WorldWideScience

Sample records for alloy aluminum solidification

  1. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  2. Solidification crack susceptibility of aluminum alloy weld metals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The susceptibilities of the three aluminum alloys to solidification crack were studied with trans-varestraint tests and tensile tests at elevated temperature. Their metallurgical characteristics, morphologies of the fractured surface and dynamic cracking behaviors at elevated temperature were analyzed with a series of micro-analysis methods. The results show that dynamic cracking models can be classified into three types. The first model has the healing effect which is called type A. The second is the one with deformation and breaking down of metal bridge, called type B. The last one is with the separation of liquid film along grain boundary, called type C.Moreover, the strain rate has different effects on crack susceptibility of aluminum alloys with different cracking models. ZL101 and 5083 alloys belong to type A and type C cracking model respectively, in which strain rate has greater effect on eutectic healing and plastic deformation of metal bridge. 6082 alloy is type B cracking model in which the strain rate has little effect on the deformation ability of the liquid film.

  3. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  4. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  5. Simulation of unconstrained solidification of A356 aluminum alloy on distribution of micro/macro shrinkage

    Directory of Open Access Journals (Sweden)

    Hossein Bayani

    2014-01-01

    Full Text Available In the condition of Newtonian heat transfer, A356 aluminum alloy is solidified with randomly distributed equiaxed dendrites. Ability of interdendritic liquid flow is described by permeability parameter using Darcy's law and this parameter is used to predict the micro-shrinkages. In this study the interdendritic liquid flow during nucleation and grain growth are simulated in a 1 mm × 1 mm domain. Temperature gradient is zero in the initial condition of the unconstrained solidification. The numerical simulation procedure includes two stages; first, numerical evolution of the shape, number, size, and distribution of dendrites during solidification using a novel Cellular Automation Finite Volume (CA-FV method, and second, numerical determination of the micro-permeability by a Computational Fluid Dynamics (CFD technique. Subsequently, the effect of Reynolds number, cooling rate and solidification rate on a critical permeability range was investigated in order to predict the micro/macro shrinkage distribution. Results showed that it is possible to propose a mathematical model to relate the Reynolds number and liquid flow rate, in the creeping flow range, on the micro-permeability during unconstrained solidification.

  6. In-Situ Analysis of Coarsening during Directional Solidification Experiments in High-Solute Aluminum Alloys

    NARCIS (Netherlands)

    Ruvalcaba, D.; Mathiesen, R.H.; Eskin, D.G.; Arnberg, L.; Katgerman, L.

    2009-01-01

    Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidif

  7. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  8. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    Science.gov (United States)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  9. Microstructure characteristics and solidification behavior of wrought aluminum alloy 2024 rheo-diecast with self-inoculation method

    Directory of Open Access Journals (Sweden)

    Li Yanlei

    2012-11-01

    Full Text Available One important problem in casting wrought aluminum alloys is the high tendency to the formation of hot tears in the solidification process. By using semi-solid metal (SSM processing, the hot tearing tendency of alloys can be minimized during casting. In the present research, the semi-solid slurry of wrought aluminum alloy 2024 was firstly prepared with a novel self-inoculation method (SIM, and then the microstructure characteristics of the semi-solid slurry and the rheo-diecastings cast with the semi-solid slurry were investigated. The results indicate that finer and more uniform globular primary α-Al particles can be obtained when the semi-solid slurry are isothermally held for a short period within the semi-solid temperature range, and the primary α-Al particles without entrapped liquid are uniformly fine, globular grains in the rheo-diecastings. The holding temperature and time affect the solid fraction, particle size, and shape factor. After the semi-solid slurry is held at 625 ℃ for 3 min and 5 min, the optimal values for the average equivalent diameter are 70.80 μm and 74.15 μm, and for the shape factor are 1.32 and 1.42, respectively. The solidification process of the rheo-diecastings is composed of the following two distinct stages: primary solidification process and secondary solidification process. The secondary solidification process consists further of the following three stages: (1 direct growth of secondary primary (α2 phase from the surface of the primary α-Al phase particles without re-nucleation, (2 independent nucleation and growth of α3 phase from the residual liquid, and (3 eutectic reaction at the end.

  10. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  11. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    Science.gov (United States)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  12. Effect of centrifugal counter-gravity casting on solidification microstructure and mechanical properties of A357 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Li Xinlei

    2014-01-01

    Full Text Available To investigate the influence of Centrifugal Counter-gravity Casting (C3 process on the solidification microstructure and mechanical properties of the casting, A357 aluminum alloy samples were produced by different process conditions under C3. The results show that C3 has better feeding capacity compared with the vacuum suction casting; and that the mechanical vibration and the convection of melts formed at the centrifugal rotation stage suppress the growth of dendrites, subsequently resulting in the refinement of grains and the improvement of mechanical properties, density and hardness. A finer grain and higher strength can be obtained in the A357 alloy by increasing centrifugal radius and rotational speed. However, casting defects will appear near the rotational axis and the mechanical properties will decrease once the rotational speed exceeds 150 r·min-1.

  13. Solidification behavior and rheo-diecasting microstructure of A356 aluminum alloy prepared by self-inoculation method

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600 °C. Primary α-Al particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1 show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2 increases with the increase of cooling rate, and the content of Si in secondary particles (α2 are larger than primary particles (α1. With the increase of cooling rate, the content of Si in secondary particles (α2 gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.

  14. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2015-10-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing aluminum alloy components. Repair process on the Al alloy sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminum alloy component repair by turbulence flow casting. The model is designed based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that analytical modeling has good agreement with the experimental result.

  15. Solidification, growth mechanisms, and associated properties of aluminum-silicon and magnesium lightweight casting alloys

    Science.gov (United States)

    Hosch, Timothy Al

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  16. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  17. Simulation of the aluminum alloy A356 solidification cast in cylindrical permanent molds

    OpenAIRE

    2008-01-01

    A mathematical model based on the control volume method with fixed mesh was selected in order to simulate the solidification of cylindrical castings poured in permanent steel mold. The latent heat was incorporated using the effective specific heat. The application of the model allowed us to obtain the solidification front and the temperature fields at any time from the pouring. The mold was made of the SAE 1010 steel. Two mold temperatures were evaluated: 25°C and 300°C. The mathematical mode...

  18. Theoretical Analysis of the Solidification of Aluminum Alloy Billet in Air-Slip DC Mold

    Institute of Scientific and Technical Information of China (English)

    于赟; 马乃恒; 许振明; 李建国

    2004-01-01

    Based on the heat transfer analysis of Air-Slip DC mold, a numerical model was presented to study the quantitative relationships between critical solidification layer and casting rate, pouring temperature and mold cooling ability etc. The analytical results show that the Air-Slip mold heat transfer condition plays important roles on choices of a casting rate and the pouring temperature, and that the product of billet diameter and casting rate is a certain constant under a certain condition of the mold.

  19. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    Science.gov (United States)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  20. In Situ Observation of Solidification Conditions in Pulsed Laser Welding of AL6082 Aluminum Alloys to Evaluate Their Impact on Hot Cracking Susceptibility

    Science.gov (United States)

    von Witzendorff, Philipp; Kaierle, Stefan; Suttmann, Oliver; Overmeyer, Ludger

    2015-04-01

    The influence of laser pulse parameters on solidification conditions and hot crack formation in pulsed laser welding of Al6082 aluminum alloys was studied with the aid of high-speed cameras capturing visible and infrared radiation. Hot cracking was evaluated with respect to strain rate, strain, and metallurgical outcome. The strain rate was approximated by the product of interface velocity and temperature gradient at the interface. The temperature gradient decreases during the course of solidification and followed a specific course. The interface velocity was therefore used as an indicator for the strain rate, which increased in a logarithmic manner with respect to the slope of the laser pulse's cooling time. The accumulated strain was calculated by measuring the spot weld deformation during solidification. Within the heat-conduction welding regime, hot cracking can be reduced by lowering the interface velocity leading to a reduced strain rate and enhanced permeability of the dendritic microstructure. An over-proportional increase of the accumulated strain was observed for keyhole welding, which led to a high susceptibility to hot cracking regardless of the interface velocity. At low interface velocities, hot cracking was induced by extensive hydrogen diffusion at the solid-liquid interface, which promotes crack initiation.

  1. Heat transport and solidification in the electromagnetic casting of aluminum alloys: Part II. Development of a mathematical model and comparison with experimental results

    Science.gov (United States)

    Prasso, D. C.; Evans, J. W.; Wilson, I. J.

    1995-02-01

    In this second article of a two-part series, a mathematical model for heat transport and solidification of aluminum in electromagnetic casting is developed. The model is a three-dimensional one but involves a simplified treatment of convective heat transport in the liquid metal pool. Heat conduction in the solid was thought to play a dominant role in heat transport, and the thermal properties of the two alloys used in measurements reported in Part I (AA 5182 and 3104) were measured independently for input to the model. Heat transfer into the water sprays impacting the sides of the ingot was approximated using a heat-transfer coefficient from direct chill casting; because this heat-transfer step appears not to be rate determining for solidification and cooling of most of the ingot, there is little inaccuracy involved in this approximation. Joule heating was incorporated into some of the computations, which were carried out using the finite element software FIDAP. There was good agreement between the computed results and extensive thermocouple measurements (reported in Part I) made on a pilot-scale caster at Reynolds Metals Company (Richmond, VA).

  2. Effects of Static Magnetic Field on Solidification Structure of 2024 Aluminum Alloy%静磁场对2024铝合金凝固组织的影响

    Institute of Scientific and Technical Information of China (English)

    程常桂; 余乐; 万文成; 刘中天; 金焱

    2012-01-01

    Effects of static magnetic on the microscopic grain density, solidification rate and distribution of alloy elements in 2024 aluminum alloy were investigated by means of thermal simulation experiment and scanning electron microscope (SEM). The results show that the solidification structure can be refined with increasing in magnetic intensity, and the solidification time is decreased, which are closely related to the Seebeck effect acting on liquid metal in solidification front as a result of enhancing the flow of liquid metal and inhibiting the electromagnetic brake effects. Furthermore, the static magnetic field can promote disfussion of solute atoms in aluminum alloy, and it is favorable to improving solid solubility of alloy elements and decreasing macro-segregation of 2024 aluminum alloy.%通过热模拟试验及扫描电镜分析,研究了静磁场对2024铝合金显微晶粒度、凝固速度、合金元素分布的影响.结果表明,随着磁感应强度的增大,合金凝固组织明显细化,凝固时间变短,这与凝固前沿熔体内的塞贝克效应有关,使得熔体对流效应强于静磁场的制动效应;应用静磁场能够增强溶质原子在铝中的扩散,有利于提高合金元素的固溶度,减轻凝固组织的宏观偏析.

  3. Rapid solidification of immiscible alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Enrica; Rizzi, Paola; Baricco, Marcello E-mail: marcello.baricco@unito.it

    2003-05-01

    Immiscible alloys have been rapidly solidified for the preparation of granular materials with giant magnetoresistance properties. Au-based (Au-Co and Au-Fe) and Cu-based (Cu-Co and Cu-Fe) systems have been investigated. Single supersaturated solid solution has been obtained for Au-Fe, whereas three FCC solid solutions with different Co content have been found for Au-Co. For Cu-Co and Cu-Fe a limit of solubility in Cu has been observed. Ni additions to Cu-Fe strongly enhance solid solubility. A thermodynamic analysis has been used to describe the competition between partition-less solidification and phase separation in undercooled liquid.

  4. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  5. Numerical simulation on melting and solidification process of aluminum-silicon alloy%铝硅合金相变材料凝固/熔化过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    崔海亭; 张改; 蒋静智

    2012-01-01

    利用计算流体力学软件FLUENT的凝固/熔化模型,对双层壁圆筒内填充的铝硅合金相变材料的熔化/凝固过程进行了数值模拟,得到了在第3类边界条件下圆筒内相变材料在凝固/熔化过程中的动态温度场分布、相界面移动规律及凝固/熔化时间等,对蓄热装置的设计及实验研究提供了重要的参考价值.%By using the solidification/melting model of FLUENT software, the melting and solidification process of the aluminum-silicon alloy in a cylinder heat storage with double wall were simulated numerically. Considering the third kind of boundary condition, the dynamic temperature field distribution and the position of the phase interface change moving with time are obtained. And the melting and solidification duration time is also calculated. The results have important reference value for the numerical simulation of the phase change problem and the design of phase change energy storage device.

  6. Density and Mechanical Properties of Aluminum Lost Foam Casting by Pressurization during Solidification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Porosity is thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring, which results in detrimental effect in mechanical property.The slow solidification rate promotes the formation of gassing pin holes, and relative weakness of the thermal gradients can cause micro-shrinkage if the outline of the part complicates feeding in the lost foam casting. One of the methods to eliminate the porosity is to apply high pressure to the molten metal like an isostatic forging during solidification. Fundamental experiments were carried out to evaluate the effect of the external pressure on the porosity and mechanical properties of A356.2 alloy bar in the lost foam casting. Solidification time and porosity decreased with increasing the applied pressure during solidification. Applying external pressure was effective in decreasing the porosity and increasing the elongation of the lost foam casting.

  7. In-situ observation of porosity formation during directional solidification of Al-Si casting alloys

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    2011-02-01

    Full Text Available In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si was made by using of micro-focus X-ray imaging. In both alloys, small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L interface and then grow and coagulate during solidification. Some pores can float and escape from the solidifying melt front at a relatively high velocity. At the end of solidification, the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy. This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys. The mechanism of the porosity formation is briefly discussed in this paper.

  8. Segregation effects and phase developments during solidification of alloy 625

    DEFF Research Database (Denmark)

    Højerslev, Christian; Tiedje, Niels Skat; Hald, John

    2006-01-01

    The solidification behaviour of pure Alloy 625, and Alloy 625 enriched respectively in iron and carbon, was investigated in situ by hot-stage light optical microscopy. Using this technique planar front solidification for distances of several hundred microns was facilitated. After solidification...

  9. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  10. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  11. Die Casting Mold Design of the Thin-walled Aluminum Case by Computational Solidification Simulation

    Institute of Scientific and Technical Information of China (English)

    Young-Chan Kim; Chang-Seog Kang; Jae-Ik Cho; Chang-Yeol Jeong; Se-Weon Choi; Sung-Kil Hong

    2008-01-01

    Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1 mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.

  12. Solidification of Al alloys under electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    崔建忠

    2003-01-01

    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  13. Transport Phenomena During Equiaxed Solidification of Alloys

    Science.gov (United States)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  14. 铝合金电解阴极横梁凝固数值模拟及其应力分析%Solidification Simulation and Stress Analysis of Aluminum Alloy Negative Electrode Beam

    Institute of Scientific and Technical Information of China (English)

    赵俊; 姚三九

    2012-01-01

    The permanent mold casting of the aluminum alloy negative electrode beam was simulated by the casting simulation software ProCAST, and the temperature and stress fields were gained. Stress field and displacement distribution of the casting by tilting pouring and vertical solidification were analyzed. The simulation results show that the places of stress concentration were in the transition boss junction zone of two ends. The deformation mode of aluminum alloy beam was similar to "S" shape in the vertical direction. Through the thermal stress numerical simulation, the dynamic changes of stress and deformation were predicted, which can provide guidance for the actual production.%利用铸造仿真软件ProCAST对铝合金电解阴极横梁金属型铸造过程进行了数值模拟,得到其温度场和应力场;分析了倾斜浇注竖直凝固铸件的应力场及位移分布.模拟结果显示阴极横梁应力集中位置主要在其两端过渡凸台端面连接处区域;铝横梁的变形方式为在纵向方向上类似S型变形.通过对铸件凝固过程热应力数值模拟可以更好地预测铸件凝固过程中应力和变形的动态变化,为实际生产提供科学指导.

  15. High Speed Twin Roll Casting of Aluminum Alloy Strips

    Institute of Scientific and Technical Information of China (English)

    Toshio; Haga

    2002-01-01

    The twin roll caster for aluminum alloys has many a dv antages. For example, rapid solidification, low equipment cost, and low running cost, etc. However, the twin roll caster has some disadvantages. They are slow c asting speed and limitation of alloys. In the conventional twin roll caster, the casting speed is slower than 10 m/min. Aluminum alloys, which freezing range is wide, can not be cast. In the present study, break through of these problems wa s tried, and a new type twin roll caster was devised...

  16. Novel Directional Solidification of Hypermonotectic Alloys

    Science.gov (United States)

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    There are many metal alloy systems that separate into two different liquids upon cooling from a higher temperature. Uniform microstructural development during solidification of these immiscible liquids on Earth is hampered by inherent density differences between the phases. Microgravity processing minimizes settling but segregation still occurs due to gravity independent wetting and coalescence phenomena. Experiments with the transparent organic, metal analogue, succinonitrile-glycerol system were conducted in conjunction with applied ultrasonic energy. The processing parameters associated with this technique have been evaluated in view of optimizing dispersion uniformity. Characterization of the experimental results in terms of an initial modeling effort will also be presented.

  17. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    Science.gov (United States)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  18. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  19. A new coupled model for alloy solidification

    Institute of Scientific and Technical Information of China (English)

    LI Daming; LI Ruo; ZHANG Pingwen

    2004-01-01

    A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA)technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain.The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the energy and solute conservation, thermodynamic and chemical potential equilibrium are adopted to calculate the temperature, solid concentration, liquid concentration and the increment of solid fraction. Compared with other models where the release of latent heat is solved in implicit or explicit form according to the solid/liquid (S/L) interface velocity, the energy diffusion and the release of latent heat in this model are solved at differentscales, I.e. The macro-scale and micro-scale. The variation ofsolid fraction in this model is solved using several algebraicrelations coming from the chemical potential equilibrium andthermodynamic equilibrium which can be cheaply solved insteadof the calculation of S/L interface velocity. With the assumptionof the solute conservation and energy conservation, the solidfraction can be directly obtained according to the thermodynamicdata. This model is natural to be applied to multiple (>2)spatial dimension case and multiple (>2) component alloy. Themorphologies of equiaxed dendrite are obtained in numericalexperiments.

  20. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    OpenAIRE

    2011-01-01

    The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW) welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot crac...

  1. Competitive growth of high purity aluminum grains in directional solidification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiao; SHU Da; WANG De-lin; SUN Bao-de; CHEN Gang

    2006-01-01

    A self-made directional solidification setup was used to prepare high purity aluminum ingots of 100mm in diameter. The morphology of the growth interface was detected by SEM and AFM, and the grain lattice orientation was detected by XRD. The results indicate that the grains suffer competitive growth under any conditions in experiments. The lattice orientation of the preferred grains is determined by the flow field above the solid-liquid interface. The horizontal lattice position does not change during the growth process. However, the lattice orientation in the growth direction varies with the growth velocity and approaches to [100]gradually during the growth process.

  2. Topological dependence of mechanical responses of solidification microstructures in aluminum brazed joints

    Institute of Scientific and Technical Information of China (English)

    GAO Feng(高峰); QIAN Yi-yu(钱乙余); D.P.Sekulic; MA Xin(马鑫); F.Yoshida

    2003-01-01

    The main objective is to provide an evidence of spatial dependence of mechanical responses of a heterogeneous aluminum brazed joint re-solidified clad,and to confirm a sufficient sensitivity of a nano-indentation--load curve method for identifying the dependence.Topological features of a network of solidification microstructures(αphase and eutectic),formed during quench in a brazing process of aluminum alloy,influence significantly dynamic mechanical responses of resulting heterogeneous material.Nano/micro indentation depth vs load characteristics of differing phases suggest a spatially sensitive mechanical response of a re-solidified fillet in the joint zone.Hence,a spatial distribution,pattern formations and other morphological characteristics of microstructures have a direct impact on an ultimate joint integrity.Topology-induced variations of indentation-load curves was presented.A hypothesis involving microstructures'spatial distribution vs mechanical response was formulated.

  3. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  4. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  5. Kinetics of aluminum lithium alloys

    Science.gov (United States)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  6. Containerless Solidification and Characterization of Industrial Alloys (NEQUISOL)

    Science.gov (United States)

    Ilbagi, A.; Henein, H.; Chen, J.; Herlach, D. M.; Lengsdorf, R.; Gandin, Ch-A.; Tourret, D.; Garcia-Escorial, A.

    2011-12-01

    Containerless solidification using electromagnetic levitator (EML), gas atomization and an instrumented drop tube, known as impulse atomization is investigated for Al-Fe and Al-Ni alloys. The effects of primary phase and eutectic undercooling on the microstructure of Al-Fe alloys are investigated using the impulse drop tube and parabolic flight. The TEM characterization on the eutectic microstructure of impulse-atomized Al-Fe powders with two compositions showed that the metastable AlmFe formed in these alloys. Also, the growth undercooling that the dendritic front experiences during the solidification of the droplet resulted in variation of dendrite growth direction from to . For Al-4 at%Fe, it was found that in reduced-gravity and in the impulse-atomized droplets the primary intermetallic forms with a flower-like morphology, whereas in the terrestrial EML sample it has a needle like morphology. For Al-Ni, the effect of primary phase undercooling on dendrite growth velocity under terrestrial and reduced-gravity condition is discussed. It is shown that under terrestrial conditions, in the Ni-rich alloys with increasing undercooling the growth velocity increases, whereas in the Al-rich alloys the growth velocity decreases. However, the Al-rich alloy that was studied in reduced-gravity showed similar behavior to that of Ni-rich alloys. Furthermore, the effect of cooling rate on the phase fractions and metastable phase formation of impulse-atomized Al-Ni alloys is compared with EML. A microsegregation model for the solidification of Al-Ni alloys is applied to impulse atomized powders. The model accounts for the occurrence of several phase transformations, including one or several peritectic reactions and one eutectic reaction.

  7. Evolution of eutectic spacing during unidirectional solidification of Al-Ni alloys

    Directory of Open Access Journals (Sweden)

    Igor Jefferson Cabral Araujo

    2011-01-01

    Full Text Available Hypoeutectic Al-Ni alloys show a ductile phase α distributed with a β phase Al3Ni fragile where β serves as reinforcement of the structure of the material. The eutectic composition alloys obey the relationship: λ2.v = C, where λ is the eutectic spacing, v is a tip growth rate and C is a constant. The aim of this study is to establish correlations between λ and v for hypoeutectic Al-1%, 3% and 5% Ni alloys. Unsteady-state upward directional solidification experiments were performed, as well as metallography, dissolution of the aluminum matrix and scanning electron microscopy (SEM. The interphase spacing of the three Al-Ni alloys decreased with increasing tip growth rate, with a predominance of a rod-like morphology on intermetallic. It was observed that parameters such as tip growth rate, cooling rate and temperature gradient decreases as the solidification front advances. It was further observed that a single experimental law λ = 1.2 v-0, 5 illustrates the evolution of the interphase spacing for any examined alloy.

  8. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  9. Effects of High Magnetic Field on Solidification and Corrosion Behaviors of Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCl by measuring electrochemical polarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer.The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the a- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.

  10. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  11. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  12. Modeling fluid interactions with the rigid mush in alloy solidification

    Science.gov (United States)

    Plotkowski, Alexander J.

    Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of challenges. Among these is the appropriate treatment of the interface between the bulk fluid and the rigid mushy zone. In this region, the non-linear and coupled behavior of heat transfer, fluid mechanics, solute transport, and alloy thermodynamics has a dramatic effect on macrosegregation predictions. This work investigates the impact of numerical approximations at this interface in the context of a mixture model for alloy solidification. First, the numerical prediction of freckles in columnar solidification is investigated, and the predictive ability of the model is evaluated. The model is then extended to equiaxed solidification, in which the analogous interface is the transition of free-floating solid particles to a rigid dendritic network. Various models for grain attachment are investigated, and found to produce significant artifacts caused by the discrete nature of their implementation on the numerical grid. To reduce the impact of these artifacts, a new continuum grain attachment model is proposed and evaluated. The differences between these models are compared using uncertainty quantification, and recommendations for future research are presented.

  13. Solidification and crystal growth of solid solution semiconducting alloys

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  14. Novel Directional Solidification Processing of Hypermonotectic Alloys

    Science.gov (United States)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  15. Divorced Eutectic Solidification of Mg-Al Alloys

    Science.gov (United States)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  16. Rapid solidification of undercooled Al-Cu-Si eutectic alloys

    Institute of Scientific and Technical Information of China (English)

    RUAN Ying; WEI BingBo

    2009-01-01

    Under the conventional solidification condition,a liquid aluminium alloy can be hardly undercooled because of oxidation.In this work,rapid solidification of an undercooled liquid Al,80.4Cu,13.6Si,6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating.The re-lationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt.The maximum undercooling is 147 K (0.18 TE).The undercooled ternary eutectic is composed of α(Al) solid solution,(Si) semiconductor and β(CuAl,2) intermetallic compound.In the (Al+Si+θ) ternary eutectic,(Si) faceted phase grows independently,while (Al) and θ non-faceted phases grow coopera-tively in the lamellar mode.When undercooling is small,only (Al) solid solution forms as the leading phase.Once undercooling exceeds 73 K,(Si) phase nucleates firstly and grows as the primary phase.The alloy microstructure consists of primary (Al) dendrite,(Al+9) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling,while at large undercooling primary (Si) block,(Al+θ) pseudo-binary eutectic and (Al+Si+θ) ternary eutectic coexist.As undercooling increases,the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases.

  17. Computer modelling of solidification of pure metals and alloys

    CERN Document Server

    Barkhudarov, M R

    1995-01-01

    differencing advection algorithm used in the simulations, the Leith's method is incorporated into the public domain two-dimensional SOLA code. It is shown that the resulting scheme is unconditionally stable despite being explicit. Two numerical models have been developed to describe the volumetric changes during solidification in pure metals and alloys and to predict shrinkage defects in the castings of general three-dimensional configuration. The first model is based on the full system of the Continuity, Navier-Stokes and Enthalpy Equations. Volumetric changes are described by introducing a source term in the Continuity Equation which is a function of the rate of local phase transformation. The model is capable of simulating both volumetric shrinkage and expansion. The second simplified shrinkage model involves the solution of only the Enthalpy Equation. Simplifying assumptions that the feeding flow is governed only by gravity and solidification rate and that phase transformation proceeds only from liquid to...

  18. High speed twin roll caste for aluminum alloy thin strip

    Directory of Open Access Journals (Sweden)

    T. Haga

    2007-09-01

    Full Text Available Purpose: In the present study, effectiveness of a high-speed twin roll caster for recycling aluminum alloy was investigated.Design/methodology/approach: The effects of the high-speed twin roll caster on alleviating the deterioration of mechanical properties by impurities were investigated. Properties of the cast strip were investigated by metalography, a tension test, and a bending test.Findings: A vertical type twin roll caster for strip casting of aluminum alloys was devised. The strip, which was thinner than 3 mm, could be cast at speeds higher than 60 m/min. Features of the twin roll casters are as below. Copper rolls were used and lubricant was not used in order to increase the casting speed. A casting nozzle was used to set the solidification length precisely. Heat transfer between melt and the roll was improved by hydrostatic pressure of the melt. Separating force was very small in order to prevent sticking of the strip to the roll. Low superheat casting was carried out in order to improve microstructure of the strip. In the present study, effectiveness of a high-speed and high-cooling rate twin roll caster of the present study for recycling aluminum alloy was investigated. Fe was added as impurity to 6063 and A356. The roll caster of the present study was useful to decrease the influence of impurity of Fe.Research limitations/implications: A high-speed twin roll caster of vertical type was designed and assembled to cast aluminum alloy thin strip.Originality/value: The results demonstrate that the high-speed twin roll caster can improve the deterioration by impurities.

  19. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  20. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  1. Melting and solidification behavior of Pb–Sn embedded alloy nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Patan Yousaf [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India); Bhattacharya, Victoria [Indian Institute of Science, Department of Materials Engineering (India); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India); Chattopadhyay, Kamanio [Indian Institute of Science, Department of Materials Engineering (India)

    2013-11-15

    Nano-sized bimetallic dispersoids consisting of (Pb) and β-(Sn) phases of eutectic composition (Pb{sub 26.1}Sn{sub 73.9}) embedded in aluminum and Al–Cu–Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, β-(Sn) solid solution co-exist in all the embedded nano-particles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and β-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

  2. Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys

    Science.gov (United States)

    Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo

    2003-01-01

    Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well

  3. Investigation of solidification dynamics of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2013-07-01

    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  4. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  5. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  6. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  7. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  8. Superior metallic alloys through rapid solidification processing (RSP) by design

    Energy Technology Data Exchange (ETDEWEB)

    Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  9. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  10. Microstructural Development during Directional Solidification of Peritectic Alloys

    Science.gov (United States)

    Lograsso, Thomas A.

    1996-01-01

    A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences

  11. SOLIDIFICATION CHARACTERISTIC OF TITANIUM CARBIDE PARTICULATE REINFORCED ALUMINIUM ALLOY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. FATCHURROHMAN

    2012-04-01

    Full Text Available In this research solidification characteristic of metal matrix composites consisted of titanium carbide particulate reinforced aluminium-11.8% silicon alloy matrix is performed. Vortex mixing and permanent casting method are used as the manufacturing method to produce the specimens. Temperature measurements during the casting process are captured and solidification graphs are plotted to represent the solidification characteristic. The results show, as volume fraction of particulate reinforcement is increased, solidification time is faster. Particulate reinforcement promotes rapid solidification which will support finer grain size of the casting specimen. Hardness test is performed and confirmed that hardness number increased as more particulate are added to the system.

  12. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  13. The Solidification Velocity of Undercooled Nickel and Titanium Alloys with Dilute Solute

    Science.gov (United States)

    Algoso, Paul R.; Altgilbers, A. S.; Hofmeister, William H.; Bayuzick, Robert J.

    2003-01-01

    The study of solidification velocity is important for two reasons. First, understanding the manner in which the degree of undercooling of the liquid and solidification velocity affect the microstructure of the solid is fundamental. Second, there is disagreement between theoretical predictions of the relationship between undercooling and solidification velocity and experimental results. Thus, the objective of this research is to accurately and systematically quantify the solidification velocity as a function of undercooling for dilute nickel-and titanium-based alloys. The alloys chosen for study cover a wide range of equilibrium partition coefficients, and the results are compared to current theory.

  14. Effect of partition coefficient on microsegregation during solidification of aluminium alloys

    Institute of Scientific and Technical Information of China (English)

    MH Avazkonandeh-Gharavol; M Haddad-Sabzevar; H Fredriksson

    2014-01-01

    In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum-copper alloys. The sam-ples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidifica-tion. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experi-mental profiles, compared to those calculated using the equilibrium partition coefficients.

  15. Mechanisms of pressure filtration of liquid aluminum alloys

    Science.gov (United States)

    Cao, X.

    2006-12-01

    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  16. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  17. Solidification of hypermonotectic Al-In alloys under microgravity conditions

    Science.gov (United States)

    Potard, C.

    1982-01-01

    Four samples of the Al-In system having monotectic and hypermonotectic compositions that were solidified under microgravity during the NASA-SPAR IX flight of January 20, 1981, are considered. The experimental thermal and physicochemical conditions that were actually achieved are analyzed. Radiographic and metallographic observations of the samples reveal a nonregular dispersed primary phase inside the monotectic matrix. These observations are discussed in relation to capillarity and solidification aspects. A key finding is the preservation of a certain degree of dispersion of the indium primary phase. This result differs fundamentally from the results obtained under microgravity conditions on the same system and compositions (Gelles and Markworth, 1980; Alborn and Loehberg, 1979). The results are seen as clearly establishing that the space environment can be used to obtain dispersed structures from hypermonotectic alloys.

  18. Modelling of binary alloy solidification in the MEPHISTO experiment

    Science.gov (United States)

    Leonardi, Eddie; de Vahl Davis, Graham; Timchenko, Victoria; Chen, Peter; Abbaschian, Reza

    2004-05-01

    A modified enthalpy method was used to numerically model experiments on solidification of a bismuth-tin alloy which were performed during the 1997 flight of the MEPHISTO-4 experiment on the US Space Shuttle Columbia. This modified enthalpy method was incorporated into an in-house code SOLCON and a commercial CFD code CFX; Soret effect was taken into account by including an additional thermo-diffusion term into the solute transport equation and the effects of thermal and solutal convection in the microgravity environment and of concentration-dependent melting temperature on the phase change processes were also included. In this paper an overview of the results obtained as part of MEPHISTO project is presented. The numerical solutions are compared with actual microprobe results obtained from the MEPHISTO experiment. To cite this article: E. Leonardi et al., C. R. Mecanique 332 (2004).

  19. Rapid solidification of Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M.; Bosco, E.; Acconciaioco, G.; Rizzi, P.; Coisson, M

    2004-07-15

    Cu{sub 80-x}Ni{sub x}Fe{sub 20} (x=0, 5 and 20) alloys have been rapidly solidified by planar flow casting. X-ray diffraction (XRD) analysis of as-quenched ribbons shows bcc-Fe precipitates embedded in an fcc phase (x=0), two co-existing fcc solid solutions (x=5) and a complete solid solution of the parent elements (x=20). Thermal treatments in the temperature range between 400 and 600 deg. C give precipitation and spinodal decomposition reactions. These phase transformations have been evidenced from a variation of lattice constants, from a broadening of diffraction peaks and from TEM observations. The role of Ni content on competition between precipitation and decomposition reactions during rapid solidification and annealing is discussed in terms of thermodynamic arguments. Recent CALPHAD assessment of thermodynamic properties for Cu-Fe-Ni system has been used for an estimation of composition and volume fraction of equilibrium phases.

  20. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  1. Microstructural evolution of Al-20Si-5Fe alloy during rapid solidification and hot consolidation

    Institute of Scientific and Technical Information of China (English)

    M. Rajabi; M. Vahidi; A. Simchi; P. Davami

    2009-01-01

    Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of under-cooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rote of 6×10~5 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5×10~7 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural refinement and modification, The size of the primary silicon decreased from approximately 1 μm to 30 nm while the formation of iron-containing inter-metallic compounds was suppressed, Supersaturation of the aluminum marx in an amount of~7 at.% Si was noticed from the XRD patterns. During the hot consolidation process, coarsening of the primary silicon particles and precipitation of β-Al_5FeSi phase were observed. Evalua-tion of the compressive strength and hardness of the alloy indicated an improvement in mechanical properties due to the microstructural modification.

  2. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  3. Microstructure Characteristics of Ni-Nb Near Eutectic Alloy during EBFZM Directional Solidification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the zone melting rate on the microstructure has also been studied.

  4. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  5. Microstructures, micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy

    Directory of Open Access Journals (Sweden)

    Liang-shun Luo

    2016-03-01

    Full Text Available To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb (at.% alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated. The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm•s-1 under the temperature gradients of 15-20 K•mm-1, and the primary phase is transformed into an α phase at relatively higher growth rates (V >20 μm•s-1. The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm•s-1 under a temperature gradient of 15 K•mm-1. The increase of temperature gradient to 20 K•mm-1 can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as , in which βR and γR mean the residual β and γ.

  6. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy.

    Science.gov (United States)

    Siquieri, R; Doernberg, E; Emmerich, H; Schmid-Fetzer, R

    2009-11-18

    In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al(3)Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.

  7. Directional solidification of Al-Cu-Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Boeyuek, U.; Kaya, H. [Erciyes University, Department of Science Education, Education Faculty, Kayseri (Turkey); Marasli, N.; Keslioglu, K. [Erciyes University, Department of Physics, Faculty Arts and Sciences, Kayseri (Turkey); Cadirli, E. [Nigde University, Department of Physics, Faculty Arts and Sciences, Nigde (Turkey)

    2009-06-15

    Al-Cu-Ag alloy was prepared in a graphite crucible under a vacuum atmosphere. The samples were directionally solidified upwards under an argon atmosphere with different temperature gradients (G=3.99-8.79 K/mm), at a constant growth rate (V=8.30 {mu}m/s), and with different growth rates (V=1.83-498.25 {mu}m/s), at a constant gradient (G=8.79 K/mm) by using the Bridgman type directional solidification apparatus. The microstructure of Al-12.80-at.%-Cu-18.10-at.%-Ag alloy seems to be two fibrous and one lamellar structure. The interlamellar spacings ({lambda}) were measured from transverse sections of the samples. The dependence of interlamellar spacings ({lambda}) on the temperature gradient (G) and the growth rate (V) were determined by using linear regression analysis. According to these results it has been found that the value of {lambda} decreases with the increase of values of G and V. The values of {lambda} {sup 2}V were also determined by using the measured values of {lambda} and V. The experimental results were compared with two-phase growth from binary and ternary eutectic liquid. (orig.)

  8. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  9. Numerical simulation on directional solidification of Al-Ni-Co alloy based on FEM

    Directory of Open Access Journals (Sweden)

    Yang Zhili

    2010-02-01

    Full Text Available The ratio, of the temperature gradient at the solidification front to the solidification rate of solid-liquid interface, plays a large part in columnar grain growth. The transient temperature fields of directional solidification of Al-Ni-Co alloy were studied by employing a finite element method. The temperature gradient at the solidification front and the solidification rate were analyzed for molten steels pouring at different temperatures. The results show that with different initial pouring temperatures, the individual ratio of the temperature gradient at solidification front to the solidification rate soars up in the initial stage of solidification, then varies within 2,000-6,000 ℃·s·cm-2, and finally goes down rapidly and even tend to be closed to each other when the solidification thickness reaches 5-6 cm. The simulation result is consistent with the practical production which can provide an available reference for process optimization of directional solidified Al-Ni-Co alloy.

  10. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    Science.gov (United States)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  11. Solidification microstructure selection of the peritectic Nd-Fe-B alloys

    Institute of Scientific and Technical Information of China (English)

    ZHONG Hong; LI ShuangMing; L(U) HaiYan; LIU Lin; ZOU GuangRong; FU HengZhi

    2007-01-01

    Bridgman directional solidification and laser remelting experiments were carried out on Nd11.76Fe82.36B5.88 and Nd13.5Fe79.75B6.75 alloys. Microstructure evolutions along with solidification parameters (temperature gradient G, growth velocity V and initial alloy composition C0) were investigated. A solidification microstructure selection map was established, based on the consideration of solidification characteristics of peritectic T1 phase. In Bridgman directional solidification experiments, with the increasing growth velocities, the morphology of T1 phase changed from plane front or faceted plane front to dendrites. In laser remelting experiments, a transition from primary γ-Fe dendrites to T1 dendrites was found. Theoretical predictions are in good agreement with experimental results.

  12. Solidification microstructure selection of the peritectic Nd-Fe-B alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bridgman directional solidification and laser remelting experiments were carried out on Nd11.76Fe82.36B5.88 and Nd13.5Fe79.75B6.75 alloys.Microstructure evolutions along with solidification parameters(temperature gradient G,growth velocity V and initial alloy composition C0)were investigated.A solidification microstructure selection map was established,based on the consideration of solidification characteristics of peritectic T1 phase.In Bridgman directional solidification experiments,with the increasing growth velocities,the morphology of T1 phase changed from plane front or faceted plane front to dendrites.In laser remelting experiments,a transition from primary γ-Fe dendrites to T1 dendrites was found.Theoretical predictions are in good agreement with experimental results.

  13. A Model for Evaluation of Grain Sizes of Aluminum Alloys with Grain Refinement Additions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the assumption that the nucleation substrates are activated by constitutional undercooling generated by an adjacent grain growth and solute distribution during the initial solidification, a model for calculation of the grain size of aluminum alloys with the grain refinement is developed, where the nucleation is dominated by two parameters, I.e. Growth restriction factor Q and the undercooling parameter P. The growth restriction factor Q is proportional to the initial rate of constitutional undercooling development and can be used directly as a criterion of the grain refinement in the alloys with strong potential nucleation particles. The undercooling parameter P can be regarded as the maximum of constitutional undercooling △TC. For weak potential nucleation particles, the use of RGS would be more accurate. The experimental data of the grain refinement of pure aluminum and AISi7 alloys are coincident predicted results with the model.

  14. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  15. Effect of vacuum on solidification process and microstructure of LFC magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Zi-li; LIU Xi-qin; XU Jiang; GUO Hua-ming; PAN Qing-lin; ZHOU Hai-tao

    2006-01-01

    Lost foam casting (LFC) is regarded as a cost-effective, environment-friendly vital option to the conventional casting process for production of near-net shape castings with high quality. Effect of vacuum on the solidification process and microstructure of LFC magnesium alloy were explored. The results indicate that vacuum plays a very important role in the heat transfer during mould filling and solidification periods, it increases the cooling rate of the filling melt, but greatly decreases the cooling rate of the casting during solidification period, and the solidification time of the casting is greater than that without vacuum. The microstructure of LFC magnesium alloy is rather coarse. Compared with that without vacuum, the microstructure of the LFC magnesium alloy under vacuum is more refined and has less precipitated β-phase, which is formed at the grain boundry and around the Al-Mn compound particle.

  16. Multilayer Clad Plate of Stainless Steel/Aluminum/Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Jiawei; PANG Yuhua; LI Ting

    2011-01-01

    The 3, 5, 20 layer clad plate from austenitic stainless steel, pure aluminum and aluminum alloy sheets were fabricated in different ways. The stretch and interface properties were measured. The result shows that 20 layer clad plate is better than the others. Well-bonded clad plate was successfully obtained in the following procedure: Basic clad sheet from 18 layer A11060/A13003sheets was firstly obtained with an initial rolling reduction of 44% at 450 ℃, followed by annealing at 300 ℃, and then with reduction of 50% at 550 ℃ from STS304 on each side. The best 20 layer clad plate was of 129 MPa bonding strength and 225 MPa stretch strength.

  17. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    S Rusu; A Buzaianu; D G Galusca; L Ionel; D Ursescu

    2013-11-01

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, femtolaser marking has been carried out, besides the standard commercial nanosecond engraving. All the marks have been analysed using profilometry, overhead and cross-section SEM microscopy, respectively and EDAX measurements.

  18. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

    Science.gov (United States)

    Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph

    2017-04-01

    A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

  19. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  20. China’s Aluminum Alloy Cable Market has Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aluminum alloy cable is a mature product and technology that has been used for nearly fifty years in the U.S.Through six years’promotion,it has been widely recognized and accepted in the China market since 2013,which laid the foundation for the development of the aluminum alloy cable market.Aluminum alloy cable is widely applied in the fields of civil construction and industrial and mining enterprises,especially in real estate,steel and metallurgy.

  1. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  2. Numerical simulation on rapid melting and nonequilibrium solidification of pure metals and binary alloys

    Institute of Scientific and Technical Information of China (English)

    惠希东; 陈国良; 杨院生; 胡壮麒

    2002-01-01

    A heat and mass transfer modelling containing phase transformation dynamics is made for pure metals and binary alloys under pulsed laser processing. The nonequilibrium effects of processing parameters and physical properties are evaluated on the melting and solidification of pure metals (Al, Cu, Fe and Ni) and Al-Cu alloys. It is shown that the energy intensity of laser beam and physical properties of metals and the solute concentration of alloys have important effect on the interface temperature, melting and solidification velocity, melting depth and non-equilibrium partition coefficient. This situation is resulted from the interaction of heat transfer, redistribution of solute, solute trapping and growth kinetics.

  3. Solidification characteristics of Fe-Ni peritectic alloy thin strips under a near-rapid solidification condition

    Directory of Open Access Journals (Sweden)

    Chang-jiang Song

    2015-05-01

    Full Text Available This paper is an experimental investigation of the structure evolution and the solute distribution of 2 mm thick strips of Fe-(2.6, 4.2, 4.7, 7.9wt.%Ni peritectic alloy under a near-rapid solidification condition, which were in the regions of δ-ferrite single-phase, hypo-peritectic, hyper-peritectic and γ-austenite single-phase, respectively. The highest area ratio of equiaxed grain zone in the hyper-peritectic of Fe-4.7wt.%Ni alloy strip was observed, while other strips were mainly columnar grains. The lowest micro-segregation was obtained in the Fe-7.9wt.%Ni alloy strip, while micro-segregation in the Fe-4.7wt.%Ni alloy was the highest. As opposed to the micro-segregation, the macro-segregation of all the Fe-Ni strips was suppressed due to the rapid solidification rate. Finally, the structure formation mechanism of Fe-Ni alloy strips was analyzed.

  4. Simulation on solidification of an Al-Ni alloy under electromagnetic stirring

    Directory of Open Access Journals (Sweden)

    Sha Minghong

    2012-08-01

    Full Text Available The microstructure of Al-Ni alloy has a significant influence on its performance, while electromagnetic stirring is one of the most effective methods for control of solidification structure of Al alloy. To investigate the effect of electromagnetic stirring on the solidification of the ingot, the solidification of the Al-50Ni alloy in vacuum with electromagnetic stirring was described by numerical simulation in this paper; and a three dimensional mathematical model was established. The electromagnetic field was simulated by ANSYS software and the thermal-flow field was simulated by FLUENT software. The coupling between the electromagnetic field and the thermal-flow field was implemented by user-defined subroutines. It is found that the current intensity has significant influences on the fluid flow and the microstructure of the alloy. The simulation results agree well with the experimental results, and the optimum current intensity under the exprimental conditions is 80 A, while the frequency is 50 Hz.

  5. Technique of Aluminum Alloy Composite by Inversion Casting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the temperature of liquid aluminum alloy, the dipping time in liquid alloy and the thickness of base strips on the solidified layer was studied during the process of producing aluminum alloy composite strips used in automobile radiator with inversion casting. It is concluded that there is welding as well as diffusion of alloying elements between the base strip and the coating. Experiments proved that the interface has a good bonding.

  6. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  7. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  8. Front tracking in the numerical simulation of binary alloy solidification

    Science.gov (United States)

    Simpson, James Edward

    2000-12-01

    A model for directional solidification in dilute binary alloys is presented. The energy equation is solved for the temperature field, while the species equation is solved for the solute distribution. Either the vorticity-vector potential formulation or the pressure-velocity formulation is used to solve the governing equations for the velocity field. The constitutive equations are solved using a fully transient scheme. A variety of fast numerical schemes for solving sparse systems are used in the solution procedure. A single domain approach is used for the solution scheme for the energy and concentration equations. The effects of phase-change (energy equation) and solute rejection at the advancing solid/liquid interface (concentration equation) are handled via the introduction of appropriate source terms. The numerical approach was validated by comparing numerical results to data from a series of experiments of the Bridgman growth of pure succinonitrile. These experiments were performed as part of this work and are explained in detail. The numerical results agree well with the experimental data in terms of interface shape, temperature and velocity data. The key contribution of this work is the investigation of the Bridgman crystal growth of bismuth-tin in support of NASA's MEPHISTO project. The simulations reported in this work are among the first fully transient simulations of the process; no simplifying steady state approximations were used. Results are obtained for Bi-Sn alloys at a variety of initial concentrations and gravity levels. For most of the work, the solid/liquid interface temperature is assumed to be constant. For the richer alloy (Bi-1.0 at.% Sn) the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. At lower gravity levels, convection-induced segregation is

  9. Numerical calculation on temperature field of FGH95 alloy droplet during rapid solidification

    Institute of Scientific and Technical Information of China (English)

    Huanming Chen; Benfu Hu

    2003-01-01

    The temperature field of FGH95 alloy droplet atomized by plasma rotating electrode processing (PREP) during solidifica-tion has been calculated through numerical analysis based on equivalent sensible heat capacity method. And thus the relational cul-ves among temperature gradient of solid-liquid interface, moving velocity of solid-liquid interface and solid fraction during solidifi-cation have been presented. The results indicate that the relation between average temperature gradient of solid-liquid interface anddroplet size, and the relation between average moving velocity of solid-liquid interface and droplet size can be expressed during solidification.

  10. Melt Flow Control in the Directional Solidification of Binary Alloys

    Science.gov (United States)

    Zabaras, Nicholas

    2003-01-01

    Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.

  11. Analysis of melting and solidification behaviour of glass-forming alloys by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baser, T.A.; Baricco, M. [Dipartimento di Chimica, Universita di Torino (Italy); NIS, Torino (Italy); Bostrom, M. [The European Synchrotron Radiation Facility, (ESRF), Grenoble (France); Stoica, M. [Leibniz-Institut fuer Festkorper- und Werkstoffforschung Dresden (Germany); Yavari, A.R. [Laboratorie de Thermodynamique et Physico-chimie Metallurgique (LTPCM-UMR 5614), Institut National Polytechnique de Grenoble, CNRS (France)

    2007-06-15

    This paper aims to study the melting and solidification behaviour of Fe48Cr15Mo14Y2C15B6 and Cu50Zr50 glass-forming alloys by in-situ synchrotron X-ray diffraction from data obtained at the European Synchrotron Radiation Facility (ESRF). Melting and solidification behaviour for both alloys were measured by high temperature differential scanning calorimetry (HTDSC). The phase identification was performed by Rietveld refinement of diffraction patterns collected as a function of temperature. The phase mixture on melting and solidification has been clarified, confirming that in-situ X-ray diffraction by synchrotron radiation is a powerful technique for the study of phase transformations in alloys. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Modeling of Alternative Compositions of Recycled Wrought Aluminum Alloys

    Science.gov (United States)

    Kevorkijan, Varužan

    2013-08-01

    Nowadays, a significant part of postconsumed wrought aluminum scrap is still used for the production of comparatively cheaper cast alloys, in that way losing an important part of the potential added value. The share of postconsumed scrap in wrought aluminum alloys could be increased either by sorting to fractions with the required chemical composition and/or by broadening the standard compositional tolerance limits of alloying elements. The first solution requires hand or automatic sorting of postconsumed scrap as alloys or groups of alloys to the degree of separation sufficient to enable the blending of standard compositions of wrought alloys; the second solution is much more radical, predicting changes in the existing standards for wrought aluminum alloys toward nonstandard alloys but yet having properties acceptable for customers. In this case, the degree of separation of incoming postconsumed scrap required is much less demanding. The model presented in this work enables the design of optimal (standard and nonstandard recycling-friendly) compositions and properties of wrought aluminum alloys with significantly increased amounts of postconsumed scrap. The following two routes were modeled in detail: (I) the blending of standard and nonstandard compositions of wrought aluminum alloys starting from postconsumed aluminum scrap sorted to various degrees simulated by the model and (II) changing the initial standard composition of wrought aluminum alloys to nonstandard "recycling-friendly" ones, with broader concentration tolerance limits of alloying elements and without influencing the selected alloy properties, specified in advance. The applied algorithms were found to be very useful in the industrial design of both procedures: (I) the computation of the required chemical composition of the scrap streams obtained by sorting (or, in other words, the postconsumed scrap sorting level), necessary for achieving the standard wrought alloy composition and (II) the

  13. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  14. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  15. Influence of mechanical vibration on the solidification of a lost foam cast 356 alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhong

    2010-02-01

    Full Text Available Mechanical vibration was applied to the solidification of a lost foam cast (LFC 356 aluminum alloy. Effects of mechanical vibration, with different peak acceleration, on the size and morphology of α-Al phase, and also on the mechanical properties of the castings were studied. Results indicated that α-Al dendrites gradually grow into equiaxed grains as the peak acceleration of vibration is increased. When the peak acceleration is between about 1 to 4 g,α-Al phase distribution is uniform and is refined obviously. α-Al dendrites are reduced and the mechanical properties of the castings are improved significantly when compared to those of the castings that are produced without vibration. However, when the peak acceleration is higher than 4 g, strong vibration will lead to defects formation, such as sand adhesion, while the amount and size of pores will be increased. And due to theturbulent flow that caused by strong vibration, the chance of forming large pores in the matrix has been increased significantly. The increase in defects will result in the deterioration of mechanical properties.

  16. The effects of solidification and atomization on rare-earth alloys

    Science.gov (United States)

    Anderson, Iver E.; Osborne, M. G.; Ellis, T. W.

    1996-03-01

    This article discusses the results of experiments involving the application of atomization techniques to the production of three selected rare-earth intermetallic (REI) materials. High-pressure gas atomization and centrifugal atomization into a rotating quench bath have been used to process the alloys. Rapid-solidification processing by atomization techniques is of great benefit since optimum performance of these REI materials demands chemical and structural homogeneity. The results demonstrate that such careful solidification microstructure control is required if the benefits of REI-alloy properties are to be realized with maximum processing efficiency.

  17. The Elastic Constants for Wrought Aluminum Alloys

    Science.gov (United States)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  18. Microstructure Analysis of Directionally Solidified Aluminum Alloy Aboard the International Space Station

    Science.gov (United States)

    Angart, Samuel Gilbert

    This thesis entails a detailed microstructure analysis of directionally solidified (DS) Al-7Si alloys processed in microgravity aboard the International Space Station and similar duplicate ground based experiments at Cleveland State University. In recent years, the European Space Agency (ESA) has conducted experiments on alloy solidification in microgravity. NASA and ESA have collaborated for three DS experiments with Al- 7 wt. % Si alloy, aboard the International Space Station (ISS) denoted as MICAST6, MICAST7 and MICAST12. The first two experiments were processed on the ISS in 2009 and 2010. MICAST12 was processed aboard the ISS in the spring of 2014; the resulting experimental results of MICAST12 are not discussed in this thesis. The primary goal of the thesis was to understand the effect of convection in primary dendrite arm spacings (PDAS) and radial macrosegregation within DS aluminum alloys. The MICAST experiments were processed with various solidification speeds and thermal gradients to produce alloy with differences in microstructure features. PDAS and radial macrosegregation were measured in the solidified ingot that developed during the transition from one solidification speed to another. To represent PDAS in DS alloy in the presence of no convection, the Hunt-Lu model was used to represent diffusion-controlled growth. By sectioning cross-sections throughout the entire length of solidified samples, PDAS was measured and calculated. The ground-based (1-g) experiments done at Cleveland State University CSU were also analyzed for comparison to the ISS experiments (0-g). During steady state in the microgravity environment, there was a reasonable agreement between the measured and calculated PDAS. In ground-based experiments, transverse sections exhibited obvious radial macrosegregation caused by thermosolutal convection resulting in a non-agreement with the Hunt-Lu model. Using a combination of image processing techniques and Electron Microprobe Analysis

  19. Fundamentals of Alloy Solidification Applied to Industrial Processes

    Science.gov (United States)

    1984-01-01

    Solidification processes and phenomena, segregation, porosity, gravity effects, fluid flow, undercooling, as well as processing of materials in the microgravity environment of space, now available on space shuttle flights were discussed.

  20. Rapid Solidification of AB5 Hydrogen Storage Alloys

    OpenAIRE

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB5 materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB5 materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to.The thesis is divided in to 6 parts, of which Part I is a literature review, starting wit...

  1. Eutectic Solidification in Al-13.0%Si Alloys with Combined Addition of Strontium and Boron

    Institute of Scientific and Technical Information of China (English)

    Hengcheng Liao; Ke Ding; Juanjuan Bi; Min Zhang; Huipin Wang; Lei Zhao

    2009-01-01

    The influence of addition of boron (B) on eutectic solidification in a near-eutectic AI-13.0%Si alloy modified with strontium (Sr) was investigated using thermal analysis and macro/microstructure observation. Addition of B in the Sr-modified alloy leads to a considerable increase in nucleation temperature (Tn, the minimum temperature prior to recalescence (TM) and growth temperature (TG). In the Sr-modified alloy, nucleation of eutectic might originate at the heterogeneous sites on the mold wall or in the melt near the wall, and eutectic solidification proceeds gradually towards the center, controlled by undercooling of melt. However, with addition of B in the Sr-modified alloy, undercooling required for eutectic nucleation became small, and hence eutectic solidification might occur almost simultaneously within whole casting, controlled by amount of heterogeneous sites. With excessive addition of B in the Sr-modified alloy, nucleation of eutectic grains was explosive within the whole casting and the power of Sr on eutectic solidification was completely poisoned.

  2. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    Science.gov (United States)

    Du, Qiang; Li, Yanjun

    2015-06-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.

  3. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    Science.gov (United States)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  4. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-08-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  5. Experimental study on directional solidification of Al-Si alloys under the influence of electric currents

    Science.gov (United States)

    Räbiger, D.; Zhang, Y.; Galindo, V.; Franke, S.; Willers, B.; Eckert, S.

    2016-07-01

    The application of electric currents during solidification can cause grain refinement in metallic alloys. However, the knowledge about the mechanisms underlying the decrease in grain size remains fragmentary. This study considers the solidification of Al-Si alloys under the influence of electric currents for the configuration of two parallel electrodes at the free surface. Solidification experiments were performed under the influence of both direct currents (DC) and rectangular electric current pulses (ECP). The interaction between the applied current and its own induced magnetic field causes a Lorentz force which produces an electro-vortex flow. Numerical simulations were conducted to calculate the Lorentz force, the Joule heating and the induced melt flow. The numerical predictions were confirmed by isothermal flow measurements in eutectic GaInSn. The results demonstrate that the grain refining effect observed in our experiments can be ascribed solely to the forced melt flow driven by the Lorentz force.

  6. Solidification Features of Ti45Al Alloys with Different Boron Addition

    Institute of Scientific and Technical Information of China (English)

    Weidong Wang; Yingche Ma; Bo Chen; Ming Gao; Kui Liu; Yiyi Li

    2009-01-01

    The effects of boron on the solidification behaviors of Ti45AlxB alloys were studied by high temperature samples. These samples were melted at 1823 K, followed by cooling to the designated temperature, and then quickly water-quenched to preserve the solidification features. Optical microscopy and scanning electron microscopy analysis shows that the solidus temperature of Ti45AI was really reduced by 20 K when adding 0.8 at. pct B, and it was also observed that boride precipitated before the appearance of β phase. Besides, solidification structure confirmed that B addition does not obviously refine β phase, α grain refinement by certain amount of B in alloy probably clarifies the mechanism of B refining lamellar microstructure at room temperature.

  7. Numerical simulation of continuous roll-casting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    XIE Shui-sheng; YANG Hao-qiang; HUANG Guo-jie

    2006-01-01

    In order to improve the strip quality of continuous roll-casting process (CRP) of aluminum alloy, the investigations of the flow behavior within the metal pool, the heat transfer condition between roll and strip, the pouring temperature of molten alloy, the roll-casting speed and the control of the position of solidification final point are important. The finite volume method was applied to the analysis of the continuous roll-casting process. A two-dimensional incompressible non-Newtonian fluid flow with heat transfer was considered, which was described by the continuity equation, the Navier-Stokes equation and the energy equation. With this mathematical model, the flow patterns, temperature fields and solid fraction distributions in the metal pool between two rolls were simulated. From the calculated results, the effects of technical parameters to the position of solidification final point are obtained.The simulated results show that the roll-casting speed and pouring temperature have an enormous effect on the temperature distribution and the position of solidification final point.

  8. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    Directory of Open Access Journals (Sweden)

    BALASUBRAMANIAN.K

    2011-01-01

    Full Text Available The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot cracking. In this work, an attempt is made to reduce the hot cracking and to refine the fusion zone grains in welding of aluminum alloys through vibratory treatment. The material used for the investigation is AA7075 aluminum alloy, which is highly prone for hot cracking. Vibratory treatment was carried out in the frequency range of 100Hz to 2050Hz. Weldments made with and without vibratory treatment were compared using weld cracking tests and other characterization tests like micro structural analysis, hardness measurements. Test results show that by applying vibratory treatment, hot cracking can be largely controlled in arc welding.

  9. Effect of phosphor addition on eutectic solidification and microstructure of an Al-13%Si alloy

    Directory of Open Access Journals (Sweden)

    Liao Hengcheng

    2011-11-01

    Full Text Available As the refiner or modifier, the master alloys containing high concentration phosphor are widely used in preparing eutectic or hypereutectic Al-Si alloys. To study the effect of phosphor addition on the eutectic solidification and microstructure of the Al-13%Si alloy, an investigation has been undertaken by means of thermal analysis and micro/macro-structure observation. Results indicate that addition of phosphor in near eutectic Al-Si alloy promotes the nucleation of eutectic but has little refinement impact on primary Si particles as expected. Conversely, both primary Si particles and eutectic Si flakes become slightly coarser in P-rich alloys. The coarsening of eutectic Si flakes ties closely to the increased eutectic growth temperature with phosphor addition. The eutectic solidification of the alloy proceeds from the near mold zone towards the center, and it is also found that a few independent nucleation regions emerge in liquid at the solidification front due to the addition of phosphor.

  10. Modelling of convection during solidification of metal and alloys

    Indian Academy of Sciences (India)

    A K Singh; R Pardeshi; B Basu

    2001-02-01

    The role of convection during solidification is studied with the help of a mathematical model. The effect of various mush models on convection and consequent macrosegregation is examined with the help of numerical simulations. The predicted macrosegregation profiles are compared with published experimental data. Subsequently, the importance of proper auxiliary relationship for thermo-solutal coupling in the mushy region is highlighted through some careful numerical simulations. Finally, the role of material parameters on double-diffusive convection is illustrated through comparative study of solidification of aqueous ammonium chloride, iron-carbon and lead-tin binary systems. Important results of these studies are presented and discussed.

  11. The Effect of Melt Conditioning on Segregation of Solute Elements and Nucleation of Aluminum Grains in a Twin Roll Cast Aluminum Alloy

    Science.gov (United States)

    Kim, KeeHyun

    2014-09-01

    An aluminum alloy was cast by a laboratory scale horizontal twin roll caster with or without melt conditioning by the intensive shearing prior to solidification and then examined by high-resolution electron microscopy. The combined twin roll casting process with solidification formed channels and induced centerline segregation without the conditioning. In comparison, the melt conditioning minimized the severe segregation on the surface as well as at the centerline. Furthermore, large amounts of solute elements were uniformly distributed along grain boundaries or interdendritic regions. Analytical electron microscopy detected a fine oxide particle or a fragmented aluminum particle particularly at the center region of one nucleated aluminum grain. In addition, large oxide particles of about 1 to 5 μm nucleated aluminum grains easily due to low undercooling necessary for the heterogeneous nucleation, whereas small oxides with the size of about 100 to 200 nm requiring large undercooling were pushed along the grain boundaries instead of contributing to the nucleation. The enhanced nucleation of aluminum grains and well-distributed solute atoms in the melt by the melt conditioning resulted in the minimization of macro- and micro-segregations and the formation of a uniform microstructure.

  12. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    Science.gov (United States)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  13. Laser Deep Penetration Welding of an Aluminum Alloy with Simultaneously Applied Vibrations

    Science.gov (United States)

    Woizeschke, Peer; Radel, Tim; Nicolay, Paul; Vollertsen, Frank

    2016-12-01

    In aluminum welding, the grain structure of produced seams is an essential factor with respect to the seam properties. In the casting technology the effect of mechanical vibrations on the grain growth during the solidification of liquid metals is known as a refinement method. In this paper, the transferability of this approach from comparatively long-time processes in the field of casting to the short-time process of laser deep penetration welding is investigated. Therefore, specimens were sinusoidal vibrated with frequencies up to 4 kHz during bead-on-plate full-penetration welding experiments. The resulting grain size was determined by applying the circular intercept procedure on the center of a cross-section micrograph of each weld. The results show that grain refinement is in general achievable by mechanical vibrations in the audible frequency range during laser full penetration keyhole welding of the aluminum alloy EN AW-5083.

  14. The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

    2003-06-30

    the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

  15. Gas-tungsten arc welding of aluminum alloys

    Science.gov (United States)

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  16. Ultrasound assisted solidification process of ternary Cu-Sn-Sb alloy

    Institute of Scientific and Technical Information of China (English)

    Zhai Wei; Hong Zhenyu; Liu Haiman; Wei Bingbo

    2016-01-01

    It is well-known that the application of ultrasound during liquid to solid transitions for alloys can refine the solidification microstructure and thus improves the mechanical properties. How-ever, most published work focuses on single phase dendritic growth, whereas little has been con-ducted on the multiphase alloys with complicated phase transformations during solidification. In this work, the solidification process of ternary Cu40Sn45Sb15 alloy was realized within intensive ultra-sonic field with a resonant frequency of 20 kHz and ultrasound power from 0 W to 1000 W. The ultrasound refines the size of the primary e(Cu3Sn) intermetallic compound by two orders of mag-nitudes. If the ultrasound power increases to 1000 W, g(Cu6Sn5) phase nucleates and grows directly from parent liquid phase without the occurrence of peri-eutectic reaction on the top of the alloy sam-ple where the ultrasound intensity is sufficiently high. These microstructural variations lead to the enhancement of compressive strength and elasticity modulus of ternary Cu40Sn45Sb15 alloy.

  17. Domain of oscillatory growth in directional solidification of dilute binary alloys.

    Science.gov (United States)

    Babushkina, Evgenia; Bessonov, Nicholas M; Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi

    2013-04-01

    The oscillatory growth of a dilute binary alloy has recently been described by a nonlinear oscillator equation that applies to small temperature gradients and large growth velocities in the setup of directional solidification. Based on a one-dimensional stability analysis of stationary solutions of this equation, we explore in the present paper the complete region where the solidification front propagates in an oscillatory way. The boundary of this region is calculated exactly, and the nature of the oscillations is evaluated numerically in several segments of the region.

  18. Phase field modeling of multiple dendrite growth of AI-Si binary alloy under isothermal solidification

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Yutuo; Cui Haixia; Wang Chengzhi

    2008-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Ai-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  19. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  20. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.

    Science.gov (United States)

    Ohno, Munekazu

    2012-11-01

    A quantitative phase-field model is developed for simulating microstructural pattern formation in nonisothermal solidification in dilute multicomponent alloys with arbitrary thermal and solutal diffusivities. By performing the matched asymptotic analysis, it is shown that the present model with antitrapping current terms reproduces the free-boundary problem of interest in the thin-interface limit. Convergence of the simulation outcome with decreasing the interface thickness is demonstrated for nonisothermal free dendritic growth in binary alloys and isothermal and nonisothermal free dendritic growth in a ternary alloy.

  1. INSULATING CERAMIC INSERTS FOR CASTING PRODUCTS FROM ALUMINUM ALLOYS

    OpenAIRE

    2015-01-01

    The paper analyses production of reusable ceramic insulating inserts applied in permanent mold casting of aluminum alloys. It presents results of manufacturing of ceramic products from synthesized materials based on wollastonite, secondary grog, aluminum slag, etc. The paper demonstrates prospects of their applying.

  2. INSULATING CERAMIC INSERTS FOR CASTING PRODUCTS FROM ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. T. Volochko

    2015-01-01

    Full Text Available The paper analyses production of reusable ceramic insulating inserts applied in permanent mold casting of aluminum alloys. It presents results of manufacturing of ceramic products from synthesized materials based on wollastonite, secondary grog, aluminum slag, etc. The paper demonstrates prospects of their applying.

  3. Effect of Microalloying on Wettability, Oxidation and Solidification Morphology of Sn-9Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Wei Xiuqin; Huang Huizhen; Zhou Lang; Zhang Meng

    2005-01-01

    Eutectic alloy Sn-9Zn is an attractive candidate for lead-free solders. However, its wettability to copper is poor thus,its development was limited. Effects of less than 1% (mass fraction) additions of mischmetal consisting mainly of La and Ce, heavy rare earth Y, pure P, Al, Mg and Ti elements on the wetting/adhesion behavior of Sn-9Zn alloy to copper, as well as the associated oxidation and solidification morphology of this alloy were examined. The results show that harmful effect on the wettability can be found when adding Al and Ti elements, while the wettability can be improved slightly by adding Mg and Y elements. The adhesion of the alloy to copper can be decreased by Mg element. The RE and P are found to significantly improve the wettability. In addition, oxidation of the alloy can be increased by adding RE, while little effect on the oxidation behavior can be found by adding P element. As-solidified Sn-9Zn alloy has a rough surface with protrusions and cavities shaped by coarse needle-like crystallites, while the Sn-37Pb sample has a rather smooth surface, which indicates the different solidification behavior of Sn-9Zn alloy and the Sn-37Pb one. The additions of the different elements investigated in this study do not alter Sn-9Zn's as-solidified morphology.

  4. Effect of Rectangle Wave Pulse Current on Solidification Structure of ZA27 Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied.The results show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current within the frequency range of pulse current.Imposed pulse current could induce the solidification system to oscillate.The frequency range and the relevant energy distribution of pulse current exert an influence on the amount of atoms involved for forming critical nucleus, the surface states of clusters in melt, the oscillating state of melt on the surface of clusters, the active energy of atom diffusion , the frequnce response of the resonance of bulk melt and the absorbability of the solidification system to the external work.Rectangle wave pulse current involves rich harmonic waves; the amplitudes of high order of harmonic waves are higher and reduce slowly, so it has a better effect on inoculation and modification.

  5. Alternating grain orientation and weld solidification cracking

    Science.gov (United States)

    Kou, S.; Le, Y.

    1985-10-01

    A new mechanism for reducing weld solidification cracking was proposed, based on the concept of the crack path and resistance to crack propagation, and its effectiveness was verified in magnetically oscillated GTA welds of a rather crack susceptible material 2014 aluminum alloy. This mechanism, i.e., alternating grain orientation, was most pronounced in welds made with transverse arc oscillation of low frequency and high amplitude, and solidification cracking was dramatically reduced in these welds. The effect of the arc oscillation pattern, amplitude, and frequency on the formation of alternating columnar grains and the reduction of solidification cracking in GTA welds of 2014 aluminum alloy was examined and explained. The present study demonstrated for the first time that columnar grains can, in fact, be very effective in reducing solidification cracking, provided that they are oriented favorably.

  6. Numerical Simulation of Morphology and Microsegregation Evolution during Solidification of Al-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    Dayong GUO; Yuansheng YANG; Wenhui TONG; Zhuangqi HU

    2004-01-01

    A stochastic model coupled with transient calculations for the distributions of temperature, solute and velocity during the solidification of binary alloy is presented. The model can directly describe the evolution of both morphology and segregation during dendritic crystal growth. The model takes into account the curvature and growth anisotropy of dendritic crystals. Finite difference method is used to explicitly track the sharp solid liquid (S/L) interface on a fixed Cartesian grid. Two-dimensional mesoscopic calculations are performed to simulate the evolution of columnar and equiaxed dendritic morphologies of an Al-7 wt pct Si alloy. The effects of heat transfer coefficient on the evolution of both the dendrite morphology and segregation patterns during the solidification of binary alloys are analyzed. This model is applied to the solidification of small casting. Columnar-to-equiaxed transition is analyzed in detail. The effects of heat transfer coefficient on final casting structures are also studied. Final casting structures changing from wholly columnar dendrites to wholly equiaxed dendrites are described. The effect of melt flow on the morphological development during Al-7 wt pct Si alloy soilidification is also described.

  7. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kenel, C., E-mail: Christoph.Kenel@empa.ch; Leinenbach, C.

    2015-07-15

    Highlights: • Rapid solidification studies with varying cooling rates were realized for Ti–Al. • Experiments were combined with finite element simulations of heat transfer. • The resulting microstructure of Ti–Al alloys is strongly dependent on the Al content. • The microstructure and phase transformation behavior can be predicted. • The method allows alloy development for processes involving rapid solidification. - Abstract: Titanium aluminides as structural intermetallics are possible candidates for a potential weight reduction and increased performance of high temperature components. A method for the characterization of the microstructure formation in rapidly solidified alloys was developed and applied for binary Ti–(44–48)Al (at.%). The results show a strong dependency of the microstructure on the Al content at cooling rates between 6 ⋅ 10{sup 2} and 1.5 ⋅ 10{sup 4} K s{sup −1}. The formation of α → α{sub 2} ordering, lamellar α{sub 2} + γ colonies and interdendritic TiAl γ-phase were observed, depending on the Al amount. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach taking into account the non-equilibrium conditions. The presented method provides a useful tool for alloy development for processing techniques involving rapid solidification with varying cooling rates.

  8. Corrosion protection of aluminum alloys in contact with other metals

    Science.gov (United States)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  9. Effect of strontium and solidification rate on eutectic grain structure in an AI-13 wt% Si alloy

    Institute of Scientific and Technical Information of China (English)

    Liao Hengcheng; Bi Juanjuan; Zhang Min; Ding Ke; Jiang Yunfeng; Cai Mingdong

    2009-01-01

    The influence of strontium addition and solidification rate on eutectic grain structure in a near-eutectic AI-Si alloy was investigated. The characteristic temperature of eutectic nucleation (TN),minimum temperature prior to recalescence (TM),and the growth temperature (TG) during cooling were determined by quantitative thermal analysis. All characteristic temperatures were found to decrease continuously with increasing Sr content and solidification rate. Microstructural analysis also revealed that the eutectic grain size decreases with increasing Sr content and solidification rate. Such eutectic grain refinement is attributed to the increased actual under-cooling ahead of the liquid/solid interface during solidification.

  10. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  11. Non-equilibrium solidification of undercooled Ni-31.44%Pb monotectic alloy melts

    Institute of Scientific and Technical Information of China (English)

    郑红星; 谢辉; 郭学锋

    2002-01-01

    By using the method of molten glass denucleating combined with superheating cycling, solidification behavior of the bulk undercooled Ni-31.44%Pb monotectic alloy melts was systematically investigated. The results indicated that the undercooled monotectic alloy solidifies in form of dendrite essentially during the stage of rapid solidification and after recalescence, the residual melts between the dendrites solidify in the equilibrium mode. Within the achieved undercooling range, the solidification structures are classified into three categories. When the undercooling is less than 50K, the structures are composed of coarse dendrites and interdendritic lead phase. With the undercooling increasing into the range of 70~232K, the dendrite clusters are refined and fine lead particles separate out from the supersaturated primary dendrite arms because of solute trapping. When the undercooling exceeds 242K, the granular grains form and fine lead particles homogeneously distribute in the whole sample. Based on the observation of the solidification structures and the calculated results with BCT model, it is found that the granulation mechanism of the granular grains is owing to the primary dendrite disintegration and recrystallization.

  12. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  13. The role of solidification rate in the corrosion resistance of a directionally solidified novel aluminium-lanthanum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dzib-Perez, L. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico); Gonzalez-Sanchez, J. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico)]. E-mail: jagonzal@uacam.mx; Perez, T. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico); Bartolo-Perez, P. [Programa de Corrosion del Golfo de Mexico, Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, CP 24030 Campeche, Campeche (Mexico); CINVESTAV-Merida, Applied Physics Department, Carr. antigua a Progreso, km 6, CP 97310 Merida, Yucatan (Mexico); Juarez, A. [CIATEQ. Calzada del Retablo 150, CP 76150 Queretaro, Queretaro (Mexico)

    2006-08-15

    The corrosion resistance of a novel Al-12.6 wt.%La alloy manufactured using unidirectional solidification was studied by sensitive electrochemical techniques. It was found that the electrochemical behaviour of the alloy depends upon the formation of non-passive corrosion product layers. Different solidification rates produced dissimilar microstructures which promoted selective dissolution when the alloy was anodically polarized in distilled water. A model for the electrochemical behaviour of this alloy was proposed based on an equivalent circuit that simulated the impedance results.

  14. Preparation of cast aluminum alloy-mica particle composites

    Science.gov (United States)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  15. Solidification characteristics of Pb-Sb hypereutectic alloy within ultrasonic field

    Institute of Scientific and Technical Information of China (English)

    ZHAI Wei; HONG ZhenYu; XIE WenJun; WEI BingBo

    2007-01-01

    The solidification of Pb-16 %Sb hypereutectic alloy is investigated within ultrasonic field with a frequency of 15 kHz. It is found that the ultrasonic field promotes crystal nucleation and terminates the further bulk undercooling of the alloy melt. Theoretical analysis shows that the cavitation effect and the forced bulk vibration are the main factors that reduce the undercooling level. With the increase of ultrasound intensity, the primary (Sb) phase experiences a growth mode transition from faceted to non-faceted branched growth, and the macrosegregation of primary (Sb) phase is gradually suppressed. In addition, the microstructures of Pb-Sb eutectic exhibit a conspicuous coarsening with increasing ultrasound intensity, and a structural transition of "lamellar eutectic-anomalous eutectic"occurs when ultrasound intensity rises up to 1.6 W/cm2. The ultrasonic field also changes the solute distribution adjacent to the solidification front, which lowers the Pb contents in primary (Sb) phase.

  16. Effect of magnesium content on the semi solid cast microstructure of hypereutectic aluminum-silicon alloys

    Science.gov (United States)

    Hekmat-Ardakan, Alireza

    2009-12-01

    A comprehensive study of microstructural evolution of A390 hypereutectic aluminum-silicon alloy (Al-17%Si-4.5%Cu-0.5%Mg) with addition of Mg contents up to 10% was carried out during semi solid metal processing as well as conventional casting. As a first step, the FACTSAGE thermodynamic databank and software was applied in order to investigate the phase diagram, the solidification behavior as well as the identification of the components that are formed during the solidification of A390 alloy with different Mg contents for equilibrium and non-equilibrium (Schiel) conditions. With higher Mg content between 4.2 - 7.2 %, the Mg2Si intermetallic phase is solidified in the eutectic network according to the ternary reaction together the primary silicon due to the binary reaction of Liq → Si + Mg2Si. However the primary silicon is still the first solidified phase in this critical Mg zone. For Mg contents greater than 7.2%, the Mg2Si solidifies first as a primary phase. In fact, the Mg2Si is solidified during the primary, the binary and the ternary reactions and can be observed in the microstructure as a eutectic phase and a pro-eutectic phase with different morphology. In the next stage, the experimental tests were carried out in order to verify the accuracy of the results obtained by the FACTSAGE software. The microstructures of the A390 and the 6 and 10 wt% Mg alloys were investigated using conventional casting and rheocasting (stir casting) processes with continuous cooling solidification. The results showed that, for both processes, the microstructure of the eutectic network for high Mg alloys, specifically the eutectic Si phase is modified compared to the eutectic Si in the microstructure of A390 alloy. However the alloys with 6% and 10% Mg have a similar eutectic morphology. The eutectic formation temperature was measured by placing the thermocouple into the melt for determination of the cooling curves. DSC (Differential Scanning Calorimeter) test were also carried

  17. Nonlinear equations on controlling interface patterns during solidification of a dilute binary alloy

    Institute of Scientific and Technical Information of China (English)

    王自东; 周永利; 常国威; 胡汉起

    1999-01-01

    In nonequilibrium nonlinear region, by assuming that there is local equilibrium at the solid/liquid interface, and considering that curvature, temperature and composition at the solid/liquid interface which are related to perturbation amplitude are nonlinear, nonlinear equations of the time dependence of the perturbation amplitude of the solid/liquid interface during solidification of a dilute binary alloy are established. Crystal growth from nonsteady state to steady state can be controlled by these nonlinear equations.

  18. High speed laser cladding: solidification conditions and microstructure of a cobalt-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, A. (Dept. of Materials, Swiss Federal Inst. of Tech., Lausanne (Switzerland)); Kurz, W. (Dept. of Materials, Swiss Federal Inst. of Tech., Lausanne (Switzerland))

    1993-12-20

    Laser cladding experiments with a hypoeutectic Stellite 6 alloy have been performed with scanning speeds ranging from conventional values (1.67 mm s[sup -1]) up to very fast values (167 mm s[sup -1]). The evolution of the secondary dendrite arm spacing is discussed using the solidification conditions deduced from a two-dimensional heat flux model and the quaternary Co-Cr-C-W phase diagram. (orig.)

  19. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  20. Investigation of microgravity effect on solidification of medium-low-melting-point alloy by drop tube experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The solidification microstructure of Al-Ni, Al-Cu, Ag-Cu, Al-Pb and Cu-Co alloys quenched in silicone oil before and after free fall in evacuated 50 m drop tube were investigated contrastively. The effect of microgravity on the solidification process of medium-low-melting-point eutectic, monotectic and peritectic alloys were ana-lyzed and discussed. The results indicated that the effects of microgravity on the eutectic cell shape, the pattern in eutectic cell and the inter-eutectic spacing were different for different types of eutectic systems; the size distribution of Pb particles in Al-5wt% Pb monotectic alloy was significantly changed by microgravity; and the shape of retained primary α-Co phase in Cu-10wt%Co peritectic alloy was also changed by microgravity. These results are beneficial for people to further identify and analyze the solidification behavior of multiphase alloys under microgravity.

  1. Influence of sub-rapid solidification on microstructure and mechanical properties of AZ61A magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The microstructure of sub-rapid solidification processed AZ61A magnesium alloy was presented and discussed. The results show that the grain size of the foil is significantly refined, and the grain morphology is cellular or globular. The eutectic transformation L→α-Mg+β-Mg17Al12 and microsegregation in conventionally solidified AZ61A alloy are suppressed to a great extent.The β-Mg17Al12 phases located in the α-Mg grain boundaries are largely decreased due to high solidification cooling rate. As a consequence, the alloying elements Al, Zn, Mn show much higher solid solubility and the sub-rapid solidification microstructure dominantly consists of supersaturated α-Mg solid solution. The mechanical properties and fractographic analysis reveal that the fracture mechanism and corresponding morphology of the rapture surface of tensile bars are linked to the microstructure obtained and depend on the sub-solidification processes.

  2. Macrosegregation in Al-7Si alloy caused by abrupt cross-section change during directional solidification

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-09-01

    Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.

  3. Characterization of the Al-3wt.%Si alloy in unsteady-state horizontal directional solidification

    Directory of Open Access Journals (Sweden)

    Diego Brito Carvalho

    2013-01-01

    Full Text Available The main purpose of this paper is to investigate both the columnar to equiaxed transition and primary dendritic arm spacings of Al-3wt.%Si alloy during the horizontal directional solidification. The transient heat transfer coefficient at the metal-mold interface is calculated based on comparisons between the experimental thermal profiles in castings and the simulations provided by a finite difference heat flow program. Simulated curve of the interfacial heat transfer coefficient was used in another numerical solidification model to determine theoretical values of tip growth rates, cooling rates and thermal gradients that are associated with both columnar to equiaxed transition and primary dendritic arm spacings. A good agreement was observed between the experimental values of these thermal variables and those numerically simulated for the alloy examined. A comparative analysis is carried out between the experimental data of this work and theoretical models from the literature that have been proposed to predict the primary dendritic spacings. In this context, this study may contribute to the understanding of how to manage solidification operational parameters aiming at designing the microstructure of Al-Si alloys.

  4. Influence of hydrogen content on the behavior of grain refinement in hypereutectic aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    Lina Hu; Xiufang Bian; Youfeng Duan

    2004-01-01

    Dissolved hydrogen is harmful to mechanical properties of refined hypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and the hydrogen-detecting instrument HYSCAN Ⅱ, the relationship between the initial hydrogen content in the melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy was investigated. The experimental results show that the cooling rate, the hydrogen content and the grain refinement effect are three interactive factors. When the hydrogen content is above 0.20 mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in the alloy melt influences the grain refinement effect. With increasing the cooling rate, the critical hydrogen content increases too. It is expected that much hydrogen in the melt make the net interfacial energy larger than or equal to zero, resulting in the shielding of the particles AlP during solidification and that the critical gas content is closely related to the critical radius of embryo bubbles.

  5. Effect of iron-intermetallics and porosity on tensile and impact properties of aluminum-silicon-copper and aluminum-silicon-magnesium cast alloys

    Science.gov (United States)

    Ma, Zheyuan

    Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute the majority of aluminum cast parts produced, due to their superior properties and excellent casting characteristics. Within this family of alloys, Al-Si-Cu and Al-Si-Mg cast alloys are frequently employed in automotive applications. The commercially popular 319 and 356 alloys, representing these two alloy systems, were selected for study in the present work, with the aim of investigating the effect of iron intermetallics and porosity on the alloy performance. This was carried out through a study of the tensile and impact properties, these being two of the important mechanical properties used in design calculations. Iron, through the precipitation of second phase intermetallic constituents, in particular the platelike beta-Al5FeSi phase, is harmful to the alloy properties. Likewise, gas- or shrinkage porosity in castings is also detrimental to the mechanical properties. By determining the optimum alloying, melt processing and solidification parameters (viz., Fe content, Sr modification and cooling rate) required to minimize the harmful effects of porosity and iron intermetallics, and studying their role on the fracture behavior, the fracture mechanism in the alloys could be determined. Castings were prepared from both industrial and experimental 319.2, B319.2 and A356.2 alloy melts, containing Fe levels of 0.2--1.0 wt%. Sr-modified (˜200 ppm) melts were also prepared for each alloy Fe level. The end-chilled refractory mold used provided directional solidification and a range of cooling rates (or dendrite arm spacings, DAS) within the same casting. Tensile and impact test samples machined from specimen blanks sectioned from the castings at various heights above the chill end provided DASs of 23--85mum. All samples were T6-heat-treated before testing. Tests were carried out employing Instron Universal and Instrumented Charpy testing machines. Optical microscopy, image analysis, SEM

  6. Crossover scaling of wavelength selection in directional solidification of binary alloys.

    Science.gov (United States)

    Greenwood, Michael; Haataja, Mikko; Provatas, And Nikolas

    2004-12-10

    We simulate cellular and dendritic growth in directional solidification in dilute binary alloys using a phase-field model solved with adaptive-mesh refinement. The spacing of primary branches is examined for a wide range of thermal gradients and alloy compositions and is found to undergo a maximum as a function of pulling velocity, in agreement with experimental observations. We demonstrate that wavelength selection is unambiguously described by a nontrivial crossover scaling function from the emergence of cellular growth to the onset of dendritic fingers. This result is further validated using published experimental data, which obeys the same scaling function.

  7. Phase-field simulations of solidification of AI-Cu binary alloys

    Institute of Scientific and Technical Information of China (English)

    龙文元; 蔡启舟; 陈立亮; 魏伯康

    2004-01-01

    The dendrite growth process during the solidification of the Al-4.5 %Cu binary alloy was simulated using the phase-field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved simultaneously. The effects of the noise on the dendrite growth, solute and temperature profile in the undercooled alloy melt were investigated. The results indicate that the noise can trigger the growth of the secondary arms, and increase the highest temperature and solute concentration, but not influence the tip operating state. The solute and temperature gradients in the tip are the highest.

  8. Synthesis of aluminum-based scandium-yttrium master alloys

    Science.gov (United States)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  9. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  10. Containerless rapid solidification of undercoolecl Cu-Co peritectic alloys

    Institute of Scientific and Technical Information of China (English)

    曹崇德; 王楠; 魏炳波

    2000-01-01

    Droplets of Co-16%Cu and Co-71.6%Cu peritectic alloys were solidified during container-less processing in a 3-m drop tube. The microstructures of Co-16%Cu alloy droplets were characterized by dendritic or equiaxed α-Co phase with a small amount of Cu-rich solid solution distributed on α-Co phase boundaries. Two thresholds of droplet diameter were observed for Co-16%Cu alloy at which "equiaxed-dendritic-equiaxed" morphological transitions occur to primary α-Co phase. This conspicuous refinement of primary α-Co grains results from the fragmentation of α-Co dendrites caused by re-calescence effect. For Co-71.6% Cu alloy, the primary a-Co phase forms as coarse columnar dendrites in large droplets and equiaxed dendrites in small droplets. Theoretical calculations indicate that Marangoni migration contributes more to the growth of disperse Co-rich spheres by stimulating collision and coalescence than Stokes motion caused by the residual gravity in the falling Co-71.6%Cu alloy droplets.

  11. Containerless rapid solidification of undercooled Cu_Co peritectic alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Droplets of Co-16%Cu and Co-71.6%Cu peritectic alloys were solidified during containerless processing in a 3_m drop tube. The microstructures of Co-16%Cu alloy droplets were characterized by dendritic or equiaxed α-Co phase with a small amount of Cu-rich solid solution distributed on α-Co phase boundaries. Two thresholds of droplet diameter were observed for Co-16%Cu alloy at which "equiaxed-dendritic-equiaxed" morphological transitions occur to primary α-Co phase. This conspicuous refinement of primary α-Co grains results from the fragmentation of α-Co dendrites caused by recalescence effect. For Co-71.6%Cu alloy, the primary α-Co phase forms as coarse columnar dendrites in large droplets and equiaxed dendrites in small droplets. Theoretical calculations indicate that Marangoni migration contributes more to the growth of disperse Co-rich spheres by stimulating collision and coalescence than Stokes motion caused by the residual gravity in the falling Co-71.6%Cu alloy droplets.

  12. China’s Aluminum Alloy Die Castings Industry has Promising Prospects

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Engine aluminum alloy engine block die casting experienced rapid development in recent years. Domestic enterprises introduced large die casting machine automatic production lines, and developed large aluminum alloy die cast-

  13. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  14. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  15. Microstructural evolution of aluminum alloy 3003 during annealing

    Institute of Scientific and Technical Information of China (English)

    WU Wen-xiang; ZHANG Xin-ming; SUN De-qin; HU Guo-qiang; LIU Guo-jin

    2006-01-01

    The microstructural evolution of cold-rolled aluminum alloy 3003 during annealing was investigated by means of micro-hardness measurement, electrical resistivity measurement, optical microscopy and transmission electron microscopy. The interaction of recrystallization and precipitation of aluminum alloy 3003 was also discussed. The results show that the recrystallized grain size of cold-rolled aluminum alloy 3003 is strongly affected by precipitation during annealing. When precipitation occurs prior to recrystallization at low temperature(300 ℃), the grain structure becomes coarse, and the precipitation process is affected by the presence of lattice defects, i.e. high cold reduction results in a large number of precipitates. When annealing at 500 ℃, however, for the recrystallization is prior to precipitation, the precipitation is independent of cold deformation reduction and a fine, equiaxed grain structure is obtained.

  16. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  17. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volurne fractions of Al2O3 short fibers about 6μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf/λ> 1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf/λ< 1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  18. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  19. Solidification of Liquid Distributed in its Primary Matrix Phase of Al-10Cu-Fe Alloy and Their Tribological Characteristics

    Science.gov (United States)

    Rao, L. Sankara; Jha, A. K.; Ojha, S. N.

    2016-12-01

    Solidification behavior of liquid phase entrained in its primary solid has been investigated. A hypoeutectic alloy based on Al-Cu-Fe system containing Fe and Si was thermal cycled between semisolid regions to low temperatures. The freezing characteristics of the liquid were recorded in inverse rate cooling curves. The continuous network of the liquid phase progressively changed into isolated droplets with their different size and size distribution. Such droplets revealed undercooling of the melt varying from 20 to 35 °C below the eutectic temperature of the alloy. This behavior of melt undercooling is discussed in light of independent nucleation events associated with freezing of droplets. Solidification structure of droplets revealed particulate eutectic phases in contrast to lamellar eutectic microstructure in the interdendritic region of the as-cast alloy. The droplet distribution and their solidification structure resulted in an improvement in tribological characteristics of the alloy. This effect is correlated with features of wear surfaces generated on the matting surfaces.

  20. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  1. Forming analysis and application for aluminum-alloy material

    Institute of Scientific and Technical Information of China (English)

    Wei Yuansheng

    2012-01-01

    The increase in car ownership brought about by energy shortages, and environmental crises became more acute. The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency. In addition to that, lightweight body is the key. Aluminum, magnesium alloy as significant materials of lightweight, and the application amount in the car body is a significant upward trend. However, there is high cost of material, with im- mature applied technology and a series of bottleneck problems. All of them affect general application of lightweight mate- rials. This paper focuses on forming process issues for aluminum, magnesium alloy and the solutions to achieve.

  2. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula......The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... was presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....

  3. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  4. 3D Stochastic Modeling of Grain Structure for Aluminum Alloy Casting

    Institute of Scientific and Technical Information of China (English)

    Qingyan XU; Weiming FENG; Baicheng LIU

    2003-01-01

    A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys,including time-dependent calculations for temperature field, solute redistribution in liquid, curvature of the dendritictip, and growth anisotropy. The nucleation process was treated by continuous nucleation. A 3D simplified grainshape model was established to represent the equiaxed dendritic grain. Based on the Cellular Automaton method,a grain growth model was proposed to capture the neighbor cells of the nucleated cell. During growing, each graincontinues to capture the nearest neighbor cells to form the final shape. When a neighbor cell was captured by othergrains, the grain growth along this direction would be stopped. Three-dimensional calculations were performed tosimulate the evolution of dendritic grain. In order to verify the modeling results, the predictions were compared withthe observation on samples cast in the sand mold and the metal mold.

  5. Preparation of semi-solid slurry containing fine and globular particles for wrought aluminum alloy 2024

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotation speed of barrel, can give rise to a transition of the growth morphology of primary α(Al) from coarse-dendritic to coarse-particle-like and further to fine-globular. The combined effects of both localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation and nuclei survival, which leads to the formation of fine-globular primary α(Al). By using semi-solid slurry prepared by LSPSF, direct squeeze cast cup-shaped component with improved mechanical properties such as yield strength of 198MPa, ultimate tensile strength of 306 MPa and elongation of 10.4%, can be obtained.

  6. Effect of Mold Coating Materials and Thickness on Heat Transfer in Permanent Mold Casting of Aluminum Alloys

    Science.gov (United States)

    Hamasaiid, A.; Dargusch, M. S.; Davidson, C. J.; Tovar, S.; Loulou, T.; Rezaï-Aria, F.; Dour, G.

    2007-06-01

    In permanent mold casting or gravity die casting (GDC) of aluminum alloys, die coating at the casting-mold interface is the most important single factor controlling heat transfer and, hence, it has the greatest influence on the solidification rate and development of microstructure. This investigation studies the influence of coating thickness, coating composition, and alloy composition on the heat transfer at the casting-mold interface. Both graphite and TiO2-based coatings have been investigated. Two aluminum alloys have been investigated: Al-7Si-0.3Mg and Al-9Si-3Cu. Thermal histories throughout the die wall have been recorded by fine type-K thermocouples. From these measurements, die surface temperatures and heat flux density have been evaluated using an inverse method. Casting surface temperature was measured by infrared pyrometry, and the interfacial heat-transfer coefficient (HTC) has been determined using these combined pieces of information. While the alloy is liquid, the coating material has only a weak influence over heat flow and the thermal contact resistance seems to be governed more by coating porosity and thickness. The HTC decreases as the coating thickness increases. However, as solidification takes place and the HTC decreases, the HTC of graphite coating remains higher than that of ceramic coatings of similar thickness. After the formation of an air gap at the interface, the effect of coating material vanishes. The peak values of HTC and the heat flux density are larger for Al-7Si-0.3Mg than for Al-9Si-3Cu. Consequently, the apparent solidification time of Al-9Si-3Cu is larger than that of Al-7Si-0.3Mg and it increases with coating thickness.

  7. Minimizing Segregation During the Controlled Directional Solidification of Dendritic Alloys Publication: Metallurgical and Materials Transactions

    Science.gov (United States)

    Grugel, R. N.; Fedoseyev, A. I.; Kim, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Gravity-driven thermosolutal convection that arises during controlled directional solidification (DS) of dendritic alloys promotes detrimental macro-segregation (e.g. freckles and steepling) in products such as turbine blades. Considerable time and effort has been spent to experimentally and theoretically investigate this phenomena; although our knowledge has advanced to the point where convection can be modeled and accurately compared to experimental results, little has been done to minimize its onset and deleterious effects. The experimental work demonstrates that segregation can be. minimized and microstructural uniformity promoted when a slow axial rotation is applied to the sample crucible during controlled directional solidification processing. Numerical modeling utilizing continuation and bifurcation methods have been employed to develop accurate physical and mathematical models with the intent of identifying and optimizing processing parameters.

  8. Effects of G-Jitter on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Benjapiyaporn, C.; Timchenko, V.; deVahlDavis, G.; deGroh, H. C., III

    1999-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermo-solutal convection in the liquid region. In this paper we present a numerical simulation of g-jitter. A background gravity of 1 microgram has been assumed, and new results for the effects of periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  9. An investigation on supercooling directional solidification process of Cu-Ni single phase alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Supercooling directional solidification (SDS) is put forward by combination of melt supercooling and conventional solidification by application of supercooling inheritance. On the self-designed SDS equipment, SDS of Cu-Ni alloy was achieved successfully. The results are as follows: (ⅰ) The primary arm spacing is about 30 m m, the growth of secondary arms are strongly suppressed. The primary arm spacing is nearly the same as LMC method (GL=25 K/mm, V=500 m m/s), the primary stems are straight, fine and completed, with an inclination angle of about 5.8o. (ⅱ) A semi-quantitative T-T model is brought forward to describe the dendrite growth rate V vs. undercooling D T. The prediction of T-T model agrees well with experimental results. The formation of fine equiaxed dendrites, transition region and dendrite region can be explained successfully by D T-V-x relation of T-T model.

  10. Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process

    Institute of Scientific and Technical Information of China (English)

    Li Qiang; Guo Qiao-Yi; Li Rong-De

    2006-01-01

    The dendrite growth and solute microsegregation of Fe-C binary alloy are simulated during solidification process by using cellular automaton method.In the model the solid fraction is deduced from the relationship among the temperature,solute concentration and curvature of the solid/liquid interface unit,which can be expressed as a quadric equation,instead of assuming the interface position and calculating the solid fraction from the interface velocity.Then by using this model a dendrite with O and 45 degree of preferential growth direction are simulated respectively.Furthermore,a solidification microstructure and solute microsegregation are simulated by this method. Finally,different GibbsThomson coefficient and liquid solute diffusing coefficient are adopted to investigate their influences on the morphology of dendrite.

  11. Nonlinear dynamics theory on the steady state interface pattern during solidification of a dilute binary alloy

    Institute of Scientific and Technical Information of China (English)

    王自东; 胡汉起

    1997-01-01

    The nonlinear dynamics equations of the time dependence of the perturbation amplitude of the solid/ liquid interface during unidirectional solidification of a dilute binary alloy are established. The solutions to these equations are obtained, and the condition of the initial steady state growth of the cellular and dendritic structure after the planar solid/liquid interface bifurcates (mGc> G) with the increase of the growth rate is given. The condition of the steady state growth of fine cellular and dendritic structure in the beginning after the coarse dendrites bifurcate ( mGc<Γw2 + G) under the rapid solidification is obtained. The relationship of the steady state cell and dendrite tip radius, the perturbation amplitude and wavelength at the solid/liquid interface is presented.

  12. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    Science.gov (United States)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  13. NUMERICAL SIMULATION OF AL-SI ALLOYS WITH AND WITHOUT A DIRECTIONAL SOLIDIFICATION

    Directory of Open Access Journals (Sweden)

    Michael Roland

    2014-03-01

    Full Text Available Numerical simulations are presented to analyze the influence of the casting process on the resulting strength of Strontium modified Al–Si alloys. A relationship is identified between the mechanical behavior and the different 3D morphologies of the eutectic silicon of the samples obtained by the die cast procedure and the directional solidification. It is shown that the mechanical behavior of the die cast alloy is isotropic in all three directions. In contrary, for the directional solidified alloy, the mechanical strength in the direction of the temperature gradient is higher than in the transverse direction. This fact has to be taken into account when analyzing structures issued from different casting processes. The volume meshes for the simulations are generated from experimental 3D FIB/SEM data sets. The influence of several levels of coarsening of the meshes as well as the order of the Lagrange element in the finite element setup are also analyzed.

  14. Numerical study of the influence of an applied electrical potential on the solidification of a binary metal alloy

    OpenAIRE

    Nikrityuk, P. A.; Eckert, K.; Grundmann, R

    2007-01-01

    In this work we study numerically the influence of a homogeneous electrical field on the fluid and heat transfer phenomena at macroscale and mesoscale during unidirectional solidification of a binary metal alloy. The numerical results showed that a pulse electric discharging applied perpendicularly to the solidification front leads to a much stronger Joule heating of the liquid phase in comparison to the solid phase. It was found that on the mesoscopic scale the electric current density is no...

  15. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  16. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  17. The Examination of the Aluminum Alloy 7017 as a Replacement for the Aluminum Alloy 7039 in Lightweight Armor Systems

    Science.gov (United States)

    2016-07-01

    any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters...ELEMENT NUMBER 6. AUTHOR(S) Tyrone L Jones and Brian E Placzankis 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...ABSTRACT The aluminum alloy (AA) 7039 has been recognized as a serviceable armor plate alloy for years. However, the inherent stress corrosion

  18. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  19. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    Science.gov (United States)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  20. Rapid solidification processing of iron-base alloys for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Flinn, J.E.

    1991-09-01

    The response of iron-base alloys to rapid solidification is reviewed with an emphasis on the effects of processing on the microstructure and mechanical property behavior. The processing topics addressed are powder atomization, powder consolidation, joining, and thermal-mechanical exposure. The value of rapid solidification processing (RSP) lies in the ability to promote compositional homogeneity and retention of fine and stable (to high temperatures) microstructures. Achieving the maximum benefit from RSP requires proper application of the basic principles of composition control and rapid crystallization. This investigation has disclosed two very important facets of the RSP approach that can be applied using current technologies. Dissociated oxygen appears to play a significant role in stabilizing microstructural features. In conjunction with oxygen, vacancies trapped during crystallization provide a very stable matrix dispersion for enhanced strengthening. With a fundamental understanding of the response of iron-base alloys to RSP, alloys can be designed that will have substantially better properties and performance than their conventionally processed counterparts. 77 refs., 94 figs., 14 tabs.

  1. Materials Design for Joinable, High Performance Aluminum Alloys

    Science.gov (United States)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  2. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  3. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  4. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  5. Project Explorer: Get Away Special #007. [alloy solidification, seed germination, crystal growth, and radio transmission of payload data

    Science.gov (United States)

    Henderson, A. J., Jr.

    1984-01-01

    Tentatively scheduled to fly on STS-17 (41G), this get away special aims to demonstrate amateur radio transmissions to global ground stations in the English language. Experiments No. 1, 2, and 3 use the micro-gravity of space flight to study the solidification of lead-antimony and aluminum-copper alloys, the germination of radish seeds, and the growth of potassium-tetracyanoplatinate hydrate crystals in an aqueous solution. Flight results are to be compared with Earth-based data. Experiment No. 4 (the Marshall Amateur Radio Club Experiment - MARCE) features radio transmissions and also provides timing for the start of all other experiments. A microprocessor obtains real-time data from all experiments as well as temperature and pressure measurements within the GAS canister. These data are to be transmitted on previously announced amateur radio frequencies after they are converted into the English language by a digitalker for general reception. The support structure for the G #007 experiments consists of two primary plates and four bumper assemblies.

  6. Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields

    Science.gov (United States)

    Stelian, Carmen; Delannoy, Yves; Fautrelle, Yves; Duffar, Thierry

    2004-05-01

    Numerical simulations of the vertical Bridgman solidification of Ga 1- xIn xSb concentrated alloys are performed by using the commercial codes FIDAP ® and FLUENT ®. The transient axi-symmetric simulation of heat, mass and species transport during highly doped ( x=0.2) crystal growth, shows a strong solute effect on the melt convection. The thermally driven flow is damped by the heavier solute (InSb) rejected at the solid-liquid interface. A diffusive transport regime is established in the melt a short time after the beginning of solidification and as a consequence, the radial segregation increases. This leads to a significant increase of the interface curvature because of the melting point dependency on the interface composition. Finally, the crystals are not chemically homogeneous with large variations of InSb concentration on the axial and radial directions. In order to improve the chemical homogeneity of highly doped Ga 1- xIn xSb crystals, it is proposed to apply an alternating magnetic field in the vicinity of the solid-liquid interface. The magnetic parameters for which an optimal level of convection arises in the melt are derived from the numerical simulation. It is shown that during solidification under optimized electromagnetic stirring, the radial segregation and interface deflection can be maintained at low values.

  7. Directional solidification of Al-8 wt. %Fe alloy under high magnetic field gradient

    Science.gov (United States)

    Wu, Mingxu; Liu, Tie; Dong, Meng; Sun, Jinmei; Dong, Shulin; Wang, Qiang

    2017-02-01

    We investigated applying a magnetic field (up to 6 T) during directional solidification of a hypereutectic Al-8 wt. %Fe alloy, finding that it dramatically affected the final microstructure. A eutectic area appeared at the top of the samples, and as the magnetic flux density increased, the eutectic area clearly enlarged. In addition, the Al3Fe phase was twisted and fractured, and some phases aggregated and distributed randomly in the samples. We also investigated the volume fraction distribution of the Al3Fe phase, revealing that applying the magnetic field during solidification caused dramatic disorder in the solute and phase distributions. The magnetic force induced by the interaction between the magnetic field gradient and the magnetic materials appeared to be the main reason not only for the occurrence and enlargement of the eutectic area but also for the movement of Fe-enriched zones during directional solidification. Otherwise, the deformation and fracture of the Al3Fe phase, the morphological instability in the interface between the eutectic area and the Al3Fe phase, and the random distribution of the aggregated Al3Fe phase appeared to come from the thermoelectric magnetic force/thermoelectric magnetic convection under the magnetic field.

  8. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid

  9. Progress in research on cold crucible directional solidification of titanium based alloys

    Directory of Open Access Journals (Sweden)

    Chen Ruirun

    2014-07-01

    Full Text Available Cold crucible directional solidification (CCDS is a newly developed technique, which combines the advantages of the cold crucible and continuous melting. It can be applied to directionally solidify reactive, high purity and refractory materials. This paper describes the principle of CCDS and its characteristics; development of the measurement and numerical calculation of the magnetic field, flow field and temperature field in CCDS; and the CCDS of Ti based alloys. The paper also reviews original data obtained by some scholars, including the present authors, reported in separate publications in recent years. In Ti based alloys, Ti6Al4V, TiAl alloys and high Nb-containing TiAl alloys, have been directionally solidified in different cold crucibles. The crosssections of the cold crucibles include round, near rectangular and square with different sizes. Tensile testing results show that the elongation of directionally solidified Ti6Al4V can be improved to 12.7% from as cast 5.4%. The strength and the elongation of the directionally solidified Ti47Al2Cr2Nb and Ti44Al6Nb1.0Cr2.0V are 650 MPa/3% and 602.5 MPa/1.20%, respectively. The ingots after CCDS can be used to prepare turbine or engine blades, and are candidates to replace Ni super-alloy at temperatures of 700 to 900 °C.

  10. Crystal Growth of HgZnTe Alloy by Directional Solidification in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Szofran, F. R.; Gillies, D. C.; Scripa, R. N.; Cobb, S. D.; Wang, J. C.

    2002-01-01

    An Hg(0.84)Zn(0.16)Te alloy crystal was back-melted and partially re-solidified during the first United States Microgravity Laboratory mission in the Marshall Space Flight Center's Crystal Growth Furnace. The experiment was inadvertently terminated at about 30% of planned completion. Nonetheless, it was successfully demonstrated that a HgZnTe alloy ingot partially grown and quenched on the ground can be back-melted and re-grown in space under nearly steady-state growth conditions. An identical "ground-truth" experiment was performed following the mission and a comparison between the properties of the crystals is described. The results indicate the importance of residual microgravity acceleration (less than or approx. equal to 0.4 micro-grams) even in the sub-microgravity range for the slow solidification velocities and large density gradients.

  11. Investigation of Intermetallic Compound Formed from Rapid Solidification of Al-Ti-RE Alloy

    Institute of Scientific and Technical Information of China (English)

    杨明珊; 王振飞

    2004-01-01

    Al-Ti alloy containing rare earth elements can produce fine,uniform dispersion intermetallic phase through rapid solidification(RS)technology.RS Al-Ti-RE alloy can be designed for applications at elevated-temperature since the intermetallic compound has good thermal stability.A transmission electron microscopy investigation shows the intermetallic phase has a diamond cubic structure(a=1.47736 nm),with space group Fd3m.The chemical stoichiometry is Al20Ti2La.The particle is formed from the melting directly,prior to other phases,and the nucleus is formed from icosahedrons composed with twenty tetrahedrons.Twin crystal structure plays an important role in the nucleation stage.

  12. Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment

    Directory of Open Access Journals (Sweden)

    Guanglong Xu

    2016-12-01

    Full Text Available An overview about one thermodynamic database of multi-component Mg alloys is given in this work. This thermodynamic database includes thermodynamic descriptions for 145 binary systems and 48 ternary systems in 23-component (Mg–Ag–Al–Ca–Ce–Cu–Fe–Gd–K–La–Li–Mn–Na–Nd–Ni–Pr–Si–Sn–Sr–Th–Y–Zn–Zr system. First, the major computational and experimental tools to establish the thermodynamic database of Mg alloys are briefly described. Subsequently, among the investigated binary and ternary systems, representative binary and ternary systems are shown to demonstrate the major feature of the database. Finally, application of the thermodynamic database to solidification simulation and selection of heat treatment schedule is described.

  13. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Incropera, F.P.; Prescott, P.J. [Purdue Univ., West Lafayette, IN (United States)

    1995-12-31

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, by reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.

  14. Theoretical - Experimental Analysis of Cellular and Primary Dendritic Spacings during Unidirectional Solidification of Sn-Pb Alloys

    Directory of Open Access Journals (Sweden)

    Otávio F.L. da Rocha

    2002-09-01

    Full Text Available Structural parameters as grain size, dendritic and cellular spacings, segregated products, porosity and other phases are strongly influenced by the thermal behavior of the metal/mold system during solidification, imposing a close correlation between this and the resulting microstructure. Several unidirectional solidification studies with the objective of characterizing cellular and dendritic spacings have been developed in large scale involving solidification in steady-state heat flow. The main objective of this work is to determine the thermal solidification parameters during the cellular/dendritic transition as well as to compare theoretical models that predict cellular and primary dendritic spacings with experimental results for solidification situations in unsteady-state heat flow. Experiments were carried out in a water cooled unidirectional solidification apparatus and dilute alloys of the Sn-Pb system were used (Sn 1.5wt%Pb, Sn 2.5wt%Pb and Sn 5wt%Pb. The upper limit of the Hunt-Lu cellular growth model closely matched the experimental spacings. The lower limit calculated with the Hunt-Lu dendritic model best generated the experimental results. The cellular/dendritic transition was observed to occur for the Sn 2.5wt%Pb alloy over a range of analytical cooling rates from 0.28 K/s to 1.8 K/s.

  15. Microstructures of erbium modified aluminum-copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berghof-Hasselbaecher, Ellen; Schmidt, Gerald; Galetz, Mathias; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt am Main (Germany); Masset, Patrick J. [Fraunhofer UMSICHT-ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Zhang, Ligang [Technische Univ. Bergakademie Freiberg (Germany). ZIK Virtuhcon; Liu, Libin; Jin, Zhanpeng [Central South Univ., Changsha, Hunan (China)

    2012-07-01

    Alloying with rare earth metals improves to the mechanical properties and corrosion resistance of aluminium base alloys at high temperatures. The rare earth metal erbium may be used for grain refinement. Within a project of computer-aided alloy development based on the CALPHAD (CALculation of PHAse Diagrams) method various alloys were melted on the Al-rich side of the ternary system Al-Cu-Er under argon atmosphere and their microstructures were characterized in the as-cast state or after long-term isothermal annealing (400 C/960 h) by means of different investigation techniques. As a result, the phases fcc (Al), {tau}{sub 1}-Al{sub 8}Cu{sub 4}Er, {theta}-CuAl{sub 2}, {eta}-CuAl, and Al{sub 3}Er were identified, their compositions and fractions were quantified, and their hardnesses were determined. The experimental obtained microstructures agree very well with the calculated solidification behaviors of the cast alloys. The knowledge gained from this work about the phase compositions and microstructures can also be utilized for the fine optimization of the phase diagram. (orig.)

  16. Deformation and Damage of Two Aluminum Alloys from Ballistic Impact

    Science.gov (United States)

    Anderson, Charles E., Jr.; Dannemann, Kathryn A.

    2002-07-01

    A series of impact experiments were conducted on 4.76-mm-thick aluminum plates to investigate the deformation and damage behavior of two aluminum alloys, 6061-T6 and 7075-T6. The Sierra 165 lead-filled bullet was used to load the plates. Impact velocities were varied from approximately 260 m/s to 370 m/s. The flow stress for 7075-T6 aluminum is approximately twice that for 6061-T6 aluminum; however, the ballistic limit velocities differ by only 10%. The 7075-T6 aluminum plates exhibit less deformation than the 6061-T6 plates at the same impact velocity, but at some critical velocity, a through-thickness crack appears in the 7075-T6 plate, ultimately leading to plate perforation. In contrast, the 6061-T6 plates continue to deform and fail by ductile tearing. These differences in damage/failure result in the two alloys having much closer ballistic limit velocities than expected based on differences in strength.

  17. Directional solidification processing of eutectic alloys in the Ni Al V system

    Science.gov (United States)

    Milenkovic, S.; Coelho, A. A.; Caram, R.

    2000-04-01

    Intermetallic matrix composites (IMCs) offer attractive properties, such as high toughness of the metal coupled with low density, high modulus and high strength of the intermetallics. Among a large number of the intermetallics, a particular interest has been shown in the NiAl intermetallic compound, since it exhibits several advantages over the currently used nickel-based superalloys. Recently, there has been a renewed interest in directional solidification of the eutectic alloys as a concept of reinforcing intermetallics with in situ refractory metals. The present study is related to the study of the eutectic alloys in the ternary NiAl-V system. The eutectic composition and temperature were accurately determined. It was concluded that the solidification behaviour of the Ni-Al-V eutectic is strongly dependent on the growth conditions, namely growth rate and orientation, and that it can be easily modified. Also, it was observed that the orientation of the grain, i.e., the direction of growth is the determining factor in the lamellar/rod transition as well as in the morphology of the degenerated structure.

  18. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  19. A Multiscale Transient Modeling Approach for Predicting the Solidification Structure in VAR-Processed Alloy 718 Ingots

    Science.gov (United States)

    Nastac, Laurentiu

    2012-09-01

    This paper describes the development and validation of a comprehensive multiscale modeling approach capable of predicting at the mesoscopic scale level the ingot solidification structure and solidification-related defects commonly occurring during the vacuum arc remelting (VAR) process. The approach consists of a coupling between a fully transient macroscopic code and a mesoscopic solidification structure code. The predictions from the multiscale model, including grain morphology and size and columnar-to-equiaxed transition, were validated against experimental measurements for a 20-inch (508 mm) diameter VAR alloy 718 ingots. The validated model was then used to investigate the effects of melting rate and ingot diameter on the solidification structure of VAR processed 718 ingots.

  20. Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  1. Aluminum-lithium alloy development for thixoforming

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, R.; Friedrich, B. [IME Process Metallurgy and Metal Recycling, RWTH Aachen Univ. (Germany); Puettgen, W.; Bleck, W. [IEHK Inst. for Ferrous Metallurgy, RWTH Aachen Univ. (Germany); Balitchev, E.; Hallstedt, B.; Schneider, J.M. [MCh Materials Chemistry, RWTH Aachen Univ. (Germany); Bramann, H.; Buehrig-Polaczek, A. [GI Foundry Inst., RWTH Aachen Univ. (Germany); Uggowitzer, P.J. [ETH Zuerich, Metal Physics and Technology (Germany)

    2004-12-01

    This paper presents a scientific contribution to the development of lightweight/high-performance Al-Li alloys suitable for semi-solid processing. Thermodynamic calculations identified the most promising compositions with focus on the solidus-liquidus interval, fraction of solid-versus-temperature and phase reactions. The synthesis of Al-Li precursor billets was performed by overpressure induction melting in controlled atmosphere. DTA and microstructure investigations on Al-Li specimens were carried out as well as thixocasting trials of demonstrator components. New rheocasting of Al-Li alloys was investigated to identify the potential of this alternative precursor material route. It is shown that specifically developed Al-Li alloys offer great potential for semi-solid manufacturing. (orig.)

  2. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  3. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    Science.gov (United States)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  4. Overheating temperature of 7B04 high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Feng-hua; LI Nian-kui; TIAN Ni; SUN Qiang; LIU Xian-dong; ZHAO Gang

    2008-01-01

    The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.

  5. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  6. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  7. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  8. Heterogeneous nucleation of the primary phase in the rapid solidification of Al-4.5wt%Cu alloy droplet

    OpenAIRE

    Maitre, A.; Bogno, A-A; Bedel, M; Reinhart, G; Henein, H

    2015-01-01

    International audience; This paper reports on rapid solidification of Al-Cu alloys. A heterogeneous nucleation/growth model coupled with a thermal model of a falling droplet through a stagnant gas was developed. The primary undercooling as well as the number of nucleation points was compared with Al-Cu alloy droplets produced by Impulse Atomization (IA). Based on experimental results from Neutron Diffraction, secondary (eutectic) phases were obtained. Then, primary and secondary undercoolings...

  9. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    Science.gov (United States)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  10. Influence of Alloying Treatment and Rapid Solidification on the Degradation Behavior and Mechanical Properties of Mg

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2016-10-01

    Full Text Available Magnesium (Mg has drawn increasing attention as a tissue engineering material. However, there have been very few studies of laser-melted Mg-Zn alloys. In this study, four binary Mg-xZn (x = 2, 4, 6 and 8 wt. % alloys were fabricated by laser melting. The influence of zinc (Zn content and technique on the degradation behavior and mechanical properties of Mg were discussed. Results revealed that Mg-xZn alloys consisted of an α-Mg matrix and MgZn phases, which dispersed at the grain boundaries. In addition, the MgZn phase increased with the increase in Zn content. The laser-melted alloy had fine homogenous grains, with an average grain size of approximately 15 μm. Grain growth was effectively inhibited due to the precipitation of the MgZn phase and rapid solidification. Grain refinement consequently slowed down the degradation rate, with Zn content increasing to 6 wt. %. However, a further increase of Zn content accelerated the degradation rate due to the galvanic couple effect between α-Mg and MgZn. Moreover, the mechanical properties were improved due to the grain refinement and reinforcement of the MgZn phase.

  11. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercool- ings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  12. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueHua; RUAN Ying; WANG WeiLi; WEI BingBo

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  13. Residual stress profiling of an aluminum alloy by laser ultrasonics

    Institute of Scientific and Technical Information of China (English)

    PAN Yondong; QIAN Menglu; XU Weijiang; M. OURAK

    2004-01-01

    A residual-stress profile along the thickness of an aluminum alloy sheet is determined by laser-ultrasonic technique. Surface acoustic waves are generated by a Nd:YAG pulse laser and detected by a Heterodyne interferometer on a lateral free surface of the sheet. The distribution of residual stress is determined by measuring the relative variation of the wavevelocities at different location of the sample along its thickness. This technique is validated by three different residual stress profiles obtained experimentally.

  14. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  15. Microstructure characteristics and mechanical properties of rheocasting 7075 aluminum alloy

    OpenAIRE

    Yang Bin; Mao Weimin; Song Xiaojun

    2013-01-01

    The microstructure characteristics and mechanical properties of 7075 aluminum alloy produced by a new rheoforming technique, under as-cast and optimized heat treatment conditions, were investigated. The present rheoforming combined the innovatively developed rheocasting process, named as ICSPC (inverted cone-shaped pouring channel) process, and the existing HPDC (high pressure die casting) process. The experimental results show that the ICSPC can be used to prepare high quality semi-solid slu...

  16. Retrogression and reaging of 7075 T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, P.; Calleros, D.; Madsen, M.; Trinh, T.; Hoang, D.; Foyos, J.; Es-Said, O.S. [Loyola Univ., Los Angeles, CA (United States). NSF Res. Experience for Undergraduates Program; Lee, E.W.

    2000-07-01

    The objective of this study was to investigate the feasibility of performing retrogression and reaging (RRA) heat treatments on 7075-T6 aluminum alloy in muffle furnaces instead of salt and oil baths. The retrogression temperatures were 180 C, 200 C, 220 C and 240 C and retrogression times were 5, 10, 15 and 25 minutes. Reaging was performed at 120 C for 24, 36 and 48 hours. Tensile testing, hardness and electrical resistivity measurements were determined. (orig.)

  17. Residual stress in quenched 7075 aluminum alloy thick plates

    Institute of Scientific and Technical Information of China (English)

    林高用; 张辉; 朱伟; 彭大暑; 梁轩; 周鸿章

    2003-01-01

    The influence of quenching water temperature, pre-stretching amount and aging temperature and times on residual stress in 7075 aluminum thick plate was studied by the measurement of residual stress using drilling hole method. The results indicate that residual stress decreases by 30% with increasing quenching water temperature from 40 ℃ to 80 ℃, 20% with increasing aging temperature from 100 ℃ to 180 ℃,and 20% with increasing aging times from 5 h to 25 h. Also, residual stress decreases to zero with increasing pre-stretching amount to approximately 2%. Hence, residual stress in 7075 aluminum thick plate is reduced by the control of quenching water temperature at 80 ℃ and with pre-stretching amount of about 2%. An optimal aging temperature and time should be systemically investigated to obtain combination of high mechanical performances and lower residual stress for manufacturing of 7075 aluminum alloy thick plates.

  18. Corrosion of Aluminum Alloys by IRFNA

    Science.gov (United States)

    1990-02-24

    and electropolishing and anodising, have been studied. aNeither had a significant long term effect on the corrosion rate of 2014 alumninium alloy in... steel spatula. (iv) The cell was assembled and raw eghed, the charge of galled Acid being determined by difference. Two additional bottom-working...The anodiuing solution was 1swt% sulphuric acid And the conditions were 25oC, 1 Mwm, 12V. The anodic oxide film waS scaled in delonised water (30

  19. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  20. Dynamic Crystallization: An Influence on Degree of Prior Deformation and Mechanical Strength of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Gbenebor, O.P

    2012-09-01

    Full Text Available This research is aimed at investigating the influence dynamic solidification of melts on degree of mechanical deformation and mechanical strength of 6063 aluminum alloy. Cylindrical samples of 14mm diameter and 140mm long were die cast following two techniques – vibration and static. Prior deformation via forging was imposed on each solidified sample to achieve 7%, 14%, 21% and 28% thickness reductions respectively for each casting technique. Average deformation load, average hammer velocities and the average energy absorbed were recorded. Tensile properties of each sample were studied via the use of Monsanto tensometer. Mechanical agitation of mould and its content increased the machinability of the alloy even at higer pre deformation. This was justified by the failure of the 28% reduction sample cast on static floor during machining to a tensile piece. The energy absorbed during deformation influences the tensile strength of the material. This increases with increase in percentage deformation except for 28% reduction whose magnitude was lower than that subjected to 21% reduction; vibrated samples possessed superior properties. From results obtained, vibrating a sample and subjecting to 21% pre-deformation possessed the best tensile strength.

  1. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    Science.gov (United States)

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

    2015-05-01

    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  2. Russian aluminum-lithium alloys for advanced reusable spacecraft

    Science.gov (United States)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO2) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO2 cryotank was successfully demonstrated in DC-XA flight tests.

  3. FORMABILITY OF THIN SHEETS FROM ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Emil Spišák

    2016-12-01

    Full Text Available In this contribution there have been evaluated properties of four types of sheets made from aluminium alloys. In the case of each of the examined sheets there has been checked its shearing ability via the influence of punch-die clearance change on the quality of blanking edge. Quality of blanking edge is characterized by a ratio of plastic zone height to the total thickness of the sheared material. Formability during the drawing process was measured with earring test. Results are presented by the earring coefficient (unequal height of the cups.

  4. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    Science.gov (United States)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510°C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to

  5. Estimation of the transient interfacial heat flux between substrate/melt at the initiation of magnesium solidification on aluminum substrates using the lumped capacitance method

    Energy Technology Data Exchange (ETDEWEB)

    Hajjari, E. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Divandari, M., E-mail: Divandari@iust.ac.ir [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Razavi, S.H.; Emami, S.M. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Kamado, S. [Department of Mechanical Engineering, Nagaoka University of Technology (NUT), Nagaoka 940-2188 (Japan)

    2011-03-15

    Interfacial heat flux (IHF) between solid pure aluminum/magnesium melt and solid 413 aluminum alloy/magnesium melt couples was evaluated using lumped capacitance method, and the interface microstructures were assessed by scanning electronic microscope. The variation of maximum IHF with surface roughness for these two couples also was evaluated. The results showed that, for both solid aluminum/magnesium melt couples, with increasing the surface roughness, the maximum IHF increases at first and then starts to decrease after reaching a maximum value. In addition the measured maximum IHF for solid 413 aluminum alloy/magnesium melt couples was found to be higher than those measured for solid pure aluminum/magnesium melt couples. That seems to be because of the better wettability of 413 aluminum alloy than pure aluminum, by magnesium melt.

  6. Mechanical properties of hot rolled 2519 aluminum alloy plate

    Institute of Scientific and Technical Information of China (English)

    彭大暑; 陈险峰; 林启权; 张辉

    2003-01-01

    The effects of differences of temper on mechanical properties of T6, T7 and T8 plates of aluminum alloy 2519 were studied. The stress corrosion cracking(SCC) sensitivity was evaluated with parameters such as Kσ and Kδ.Tensile tests were divided into two groups: one was performed on tensile specimens without pre-corrosion, the other was performed on tensile specimens which were pre-corroded in 3.5%NaCl+1%H2O2 solution at 25 ℃.The results show that SCC resistance of alloy 2519 ranks in the order of T8>T7>T6 and the mechanical properties rank in the order of T6>T8>T7. SEM fractographs of the failed specimen show that the SCC sensitivity can be determined by the distribution of the second phase particles and size and the shape of grains in the alloy.

  7. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Science.gov (United States)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  8. From 2007 to 2010,China Will Manufacture More Than 10,000 Aluminum Alloy Railcars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The clear advantage of the aluminum alloy rail- cars is the weight reduction.The deadweight of the aluminum alloy railcars usually does not exceed 8.5t each.The 52 motor train units used in the sixth nationwide railway speedup are all made of aluminum alloys except for the train units used in the line between Guangzhou and Shenzhen.It is estimated that in 2010,there are more than 10,000 railcars made of aluminum alloys,which will consume about 105kt alumi- num.

  9. Effect of g-jitter on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Santiviriyapanich, P.; Benjapiyaporn, C.; Timchenko, V.; deVahlDavis, G.; Leonardi, E.; deGroh, H. C., III

    2000-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermosolutal convection in the liquid region. In this paper we present a numerical simulation of g-jitter: the small, rapid fluctuations in gravitational acceleration which may be experienced in an orbiting space vehicle. A background gravity of 1 micro-g has been assumed, and new results for the effects of orientation angle of the periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  10. Effect of hafnium addition on solidification structure of cast Ti-46AI alloys

    Institute of Scientific and Technical Information of China (English)

    Su Yanqing; Zhang Li; Guo Jingjie; K. Maruyama; Li Zhiming

    2008-01-01

    To investigate the effect of hafnium addition on the solidification structure, Ti-46Al alloys with nominal compositions of Ti-46Al-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE), XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refinement. Increasing Hf from 0 to 7 (at.%), the columnar spacing can be reduced from~1000 to~400 pm. Constitute phases of the ingots are α2, a small amount of B2 and γ. Most of the B2 phases, richer in Hf and leaner in AI and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The γ phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the α- andβ-phase form from the melt as prior phases. The possible phase sequencing during solidification and solid-state transformations with Hf is given in this paper.

  11. Numerical simulation of recalescence of 3-dimensional isothermal solidification for binary alloy using phase-field approach

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-sheng; XIAO Rong-zhen; WANG Zhi-ping; FENG Li

    2009-01-01

    A accelerated arithmetic algorithm of the dynamic computing regions was designed, and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented. The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated. The effects of cooling rate on dendritic patterns and microsegregation patterns were studied. The computed results indicate that, with the increment of the cooling rate, the dendritic growth velocity increases, both the main branch and side-branches become slender, the secondary dendrite arm spacing becomes smaller, the inadequate solute diffusion in solid aggravates, and the severity of microsegregation ahead of interface aggravates. At a higher cooling rate, the binary alloy presents recalescence; while the cooling rate is small, no recalescence occurs.

  12. Aligned Solidification Structure of the MnBi Phase in Semisolidified Bi-Mn Alloy with a Static Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhongming REN; Hui WANG; Kang DENG; Kuangdi XU

    2004-01-01

    The solidification structure of Bi-3 wt pct Mn alloy grown up in the semisolid zone under the influence of a static magnetic field (up to 1.0 T) and the relation of the magnetic property with the solidification structure have been investigated experimentally. It was shown that the primary phase MnBi crystals in the alloy aligned and oriented along the direction of the applied magnetic field. The orientating tendency and the average length of the elongated MnBi crystals increased with the increase of the applied field and the solidification time. Moreover, the remanence of the alloy along the aligned direction of the MnBi phase in the case of solidification with a magnetic field was apparently anisotropic and nearly double of that without the magnetic field. This indicated that the MnBi crystals oriented and aligned along their easy magnetization axis. A model was proposed to explain the alignment and orientation growth of the MnBi crystals in a magnetic field in terms of the magnetic anisotropy of the crystals and the magnetic interaction between them.

  13. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy

    Science.gov (United States)

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  14. The effect of the shear flow on directional solidification of SCN-3wt% Salol alloy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The directional solidification process of SCN-3wt%Salol transparent alloy is investigated in the presence of the shear flow at the liquid-solid interface.It is found that the shear flow induces a stabilizing effect on planar interface.At higher pulling rates,oscillation of the growth pattern together with fluctuation of the growth velocity takes place.With the increase of the pulling rate,the interface growth pattern transits from"planar-cellular"oscillation to"cellular-dendritic"oscillation,and the periodicity increases.The modification of the growth pattern is due to the effect of the shear flow on solute distribution,and the time and history dependent character of interface morphology evolution also plays an important role in the formation of the oscillating growth pattern.

  15. Dual-scale phase-field simulation of Mg-Al alloy solidification

    Science.gov (United States)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  16. Phase selection during solidification of undercooled Ni_(70.2)Si_(29.8) eutectic alloy

    Institute of Scientific and Technical Information of China (English)

    Yiping Lu; Tingju Li; Fu Yabo; Sun Jianbo; Luo Dawei; Gencang Yang; Yaohe Zhou

    2009-01-01

    High undercooling (about 392 K) was achieved in the bulk eutectic Ni_(70.2)Si_(29.8) alloy melt through glass fluxing combined with cyclic superheating. It is found that the metastable phases Ni_3Si_2 and NiSi are obtained through slow post-solidification when undercooling exceeds 240 K. The metastable phases are confirmed by using the method of X-ray diffraction and differential scanning calorimetry (DSC). Based on the principle of the free energy minimum and the transient nucleation theory, the phase selection of melt is investigated with regard to the metastable phases formation in the bulk undercooled eutectic Ni_(70.2)Si_(29.8) melts. The formation of metastable phases from undercooled Ni_(70.2)Si_(29.8) melts is ascribed to competitive nucleation with the undercooling, I.e. High undercooling facilitates the pref-erential nucleation of metastable phases.

  17. Numerical model of the solidification of alloys with natural convection of the liquid

    Directory of Open Access Journals (Sweden)

    E. Węgrzyn-Skrzypczak

    2008-04-01

    Full Text Available The paper deals with comparison of numerical analysis results obtained for binary alloys solidification process in the sand and permanent mould with motion of the fluid in the liquid and mushy zone. The partial differential equations describing mathematical model of the phenomena are presented. Finite Element Method is used for modeling process. Characteristic Based Split (CBS method is used for solving momentum equation. Such approach allows to uncouple velocities and pressure. Petrov-Galerkin formulation is employed to stabilize heat conductivity equation with convective term. The results of the numerical simulations in the 2D region are discussed. Velocity fields, cooling rates and positions of the liquid, solid-liquid and solid regions are compared.

  18. Application of a criterion for cold cracking to casting high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging

  19. Continuous and directional solidification technology of titanium alloys with cold crucible

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-run; DING Hong-sheng; GUO Jing-jie; BI Wei-sheng; FU Heng-zhi

    2006-01-01

    The experiments of continuous and directional solidification of titanium alloys with cold crucible were carried out in a multifunctional electromagnetic cold crucible apparatus. Parameters and factors influencing the surface crack and macrostructure of titanium alloy ingots were studied. The mechanism of the parameters and factors influencing the surface crack and macrostructure of the ingots were interpreted. The results show that the surface cracks of the prepared ingots decrease with the increase of the input power from 50 to 60 kW or with the increase of the coil turns from 3 to 5 circles. The surface cracks increase with the increase of withdrawal velocity from 3 to 5 mm/min or the height of the primer from 2 to 3 cm, then decrease with the increase of withdrawal velocity from 5 to 8.7 mm/min or the height of the primer from 3 to 4 cm. Coil turns is the most important one in all parameters effect on the surface crack, the input power is more important, then the withdrawal velocity is important and the height of the primer is the least important. Withdrawal velocity is the most important factor affecting the macrostructure, and effects of other factors on macrostructure is slight. With the decrease of velocity from 8.7 to 0.5 mm/min, the quantity of grains reduces, the grain orientation degree becomes small, and the solidification fronts change from concave to plane to convex. The ingot can be directional solidified at velocity of 1 mm/min. The ingot with free surface crack and directional macrostructure is prepared under definite conditions.

  20. The recycling of standard quality wrought aluminum alloys from low-grade contaminated scrap

    Science.gov (United States)

    Kevorkjjan, Varužan

    2010-08-01

    In recent decades an increasingly large fraction of the world’s wrought aluminum alloys supply has come from the aluminum scrap recovered from industrial waste and discarded post-consumer items. However, replacing even a minor part of primary aluminum in wrought alloys with recycled counterpart originated from lower grades of scrap (typically scrap contaminated with various non-metallic impurities) without influencing the quality of the allay is very demanding from a metallurgical point of view. This article discusses the two approaches for achieving the requested chemical composition of wrought alloys made from recycled aluminum: (i) before melting, by combining the appropriate qualities and quantities of scrap, primary aluminum, and the alloying elements and (ii) during melting, by diluting impurity content with primary aluminum to the needed level and adding, at the same time, the necessary amount of alloying elements for achieving their standard concentration in diluted melts.

  1. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid

  2. Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray

    Science.gov (United States)

    Cavaliere, P.; Silvello, A.

    2017-02-01

    The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.

  3. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  4. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  5. The influence of a microgravity environment on the dendritic morphology during directional solidification of hypoeutectic Al-Si alloys

    Science.gov (United States)

    Grugel, Richard N.

    1993-01-01

    NASA grant NAGW-2540 provided the opportunity to evaluate and extend ongoing studies of directionally solidified Al-Si alloys. Microstructural development was further characterized in terms of solidification processing parameters; novel relationships between processing and development of dendrite trunk diameters and tertiary dendrite arm spacings were found. This has resulted in three publications (one in print, one in press, and one in review). Microstructural development under conditions of controlled acceleration during directional solidification has been investigated; this has culminated in a Master's degree and will be submitted for publication. The above work not only contributes to our understanding of solidification phenomena but also defines the processing parameters for a successful microgravity experiment while providing a data base to which mu g samples can be unequivocally compared and evaluated.

  6. Simulation of thermos-solutal convection induced macrosegregation in a Sn-10%Pb alloy benchmark during columnar solidification

    Science.gov (United States)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-03-01

    In order to investigate the effect of thermo-solutal convection on the formation of macrosegregation during columnar solidification, simulations with a liquid-columnar two phase model were carried out on a 2D rectangular benchmark of Sn-10%Pb alloy. The solidification direction in the benchmark is unidirectional: (') downwards from top to bottom or (2) upwards from bottom to top. Thermal expansion coefficient, solutal expansion coefficient and liquid diffusion coefficient of the melt are found to be key factors influencing the final macrosegregation. The segregation range and distribution are also strongly influenced by the benchmark configurations, e.g. the solidifying direction (upwards or downwards) and boundary conditions, et al. The global macrosegregation range increases with the velocity magnitude of the melt during the process of solidification.

  7. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  8. Modeling of thermosolutal convection during Bridgman solidification of semiconductor alloys in relation with experiments

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2004-05-01

    Thermosolutal convection during vertical Bridgman directional solidification of Ga 1- xIn xSb alloys has been studied by numerical simulation. The transient analysis of heat, momentum and species transport has been performed by using the finite element code FIDAP ®. In the case of vertical Bridgman configuration, the thermal convection is driven by the radial temperature gradients. The solute (InSb) rejected at the solid-liquid interface, which is heavier than the GaSb component, damps the thermally driven convection. The solutal effect on the melt convection has been analyzed for low ( x=0.01) and high ( x=0.1) doped Ga 1- xIn xSb alloys. It is found that the damping effect is negligible for Ga 0.99In 0.01Sb alloy grown at low pulling rates ( V= 1 μm/s ), but cannot be neglected if the pulling rate is increased. In the case of concentrated alloys, the low level of convection intensity leads to an increase of radial segregation and interface curvature during the whole growth process as also shown by experiments. The effect of solutal buoyancy force on the melt convection is analyzed for the horizontal Bridgman configuration under microgravity conditions. An inverse but lower solutal effect on the melt convection, as compared with vertical Bridgman arrangement, is observed. The results are in good agreement with the experimental data, and show that convective transport can be observed even for low (2×10 -6g0) residual gravity levels.

  9. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhao, Shuang; Pan, Hucheng; Song, Kai [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-09-01

    In this study, biodegradable Mg–Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg–1Sn alloy was almost equiaxed grain, while the Mg–Sn alloys with higher Sn content (Sn ≥ 3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg–Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg{sub 2}Sn phase, and the amount of Mg{sub 2}Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg–Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg–1Sn and Mg–3Sn alloys were promising to be used as biodegradable implants. - Highlights: • Biodegradable Mg–Sn implant alloys were prepared by sub-rapid solidification. • Secondary dendrite arm spacing of alloys decreased with increasing Sn content. • Corrosion rates of alloys increased significantly with increasing Sn content. • Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells.

  10. Textures, microstructures, anisotropy and formability of aluminum-manganese-magnesium and aluminum-magnesium alloys

    Science.gov (United States)

    Liu, Jiantao

    In this dissertation work, the microstructure and texture evolution of continuous cast (CC) and direct chill (DC) cast Al-Mn-Mg (AA 3105 and AA 3015) and Al-Mg (AA 5052) alloys during cold rolling and annealing are systematically investigated. Macrotexture analyses were based on three-dimensional orientation distribution functions (ODFs) calculated from incomplete pole figures from X-ray diffraction by using arbitrarily defined cell (ADC) and series expansion methods. A new technique, electron backscatter diffraction (EBSD), was adopted for microtexture and mesotexture investigation. The anisotropy and formability of Al-Mn-Mg and Al-Mg alloys are correlated to the texture results. For aluminum alloys studied in this work, a stronger Cube orientation is observed in DC hot band than in CC hot band after complete recrystallization. alpha and beta fibers become well developed beyond 50% cold rolling in both CC and DC aluminum alloys. The highest intensity along the beta fiber (skeleton line) is located between the Copper and the S orientations in both materials after high cold rolling reductions. In both CC and DC aluminum alloys, a cell structure develops with the indication of increasing CSL Sigma1 boundaries during the early stages of cold rolling. There is no evidence of the development of twin boundaries (Sigma3, Sigma9, Sigma27a & 27b) in either CC or DC aluminum alloys when the cold rolling reductions are less than 40%. The R and Cube textures are dominant recrystallization texture components in CC and DC AA 5052 alloys. The volume fraction of the Cube component is increased by increasing cold rolling reduction and annealing temperature but not by increasing annealing time while the volume fraction of the R component is only increased by increasing cold rolling reduction. Stronger Cube and R orientations are found at the surface layer than at half-thickness layer of cold rolled hot bands after annealing. The Cube and P textures are dominant recrystallization

  11. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  12. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, O.; Aghion, E. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Goldman, J., E-mail: jgoldman@mtu.edu [Biomedical Engineering Department, Michigan Technological University, Houghton, MI, 49931 (United States)

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg–6%Nd–2%Y–0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd{sub 2}O{sub 3} content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. - Highlights: • Here we have evaluated the corrosion resistance of a novel Mg alloy (EW62). • Rapid solidification reduces the hydrogen gas evolution and hydrogen embrittlement. • Rapid solidification increases the stress corrosion cracking resistance of EW62. • Improvement is due to enrichment with supersaturated Nd in the external oxide film. • Rapidly solidified and extruded EW62 may serve as a biodegradable medical implant.

  13. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  14. Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature

    Institute of Scientific and Technical Information of China (English)

    阚洪敏; 祝跚珊; 张宁; 王晓阳

    2015-01-01

    Electrodeposition of aluminum from benzene-tetrahydrofuran−AlCl3−LiAlH4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities (10−25 mA/cm2), molar ratio of benzene and tetrahydrofuran (4:1 to 7:8) and stirring speeds (200−500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al−Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran−AlCl3−LiAlH4. XRD shows that the aluminum−magnesium alloys are mainly Al3Mg2 and Al12Mg17.

  15. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.percent Cu alloy

    Science.gov (United States)

    Osborne, Matthew Gary

    1997-12-01

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings. This research was supported in part by the Office of Basic Energy Science, USDOE. The Ames laboratory is operated by Iowa State University for the U.S. Department of Energy under contract number W-7405-Eng-82.

  16. Microstructure refinement and hardening of Ag–20 wt.%Cu alloy by rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Lussana, Danilo, E-mail: danilo.lussana@unito.it [Dipartimento di Chimica and NIS, Università di Torino, Torino (Italy); Castellero, Alberto [Dipartimento di Chimica and NIS, Università di Torino, Torino (Italy); Vedani, Maurizio [Dipartimento di Meccanica, Politecnico di Milano, Milano (Italy); Ripamonti, Dario; Angella, Giuliano [Istituto IENI-CNR, Unità territoriale di Milano, Milano (Italy); Baricco, Marcello [Dipartimento di Chimica and NIS, Università di Torino, Torino (Italy)

    2014-12-05

    Highlights: • Ag80–Cu20 alloy were rapidly solidified by planar flow casting technique. • A significant refinement of the eutectic microstructure has been obtained. • A refinement of the primary silver-rich phase has been achieved with high cooling rate. • The hardness increases up to the 150% of the value of an annealed sample. - Abstract: Ag–20 wt.%Cu (wt%) hypoeutectic alloy has been rapidly solidified by means of planar flow casting technique. Two fcc solid solutions have been identified by X-ray diffraction. Microstructures have been observed by electron microscopy. A refinement of the eutectic microstructure, as well as of the Ag-rich primary phase, has been observed for high quenching rates, leading to a hardness value up to 235 Vickers. The lattice parameter and phase fraction of the Ag-rich solid solution increase as a function of quenching rates (i.e. wheel speed). The solidification processes occurring during rapid quenching have been described on the basis of thermodynamic and kinetic arguments.

  17. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    DAI FuPing; CAO ChongDe; WEI BingBo

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) droplets with the same size.

  18. Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.

  19. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  20. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    Science.gov (United States)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  1. Parameter prediction in laser bending of aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    Xuyue WANG; Weixing XU; Hua CHEN; Jinsong WANG

    2008-01-01

    Based on the basic platform of BP neural net-works, a BP network model is established to predict the bending angle in the laser bending process of an aluminum alloy sheet (1-2 mm in thickness) and to optimize laser bending parameters for bending control. The sample experimental data is used to train the BP network. The nonlinear regularities of sample data are fitted through the trained BP network; the predicted results include laser bending angles and parameters. Experimental results indi-cate that the prediction allowance is controlled less than 5%-8% and can provide a theoretical and experimental basis for industry purpose.

  2. Solar selective black nickel-cobalt coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shashikala, A.R.; Sharma, A.K.; Bhandari, D.R. [Thermal System Group, ISRO Satellite Centre, Bangalore 560 017 (India)

    2007-04-16

    Solar selective black nickel-cobalt plating on pre cleaned aluminum alloy substrates with nickel undercoat were investigated. Process optimization was carried out by the hull cell experiments investigating the influence of operating variables on the optical selectivity of the coating. The coatings were characterized with scanning electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopic and polarization studies. Evaluation of the coatings was carried out by adhesion, measurement of coating thickness and optical properties, humidity, thermal cycling, thermo-vacuum performance and thermal stability tests. (author)

  3. Corrosion damage evolution and residual strength of corroded aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Youhong Zhang; Guozhi Lv; Hui Wang; Bomei Si; Yueliang Cheng

    2008-01-01

    The LY12CZ aluminum alloy specimens were eurroded under the conditions of different test temperatures and exposure durations. After corrosion exposure, fatigue tests were performed. Scanning electron microscopy and optical microscope analyses on corrosion damage were carried out. The definition of surface corrosion damage ratio was provided to describe the extent of surface corrosion damage. On the basis of the measured data sets of the corrosion damage ratio, the probabilistic model of corrosion damage evolution was built. The corrosion damage decreased the fatigue life by a factor of about 1.25 to 2.38 and the prediction method of residual strength of the corroded structure was presented.

  4. Recrystallization model for hot-rolling of 5182 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A recrystallization model for hot-rolling of 5182 aluminum alloy was presented by means of the fractional softening during double interval deformation. It is found that the recrystallization rate depends on strain rate more sensitively than deformation temperature, and the time for full recrystallization is very short as strain rate is greater than 1 s-1. Using the recrystallization—time—temperature curves, the desirable hot rolled microstructure can be obtained by controlling the rolling speed, temperature and cooling rate before cooling during the last pass in reversing mill.

  5. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    Science.gov (United States)

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and... Materials Research Directorate, ARL Approved for public release; distribution is unlimited

  6. A Rare Earth High-iron Aluminum Alloy Cable Company to Settle in Chongqing

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with

  7. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Varma, S.K.; Andrews, S.; Vasquez, G. [Univ. of Texas, El Paso, TX (United States). Dept. of Metallurgical and Materials Engineering

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  8. Rheo-diecasting Process for Semi-solid Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel one-step semisolid processing technique, the rheo-diecasting (RDC) process, was developed, which adapts in situ creation of semisolid metal slurry with fine and spherical solid particles followed by direct shaping of the slurry into a near-net shape component using the existing cold chamber diecasting process. The RDC process was applied to process A356 and A380 aluminum alloys. The resulting microstructures and mechanical properties of RDC products under as-cast and various heat treatment conditions were analyzed. The experimental results show that the RDC samples have an extremely low porosity, a fine and uniform microstructure throughout entire casting, and consequently much improved strength and ductility in the as-cast condition. The strength of RDC A356 alloy can be substantially improved under T5 and T6 heat treatments without loss of ductility.

  9. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  10. Material and information flows pertaining to aluminum alloy pipe distribution

    Directory of Open Access Journals (Sweden)

    D. Simić

    2013-10-01

    Full Text Available This paper discusses the distribution flow of aluminum (Al alloy pipes, starting with the completion of the manufacturing process and final inspection. The proposed solution considers the use of bar-coded caps produced from recycled polymer materials that are placed on the ends of the tubes in order to achieve protection against potential changes in material properties and preserve the product quality. For the preparation of capped tube bundles for shipment from the manufacturer output storage to the customer input warehouse, a technical solution that enables correct and efficient Al alloy pipe handling is proposed, in terms of safety, security, reliability, financial feasibility and ecological viability, with optimal utilization of transport and storage.

  11. Comparatively Analysis of Characteristics of Aluminum or Magnesium Alloy Air Intake Manifold by Tilted Casting%铝、镁合金进气歧管倾转铸造的特点

    Institute of Scientific and Technical Information of China (English)

    陈红兵; 罗书强; 赵建华

    2011-01-01

    Flow behavior and heat release of aluminum alloy or magnesium alloy air intake manifolds during permanent mold tilting casting process were simulated by the Anycasting software. The results show that both magnesium alloy and aluminum alloy melt fully exhibit laminar flow during filling process. Cooling curves exhibit similar change shape for aluminum alloy and magnesium alloy manifold, however, solidification time of magnesium alloy melt is longer than that of aluminum alloy melt.%采用AnyCasting铸造模拟软件,分别模拟了金属型倾转铸造铝合金和镁合金进气歧管工艺,并对其流动模式和释放热量进行了比较.镁合金熔液在整个充型过程中完全属于层流流动,铝合金熔液也属于层流流动.模拟结果显示铝合金与镁合金进气歧管的冷却曲线变化趋势基本一致,但镁合金熔液比铝合金熔液冷却时间更长.

  12. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  13. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  14. Stress Relaxation Behavior and Springback Equation of 7050 Aluminum Alloys During Age-forming Process

    Directory of Open Access Journals (Sweden)

    REN Wei-wei

    2016-09-01

    Full Text Available The stress relaxation behavior and springback equation of 7050 aluminum alloys during the age-forming process were studied through self-designed uniaxial tension device. The results show that in traditional aging temperature, the stress relaxation curve of 7050 aluminum alloys exhibits a classical logarithmic decrement curve. The stress relaxation process can be divided into three stages, which are the initial stress decayed fast stage, the subsequent stress slowly decayed stage and the stress constantly maintained stage, respectively. Stress relaxation limit of 7050 aluminum alloys decreases with increasing aging temperature. The threshold stress presents during the stress relaxation process due to the interaction between precipitation behavior and dislocation creep of 7050 aluminum alloys. The stress relaxation equation of 7050 aluminum alloys is obtained through resolving the feature and Taylor equation of relaxation process, and using the stress relaxation equation can precisely predict the springback of workpiece after age-forming.

  15. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  16. Single-aging characteristics of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; YIN Zhi-min; SHEN Kai; LI Jie; HUANG ji-wu

    2007-01-01

    The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η' phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.

  17. Crystal Growth of II-VI Semiconducting Alloys by Directional Solidification

    Science.gov (United States)

    Lehoczky, Sandor L.; Szofran, Frank R.; Su, Ching-Hua; Cobb, Sharon D.; Scripa, Rosalia A.; Sha, Yi-Gao

    1999-01-01

    This research study is investigating the effects of a microgravity environment during the crystal growth of selected II-VI semiconducting alloys on their compositional, metallurgical, electrical and optical properties. The on-going work includes both Bridgman-Stockbarger and solvent growth methods, as well as growth in a magnetic field. The materials investigated are II-VI, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se, where x is between 0 and 1 inclusive, with particular emphasis on x-values appropriate for infrared detection and imaging in the 5 to 30 micron wavelength region. Wide separation between the liquidus and solidus of the phase diagrams with consequent segregation during solidification and problems associated with the high volatility of one of the components (Hg), make the preparation of homogeneous, high-quality, bulk crystals of the alloys an extremely difficult nearly an impossible task in a gravitational environment. The three-fold objectives of the on-going investigation are as follows: (1) To determine the relative contributions of gravitationally-driven fluid flows to the compositional redistribution observed during the unidirectional crystal growth of selected semiconducting solid solution alloys having large separation between the liquidus and solidus of the constitutional phase diagram; (2) To ascertain the potential role of irregular fluid flows and hydrostatic pressure effects in generation of extended crystal defects and second-phase inclusions in the crystals; and, (3) To obtain a limited amount of "high quality" materials needed for bulk crystal property characterizations and for the fabrication of various device structures needed to establish ultimate material performance limits. The flight portion of the study was to be accomplished by performing growth experiments using the Crystal Growth Furnace (CGF) manifested to fly on various Spacelab missions.

  18. The effect of adding boron in solidification microstructure of dilute iron-carbon alloy as assessed by phase-field modeling

    Directory of Open Access Journals (Sweden)

    Henrique Silva Furtado

    2011-01-01

    Full Text Available Alloying element like boron, even in small addition, is well known to improve hardenability of steels. Its application can improve mechanical properties of steels and reduce alloying costs. Despite these benefits is not easy to cast boron steels, mainly in dynamical solidification process like continuous casting, due to their crack susceptibility1,2. The strategy of using Phase-Field simulation of the solidification process is based on its proved capacity of predicting realistic microstructure that emerge during solidification under conditions even far from equilibrium3-5. Base on this, some comparative simulations were performed using a three component dilute alloy in a two dimensional domain under unconstrained (isothermal and constrained (directional solidification. Simulation results suggested two fragile mechanisms: one related to a deep dendritic primary arms space and other due to the remelting of this region at low temperature. Both resulted mainly from the high boron segregation in interdendritic regions.

  19. Helical Feed Milling with MQL for Boring of Aluminum Alloy

    Science.gov (United States)

    Sasahara, Hiroyuki; Kawasaki, Makoto; Tsutsumi, Masaomi

    MQL is applied to the helical feed milling hole-making process of aluminum alloy. It is difficult to drill on aluminum alloy without cutting fluid because the adhesion to the tool leads to a chip jam, the tool breakage or low accuracy. By employing the helical feed milling, cutting temperature will decrease, each chip length will become short and a chip jam in a hole will be avoided, because the intermittent cutting is realized. As a result of employing the helical feed milling with MQL, it was shown that the shape error is decreased, a burr formation is decreased, machining temperature becomes low and the cutting force becomes small comparing with drilling process. Shape error by helical feed milling with MQL is comparable with that with flood coolant. In this case, small mist particle counts under 5μm, which affects working environment, are almost constant if the spindle speed varies. Scattered mist particle counts are less when MQL is employed over 20000 min-1 spindle speed comparing with the flood coolant.

  20. Laser shocking of 2024 and 7075 aluminum alloys

    Science.gov (United States)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  1. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  2. Flexural-torsional buckling behavior of aluminum alloy beams

    Institute of Scientific and Technical Information of China (English)

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  3. Defect analysis of complex-shape aluminum alloy forging

    Institute of Scientific and Technical Information of China (English)

    SHAN De-bin; ZHANG Yan-qiu; WANG Yong; XU Fu-chang; XU Wen-chen; L(U) Yan

    2006-01-01

    The isothermal precision forging was applied for the purpose of forming aluminum alloy with complex shape. The complexity of forging is easy to lead to the occurrence of the defects, such as underfilling, folding, metal flow lines disturbance and fibre breaking. The reasons for the defects were analyzed on the basis of experiments and finite element method(FEM). The results show that the size of flash gutter bridge, the lubricating condition and the deformation process are the main factors influencing the filling qualities of complex-shape aluminum alloy forging. The folding defect is mainly caused by different velocities of filling cavities, fast flow of much metal in one direction and confluence of two or multi metal strands. Improper metal distribution in different regions can cause the flow lines disturbance and fast metal flow in one direction is also a cause of the flow lines disturbance According to the reasons, some measures were taken to improve the quality of the forged parts. These studies can contribute to offering some experiences in making process project and optimizing the process parameters for forging complex-shape aviation products.

  4. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    Science.gov (United States)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  5. Effects of an Applied Magnetic Field on the Directional Solidification of Hg(1-x)Zn(x)Se Alloys

    Science.gov (United States)

    Cobb, S. D.; Lehoczky, S. L.; Szofran, F. R.; Jones, K. S.

    1999-01-01

    Directionally solidified Hg(0.9)Zn(0.1)Se alloys were studied as an alternative to HgCdTe for the detection of electromagnetic radiation because of predicted improvements in lattice stability. Several boules were grown using a modified Bridgman-Stockbarger method and in an applied magnetic field. Axial compositional profiles showed mass transfer was primarily diffusion controlled. Radial compositional variations were greatly reduced when solidification occurred in an applied magnetic field. Microstructural characteristics and dislocation etch pit densities were greatly improved over HgTe based alloys. The extreme importance of processing conditions on defect generation was illustrated by comparing ampoule configurations and thermal profiles.

  6. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  7. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    Science.gov (United States)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  8. Effects of Si Content and the Addition Amount of Al-3B Master Alloy on the Solidification Structures of Hypoeutectic Al-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Si content and the addition amount of Al-3B master alloy on the solidification structures of hypoeutectic Al-Si alloys were studied. The addition amounts of the master alloy were 0.2%, 0.4%, 0.7% and 1% (mass fraction, so as the follows), respectively. The Si content of Al-Si binary alloys investigated varied from 1% to 11%. The observation of macrostructures of non-refined samples showed that 3% Si constitutes a transition point at which the minimum grain size can be obtained. It was also found that Al-3B master alloy can shift the transition point towards a higher Si value when its addition amount increases, making this point appear at 4%, 5% and 6% Si as its addition amount increases up to 0.4%, 0.7% and 1%, respectively.

  9. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  10. Synthesis of metastable aluminum-based intermetallics by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Srinivasan, S.; Desch, P.B.

    1991-01-01

    We have used mechanical alloying (MA) to prepare fine-grained powders of Al 25 at. % X (X = Ti, Zr, Hf) having the metastable cubic L1{sub 2} structure. Hexane (C{sub 6}H{sub 14}) is added to the milling media to avoid the agglomeration of the aluminum powder. Carbon from the decomposition of the hexane incorporates into the powder to form a fine dispersion of carbides. These carbides are beneficial because they limit grain growth during consolidation and add strength to the alloy. We have consolidated the mechanically alloyed powders using conventional hot-pressing and non-conventional dynamic pressing. We used hot pressing to consolidate mechanically alloyed L1{sub 2}-Al{sub 3}Ti powder in the presence of excess of Al. The compact has the DO{sub 22} structure. Its room-temperature compressive strength is 1.2 GPa (exceeding that of cast Al{sub 3}Ti by a factor of 10). At 400{degrees}C, the compressive strength decreases to 1 GPa. The ductility, which is negligible at room temperature, increases to 6% at 400{degrees}C. We used dynamic pressing to consolidate L1{sub 2}-Al{sub 5}CuZr{sub 2} powder. The compact, having the L1{sub 2} structure, has fine grains (44 nm) and a fine dispersion of ZrC precipitates (7 nm). Its hardness is in the range of 1030 kg mm{sup {minus}2}. Current efforts are to investigate ternary alloys based on fine-grained trialuminides which include a ductile second phase. 26 refs., 8 figs.

  11. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Science.gov (United States)

    Cau Dit Coumes, C.; Lambertin, D.; Lahalle, H.; Antonucci, P.; Cannes, C.; Delpech, S.

    2014-10-01

    In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  12. Friction stir welding characteristics of two aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    刘会杰; 藤井英俊; 前田将克; 野城清

    2003-01-01

    The friction stir welding characteristics of the strain-hardened AA1050-H24 and precipitate-hardened AA2017-T351 aluminum alloys were examined in order to reveal the effects of the alloy properties on the friction stir welding behavior of the base materials. The results show that (1) for AA1050-H24, the weld possesses a smooth surface and clear ripples, there is no elliptical weld nugget in the weld, there is not discernible interface between the stir zone and the thermo-mechanically affected zone(TMAZ), and the internal defect of the weld looks like a long crack and is located in the lower part of the weld; (2) for AA2017-T351, the weld usually possesses a rough surface and visible ripples, the elliptical weld nugget clearly exists in the weld and there is obvious plastic flow and a discernible interface between the nugget and the TMAZ, and the internal defect of the weld is composed of many voids and distributed in the middle part of the weld; (3) the effective ranges of the welding parameters for AA1050-H24 and AA2017-T351 are both narrow, especially for the latter; and (4) the tensile strength efficiencies of the joints for the two typical alloys are similar, i e 79% for AA1050-H24 and 82% for AA2017-T351.

  13. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    Science.gov (United States)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  14. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    Science.gov (United States)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  15. Effect of rapid solidification treatment on structure and electrochemical performance of low-Co AB5-type hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    姚青荣; 唐莹; 周怀营; 邓健秋; 王仲民; 潘顺康; 饶光辉; 朱其明

    2014-01-01

    The effect of rapid solidification on structure and electrochemical performance of the LaNi4.5Co0.25Al0.25 hydrogen storage alloy was investigated by X-ray powder diffraction and a simulated battery test, including maximum capacity, cycling stability, self-discharge, and high-rate discharge ability (HRD). All the melt-spun alloys were single-phase with the CaCu5-type structure (space groupP6/mmm). In comparison to the as-cast alloy, the rapidly quenched alloys manifested an improved homogeneity of com-position and expanded lattice parameters. The electrochemical measurements showed that the activation property, cycling stability and self-discharge of the alloy electrodes were also improved for the rapid solidified alloys. The HRDof the as-cast alloy was better than those of all the rapidly solidified alloys. As the quenching rate increased, the HRD and exchange current density first decreased and then increased.

  16. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    Science.gov (United States)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  17. Simulation for microstructure evolution of Al-Si alloys in solidification process

    Institute of Scientific and Technical Information of China (English)

    XU Hong; HOU Hua; ZHANG Guo-wei

    2006-01-01

    The numerical simulation for microstructure evolution of Al-Si alloy in solidification process is carried out with phase field model. The phase field model,solution algorithm and the program of dendrite growth are introduced. The definition of initial condition,boundary condition and the stability condition of differential format are all included. The simulation results show that the evolution of dendrite morphology is as follows: the initial circle nucleus transforms to the rectangle one firstly,then its corners develop to the four trunks and from which the secondary side branches are generated and even the third side branches are produced from secondary ones. The dendrite tip radius decreases quickly at the initial stage and changes slowly at the late stage,which is mainly due to the fact that more and more side branches appear and grow up. The comparisons of dendrite morphology between simulated results and investigations by others are also presented. It is proved that the dendrite morphologies are similar in trunks and arms growth,so the developed phase field program is accurate.

  18. Rapid Directional Solidification with Ultra-High Temperature Gradient and Cellular Spacing Selection of Cu-Mn Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growthdirection of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperaturegradient and rapid directional solidification. The experimental results show that the growth direction of microstructure isstrongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realizedon the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradientand growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center ofthe molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings underthe laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum,λ minimum, λmin, and average primary spacing,λ, as functions of growth rate, Vb, can be given by, λ =12.54V b-0.61,λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model forrapid cellular/dendritic growth, and a good agreement is found.

  19. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  20. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    Science.gov (United States)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  1. Micromechanical models of delamination in aluminum-lithium alloys

    Science.gov (United States)

    Messner, Mark Christian

    Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void

  2. The effect of alloy elements on the density variation of steel melt at the interdendritic region during solidification

    Science.gov (United States)

    Cao, Y. F.; Chen, Y.; Ma, X. P.; Fu, P. X.; Kang, X. H.; Liu, H. W.; Li, D. Z.

    2016-03-01

    Alloying elements in steels have essential effects on the formation of macrosegregation by inducing a density difference between the mushy zone and the bulk melt, and even by the alteration of the solidified microstructure. Hence, in terms of the thermodynamic laws for solidification of an idealized dilute solution, a systematic theoretical analysis on the effect of elements on the density variation of the interdendritic melt is presented for common Fe-based binary alloys. It shows that density variation closely associates with three crucial parameters: the microsegregation parameter λ, the temp-comp-expansion parameter β and the initial composition CL o . With these derived parameters, a simple analytical model is proposed to assess the influence of alloy elements on density change. The theoretical analysis indicates that compared to silicon, the effect of carbon on the density variation cannot be ignored, which is remarkably different from the previous recognition of these two elements. The macrosegregation induced by carbon only is experimentally validated by two dissected 500 kg ingots with different carbon contents. Furthermore, to directly validate the results of theoretical analysis a macrosegregation model with two different microsegregation laws (lever rule and Scheil equation) is established. Then simulations of the convection during solidification in the experimental 500 kg reference ingot are performed for Fe-C and Fe-Si alloys, respectively. It demonstrates that numerically simulated effects of carbon and silicon on the interdendritic convection induced by density inversion are fairly consistent with the analytical predictions.

  3. Effect of low temperature melt on solidification structure of A356 alloy with melt thermal treatment

    Institute of Scientific and Technical Information of China (English)

    何树先; 王俊; 孙宝德; 周尧和

    2001-01-01

    The influence of the low temperature melt (LTM) structure on solidification structure of the sample with melt thermal treatment (MTT) process was studied. And the mechanism of the MTT process was analyzed with cluster theory. It is shown that the final solidification structure is dependent mainly on the structure of LTM. Dendrites will appear in the solidification structure if the structure of LTM is dendritic before MTT. Otherwise, non-dendritic grains will appear in the solidification structure. And the lower the temperature of LTM, the more remarkable the effect of the LTM structure is.

  4. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  5. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  6. Subsequent yield loci of 5754O aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-bo; WAN Min; WU Xiang-dong; YAN Yu

    2009-01-01

    Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method, the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well, whereas isotropic hardening mode, which is widely used in sheet metal forming fields, predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.

  7. Microstructural stability of ultrafine grained cold sprayed 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Champagne, V.R. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-01-30

    The microstructural stability of ultrafine grained (UFG) cold spray 6061 aluminum deposits produced by high pressure cold spray were investigated by in situ heating to a fully annealed state via a hot-stage transmission electron microscope (TEM). It was possible to observe the precise locations and temperatures of different microstructural changes, like dislocation movement and other restoration processes. Even after heating up to the annealing temperature for this alloy, the deposited layer in the perpendicular direction was found to preserve the UFG structures, which were the result of different recrystallization mechanisms caused by the high strains present during cold spraying. Extensive solute segregation at the grain boundaries acted as an obstruction for grain boundary migration in this direction, thereby preventing grain growth. However, in the direction parallel to the deposited surface, the UFGs were not resistant to grain coursing like the other direction, since the grain boundaries had much less solute segregation.

  8. Laser vision sensing based on adaptive welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiang; SONG Yonglun; ZHANG Jun; ZHANG Wanchun; JIANG Li; XIA Xuxin

    2007-01-01

    A laser vision sensing based on the adaptive tungsten inert gas(TIG)welding system for large-scale aluminum alloy components was established to fit various weld groove conditions.A new type of laser vision sensor was used to precisely measure the weld groove.The joint geometry data,such as the bevel angle,the gap,the area,and the mismatch,etc.,aided in assembling large-scale aerospace components before welding.They were also applied for automatic seam tracking,such as automatic torch transverse alignment and torch height adjustment in welding.An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions.The process results in a good weld formation and high welding quality,which meet the requirements of related standards.

  9. Microstructure characteristics and mechanical properties of rheocasting 7075 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2013-09-01

    Full Text Available The microstructure characteristics and mechanical properties of 7075 aluminum alloy produced by a new rheoforming technique, under as-cast and optimized heat treatment conditions, were investigated. The present rheoforming combined the innovatively developed rheocasting process, named as ICSPC (inverted cone-shaped pouring channel process, and the existing HPDC (high pressure die casting process. The experimental results show that the ICSPC can be used to prepare high quality semi-solid slurry for the subsequent die casting. Compared with conventional HPDC process, the ICSPC process can improve the microstructures and mechanical properties of the cast tensile samples. An optimized heat treatment results in significant improvement in ultimate tensile strength. However, the ductility of the samples, both under as-cast and optimized heat treatment conditions, are relatively poor.

  10. Applications of pattern recognition in aluminum alloy texture characterization

    Science.gov (United States)

    Liu, Guizhong; Rehbein, D. K.; Foley, James C.; Thompson, R. B.

    2000-05-01

    This paper presents a methodology to extract texture information in Aluminum alloys using pattern recognition algorithm. The orientation of the samples can be obtained by the orientation Image Microscope (OIM) technique. The ISO DATA pattern recognition algorithm is implemented to classify the OIM data into different clusters. Based on the classification results, the probability density function (pdf) is estimated. Then, the pdf is expanded as a series of Legendre functions with coefficients, i.e., the orientation distribution coefficients (ODC) as texture parameters. Three of these ODC's are of special interests, namely W400, W420, and W440. This paper includes results from ultrasonic NDE and this novel algorithm.—Ames Laboratory is operated for U.S. Department of Energy by Iowa State University under Contract W-7405-ENG-82. This work was supported by the Office of Basic Energy Sciences as a part of the Center of Excellence of the Synthesis and Processing of Advanced Materials.

  11. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  12. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  13. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  14. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Makoto HINO; Koji MURAKAMI; Yutaka MITOOKA; Ken MURAOKA; Teruto KANADANI

    2009-01-01

    The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined. Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element. The zinc deposits in the 2nd zincate treatment became thinly uniform, and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element. XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid. This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.

  15. Formability analysis of aluminum alloys through deep drawing process

    Science.gov (United States)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  16. Simulation of microstructural evolution in directional solidification of Ti-45at.%Al alloy using cellular automaton method

    Directory of Open Access Journals (Sweden)

    Wang Kuangfei

    2010-02-01

    Full Text Available The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model. The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth. For dendritic structures formed under a high thermal gradient, the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition. Furthermore, it has been observed that, with increasing pulling velocity, there exists a cell/dendrite transition region consisting of cells and dendrites, which varies with the thermal gradient in a contradicting way, i.e. increase of the thermal gradient leading to the decrease of the range of the transition region. The simulations agree reasonably well with experiment results.

  17. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    Science.gov (United States)

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei

    2015-07-01

    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  18. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    Science.gov (United States)

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  19. Feasibility of integrated seed making and directional solidification of TiAl alloy using cold crucible

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-jun; FU Heng-zhi; XU Da-ming; GUO Jing-jie; BI Wei-sheng; SU Yan-qing

    2009-01-01

    A new seed making method with cold crucible by power off technique was proposed. The cold crucible quenched seed with columnar structure has a similar cross-section shape as that of the cold crucible, and can be directly used for the directional solidification processes. The proposed method can significantly simplify the seeded directional solidification process and avoid the contamination from the seed machining.

  20. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    Science.gov (United States)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  1. In-plane anisotropy of 1545 aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-yi; YIN Zhi-min; YANG Jin; DU Yu-xuan

    2005-01-01

    The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test,X-ray diffractometer(XRD),optical microscope and transmission electron microscope.The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane,transversal section and longitudinal section were obtained by Harris method.The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is{110}texture.On the basis of the model that regards the sheet containing only{110}texture as a monocrystal,the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed.The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties,but the main cause is the crystallographic texture.

  2. Semi-solid metal processing of aluminum alloy A356 and magnesium alloy AZ91: Comparison based on metallurgical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, S.; Beffort, O. [Swiss Federal Laboratories for Materials Testing and Research, EMPA Thun, CH-3602 Thun (Switzerland); Ogris, E.; Uggowitzer, P.J. [Institute of Metallurgy, ETH Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2003-09-01

    Thixocasting or rheocasting of AZ and AM magnesium alloys continues to be a problematic case in semi-solid processing. The comparison with the aluminum thixo alloy A356 shows that the metallurgical and physical properties of the Mg alloy AZ91 are little compatible with this technology: The conclusions from this study are of fundamental importance for future developments in this field of research. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  4. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products ? Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  5. The mechanism of stress-corrosion cracking in 7075 aluminum alloy

    Science.gov (United States)

    Jacobs, A. J.

    1970-01-01

    Various aspects of stress-corrosion cracking in 7075 aluminum alloy are discussed. A model is proposed in which the continuous anodic path along which the metal is preferentially attacked consists of two phases which alternate as anodes.

  6. WAYS TO IMPROVE SEDIMENTATION STABILITY OF RELEASE COATING FOR DIE CASTING OF ALUMI-NUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchyk

    2015-01-01

    Full Text Available The paper presents the results of a study on the effect of a method for dispersing the size of the component of the dispersed phase separation coatings used in high pressure die casting aluminum alloys.

  7. Computational Modeling aided Near Net Shape Manufacturing for Aluminum Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will focus on developing and validating computational models for near-net shape processing of aluminum alloys. Computational models will be developed...

  8. Superplasticity of the aluminum alloys containing the Al{sub 3}Ni eutectic particles

    Energy Technology Data Exchange (ETDEWEB)

    Portnoy, V.K. [Department of Physical Metallurgy Non-Ferrous Metals, National University of Science and Technology ' ' MISIS' ' , Moscow (Russian Federation); Mikhaylovskaya, A.V.

    2012-09-15

    The structures and parameters of superplasticity of aluminum alloys containing fine and coarse eutectic Al{sub 3}Ni particles were investigated. Traditional hot and cold rolling were used for sheet producing. The research alloys have low- or high - alloying solid solution. Superplasticity characterization of the alloy with high-alloying solid solution is much better beside alloys with low-alloying solid solution. Alloying by zirconium improves superplasticity in some investigated alloys. Some alloys with partially recrystallized structure show d = 500-700% at T = 0.95 Tm with the constant strain rates to the range of (1.10{sup -3}-1.10{sup -2}) s{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.

    Science.gov (United States)

    Hakimi, O; Aghion, E; Goldman, J

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg-6%Nd-2%Y-0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications.

  10. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  11. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  12. Phase field simulation of the interface morphology evolution and its stability during directional solidification of binary alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influences of pulling speed V and temperature gradient G on morphology evolution, concentration distribution, solute trapping and interface stability during directional solidification of binary alloys have been studied with the B-S phase field model. Simulated results reproduced the morphology transitions of deep cell to shallow cell and shallow cell to plane front. The primary cellular spacing, depth of groove and effective solute redistribution coefficient for different V and G are compared. The absolute stability under high pulling speed and high temperature gradient has also been predicted, which is in agreement with the Mullins-Sekerka (M-S) stability theory.

  13. Solidification and microstructural aspects of laser-deposited Ni–Mo–Cr–Si alloy on stainless steel

    Indian Academy of Sciences (India)

    Reena Awasthi; Santosh Kumar; D Srivastava; G K Dey

    2010-12-01

    Laser cladding of stainless steel substrate was carried out using Ni–32Mo–15Cr–3Si (wt%) alloy powder. Laser cladding parameters were optimized to obtain defect-free and metallurgically bonded clad. Variation in solidification rate, cooling rate and compositional variation resulted in heterogeneous microstructure. Microstructure was found to be distinctly different in regions of clad cross-section. Majority of the region was found to consist of eutectic of Mo-rich hcp intermetallic Laves phase and NiFe fcc gamma solid solution phases. Extensive microstructural examinations of different clad regions have been carried out using microscopy and microanalysis techniques.

  14. Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy

    Institute of Scientific and Technical Information of China (English)

    Changshuai Wang; Jun Zhang; Lin Liu; Hengzhi Fu

    2011-01-01

    The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics.

  15. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  16. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    Science.gov (United States)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Guibo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  17. Machining studies of die cast aluminum alloy-silicon carbide composites

    Science.gov (United States)

    Sornakumar, Thambu; Kathiresan, Marimuthu

    2010-10-01

    Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.

  18. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje

    2008-05-09

    The micro-scale solidification of commercial Mg alloys of the AZ and AM series is in the focus of the present thesis. Two approaches of investigating solidification are implemented, complementary regarding temperature gradient and solidification rate, and also with respect to the generated microstructure. The first approach considers solidification under a negligible spatial temperature gradient. Here the solidification curves, i.e. fraction solid versus temperature, were determined by developing an improved heat-transfer modeling applicable on both differential thermal analysis (DTA) and differential scanning calorimetry (DSC) signals. The correlation between solidification enthalpy and fraction solid during solidification was tested in detail. A better evaluation of the measured DTA and DSC signals is attained through an independent measurement of the time constant as function of temperature for the applied equipment. A further improvement is achieved through a more impartial interpretation of the measured curves. Both improvements enable a better desmearing of measured signals and reduce the error induced by the operator. The novel tantalum encapsulation enabled appropriate handling of challenging Mg-alloys. The viability and limitations of thermal analysis in general to determine start and end of solidification of AZ magnesium alloys was also studied. The second approach is based on directional solidification in a high temperature gradient and at constant solidification rate, achieved by the Bridgman technique. The resulting dendritic microstructure and inherent microsegregation are studied in this work. The solute profiles, i.e. solute content versus solid phase fraction during solidification, are determined by an advanced treatment of the EPMA data. Problems that are demonstrated in this work are Al-loss and melt pollution due to reaction with typical sample container material made of unprotected steel. The development of an optimized boron nitride (BN

  19. Microstructure characterization and micro- and nanoscale mechanical behaviour of magnesium-aluminum and magnesium-aluminum-calcium alloys

    Science.gov (United States)

    Han, Lihong

    volume fraction of the precipitates and the solute content within the primary alpha-Mg of the AC52 alloys were related to the different solidification rates, which directly influence the nano indentation creep strength of the alloys.

  20. Modeling of Cell/Dendrite Transition During Directional Solidification of Ti-AI Alloy Using Cellular Automaton Method

    Institute of Scientific and Technical Information of China (English)

    WANG Kuang-fei; LI Bang-sheng; MI Guo-fa; GUO Jing-jie; FU Heng-zhi

    2008-01-01

    Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44AI alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observa-tion. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.

  1. In situ X-ray observations of gas porosity interactions with dendritic microstructures during solidification of Al-based alloys

    Science.gov (United States)

    Murphy, A. G.; Browne, D. J.; Houltz, Y.; Mathiesen, R. H.

    2016-03-01

    In situ X-radiography solidification experiments were performed on Al-based alloys, using both synchrotron and laboratory-based X-ray sources, in conjunction with a gradient furnace and a newly developed isothermal furnace, respectively. The effect of gas porosity nucleation and growth within the semi-solid mush during both columnar and equiaxed solidification was thereby observed. In all experimental cases examined, gas porosity was observed to nucleate and grow within the field-of-view (FOV) causing various levels of distortion to the semi-solid mush, and thereafter disappearing from the sample leaving no permanent voids within the solidified microstructure. During columnar growth, a single bubble caused severe remelting and destruction of primary trunks leading to secondary fragmentation and evidence of blocking of the columnar front. Equiaxed solidification was performed under microgravity-like conditions with restricted grain motion in the FOV. The degree to which the nucleated gas bubbles affected the surrounding grain structure increased with increasing solid fraction. However, bubble sphericity remained unaffected by apparent solid fraction or grain coherency.

  2. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  3. Measurement and control of ice adhesion to aluminum 6061 alloy

    Science.gov (United States)

    Archer, Paul; Gupta, Vijay

    1998-10-01

    A new experimental strategy for measuring the tensile strength of ice coatings to structural surfaces is presented. In this experiment, a laser-induced compressive stress pulse travels through a 1 mm-thick substrate disc that has a layer of ice grown on its front surface. The compressive stress pulse reflects into a tensile wave from the free surface of the ice and pulls the iceinterface apart, given a sufficient amplitude. The interface strength was calculated by recording the free surface velocity of an Al substrate using a Doppler interferometer and calculating the stress at the interface using a finite-difference elastic wave mechanics simulation with the free surface velocity as an input. The test procedure was used to study ice adhesion on 6061 aluminum alloy sheets. It was found that the adhesion strength of ice to unpolished aluminum substrates was 274 MPa at -10°C. This value decreased with temperature, down to 179 MPa at -40°C. Interestingly, this decrement in the tensile strength could be directly related to the existence of a liquid-like layer that is known to exist on the surface of solid ice till -30°C. The interface strength was also shown to decrease by polishing the Al substrate surface or by adding thin polymer coatings on the unpolished Al substrate. The sensitivity of the technique to such microstructural changes in the interfacial region is indicative of the experiments ability to provide basic adhesion data, which in turn, can be used to solve the deicing problem from a fundamental standpoint. 1998 Elsevier Science Ltd.

  4. Modeling of Coalescence and Separation of Liquid Droplets During Solidification of Immiscible Alloys

    Institute of Scientific and Technical Information of China (English)

    Lirong; Tong; Nagy; El-Kaddah

    2002-01-01

    Directional solidification methods are being used f or in-situ production of metallic immiscible composites. A quantitative understa nding of the dynamic behavior and growth kinetics of the nucleated second phase during solidification is necessary to produce homogeneous dispersion in solidifi ed composites. This paper presents a mathematical model for describing the grow th of nucleated dispersed phase in the two-liquid phase region ahead of the sol idification front and the entrapment of these droplets...

  5. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Science.gov (United States)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  6. Study on Rare Earth-Containing Phases in TiAl Based Alloys Prepared by Non-Equilibrium Solidification Processing

    Institute of Scientific and Technical Information of China (English)

    马学著; 沈军; 贾均

    2001-01-01

    Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HA). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with γ/α2 lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.

  7. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Atef Korchef

    2013-01-01

    Full Text Available A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP. The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared with those of the nonpressed alloy. ECAP leads to an intensive grain refinement accompanied by an increased dislocation density. All electrochemical tests confirm that corrosion resistance of the alloy remarkably diminished with increasing the ECAP number of passes. This is presumably due to the breakdown of the α-AlFeSi after ECAP leading to higher number of galvanic cells and enhanced dissolution of the aluminum matrix.

  8. Iron-aluminum alloys having high room-temperature and method for making same

    Science.gov (United States)

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  9. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  10. Microstructure characteristics of Ni-43Ti-4Al-2Nb-2Hf alloy prepared by conventional casting and directional solidification

    Directory of Open Access Journals (Sweden)

    Zhou Lei

    2012-05-01

    Full Text Available To further investigate the microstructure characteristic and solidification mechanism, so as to provide knowledge for the microstructure control of a NiTi-Al based high-temperature structural material, the microstructure of Ni-43Ti-4Al-2Nb-2Hf (at.% alloy ingots prepared by conventional casting (arc-melting and directional solidification (DS at various drawing velocities (2 mm·min-1, 18 mm·min-1, 30 mm·min-1 and 60 mm·min-1, respectively was investigated by means of electron probe microanalyses. Experimental results reveal that the microstructures are composed of NiTi matrix phase, β-Nb phase and Ti2Ni phase for samples obtained by both conventional casting and DS. Conventional casting has an equiaxial structure, while DS has a slender and acicular cellular structure which grows along the [001] orientation preferentially. Small amounts of white β-Nb phase and black Ti2Ni phase co-exist at the grain boundaries or intercellular regions. With an increase in drawing velocity, the NiTi matrix phase is inclined to grow along (100 and (200 crystallographic planes, and the cellular arm spacing reduce gradually, but the directionality of the solidified structure weakens significantly. The homogeneous dispersion of β-Nb phase and the decrease of Ti2Ni phase in DS samples are beneficial to improving the mechanical properties. Solidification mechanism analysis indicates that the dark grey NiTi matrix phase initially precipitates from the liquid phase, and then the divorced eutectic reaction takes place, which produces the light gray matrix phase and β-Nb phase. Finally, the peritectic reaction happens, which generates the black Ti2Ni phase. The complete solidified path of the alloy is L→ NiTi+L → NiTi+ β-Nb+L → NiTi+β-Nb + Ti2Ni.

  11. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability.

    Science.gov (United States)

    Lo, T S; Karma, A; Plapp, M

    2001-03-01

    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/v(p)), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/v(p) is large enough for both phases to be morphologically stable, the formation of the microstructure becomes controlled by a subtle interplay between the nucleation and growth of the two solid phases. The structures that have been observed in this regime (in small samples where convection effects are suppressed) include alternate layers (bands) of the parent and peritectic phases perpendicular to the growth direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1 (1995)], as well as partially filled bands (islands), where the peritectic phase does not fully cover the parent phase which grows continuously. We develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to explore the formation of these structures. Simulations of this model shed light on the morphology transition from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth morphology that one might expect to observe in large samples under purely diffusive growth conditions.

  12. A Numerical Formula for General Prediction of Interface Bonding between Alumina and Aluminum-Containing Alloys

    Directory of Open Access Journals (Sweden)

    Michiko Yoshitake

    2014-01-01

    Full Text Available Interface termination between alumina and aluminum-containing alloys is discussed from a viewpoint of thermodynamics by extending the authors’ previous discussion on the interface termination between alumina and pure metal. A numerical formula to predict interface bonding at alumina-aluminum-containing alloys is proposed. The effectiveness of the formula is examined by extracting information on interface termination from experimental results and first-principle calculations in references. It is revealed that the prediction by the formula agrees quite well with the results reported in the references. According to the formula, a terminating species can be switched from oxygen to aluminum, which had been actually demonstrated experimentally. The formula uses only basic quantities of pure elements and the formation enthalpy of oxides. Therefore it can be applied for most of aluminum-containing alloys in the periodic table and is useful for material screening in developing interfaces with particular functions.

  13. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  14. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    OpenAIRE

    Craig C. Menzemer; Eric Hilty; Shane Morrison; Ray Minor; Tirumalai S. Srivatsan

    2016-01-01

    The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR) and as-welded (AW) conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW) with spray transfer using 120–220 A of current at ...

  15. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L.; Edwards, D.J. [Pacific Northwest Laboratory, Richland, WA (United States); Toloczko, M.B. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  16. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  17. Friction stir welding of 5052 aluminum alloy plates

    Institute of Scientific and Technical Information of China (English)

    Yong-Jai KWON; Seong-Beom SHIM; Dong-Hwan PARK

    2009-01-01

    Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3 000 r/min under a constant traverse speed of 100 mm/min. The results show that at all tool rotation speeds, defect-free welds are successfully obtained. Especially at 1 000, 2 000 and 3 000 r/min, the welds exhibit very smooth surface morphologies. At 500, 1 000, and 2 000 r/min, onion ring structure is clearly observed in the friction-stir-welded zone (SZ). In addition, the onion ring structure region becomes wider as the tool rotation speed is increased. The gain size in the SZ is smaller than that in the base metal, and is decreased with a decrease of the tool rotation speed. In all tool rotation speeds, the SZ exhibits higher average hardness than the base metal. Especially at 500 r/min, the average hardness of the SZ reaches a level about 33% greater than that of the base metal. At 500, 1 000 and 2 000 r/min, the tensile strength of the friction stir welded (FSWed) plates is similar to that of the base metal (about 204 Mpa). The elongation of the FSWed plates is lower than that of the base metal (about 22%). However, it is noticeable that the maximum elongation of about 21% is obtained at 1 000 r/min.

  18. Tool For Friction Stir Tack Welding of Aluminum Alloys

    Science.gov (United States)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  19. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    Science.gov (United States)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-04-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  20. Numerical simulation of high speed incremental forming of aluminum alloy

    Science.gov (United States)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  1. Influence of Shot Peening on Failure of an Aluminum Alloy Exposed to Aggressive Aqueous Environments

    Science.gov (United States)

    Lv, Shengli; Cu, You; Zhang, Wei; Tong, Xiaoyan; Srivatsan, T. S.; Gao, Xiaosheng

    2013-06-01

    Pre-corrosion damage tests were performed on the high strength aluminum alloy (Al-Zn-Mg-Cu) that was subject to shot peening surface treatment. The tests were performed for different time levels and compared one-on-one with the performance and characteristics of the non-shot-peened alloy. The residual stress induced by the shot peening surface treatment for two different intensity levels was measured using the method of incremental drilling of holes. Based on an observation of morphology of corrosion experienced by the aluminum alloy the depth of corrosion was measured using a laser displacement sensor. The surface of the aluminum alloy that was shot peened revealed an overall better resistance to pitting while concurrently revealing evidence of partial degradation. The depth of degradation is related to the residual stress that is induced in the aluminum alloy sample by the shot peening treatment. The key mechanisms that control damage during corrosion of the shot-peened aluminum alloy can be divided into the distinct stages of (a) initial occurrence of uniform corrosion followed by (b) the generation of degradation, and (c) culminating in the initiation of pitting once the depth of degradation reaches a certain level.

  2. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Science.gov (United States)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  3. Modeling and Measurements of Heat Transfer Phenomena in Two-Phase PbSn Alloy Solidification in an External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    P.A.Nikrityuk; K.Eckert; R.Grundmann; B.Willers; S.Eckert

    2003-01-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass,momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  4. Modeling and measurements of heat transfer phenomena in two-phase PbSn alloy solidification in an external magnetic field

    Science.gov (United States)

    Nikrityuk, P. A.; Eckert, K.; Grundmann, R.; Willers, B.; Eckert, S.

    2003-11-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass, momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  5. 铝及铝合金TIG焊接特性%Character of TIG Welding for Aluminum and Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    殷春喜; 黄军庆; 熊震东; 贾翠催

    2011-01-01

    The characters of TIG welding for aluminum and aluminum alloys were described, it includes the shielding gas and groove of TIG welding and the effect of welding process on the weld shape and welding quality.%概述了铝及铝合金TIG焊接技术特性,包括铝及铝合金TIG焊接保护气体、坡口的选择和焊接工艺对焊缝成形和焊接质量的影响.

  6. Solidification pathways of ternary Cu62.5Fe27.5Sn10 alloy modulated through liquid undercooling and containerless processing

    Science.gov (United States)

    Xia, Z. C.; Wang, W. L.; Wu, Y. H.; Luo, S. B.; Wei, B.

    2016-11-01

    The active control of microstructure evolution is still a challenging factor for the development of advanced immiscible alloys. Here, we make an attempt to modulate the solidification pathways of undercooled Cu62.5Fe27.5Sn10 alloy by glass fluxing and drop tube techniques. Through regulating the liquid undercooling, three types of microstructures, dendrite, dispersive structure and macrosegregation pattern, were formed under the normal gravity condition. Below the first critical undercooling of 15 K, the alloy melt displayed the normal peritectic solidification. At moderate undercoolings above 15 K, the metastable liquid phase separation took place and the solidified microstructure appeared as homogeneously dispersed structure. If undercooling further overtook the second threshold of 107 K, macrosegregation occurred and the bulk alloy separated into an Fe-rich zone and a Cu-rich zone. Under the free fall condition, the alloy droplets with the droplet diameter beyond 805 μm showed the equilibrium peritectic solidification. If the droplet diameter decreased below 805 μm, the metastable liquid phase separation was induced and the microstructural morphology of Cu62.5Fe27.5Sn10 alloy droplet evolved from dendrite into dispersive structure. Furthermore, experimental and simulated results revealed that the temperature gradient had great influence on the size distribution of Fe-rich globules.

  7. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  8. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2016-05-01

    Full Text Available The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe, Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe, Al Si9Cu3(Fe(Zn and Al Si9 has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe(Zn, with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  9. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    Science.gov (United States)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  10. Thin-walled aluminum alloy tube NC precision bending based on finite element simulation

    Institute of Scientific and Technical Information of China (English)

    GU Rui-jie; YANG He; ZHAN Mei; LI Heng

    2006-01-01

    Elongation and springback are the bottleneck problems of thin-walled aluminum alloy tube NC precision bending. So thin-walled aluminum alloy tube NC precision bending based on finite element simulation is put forward. The finite element model of thin-walled aluminum alloy tube NC bending is established based on the DYNAFORM platform. The process of thin-walled aluminum alloy tube NC precision bending is simulated with the model and the elongation and springback of tube bending can be is put forward and the computing equations of bending angle, bending radius, blanking length and initial bending section based on elongation and springback angle are derived. The bending angle, bending radius, blanking length and initial bending section of tube bending can be gained with these equations based on the elongation and springback angle from the simulation. The study can be used to control the quality of thin-walled aluminum alloy tube NC bending so that precision bending without redundance can be realized.

  11. Study on shear resistance of aluminum alloy I-section members

    Institute of Scientific and Technical Information of China (English)

    Zhen DONG; Qilin ZHANG

    2008-01-01

    The design method for the shear resistance of aluminum alloy I-section members is presented, taking into consideration of the post-buckling strength of webs and the restraint effect of flanges, and the practical design formulas are proposed. The deflection of aluminum alloy I-section members under concentrated load is simulated by using the finite element method, and several design theories are discussed. The relation of shear resistance to the maximum web displacement reflects that the web of aluminum alloy I-section member is under fewer shears buckling force, while the whole member has higher shear resistance. However, the traditional design method is not able to give the real shear resistance of aluminum alloy I-section members. The proposed design formulas for the shear resistance of aluminum alloy I-section members is used to calculate accurately the post-buckling resistance of webs and the shear resistance contribution of flanges. The results are in a great agreement with the test data of Hamoodi M J, Burr C A, Evans H R and the results from Eurocode9 formulas.

  12. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    Directory of Open Access Journals (Sweden)

    H. S. Zhang

    2016-04-01

    Full Text Available A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa, the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  13. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy

    Science.gov (United States)

    Wierenga, Mark

    Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading forces than any other wire tested. In round wire tensile tests, loading force at all deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% elongation) without permanent deformation and with little to no loss in force output. In large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi showed a hysteresis

  14. Effects of Be, Sr, Fe and Mg interactions on the microstructure and mechanical properties of aluminum based aeronautical alloys

    Science.gov (United States)

    Ibrahim, Mohamed Fawzy

    The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the

  15. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    Institute of Scientific and Technical Information of China (English)

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  16. 用稀土合金对铸造铝合金精炼和变质处理的研究%A New Approach to Refining and Modifying Cast Aluminum Alloys with Rare Earth Alloys

    Institute of Scientific and Technical Information of China (English)

    唐多光; 毛协民

    2000-01-01

    The effects of rare earth (RE) alloys on the refining and modifying of cast aluminum alloys were investigated. Compared to other substances in common use, rare earth alloys maintain the refining and modifying effects of the aluminum alloys for a longer time. RE alloys can also reduce environmental pollution in the melting process. These effects of RE alloys make them become a superior choice for the applications in aluminum foundry.

  17. A Study on Friction Stir Welding of 12mm Thick Aluminum Alloy Plates

    Institute of Scientific and Technical Information of China (English)

    Deepati Anil Kumar; Pankaj Biswas; Sujoy Tikader; M. M. Mahapatra; N. R. Mandal

    2013-01-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  18. A new dynamic method for measuring hydrogen partial pressure in molten aluminum alloy

    Directory of Open Access Journals (Sweden)

    Sun Qian

    2011-02-01

    Full Text Available Hydrogen partial pressure is an important parameter to calculate hydrogen concentration levels in molten aluminum alloy. A new dynamic method for measuring hydrogen partial pressure in molten aluminum alloy is studied. Dynamic and rapid measurement is realized through changing the volume of the vacuum chamber and calculating the pressure difference ΔP between the theoretical and measured pressures in the vacuum chamber. Positive ΔP indicates hydrogen transmits from melt to vacuum chamber and negative ΔP means the reverse. When ΔP is equal to zero, hydrogen transmitted from both sides reached a state of dynamical equilibrium and the pressure in the vacuum chamber is equal to the hydrogen partial pressure in the molten aluminum alloy. Compared with other existing measuring methods, the new method can significantly shorten the testing time and reduce measuring cost.

  19. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    Science.gov (United States)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  20. Welding Distortion Prediction in 5A06 Aluminum Alloy Complex Structure via Inherent Strain Method

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2016-09-01

    Full Text Available Finite element (FE simulation with inherent deformation is an ideal and practical computational approach for predicting welding stress and distortion in the production of complex aluminum alloy structures. In this study, based on the thermal elasto-plastic analysis, FE models of multi-pass butt welds and T-type fillet welds were investigated to obtain the inherent strain distribution in a 5A06 aluminum alloy cylindrical structure. The angular distortion of the T-type joint was used to investigate the corresponding inherent strain mechanism. Moreover, a custom-designed experimental system was applied to clarify the magnitude of inherent deformation. With the mechanism investigation of welding-induced buckling by FE analysis using inherent deformation, an application for predicting and mitigating the welding buckling in fabrication of complex aluminum alloy structure was developed.

  1. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  2. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    Energy Technology Data Exchange (ETDEWEB)

    Shang, J.T. [Key laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096 (China)], E-mail: Jshang@seu.edu.cn; Xuming, Chu; Deping, He [School of Materials Science and Engineering, Southeast University, Nanjing 210096 (China)

    2008-06-25

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores.

  3. The Cleaning of OAB Universal Covers - An Origin of Smut in Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shen, T

    2002-05-14

    The smut that appeared on the universal covers after the OAB cleaning process consists of sub-micron size aluminum particles originating from the machining of these parts prior to cleaning. The rigorous gross and precision cleanings with Brulin in the OAB cleaning process could not completely wash these fine particles away from the surfaces. However, applying a phosphoric acid etch before the cleaning helped to remove these fine aluminum particles. Experimental results again showed that an acid etching before cleaning is essential in preventing the occurrence of smut in aluminum alloy after gross/precision cleaning. A mechanism, based on the electrostatic {zeta}-potential, is proposed to explain the occurrence of smut that is often encountered during the cleaning of aluminum alloys.

  4. Effect of abruptly changing withdrawal rate on solidification microstructure in directionally solidified Al-4.5wt%Cu alloy

    Directory of Open Access Journals (Sweden)

    Yang Luyan

    2014-01-01

    Full Text Available Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing (PDAS and liquid solute distribution in front of the solid-liquid interface were investigated. The experimental results for the PDAS at a constant withdrawal rate agree well with the values calculated by the Hunt, Trivedi and Hunt-Lu models. At an abrupt change in the withdrawal rate, the maximum to minimum ratio of the PDAS at a given solidification parameter, i.e. λ1max/λ1min, is more than 2, and the PDAS values are remarkably history-dependent. Further, the liquid-solute distribution curve based on theoretical calculation shows that the larger the initial withdrawal rate is, the smaller the minimum of liquid solute concentration in front of the solid-liquid interface is after the abrupt change in withdrawal rate.

  5. Monitoring solidification of an alloy by thermoelectric effects: results of the MEPHISTO-USMP1 flight experiment

    Science.gov (United States)

    Lehmann, P.; Moreau, R.; Camel, D.; Favier, J. J.

    1998-05-01

    During the directional solidification of a metallic alloy, the interface between the solid and the liquid can be looked upon as a thermocouple junction, provided that the two phases show a difference of thermoelectric power. Thermoelectric measurements made under microgravity conditions are discussed here. When the interface is planar, i.e. isothermal, the measured voltage is proportional to the temperature of the interface and correlation with solidification phenomena is straightforward. If now this interface is cellular, we show that a local thermoelectric current density appears. A modelling of the voltage drop due to these currents is proposed. It is shown that to the leading order, the measured voltage depends on three unknowns: the average liquid fraction, the temperatures at the tip and at the bottom of the structure. A good agreement is found between the theoretical calculated voltage and the measurements made on metallographies. It is also demonstrated that thermoelectric currents appear in the solid phase because of the concentration inhomogeneities. These currents cause a peak to appear on the signal. At least, we show how to deduce the liquid fraction, the temperature at the tip and at the bottom of the interface directly from the recorded signal.

  6. Solidification Sequence and Evolution of Microstructure During Rheocasting of Four Al-Si-Mg-Fe Alloys with Low Si Content

    Science.gov (United States)

    Payandeh, Mostafa; Jarfors, Anders E. W.; Wessén, Magnus

    2016-03-01

    Four Al-Si-Mg-Fe alloys with Si contents varying from 1.6 to 4.5 wt pct were rheocast, using the RheoMetal™ process to prepare slurry and cast in a vertical high-pressure die casting machine. Particle size and Si concentration in the α-Al particles in the slurry and in the as-rheocast component were investigated. A uniform distribution of Si in the globular α 1-Al particles was achieved in the slurry. In the rheocast samples, measurement of the α 1-Al particles showed that these particles did not increase significantly in size during pouring and secondary solidification. The two additional α-Al particles types, α 2-Al particles and α 3-Al particles, were identified as being a result of two discrete nucleation events taking place after slurry production. The Si concentration in the α 2-Al and α 3-Al particles indicated that the larger α 2-Al particles precipitated before the α 3-Al particles. In addition, in the as-rheocast condition, the Si distribution inside the α 1-Al particles showed three distinct zones; an unaffected zone, a transition zone, and in some cases the start of a dendritic/cellular zone. The phenomenon of dendritic growth of globular α 1-Al particles during secondary solidification occurred concomitantly with the final eutectic reaction and increased with increasing amount of the Al-Si eutectic phase.

  7. Microstructure evolution and non-equilibrium solidification of undercooled Ni-29.8at% Si eutectic alloy melts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Microstructure formation and transition of undercooled bulk Ni70.2Si29.8 eutectic alloy melt were investigated by melt fluxing,cyclical overheating and cooling under high-frequency vacuum melting.The maximum undercooling of the alloy melt amounted to 428 K.Scanning electron microscope(SEM),energy-dispersive X-ray spectroscopy(EDS) and optical microscopy techniques(OM) were adopted to investigate the microstructure and identify the phase composition.The cooling curves of eutectic alloys upon solidification which were subjected to different undercoolings were described and compared.The complex microstructure evolution was observed in the as-solidified samples with the increase of undercooling.Surprisingly,an extremely fine microstructure was achieved at the max undercooling of 428 K,and the lamellar distance of about 50-100 nm was observed.Based on the solution entropy of eutectic phases,the microstructure transition with the undercooling was analyzed.Calculated results showed that the microstructure transition process was ascribed to solution entropy of transition,i.e.,the complex microstructure evolution was attributed to a transition from faceted-faceted(FF)→faceted-nonfaceted(FN)→nonfaceted-nonfaceted(NN) eutectic systems concurring with increased undercooling.

  8. Numerical analysis of thermal effect in aluminum alloy by monopulse laser

    Science.gov (United States)

    Gu, Xiuying; Chen, Guibo; Jin, Guangyong; Zhang, Wei; Li, Mingxin

    2014-12-01

    A spatial axisymmetric finite element model is established to investigate the distribution characteristics of temperature field that monopulse millisecond laser act on aluminum alloy. The thermal process of laser acting on aluminum alloy (melting, gasification and temperature drop) is simulated. Using the specific quivalent heat capacity method to simulate the solid-liquid, liquid-gas phase transition of aluminum alloy, and considering the differences of thermal physical parameters between different states (solid-liquid, liquid-gas) of aluminum alloy in the process of numerical simulation. The distribution of temperature field of aluminum alloy caused by the change of energy density, pulse width and spot radius of monopulse millisecond laser are investigated systematically by using numerical simulation model. The numerical results show that the temperature of target no longer rises after reaching the target gasification. Given the pulse width and spot radius, the temperature of target rise as the energy density increases, the laser intensity distribution is gaussian, so the temperature distribution of the target surface also shows Gaussian. The energy absorption mechanism of aluminum alloy is surface absorption mechanism, the temperature gradient in axial of the target is much lager than the temperature gradient in radial of the target surface, so the temperature rise in axial only exists a thin layer of target surface. Given the energy density and spot radius, as the pulse width increases, the power density of laser decreases, therefore the temperature of target center point decreases as the pulse width increases, and the temperature difference becomes small. As the pulse width decreases, the heat transfer in axial reduce, the deposition of energy enhances on the surface. Given the energy density and pulse width, the distribution of the temperature is enlarged as the spot radius increases, but the distribution of the temperature in axial is independent of the spot

  9. The thickness of native oxides on aluminum alloys and single crystals

    OpenAIRE

    Evertsson, J.; Bertram, F.; Weissenrieder, J.; Goethelid, Mats; Pan, J; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.; Zhang, F.; Rullik, L.; Merte, L. R.; Shipilin, Mikhail; Soldemo, M.; S Ahmadi; Vinogradov, N.

    2015-01-01

    We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liq...

  10. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    Science.gov (United States)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  11. Primary cellular/dendritic spacing selection of Al-4.95%Zn alloy under near-rapid directional solidification condition

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Al-4.95% Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near-rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λmax, minimum, λmin, and average primary spacing, (-\\λ), as functions of growth velocity, v, can be given by λmax = 12 340 v-0.8353, λmin = 2953.7 v-07717, (-\\λ)= 7820.3 v-08333, respectively.

  12. Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy

    Science.gov (United States)

    Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Sakane, Shinji; Shimokawabe, Takashi; Aoki, Takayuki

    2016-05-01

    Selections of growing crystals during directional solidification of a polycrystalline binary alloy were numerically investigated using two-dimensional phase-field simulations. To accelerate the simulations, parallel graphics processing unit (GPU) simulations were performed using the GPU-rich supercomputer TSUBAME2.5 at the Tokyo Institute of Technology. Twenty simulations with a combination of five sets of different seed orientation distributions and four different temperature gradients covering dendritic and cellular growth regions were performed. The unusual grain selection phenomenon, in which the unfavorably oriented grains preferentially grow instead of the favorably oriented grains, was observed frequently. The unusual selection was more remarkable in the cellular structure than in the dendritic structure.

  13. A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification

    Science.gov (United States)

    Rosam, J.; Jimack, P. K.; Mullis, A.

    2007-08-01

    A fully implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully explicit methods, with respect to CPU time and accuracy, is shown. Due to the high nonlinearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour.

  14. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution

    Institute of Scientific and Technical Information of China (English)

    Chen Xin; Tian Wenming; Li Songmei; Yu Mei; Liu Jianhua

    2016-01-01

    The effect of temperature on the corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution was investigated by potentiodynamic polarization and electrochemical impe-dance spectroscopy (EIS) techniques. The surface characterization was observed and determined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spec-trometer (EDS). The results demonstrate that the anodic aluminum dissolution and the cathodic oxygen reduction were accelerated by the increased temperature. However, as temperature was over 60 °C, the solubility and concentration of oxygen decreased, resulting in the inhibition of cathodic reaction. The cathodic reaction rate of 3003 aluminum alloy rose to the maximum at 60 °C. The Warburg impedance in Nyquist diagram diminished and then was replaced by a negative capaci-tance caused by the absorption of intermediate corrosion product on electrode. On the other hand, after potentiodynamic measurements, 3003 aluminum alloy suffered pitting corrosion. The dissolu-tion of aluminum alloy around secondary phase particles expanded both horizontally and vertically. © 2016 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

  15. Study on the Kinetics of Hydrogen Evolution in Aluminum Alloy Casting%铝合金铸造过程中析氢动力学研究

    Institute of Scientific and Technical Information of China (English)

    周迪生; 龙伟; 张恒华

    2012-01-01

    There always exists the phenomenon of hydrogen absorption in aluminum alloy melt. When melt temperature dropped, the solubility of hydrogen in melt decreased and the hydrogen precipitated from melt, which resulted in the blowhole and porosity in cast ingots or workpieces. Different mould preheating temperatures and decompression solidification were used in casting, the effect of mold preheating temperature on the diffusion rate and diffusion distance of hydrogen, the solidification pressure on the critical nucleation radius and growth of hydrogen bubble were analyzed. The results show that hydrogen diffusion and precipitation was inhibited at low mold preheating temperature, high solidification pressure produced large critical nucleation radius of hydrogen bubble and restrained the nucleation and growth of gas bubble. Hydrogen was dissolved in aluminum alloy melt and the comparability of the structure was improved in low mould preheating temperature and high solidification pressure.%铝及其合金在熔炼过程中,往往存在吸氢现象.当熔体温度下降时,氢在熔体中的溶解度下降,会从熔体中析出,导致铸锭或工件产生气孔、疏松等缺陷.采用不同模具预热温度浇注和减压凝固,分析了模具预热温度对熔体中氢扩散速度及扩散距离的影响,凝固压强对氢气泡临界形核半径和长大的影响.结果表明,低的模具预热温度抑制熔体中氢的扩散和析出;凝固压力大时氢气泡的临界形核半径较大,抑制气泡的形核和长大.所以低的模具预热温度和高的凝固压强可使氢固溶在铝合金中,从而提高其组织的致密性.

  16. Low temperature bonding of LD31 aluminum alloys by electric brush plating Ni and Cu coatings

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenqing; Wang Chunqing; Du Miao

    2005-01-01

    Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was nvestigated. The technology of electric brush plating Ni and Cu was studied and plating solution was developed. The microstructure of the coatings, soldered joint and fracture face were analyzed using optic microscopy, SEM and EDX. The shear strength of soldered joint could reach as high as 26. 83 MPa. The results showed that reliable soldered joint could be obtained at 230℃, the adhesion of coatings and LD31 aluminum alloy substrate was high enough to bear the thermal process in the soldering.

  17. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  18. Constitutive description of casting aluminum alloy based on cylindrical void-cell model

    Institute of Scientific and Technical Information of China (English)

    CHEN Bin; PENG Xiang-he; ZENG Xiang-guo; WU Xin-yan; SUN Shi-tao

    2006-01-01

    Casting aluminum alloys are highly heterogeneous materials with different types of voids that affect the mechanical properties of the material. Through the analysis ora cylindrical void-cell model the evolution equation of the voids was obtained. The evolution equation was embedded into a nonclassical elastoplastic constitutive relation, and an elastoplastic constitutive relation involving void evolution was obtained. A corresponding finite element procedure was developed and applied to the analyses of the distributions of the axial stress and porosity of notched cylindrical specimens of casting aluminum alloy A101. The computed results show good agreement with experimental data.

  19. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    WEI Peng; LIU Lin

    2007-01-01

    The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellular foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.

  20. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    Science.gov (United States)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  1. Thermal conductivity prediction of closed-cell aluminum alloy considering micropore effect

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    2015-02-01

    Full Text Available Large quantities of micro-scale pores are observed in the matrix of closed-cell aluminum alloy by scanning electron microscope, which indicates the dual-scale pore characteristics. Corresponding to this kind of special structural morphology, a new kind of dual-scale method is proposed to estimate its effective thermal conductivity. Comparing with the experimental results, the article puts forward the view that the prediction accuracy can be improved by the dual-scale method greatly. Different empirical formulas are also investigated in detail. It provides a new method for thermal properties estimation and makes preparation for more suitable empirical formula for closed-cell aluminum alloy.

  2. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    Institute of Scientific and Technical Information of China (English)

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  3. Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloyswas studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuouscasting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equippedwith energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influencedsegregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of aproper frequency. Electromagnetic frequency plays a significant role in solute redistribution; Iow frequency is moreefficient for promoting solution of alloying elements.

  4. ARTIFICIAL NEURAL NETWORK MODEL OF CONSTITUTIVE RELATIONSHIP FOR 2A70 ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    F. Liu; D.B. Shan; Y. Lu; Y.Y. Yang

    2005-01-01

    The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.

  5. A Parametric Analysis of CO2 Laser Heat Absorption Profile of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    JOSEPH .I. ACHEBO

    2010-06-01

    Full Text Available Aluminum alloys are amongst the most difficult everyday metals that can be welded using the laser welding process. For this reason, high power density lasers are needed to weld these alloys because they require higher thermal diffusivity to form a key hole than would be needed for other metals such as steel. This means that more heat wouldhave to be applied while welding aluminum alloys than would be needed to weld steel to achieve a satisfactory coupling effect. The heat input generated from laser welding is affected by the absorptivity coefficient, the welding speed and the time spent. Once the optimum heat input is attained, it is expected to create less heat distortion, its energy is more concentrated within the weld area and deep weld penetration is achieved. Determining optimum values of welding parameters would lead to acceptable weld quality. In this study, the heat absorption profile of a CO2 laser welding of 5083 aluminum alloy was investigated using the models proposed by Bramson in 1968 and Okon et al in 2002. The 4mm thick aluminum alloy investigated was as received from the vendors. The calculated laser beam absorptivity coefficient, irradiance and boiling temperature were 0.12, 2.3 x 106 Wcm-2 and 2482oC respectively. These calculated values compared well with reported values in other literature.

  6. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  7. To find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Chandan Kaushal

    2014-11-01

    Full Text Available The present research aims to investigate the effects of Gas Metal Arc Welding (GMAW on the mechanical properties of different grades of aluminum alloys. GMAW is the most common method of joining aluminum alloys used in various industrial processes. It replaces the Tungsten Inert Gas (TIG method of providing equally high quality of joints with a much higher performance. Aluminum alloys under consideration for this experiment will be from 6XXX series, consisting of Silicon and Magnesium as main alloying elements. Weld joints Will be produced with the help of a Gas Metal Arc Welding (GMAW process. The Hardness, Tensile strength, yield stresses and elongation will be the mechanical properties to be obtained. As aluminum alloys show large micro structural changes after welding it is necessary to know about the effect of welding parameters on the mechanical properties of weldements as too high welding current and too high welding speed will result in high heat input and weakening of weld profile so a balance is need to be struck between welding parameters and mechanical properties. Scattering Electron Microscopy (SEM technique will be used to analyze micro structural changes.

  8. Analysis of solidification cracks in welds of Al-Mg-Si A6351 type alloy welded by high frequency pulsed TIG process. 1st report. Evaluation of solidification crack susceptibility by means of Houldcroft test

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M.; Machida, S. [The Univ. of Tokyo, Tokyo (Japan); Taniguchi, C.; Brandi, S. [Univ. of Sao Paulo, Sao Paulo, SP (Brazil)

    1994-08-05

    The main objective of this work is to study the susceptibility to solidification crack by means of Houldcroft test on Al-Mg-Si alloy A6351 welded by TIG process using a D.C. straight polarity and pulsed current with high frequency with varied parameters. The parameters are welding speed, current, arc pulse, frequency, and heat input per unit weld length. The effect of grain structures on the susceptibility of solidification crack is evaluated as well as the welding pool geometry in which these structures has developed. The `quasi-stationary` state is studied for the specimen geometry used, and the process efficiencies are estimated using welding pool width method. The trend of increase of crack length with the welding speed observed in no pulsed arc conditions is significantly changed with the introduction of the pulsed arc. Therefore, the pulsed frequency and the welding speed seem to be competing parameters in effect on the development of solidification crack. This work shows that the generalized tendency of solidification crack susceptibility with regard to the obtained grain structures as presented in previous works is not a general trend. 40 refs., 13 figs., 3 tabs.

  9. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  10. Quantitative analysis of impurities in aluminum alloys by laser-induced breakdown spectroscopy without internal calibration

    Institute of Scientific and Technical Information of China (English)

    LI Hong-kun; LIU Ming; CHEN Zhi-jiang; LI Run-hua

    2008-01-01

    To develop a fast and sensitive alloy elemental analysis method, a laser-induced breakdown spectroscopy(LIBS) system was established and used to carry out quantitative analysis of impurities in aluminum alloys in air at atmospheric pressure. A digital storage oscilloscope was used as signal recording instrument, instead of traditional gate integrator or Boxcar averager, to reduce the cost of the whole system. Linear calibration curves in the concentration range of 4×10-5-10-2 are built for Mg, Cr, Mn, Cu and Zn using absolute line intensity without internal calibrations. Limits of detection for these five elements in aluminum alloy are determined to be (2-90)×10-6. It is demonstrated that LIBS can provide quantitative trace elemental analysis in alloys even without internal calibration. This approach is easy to use in metallurgy industries and relative research fields.

  11. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  12. Competitive growth of different phases in eutectic alloys under directional solidification

    Institute of Scientific and Technical Information of China (English)

    LI; Shuangming; MA; Bole; LI; Xiaoli; LIU; Lin; FU; Hengzhi

    2005-01-01

    By comparisons of interface growth temperatures of different phases in eutectic systems, competitive growth between the primary phase, halo structure and coupled eutectic has been discussed. The compositions for the formation of coupled eutectic have been discussed at the coexisting with the primary phase in eutectic under directional solidification. Solidification conditions, such as growth rate and composition required for the formation of the primary phase, halo structure and coupled eutectic have been proposed. Numerical calculation results show that no halo structure formed in directionally solidified Sn-Pb eutectic, but in Al-Si eutectic, competitive growth structures of the primaryβ-Si phase,α-Al halo structure and coupled eutectic (α+β) may exist at the hypereutectic composition between 12.6% and 25% Si. The calculated results of Al-Si eutectic fit in with the reported experiment results.

  13. A simulation study of rapid solidification and crystal configuration of Cu70Ni30 alloy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; ZHOU Qunyi; TIAN Ze'an; WANG Xin; LI Qiang

    2005-01-01

    A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2 × 1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be further understood.

  14. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    Science.gov (United States)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  15. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations

    Directory of Open Access Journals (Sweden)

    Kostov A.

    2005-01-01

    Full Text Available Titanium and its alloys interstitially dissolve a large amount of impurities such as oxygen and nitrogen, which degrade the mechanical and physical properties of alloys. On the other hand crucible oxides based on CaO, ZrO2 Y2O3, etc., and their spinels (combination of two or more oxides can be used for melting titanium and its alloys. However, the thermodynamic behavior of calcium, zirconium, yttrium on the one side, and oxygen on the other side, in molten Ti and Ti-Al alloys have not been made clear and because of that, it is very interesting for research. Owing of literature data, as well as these crucibles are cheaper than standard crucibles for melting titanium and titanium alloys, in this paper will be presented the results of selection of thermo-chemistry analysis with the aim to determine the crucible oxide stability in contact with molten titanium and titanium-aluminum alloys.

  16. The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, José Eduardo, E-mail: spinelli@ufscar.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Silva, Bismarck Luiz [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé; Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2014-10-15

    Bi–Ag alloys have been stressed as possible alternatives to replace Pb-based solder alloys. Although acceptable melting temperatures and suitable mechanical properties may characterize such alloys, as referenced in literature, there is a lack of comprehension regarding their microstructures (morphologies and sizes of the phases) considering a composition range from 1.5 to 4.0 wt.%Ag. In order to better comprehend such aspects and their correlations with solidification thermal parameters (growth rate, v and cooling rate, T-dot), directional solidification experiments were carried out under transient heat flow conditions. The effects of Ag content on both cooling rate and growth rate during solidification are examined. Microstructure parameters such as eutectic/dendritic spacing, interphase spacing and diameter of the Ag-rich phase were determined by optical microscopy and scanning electron microscopy. The competition between eutectic cells and dendrites in the range from 1.5 to 4.0 wt.%Ag is explained by the coupled zone concept. Microhardness was determined for different microstructures and alloy Ag contents with a view to permitting correlations with microstructure parameters to be established. Hardness is shown to be directly affected by both solute macrosegregation and morphologies of the phases forming the Bi–Ag alloys, with higher hardness being associated with the cellular morphology of the Bi-2.5 and 4.0 wt.%Ag alloys. - Highlights: • Asymmetric zone of coupled growth for Bi–Ag is demonstrated. • Faceted Bi-rich dendrites have been characterized for Bi–1.5 wt.%Ag alloy. • Eutectic cells were shown for the Bi-2.5 and 4.0 wt.%Ag solder alloys. • Interphase spacing relations with G × v are able to represent the experimental scatters. • Hall-Petch type equations are proposed relating microstructural spacings to hardness.

  17. Preparation of Al-Sr Master Alloy in Aluminum Electrolysis Cell

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Al-Sr master alloy was prepared by using liquid aluminum cathode and a mixture of Na3AlF6- SrCO3 as the basic molten salt electrolyte in a laboratory electrolysis cell.The effects of electrolyte composition,electrolysis temperature,cathodic current density and the electrolytic duration on Sr content of Al-Sr alloy were studied.Through laboratory experiments,the parameters for smooth electrolytic reaction were proposed.

  18. Texture analysis of cold rolled and annealed aluminum alloy produced by twin-roll casting

    OpenAIRE

    Juliana de Paula Martins; André Luis Moreira de Carvalho; Angelo Fernando Padilha

    2012-01-01

    A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}

  19. Research on Semisolid Microstructural Evolution of 2024 Aluminum Alloy Prepared by Powder Thixoforming

    OpenAIRE

    Pubo Li; Tijun Chen; Suqing Zhang; Renguo Guan

    2015-01-01

    A novel method, powder thixoforming, for net-shape forming of the particle-reinforced Aluminum matrix composites in semi-solid state has been proposed based on powder metallurgy combining with thixoforming technology. The microstructural evolution and phase transformations have been investigated during partial remelting of the 2024 bulk alloy, prepared by cold pressing of atomized alloy powders to clarify the mechanisms of how the consolidated powders evolve into small and spheroidal primary...

  20. Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy

    Science.gov (United States)

    2013-06-01

    was not used to measure the transition from corrosion pit to long crack [25]. . . . . . . . . . . 22 3.1 Composition of a typical sample of 7075 -T6...lives. 24 III. Methodology 3.1 Material Research was conducted using 7075 -T6 aluminum. This alloy is commonly used in aerospace applications and as a... material properties of this alloy. It is important to note that these properties were also used in all finite element models. Table 3.1: Composition of

  1. The Role of Si and Cu Alloying Elements on the Dendritic Growth and Microhardness in Horizontally Solidified Binary and Multicomponent Aluminum-Based Alloys

    Science.gov (United States)

    Araújo, Eugênio C.; Barros, André S.; Kikuchi, Rafael H.; Silva, Adrina P.; Gonçalves, Fernando A.; Moreira, Antonio L.; Rocha, Otávio L.

    2017-03-01

    Horizontal directional solidification (HDS) experiments were carried out with Al-3wtpctCu, Al-3wtpctSi, and Al- 3wtpctCu-5.5wtpctSi alloys in order to analyze the interrelation between the secondary dendrite arm spacing ( λ 2) and microhardness (HV). A water-cooled horizontal directional solidification device was applied. Microstructural characterization has been carried out using traditional techniques of metallography, optical, and SEM microscopy. The ThermoCalc software was used to generate the phase equilibrium diagrams as a function of Cu and Si for the analyzed alloys. The effects of Si and Cu elements on the λ 2 and HV evolution of the hypoeutectic binary Al-Cu and Al-Si alloys have been analyzed as well as the addition of Si in the formation of ternary Al-Cu-Si alloy. The secondary dendrite arm spacing was correlated with local solidification thermal parameters such as growth rate ( V L), cooling rate ( T R), and local solidification time ( t SL). This has allowed to observe that power experimental functions given by λ 2 = Constant ( V L)-2/3, λ 2 = Constant ( T R)-1/3 and λ 2 = Constant ( t SL)1/3 may represent growth laws of λ 2 with corresponding thermal parameters for investigated alloys. Hall-Petch equations have also been used to characterize the dependence of HV with λ 2. A comparative analysis is performed between λ 2 experimental values obtained in this study for Al-3wtpctCu-5.5wtpctSi alloy and the only theoretical model from the literature that has been proposed to predict the λ 2 growth in multicomponent alloys. Comparisons with literature results for upward directional solidification were also performed.

  2. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  3. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  4. Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti56Al44 alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one.

  5. MICROSTRUCTURE OF Mg-6.4Zn-1.1Y ALLOY FABRICATED BY RAPID SOLIDIFICATION AND RECIPROCATING EXTRUSION

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhang; C.J. Xu; X.F. Guo

    2008-01-01

    In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60 um were obtained by a melt spinning single-roller device, and the flakes were then processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-1.1Y alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in a-Mg solute solution, and impede the formation of Mg3 Y2 Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3 YZn6 quasicrystal formed directly from the melt. The mierostrueture of the flakes consists of the a-Mg solid solution and icosahedral Mg3 YZn6 quasierystal. Dense rods can be made from the flakes by two-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3 YZn6 compounds are precipitated and distributed uniformly, whereas the rods possess fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: amagnesium solid solution as matrix and fine icosahedral Mg3 YZn6 quasicrystal which disperses uniformly in the matrix.

  6. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was

  7. Softening phenomenon during compression test in nanograined aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S.H.; Jang, J.M.; Lee, W. [Korea Inst. of Industrial Technology, ChonAn (Korea)

    2005-07-01

    Al-Mg and Al-Mg-Cu alloys are known well to reveal superplasticity in tension at high temperatures. In this study, deformation behaviors of those alloys nanograined were investigated under compression test at room temperature. During plastic deformation softening phenomena occurred obviously in nanograined Al-1.5wt%Mg and Al-0.7wt%Mg-1.0wt%Cu alloys while slight strain hardening appeared in nanograined pure Al. These results suggest that the softening strongly depends on composition of alloys. The softening takes place over strain rate range from 10{sup -4} up to 10{sup -1}. (orig.)

  8. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020

    Indian Academy of Sciences (India)

    Santosh Kumar; T K G Namboodhiri

    2011-04-01

    AA7020 Al–Mg–Zn, a medium strength aluminium alloy, is used in welded structures in military and aerospace applications. As it may be subjected to extremes of environmental exposures, including high pressure liquid hydrogen, it could suffer hydrogen embrittlement. Hydrogen susceptibility of alloy AA7020 was evaluated by slow strain-rate tensile testing, and delayed failure testing of hydrogen-charged specimens of air-cooled, duplexaged, and water-quenched duplex agedmaterials. The resistance to hydrogen embrittlement of the alloy was found to be in the order of air-cooled duplex aged alloy > as-received (T6 condition) > water quenched duplex aged material.

  9. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  10. Deposition of aluminum-magnesium alloys from electrolytes containing organo-aluminum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Inst. fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG Technische Entwicklung, Ingolstadt (Germany)

    2001-06-01

    Organo-aluminum compounds have been used for many years as electrolytes in the coating industry. In this communication the development of a galvanic process for generating aluminum-magnesium coatings from organometallic electrolyte systems is reported as well as results on physical properties like adhesion, ductility and corrosion resistance. (orig.)

  11. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  12. Aluminum for bonding Si-Ge alloys to graphite

    Science.gov (United States)

    Eggemann, Robert V.

    1976-01-13

    Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.

  13. Effects of Aluminum on Hydrogen Solubility and Diffusion in Deformed Fe-Mn Alloys

    Directory of Open Access Journals (Sweden)

    C. Hüter

    2016-01-01

    Full Text Available We discuss hydrogen diffusion and solubility in aluminum alloyed Fe-Mn alloys. The systems of interest are subjected to tetragonal and isotropic deformations. Based on ab initio modelling, we calculate solution energies and then employ Oriani’s theory which reflects the influence of Al alloying via trap site diffusion. This local equilibrium model is complemented by qualitative considerations of Einstein diffusion. Therefore, we apply the climbing image nudged elastic band method to compute the minimum energy paths and energy barriers for hydrogen diffusion. Both for diffusivity and solubility of hydrogen, we find that the influence of the substitutional Al atom has both local chemical and nonlocal volumetric contributions.

  14. Laser Shock Peening of Aluminum Alloy 7050 for Fatigue Life Improvement

    Institute of Scientific and Technical Information of China (English)

    Qian; Ming; Lian; Ying; Zou; Shikun; Gong; Shuili

    2007-01-01

    The effects of laser shock peening (LSP) on improving fatigue life of aluminum alloy 7050 are investigated.Surface hardness is increased corresponding to a high dislocation density induced by LSP.The X-ray diffraction stress measurement shows that LSP results in prominent increase of surface compressive stress,quasi-symmetrically distributed in the laser peened region.The fatigue life of the alloy 7050 in rivet fastener hole structure is notably improved owing to LSP.The sequence of LSP and fastener hole preparation also influence the fatigue cycle life of the alloy.

  15. Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy

    Science.gov (United States)

    Akamatsu; Faivre

    2000-04-01

    We present an experimental investigation of the morphological transition of lamellar eutectic growth fronts called "formation of eutectic colonies" by the method of thin-sample directional solidification of a transparent model alloy, CBr4-C2Cl6. This morphological transition is due to the presence in the melt of traces of chemical components other than those of the base binary alloy (impurities). In this study, we use naphthalene as an impurity. The formation of eutectic colonies has generally been viewed as an impurity-driven Mullins-Sekerka instability of the envelope of the lamellar front. This traditional view neglects the strong interaction existing between the Mullins-Sekerka process and the dynamics of the lamellar pattern. This investigation brings to light several original features of the formation of eutectic colonies, in particular, the emission of long-wavelength traveling waves, and the appearance of dendritelike structures called two-phase fingers, which are connected with this interaction. We study the part played by these phenomena in the transition to eutectic colonies as a function of the impurity concentration. Recent theoretical results on the linear stability of ternary lamellar eutectic fronts [Plapp and Karma, Phys. Rev. E 60, 6865 (1999)] shed light on some aspects of the observed phenomena.

  16. Microstructure and Strain Fatigue Dislocation Structure of 7075-RRA Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure and the strain fatigue dislocation substructure of 7075-RRA (Retrogression and Reaging) aluminum alloy have been studied by using transmission electron microscopy. From these, a competitive mechanism of cyclic microscopic softening/hardening is put forward to explain the relation between macroscopic cyclic stability behavior and microscopic substructure.

  17. Environmentally assisted crack growth rates of high-strength aluminum alloys

    Science.gov (United States)

    Connolly, Brain J.; Deffenbaugh, Kristen L.; Moran, Angela L.; Koul, Michelle G.

    2003-01-01

    The scope of this project is to evaluate the environmentally assisted long crack growth behavior of candidate high-strength aluminum alloys/tempers, specifically AA7150-T7751 and AA7040-T7651, for consideration as viable replacements/refurbishment for stress-corrosion cracking in susceptible AA7075-T6 aircraft components found in aging aircraft systems.

  18. Microstructure and mechanical properties of friction stir welded thin sheets of 2024-T4 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Lian; TONG Jian-hua; WAN Fa-rong; LONG Yi

    2006-01-01

    Friction stir welding (FSW) is a new and promising welding processing that can produce low-cost and high-quality joints of aluminum alloys. 1 mm thick sheets of 2024-T4 aluminum alloys which are always used as building and decorating materials were welded by FSW. The microstrueture and mechanical properties of friction stir welded 1 mm thick sheets of 2024-T4 aluminum alloy were studied. It was found that the thinner the 2024 aluminum alloy, the larger the FSW technological parameters field. The grains size of weld nugget zone (WNZ) is approximately 10 times smaller than that of the parent material, but the second phase in the material is not refined apparently in the welding. The FS welded joints have about 40% higher yield strength than the parent material,but the elongation of FS welded joints is under about 50% of the parent material. The electron backscattered diffraction (EBSD)results show that there are much more low angle boundaries (LAB) in WNZ than that in parent material, which indicates that FSW causes a number of sub-grain structures in WNZ, and this is also the reason of the increase of yield strength and Vickers hardness of the welded joint.

  19. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, R.L.

    1980-12-31

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables.

  20. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  1. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  2. Innovation Group Will Invest 20 Billion Yuan to Launch a Hard Aluminum Alloy Project

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>On November 20, the People’s Government of Tongliao City of Inner Mongolia, the People’s Government of Huolinguole City and Shandong-based Innovation Group signed an investment framework agreement on a new-type hard aluminum alloy project. Under the agreement

  3. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  4. Structure and properties of castable aluminum alloy MVTU-6 after laser treatment

    Science.gov (United States)

    Silaeva, V. I.; Smirnova, N. A.; Solov'eva, T. V.

    2008-01-01

    The effect of laser treatment modes on the structure and properties of high-strength castable aluminum alloy MVTU-6 of the Al-Si-Cu-Cd system developed at the Bauman Moscow State Technical University by a group of researchers headed by I. I. Sidorin is studied.

  5. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  6. Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn and Sn-15 wt% Pb alloys grown by a Czochralski method

    Science.gov (United States)

    Shen, Zhe; Zhong, Yunbo; Wang, Huai; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2015-12-01

    The pure Sn and Sn-15 wt% Pb alloys were grown by a Czochralski method under various magnetic flux densities in this paper. The influence of thermoelectric magnetic (TEM) flows and buoyancy flows on solidification morphology, macrosegregation and microstructures had been investigated experimentally, and the velocity magnitude of TEM flows and buoyancy flows had been studied by 3D numerical simulations. The experimental results indicate that the modification of solidification morphology and microstructures is attributed to the unidirectional Pb solutes transport caused by TEM flows. The 3D numerical simulations results show that the buoyancy flows dominate the flows in the melt under a weak transverse magnetic field (B≤0.43 T), and the unidirectional TEM flows at the vicinity of solid-liquid interface become the dominant flows in the melt with the increase of magnetic field. The interaction of TEM flows and buoyancy flows affecting solidification morphology and microstructures during directional solidification of alloys by the Czochralski method under various magnetic flux densities has been discussed and a corresponding simple evolution mechanism of dendritic growth has been proposed.

  7. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  8. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  9. XRD and TEM analysis of the microstructure in the brazing joint of 3003 cladding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Tao Feng; Songnian Lou; Luhai Wu; Yajiang Li

    2005-01-01

    The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy.The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test result indicates that the suitable brazing technique parameters are brazing temperature, 628℃; keeping time, 10 min; vacuum degree, 6.5×10-4 Pa. XRD test indicates that there are new intermetallic compounds different from the base metal. TEM analysis indicates that Cu2Mg and Cu3Mn2Mg are formed in the brazing joint. The shape of Cu2Mg is irregular and the shape of Cu3Mn2Mg is circle, and there are tiny particles in it.

  10. Protection against Corrosion of Aluminum Alloy in Marine Environment by Lawsonia inermis

    Directory of Open Access Journals (Sweden)

    H. M. Hajar

    2016-01-01

    Full Text Available The corrosion performance of aluminum alloy 5083 (AA5083 was investigated in the splash zone area simulated in salt spray cabinet at ambient temperature. Three paint formulations were prepared in accordance with different percentages of henna extract. FTIR method was used to determine the constituent of henna while weight loss and electrochemical method were applied to investigate the inhibition behaviour. The findings show that corrosion rate of aluminum alloy decreased with the increases of henna extract in the coating formulation. The rise of charge transfer resistance (Rct value has contributed to the greater protection of the coated aluminum. The decrease in double layer capacitance value (Cdl is another indicator that a better protective barrier has been formed in the presence of henna in the coating matrix.

  11. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  12. GROWTH MORPHOLOGIES OF A BINARY ALLOY WITH LOW ANISOTROPY IN DIRECTIONAL SOLIDIFICATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two new classes of growth morphologies, called doublons and seaweed, were simulated using a phase-field method. The evolution of doublon and seaweed morphologies was obtained in directional solidification. The influence of orientation and velocity on the growth morphology was investigated.It was indicated that doublons preferred growing with its crystallographic axis aligned with the heat flow direction. Seaweed, on the other hand, could be obtained by tilting the crystalline axis to 45°. Stable doublons could only exist in a range of velocity regime. Beyond this regime the patterns formed would be unstable. The simulation results agreed with the reported experimental results qualitatively.

  13. Microstructural evolution during containerless rapid solidification of Co-Si alloys

    Institute of Scientific and Technical Information of China (English)

    姚文静; 魏炳波

    2003-01-01

    The Co-12%Si hypoeutectic, Co-12.52%Si eutectic and Co-13%Si hypereutectic alloys are rapidly solidified in a containerless environment in a drop tube. Undercoolings up to 207K (0.14TE) are obtained, which play a dominant role in dendritic and eutectic growth. The coupled zone around Co-12.52%Si eutectic alloy has been calculated, which covers a composition range from 11.6 to 12.7%Si. A microstructural transition from lamellar eutectic to divorced eutectic occurs to Co-12.52%Si eutectic droplets with increasing undercooling. The lamellar eutectic structure of the Co-12.52%Si alloy consists of εCo and Co3Si phases at small undercooling. The CoaSi phase cannot decompose completely into εCo and αCo2Si phases. As undercooling becomes larger, the Co3Si phase grows very rapidly from the highly undercooled alloy melt to form a divorced eutectic. The structural morphology of the Co-12%Si alloy droplets transforms from εCo primary phase plus lamellar eutectic to anomalous eutectic, whereas the microstructure of Co-13%Si alloy droplets solution is the primary nucleation phase. In the highly undercooled alloy melts, the growth of εCo and Co3Si phases is controlled by solutal diffusion.

  14. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    Science.gov (United States)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  15. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  16. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  17. Numerical simulation of deep cryogenic treatment electrode tip temperature for spot welding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Wu Zhisheng; Hu Minying; Liu Cuirong

    2006-01-01

    Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.

  18. Effect of Electromagnetic Treatment on Fatigue Resistance of 2011 Aluminum Alloy

    Science.gov (United States)

    Mohin, M. A.; Toofany, H.; Babutskyi, A.; Lewis, A.; Xu, Y. G.

    2016-08-01

    Beneficial effects of the electromagnetic treatment on fatigue resistance were reported on several engineering alloys. These could be linked to the dislocation activity and the rearrangement of the crystal structure of the material under the electromagnetic field (EMF), resulting in delayed crack initiation. This paper presents an experimental study on the effect of pulsed electromagnetic treatment on the fatigue resistance of 2011 aluminum alloy. Circular cantilever specimens with loads at their ends were tested on rotating fatigue machine SM1090. Fatigue lives of treated and untreated specimens were analyzed and compared systematically. It has been found that the effect of the pulsed electromagnetic treatment on the fatigue resistance is dependent on the intensity of the pulsed EMF and the number of the treatment applied. Clear beneficial effect of the pulsed electromagnetic treatment on the fatigue resistance of the aluminum alloys has been observed, demonstrating a potential new technique to industries for fatigue life extension.

  19. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  20. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    Science.gov (United States)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  1. NUMERICAL SIMULATION OF FLUID FLOW AND HEAT TRANSFER DURING THE INITIAL PHASE LEADING TO STEADY STATE SOLIDIFICATION IN D.C CAST ALIMINIUM ALLOYS

    OpenAIRE

    KORTI, Abdel Illah Nabil

    2010-01-01

    In this paper, two dimensional unsteady flow and energy equations are employed for simulating the fluid flow, heat transfer and solidification during direct chill continuous casting of Al-Mg alloy billet. In these processes, the formation of some macro defects such as thermal cracking, hot tearing, surface cracking, etc, has been found to initiate during the starting phase of the operation. International Journal of Computational Methods.

  2. Effect of cooling rate during solidification on the hard phases of M23C6-type of cast CoCrMo alloy

    Directory of Open Access Journals (Sweden)

    M. Alvarez-Vera

    2016-07-01

    Full Text Available Microstructural morphology of CoCrMo alloy by control of the cooling rate during the solidification was investigated. Samples were obtained using both an induction furnace for slow cooling rate and electric arc furnace for fast cooling rate. Microstructural characterizations were performed with metallographic techniques. It was found that the difference between the formation temperature of hard secondary phases of M23C6-type carbides determine the reduction of carbide size by increasing the cooling rate.

  3. A computational study of low-head direct chill slab casting of aluminum alloy AA2024

    Science.gov (United States)

    Hasan, Mainul; Begum, Latifa

    2016-04-01

    The steady state casting of an industrial-sized AA2024 slab has been modeled for a vertical low-head direct chill caster. The previously verified 3-D CFD code is used to investigate the solidification phenomena of the said long-range alloy by varying the pouring temperature, casting speed and the metal-mold contact heat transfer coefficient from 654 to 702 °C, 60-180 mm/min, and 1.0-4.0 kW/(m2 K), respectively. The important predicted results are presented and thoroughly discussed.

  4. Effect of strontium on primary dendrite and eutectic temperature of A357 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Chen Zhongwei

    2010-05-01

    Full Text Available Solidification process of A357 alloy with Sr addition was investigated in this paper. In particular, the effects of strontium and cooling rate on α-Al dendrite and Al-Si eutectic characteristic temperature were characterized by differential thermal analysis (DTA. Sr addition not only modifies the Al-Si eutectic, but also affects the morphology and structure of primary α-Al dendrite. Sr decreases the growth temperature of α-Al dendrite and Al-Si eutectic, and it also affects the dendrite growth mechanism. It has been found that such effect becomes more significant with higher cooling rate.

  5. Directional solidification of Zn-Al-Cu eutectic alloy by the vertical Bridgman method

    Directory of Open Access Journals (Sweden)

    Büyük U.

    2015-01-01

    Full Text Available In the present work, the effect of growth rate and temperature gradient on microstructure and mechanical properties of Zn-7wt.%Al-4wt.%Cu eutectic alloy has been investigated. Alloys prepared under steady-state conditions by vacuumed hot filing furnace. Then, the alloys were directionally solidified upward with different growth rates (V=11.62-230.77 mm/s at a constant temperature gradient (G=7.17 K/mm and with different temperature gradients (G=7.17-11.04 K/mm at a constant growth rate (V=11.62 mm/s by a Bridgman furnace. The microstructures were observed to be lamellae of Zn, Al and broken lamellae CuZn4 phases from quenched samples. The values of eutectic spacing, microhardness and ultimate tensile strength of alloys were measured. The dependency of the microstructure and mechanical properties on growth rate and temperature gradient were investigated using regression analysis.

  6. Research on Solidification Behavior of Ag-Cu-Zn Alloys%Ag-Cu-Zn合金凝固行为的研究

    Institute of Scientific and Technical Information of China (English)

    陈永泰; 谢明; 杨有才; 张吉明; 刘满门; 王松; 王塞北; 胡洁琼; 李爱坤

    2015-01-01

    对Ag-6Cu-xZn(x=0,1,2)合金铸态显微组织、物相及凝固行为进行了研究,结果表明,Zn对Ag-Cu合金的二次枝晶间距有细化作用;Ag-6Cu-xZn合金主要由α相(富Ag固溶体相)和少量的β相(富Cu和Zn固溶体相)组成,β相弥散分布于二次枝晶间;Zn的添加降低了合金及第二相的熔化温度,且 Zn 含量越高,合金熔化温度降低趋势越大,其凝固特征是一个典型的固溶体合金的非平衡凝固过程。%The as-cast microstructure, chemical phase and solidification behavior of Ag-6Cu-xZn (x=0, 1, 2) alloys were investigated. The results indicate that, the Zn in Ag-Cu alloy could refine the secondary dendrite arm spacing, but its refining effect is limited. The Ag-Cu-Zn alloy is mainly composed ofα phase (silver-rich phase) and littleβ phase ((copper, zinc)-rich phase).βphases are dispersively distributed in secondary dendrite, they will help to improve the abrasion resistance properties of materials. Adding Zn can reduce the melting temperature of the alloy and the second phase, the higher content of Zn, the greater tendency to reduce the melting temperature of the alloy, the solidification feature of Ag-Cu-Zn alloy is a typical of non-equilibrium solidification of Solid Solution.

  7. Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys

    Science.gov (United States)

    Gomes, Leonardo F.; Silva, Bismarck L.; Garcia, Amauri; Spinelli, José E.

    2017-02-01

    Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1, and secondary, λ 2, dendrite arm spacings with cooling rate ( {dot T}_{{L}} ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall-Petch type formulas show that the tensile strength increases with the decrease in λ 2. The soundest strength-ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth (V L) and cooling rates ( {dot T}_{{L}} ) for both ternary Al-Mg-Fe alloys have also been derived.

  8. Research for the method of image acquisition of the molten pool in the TIG welding of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建军; 林涛; 陈善本; 王伟

    2004-01-01

    Obtaining the image of molten pool aluminum alloy's tungsten inert gas(TIG)welding becomes a challenging problem in the welding field. In this paper, a bran-new optical sensor based analyzing the light spectrum was designed, and the clear image of the molten pool during the aluminum alloy's welding using the common industrial CCD camera was obtained. And with the new algorithm provided by myself, the desirable characteristic parameters of the molten pool of aluminum alloy's welding were obtained, and it provides a good base for advanced monitor welding quality.

  9. Properties of splat-quenched 7075 aluminum type alloys

    Science.gov (United States)

    Durand, J. P. H. A.; Pelloux, R. M.; Grant, N. J.

    1976-01-01

    The 7075 alloy belonging to the Al-Zn-Mg-Cu system, prepared by powder metallurgy techniques, was used in a study of alloys prepared from splat-quenched foils consolidated into bar material by hot extrusion. Ni and Fe were included in one alloy specimen, producing a fine dispersion of FeAl3 type particles which added to the strength of the aged alloy but did not coarsen upon heat treatment. Fine oxide films showing up on air-splatted foils induce finely dispersed oxide stringers (if the foils are not hot-worked subsequently) which in turn promote axial cracking (but longitudinal tensile strength is not seriously impaired). Splatting in a protective atmosphere, or thermomechanical processing, is recommended to compensate for this.

  10. Modelling directional solidification

    Science.gov (United States)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    This grant, NAG8-831, was a continuation of a previous grant, NAG8-541. The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis in the recently completed grant was on determining the influence of perturbations on directional solidification of InSb and InSb-GaSb alloys. In particular, the objective was to determine the influence of spin-up/spin-down (ACRT), electric current pulses and vibrations on compositional homogeneity and grain size.

  11. Thermal compatibility studies of unirradiated UMo alloys dispersed in aluminum

    Science.gov (United States)

    Lee, Don Bae; Kim, Ki Hwan; Kim, Chang Kyu

    1997-11-01

    The thermal compatibility of centrifugally atomized UMo alloys with aluminium has been studied. The results of the investigations show that the U-2 wt% Mo/aluminum dispersions increase in volume by 26% at 400°C after 2000 h. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of UMo and aluminum. No significant dimensional changes occur in the U-10 wt% Mo/aluminum dispersions. Interdiffusion between U-10 wt% Mo and aluminum is found to be minimal. The different diffusion behavior is primarily due to the fact that U-10 wt% Mo particles are much more supersaturated with substitutional molybdenum than U-2 wt% Mo particles. The aluminum diffuses into the U-2 wt% Mo particles relatively rapidly along grain boundary with nearly pure uranium, forming UAl 3 almost fully throughout the 2000 h anneal, whereas the molybdenum supersaturated in the U-10 wt% Mo particles inhibits the diffusion of aluminum atoms. U-10 wt% Mo displays superior thermal compatibility with aluminum compared to U-2 wt% Mo.

  12. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    Science.gov (United States)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the

  13. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  14. Study of corrosion protection of the composite fdms on A356 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    SUN Huanhuan; WANG Hui; MENG Fanling

    2011-01-01

    Composite films were fabricated on A356 aluminum alloy by combined anodizing and rare earth deposition.The corrosion protection effect and corrosion behavior of the composite films in 3.5% NaC1 solution were studied by electrochemical impedance spectroscopy (EIS).SEM observation indicated that the rare earth Ce film completely sealed the porous structure of the anodic film,and the composite films composed of anodic film and Ce film were compact and integrated.According to the characteristics of EIS,the EIS plots of the composite films at different immersion times were simulated using the equivalent circuits of Rsol(QceRce)(QaRa),Rsol(QceRce)(QpRp)(QbRb) and Rsol(QpRp)(QbRb) models,respectively.The test results showed that the Ce film at the outer layer of the composite films had good protection effect at the initial stage of the immersion corrosion.It effectively helped the anodie film at the inner layer to prevent chloride irons from penetrating the aluminum alloy matrix.After 18 days,the Ce film lost its anticorrosive property,and the anodic film took the leading role of the corrosion protection.When the corrosion time was up to 42 days,the aluminum matrix was not corroded yet.Thus,the higher protection degree of the composite films for A356 aluminum alloy was attributed to the synergism effects of anodic film and rare earth Ce film.

  15. Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy

    Directory of Open Access Journals (Sweden)

    Pujari Srinivasa Rao

    2016-06-01

    Full Text Available Wire electrical discharge machining (EDM possesses many advantages over the conventional manufacturing process. Hence, this process was used for machining of all conductive materials; especially, nowadays this is the most common process for machining of aerospace aluminum alloys. This process produces complex shapes in aluminum alloys with extremely tight tolerances in a single setup. But, for good surface integrity and longer service life, the residual stresses generated on the components should be as low as possible and it depends on the setting of process parameters and the material to be machined. In wire EDM, much of the work was concentrated on Titanium alloys, Inconel alloys and various types of steels and partly on aluminum alloys. The present investigation was a parametric analysis of wire EDM parameters on residual stresses in the machining of aluminum alloy using Taguchi method. The results obtained had shown a wide range of residual stresses from 8.2 to 405.6 MPa. It also influenced the formation of various intermetallics such as AlCu and AlCu3. Microscopic examination revealed absence of surface cracks on aluminum surface at all the machining conditions. Here, an attempt was made to compare the results of aluminum alloy with the available machined data for other metals.

  16. Optimum parameters for wetting and pressureless infiltration of silicon carbide preforms by aluminum alloys

    Science.gov (United States)

    Pech-Canul, Martin Ignacio

    The effect of processing parameters on the wetting of SiC by molten aluminum and the pressureless infiltration of SiCp preforms by aluminum alloys has been investigated. The effect of magnesium and silicon additions to aluminum, free silicon on the SiC substrate, nitrogen gas in the atmosphere, and process temperature on the wetting characteristics of SiC by aluminum alloys was investigated using the sessile drop technique. The contribution of each of these parameters and their interactions to the contact angle, surface tension, and driving force for wetting were determined via an L8 Taguchi experiment and analysis of variance (ANOVA). In addition, an optimized process for enhanced wetting is suggested and validated. The process parameters under which optimum wetting of SiC by Al was obtained were used to infiltrate SiCp preforms with Al without the use of pressure. The effect of SiC particle size, infiltration time, preform height, vol. % SiC in the preform, and Si coating on the SiC particles on the pressureless infiltration of SiCp compacts with aluminum was investigated and quantified via a Taguchi experiment and ANOVA. The contribution of each of these parameters and their interactions to the density, modulus of elasticity, and modulus of rupture of the composites were determined. Processing conditions for obtaining optimum density, modulus of rupture and modulus of elasticity were projected. The projected modulus of elasticity obtainable under optimum processing conditions was validated experimentally. A mechanism is proposed to explain the beneficial role that the interaction of nitrogen with magnesium plays in enhancing wetting. The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys is explained.

  17. Hydrogen Content and Porosity Behavior of Hypereutectic Aluminum-silicon Alloy with Phosphorus

    Institute of Scientific and Technical Information of China (English)

    HU Li-na; BIAN Xiu-fang; DUAN You-feng

    2004-01-01

    By making castings that pick up gas from moisture in red sand molds,the porosity generated at different cooling rates was discussed during solidification of hypereutectic Al-25%Si alloy without and with phosphorus additions. The effect of phosphorus addition on hydrogen content in the melt was also studied. It was observed that the phosphorus addition made hydrogen content in alloy melts present a "see-saw" tendency.In addition to primary silicon refinement,the phosphorus promoted gas porosity formed not only in slowly cooled sections, but also in rapidly cooled sections. There was a small difference in density of full dense sample between P-refined and unrefined castings, with a larger density associated with phosphorous addition. The change of the surface tension seemed more reasonable to explain the mechanism of porosity behavior.

  18. Some organic compounds as inhibitors for the corrosion of aluminum alloy 6063 in deaerated carbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, L.; Hamdani, M. [Lab. de Chimie Physique, Agadir (Morocco); Kertit, S. [Ecole Normale Superieure de Takaddoum, Rabat (Morocco). Lab. de Physico-Chimie des Materiaux

    1995-11-01

    Some organic compounds were tested as corrosion inhibitors for aluminum alloy 6063 (Al 6063, UNS A96063) in a deaerated carbonate solution using the electrochemical polarization method. The compounds studied were thiourea (TOR), diorthoaminodiphenyldisulfane (DOAPD), and benzotriazole (BTA). Results showed DOAPD was the best inhibitor. Its inhibition efficiency reaches a maximum value of 95.8% at 10{sup {minus}2} M. Polarization measurements indicated DOAPD acted as a cathodic and anodic (mixed) inhibitor without changing the mechanism of the water evolution reaction. DOAPD was adsorbed on the aluminum surface according to a Langmuir isotherm model. The other compounds tested had no effect on pitting corrosion of Al 6063.

  19. Novel algorithm for determining optimal blankholder forces in deep drawing of aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    孙成智; 陈关龙; 林忠钦; 赵亦希

    2004-01-01

    Wrinkling and fracture are main defects in sheet metal forming of aluminum alloy sheet, which can be reduced or even eliminated by manipulating a suitable blank-holder forces (BHF). But, it is difficult to attain the optimum BHF during sheet metal forming. A new optimization algorithm integrating the finite element method (FEM)and adaptive response surface method is presented to determinate the optimal BHFs in deep drawing of aluminum rectangular box. To assure convergence, the trust region modes management strategies are used to adjust the move limit of design spaces. Finally, the optimum results of rectangular box deep drawing are given. Verification experiments are performed to verify the optimal result.

  20. Effects of Impulse Current and Al-5Ti-1B Master Alloy on the As-Cast Microstructure of 7075 Aluminum Alloy%脉冲电流与Al-5Ti-1B变质剂对7075铝合金铸态组织的影响

    Institute of Scientific and Technical Information of China (English)

    孙中源; 梁宇; 明正兴

    2012-01-01

    研究了低能量脉冲电流对7075铝合金的铸态组织的影响,并探究了Al-5Ti-1B变质剂和脉冲电流共同作用下对铝合金晶粒的作用效果.结果表明,脉冲电流孕育处理能有效减少铸造组织的二次枝晶的数量;Al-5Ti-1B能明显地细化组织晶粒;而7075铝合金熔体在凝固阶段持续通入脉冲电流后,铸造组织形貌明显改善,得到较为均匀的等轴晶和近球形晶粒.%The influence of low energy impulse current on the as-cast microstructure of 7075 aluminum alloy was investigated, and the effect on aluminum alloy grain was also explored under the combined action of Al-5Ti-lB and impulse current. The results show that the treatment of impulse current inoculation can reduce the number of the secondary dendrite of as-cast microstructure effectively; the crystal grain of aluminum alloy was refined apparently by Al-5Ti-lB; the morphology of as-cast microstructure, which was controlled to achieve the equiaxed and spherical grains, was greatly improved when the impulse current was added to the 7075 aluminum alloy during the solidification process; this experiment may provide a theoretical reference for the application of impulse current technology to cast aluminum alloy.