-solid deformation experiments reveal that β-intermetallics contribute via several different mechanisms to porosity formation and hot tearing susceptibility. While β-intermetallics were not observed to nucleate porosity directly, they do block interdendritic channels, thereby reducing the shrinkage feeding, and increasing pore tortuosity. Pores also grow preferentially along the surface of the β-intermetallics, suggesting that the β-phase has a lower gas–solid interfacial energy than α-Al, thus assisting in increasing pore volume. During uniaxial tension experiments, the ductile failure of the semi-solid, intermetallic-poor, base alloy transitions to a brittle-like failure when a large amount of β-intermetallics are present. In all post-failure microstructures, internal damage was preferentially orientated perpendicular to the loading direction, agreeing with prior experimental and numerical studies

  19. Directional solidification processing of eutectic alloys in the Ni Al V system

    Science.gov (United States)

    Milenkovic, S.; Coelho, A. A.; Caram, R.

    2000-04-01

    Intermetallic matrix composites (IMCs) offer attractive properties, such as high toughness of the metal coupled with low density, high modulus and high strength of the intermetallics. Among a large number of the intermetallics, a particular interest has been shown in the NiAl intermetallic compound, since it exhibits several advantages over the currently used nickel-based superalloys. Recently, there has been a renewed interest in directional solidification of the eutectic alloys as a concept of reinforcing intermetallics with in situ refractory metals. The present study is related to the study of the eutectic alloys in the ternary NiAl-V system. The eutectic composition and temperature were accurately determined. It was concluded that the solidification behaviour of the Ni-Al-V eutectic is strongly dependent on the growth conditions, namely growth rate and orientation, and that it can be easily modified. Also, it was observed that the orientation of the grain, i.e., the direction of growth is the determining factor in the lamellar/rod transition as well as in the morphology of the degenerated structure.

  20. Containerless processing and rapid solidification of Nb-Si alloys of hypereutectic composition

    Science.gov (United States)

    Hofmeister, W. H.; Bayuzick, R. J.; Robinson, M. B.; Bertero, G. A.

    1991-01-01

    A combination of bulk undercooling in an electromagnetic levitation apparatus and splat quenching between two copper plates is used to process Nb-Si alloys in order to maximize rapid solidification conditions and minimize the effects of recalescence, with emphasis on the solidification of characteristics of alloys in the 21 to 27 at. pct Si range of composition. SEM and TEM as well as X-ray diffraction are used to characterize the microstructures of the processed samples. In the range of compositions studied, the splat-quenched drops always formed the tetragonal Nb3Si phase directly from the liquid. Drops solidified in the coil were characterized by the presence of the primary intermetallic Nb5Si3 and the absence of both peritectic Nb3Si and the equilibrium eutectic. In these cases, a metastable alpha-Nb + beta-Nb5Si3 eutectic formed. The results are discussed in terms of possible metastable configurations of the Nb-Si phase diagram as well as concepts of nucleation and growth kinetics applied to the Nb3Si and Nb5Si3 intermetallics.

  1. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  2. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-05-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  3. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  4. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  5. Effect of casting/mould interfacial heat transfer during solidification of aluminium alloys cast in CO2-sand mould

    Science.gov (United States)

    Kulkarni, S. N.; Radhakrishna, D. K.

    2011-06-01

    The ability of heat to flow across the casting and through the interface from the casting to the mold directly affects the evolution of solidification and plays a notable role in determining the freezing conditions within the casting, mainly in foundry systems of high thermal diffusivity such as chill castings. An experimental procedure has been utilized to measure the formation process of an interfacial gap and metal-mould interfacial movement during solidification of hollow cylindrical castings of Al-4.5 % Cu alloy cast in CO2-sand mould. Heat flow between the casting and the mould during solidification of Al-4.5 % Cu alloy in CO2-sand mould was assessed using an inverse modeling technique. The analysis yielded the interfacial heat flux ( q), heat transfer coefficient ( h) and the surface temperatures of the casting and the mould during solidification of the casting. The peak heat flux was incorporated as a dimensionless number and modeled as a function of the thermal diffusivities of the casting and the mould materials. Heat flux transients were normalized with respect to the peak heat flux and modeled as a function of time. The heat flux model proposed was to estimate the heat flux transients during solidification of Al-4.5 % Cu alloy cast in CO2-sand moulds.

  6. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  7. A Multiscale Transient Modeling Approach for Predicting the Solidification Structure in VAR-Processed Alloy 718 Ingots

    Science.gov (United States)

    Nastac, Laurentiu

    2012-09-01

    This paper describes the development and validation of a comprehensive multiscale modeling approach capable of predicting at the mesoscopic scale level the ingot solidification structure and solidification-related defects commonly occurring during the vacuum arc remelting (VAR) process. The approach consists of a coupling between a fully transient macroscopic code and a mesoscopic solidification structure code. The predictions from the multiscale model, including grain morphology and size and columnar-to-equiaxed transition, were validated against experimental measurements for a 20-inch (508 mm) diameter VAR alloy 718 ingots. The validated model was then used to investigate the effects of melting rate and ingot diameter on the solidification structure of VAR processed 718 ingots.

  8. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  9. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    Science.gov (United States)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  10. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  11. Residual stress profiling of an aluminum alloy by laser ultrasonics

    Institute of Scientific and Technical Information of China (English)

    PAN Yondong; QIAN Menglu; XU Weijiang; M. OURAK

    2004-01-01

    A residual-stress profile along the thickness of an aluminum alloy sheet is determined by laser-ultrasonic technique. Surface acoustic waves are generated by a Nd:YAG pulse laser and detected by a Heterodyne interferometer on a lateral free surface of the sheet. The distribution of residual stress is determined by measuring the relative variation of the wavevelocities at different location of the sample along its thickness. This technique is validated by three different residual stress profiles obtained experimentally.

  12. Experimental Studies of Cold Roll Bonded Aluminum Alloys

    OpenAIRE

    Lauvdal, Steinar

    2011-01-01

    This master’s thesis is based on experimental studies of the parameters influencing cold roll bonding (CRB) of the aluminum alloys AA1200 and AA3103,in the work hardened and annealed condition. The effect on the bond strength from the preparations parameters as degreasing agent, scratch brushing and exposure time for oxide growth is investigated in comparison to former studies. Further the effect of rolling speed and effect from contributing factors from the different testing methods is ...

  13. Linear Anomaly in Welded 2219-T87 Aluminum Alloy

    Science.gov (United States)

    Jemian, Wartan A.

    1987-01-01

    Study of causes and significance of two types of linear anomalies sometimes appearing in radiographs of welds described in preliminary report. Manifested as light or dark linear features parallel to weld line in radiograph of weld. Contains diagrams and descriptions of phenomena occurring during welding process. Includes microdensitometer traces from x-radiographs of actual welds and from computer simulations based calculation of x-ray transmission through assumed weld structures. Concludes anomalies not unique to 2219-T87 aluminum alloy.

  14. Residual stress in quenched 7075 aluminum alloy thick plates

    Institute of Scientific and Technical Information of China (English)

    林高用; 张辉; 朱伟; 彭大暑; 梁轩; 周鸿章

    2003-01-01

    The influence of quenching water temperature, pre-stretching amount and aging temperature and times on residual stress in 7075 aluminum thick plate was studied by the measurement of residual stress using drilling hole method. The results indicate that residual stress decreases by 30% with increasing quenching water temperature from 40 ℃ to 80 ℃, 20% with increasing aging temperature from 100 ℃ to 180 ℃,and 20% with increasing aging times from 5 h to 25 h. Also, residual stress decreases to zero with increasing pre-stretching amount to approximately 2%. Hence, residual stress in 7075 aluminum thick plate is reduced by the control of quenching water temperature at 80 ℃ and with pre-stretching amount of about 2%. An optimal aging temperature and time should be systemically investigated to obtain combination of high mechanical performances and lower residual stress for manufacturing of 7075 aluminum alloy thick plates.

  15. Analysis of the solidification and microstructure of two aluminium alloys reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Egizabal, Pedro; Garcia de Cortazar, Maider [Fundacion Inasmet E-20009 Donostia-San Sebastian (Spain); Torregaray, Amaia [University of Basque Country UPV/EHU E-48012, Bilbo-Bilbao (Spain); Veillere, Amelie; Silvain, Jean-Francois [CNRS, Universite de Bordeaux, ICMCB 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac (France); Douin, Joel [CEMES-CNRS 29 Rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4 (France)

    2011-09-15

    Two aluminium alloys with 6 wt% TiB{sub 2} particles are studied for applications where increased wear resistance and mechanical strength at high temperature are required. The incorporation of hard ceramic particles has a strong influence on the microstructure and properties of the alloys. TiB{sub 2} particles play an important role in the nucleation of the different phases of the alloys during solidification, and in the reduction of grain size and porosity. The solidification patterns of Al-Si{sub 7}Mg{sub 0.3} + TiB{sub 2} (6 wt%) and Al-Cu{sub 5}MgTi+TiB{sub 2} (6 wt%) materials are compared to their corresponding non-reinforced alloys, and the microstructures are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Effects of P+Cr complex modification and solidification conditions on microstructure of hypereutectic Al-Si alloys by wedge-shaped copper mould casting

    OpenAIRE

    Zhang Haitao; Zuo Kesheng; Han Xing

    2014-01-01

    Large and segregated primary Si particles may drastically decrease the mechanical properties of Al-Si alloys. To solve this problem, a P-Cr complex modifier was added into the alloy, and the effects of P-Cr complex modification and solidification conditions on the microstructure of hypereutectic Al-Si alloys casting produced in wedge-shaped copper mould were studied. The thermal analysis technique was applied to calculate the cooling rate during solidification. The microstructures were observ...

  17. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  18. Rapid solidification of Al-Cu-Ag ternary alloy under the free fall condition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The rapid solidification of Al-30%Cu-18%Ag ternary alloy is investigated by using the free fall method. Its solidified microstructure is composed of θ(Al2Cu), α(Al) and ξ(Ag2Al) phases. The liquidus temperature and solidus temperature are determined as 778 and 827 K, respectively. The alloy melt undercooled amounts up to ΔTMax=171 K (0.20TL). Its microstructural evolution is investigated based on the theoretical analysis of undercooling behavior and nucleation mechanics. It is found that the undercooling increases with the decrease of the diameter of the alloy droplet. When ΔT<78 K, the primary θ (Al2Cu) phase of the alloy grows into coarse dendrite. When 78 K≤ΔT≤171 K, its refined θ (Al2Cu) phase grows alternatively with α(Al) phase. Once ΔT≥171 K, its microstructure is characterized by the anomalous (θ+α+ξ) ternary eutectic.

  19. Rapid solidification of Al-Cu-Ag ternary alloy under the free fall condition

    Institute of Scientific and Technical Information of China (English)

    DAI FuPing; WEI BingBo

    2009-01-01

    The rapid solidification of Al-30%Cu-18%Ag ternary alloy is investigated by using the free fall method. Its solidified microstructure is composed of θ(Al2Cu), α(Al) and ξ(Ag2Al) phases. The liquidus temperature and solidus temperature are determined as 778 and 827 K, respectively. The alloy melt undercooled amounts up to △Tmax=171 K (0.20T,). Its microstructural evolution is investigated based on the theoretical analysis of undercooling behavior and nucleation mechanics. It is found that the undercooling increases with the decrease of the diameter of the alloy droplet. When △T<78 K, the primary θ(Al2Cu) phase of the alloy grows into coarse dendrite. When 78 K≤△T≤171 K, its refined θ(Al2Cu) phase grows alternatively with α(Al) phase. Once △T≥171 K, its microstructure is characterized by the anomalous (θ+αξ) ternary eutectic.

  20. Solidification of metals and alloys under microgravity conditions; Bisho juryoku kankyo deno kinzoku oyobi gokin no gyoko

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, T. [Chiba Institute of Technology, Chiba (Japan)

    1998-03-20

    Studies on the difference of solidified textures of metals and alloys under microgravity conditions from conventional ones on the earth, and the possibility of new material creation are very exciting. Features of microgravity environment in melting and solidification of metals are no thermal convection, and mass transfer caused only by diffusion. Even in alloys where the second phase molten component separates by difference in density on the earth, homogeneous textures are obtained because of no floatation and sedimentation. Melting and solidification without vessels allows to produce high-purity materials because of no invasion of impurities from vessels. No static pressure can eliminate distortions of crystals due to dead weight. No defects are observed because of no disturbance of atomic sequences. Referring to various experiments on metals under microgravity conditions, this paper outlines supercooling solidification of metal melts, solidification of single-phase alloys and multi-phase alloys such as eutectic and peritectic system ones, particle-dispersing composite materials, and the behavior of gases in molten metals. 35 refs., 8 figs., 2 tabs.

  1. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercool- ings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  2. Russian aluminum-lithium alloys for advanced reusable spacecraft

    Science.gov (United States)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO2) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO2 cryotank was successfully demonstrated in DC-XA flight tests.

  3. Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Laha, T. [Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, EC 3464, Miami, FL 33174 (United States); Agarwal, A. [Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, EC 3464, Miami, FL 33174 (United States)]. E-mail: agarwala@fiu.edu; McKechnie, T. [Plasma Processes Inc., Huntsville, AL 35811 (United States); Rea, K. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Seal, S. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2005-12-15

    The benefits of large-size engineering components with nanocrystalline structure (providing improved strength) are yet to be realized due to processing difficulties and associated grain growth problems. In this work, a free-standing bulk nanocrystalline structure of hypereutectic aluminum alloy (Al-21wt.%Si) has been fabricated through the vacuum plasma spray (VPS) forming technique using micron-size powder feedstock. Optical microscopy, scanning electron microscopy and transmission electron microscopy have been used to investigate the evolution of multi-scale microstructure as the result of rapid solidification in VPS forming process. The characterization implies the presence of nanosized eutectic Al-Si grains (25-100 nm) with uniformly distributed ultrafine primary silicon particles of submicron size. The effect of microstructural evolution on mechanical properties has been studied by tensile testing and microhardness measurement. A considerable improvement in ultimate tensile strength and hardness of the sprayed deposit has been observed in comparison with conventionally cast hypereutectic Al-17wt.%Si alloys.

  4. Dynamic Crystallization: An Influence on Degree of Prior Deformation and Mechanical Strength of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Gbenebor, O.P

    2012-09-01

    Full Text Available This research is aimed at investigating the influence dynamic solidification of melts on degree of mechanical deformation and mechanical strength of 6063 aluminum alloy. Cylindrical samples of 14mm diameter and 140mm long were die cast following two techniques – vibration and static. Prior deformation via forging was imposed on each solidified sample to achieve 7%, 14%, 21% and 28% thickness reductions respectively for each casting technique. Average deformation load, average hammer velocities and the average energy absorbed were recorded. Tensile properties of each sample were studied via the use of Monsanto tensometer. Mechanical agitation of mould and its content increased the machinability of the alloy even at higer pre deformation. This was justified by the failure of the 28% reduction sample cast on static floor during machining to a tensile piece. The energy absorbed during deformation influences the tensile strength of the material. This increases with increase in percentage deformation except for 28% reduction whose magnitude was lower than that subjected to 21% reduction; vibrated samples possessed superior properties. From results obtained, vibrating a sample and subjecting to 21% pre-deformation possessed the best tensile strength.

  5. Mechanical properties of hot rolled 2519 aluminum alloy plate

    Institute of Scientific and Technical Information of China (English)

    彭大暑; 陈险峰; 林启权; 张辉

    2003-01-01

    The effects of differences of temper on mechanical properties of T6, T7 and T8 plates of aluminum alloy 2519 were studied. The stress corrosion cracking(SCC) sensitivity was evaluated with parameters such as Kσ and Kδ.Tensile tests were divided into two groups: one was performed on tensile specimens without pre-corrosion, the other was performed on tensile specimens which were pre-corroded in 3.5%NaCl+1%H2O2 solution at 25 ℃.The results show that SCC resistance of alloy 2519 ranks in the order of T8>T7>T6 and the mechanical properties rank in the order of T6>T8>T7. SEM fractographs of the failed specimen show that the SCC sensitivity can be determined by the distribution of the second phase particles and size and the shape of grains in the alloy.

  6. Enhancement of superplastic formability in a high strength aluminum alloy

    Science.gov (United States)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  7. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Science.gov (United States)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  8. Dilution of molybdenum on aluminum during laser surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Hitesh D.; Rajamure, Ravi Shanker [Laboratory of Laser Material Processing and Synthesis, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle 305310, Denton, TX 76203-5017 (United States); Soundarapandian, Santhanakrishnan [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Srinivasan, S.G. [Laboratory of Laser Material Processing and Synthesis, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle 305310, Denton, TX 76203-5017 (United States); Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu [Laboratory of Laser Material Processing and Synthesis, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2013-09-05

    Highlights: •Laser surface alloying significantly increased the solubility of transition metal. •Laser surface alloying produced dense coating with good metallurgical bonding. •Laser process parameters greatly influenced the evolution of various intermetallics. •Computationally predicted results closely matched with experimental findings. •Ability to generalize present model to other metal-transition metal systems. -- Abstract: A multiphysics based computational model was developed to predict the dilution of molybdenum (Mo) on an aluminum (Al) substrate during the laser surface alloying process. The influence of laser surface alloying processing parameters such as input energy, scanning speed, and overlapping ratio on dilution of Mo in Al was explored via computational model. The computational model, closely predicts the melt pool geometry (width and depth) that subsequently helps in estimating dilution. It was observed that the dilution increases with the increase in laser power, while it decreases with the increase in scanning speed. The phase and microstructural analyses revealed the existence of Al{sub 5}Mo intermetallic for most of the laser surface alloying processing conditions. However, at higher (3.18 × 10{sup 7} J/m{sup 2}) and lower (1.91 × 10{sup 7} J/m{sup 2}) laser energy densities, the Al{sub 8}Mo{sub 3} intermetallic was also evolved. These experimental observations validate the model’s predictions and points to its reliability in predicting the expected intermetallics in Al–Mo system for various laser surfacing alloying processing conditions.

  9. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    Science.gov (United States)

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  10. From 2007 to 2010,China Will Manufacture More Than 10,000 Aluminum Alloy Railcars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The clear advantage of the aluminum alloy rail- cars is the weight reduction.The deadweight of the aluminum alloy railcars usually does not exceed 8.5t each.The 52 motor train units used in the sixth nationwide railway speedup are all made of aluminum alloys except for the train units used in the line between Guangzhou and Shenzhen.It is estimated that in 2010,there are more than 10,000 railcars made of aluminum alloys,which will consume about 105kt alumi- num.

  11. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  12. Effects of shot peening on internal friction in CP aluminum and aluminum alloy 6008

    Energy Technology Data Exchange (ETDEWEB)

    Flejszar, Aneta; Ludian, Tomasz; Mielczarek, Agnieszka; Riehemann, Werner; Wagner, Lothar [Clausthal Univ. of Science and Technology, Inst. of Materials Science and Technology, Clausthal-Zellerfeld (Germany)

    2009-06-15

    The strain-amplitude-dependent damping of bending beams of aluminum alloy 6008 and CP aluminum was measured at room temperature after different heat treatments and after shot peening. Shot peening led to an increase of damping in almost the whole measured amplitude strain range from 10{sup -6} to 10{sup -3} for CP aluminum. Strong ageing effects at room temperature were observed immediately after the shot peening process, namely an increase of the amplitude dependent part and a decrease of the amplitude-independent part of damping. After about 2700 h, ageing of the samples had saturated. For aluminum alloy 6008 much smaller ageing effects were found being due to compensating effects like formation of Cottrell clouds, precipitation of G.P. - zones, and the reduction of foreign atoms in solid solution. The found amplitude-dependent damping can be explained by the reversible movement of dislocations between strong pinning points like, e.g., precipitates and weak pinning points like solid solute atoms as proposed by the dislocation damping theory of Granato and Luecke. Using this model the found ageing effects can be explained by the diffusion of solid solute atoms to the dislocations. (orig.)

  13. In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy

    International Nuclear Information System (INIS)

    The microstructural evolution of an Al-10 wt.% Cu alloy was investigated during solidification at constant cooling rate by in situ synchrotron X-ray microtomography with a resolution of 2.8 μm. Solidification of this alloy leads to a coarse dendritic microstructure which was fully characterized in terms of variation with temperature of the solid fraction, the specific surface area of the solid-liquid interface and the local curvatures of the solid phase. By analysing the evolution with solid fraction of individual dendrites, at least two coarsening mechanisms were clearly identified in addition to solidification growth. The first mechanism involves remelting of small secondary dendrite arms to the benefit of bigger adjacent arms. The second is the coalescence of adjacent secondary arms, with progressive filling of the inter-arm spacing and coalescence at the tips. Although this mechanism preferentially occurs at high solid fractions, these results show that the evolution of the dendritic microstructure during solidification is complex and involves the occurrence of various mechanisms operating concurrently. In situ X-ray tomography thus allows revisiting the various models which have been proposed to account for dendrite coarsening during solidification

  14. Estimation of the transient interfacial heat flux between substrate/melt at the initiation of magnesium solidification on aluminum substrates using the lumped capacitance method

    Energy Technology Data Exchange (ETDEWEB)

    Hajjari, E. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Divandari, M., E-mail: Divandari@iust.ac.ir [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Razavi, S.H.; Emami, S.M. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Kamado, S. [Department of Mechanical Engineering, Nagaoka University of Technology (NUT), Nagaoka 940-2188 (Japan)

    2011-03-15

    Interfacial heat flux (IHF) between solid pure aluminum/magnesium melt and solid 413 aluminum alloy/magnesium melt couples was evaluated using lumped capacitance method, and the interface microstructures were assessed by scanning electronic microscope. The variation of maximum IHF with surface roughness for these two couples also was evaluated. The results showed that, for both solid aluminum/magnesium melt couples, with increasing the surface roughness, the maximum IHF increases at first and then starts to decrease after reaching a maximum value. In addition the measured maximum IHF for solid 413 aluminum alloy/magnesium melt couples was found to be higher than those measured for solid pure aluminum/magnesium melt couples. That seems to be because of the better wettability of 413 aluminum alloy than pure aluminum, by magnesium melt.

  15. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    Science.gov (United States)

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

    2015-05-01

    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  16. Application of a criterion for cold cracking to casting high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging

  17. Effect of g-jitter on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Santiviriyapanich, P.; Benjapiyaporn, C.; Timchenko, V.; deVahlDavis, G.; Leonardi, E.; deGroh, H. C., III

    2000-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermosolutal convection in the liquid region. In this paper we present a numerical simulation of g-jitter: the small, rapid fluctuations in gravitational acceleration which may be experienced in an orbiting space vehicle. A background gravity of 1 micro-g has been assumed, and new results for the effects of orientation angle of the periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  18. Metastable phase separation and rapid solidification of undercooled Co-Cu alloy under different conditions

    Institute of Scientific and Technical Information of China (English)

    Cao Chong-De

    2006-01-01

    The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing,electromagnetic levitation (EML) and drop tube techniques.It is found that the liquid phase separation process and the solidification microstructures intensively depend on the experimental processing parameters,such as undercooling level,cooling rate,gravity level,liquid surface tension and the wetting state of crucible.Large undercooling and surface tension difference of the two liquids tend to facilitate further separation and cause severe macrosegregation.On the other hand,rapid cooling and low gravity effectively suppress the coalescence of the minority phase.Severe macrosegregation patterns are formed in the bulk samples processed by both DTA and EML.In contrast,disperse structures with fine spherical Cu-rich spheres homogeneously distributed in the matrix of Co-rich phase have been obtained in drop tube.

  19. Kinetic competition during duplex partitionless solidification in Ni-V alloys

    International Nuclear Information System (INIS)

    A structure composed of both partitionless face-centered cubic (α-fcc) and body-centered cubic (β-bcc) phases has been observed following high undercooling solidification of nickel-vanadium (Ni-V) alloys in the composition range 47--51.7 at.% V. Containerless processing and rapid solidification suppresses the formation of the equilibrium σ phase and results in the simultaneous formation of partitionless fcc and bcc phases. Transmission electron microscopy analysis has identified regions in which 0.1--1 microm α and β grains co-exist in a duplex structure. A nucleation and growth kinetics analysis has been developed to describe the conditions under which this structure may form. Thermodynamic and kinetic arguments have been used to provide bounds on various kinetic parameters. These bounds indicate that the nucleation rates for α and β must be larger than about 1027 m-3s-1 to account for the number of grains observed in the time available for nucleation, and the growth rates are constrained to be larger than about 1 m/s to account for complete solute trapping

  20. Simulation of local effect of reinforcement on temperature field during solidification of aluminum metal matrix composite

    Institute of Scientific and Technical Information of China (English)

    FU Yu-bi; ZHANG Xue-xi; WANG De-zun

    2006-01-01

    The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the character length was proposed to describe the size of reinforcement local heat influential zone in MMCs solidification according to the change of the morphologies of solid-liquid interface. The relationship between the character length and the geometrical conditions, the boundary condition and physical properties of the reinforcement were studied, respectively. The results show that the width of the unit and the cold boundary temperature have no effect on the character lengths but have effect on the distance between cold boundary and reinforcement (l) and the thermal parameters of the reinforcement. An experimental rule to predict the value of the character length was derived and applied.

  1. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    Science.gov (United States)

    Liang, S. M.; Schmid-Fetzer, R.

    2016-03-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented.

  2. Numerical simulation of recalescence of 3-dimensional isothermal solidification for binary alloy using phase-field approach

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-sheng; XIAO Rong-zhen; WANG Zhi-ping; FENG Li

    2009-01-01

    A accelerated arithmetic algorithm of the dynamic computing regions was designed, and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented. The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated. The effects of cooling rate on dendritic patterns and microsegregation patterns were studied. The computed results indicate that, with the increment of the cooling rate, the dendritic growth velocity increases, both the main branch and side-branches become slender, the secondary dendrite arm spacing becomes smaller, the inadequate solute diffusion in solid aggravates, and the severity of microsegregation ahead of interface aggravates. At a higher cooling rate, the binary alloy presents recalescence; while the cooling rate is small, no recalescence occurs.

  3. Aligned Solidification Structure of the MnBi Phase in Semisolidified Bi-Mn Alloy with a Static Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhongming REN; Hui WANG; Kang DENG; Kuangdi XU

    2004-01-01

    The solidification structure of Bi-3 wt pct Mn alloy grown up in the semisolid zone under the influence of a static magnetic field (up to 1.0 T) and the relation of the magnetic property with the solidification structure have been investigated experimentally. It was shown that the primary phase MnBi crystals in the alloy aligned and oriented along the direction of the applied magnetic field. The orientating tendency and the average length of the elongated MnBi crystals increased with the increase of the applied field and the solidification time. Moreover, the remanence of the alloy along the aligned direction of the MnBi phase in the case of solidification with a magnetic field was apparently anisotropic and nearly double of that without the magnetic field. This indicated that the MnBi crystals oriented and aligned along their easy magnetization axis. A model was proposed to explain the alignment and orientation growth of the MnBi crystals in a magnetic field in terms of the magnetic anisotropy of the crystals and the magnetic interaction between them.

  4. Phase selection during solidification of undercooled Ni_(70.2)Si_(29.8) eutectic alloy

    Institute of Scientific and Technical Information of China (English)

    Yiping Lu; Tingju Li; Fu Yabo; Sun Jianbo; Luo Dawei; Gencang Yang; Yaohe Zhou

    2009-01-01

    High undercooling (about 392 K) was achieved in the bulk eutectic Ni_(70.2)Si_(29.8) alloy melt through glass fluxing combined with cyclic superheating. It is found that the metastable phases Ni_3Si_2 and NiSi are obtained through slow post-solidification when undercooling exceeds 240 K. The metastable phases are confirmed by using the method of X-ray diffraction and differential scanning calorimetry (DSC). Based on the principle of the free energy minimum and the transient nucleation theory, the phase selection of melt is investigated with regard to the metastable phases formation in the bulk undercooled eutectic Ni_(70.2)Si_(29.8) melts. The formation of metastable phases from undercooled Ni_(70.2)Si_(29.8) melts is ascribed to competitive nucleation with the undercooling, I.e. High undercooling facilitates the pref-erential nucleation of metastable phases.

  5. Dual-scale phase-field simulation of Mg-Al alloy solidification

    Science.gov (United States)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  6. The effect of the shear flow on directional solidification of SCN-3wt% Salol alloy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The directional solidification process of SCN-3wt%Salol transparent alloy is investigated in the presence of the shear flow at the liquid-solid interface.It is found that the shear flow induces a stabilizing effect on planar interface.At higher pulling rates,oscillation of the growth pattern together with fluctuation of the growth velocity takes place.With the increase of the pulling rate,the interface growth pattern transits from"planar-cellular"oscillation to"cellular-dendritic"oscillation,and the periodicity increases.The modification of the growth pattern is due to the effect of the shear flow on solute distribution,and the time and history dependent character of interface morphology evolution also plays an important role in the formation of the oscillating growth pattern.

  7. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy

    Science.gov (United States)

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  8. Inverse problem for the solidification of binary alloy in the casting mould solved by using the bee optimization algorithm

    Science.gov (United States)

    Hetmaniok, Edyta

    2016-07-01

    In this paper the procedure for solving the inverse problem for the binary alloy solidification in the casting mould is presented. Proposed approach is based on the mathematical model suitable for describing the investigated solidification process, the lever arm model describing the macrosegregation process, the finite element method for solving the direct problem and the artificial bee colony algorithm for minimizing the functional expressing the error of approximate solution. Goal of the discussed inverse problem is the reconstruction of heat transfer coefficient and distribution of temperature in investigated region on the basis of known measurements of temperature.

  9. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  10. Microstructural and chemical characterization of Al{sub 3}Ti alloy obtained with a rapid solidification technique

    Energy Technology Data Exchange (ETDEWEB)

    Angeles, C. [Inst. Nacional de Investigaciones Nucleares, Salazar (Mexico). Dept. de Sintesis y Caracterizacion de Materiales; Rosas, G. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana, PO Box 52-B, 58000, Morelia Mich. (Mexico); Perez, R. [Laboratorio de Cuernavaca, Instituto de Fisica UNAM, PO Box 48-3, 62251, Cuernavaca Mor. (Mexico)

    1998-10-15

    Different alloys of Ti-Al have been prepared using an arc furnace under inert atmosphere. The liquid melt has been cast with a rapid solidification technique. The main purpose of this investigation is to explore the intermetallic phases obtained under this casting process and also the structural relationships between all the phases obtained in these types of alloys. The structural characterization of the specimens has been carried out using X-ray diffraction techniques. Chemical and morphological characteristics have been obtained using an analytical scanning electron microscope. Finally, some structural characteristics of the alloys have been obtained using an analytical transmission electron microscope. (orig.) 12 refs.

  11. Continuous and directional solidification technology of titanium alloys with cold crucible

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-run; DING Hong-sheng; GUO Jing-jie; BI Wei-sheng; FU Heng-zhi

    2006-01-01

    The experiments of continuous and directional solidification of titanium alloys with cold crucible were carried out in a multifunctional electromagnetic cold crucible apparatus. Parameters and factors influencing the surface crack and macrostructure of titanium alloy ingots were studied. The mechanism of the parameters and factors influencing the surface crack and macrostructure of the ingots were interpreted. The results show that the surface cracks of the prepared ingots decrease with the increase of the input power from 50 to 60 kW or with the increase of the coil turns from 3 to 5 circles. The surface cracks increase with the increase of withdrawal velocity from 3 to 5 mm/min or the height of the primer from 2 to 3 cm, then decrease with the increase of withdrawal velocity from 5 to 8.7 mm/min or the height of the primer from 3 to 4 cm. Coil turns is the most important one in all parameters effect on the surface crack, the input power is more important, then the withdrawal velocity is important and the height of the primer is the least important. Withdrawal velocity is the most important factor affecting the macrostructure, and effects of other factors on macrostructure is slight. With the decrease of velocity from 8.7 to 0.5 mm/min, the quantity of grains reduces, the grain orientation degree becomes small, and the solidification fronts change from concave to plane to convex. The ingot can be directional solidified at velocity of 1 mm/min. The ingot with free surface crack and directional macrostructure is prepared under definite conditions.

  12. Bearing Strengths of Some Wrought-aluminum Alloys

    Science.gov (United States)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  13. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  14. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  15. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid

  16. Prediction of selected mechanical properties of ferrous alloys through computational modeling of solidification

    Science.gov (United States)

    Guo, Xinqing

    During the last decade, the casting solidification simulation that includes the evolution of microstructure has gained significant attention. A more recent goal is the development of a predictive tool which quantitatively links the processing parameters to the microstructure and finally to the properties of castings. With the continuous improvements in the computational abilities of computers, as well as because of the rapid development of numerical methods, the prediction of microstructure of ferrous casting has become feasible. Consequently, the problem of predicting the mechanical properties of the ferrous castings becomes a problem of establishing the quantitative relationships between the mechanical properties and the microstructures of the castings. The purpose of this study is to provide a fundamental understanding of the mechanical behavior of Fe-C alloys for a rather broad range of compositions and microstructures. Microstructure-properties relationships have been developed and implemented into a computer solidification model to improve the design and production of castings. In the mechanical properties model of gray iron presented in this dissertation, the main factors controlling the tensile strength and hardness are addressed. They include graphite flake length, pearlite content and interlamellar spacing. The influence of the microstructural features of ductile iron, including graphite nodule count, nodularity, fraction of graphite, fraction of ferrite, and fraction of pearlite, on the fracture mechanism and the mechanical properties are discussed in the model for ductile iron. In the case of carbon steel, the ferrite grain size, the fraction of ferrite, and the fraction of pearlite have been found to be the significant factors controlling the properties. It is noted that the formulae used in all of the models are based on physical metallurgical principles and the coefficients for the models are obtained through multiple regression on commercial

  17. DSC Analysis of LT-3 Aluminum Alloy Vacuum Brazing

    Institute of Scientific and Technical Information of China (English)

    FENG Tao; WU Lu-hai; LOU Song-nian; LI Ya-jiang

    2005-01-01

    LT-3 aluminum alloy is a kind of two-side cladding aluminum special used in vacuum brazing. Differential Scanning Calorimeter (DSC) was used to measure the exothermic and endothermic reaction during the brazing process that the cortex metal and the base metal are melted and re-crystal. The analysis results inidicate that eutectic reaction is the main reaction in the melted cortex metal crystallization process. But the main reaction in the melted base metal crystallization process is the reaction that a-A1 segregated out. According to the experimental details, the critical work of nucleation is 3.82 × 1017J, the critical radius of nucleation is 8.69 × 1010 m, the volume of critical crystal nucleus is 2.75× 10-27 m3 and the per unit cell in critical crystal nucleus is 43.

  18. Comparison of recrystallization and recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys

    International Nuclear Information System (INIS)

    The recrystallization and recrystallization textures in cold-rolled direct chill cast (DC) and continuous cast (CC) AA 5182 aluminum alloys were investigated. The recrystallization behavior of cold-rolled DC and CC AA 5182 aluminum alloys was evaluated by tensile properties. The evolution of recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys was determined by X-ray diffraction. The results showed that the recrystallization temperature of cold-rolled DC AA 5182 aluminum alloy was somewhat lower than that of cold-rolled CC AA 5182 aluminum alloy. The resulting recrystallization textures of cold-rolled AA 5182 aluminum alloy were characterized by the strong R orientation and the cube orientation with strong scattering about the rolling direction towards the Goss orientation. CC AA 5182 aluminum alloy showed slightly weaker recrystallization textures than DC AA 5182 aluminum alloy

  19. Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature

    Institute of Scientific and Technical Information of China (English)

    阚洪敏; 祝跚珊; 张宁; 王晓阳

    2015-01-01

    Electrodeposition of aluminum from benzene-tetrahydrofuran−AlCl3−LiAlH4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities (10−25 mA/cm2), molar ratio of benzene and tetrahydrofuran (4:1 to 7:8) and stirring speeds (200−500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al−Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran−AlCl3−LiAlH4. XRD shows that the aluminum−magnesium alloys are mainly Al3Mg2 and Al12Mg17.

  20. Corrosion damage evolution and residual strength of corroded aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Youhong Zhang; Guozhi Lv; Hui Wang; Bomei Si; Yueliang Cheng

    2008-01-01

    The LY12CZ aluminum alloy specimens were eurroded under the conditions of different test temperatures and exposure durations. After corrosion exposure, fatigue tests were performed. Scanning electron microscopy and optical microscope analyses on corrosion damage were carried out. The definition of surface corrosion damage ratio was provided to describe the extent of surface corrosion damage. On the basis of the measured data sets of the corrosion damage ratio, the probabilistic model of corrosion damage evolution was built. The corrosion damage decreased the fatigue life by a factor of about 1.25 to 2.38 and the prediction method of residual strength of the corroded structure was presented.

  1. Effect of Coolant Water Flow Rate on Aluminum Alloys Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Golosov, O.A. [Institute of Nuclear Materials, Zarechny, Sverdlovsk region, 624250 (Russian Federation)

    2011-07-01

    One of the most important factors limiting a life-time of fuel elements in high-flux research reactors are a corrosion rate of fuel cladding material and a formation rate of oxide film. This study presents the results of the corrosion tests with and without irradiation. The aluminum alloys systems Al-Fe-Ni, Al-Fe-Ni-Cu-Mg and Al-Mg-Si-Cu were irradiated in the water flow of a velocity from 1.3 to 14.2m/s at 200 {sup o}C for time within 570 to 2000 hours. (author)

  2. Solar selective black nickel-cobalt coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shashikala, A.R.; Sharma, A.K.; Bhandari, D.R. [Thermal System Group, ISRO Satellite Centre, Bangalore 560 017 (India)

    2007-04-16

    Solar selective black nickel-cobalt plating on pre cleaned aluminum alloy substrates with nickel undercoat were investigated. Process optimization was carried out by the hull cell experiments investigating the influence of operating variables on the optical selectivity of the coating. The coatings were characterized with scanning electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopic and polarization studies. Evaluation of the coatings was carried out by adhesion, measurement of coating thickness and optical properties, humidity, thermal cycling, thermo-vacuum performance and thermal stability tests. (author)

  3. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  4. Corrosion fatigue of 2219-T87 aluminum alloy

    Science.gov (United States)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  5. Recrystallization model for hot-rolling of 5182 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A recrystallization model for hot-rolling of 5182 aluminum alloy was presented by means of the fractional softening during double interval deformation. It is found that the recrystallization rate depends on strain rate more sensitively than deformation temperature, and the time for full recrystallization is very short as strain rate is greater than 1 s-1. Using the recrystallization—time—temperature curves, the desirable hot rolled microstructure can be obtained by controlling the rolling speed, temperature and cooling rate before cooling during the last pass in reversing mill.

  6. Simulation of thermos-solutal convection induced macrosegregation in a Sn-10%Pb alloy benchmark during columnar solidification

    Science.gov (United States)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-03-01

    In order to investigate the effect of thermo-solutal convection on the formation of macrosegregation during columnar solidification, simulations with a liquid-columnar two phase model were carried out on a 2D rectangular benchmark of Sn-10%Pb alloy. The solidification direction in the benchmark is unidirectional: (') downwards from top to bottom or (2) upwards from bottom to top. Thermal expansion coefficient, solutal expansion coefficient and liquid diffusion coefficient of the melt are found to be key factors influencing the final macrosegregation. The segregation range and distribution are also strongly influenced by the benchmark configurations, e.g. the solidifying direction (upwards or downwards) and boundary conditions, et al. The global macrosegregation range increases with the velocity magnitude of the melt during the process of solidification.

  7. The influence of a microgravity environment on the dendritic morphology during directional solidification of hypoeutectic Al-Si alloys

    Science.gov (United States)

    Grugel, Richard N.

    1993-01-01

    NASA grant NAGW-2540 provided the opportunity to evaluate and extend ongoing studies of directionally solidified Al-Si alloys. Microstructural development was further characterized in terms of solidification processing parameters; novel relationships between processing and development of dendrite trunk diameters and tertiary dendrite arm spacings were found. This has resulted in three publications (one in print, one in press, and one in review). Microstructural development under conditions of controlled acceleration during directional solidification has been investigated; this has culminated in a Master's degree and will be submitted for publication. The above work not only contributes to our understanding of solidification phenomena but also defines the processing parameters for a successful microgravity experiment while providing a data base to which mu g samples can be unequivocally compared and evaluated.

  8. Modeling of thermosolutal convection during Bridgman solidification of semiconductor alloys in relation with experiments

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2004-05-01

    Thermosolutal convection during vertical Bridgman directional solidification of Ga 1- xIn xSb alloys has been studied by numerical simulation. The transient analysis of heat, momentum and species transport has been performed by using the finite element code FIDAP ®. In the case of vertical Bridgman configuration, the thermal convection is driven by the radial temperature gradients. The solute (InSb) rejected at the solid-liquid interface, which is heavier than the GaSb component, damps the thermally driven convection. The solutal effect on the melt convection has been analyzed for low ( x=0.01) and high ( x=0.1) doped Ga 1- xIn xSb alloys. It is found that the damping effect is negligible for Ga 0.99In 0.01Sb alloy grown at low pulling rates ( V= 1 μm/s ), but cannot be neglected if the pulling rate is increased. In the case of concentrated alloys, the low level of convection intensity leads to an increase of radial segregation and interface curvature during the whole growth process as also shown by experiments. The effect of solutal buoyancy force on the melt convection is analyzed for the horizontal Bridgman configuration under microgravity conditions. An inverse but lower solutal effect on the melt convection, as compared with vertical Bridgman arrangement, is observed. The results are in good agreement with the experimental data, and show that convective transport can be observed even for low (2×10 -6g0) residual gravity levels.

  9. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhao, Shuang; Pan, Hucheng; Song, Kai [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-09-01

    In this study, biodegradable Mg–Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg–1Sn alloy was almost equiaxed grain, while the Mg–Sn alloys with higher Sn content (Sn ≥ 3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg–Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg{sub 2}Sn phase, and the amount of Mg{sub 2}Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg–Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg–1Sn and Mg–3Sn alloys were promising to be used as biodegradable implants. - Highlights: • Biodegradable Mg–Sn implant alloys were prepared by sub-rapid solidification. • Secondary dendrite arm spacing of alloys decreased with increasing Sn content. • Corrosion rates of alloys increased significantly with increasing Sn content. • Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells.

  10. Rheo-diecasting Process for Semi-solid Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel one-step semisolid processing technique, the rheo-diecasting (RDC) process, was developed, which adapts in situ creation of semisolid metal slurry with fine and spherical solid particles followed by direct shaping of the slurry into a near-net shape component using the existing cold chamber diecasting process. The RDC process was applied to process A356 and A380 aluminum alloys. The resulting microstructures and mechanical properties of RDC products under as-cast and various heat treatment conditions were analyzed. The experimental results show that the RDC samples have an extremely low porosity, a fine and uniform microstructure throughout entire casting, and consequently much improved strength and ductility in the as-cast condition. The strength of RDC A356 alloy can be substantially improved under T5 and T6 heat treatments without loss of ductility.

  11. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  12. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca; Jung, I.-H., E-mail: in-ho.jung@mcgill.ca; Brochu, M., E-mail: mathieu.brochu@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of the (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.

  13. A Rare Earth High-iron Aluminum Alloy Cable Company to Settle in Chongqing

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with

  14. Interfacial characterization of resistance spot welded joint of steel and aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Weihua; Sun Daqian; Yin Shiqiang; Han Lijun; Qiu Xiaoming; Chen Qinglei

    2010-01-01

    The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 ram. The interfucial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property.

  15. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  16. Single-aging characteristics of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; YIN Zhi-min; SHEN Kai; LI Jie; HUANG ji-wu

    2007-01-01

    The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η' phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.

  17. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  18. Solidification microstructures of Al-Zn-Mg-Cu alloys prepared by spray deposition and conventional casting methods

    Institute of Scientific and Technical Information of China (English)

    HE Xiaoqing; XIONG Baiqing; SUN Zeming; ZHANG Yongan; WANG Feng; ZHU Baohong

    2008-01-01

    High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques.The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.Secondary phases in the microstructures of the alloys prepared by spray deposition and conventional cast were examined.The results indicate that under the conventional casting condition,the microstructure of the alloy revealed the presence of coarse Al/Mg(ZnCu)2 eutectic phases,and the spray deposited process causes an obvious modification in size,morphology,and distribution of secondary phases in the microstructure as well as reduction of segregation.The superior microstructure of the spray-deposited Al-Zn-Mg-Cu alloy was attributed to the high cooling rate,and associated with the rapid solidification process.

  19. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  20. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  1. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  2. Interfacial study of semi-solid aluminum alloy and stainless steel sheathed extrusion

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-wei; GUO Cheng; LIU Xu-feng; SHAO Guang-jie

    2006-01-01

    Using sheathed extrusion technique, the bonding and forming of semi solid aluminum alloy with stainless steel sheath are successfully realized. The relationship between the interfacial shear strength and the solid fraction of semi solid aluminum alloy at different extrusion ratios is analyzed; the interfacial and fracture structure of the sheath material are studied by optical microscopy(OM) and scanning electric microscopy(SEM). The result shows that interfacial shear strength increases with the increase of extrusion ratio, the maximum value of the interfacial shear strength is obtained when solid fraction of aluminum alloy is 30%,solid phase and liquid phase of the semi solid aluminum alloy are bonded with stainless steel by turns along the interface, and the aluminum alloy can not be peeled from the stainless steel completely, which means nicer bonding occurs at the interface.

  3. Comparatively Analysis of Characteristics of Aluminum or Magnesium Alloy Air Intake Manifold by Tilted Casting%铝、镁合金进气歧管倾转铸造的特点

    Institute of Scientific and Technical Information of China (English)

    陈红兵; 罗书强; 赵建华

    2011-01-01

    Flow behavior and heat release of aluminum alloy or magnesium alloy air intake manifolds during permanent mold tilting casting process were simulated by the Anycasting software. The results show that both magnesium alloy and aluminum alloy melt fully exhibit laminar flow during filling process. Cooling curves exhibit similar change shape for aluminum alloy and magnesium alloy manifold, however, solidification time of magnesium alloy melt is longer than that of aluminum alloy melt.%采用AnyCasting铸造模拟软件,分别模拟了金属型倾转铸造铝合金和镁合金进气歧管工艺,并对其流动模式和释放热量进行了比较.镁合金熔液在整个充型过程中完全属于层流流动,铝合金熔液也属于层流流动.模拟结果显示铝合金与镁合金进气歧管的冷却曲线变化趋势基本一致,但镁合金熔液比铝合金熔液冷却时间更长.

  4. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, O.; Aghion, E. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Goldman, J., E-mail: jgoldman@mtu.edu [Biomedical Engineering Department, Michigan Technological University, Houghton, MI, 49931 (United States)

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg–6%Nd–2%Y–0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd{sub 2}O{sub 3} content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. - Highlights: • Here we have evaluated the corrosion resistance of a novel Mg alloy (EW62). • Rapid solidification reduces the hydrogen gas evolution and hydrogen embrittlement. • Rapid solidification increases the stress corrosion cracking resistance of EW62. • Improvement is due to enrichment with supersaturated Nd in the external oxide film. • Rapidly solidified and extruded EW62 may serve as a biodegradable medical implant.

  5. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.

  6. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    DAI FuPing; CAO ChongDe; WEI BingBo

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) droplets with the same size.

  7. Energy-storage Welding Connection Characteristics of Rapid Solidification AZ91D Mg Alloy Ribbons

    Institute of Scientific and Technical Information of China (English)

    Jinfeng XU; Qiuya ZHAI; Sen YUAN

    2004-01-01

    Energy-storage welding connection characteristics of rapidly solidified AZ91D Mg alloy ribbons with 40~70 μm thickness are investigated using a microtype energy-storage welding machine. The microstructure and performance of the connection joints are analyzed and studied. The research results indicate that energy-storage welding is able to realize the spot welding connection of AZ9lD Mg alloy ribbons. The welding nugget consists of developed α-Mg equiaxed grains with the sizes of 1.2~2.7 μm and intergranular distributed β-Mg17Al12 compounds. The thickness of bond zone is about 4 μm and the solidification microstructure is characterized by the fine equiaxed grains with the sizes of 0.8~1.2μm, and grain boundary has become coarsening. The columnar crystal in HAZ also becomes slightly coarsening and the grain boundary has broadened,however, there is no obvious change in its primitive morphology and crystallographic direction. When welding energy is about 2.0 J, the welding joints with higher shear strength and smaller electrical resistivity are obtained.

  8. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.percent Cu alloy

    Science.gov (United States)

    Osborne, Matthew Gary

    1997-12-01

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings. This research was supported in part by the Office of Basic Energy Science, USDOE. The Ames laboratory is operated by Iowa State University for the U.S. Department of Energy under contract number W-7405-Eng-82.

  9. In situ synchrotron x-ray characterization of microstructure formation in solidification processing of Al-based metallic alloys

    International Nuclear Information System (INIS)

    The microstructure formed during the solidification step has a major influence on the properties of materials processed by major techniques (casting, welding ...). In situ and real-time characterization by synchrotron X-ray imaging is the method of choice to unveil the dynamical formation of the solidification microstructure in metallic alloys, and thus provide precise data for the critical validation of the theoretical predictions that is needed for sound advancement of modeling and numerical simulation. After a description of the experimental procedure used at the European Synchrotron Radiation Facility (ESRF), dynamical phenomena in the formation of the grain structure and dendritic or equiaxed solidification microstructure in Al-based alloys are presented. Beyond fluid flow interaction, earth gravity induces stresses, deformation and fragmentation in the dendritic mush. Settling of dendrite arms and equiaxed grains thus occurs, in particular in the columnar to equiaxed transition. Other types of stresses and strains are caused by the mere formation of the solidification microstructure itself. In white-beam X-ray topography, stresses and strains are manifested by specific contrasts and breaking of the Laue images into several pieces. Finally, quantitative analysis of the grey level in radiographs enables the analysis of solute segregation, which noticeably results in solutal poisoning of growth when equiaxed grains are interacting. (author)

  10. Solidification of Mg-Zn-Y Alloys at 6 GPa Pressure: Nanostructure, Phases Formed, and Their Stability

    Science.gov (United States)

    Zhou, Haitao; Liu, Keming; Zhang, Li; Atrens, Andrej; Yu, Jiuming; Li, Xiaolong

    2016-06-01

    Mg-Zn-Y alloys solidified under high pressure were characterized using XRD, DTA, SEM, and TEM. After solidification at atmospheric pressure, Mg-6Zn-1Y consisted of α-Mg, Mg7Zn3, and Mg3YZn6, while Mg-6Zn-3Y consisted of α-Mg, Mg3Y2Zn3, and Mg3YZn6. After solidification at 6 GPa pressure, both alloys consisted of α-Mg, MgZn, and Mg12YZn. The size and the shape of the second-phase particles formed for atmospheric solidification were significantly different to those formed for solidification at 6 GPa pressure. In Mg-6Zn-1Y, the second-phase size decreased from 300 to 50 nm, and the shape changed from needle like to blocky. In Mg-6Zn-3Y, the size decreased from 100 to 50 nm and the shape changed from short rod like to small and round. After aging at 200 °C for 12 h, the new MgZn phase transformed into the intermediate MgZn2 phase. Increasing the aging time to 24 h caused the intermediate MgZn2 phase to transform into Mg7Zn3 with a size of 50 nm, while the Mg12YZn phase remained unchanged.

  11. Stress corrosion cracking susceptibility of 7A52 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun-jun; WANG Wei-xin; CAI Zhi-hai; ZHANG Ping

    2006-01-01

    The stress corrosion sensitivity of 7A52 aluminum alloy was investigated in the artificial sea water through slow stain rate test(SSRT). The stress corrosion cracking(SCC) susceptibility was estimated with the loss of elongation and stress corrosion sensitivity index. The results show that the susceptibility of 7A52 aluminum alloy is always high when the strain rate is in the range of 10-5-10-7s-1. It reaches the maximum at the strain rate of 8.7×10-7s-1, and the sensitivity index reaches 0.346. The characteristics of stress corrosion can be observed clearly on the fracture of tensile specimen. The process of SCC is depicted according to the fracture morphology. The SCC initiates at the edge of the specimen. Then the SCC grows rapidly because of the anode dissolving and stress concentration. When the area of specimen cannot support the tensile stress, it ruptures suddenly. The secondary cracks and quasi-cleavage surface can be found on the fracture morphology.susceptibility

  12. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  13. Flexural-torsional buckling behavior of aluminum alloy beams

    Institute of Scientific and Technical Information of China (English)

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  14. Investigation of Corrosion Behavior Of 6013 Aluminum Alloys For Artificial Aged Microwave Furnace

    Directory of Open Access Journals (Sweden)

    Muzaffer Erdoğan

    2014-01-01

    Full Text Available Low density and high strength aluminum alloys can be achieved today is a type of an alloy. These alloys are more resistant, particularly the aging process is the precipitate formed. In this study, increased strength 6013 aluminum alloy in a microwave furnace yaşlandırarak artificial. Volume samples in a microwave oven aging method and aging has provided a homogeneous way.6013 aluminum alloys, pure argon gas atmosphere in a microwave furnace hardness after being subjected to artificial aging process analysis, the internal structure (optical microscope, SEM, characterization of the studied. Aging of the phases, the presence server in the XRD of the samples was determined by curves. Corrosion of artificial aged samples has been analyzed by the internal structure of the phases present. Depending on the time of artificial aging of aluminum alloy 6013 samples in a microwave furnace in the mechanical properties of the sediment affected the corrosion resistance values.

  15. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  16. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  17. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    Science.gov (United States)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  18. Crystal Growth of II-VI Semiconducting Alloys by Directional Solidification

    Science.gov (United States)

    Lehoczky, Sandor L.; Szofran, Frank R.; Su, Ching-Hua; Cobb, Sharon D.; Scripa, Rosalia A.; Sha, Yi-Gao

    1999-01-01

    This research study is investigating the effects of a microgravity environment during the crystal growth of selected II-VI semiconducting alloys on their compositional, metallurgical, electrical and optical properties. The on-going work includes both Bridgman-Stockbarger and solvent growth methods, as well as growth in a magnetic field. The materials investigated are II-VI, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se, where x is between 0 and 1 inclusive, with particular emphasis on x-values appropriate for infrared detection and imaging in the 5 to 30 micron wavelength region. Wide separation between the liquidus and solidus of the phase diagrams with consequent segregation during solidification and problems associated with the high volatility of one of the components (Hg), make the preparation of homogeneous, high-quality, bulk crystals of the alloys an extremely difficult nearly an impossible task in a gravitational environment. The three-fold objectives of the on-going investigation are as follows: (1) To determine the relative contributions of gravitationally-driven fluid flows to the compositional redistribution observed during the unidirectional crystal growth of selected semiconducting solid solution alloys having large separation between the liquidus and solidus of the constitutional phase diagram; (2) To ascertain the potential role of irregular fluid flows and hydrostatic pressure effects in generation of extended crystal defects and second-phase inclusions in the crystals; and, (3) To obtain a limited amount of "high quality" materials needed for bulk crystal property characterizations and for the fabrication of various device structures needed to establish ultimate material performance limits. The flight portion of the study was to be accomplished by performing growth experiments using the Crystal Growth Furnace (CGF) manifested to fly on various Spacelab missions.

  19. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    Science.gov (United States)

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. PMID:26964943

  20. Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum

    Science.gov (United States)

    Combeau, Hervé; Založnik, Miha; Bedel, Marie

    2016-06-01

    Prediction of solidification defects, such as macrosegregation and inhomogeneous microstructures, constitutes a key issue for industry. The development of models of casting processes needs to account for several imbricated length scales and different physical phenomena. For example, the kinetics of the growth of microstructures needs to be coupled with the multiphase flow at the process scale. We introduce such a state-of-the-art model and outline its principles. We present the most recent applications of the model to casting of a heavy steel ingot and to direct chill casting of a large Al alloy sheet ingot. Their ability to help in the understanding of complex phenomena, such as the competition between nucleation and growth of grains in the presence of convection of the liquid and of grain motion is shown, and its predictive capabilities are discussed. Key issues for future developments and research are addressed.

  1. The effect of adding boron in solidification microstructure of dilute iron-carbon alloy as assessed by phase-field modeling

    Directory of Open Access Journals (Sweden)

    Henrique Silva Furtado

    2011-01-01

    Full Text Available Alloying element like boron, even in small addition, is well known to improve hardenability of steels. Its application can improve mechanical properties of steels and reduce alloying costs. Despite these benefits is not easy to cast boron steels, mainly in dynamical solidification process like continuous casting, due to their crack susceptibility1,2. The strategy of using Phase-Field simulation of the solidification process is based on its proved capacity of predicting realistic microstructure that emerge during solidification under conditions even far from equilibrium3-5. Base on this, some comparative simulations were performed using a three component dilute alloy in a two dimensional domain under unconstrained (isothermal and constrained (directional solidification. Simulation results suggested two fragile mechanisms: one related to a deep dendritic primary arms space and other due to the remelting of this region at low temperature. Both resulted mainly from the high boron segregation in interdendritic regions.

  2. Effects of an Applied Magnetic Field on the Directional Solidification of Hg(1-x)Zn(x)Se Alloys

    Science.gov (United States)

    Cobb, S. D.; Lehoczky, S. L.; Szofran, F. R.; Jones, K. S.

    1999-01-01

    Directionally solidified Hg(0.9)Zn(0.1)Se alloys were studied as an alternative to HgCdTe for the detection of electromagnetic radiation because of predicted improvements in lattice stability. Several boules were grown using a modified Bridgman-Stockbarger method and in an applied magnetic field. Axial compositional profiles showed mass transfer was primarily diffusion controlled. Radial compositional variations were greatly reduced when solidification occurred in an applied magnetic field. Microstructural characteristics and dislocation etch pit densities were greatly improved over HgTe based alloys. The extreme importance of processing conditions on defect generation was illustrated by comparing ampoule configurations and thermal profiles.

  3. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    Science.gov (United States)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  4. Surface properties of aluminum alloy as material for ultrahigh vacuum

    International Nuclear Information System (INIS)

    The characteristics of aluminum alloy (2017 alloy) for the vacuum chambers of TRISTAN were studied. Machining, electric discharge machining and chemical polishing were made successively on the samples of the 2017 alloy. The observation of surface state, the analysis of surface composition and high temperature desorption experiment were performed. The measurement of surface roughness with a probe, the observation with a scanning electron microscope (SEM), and the measurement of surface roughness factor (SRF) were carried out as the study of the surface state. The analysis of surface composition was made by the Auger electron spectrometry. It was found that the surfaces of samples treated by discharge machining were rough and have thick oxide layer. When chemical polishing was applied to these samples, the surfaces became smooth, and the oxide layer became thin. By heating the samples to raise the temperature, the desorption of H2O, CO and CO2 was caused. The amount of desorption was in close relation with the SRF. (Kato, T.)

  5. Friction stir welding characteristics of two aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    刘会杰; 藤井英俊; 前田将克; 野城清

    2003-01-01

    The friction stir welding characteristics of the strain-hardened AA1050-H24 and precipitate-hardened AA2017-T351 aluminum alloys were examined in order to reveal the effects of the alloy properties on the friction stir welding behavior of the base materials. The results show that (1) for AA1050-H24, the weld possesses a smooth surface and clear ripples, there is no elliptical weld nugget in the weld, there is not discernible interface between the stir zone and the thermo-mechanically affected zone(TMAZ), and the internal defect of the weld looks like a long crack and is located in the lower part of the weld; (2) for AA2017-T351, the weld usually possesses a rough surface and visible ripples, the elliptical weld nugget clearly exists in the weld and there is obvious plastic flow and a discernible interface between the nugget and the TMAZ, and the internal defect of the weld is composed of many voids and distributed in the middle part of the weld; (3) the effective ranges of the welding parameters for AA1050-H24 and AA2017-T351 are both narrow, especially for the latter; and (4) the tensile strength efficiencies of the joints for the two typical alloys are similar, i e 79% for AA1050-H24 and 82% for AA2017-T351.

  6. Effects of Si Content and the Addition Amount of Al-3B Master Alloy on the Solidification Structures of Hypoeutectic Al-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Si content and the addition amount of Al-3B master alloy on the solidification structures of hypoeutectic Al-Si alloys were studied. The addition amounts of the master alloy were 0.2%, 0.4%, 0.7% and 1% (mass fraction, so as the follows), respectively. The Si content of Al-Si binary alloys investigated varied from 1% to 11%. The observation of macrostructures of non-refined samples showed that 3% Si constitutes a transition point at which the minimum grain size can be obtained. It was also found that Al-3B master alloy can shift the transition point towards a higher Si value when its addition amount increases, making this point appear at 4%, 5% and 6% Si as its addition amount increases up to 0.4%, 0.7% and 1%, respectively.

  7. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle int

  8. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding-Ni, E-mail: siping4840@126.com [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Shangguan, Qian-Qian [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Xie, Can-Jun [Commercial Aircraft Corporation of China, Ltd., Shanghai 200120 (China); Liu, Fu [Shanghai Aircraft Design and Research Institute of COMAC, Shanghai 201210 (China)

    2015-01-15

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved.

  9. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved

  10. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  11. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    Science.gov (United States)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  12. Effect of rapid solidification treatment on structure and electrochemical performance of low-Co AB5-type hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    姚青荣; 唐莹; 周怀营; 邓健秋; 王仲民; 潘顺康; 饶光辉; 朱其明

    2014-01-01

    The effect of rapid solidification on structure and electrochemical performance of the LaNi4.5Co0.25Al0.25 hydrogen storage alloy was investigated by X-ray powder diffraction and a simulated battery test, including maximum capacity, cycling stability, self-discharge, and high-rate discharge ability (HRD). All the melt-spun alloys were single-phase with the CaCu5-type structure (space groupP6/mmm). In comparison to the as-cast alloy, the rapidly quenched alloys manifested an improved homogeneity of com-position and expanded lattice parameters. The electrochemical measurements showed that the activation property, cycling stability and self-discharge of the alloy electrodes were also improved for the rapid solidified alloys. The HRDof the as-cast alloy was better than those of all the rapidly solidified alloys. As the quenching rate increased, the HRD and exchange current density first decreased and then increased.

  13. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    Science.gov (United States)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  14. Simulation for microstructure evolution of Al-Si alloys in solidification process

    Institute of Scientific and Technical Information of China (English)

    XU Hong; HOU Hua; ZHANG Guo-wei

    2006-01-01

    The numerical simulation for microstructure evolution of Al-Si alloy in solidification process is carried out with phase field model. The phase field model,solution algorithm and the program of dendrite growth are introduced. The definition of initial condition,boundary condition and the stability condition of differential format are all included. The simulation results show that the evolution of dendrite morphology is as follows: the initial circle nucleus transforms to the rectangle one firstly,then its corners develop to the four trunks and from which the secondary side branches are generated and even the third side branches are produced from secondary ones. The dendrite tip radius decreases quickly at the initial stage and changes slowly at the late stage,which is mainly due to the fact that more and more side branches appear and grow up. The comparisons of dendrite morphology between simulated results and investigations by others are also presented. It is proved that the dendrite morphologies are similar in trunks and arms growth,so the developed phase field program is accurate.

  15. Characterization of Rapidly Solidified Al-27 Si Hypereutectic Alloy: Effect of Solidification Condition

    Science.gov (United States)

    Cai, Zhiyong; Wang, Richu; Zhang, Chun; Peng, Chaoqun; Xie, Lichuan; Wang, Linqian

    2015-03-01

    Rapidly solidified Al-27wt.%Si hypereutectic alloy was fabricated by gas atomization, and its characterization as a function of particle size was investigated. A relationship between the particle size and solidification condition was established to understand the microstructural characteristics. While the irregular primary Si phase transformed to quasi-spherical shape, and its size decreased gradually with the particle size, the primary Si morphology similar to that in ingot metallurgy sample was found from the deep-etched images. In the fine powder, the eutectic Si phase formed a network structure densely distributed in the matrix, while a tangled dendritic formed at the surface. From the distribution of the Si phase, it is suggested that the microstructure inhomogeneity increased as the particle size decreases. The structural distortion of the Al matrix was observed from x-ray diffraction patterns and differential scanning calorimetry curves. From the calculated results, an undercooling of 33 K (or interface velocity of 8 mm/s) was sufficient to suppress the primary Si to less than 2 μm in the present composition. The microhardness increased significantly while the particle size decreases. The microstructure and properties of the bulk material consolidated by hot pressing of the powders obtained were also conducted.

  16. Standard guide for conducting exfoliation corrosion tests in aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; WANG Li-liang; YUAN Shi-jian; WANG Zhong-ren

    2006-01-01

    In order to investigate the influence of hydrostatic pressure on compression limit of the ring, numerical simulation and experimental research were carried out. The effect of hydrostatic pressure on the deformation of aluminum alloy 7075 ring was obtained by numerical simulation. The die set for compressing ring under high hydrostatic pressure was designed and manufactured. Experimental results show that the compression limit increases linearly as the hydrostatic pressure increases in a certain range. At 100 MPa the maximum compressive strain is increased by 32.42%. At strain limit, the cracks initiate from the corner of the outer wall to the middle of the inner wall along the direction of the maximum shear stress.

  18. Subsequent yield loci of 5754O aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-bo; WAN Min; WU Xiang-dong; YAN Yu

    2009-01-01

    Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method, the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well, whereas isotropic hardening mode, which is widely used in sheet metal forming fields, predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.

  19. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  20. Microstructural stability of ultrafine grained cold sprayed 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Champagne, V.R. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-01-30

    The microstructural stability of ultrafine grained (UFG) cold spray 6061 aluminum deposits produced by high pressure cold spray were investigated by in situ heating to a fully annealed state via a hot-stage transmission electron microscope (TEM). It was possible to observe the precise locations and temperatures of different microstructural changes, like dislocation movement and other restoration processes. Even after heating up to the annealing temperature for this alloy, the deposited layer in the perpendicular direction was found to preserve the UFG structures, which were the result of different recrystallization mechanisms caused by the high strains present during cold spraying. Extensive solute segregation at the grain boundaries acted as an obstruction for grain boundary migration in this direction, thereby preventing grain growth. However, in the direction parallel to the deposited surface, the UFGs were not resistant to grain coursing like the other direction, since the grain boundaries had much less solute segregation.

  1. Applications of pattern recognition in aluminum alloy texture characterization

    Science.gov (United States)

    Liu, Guizhong; Rehbein, D. K.; Foley, James C.; Thompson, R. B.

    2000-05-01

    This paper presents a methodology to extract texture information in Aluminum alloys using pattern recognition algorithm. The orientation of the samples can be obtained by the orientation Image Microscope (OIM) technique. The ISO DATA pattern recognition algorithm is implemented to classify the OIM data into different clusters. Based on the classification results, the probability density function (pdf) is estimated. Then, the pdf is expanded as a series of Legendre functions with coefficients, i.e., the orientation distribution coefficients (ODC) as texture parameters. Three of these ODC's are of special interests, namely W400, W420, and W440. This paper includes results from ultrasonic NDE and this novel algorithm.—Ames Laboratory is operated for U.S. Department of Energy by Iowa State University under Contract W-7405-ENG-82. This work was supported by the Office of Basic Energy Sciences as a part of the Center of Excellence of the Synthesis and Processing of Advanced Materials.

  2. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  3. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  4. Modeling on the Solidification of 1J51 Fe-Ni-Based Alloy Ingot Under Vacuum Conditions

    Science.gov (United States)

    Zhang, Lifeng; Gao, Chen; Li, Chongwei; Peng, Jie

    2014-07-01

    In this article, a numerical simulation model on the solidification of 1J51 Fe-Ni based alloy under vacuum conditions was established using ProCAST software (ESI Group, Paris, France). The calculated temperature profiles of the mold and the solidification profile of the ingot were compared with the measurement, showing a reasonable agreement. The validated model was then used to study the effects of the insulation condition, filling rate, and maximum filling fraction on the solidification state and porosity distribution of the ingot. It was indicated that the shrinkage cavity position of ingot with zirconia fiber was lower than that without zirconia fiber, and the likelihood of centerline shrinkage porosity was independent of the insulation method. The position of macroporosity varied little when the filling rate was from 2.17 kg/s to 5.17 kg/s, while serious solidification defects occurred in the body of ingot when the filling rate was lower than 4.17 kg/s. Increasing the maximum filling fraction had a positive impact on the rise of shrinkage cavity position, but it was hardly advisable because the metal yield decreased with the increase of the maximum filling fraction. Considering the above parameters discussed in this article, it was proposed to remove the zirconia fiber layer for the industrial practice.

  5. Rapid Directional Solidification with Ultra-High Temperature Gradient and Cellular Spacing Selection of Cu-Mn Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growthdirection of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperaturegradient and rapid directional solidification. The experimental results show that the growth direction of microstructure isstrongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realizedon the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradientand growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center ofthe molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings underthe laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum,λ minimum, λmin, and average primary spacing,λ, as functions of growth rate, Vb, can be given by, λ =12.54V b-0.61,λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model forrapid cellular/dendritic growth, and a good agreement is found.

  6. Application of a criterion for cold cracking to casting high strength aluminum alloys

    OpenAIRE

    Lalpoor, M; Eskin, D G; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging process. Therefore, a criterion that can predict the catastrophic failure and cold cracking of the ingots would be highly beneficial to the aluminium industry. The already established criteria are...

  7. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  8. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  9. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Makoto HINO; Koji MURAKAMI; Yutaka MITOOKA; Ken MURAOKA; Teruto KANADANI

    2009-01-01

    The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined. Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element. The zinc deposits in the 2nd zincate treatment became thinly uniform, and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element. XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid. This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.

  10. The effect of alloy elements on the density variation of steel melt at the interdendritic region during solidification

    Science.gov (United States)

    Cao, Y. F.; Chen, Y.; Ma, X. P.; Fu, P. X.; Kang, X. H.; Liu, H. W.; Li, D. Z.

    2016-03-01

    Alloying elements in steels have essential effects on the formation of macrosegregation by inducing a density difference between the mushy zone and the bulk melt, and even by the alteration of the solidified microstructure. Hence, in terms of the thermodynamic laws for solidification of an idealized dilute solution, a systematic theoretical analysis on the effect of elements on the density variation of the interdendritic melt is presented for common Fe-based binary alloys. It shows that density variation closely associates with three crucial parameters: the microsegregation parameter λ, the temp-comp-expansion parameter β and the initial composition CL o . With these derived parameters, a simple analytical model is proposed to assess the influence of alloy elements on density change. The theoretical analysis indicates that compared to silicon, the effect of carbon on the density variation cannot be ignored, which is remarkably different from the previous recognition of these two elements. The macrosegregation induced by carbon only is experimentally validated by two dissected 500 kg ingots with different carbon contents. Furthermore, to directly validate the results of theoretical analysis a macrosegregation model with two different microsegregation laws (lever rule and Scheil equation) is established. Then simulations of the convection during solidification in the experimental 500 kg reference ingot are performed for Fe-C and Fe-Si alloys, respectively. It demonstrates that numerically simulated effects of carbon and silicon on the interdendritic convection induced by density inversion are fairly consistent with the analytical predictions.

  11. The effects of rapid solidification on microstructure and hydrogen sorption properties of binary BCC Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Suwarno, S., E-mail: S.Suwarno@uu.nl [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Solberg, J.K. [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Maehlen, J.P. [Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller (Norway); Krogh, B. [Statoil ASA Research Centre, Rotvoll, NO-7005, Trondheim (Norway); Yartys, V.A. [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller (Norway)

    2014-01-05

    Highlights: • Effect of quenching rate and Ti/V ratio on the phase-structural composition. • Grain size refinement in the rapidly solidified Ti–V alloys. • Hydrogen storage properties of rapidly solidified binary Ti–V. • Mechanism of phase transformations in the hydrides of the RS Ti–V alloys. -- Abstract: The main purpose of the present work was to study the effect of rapid solidification (RS) on the microstructure and hydrogen storage properties of body centred cubic (BCC) Ti rich Ti–V alloys (Ti{sub 1−x}V{sub x}, x = 0.1–0.3). Ribbons were prepared by melt spinning at spinner rotation velocities of 1000–3000 rpm. Ribbon morphology and microstructure were found to depend on the vanadium content and spinner velocity. For Ti{sub 0.8}V{sub 0.2}, the relation between the ribbon thickness and velocity can be expressed as a power law function, indicating that, during solidification of the Ti–V ribbons, heat transfer at the interface between spinner and ribbon controls the heat extraction. Temperature desorption spectroscopy (TDS) and in situ synchrotron (SR-XRD) studies of the RS alloys showed that hydrogen desorption from the RS alloy hydrides occurred at lower temperatures than from the as cast alloys. RS caused a microscale chemical element separation in the alloys, which depends on the vanadium content and the spinner velocity. In addition, ribbon recalescence was observed to cause nanoscale chemical redistribution trough spinodal decomposition. These two last features were proposed to be the reasons for the observed thermal destabilisation.

  12. Effect of low temperature melt on solidification structure of A356 alloy with melt thermal treatment

    Institute of Scientific and Technical Information of China (English)

    何树先; 王俊; 孙宝德; 周尧和

    2001-01-01

    The influence of the low temperature melt (LTM) structure on solidification structure of the sample with melt thermal treatment (MTT) process was studied. And the mechanism of the MTT process was analyzed with cluster theory. It is shown that the final solidification structure is dependent mainly on the structure of LTM. Dendrites will appear in the solidification structure if the structure of LTM is dendritic before MTT. Otherwise, non-dendritic grains will appear in the solidification structure. And the lower the temperature of LTM, the more remarkable the effect of the LTM structure is.

  13. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    OpenAIRE

    Atef Korchef; Abdelkrim Kahoul

    2013-01-01

    A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP). The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared wit...

  14. In-plane anisotropy of 1545 aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-yi; YIN Zhi-min; YANG Jin; DU Yu-xuan

    2005-01-01

    The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test,X-ray diffractometer(XRD),optical microscope and transmission electron microscope.The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane,transversal section and longitudinal section were obtained by Harris method.The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is{110}texture.On the basis of the model that regards the sheet containing only{110}texture as a monocrystal,the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed.The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties,but the main cause is the crystallographic texture.

  15. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    Science.gov (United States)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  16. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhao, Shuang; Pan, Hucheng; Song, Kai; Tang, Aitao

    2015-09-01

    In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants. PMID:26046288

  17. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  18. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-14

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10{sup −5}–7.2 × 10{sup −3}, which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10{sup 21} m{sup −3}–2.6 × 10{sup 22} m{sup −3}. - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured.

  19. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    Science.gov (United States)

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei

    2015-07-01

    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  20. Simulation of microstructural evolution in directional solidification of Ti-45at.%Al alloy using cellular automaton method

    Directory of Open Access Journals (Sweden)

    Wang Kuangfei

    2010-02-01

    Full Text Available The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model. The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth. For dendritic structures formed under a high thermal gradient, the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition. Furthermore, it has been observed that, with increasing pulling velocity, there exists a cell/dendrite transition region consisting of cells and dendrites, which varies with the thermal gradient in a contradicting way, i.e. increase of the thermal gradient leading to the decrease of the range of the transition region. The simulations agree reasonably well with experiment results.

  1. Investigation on macrosegregation and dendrite morphology during directional solidification of Al-Cu hypereutectic alloys under a strong magnetic field

    Science.gov (United States)

    Li, Xi; Du, DaFan; Fautrelle, Yves; Ren, ZhongMing; Moreau, Rene

    2015-08-01

    The effect of a strong magnetic field (up to 12 T) on the macrosegregation and dendrite morphology during directional solidification of the Al-22at.%Cu alloy has been investigated. Experimental results show that the application of the magnetic field caused the freckle macrosegregation and the fracture of the Al2Cu dendrites during directional solidification. With the increase of the magnetic field, the size of the freckle and dendrite decreases. Moreover, the electron back-scatter diffraction (EBSD) was applied to study the effect of the magnetic field on the morphology and orientation of the Al2Cu dendrite. The EBSD results revealed that although the dendrites were destroyed under the magnetic field, the magnetic field did not yet change the orientation of the Al2Cu crystal. The formation of the freckles and the fracture of the dendrites under the magnetic field may be attributed to the TE magnetic effects.

  2. Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy

    International Nuclear Information System (INIS)

    The evolution of recrystallization textures in cold rolled AA 5182 aluminum alloy was investigated by X-ray diffraction. The transformation kinetics of recrystallization textures during isothermal annealing was quantified by using an Avrami type equation

  3. Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.C.; Zhai, T.; Man, C.-S.; Morris, J.G

    2003-09-15

    The evolution of recrystallization textures in cold rolled AA 5182 aluminum alloy was investigated by X-ray diffraction. The transformation kinetics of recrystallization textures during isothermal annealing was quantified by using an Avrami type equation.

  4. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products ? Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  5. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    Science.gov (United States)

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  6. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Qiang, Xiaohu; Liu, Yanhua; Wang, Yanping

    2016-03-01

    Superhydrophobic surface with excellent corrosion resistance was prepared on aluminum alloy via boiling water treatment and surface modification with stearic acid. Results suggested that the micro- and nanoscale hierarchical structure along with the hydrophobic chemical composition surface confers the aluminum alloy surface with good superhydrophobicity, and the water contact angle and the water sliding angle can reach 156.6° and 3°, respectively. The corrosion resistance of the superhydrophobic aluminum alloy was first characterized by potentiodynamic polarization, and then the long-term corrosion resistance was investigated by immersing the sample in NaCl solution for 90 days. The surface wettability, morphology, and composition before and after immersion were examined, and results showed that the superhydrophobic aluminum alloy surface possessed good corrosion resistance under the experimental conditions, which is favorable for its practical application as an engineering material in seawater corrosion conditions. Finally, the mechanism of the superhydrophobicity and excellent corrosion resistance is deduced.

  7. Computational Modeling aided Near Net Shape Manufacturing for Aluminum Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will focus on developing and validating computational models for near-net shape processing of aluminum alloys. Computational models will be developed...

  8. Statistical analysis of constituent particles in 7075-T6 aluminum alloy

    Science.gov (United States)

    Harlow, D. G.; Wei, R. P.; Wang, M. Z.

    2006-11-01

    Pitting corrosion is a primary degradation mechanism that affects the durability and integrity of aluminum alloy structures especially in aircraft. The heterogeneity of aluminum alloys is directly responsible for pitting corrosion because about 200 constituent particles per mm2 are on polished surfaces. Corrosion pits commence at surface particles and evolve into severe pits by sustained growth through particle clusters. Severe pits are nuclei for subsequent corrosion fatigue cracking. Thus, heterogeneous clusters of constituent particles are critical to the quality of aluminum alloys subjected to deleterious environments. Models for structural reliability including corrosion fundamentally depend on quantitative descriptions of the spatial statistics of the particles and particle clusters, including their location, size, and density. The primary purpose of this effort is to statistically estimate the distribution functions of the key geometrical properties of the constituent particles in 7075-T6 aluminum alloy and their role in pitting corrosion.

  9. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  10. Superplasticity of the aluminum alloys containing the Al{sub 3}Ni eutectic particles

    Energy Technology Data Exchange (ETDEWEB)

    Portnoy, V.K. [Department of Physical Metallurgy Non-Ferrous Metals, National University of Science and Technology ' ' MISIS' ' , Moscow (Russian Federation); Mikhaylovskaya, A.V.

    2012-09-15

    The structures and parameters of superplasticity of aluminum alloys containing fine and coarse eutectic Al{sub 3}Ni particles were investigated. Traditional hot and cold rolling were used for sheet producing. The research alloys have low- or high - alloying solid solution. Superplasticity characterization of the alloy with high-alloying solid solution is much better beside alloys with low-alloying solid solution. Alloying by zirconium improves superplasticity in some investigated alloys. Some alloys with partially recrystallized structure show d = 500-700% at T = 0.95 Tm with the constant strain rates to the range of (1.10{sup -3}-1.10{sup -2}) s{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  12. Feasibility of integrated seed making and directional solidification of TiAl alloy using cold crucible

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-jun; FU Heng-zhi; XU Da-ming; GUO Jing-jie; BI Wei-sheng; SU Yan-qing

    2009-01-01

    A new seed making method with cold crucible by power off technique was proposed. The cold crucible quenched seed with columnar structure has a similar cross-section shape as that of the cold crucible, and can be directly used for the directional solidification processes. The proposed method can significantly simplify the seeded directional solidification process and avoid the contamination from the seed machining.

  13. Effect of mixing rate and temperature on primary Si phase of hypereutectic Al-20Si alloy during controlled diffusion solidification (CDS) process

    OpenAIRE

    Yuan-dong Li; Xin-long Zhang; Ying Ma

    2015-01-01

    Controlled Diffusion Solidification (CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si (mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and tempe...

  14. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  15. Corrosion Damage of Aluminum Alloy in Unsymmetric Uimethyl Hydrazine and Dinitrogen Tetroxide Liquid Propellant

    Directory of Open Access Journals (Sweden)

    Zhang Youhong

    2016-01-01

    Full Text Available The high strength aluminum alloy double cantilever beam (DCB specimens were corroded under the conditions of different liquid propellant environment. After the stress corrosion exposure, the scanning electron microscopy and energy-dispersal analyses on corrosion damage were carried out. The corrosion damage sensitivity and the stress corrosion character of the LD10 high strength aluminum alloy in N2O4, UDMH and 3.5% NaCl corrosion solution were analyzed.

  16. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    Science.gov (United States)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  17. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  18. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    Science.gov (United States)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Guibo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  19. Machining studies of die cast aluminum alloy-silicon carbide composites

    Science.gov (United States)

    Sornakumar, Thambu; Kathiresan, Marimuthu

    2010-10-01

    Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.

  20. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    International Nuclear Information System (INIS)

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  1. Widmannstätten laths in Ti48Al2Cr2Nb alloy by undercooled solidification

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Hu, Rui, E-mail: rhu@nwpu.edu.cn; Yang, Guang; Kou, Hongchao; Zhang, Tiebang; Wang, Jun; Li, Jinshan

    2015-09-15

    Widmannstätten laths in Ti48Al2Cr2Nb alloy were obtained by containerless electromagnetic levitation during undercooled solidification rather than heat treatments in most cases. The nucleation of γ{sub Widmannstätten} is confirmed by the thermal history of the second recalescence behaviour. High dislocation density, stacking faults and dislocation slip are observed by transmission electron microscopy. By quantitative analysis of the transformation energy, the driving force for γ{sub Widmannstätten} in the solid state phase transformation is calculated, compared with that of heat treatments. Meanwhile, the proper undercoolings (ΔT = 257–300 K), post-solidification cooling rates (11.1–29.1 K/s), the fine lamellar colony sizes (306–467 μm) and proper undercoolings in the solid state phase transformation are in favour of promoting the formation of Widmannstätten laths at moderate undercoolings. - Graphical abstract: Display Omitted - Highlights: • Widmannstätten laths were observed in undercooled TiAl alloy. • The influencing factors were discussed in undercooled TiAl alloy. • An analysis of the nucleation of γ{sub Widmannstätten} is carried out.

  2. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    Science.gov (United States)

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  3. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Long He; Ye-Fa Tan; Xiao-Long Wang; Qi-Feng Jing; Xiang Hong

    2015-01-01

    To improve the wear resistance of aluminum alloy frictional parts,TiB2 particles reinforced Ni-base alloy composite coatings were prepared on aluminum alloy 7005 by laser cladding.The microstructure and tribological properties of the composite coatings were investigated.The results show that the composite coating contains the phases of NiAl,Ni3Al,Al3Ni2,TiB2,TiB,TiC,CrB,and Cr23C6.Its microhardness is HV0.5 855.8,which is 15.4 % higher than that of the Ni-base alloy coating and is 6.7 times as high as that of the aluminum alloy.The friction coefficients of the composite coatings are reduced by 6.8 %-21.6 % and 13.2 %-32.4 % compared with those of the Ni-base alloy coatings and the aluminum alloys,while the wear losses are 27.4 %-43.2 % less than those of the Ni-base alloy coatings and are only 16.5 %-32.7 % of those of the aluminum alloys at different loads.At the light loads ranging from 3 to 6 N,the calculated maximum contact stress is smaller than the elastic limit contact stress.The wear mechanism of the composite coatings is micro-cutting wear,but changes into multi-plastic deformation wear at 9 N due to the higher calculated maximum contact stress than the elastic limit contact stress.As the loads increase to 12 N,the calculated flash temperature rises to 332.1 ℃.The composite coating experiences multi-plastic deformation wear,micro-brittle fracture wear,and oxidative wear.

  4. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.

    Science.gov (United States)

    Hakimi, O; Aghion, E; Goldman, J

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg-6%Nd-2%Y-0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications.

  5. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  6. Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy

    Institute of Scientific and Technical Information of China (English)

    Changshuai Wang; Jun Zhang; Lin Liu; Hengzhi Fu

    2011-01-01

    The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics.

  7. Phase field simulation of the interface morphology evolution and its stability during directional solidification of binary alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influences of pulling speed V and temperature gradient G on morphology evolution, concentration distribution, solute trapping and interface stability during directional solidification of binary alloys have been studied with the B-S phase field model. Simulated results reproduced the morphology transitions of deep cell to shallow cell and shallow cell to plane front. The primary cellular spacing, depth of groove and effective solute redistribution coefficient for different V and G are compared. The absolute stability under high pulling speed and high temperature gradient has also been predicted, which is in agreement with the Mullins-Sekerka (M-S) stability theory.

  8. Solidification and microstructural aspects of laser-deposited Ni–Mo–Cr–Si alloy on stainless steel

    Indian Academy of Sciences (India)

    Reena Awasthi; Santosh Kumar; D Srivastava; G K Dey

    2010-12-01

    Laser cladding of stainless steel substrate was carried out using Ni–32Mo–15Cr–3Si (wt%) alloy powder. Laser cladding parameters were optimized to obtain defect-free and metallurgically bonded clad. Variation in solidification rate, cooling rate and compositional variation resulted in heterogeneous microstructure. Microstructure was found to be distinctly different in regions of clad cross-section. Majority of the region was found to consist of eutectic of Mo-rich hcp intermetallic Laves phase and NiFe fcc gamma solid solution phases. Extensive microstructural examinations of different clad regions have been carried out using microscopy and microanalysis techniques.

  9. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje

    2008-05-09

    The micro-scale solidification of commercial Mg alloys of the AZ and AM series is in the focus of the present thesis. Two approaches of investigating solidification are implemented, complementary regarding temperature gradient and solidification rate, and also with respect to the generated microstructure. The first approach considers solidification under a negligible spatial temperature gradient. Here the solidification curves, i.e. fraction solid versus temperature, were determined by developing an improved heat-transfer modeling applicable on both differential thermal analysis (DTA) and differential scanning calorimetry (DSC) signals. The correlation between solidification enthalpy and fraction solid during solidification was tested in detail. A better evaluation of the measured DTA and DSC signals is attained through an independent measurement of the time constant as function of temperature for the applied equipment. A further improvement is achieved through a more impartial interpretation of the measured curves. Both improvements enable a better desmearing of measured signals and reduce the error induced by the operator. The novel tantalum encapsulation enabled appropriate handling of challenging Mg-alloys. The viability and limitations of thermal analysis in general to determine start and end of solidification of AZ magnesium alloys was also studied. The second approach is based on directional solidification in a high temperature gradient and at constant solidification rate, achieved by the Bridgman technique. The resulting dendritic microstructure and inherent microsegregation are studied in this work. The solute profiles, i.e. solute content versus solid phase fraction during solidification, are determined by an advanced treatment of the EPMA data. Problems that are demonstrated in this work are Al-loss and melt pollution due to reaction with typical sample container material made of unprotected steel. The development of an optimized boron nitride (BN

  10. Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    Directory of Open Access Journals (Sweden)

    Mile B. Djurdjević

    2013-01-01

    Full Text Available The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influence of any alloying element on the liquidus temperature of an aluminum and/or magnesium alloy can be translated into the equivalent influence of a reference element. Silicon as a reference element has been chosen for aluminum alloys and aluminum for magnesium alloys. The sum of the equivalent concentrations for other elements, when added to the influence of the actual reference element is used to calculate the liquidus temperature of the alloy. The calculated liquidus temperatures for wide ranges of alloy chemical compositions show a good correlation with corresponding measured liquidus temperatures.

  11. 消失模铝铸件针孔形成机理研究%Investigation on the Mechanism of the Pinhole Formation of Aluminum Alloy LFC Process

    Institute of Scientific and Technical Information of China (English)

    吴国华; 谢敏

    2000-01-01

    探讨了铝液变质、晶粒细化、浇注温度及聚苯乙烯模样 对消失模铝铸件针孔的影响.研究结果表明,干砂消失模铸造工艺冷却速度比树脂砂工艺和粘土砂工艺慢,更易产生针孔;若用0.2%Ti对消失模铸造铝液进行细化处理,则可以大大减少冷却速度慢对其针孔形成的不利影响,使铝件密度接近或达到树脂砂工艺的水平.为减少针孔,应尽量采用低密度的聚苯乙烯模样,并应有一个适当高的浇注温度.%The effects of modification, grain refinement, polystyrene pattern, pouring temperature on aluminum alloy porosity in LEC process is studied. The results show that the solidification rate in LFC process is slower than that of in resin sand process or clay sand process. Through refinement process with 0.2%Ti for aluminum melt, the subversive effect of slow solidification rate on aluminum casting porosity formation in LFC process is decreased greatly, and the aluminum casting density in LFC process is nearly equal to that in resin sand process. To decrease the porosity for aluminum castings in LFC process, lower density of polystyrene pattern, higher pouring temperature(760~780℃)should be applied.

  12. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Science.gov (United States)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  13. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    International Nuclear Information System (INIS)

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic

  14. Modeling of Cell/Dendrite Transition During Directional Solidification of Ti-AI Alloy Using Cellular Automaton Method

    Institute of Scientific and Technical Information of China (English)

    WANG Kuang-fei; LI Bang-sheng; MI Guo-fa; GUO Jing-jie; FU Heng-zhi

    2008-01-01

    Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44AI alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observa-tion. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.

  15. In situ X-ray observations of gas porosity interactions with dendritic microstructures during solidification of Al-based alloys

    Science.gov (United States)

    Murphy, A. G.; Browne, D. J.; Houltz, Y.; Mathiesen, R. H.

    2016-03-01

    In situ X-radiography solidification experiments were performed on Al-based alloys, using both synchrotron and laboratory-based X-ray sources, in conjunction with a gradient furnace and a newly developed isothermal furnace, respectively. The effect of gas porosity nucleation and growth within the semi-solid mush during both columnar and equiaxed solidification was thereby observed. In all experimental cases examined, gas porosity was observed to nucleate and grow within the field-of-view (FOV) causing various levels of distortion to the semi-solid mush, and thereafter disappearing from the sample leaving no permanent voids within the solidified microstructure. During columnar growth, a single bubble caused severe remelting and destruction of primary trunks leading to secondary fragmentation and evidence of blocking of the columnar front. Equiaxed solidification was performed under microgravity-like conditions with restricted grain motion in the FOV. The degree to which the nucleated gas bubbles affected the surrounding grain structure increased with increasing solid fraction. However, bubble sphericity remained unaffected by apparent solid fraction or grain coherency.

  16. Iron-aluminum alloys having high room-temperature and method for making same

    Science.gov (United States)

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  17. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Atef Korchef

    2013-01-01

    Full Text Available A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP. The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared with those of the nonpressed alloy. ECAP leads to an intensive grain refinement accompanied by an increased dislocation density. All electrochemical tests confirm that corrosion resistance of the alloy remarkably diminished with increasing the ECAP number of passes. This is presumably due to the breakdown of the α-AlFeSi after ECAP leading to higher number of galvanic cells and enhanced dissolution of the aluminum matrix.

  18. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  19. Roping in 6111 aluminum alloys with various iron contents

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H. [Novelis Global Technology Centre, Novelis Inc., P.O. Box 8400, Kingston, Ont., K7L 5L9 (Canada)]. E-mail: haiou.jin@novelis.com; Lloyd, D.J. [Novelis Global Technology Centre, Novelis Inc., P.O. Box 8400, Kingston, Ont., K7L 5L9 (Canada)

    2005-08-25

    The development of surface roughness and roping after straining and its correlation with grain size and texture were investigated in AA6111 aluminum alloys with various Fe contents, using optical microscopy, scanning electron microscopy (SEM), electron back scatter diffraction (EBSD) in SEM, X-ray diffraction, and 3D non-contact profilometry. It has been demonstrated that the spatial distribution of texture components is a critical factor for roping. When the {l_brace}0 0 1{r_brace}<1 0 0> (cube) and {l_brace}0 1 1{r_brace}<1 0 0> (Goss) texture components are banded along the rolling direction (RD) and alternately distributed in the transverse direction (TD), intensive roping develops when the sheet is stretched in the TD regardless of grain size. During rolling the cube and Goss are metastable orientations in AA6111 and form cube and Goss bands along the RD. These bands are the preferred nucleation sites for recrystallization, resulting in the banded structure being retained in the final solutionised sheet. Increasing the Fe content leads to a finer grain size and lower strain induced surface roughness, but roping is insensitive to the Fe content and simply dependent on the degree of cold rolling prior to solutionising.

  20. Rheological behavior of continuous roll casting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAN Li-hua; ZHONG Jue; LI Xiao-qian; HUANG Ming-hui

    2005-01-01

    The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500-600℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300-500℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1, it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.

  1. Analysis on microstructure and mechanical properties of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Dissimilar metal joining between 5A02 aluminum alloy and AISI 304 stainless steel was conducted by gas tungsten arc welding with ZnAl15 and AlSi12 flux-cored filler metals,and the effect of the filler metal composition on the microstructures and mechanical properties of the joints were investigated.The results revealed that the tensile strength of as-welded joints made with ZnAl15 and AlSi12 flux-cored filler metals was 121 MPa and 162 MPa respectively.After annealed at 280 ℃ for 30 min,the tensile strength of joints made with ZnAl15 flux-cored filler metal reached 180 MPa,while that with AlSi12 flux-cored filler metal was 166 MPa.The interfacial layer in the weld made with ZnAl15 filler metal was comprised of Znx and [Fe2Al5]Znx,and ternary intermetallic compound Al7.4Fe2Si was found in the interfacial layer in the joint made with AlSi12 flux-cored filler metal.The thickness of the interfacial layers made with both filler metal was less than 10 μm.

  2. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  3. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    Science.gov (United States)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  4. Friction stir welding of 5052 aluminum alloy plates

    Institute of Scientific and Technical Information of China (English)

    Yong-Jai KWON; Seong-Beom SHIM; Dong-Hwan PARK

    2009-01-01

    Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3 000 r/min under a constant traverse speed of 100 mm/min. The results show that at all tool rotation speeds, defect-free welds are successfully obtained. Especially at 1 000, 2 000 and 3 000 r/min, the welds exhibit very smooth surface morphologies. At 500, 1 000, and 2 000 r/min, onion ring structure is clearly observed in the friction-stir-welded zone (SZ). In addition, the onion ring structure region becomes wider as the tool rotation speed is increased. The gain size in the SZ is smaller than that in the base metal, and is decreased with a decrease of the tool rotation speed. In all tool rotation speeds, the SZ exhibits higher average hardness than the base metal. Especially at 500 r/min, the average hardness of the SZ reaches a level about 33% greater than that of the base metal. At 500, 1 000 and 2 000 r/min, the tensile strength of the friction stir welded (FSWed) plates is similar to that of the base metal (about 204 Mpa). The elongation of the FSWed plates is lower than that of the base metal (about 22%). However, it is noticeable that the maximum elongation of about 21% is obtained at 1 000 r/min.

  5. Modeling of Coalescence and Separation of Liquid Droplets During Solidification of Immiscible Alloys

    Institute of Scientific and Technical Information of China (English)

    Lirong; Tong; Nagy; El-Kaddah

    2002-01-01

    Directional solidification methods are being used f or in-situ production of metallic immiscible composites. A quantitative understa nding of the dynamic behavior and growth kinetics of the nucleated second phase during solidification is necessary to produce homogeneous dispersion in solidifi ed composites. This paper presents a mathematical model for describing the grow th of nucleated dispersed phase in the two-liquid phase region ahead of the sol idification front and the entrapment of these droplets...

  6. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Science.gov (United States)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  7. Influence of Shot Peening on Failure of an Aluminum Alloy Exposed to Aggressive Aqueous Environments

    Science.gov (United States)

    Lv, Shengli; Cu, You; Zhang, Wei; Tong, Xiaoyan; Srivatsan, T. S.; Gao, Xiaosheng

    2013-06-01

    Pre-corrosion damage tests were performed on the high strength aluminum alloy (Al-Zn-Mg-Cu) that was subject to shot peening surface treatment. The tests were performed for different time levels and compared one-on-one with the performance and characteristics of the non-shot-peened alloy. The residual stress induced by the shot peening surface treatment for two different intensity levels was measured using the method of incremental drilling of holes. Based on an observation of morphology of corrosion experienced by the aluminum alloy the depth of corrosion was measured using a laser displacement sensor. The surface of the aluminum alloy that was shot peened revealed an overall better resistance to pitting while concurrently revealing evidence of partial degradation. The depth of degradation is related to the residual stress that is induced in the aluminum alloy sample by the shot peening treatment. The key mechanisms that control damage during corrosion of the shot-peened aluminum alloy can be divided into the distinct stages of (a) initial occurrence of uniform corrosion followed by (b) the generation of degradation, and (c) culminating in the initiation of pitting once the depth of degradation reaches a certain level.

  8. A benchmark for the validation of solidification modelling algorithms

    Science.gov (United States)

    Kaschnitz, E.; Heugenhauser, S.; Schumacher, P.

    2015-06-01

    This work presents two three-dimensional solidification models, which were solved by several commercial solvers (MAGMASOFT, FLOW-3D, ProCAST, WinCast, ANSYS, and OpenFOAM). Surprisingly, the results show noticeable differences. The results are analyzed similar to a round-robin test procedure to obtain reference values for temperatures and their uncertainties at selected positions in the model. The first model is similar to an adiabatic calorimeter with an aluminum alloy solidifying in a copper block. For this model, an analytical solution for the overall temperature at steady state can be calculated. The second model implements additional heat transfer boundary conditions at outer faces. The geometry of the models, the initial and boundary conditions as well as the material properties are kept as simple as possible but, nevertheless, close to a realistic solidification situation. The gained temperature results can be used to validate self-written solidification solvers and check the accuracy of commercial solidification programs.

  9. Application of differential thermal analysis to investigation of magnetic field effect on solidification of Al-Cu hypereutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Chuanjun; Yang Hui [School of Materials Science and Engineering and Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Ren Zhongming, E-mail: zmren@staff.shu.edu.c [School of Materials Science and Engineering and Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Ren Weili; Wu Yuqin [School of Materials Science and Engineering and Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2010-08-27

    Investigation of solidification in the Al-25 at.%Cu hypereutectic alloy in magnetic fields has been carried out by differential thermal analysis (DTA). The DTA results indicated that the nucleation temperatures of primary Al{sub 2}Cu phases and Al-Al{sub 2}Cu eutectics were lowered and the rates of crystal growth including primary phases and eutectics were reduced although the melting of the alloy was almost not affected in magnetic fields of 6 T and 12 T in comparison with those without a magnetic field. The suppression of nucleation and growth of primary phases and eutectics might be mainly attributed to reduction of diffusion rates of atoms in a magnetic field on the condition of suppression of convections. Primary Al{sub 2}Cu phases oriented along a magnetic field compared with disorder ones without a magnetic field, which was caused by the magnetic anisotropy.

  10. Effects of Rapid Solidification Process and 0.1 wt.% Pr Addition on Properties of Sn-9Zn Alloy and Cu/Solder/Cu Joints

    Science.gov (United States)

    Zhao, Guoji; Jing, Yanxia; Sheng, Guangmin; Chen, Jianhua

    2016-05-01

    Effects of 0.1 wt.% Pr addition and rapid solidification process on Sn-9Zn solder alloy were investigated. Solder characteristics of the as-solidified and rapidly solidified Sn-9Zn-0.1Pr alloys were analyzed in comparison with those of the as-solidified Sn-9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using these solders were comparatively studied. By comparison with the as-solidified Sn-9Zn alloy, the wettability of the solder was obviously improved with 0.1 wt.% Pr addition, and the melting behavior of the solder was promoted due to the rapid solidification process. The corrosion resistance of Sn-9Zn-0.1Pr alloy was improved due to the refined microstructure resulting from 0.1 wt.% Pr addition and rapid solidification. The growth of IMCs at the interface of Sn-9Zn-0.1Pr/Cu joints was depressed in some degree. Rapid solidification process promoted the interfacial reaction during soldering and improved the bonding strength of joints.

  11. Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents

    Science.gov (United States)

    Tebib, M.; Ajersch, F.; Samuel, A. M.; Chen, X.-G.

    2013-09-01

    The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg2Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg2Si; two pre-eutectic binary reactions, forming either Mg2Si + Si or Mg2Si + α-Al phases; the main ternary eutectic reaction forming Mg2Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al5Mg8Cu2Si6 and θ-Al2Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al8Mg3FeSi6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg2Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg2Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.

  12. Microstructure characteristics of Ni-43Ti-4Al-2Nb-2Hf alloy prepared by conventional casting and directional solidification

    Directory of Open Access Journals (Sweden)

    Zhou Lei

    2012-05-01

    Full Text Available To further investigate the microstructure characteristic and solidification mechanism, so as to provide knowledge for the microstructure control of a NiTi-Al based high-temperature structural material, the microstructure of Ni-43Ti-4Al-2Nb-2Hf (at.% alloy ingots prepared by conventional casting (arc-melting and directional solidification (DS at various drawing velocities (2 mm·min-1, 18 mm·min-1, 30 mm·min-1 and 60 mm·min-1, respectively was investigated by means of electron probe microanalyses. Experimental results reveal that the microstructures are composed of NiTi matrix phase, β-Nb phase and Ti2Ni phase for samples obtained by both conventional casting and DS. Conventional casting has an equiaxial structure, while DS has a slender and acicular cellular structure which grows along the [001] orientation preferentially. Small amounts of white β-Nb phase and black Ti2Ni phase co-exist at the grain boundaries or intercellular regions. With an increase in drawing velocity, the NiTi matrix phase is inclined to grow along (100 and (200 crystallographic planes, and the cellular arm spacing reduce gradually, but the directionality of the solidified structure weakens significantly. The homogeneous dispersion of β-Nb phase and the decrease of Ti2Ni phase in DS samples are beneficial to improving the mechanical properties. Solidification mechanism analysis indicates that the dark grey NiTi matrix phase initially precipitates from the liquid phase, and then the divorced eutectic reaction takes place, which produces the light gray matrix phase and β-Nb phase. Finally, the peritectic reaction happens, which generates the black Ti2Ni phase. The complete solidified path of the alloy is L→ NiTi+L → NiTi+ β-Nb+L → NiTi+β-Nb + Ti2Ni.

  13. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability.

    Science.gov (United States)

    Lo, T S; Karma, A; Plapp, M

    2001-03-01

    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/v(p)), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/v(p) is large enough for both phases to be morphologically stable, the formation of the microstructure becomes controlled by a subtle interplay between the nucleation and growth of the two solid phases. The structures that have been observed in this regime (in small samples where convection effects are suppressed) include alternate layers (bands) of the parent and peritectic phases perpendicular to the growth direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1 (1995)], as well as partially filled bands (islands), where the peritectic phase does not fully cover the parent phase which grows continuously. We develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to explore the formation of these structures. Simulations of this model shed light on the morphology transition from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth morphology that one might expect to observe in large samples under purely diffusive growth conditions.

  14. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy

    Science.gov (United States)

    Chen, Pengwan; Feng, Jianrui; Zhou, Qiang; An, Erfeng; Li, Jingbo; Yuan, Yuan; Ou, Sanli

    2016-07-01

    The undesirable properties of magnesium alloys include easy embrittlement, low oxidation resistance, and difficulty in welding with other materials. Their application in industry is, therefore, restricted. In this paper, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique. The influences of the welding parameters on the weld quality were investigated. The surface morphology and microstructure near the weld interface were examined by optical microscopy, scanning electron microscopy (equipped with energy-dispersive x-ray spectroscopy), and transmission electron microscopy. The experimental results demonstrated the typical wavy bonding interface. In addition, elemental diffusion with a thickness of approximately 3 μm occurred near the bonding interface. The two plates were joined together well at the atomic scale. Nanograins with a size of approximately 5 nm were observed in the diffusion layer. The microhardness and shear strength were measured to evaluate the mechanical properties, which confirmed that a high quality of bonding was acquired.

  15. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Barannikova, Svetlana, E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Gorbatenko, Vadim, E-mail: gvv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Shlyakhova, Galina, E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Zuev, Lev, E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  16. Material effects in fretting wear: application to iron, titanium, and aluminum alloys

    Science.gov (United States)

    Blanchard, P.; Colombie, C.; Pellerin, V.; Fayeulle, S.; Vincent, L.

    1991-07-01

    Fretting wear tests were performed on several alloys (low alloyed and stainless steels, Ti6A14V titanium alloy, 2024 and 7075 aluminum alloys) slid against themselves in air under relatively low stresses for various displacements (±15 to ±50 μm). Friction logs, where tangential force is plotted as a function of displacement and number of cycles, were used to characterize the fretting behavior of the materials. Wear scars and cross sections were characterized by optical and scanning electron microscopy. Depending on the amplitude of displacement, sticking, partial slip, or gross slip occurs at the interface. Gross slip leads to debris formation. Metallic particles are detached from localized, very highly deformed areas whose properties and structures are different from those of the initial material. Sticking is observed on titanium and aluminum alloys tested under the smallest displacement. Samples are only deformed elastically. During partial slip, cracks can initiate and propagate in titanium and aluminum alloys. Millimeters-long cracks are observed on aluminum alloys after 106 cycles. Mechanisms for crack formation and propagation are described in terms of fatigue properties.

  17. Aluminum base alloy powder metallurgy process and product

    Science.gov (United States)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  18. 铝及铝合金TIG焊接特性%Character of TIG Welding for Aluminum and Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    殷春喜; 黄军庆; 熊震东; 贾翠催

    2011-01-01

    The characters of TIG welding for aluminum and aluminum alloys were described, it includes the shielding gas and groove of TIG welding and the effect of welding process on the weld shape and welding quality.%概述了铝及铝合金TIG焊接技术特性,包括铝及铝合金TIG焊接保护气体、坡口的选择和焊接工艺对焊缝成形和焊接质量的影响.

  19. Impurity control and corrosion resistance of magnesium-aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. [GM China Lab; Song, GuangLing [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  20. Modeling and Measurements of Heat Transfer Phenomena in Two-Phase PbSn Alloy Solidification in an External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    P.A.Nikrityuk; K.Eckert; R.Grundmann; B.Willers; S.Eckert

    2003-01-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass,momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  1. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  2. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    Science.gov (United States)

    Zhang, H. S.; Yan, M.; Wang, H. Y.; Shen, L. T.; Dai, L. H.

    2016-04-01

    A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  3. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    Directory of Open Access Journals (Sweden)

    H. S. Zhang

    2016-04-01

    Full Text Available A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa, the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  4. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    Science.gov (United States)

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion. PMID:10496152

  5. The Effects of Corrosive Media on Fatigue Performance of Structural Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Huihui Yang

    2016-07-01

    Full Text Available The effects of corrosive media on rotating bending fatigue lives (the cyclic numbers from 104 to 108 of different aluminum alloys were investigated, which involved the corrosion fatigue lives of five kinds of aluminum alloys in air, at 3.5 wt. % and 5.0 wt. % NaCl aqueous solutions. Experimental results indicate that corrosive media have different harmful influences on fatigue lives of different aluminum alloys, in which the differences of corrosion fatigue lives depend strongly on the plastic property (such as the elongation parameter of aluminum alloys and whether to exist with and without fracture mode II. The other various influence factors (such as the dropping corrosive liquid rate, the loading style, and the nondimensionalization of strength of corrosion fatigue lives in three media were also discussed in detail by using the typical cases. Furthermore, fracture morphologies and characteristics of samples, which showed the different fatigue cracking behaviors of aluminum alloys in three media, were investigated by scanning electron microscopy (SEM in this paper.

  6. Study on shear resistance of aluminum alloy I-section members

    Institute of Scientific and Technical Information of China (English)

    Zhen DONG; Qilin ZHANG

    2008-01-01

    The design method for the shear resistance of aluminum alloy I-section members is presented, taking into consideration of the post-buckling strength of webs and the restraint effect of flanges, and the practical design formulas are proposed. The deflection of aluminum alloy I-section members under concentrated load is simulated by using the finite element method, and several design theories are discussed. The relation of shear resistance to the maximum web displacement reflects that the web of aluminum alloy I-section member is under fewer shears buckling force, while the whole member has higher shear resistance. However, the traditional design method is not able to give the real shear resistance of aluminum alloy I-section members. The proposed design formulas for the shear resistance of aluminum alloy I-section members is used to calculate accurately the post-buckling resistance of webs and the shear resistance contribution of flanges. The results are in a great agreement with the test data of Hamoodi M J, Burr C A, Evans H R and the results from Eurocode9 formulas.

  7. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    Institute of Scientific and Technical Information of China (English)

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  8. Effects of Be, Sr, Fe and Mg interactions on the microstructure and mechanical properties of aluminum based aeronautical alloys

    Science.gov (United States)

    Ibrahim, Mohamed Fawzy

    The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the

  9. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    Science.gov (United States)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  10. Environmental behavior and stress corrosion characteristics of nano/sub-micron E950 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, Eli; Guinguis, Inbar [Department of Materials Engineering, Ben-Gurion University of the Negev Beer-Sheva (Israel)

    2009-11-15

    The corrosion performance and stress corrosion resistance of E950 Aluminum alloy with nano/sub-micron structure were evaluated in 3.5% NaCl solution. The results obtained indicated that the corrosion and stress corrosion resistance of E950 alloy were relatively reduced compared to that of the conventional coarse-grained alloy (Al-4.65%Mg). In particular, the inherently improved ultimate tensile strength of E950 alloy was significantly decreased under stress corrosion conditions. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  12. 铝及铝合金先进焊接技术%Advanced Welding Technology of Aluminum and Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    杨芙; 吕文桂; 张文明

    2012-01-01

    The weldability of aluminum and aluminum alloy and the causes and solutions of welding defects, such as porosity, hot cracks, etc., were analyzed. The research and application of several advanced welding technology for aluminum and aluminum alloy, such as laser welding, electron beam welding, variable polarity plasma arc welding, friction stir welding, etc., were discussed. The development status and tendency for the next few years welding were simply analyzed.%分析了铝及铝合金的焊接性及其在焊接过程中易出缺陷(气孔、热裂纹等)的原因和解决措施;探讨了铝及铝合金的几种先进焊接工艺(激光焊、电子束焊、变极性等离子电弧焊、搅拌摩擦焊等)的研究现状及其应用;分析了铝及铝合金焊接技术的发展状况以及未来几年的前景.

  13. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  14. Investigation of Stress Corrosion Cracking Initiation of 7A52 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    LI Qi; ZHAO Junjun; ZHANG Ping

    2012-01-01

    The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5%NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS.The SCC susceptibility was estimated with the loss of the reduction in area.The experimental results indicate that the SCC susceptibility of 7A52 aluminum alloy in 3.5% chloride solution is the highest at strain rate of 1 × 10-6 s-1.The lowest one is under the condition of 1 × 10-5 s-1.Stress concentration and anode dissolving around Al-Fe-Mn intermetallics initiate micropores which will result in microcracks.The existence of intermetallics in the microstructure may play an important role in understanding the SCC initiation mechanisms of 7A52 aluminum alloy.

  15. Experimental study of corrosion behavior for burnished aluminum alloy by EWF, EBSD, EIS and Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlhit@126.com [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China); Hongyun, Luo, E-mail: luo7128@163.com [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China); Jinpeng, Xie [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China)

    2013-05-15

    The effect of burnish process on 2024 aluminum alloy was studied by electron work function and electron backscattered diffraction (EBSD). Moreover, the corrosion resistance of thin passive films formed on 2024 aluminum alloy in borate buffer solutions was studied by the electrochemical impedance spectroscopy (EIS), the Mott–Schottky plots and the galvanostatic techniques. The composition of passive films was analyzed by Raman spectra. The results obtained indicated that the impedance increased due to burnish and this was attributed to decreased electron work function and higher current efficiency in the burnished aluminum alloy which led to thicker passive films. It was further supported by Raman spectra experiment. Moreover, the donor and acceptor concentration of passive films and their the semiconductor type have changed due to burnish.

  16. Welding Distortion Prediction in 5A06 Aluminum Alloy Complex Structure via Inherent Strain Method

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2016-09-01

    Full Text Available Finite element (FE simulation with inherent deformation is an ideal and practical computational approach for predicting welding stress and distortion in the production of complex aluminum alloy structures. In this study, based on the thermal elasto-plastic analysis, FE models of multi-pass butt welds and T-type fillet welds were investigated to obtain the inherent strain distribution in a 5A06 aluminum alloy cylindrical structure. The angular distortion of the T-type joint was used to investigate the corresponding inherent strain mechanism. Moreover, a custom-designed experimental system was applied to clarify the magnitude of inherent deformation. With the mechanism investigation of welding-induced buckling by FE analysis using inherent deformation, an application for predicting and mitigating the welding buckling in fabrication of complex aluminum alloy structure was developed.

  17. A Study on Friction Stir Welding of 12mm Thick Aluminum Alloy Plates

    Institute of Scientific and Technical Information of China (English)

    Deepati Anil Kumar; Pankaj Biswas; Sujoy Tikader; M. M. Mahapatra; N. R. Mandal

    2013-01-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  18. Welding phenomena of aluminum-copper alloy in electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Nogi, K.; Sumi, Y.; Aoki, Y.; Yamamoto, T.; Fujii, H. [Osaka Univ., Ibaraki (Japan). Joining and Welding Res. Inst.

    2000-07-01

    Electron beam welding of an aluminum-copper alloy (2219) was performed using a small-sized electron beam welding apparatus under microgravity and in a high vacuum. The effect of gravity on various welding phenomena and the effect of the aluminum oxide film on the formation of bubbles were investigated. A much flatter weld bead is formed in the microgravity environment than in the terrestrial environment. When an aluminum alloy is exposed to atomic oxygen, the thickness of the aluminum oxide film increases and porosity after welding also increases. It is thought that the porosity is formed by the Al{sub 2}O gas through the reaction between Al{sub 2}O{sub 3} and Al. (orig.)

  19. Galvanic compatibility of corrosion protective coatings with AA7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lodhi, Z.F.; Hamer, W.J. [Netherlands Institute for Metals Research (NIMR), Mekelweg 2, 2628 CD Delft (Netherlands); Mol, J.M.C.; Wit, J.H.W. de [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Terryn, H. [Netherlands Institute for Metals Research (NIMR), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Metallurgy, Electrochemistry and Materials Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium)

    2008-04-15

    The galvanic compatibility of aerospace aluminum alloy AA7075 with cadmium (Cd), zinc (Zn), and zinc-cobalt-iron (Zn-Co-Fe, 32-37%Co and 1%Fe) alloys was investigated. A comparison of open circuit potential [OCP vs. saturated calomel electrode (SCE)] measurements in 0.6 mM NaCl showed that all coatings would act anodically to AA7075 with an exception of Zn-Co-Fe (37%Co + 1%Fe) alloy which was electropositive to AA7075. During the zero resistance ammetry (ZRA) measurement in 0.6 M NaCl electrolyte the coupled OCP and current density were measured during 7 days of immersion and both Zn and Cd acted anodic and thus sacrificial to AA7075. Galvanic coupling of AA7075 with (37%Co + 1%Fe) Zn-Co-Fe alloy resulted in the consequent dissolution of the AA7075 aluminum alloy. In contrast, Zn-Co-Fe (32%Co + 1%Fe) alloy was found to be anodic to AA7075 during the first 26 h of immersion but after dezincification and cobalt enrichment at the surface became cathodic to the AA7075 aluminum alloy. During coupling with Zn, some pitting was also observed on AA7075. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Numerical analysis of thermal effect in aluminum alloy by monopulse laser

    Science.gov (United States)

    Gu, Xiuying; Chen, Guibo; Jin, Guangyong; Zhang, Wei; Li, Mingxin

    2014-12-01

    A spatial axisymmetric finite element model is established to investigate the distribution characteristics of temperature field that monopulse millisecond laser act on aluminum alloy. The thermal process of laser acting on aluminum alloy (melting, gasification and temperature drop) is simulated. Using the specific quivalent heat capacity method to simulate the solid-liquid, liquid-gas phase transition of aluminum alloy, and considering the differences of thermal physical parameters between different states (solid-liquid, liquid-gas) of aluminum alloy in the process of numerical simulation. The distribution of temperature field of aluminum alloy caused by the change of energy density, pulse width and spot radius of monopulse millisecond laser are investigated systematically by using numerical simulation model. The numerical results show that the temperature of target no longer rises after reaching the target gasification. Given the pulse width and spot radius, the temperature of target rise as the energy density increases, the laser intensity distribution is gaussian, so the temperature distribution of the target surface also shows Gaussian. The energy absorption mechanism of aluminum alloy is surface absorption mechanism, the temperature gradient in axial of the target is much lager than the temperature gradient in radial of the target surface, so the temperature rise in axial only exists a thin layer of target surface. Given the energy density and spot radius, as the pulse width increases, the power density of laser decreases, therefore the temperature of target center point decreases as the pulse width increases, and the temperature difference becomes small. As the pulse width decreases, the heat transfer in axial reduce, the deposition of energy enhances on the surface. Given the energy density and pulse width, the distribution of the temperature is enlarged as the spot radius increases, but the distribution of the temperature in axial is independent of the spot

  1. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    Science.gov (United States)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  2. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution

    Institute of Scientific and Technical Information of China (English)

    Chen Xin; Tian Wenming; Li Songmei; Yu Mei; Liu Jianhua

    2016-01-01

    The effect of temperature on the corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution was investigated by potentiodynamic polarization and electrochemical impe-dance spectroscopy (EIS) techniques. The surface characterization was observed and determined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spec-trometer (EDS). The results demonstrate that the anodic aluminum dissolution and the cathodic oxygen reduction were accelerated by the increased temperature. However, as temperature was over 60 °C, the solubility and concentration of oxygen decreased, resulting in the inhibition of cathodic reaction. The cathodic reaction rate of 3003 aluminum alloy rose to the maximum at 60 °C. The Warburg impedance in Nyquist diagram diminished and then was replaced by a negative capaci-tance caused by the absorption of intermediate corrosion product on electrode. On the other hand, after potentiodynamic measurements, 3003 aluminum alloy suffered pitting corrosion. The dissolu-tion of aluminum alloy around secondary phase particles expanded both horizontally and vertically. © 2016 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

  3. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  4. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    WEI Peng; LIU Lin

    2007-01-01

    The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellular foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.

  5. Thermal conductivity prediction of closed-cell aluminum alloy considering micropore effect

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    2015-02-01

    Full Text Available Large quantities of micro-scale pores are observed in the matrix of closed-cell aluminum alloy by scanning electron microscope, which indicates the dual-scale pore characteristics. Corresponding to this kind of special structural morphology, a new kind of dual-scale method is proposed to estimate its effective thermal conductivity. Comparing with the experimental results, the article puts forward the view that the prediction accuracy can be improved by the dual-scale method greatly. Different empirical formulas are also investigated in detail. It provides a new method for thermal properties estimation and makes preparation for more suitable empirical formula for closed-cell aluminum alloy.

  6. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    Institute of Scientific and Technical Information of China (English)

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  7. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    Science.gov (United States)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  8. Low temperature bonding of LD31 aluminum alloys by electric brush plating Ni and Cu coatings

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenqing; Wang Chunqing; Du Miao

    2005-01-01

    Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was nvestigated. The technology of electric brush plating Ni and Cu was studied and plating solution was developed. The microstructure of the coatings, soldered joint and fracture face were analyzed using optic microscopy, SEM and EDX. The shear strength of soldered joint could reach as high as 26. 83 MPa. The results showed that reliable soldered joint could be obtained at 230℃, the adhesion of coatings and LD31 aluminum alloy substrate was high enough to bear the thermal process in the soldering.

  9. Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloyswas studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuouscasting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equippedwith energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influencedsegregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of aproper frequency. Electromagnetic frequency plays a significant role in solute redistribution; Iow frequency is moreefficient for promoting solution of alloying elements.

  10. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  11. Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizeshave been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimentalresults showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic,plateau and densification. The dynamic compressive strength of foams is affected not only by the relative densitybut also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size aremore sensitive to the strain rate than foams with lower relative density or larger cell size.

  12. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source

  13. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    Energy Technology Data Exchange (ETDEWEB)

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  14. A Parametric Analysis of CO2 Laser Heat Absorption Profile of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    JOSEPH .I. ACHEBO

    2010-06-01

    Full Text Available Aluminum alloys are amongst the most difficult everyday metals that can be welded using the laser welding process. For this reason, high power density lasers are needed to weld these alloys because they require higher thermal diffusivity to form a key hole than would be needed for other metals such as steel. This means that more heat wouldhave to be applied while welding aluminum alloys than would be needed to weld steel to achieve a satisfactory coupling effect. The heat input generated from laser welding is affected by the absorptivity coefficient, the welding speed and the time spent. Once the optimum heat input is attained, it is expected to create less heat distortion, its energy is more concentrated within the weld area and deep weld penetration is achieved. Determining optimum values of welding parameters would lead to acceptable weld quality. In this study, the heat absorption profile of a CO2 laser welding of 5083 aluminum alloy was investigated using the models proposed by Bramson in 1968 and Okon et al in 2002. The 4mm thick aluminum alloy investigated was as received from the vendors. The calculated laser beam absorptivity coefficient, irradiance and boiling temperature were 0.12, 2.3 x 106 Wcm-2 and 2482oC respectively. These calculated values compared well with reported values in other literature.

  15. ARTIFICIAL NEURAL NETWORK MODEL OF CONSTITUTIVE RELATIONSHIP FOR 2A70 ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    F. Liu; D.B. Shan; Y. Lu; Y.Y. Yang

    2005-01-01

    The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.

  16. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  17. Study on the Kinetics of Hydrogen Evolution in Aluminum Alloy Casting%铝合金铸造过程中析氢动力学研究

    Institute of Scientific and Technical Information of China (English)

    周迪生; 龙伟; 张恒华

    2012-01-01

    There always exists the phenomenon of hydrogen absorption in aluminum alloy melt. When melt temperature dropped, the solubility of hydrogen in melt decreased and the hydrogen precipitated from melt, which resulted in the blowhole and porosity in cast ingots or workpieces. Different mould preheating temperatures and decompression solidification were used in casting, the effect of mold preheating temperature on the diffusion rate and diffusion distance of hydrogen, the solidification pressure on the critical nucleation radius and growth of hydrogen bubble were analyzed. The results show that hydrogen diffusion and precipitation was inhibited at low mold preheating temperature, high solidification pressure produced large critical nucleation radius of hydrogen bubble and restrained the nucleation and growth of gas bubble. Hydrogen was dissolved in aluminum alloy melt and the comparability of the structure was improved in low mould preheating temperature and high solidification pressure.%铝及其合金在熔炼过程中,往往存在吸氢现象.当熔体温度下降时,氢在熔体中的溶解度下降,会从熔体中析出,导致铸锭或工件产生气孔、疏松等缺陷.采用不同模具预热温度浇注和减压凝固,分析了模具预热温度对熔体中氢扩散速度及扩散距离的影响,凝固压强对氢气泡临界形核半径和长大的影响.结果表明,低的模具预热温度抑制熔体中氢的扩散和析出;凝固压力大时氢气泡的临界形核半径较大,抑制气泡的形核和长大.所以低的模具预热温度和高的凝固压强可使氢固溶在铝合金中,从而提高其组织的致密性.

  18. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  19. Effect of abruptly changing withdrawal rate on solidification microstructure in directionally solidified Al-4.5wt%Cu alloy

    Directory of Open Access Journals (Sweden)

    Yang Luyan

    2014-01-01

    Full Text Available Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing (PDAS and liquid solute distribution in front of the solid-liquid interface were investigated. The experimental results for the PDAS at a constant withdrawal rate agree well with the values calculated by the Hunt, Trivedi and Hunt-Lu models. At an abrupt change in the withdrawal rate, the maximum to minimum ratio of the PDAS at a given solidification parameter, i.e. λ1max/λ1min, is more than 2, and the PDAS values are remarkably history-dependent. Further, the liquid-solute distribution curve based on theoretical calculation shows that the larger the initial withdrawal rate is, the smaller the minimum of liquid solute concentration in front of the solid-liquid interface is after the abrupt change in withdrawal rate.

  20. Directional solidification of Ni{sub 48}Mn{sub 30}Ga{sub 22} magnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Poetschke, Martin; Gaitzsch, Uwe; Roth, Stefan; Rellinghaus, Bernd; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2007-07-01

    NiMnGa ferromagnetic shape memory (FSM) alloys have gained large research interest because of their possible application as actuator materials. The FSM effect is caused by the movement of twin boundaries by virtue of an external magnetic field. So far, this effect has only been observed in single crystals. The preparation of single crystals, however, is a long time and cost intensive process and both compositional changes along the crystal and segregation may occur. This is why for technical applications, there is a great interest in polycrystalline FSM materials. In order to extend the FSM effect to polycrystals, directional solidification was applied to prepare coarse grained, textured samples. Stationary casting in a pre-heated ceramic mold mounted on a copper plate was employed to generate a heat flow from the top of the cylindrical samples to the bottom and thereby a directional solidification in the opposite direction. The martensite start temperatures were checked by DSC, and the preferred growth direction and resulting textures were determined by EBSD. Further annealing, which is necessary for chemical homogeneity, results in grain coarsening and stress relaxation and affects the texture. The results of the investigation of the texture development during annealing are presented.

  1. Monitoring solidification of an alloy by thermoelectric effects: results of the MEPHISTO-USMP1 flight experiment

    Science.gov (United States)

    Lehmann, P.; Moreau, R.; Camel, D.; Favier, J. J.

    1998-05-01

    During the directional solidification of a metallic alloy, the interface between the solid and the liquid can be looked upon as a thermocouple junction, provided that the two phases show a difference of thermoelectric power. Thermoelectric measurements made under microgravity conditions are discussed here. When the interface is planar, i.e. isothermal, the measured voltage is proportional to the temperature of the interface and correlation with solidification phenomena is straightforward. If now this interface is cellular, we show that a local thermoelectric current density appears. A modelling of the voltage drop due to these currents is proposed. It is shown that to the leading order, the measured voltage depends on three unknowns: the average liquid fraction, the temperatures at the tip and at the bottom of the structure. A good agreement is found between the theoretical calculated voltage and the measurements made on metallographies. It is also demonstrated that thermoelectric currents appear in the solid phase because of the concentration inhomogeneities. These currents cause a peak to appear on the signal. At least, we show how to deduce the liquid fraction, the temperature at the tip and at the bottom of the interface directly from the recorded signal.

  2. A mixture of massive and feathery microstructures of Ti48Al2Cr2Nb alloy by high undercooled solidification

    International Nuclear Information System (INIS)

    A mixture of massive and feathery microstructures was observed in Ti48Al2Cr2Nb alloy subjected to the undercooled solidification rather than the heat treatments in most cases. Double recalescence events and primary β solidification confirmed that massive γ phase did not directly nucleate from the undercooled melt but formed during the solid-state transformations. It is believed that small white areas (aluminium-poor) along lamellar grain boundaries may be closely related to the formation of massive γ phase and feathery γ phase. High dislocation density and stacking faults were detected in massive γ phase by transmission electron microscopy. The high energy of defects and undercooling in the solid state phase transformation can provide sufficiently high driving force for the nucleation of massive γ phase. - Graphical abstract: Display Omitted - Highlights: • A mixture of massive and feathery microstructures was observed. • Massive γ formed during the solid-state transformations. • Defects and undercooling provide driving force for the nucleation of massive γ

  3. Quantitative analysis of impurities in aluminum alloys by laser-induced breakdown spectroscopy without internal calibration

    Institute of Scientific and Technical Information of China (English)

    LI Hong-kun; LIU Ming; CHEN Zhi-jiang; LI Run-hua

    2008-01-01

    To develop a fast and sensitive alloy elemental analysis method, a laser-induced breakdown spectroscopy(LIBS) system was established and used to carry out quantitative analysis of impurities in aluminum alloys in air at atmospheric pressure. A digital storage oscilloscope was used as signal recording instrument, instead of traditional gate integrator or Boxcar averager, to reduce the cost of the whole system. Linear calibration curves in the concentration range of 4×10-5-10-2 are built for Mg, Cr, Mn, Cu and Zn using absolute line intensity without internal calibrations. Limits of detection for these five elements in aluminum alloy are determined to be (2-90)×10-6. It is demonstrated that LIBS can provide quantitative trace elemental analysis in alloys even without internal calibration. This approach is easy to use in metallurgy industries and relative research fields.

  4. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  5. Evaluation of Aluminum Alloy 2050-T84 Microstructure Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable the designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320 F. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  6. Microstructure evolution and non-equilibrium solidification of undercooled Ni-29.8at% Si eutectic alloy melts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Microstructure formation and transition of undercooled bulk Ni70.2Si29.8 eutectic alloy melt were investigated by melt fluxing,cyclical overheating and cooling under high-frequency vacuum melting.The maximum undercooling of the alloy melt amounted to 428 K.Scanning electron microscope(SEM),energy-dispersive X-ray spectroscopy(EDS) and optical microscopy techniques(OM) were adopted to investigate the microstructure and identify the phase composition.The cooling curves of eutectic alloys upon solidification which were subjected to different undercoolings were described and compared.The complex microstructure evolution was observed in the as-solidified samples with the increase of undercooling.Surprisingly,an extremely fine microstructure was achieved at the max undercooling of 428 K,and the lamellar distance of about 50-100 nm was observed.Based on the solution entropy of eutectic phases,the microstructure transition with the undercooling was analyzed.Calculated results showed that the microstructure transition process was ascribed to solution entropy of transition,i.e.,the complex microstructure evolution was attributed to a transition from faceted-faceted(FF)→faceted-nonfaceted(FN)→nonfaceted-nonfaceted(NN) eutectic systems concurring with increased undercooling.

  7. Primary cellular/dendritic spacing selection of Al-4.95%Zn alloy under near-rapid directional solidification condition

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Al-4.95% Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near-rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λmax, minimum, λmin, and average primary spacing, (-\\λ), as functions of growth velocity, v, can be given by λmax = 12 340 v-0.8353, λmin = 2953.7 v-07717, (-\\λ)= 7820.3 v-08333, respectively.

  8. Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy

    Science.gov (United States)

    Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Sakane, Shinji; Shimokawabe, Takashi; Aoki, Takayuki

    2016-05-01

    Selections of growing crystals during directional solidification of a polycrystalline binary alloy were numerically investigated using two-dimensional phase-field simulations. To accelerate the simulations, parallel graphics processing unit (GPU) simulations were performed using the GPU-rich supercomputer TSUBAME2.5 at the Tokyo Institute of Technology. Twenty simulations with a combination of five sets of different seed orientation distributions and four different temperature gradients covering dendritic and cellular growth regions were performed. The unusual grain selection phenomenon, in which the unfavorably oriented grains preferentially grow instead of the favorably oriented grains, was observed frequently. The unusual selection was more remarkable in the cellular structure than in the dendritic structure.

  9. Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds

    Energy Technology Data Exchange (ETDEWEB)

    DebRoy, T.

    2000-11-17

    The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

  10. Research on Semisolid Microstructural Evolution of 2024 Aluminum Alloy Prepared by Powder Thixoforming

    OpenAIRE

    Pubo Li; Tijun Chen; Suqing Zhang; Renguo Guan

    2015-01-01

    A novel method, powder thixoforming, for net-shape forming of the particle-reinforced Aluminum matrix composites in semi-solid state has been proposed based on powder metallurgy combining with thixoforming technology. The microstructural evolution and phase transformations have been investigated during partial remelting of the 2024 bulk alloy, prepared by cold pressing of atomized alloy powders to clarify the mechanisms of how the consolidated powders evolve into small and spheroidal primary...

  11. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    OpenAIRE

    Zhongyu Cui; Xiaogang Li; Huan Zhang; Kui Xiao; Chaofang Dong; Zhiyong Liu; Liwei Wang

    2015-01-01

    Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular ...

  12. EBSD characterization of deformation in high strain rate application aluminum alloys

    OpenAIRE

    Kozmel, Thomas; Vural, Murat; Tin, Sammy

    2014-01-01

    Advances in materials characterization tools and techniques are contributing to an improved physics based understanding pertaining to the characteristic behavior of engineering alloys. Aluminum alloys, such as 2139, 2519, 5083, and 7039 are commonly used for lightweight armor applications where resistance to high strain rate deformation is paramount. Failure of these materials is often attributed to the onset of shear band formation. This study was aimed at complimenting the constituent predi...

  13. Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    OpenAIRE

    Mile B. Djurdjević; Srećko Manasijević; Zoran Odanović; Natalija Dolić

    2013-01-01

    The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influ...

  14. TESTING OF ALUMINUM-SILICON ALLOYS MECHANICAL PROPERTIES ON SEPARATELY CASTED SPECIMENS

    OpenAIRE

    Krushenko, G.

    2010-01-01

    The mechanical properties of aluminum alloys before casting into moulds were determined on separately casted control specimens casted in horizontal or vertical forms. A comparison of the mechanical properties (tensile strength t, elongation 8, hardness HB) of 12-mm-diameter individually casted of AK7ch alloy control specimens and its density in the solid state (p) showed that it is necessary to use specimens casted in a horizontal mold for evaluation of castings quality. It was estimated that...

  15. Dynamic process of angular distortion between aluminum and titanium alloys with TIG welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LIANG Zhen-xin; ZHANG Jian-xun

    2008-01-01

    The dynamic process of welding angular distortion in the overlaying welding of 5A12 aluminum alloy and BT20 titanium alloy was investigated. Information of dynamic distortion was got via self-made welding dynamic measuring system. Research results show that the characteristics of dynamic distortions at various positions of the plate edge parallel to the weld of 5A12 and BT20 alloy are different. Comparison between 5A12 and BT20 alloy shows that transverse shrinkage and downward longitudinal bending are main factors influencing the dynamic angular distortion processes of 5A12 and BT20 alloy under welding heat input of 0.32 kJ/mm. The angular distortion of 5A12 alloy is completely inversed with welding heat input increasing to 0.4 kJ/mm, and the position of weld center and buckling distortion become the primary factors.

  16. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    Science.gov (United States)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  17. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  18. Grain Refining Performance of SHS Al-50TiC Master Alloys for Commercially Pure Aluminum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Al-50wt%TiC composite was directly synthesized by self-propagating high-temperature synthesis (SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminum.The microstructure and grain refining performance of the synthesized master alloy were emphatically investigated.The SHS master alloy only contained submicron TiC particles except for Al matrix.Moreover,TiC particles were relatively free of agglomeration. Grain refining tests show that adding only 0.1 wt% of the master alloys to the aluminum melt could transform the structure of the solidified samples from coarse columnar grains to fine equiaxed grains (average grain size 120μm),and that this grain refining effectiveness could be maintained for almost 1.5h at 1003K. Therefore,it is concluded that the SHS master alloy is an effective grain refiner for aluminum and its alloys, and that it is highly resistant to the grain refining fading encountered with most grain refiners.

  19. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  20. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was