WorldWideScience

Sample records for allowing intralimb kinematic

  1. Intralimb Coordination Patterns in Absent, Mild, and Severe Stages of Diabetic Neuropathy: Looking Beyond Kinematic Analysis of Gait Cycle

    OpenAIRE

    Liu Chiao Yi; Cristina D Sartor; Francis Trombini Souza; Isabel C. N. Sacco

    2016-01-01

    Aim Diabetes Mellitus progressively leads to impairments in stability and joint motion and might affect coordination patterns, mainly due to neuropathy. This study aims to describe changes in intralimb joint coordination in healthy individuals and patients with absent, mild and, severe stages of neuropathy. Methods Forty-seven diabetic patients were classified into three groups of neuropathic severity by a fuzzy model: 18 without neuropathy (DIAB), 7 with mild neuropathy (MILD), and 22 with m...

  2. Intralimb Coordination Patterns in Absent, Mild, and Severe Stages of Diabetic Neuropathy: Looking Beyond Kinematic Analysis of Gait Cycle.

    Directory of Open Access Journals (Sweden)

    Liu Chiao Yi

    Full Text Available Diabetes Mellitus progressively leads to impairments in stability and joint motion and might affect coordination patterns, mainly due to neuropathy. This study aims to describe changes in intralimb joint coordination in healthy individuals and patients with absent, mild and, severe stages of neuropathy.Forty-seven diabetic patients were classified into three groups of neuropathic severity by a fuzzy model: 18 without neuropathy (DIAB, 7 with mild neuropathy (MILD, and 22 with moderate to severe neuropathy (SVRE. Thirteen healthy subjects were included as controls (CTRL. Continuous relative phase (CRP was calculated at each instant of the gait cycle for each pair of lower limb joints. Analysis of Variance compared each frame of the CRP time series and its standard deviation among groups (α = 5%.For the ankle-hip CRP, the SVRE group presented increased variability at the propulsion phase and a distinct pattern at the propulsion and initial swing phases compared to the DIAB and CTRL groups. For the ankle-knee CRP, the 3 diabetic groups presented more anti-phase ratios than the CTRL group at the midstance, propulsion, and terminal swing phases, with decreased variability at the early stance phase. For the knee-hip CRP, the MILD group showed more in-phase ratio at the early stance and terminal swing phases and lower variability compared to all other groups. All diabetic groups were more in-phase at early the midstance phase (with lower variability than the control group.The low variability and coordination differences of the MILD group showed that gait coordination might be altered not only when frank evidence of neuropathy is present, but also when neuropathy is still incipient. The ankle-knee CRP at the initial swing phase showed distinct patterns for groups from all degrees of neuropathic severity and CTRLs. The ankle-hip CRP pattern distinguished the SVRE patients from other diabetic groups, particularly in the transitional phase from stance to

  3. Exploration and selection of intralimb coordination patterns in 3-month-old infants.

    Science.gov (United States)

    Angulo-Kinzler, R M

    2001-12-01

    Through the exploration of their own capacities and the selection of adaptive responses, infants learn new motor solutions. Using a conjugate reinforcement mobile procedure, previous researchers have repeatedly shown that infants increase their leg kick frequency to control a mobile that is connected to their ankles. That traditional experimental design allows multiple motor solutions to the task and therefore provides limited information about the infants' capacity to explore and select specific motor solutions. The author designed a new experimental procedure to study infants' capacity to discover and adopt specific motor solutions. The new, constraining mobile reinforcement procedure requires a specific motor response and therefore the development of a more finely tuned perception-action map than has previously been experimentally demonstrated. To gain reinforcement from the mobile, infants had to produce a coordinated hip and knee extension within the same leg. The results from the 13 infant participants showed that they were capable of increasing their frequency of coordinated movements to make the mobile move. Those results suggest that infants at the age of 89-106 days are sensitive to intralimb coordination task requirements and are capable of mapping their own limb dynamics to the environmental information. PMID:11734411

  4. Intra-limb coordination while walking is affected by cognitive load and walking speed.

    Science.gov (United States)

    Ghanavati, Tabassom; Salavati, Mahyar; Karimi, Noureddin; Negahban, Hossein; Ebrahimi Takamjani, Ismail; Mehravar, Mohammad; Hessam, Masumeh

    2014-07-18

    Knowledge about intra-limb coordination (ILC) during challenging walking conditions provides insight into the adaptability of central nervous system (CNS) for controlling human gait. We assessed the effects of cognitive load and speed on the pattern and variability of the ILC in young people during walking. Thirty healthy young people (19 female and 11 male) participated in this study. They were asked to perform 9 walking trials on a treadmill, including walking at three paces (preferred, slower and faster) either without a cognitive task (single-task walking) or while subtracting 1׳s or 3׳s from a random three-digit number (simple and complex dual-task walking, respectively). Deviation phase (DP) and mean absolute relative phase (MARP) values-indicators of variability and phase dynamic of ILC, respectively-were calculated using the data collected by a motion capture system. We used a two-way repeated measure analysis of variance for statistical analysis. The results showed that cognitive load had a significant main effect on DP of right shank-foot and thigh-shank, left shank-foot and pelvis-thigh (peffect of walking speed was significant on DP of all segments in each side and MARP of both thigh-shank and pelvis-thigh segments (pcognitive load and walking speed was only significant for MARP values of left shank-foot and right pelvis-thigh (pcognitive load and speed could significantly affect the ILC and variability and phase dynamic during walking. PMID:24861632

  5. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury.

    Science.gov (United States)

    Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A

    2015-11-15

    We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual. PMID:26341152

  6. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  7. Rational kinematics

    CERN Document Server

    Angeles, Jorge

    1988-01-01

    A rational study of kinematics is a treatment of the subject based on invariants, i.e., quantities that remain essentially unchanged under a change of observer. An observer is understood to be a reference frame supplied with a clock (Truesdell 1966). This study will therefore include an introduction to invariants. The language of these is tensor analysis and multilinear algebra, both of which share many isomorphic relations, These subjects are treated in full detail in Ericksen (1960) and Bowen and Wang (1976), and hence will not be included here. Only a short account of notation and definitions will be presented. Moreover, definitions and basic concepts pertaining to the kinematics of rigid bodies will be also included. Although the kinematics of rigid bodies can be regarded as a particular case of the kinematics of continua, the former deserves attention on its own merits for several reasons. One of these is that it describes locally the motions undergone by continua. Another reason is that a whole area of ...

  8. Allowance trading

    International Nuclear Information System (INIS)

    This paper reports that Title IV of the Clean Air Act Amendments of 1990 (CAAA) calls for a reduction of 10 million tons of sulfur dioxide (SO2) emissions per year from 1989 levels. Since utilities are the largest single group of emitters of SO2, Title IV concentrates on utilities. Rather than dictate which utilities will reduce emission, the CAAA calls for a system of allowances. Each allowance will permit a utility to emit 1 ton of SO2 in a given calendar year. Utilities will be issued allowances based on their average consumption of fossil fuel in 1985, 1986, and 1987. If a utility is able to reduce emissions below the level at which they are allowed to emit, they may bank, trade, or sell the extra allowances If a utility is unable to reduce emissions to their allowed level, they must buy allowances. new utilities which were not assigned allowances must buy them. In addition to free market trading, EPA will hold auctions and direct sales to provide allowances for utilities unable to obtain them on the open market

  9. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    Science.gov (United States)

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. PMID:27139005

  10. CHILD ALLOWANCE

    CERN Multimedia

    Human Resources Division

    2001-01-01

    HR Division wishes to clarify to members of the personnel that the allowance for a dependent child continues to be paid during all training courses ('stages'), apprenticeships, 'contrats de qualification', sandwich courses or other courses of similar nature. Any payment received for these training courses, including apprenticeships, is however deducted from the amount reimbursable as school fees. HR Division would also like to draw the attention of members of the personnel to the fact that any contract of employment will lead to the suppression of the child allowance and of the right to reimbursement of school fees.

  11. Aero-optimum hovering kinematics.

    Science.gov (United States)

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-01

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible. PMID:26248884

  12. Are kinematics of the walk related to the locomotion of a warmblood horse at the trot?

    Science.gov (United States)

    Back, W; Schamhardt, H C; Barneveld, A

    1996-10-01

    Summary In purchase examinations or at studbook selection sales the locomotor apparatus of horses is judged both at walk and trot. To evaluate whether kinematics of the walk are related to the locomotion at the trot, fore and hind limb movements of a group of 24 26-month-old warmbloods were recorded at walk and trot on a treadmill (1.6 and 4 m/s) using a modified CODA-3 gait analysis system. The intralimb coordination patterns at walk and trot were compared, and temporal and spatial variables of these gaits were related. Stride and stance durations (s) were shorter at the trot, while the stance distance (m) and swing duration (s) remained the same. Moreover, the pattern of the joint angle-time curves at walk and trot looked rather similar, though shifted to the left at trot because of the shorter relative stance duration. During the stance phase, the shoulder, stifle and tarsal joints were more flexed throughout, while the carpal and fetlock joints were more maximally extended in the trot than in the walk. In the swing phase, the elbow, carpal, stifle, and tarsal joints were more flexed because of the higher 'operating' speed at the trot compared to the walk. All other kinematic variables at the trot could be predicted from the mean ± 1sd of the values recorded at the walk. Moreover, nearly all kinematic variables at the walk correlated well with those at the trot, while variables indicating gait quality of the walk were similar to the ones identified previously for the trot. In conclusion, kinematics recorded at the walk in a group of horses were similar to and thus predictive for locomotion at the trot providing the decreased stance duration and the increased speed of the trot are taken into consideration. PMID:22070841

  13. Parallel kinematics type, kinematics, and optimal design

    CERN Document Server

    Liu, Xin-Jun

    2014-01-01

    Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.   This book is intended for researchers, scientists, engineers and postgraduates or above with interes...

  14. SOME DUAL KINEMATIC FORMULAS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, some kinematic formulas for dual quermassintegral of star bodies and for chord power integrals of convex bodies are established by using dual mixed volumes. These formulas are the extensions of the fundamental kinematic formula involving quermassintegral to the case of dual quermassintegral and chord power integrals.

  15. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  16. Kinematics theory and applications

    CERN Document Server

    Wittenburg, Jens

    2016-01-01

    The book deals with kinematics of mechanisms. It focuses on a solid theoretical foundation and on mathematical methods applicable to the solution of problems of very diverse nature. Applications are demonstrated in a large number of fully worked-out problems.  In kinematics a wide variety of mathematical tools is applicable. In this book, wherever possible vector equations are formulated instead of lengthy scalar coordinate equations. The principle of transference is applied to problems of very diverse nature. 15 chapters of the book are devoted to spatial kinematics and three chapters to planar kinematics. In Chapt. 19 nonlinear dynamics equations of motion are formulated for general spatial mechanisms. Nearly one half of the book is dealing with position theory and the other half with motion. The book is intended for use as reference book for researchers and as textbook in advanced courses on kinematics of mechanisms.

  17. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  18. Kinematic transitions and streams in galaxy halos

    CERN Document Server

    Romanowsky, A J; Brodie, J P; Foster, C; Forbes, D A; Lux, H; Martinez-Delgado, D; Strader, J; Zibetti, S

    2014-01-01

    The chemo-dynamics of galaxy halos beyond the Local Group may now be mapped out through the use of globular clusters and planetary nebulae as bright tracer objects, along with deep multi-slit spectroscopy of the integrated stellar light. We present results from surveying nearby early-type galaxies, including evidence for kinematically distinct halos that may reflect two-phase galaxy assembly. We also demonstrate the utility of the tracer approach in measuring the kinematics of stellar substructures around the Umbrella Galaxy, which allow us to reconstruct the progenitor properties and stream orbit.

  19. H$\\alpha$ kinematics of KPG 390

    CERN Document Server

    Repetto, P; Fuentes-Carrera, R Gabbasov I

    2009-01-01

    In this work we present scanning Fabry-Perot H$\\alpha$ observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.

  20. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  1. The Modular Robots Kinematics

    Directory of Open Access Journals (Sweden)

    Claudiu Pozna

    2007-08-01

    Full Text Available The present paper intention is to develop a kinematical foundation for our nextworks in industrial robots (IR modular design. The goal of this works is todevelop cheap and improved robots which are adapted to the costumer needs. Inorder to achieve the mentioned goal, in [43], we have started a bibliographicalresearch of the main modular design aspects. The mentioned analyze of the actualresults in modular robots design gives us the possibility to establish our researchprogram. The idea of this paper is to develop a kinematical formalism which willbe use in the next dedicated to this subject.

  2. Probing the kinematics of early-type galaxy halos using planetary nebulae

    NARCIS (Netherlands)

    Coccato, L.; Gerhard, O.; Arnaboldi, M.; Das, P.; Douglas, N. G.; Kuijken, K.; Merrifield, M. R.; Napolitano, N. R.; Noordermeer, E.; Romanowsky, A. J.; Capaccioli, M.; Cortesi, A.; De Lorenzi, F.; Freeman, K. C.

    2008-01-01

    We present first results of a study of the halo kinematics for a sample of early type galaxies using planetary nebulae (PNe) as kinematical tracers. PNe allow to extend up to several effective radii (R(e)) the information from absorption line kinematics (confined to within 1 or 2R(e)), providing val

  3. The Kinematic Analysis of a Symmetrical Three-Degree-of-Freedom Planar Parallel Manipulator

    OpenAIRE

    Chablat, Damien; Wenger, Philippe

    2007-01-01

    Presented in this paper is the kinematic analysis of a symmetrical three-degree-of-freedom planar parallel manipulator. In opposite to serial manipulators, parallel manipulators can admit not only multiple inverse kinematic solutions, but also multiple direct kinematic solutions. This property produces more complicated kinematic models but allows more flexibility in trajectory planning. To take into account this property, the notion of aspects, i.e. the maximal singularity-free domains, was i...

  4. Tracing kinematic (mis)alignments in CALIFA merging galaxies: Stellar and ionized gas kinematic orientations at every merger stage

    CERN Document Server

    Barrera-Ballesteros, J K; Falcón-Barroso, J; van de Ven, G; Lyubenova, M; Wild, V; Méndez-Abreu, J; Sánchez, S F; Marquez, I; Masegosa, J; Monreal-Ibero, A; Ziegler, B; del Olmo, A; Verdes-Montenegro, L; García-Benito, R; Husemann, B; Mast, D; Kehrig, C; Iglesias-Paramo, J; Marino, R A; Aguerri, J A L; Walcher, C J; Vílchez, J M; Bomans, D J; Cortijo-Ferrero, C; Delgado, R M González; Bland-Hawthorn, J; McIntosh, D H; Bekeraite, Simona

    2015-01-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. We compare our sample with 80 non-interacting galaxies. We measure for the stellar and the ionized gas components the major (projected) kinematic position angles (PA$_{\\mathrm{kin}}$, approaching and receding) directly from the velocity fields with no assumptions on the internal motions. This method allow us to derive the deviations of the kinematic PAs from a straight line ($\\delta$PA$_{\\mathrm{kin}}$). Around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. Those misalignments are present mostly in galaxies with morphological signatures of interaction. Alignment between the kinematic sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the...

  5. Quantum gravity kinematics from extended TQFTs

    CERN Document Server

    Dittrich, Bianca

    2016-01-01

    We show how extended topological quantum field theories (TQFTs) can be used to obtain a kinematical setup for quantum gravity, i.e. a kinematical Hilbert space together with a representation of the observable algebra including operators of quantum geometry. In particular, we consider the holonomy-flux algebra of (2+1)-dimensional Euclidean loop quantum gravity, and construct a new representation of this algebra that incorporates a positive cosmological constant. The vacuum state underlying our representation is defined by the Turaev-Viro TQFT. We therefore construct here a generalization, or more precisely a quantum deformation at root of unity, of the previously-introduced SU(2) BF representation. The extended Turaev-Viro TQFT provides a description of the excitations on top of the vacuum, which are essential to allow for a representation of the holonomies and fluxes. These excitations agree with the ones induced by massive and spinning particles, and therefore the framework presented here allows automatical...

  6. Kinematical Properties of Planetary Nebulae with WR-type Nuclei

    CERN Document Server

    Danehkar, Ashkbiz; Parker, Quentin A

    2014-01-01

    We have carried out integral field unit (IFU) spectroscopy of H$\\alpha$, [N II] and [O III] emission lines for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) stars and weak emission-line stars (wels). Comparing their spatially-resolved kinematic observations with morpho-kinematic models allowed us to disentangle their three-dimensional gaseous structures. Our results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases the associated kinematic maps for the PNe around hot central stars also reveal the presence of so-called fast low-ionization emission regions.

  7. Shotput kinematics made simple

    International Nuclear Information System (INIS)

    We show that some results in the kinematics of a point particle can be easily recalled by introducing simple definitions. In particular, in the parabolic motion of a particle thrown from a height h above the origin O at an angle θ from the horizontal direction, the optimum angle θ* for reaching the maximum distance Rmax on the ground, measured from the origin, can be found by calculating the inverse tangent of the ratio between the initial velocity V0 and the final velocity Vf. The value of Rmax is itself found to be easily expressed as V0Vf/g, g being the acceleration due to gravity. (paper)

  8. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  9. Kinematics grounded on light

    CERN Document Server

    Neda, Zoltan

    2015-01-01

    The space-time of modern physics is tailored on light. We rigorously construct the basic entities needed by kinematics: geometry of the physical space and time, using as tool electromagnetic waves, and particularly light-rays. After such a mathematically orthodox construction, the special theory of relativity will result naturally. One will clearly understand and easily accept all those puzzling consequences that makes presently the special theory of relativity hard to digest. Such an approach is extremely rewarding in teaching the main ideas of Einstein's relativity theory for high-school and/or university students. Interesting speculations regarding the fundaments and future of physics are made.

  10. Kinematics of Strong Discontinuities

    Science.gov (United States)

    Peterson, K.; Nguyen, G.; Sulsky, D.

    2006-01-01

    Synthetic Aperture Radar (SAR) provides a detailed view of the Arctic ice cover. When processed with the RADARSAT Geophysical Processor System (RGPS), it provides estimates of sea ice motion and deformation over large regions of the Arctic for extended periods of time. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. The RGPS deformation products are based on the assumption that the displacement and velocity are smooth functions of the spatial coordinates. However, if the dominant deformation of multiyear ice results from the opening, closing and shearing of leads, then the displacement and velocity can be discontinuous. This presentation discusses the kinematics associated with strong discontinuities that describe possible jumps in displacement or velocity. Ice motion from SAR data are analyzed using this framework. It is assumed that RGPS cells deform due to the presence of a lead. The lead orientation is calculated to optimally account for the observed deformation. It is shown that almost all observed deformation can be represented by lead opening and shearing. The procedure used to reprocess motion data to account for leads will be described and applied to regions of the Beaufort Sea. The procedure not only provides a new view of ice deformation, it can be used to obtain information about the presence of leads for initialization and/or validation of numerical simulations.

  11. Kinematically Detected Halo Streams

    CERN Document Server

    Smith, Martin C

    2016-01-01

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over- densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE & SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionised as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  12. How realistic are flat-ramp-flat fault kinematic models? Comparing mechanical and kinematic models

    Science.gov (United States)

    Cruz, L.; Nevitt, J. M.; Hilley, G. E.; Seixas, G.

    2015-12-01

    Rock within the upper crust appears to deform according to elasto-plastic constitutive rules, but structural geologists often employ kinematic descriptions that prescribe particle motions irrespective of these physical properties. In this contribution, we examine the range of constitutive properties that are approximately implied by kinematic models by comparing predicted deformations between mechanical and kinematic models for identical fault geometric configurations. Specifically, we use the ABAQUS finite-element package to model a fault-bend-fold geometry using an elasto-plastic constitutive rule (the elastic component is linear and the plastic failure occurs according to a Mohr-Coulomb failure criterion). We varied physical properties in the mechanical model (i.e., Young's modulus, Poisson ratio, cohesion yield strength, internal friction angle, sliding friction angle) to determine the impact of each on the observed deformations, which were then compared to predictions of kinematic models parameterized with identical geometries. We found that a limited sub-set of physical properties were required to produce deformations that were similar to those predicted by the kinematic models. Specifically, mechanical models with low cohesion are required to allow the kink at the bottom of the flat-ramp geometry to remain stationary over time. Additionally, deformations produced by steep ramp geometries (30 degrees) are difficult to reconcile between the two types of models, while lower slope gradients better conform to the geometric assumptions. These physical properties may fall within the range of those observed in laboratory experiments, suggesting that particle motions predicted by kinematic models may provide an approximate representation of those produced by a physically consistent model under some circumstances.

  13. Voigt kinematics and electrodynamic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gluckman, A.G.

    1976-06-01

    It was established that the kinematics of the Voigt transformation, which lacks group structure, is different from that of the Lorentz transformation, and that the apparent kinematic asymmetry of the Voigt coordinate transformations may be understood as a conformally symmetric kinematics. Phenomena such as the kinetic energy of a moving body and the Doppler effect are not quite the same under the conformal Voigt transformation as they are for the usual theory developed with respect to the Lorentz group. Yet the mass-energy conservation law under the Voigt coordinate transformations and the mass-energy conservation law under the group of Lorentz transformations are identically the same.

  14. Kinematics of Haro11 - the miniature Antennae

    CERN Document Server

    Östlin, Göran; Cumming, Robert; Fathi, Kambiz; Bergvall, Nils; Adamo, Angela; Amram, Philippe; Hayes, Matthew

    2015-01-01

    (abridged) Luminous blue compact galaxies are among the most active galaxies in the local universe in terms of their star formation rate per unit mass. They may be seen as the local analogs of higher redshift Lyman Break Galaxies. Studies of their kinematics is key to understanding what triggers their unusually active star formation In this work we investigate the kinematics of stars and ionised gas in Haro11, one of the most luminous blue compact galaxies in the local universe. Previous works have indicated that many such galaxies may be triggered by galaxy mergers. We have employed Fabry-Perot interferometry, long-slit spectroscopy and Integral Field Unit (IFU) spectroscopy to explore the kinematics of Haro11. We target the near infrared Calcium triplet to derive the stellar velocity field and velocity dispersion. Ionised gas is analysed through emission lines from hydrogen, [OIII] , and [SIII]. When spectral resolution and signal to noise allows we investigate the the line profile in detail and identify mu...

  15. Tachyon Kinematics and causality

    International Nuclear Information System (INIS)

    The chronological order of the events along a space-like path is not invariant under Lorentz transformations, as wellknown. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stuckelberg-Feynman switching procedure (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the SWP does eliminate the motions backwards in time, but interchanges the roles of source and dector. This fact triggered the proposal of a host of causal paradoxes. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least in microphysics) only after having properly developed the tachyon relativistic mechanics. We start by showing how to apply the SWP, both in the case of ordiry Special Relativity, and in the case with tachyons. Then, we carefully exploit the kinematics of the tachyon-exchange between to (ordinary) bodies. Being finally able to tackle the tachyon-causality problem, we successively solve the paradoxes: (i) by Tolman-Regge; (ii) by Pirani; (iii) by Edmonds; (iv) by Bell. At last, we discuss a further, new paradox associated with the transmission of signals by modulated tachyon beams

  16. Why Teach Kinematics?

    Science.gov (United States)

    Dykstra, Dewey

    2002-05-01

    The development of two new units for the Powerful Ideas in Physical Science (PIPS) Project of the American Association of Physics Teachers, funded by the National Science Foundation has motivated another look at the learning and teaching of kinematics and force. These and some of the other units of the PIPS Project are unique in that they advocate and model a particular student understanding driven approach to instruction as opposed to the more common content driven approach. Several novel ways to view the results of using these new motion and force materials are introduced and made possible by a diagnostic capable of indicating the degree of presence of multiple views (the Force and Motion Conceptual Evaluation by Thornton and Sokoloff). The performance of individuals on pre and post diagnostic measures ranges widely from almost no change to more than 6 standard deviations. Factors are identified which appear to differentiate the student performances. The identification of these factors motivated additional rounds of modifications to the materials, departing even further from a content driven orientation toward an even more student understanding driven approach. The resulting instruction appears to induce routinely even under adverse teaching and learning conditions 2.5 standard deviations change in the class average on the pre to the post instruction diagnostic scores.

  17. Elementary introduction to relativistic kinematics

    International Nuclear Information System (INIS)

    This paper includes the most important results and applications of the theory of special relativity to high energy phenomena; it provides an analysis of the kinematics of particle decays and reactions as well as an introduction to the Lorentz group

  18. Tensor Networks from Kinematic Space

    CERN Document Server

    Czech, Bartlomiej; McCandlish, Samuel; Sully, James

    2015-01-01

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space---the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry, obtaining a detailed agreement which includes the entwinement sector. We discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.

  19. GPS kinematics measurements accuracy testing

    OpenAIRE

    Miroslav Šimčák; Vladimír Sedlák; Gabriela Nemcová

    2007-01-01

    In the paper accuracy of GPS kinematics measurements is analyzed. GPS (Global Positioning System) apparatus Stratus (Sokkia) and Pro Mark2 (Aschtech) were tested. Testing was realized on the points of the geodetic network – the testing station Badín stabilized in the Central Slovak Region nearby Banská Bystrica. The semikinematics method STOP and GO was realized from the kinematics GPS methods. The terrestrial geodetic measurements by means of using the total station Nicon 352 were also reali...

  20. Quantum simulation of noncausal kinematic transformations.

    Science.gov (United States)

    Alvarez-Rodriguez, U; Casanova, J; Lamata, L; Solano, E

    2013-08-30

    We propose the implementation of Galileo group symmetry operations or, in general, linear coordinate transformations in a quantum simulator. With an appropriate encoding, unitary gates applied to our quantum system give rise to Galilean boosts or spatial and time parity operations in the simulated dynamics. This framework provides us with a flexible toolbox that enhances the versatility of quantum simulation theory, allowing the direct access to dynamical quantities that would otherwise require full tomography. Furthermore, this method enables the study of noncausal kinematics and phenomena beyond special relativity in a quantum controllable system. PMID:24033011

  1. Trading sulfur dioxide allowances

    International Nuclear Information System (INIS)

    The 1990 Clean Air Act is aimed at generators larger than 25 MW, as these are the largest polluters. Market incentives give each source an emissions allocation but also flexibility. If a plant has lower emissions than the target, it can sell the 'surplus' emissions as allowances to plants that fail to meet the target. Only a few trades have occurred to date. Market-based incentives should lower the costs of improving environmental quality significantly. However, currently institutional dificulties hamper implementation

  2. Mg II & C IV Kinematics vs. Stellar Kinematics in Galaxies

    CERN Document Server

    Churchill, C W; Churchill, Chris; Steidel, Chuck

    2002-01-01

    Comparisons of the kinematics of Mg II absorbing gas and the stellar rotation curves in 0.5 < z < 1.0 spiral galaxies suggests that, at least in some cases, the extended gaseous envelopes may be dynamically coupled to the stellar matter. A strong correlation exists between the overall kinematic spread of Mg II absorbing gas and C IV absorption strength, and therefore kinematics of the higher-ionization gas. Taken together, the data may suggest a "halo/disk connection" between z~1 galaxies and their extended gaseous envelopes. Though the number of galaxies in our sample are few, there are no clear examples that suggest the gas is accreting/infalling isotropically about the galaxies from the intergalactic medium.

  3. Kinematic Measures of Imitation Fidelity in Primary School Children

    Science.gov (United States)

    Williams, Justin H. G.; Casey, Jackie M.; Braadbaart, Lieke; Culmer, Peter R.; Mon-Williams, Mark

    2014-01-01

    We sought to develop a method for measuring imitation accuracy objectively in primary school children. Children imitated a model drawing shapes on the same computer-tablet interface they saw used in video clips, allowing kinematics of model and observers' actions to be directly compared. Imitation accuracy was reported as a correlation…

  4. Galileo's kinematical paradox and the role of resistive forces

    International Nuclear Information System (INIS)

    We discuss Galileo's kinematical ‘paradox’ taking into account the effects of sliding friction and of resistive forces proportional to velocity. We show that sliding friction eliminates the paradox but still allows for very simple synchronous curves. Perhaps surprisingly, Galileo's paradox is preserved when the resistive force is proportional to velocity. (paper)

  5. Bayesian Kinematic Finite Fault Source Models (Invited)

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.

    2010-12-01

    Finite fault earthquake source models are inherently under-determined: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are only limited observations at the Earth's surface. Traditional inverse techniques rely on model constraints and regularization to generate one model from the possibly broad space of all possible solutions. However, Bayesian methods allow us to determine the ensemble of all possible source models which are consistent with the data and our a priori assumptions about the physics of the earthquake source. Until now, Bayesian techniques have been of limited utility because they are computationally intractable for problems with as many free parameters as kinematic finite fault models. We have developed a methodology called Cascading Adaptive Tempered Metropolis In Parallel (CATMIP) which allows us to sample very high-dimensional problems in a parallel computing framework. The CATMIP algorithm combines elements of simulated annealing and genetic algorithms with the Metropolis algorithm to dynamically optimize the algorithm's efficiency as it runs. We will present synthetic performance tests of finite fault models made with this methodology as well as a kinematic source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. This earthquake was well recorded by multiple ascending and descending interferograms and a network of high-rate GPS stations whose records can be used as near-field seismograms.

  6. Clifford Fibrations and Possible Kinematics

    Directory of Open Access Journals (Sweden)

    Alan S. McRae

    2009-07-01

    Full Text Available Following Herranz and Santander [Herranz F.J., Santander M., Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 32 (1998, 59-84, physics/9702030] we will construct homogeneous spaces based on possible kinematical algebras and groups [Bacry H., Levy-Leblond J.-M., J. Math. Phys. 9 (1967, 1605-1614] and their contractions for 2-dimensional spacetimes. Our construction is different in that it is based on a generalized Clifford fibration: Following Penrose [Penrose R., Alfred A. Knopf, Inc., New York, 2005] we will call our fibration a Clifford fibration and not a Hopf fibration, as our fibration is a geometrical construction. The simple algebraic properties of the fibration describe the geometrical properties of the kinematical algebras and groups as well as the spacetimes that are derived from them. We develop an algebraic framework that handles all possible kinematic algebras save one, the static algebra.

  7. Cosmological Applications of the Gaussian Kinematic Formula

    CERN Document Server

    Fantaye, Yabebal; Maino, Davide; Marinucci, Domenico

    2014-01-01

    The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances. All our results are validated by numerical experiments, which show a perfect agreement between theoretical predictions and Monte Carlo simulations.

  8. General expression of manipulator kinematics

    International Nuclear Information System (INIS)

    In this paper, a general description for kinematic modelling of all types of manipulators is presented by expanding the concept of the homogeneous transformation (Ai-matrix) based on Denavit-Hartenberg notation. Unlike the previous matrix method, the expression of recursive relationships which is suitable for computer-aided design makes it possible to derive automatically the position and orientation of manipulator hand. Two algorithms which take into consideration of the order of operation result in identical relations with respect to the kinematics between the reference system and the final link, which was proved by an application to a six-link manipulator. (author)

  9. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  10. Massless scattering at special kinematics as Jacobi polynomials

    International Nuclear Information System (INIS)

    We study the scattering equations recently proposed by Cachazo, He and Yuan in the special kinematics where their solutions can be identified with the zeros of the Jacobi polynomials. This allows for a non-trivial two-parameter family of kinematics. We present explicit and compact formulas for the n-gluon and n-graviton partial scattering amplitudes for our special kinematics in terms of Jacobi polynomials. We also provide alternative expressions in terms of gamma functions. We give an interpretation of the common reduced determinant appearing in the amplitudes as the product of the squares of the eigenfrequencies of small oscillations of a system whose equilibrium is the solutions of the scattering equations. (paper)

  11. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Directory of Open Access Journals (Sweden)

    J. F. Wellmann

    2015-11-01

    Full Text Available We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  12. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Science.gov (United States)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  13. Kinematic Parameters of Signed Verbs

    Science.gov (United States)

    Malaia, Evie; Wilbur, Ronnie B.; Milkovic, Marina

    2013-01-01

    Purpose: Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production…

  14. Top quark mass and kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, Emanuela; /Northeastern U.

    2006-05-01

    A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.

  15. A new concept of modular kinematics to design ultra-high precision flexure-based robots

    OpenAIRE

    Richard, Murielle; Clavel, Reymond

    2010-01-01

    This work deals with the kinematic conception and the mechanical design of ultra-high precision robots, which are at present costly to develop, both in time and money. The aim of this paper is thus to introduce a new modular concept of kinematics which allows to significantly reduce the time-to-market and a new double-stage flexure-based pivot. Regarding the modular concept of kinematics, this ‘robotic Lego’ consists in a finite number of building bricks allowing to rapidly design a high prec...

  16. Exploring MaNGA's kinematic maps

    Science.gov (United States)

    Weijmans, Anne-Marie; MaNGA Team

    2016-01-01

    Different galaxy formation processes leave different imprints on the gas and stellar kinematic patterns for a galaxy. With MaNGA, we now have after one year of observations an unprecedented sample of 1400 nearby galaxies for which we can study gas and stellar kinematics in much detail, based on integral-field spectroscopy. We are measuring kinematic quantities such as LambdaR (angular momentum) and their (possible) correlations with other galaxy properties such as mass, morphology and environment. By quantifying the kinematic (sub)structures in velocity and dispersion maps, we will construct a kinematic galaxy classification that can be linked to their formation processes.

  17. SPACEBAR: Kinematic design by computer graphics

    Science.gov (United States)

    Ricci, R. J.

    1975-01-01

    The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.

  18. Sex Differences in Tibiocalcaneal Kinematics

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-08-01

    Full Text Available Purpose. Female runners typically suffer more from chronic running injuries than age-matched males, although the exact biome-chanical mechanisms behind the increased susceptibility of female runners are unknown. This study aimed to compare sex differences in tibiocalcaneal kinematics during the stance phase of running. Methods. Twenty male and twenty female participants ran at 4.0 m · s–1. Tibiocalcaneal kinematics were measured using an eight-camera motion analysis system and compared using independent samples t tests. Results. Peak eversion and tibial internal rotation angles were shown to be significantly greater in female runners. Conclusions. based on these observations, it was determined that female runners may be at increased risk from chronic injury development in relation to excessive tibiocalcaneal motions in the coronal and transverse planes.

  19. Contact kinematics of biomimetic scales

    International Nuclear Information System (INIS)

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate

  20. Measurement of reed valve kinematics

    Directory of Open Access Journals (Sweden)

    Fenkl Michael

    2016-01-01

    Full Text Available The measurement of key kinematic parameters of a reed valve movement is necessary for the further development of the reed valve system. These parameters are dependent on the geometry and material properties of the valve. As they directly affect the quantity of air flowing around the valve, a simple and easy to implement measurement of various valve configuration based on the air flow has been devised and is described in this paper, along with its technical parameters and drawbacks when evaluating reed valves used in reciprocating air compressors. Results are presented for a specimen of a compressor under examination. All kinematic parameters, and timing of the opening and closing of the valve, obtained from the measurement are presented and discussed.

  1. Measurement of reed valve kinematics

    Science.gov (United States)

    Fenkl, Michael; Dvořák, Václav; Vít, Tomáš

    2016-03-01

    The measurement of key kinematic parameters of a reed valve movement is necessary for the further development of the reed valve system. These parameters are dependent on the geometry and material properties of the valve. As they directly affect the quantity of air flowing around the valve, a simple and easy to implement measurement of various valve configuration based on the air flow has been devised and is described in this paper, along with its technical parameters and drawbacks when evaluating reed valves used in reciprocating air compressors. Results are presented for a specimen of a compressor under examination. All kinematic parameters, and timing of the opening and closing of the valve, obtained from the measurement are presented and discussed.

  2. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Paul Mattione

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  3. Kinematic Downsizing at z~2

    CERN Document Server

    Simons, Raymond C; Trump, Jonathan R; Weiner, Benjamin J; Heckman, Timothy M; Barro, Guillermo; Koo, David C; Guo, Yicheng; Pacifici, Camilla; Koekemoer, Anton; Stephens, Andrew W

    2016-01-01

    We present results from a survey of the internal kinematics of 49 star-forming galaxies at z$\\,\\sim\\,$2 in the CANDELS fields with the Keck/MOSFIRE spectrograph (SIGMA, Survey in the near-Infrared of Galaxies with Multiple position Angles). Kinematics (rotation velocity $V_{rot}$ and integrated gas velocity dispersion $\\sigma_g$) are measured from nebular emission lines which trace the hot ionized gas surrounding star-forming regions. We find that by z$\\,\\sim\\,$2, massive star-forming galaxies ($\\log\\,M_*/M_{\\odot}\\gtrsim10.2$) have assembled primitive disks: their kinematics are dominated by rotation, they are consistent with a marginally stable disk model, and they form a Tully-Fisher relation. These massive galaxies have values of $V_{rot}/\\sigma_g$ which are factors of 2-5 lower than local well-ordered galaxies at similar masses. Such results are consistent with findings by other studies. We find that low mass galaxies ($\\log\\,M_*/M_{\\odot}\\lesssim10.2$) at this epoch are still in the early stages of disk...

  4. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  5. Invariant feedback control for the kinematic car on the sphere

    CERN Document Server

    Collon, Carsten

    2012-01-01

    The design of an invariant tracking control law for the kinematic car driving on a sphere is discussed. Using a Lie group framework a left-invariant description on SO(3) is derived. Basic geometric considerations allow a direct comparison of the model with the usual planar case. Exploiting the Lie group structure an invariant tracking error is defined and a feedback is designed. Finally, one possible design of an invariant asymptotic observer is sketched.

  6. An Extensible, Kinematically-Based Gesture Annotation Scheme

    OpenAIRE

    Martell, Craig H.

    2002-01-01

    Chapter 1 in the book: Advances in Natural Multimodal Dialogue Systems Annotated corpora have played a critical role in speech and natural language research; and, there is an increasing interest in corpora-based research in sign language and gesture as well. We present a non-semantic, geometrically-based annotation scheme, FORM, which allows an annotator to capture the kinematic information in a gesture just from videos of speakers. In addition, FORM stores this gestural in...

  7. Kinematics Analysis of Two Parallel Locomotion Mechanisms

    OpenAIRE

    Ren, Ping

    2010-01-01

    This dissertation presents the kinematics study on two cases of parallel locomotion mechanisms. A parallel locomotion mechanism can be defined as â a mechanism with parallel configuration and discrete contact with respect to the ground which renders a platform the ability to moveâ . The first case is a tripedal robot and the second case is an actuated spoke wheel robot. The kinematics study on these two mobile robots mainly includes mobility, inverse and forward kinematics, i...

  8. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome; Erleben, Kenny; Pedersen, Kim Steenstrup

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... estimation system uses a single camera to estimate the motion of a human. The results show that inverse kinematics can significantly speed up the estimation process, while retaining a quality comparable to a full pose motion estimation system. Our novelty lies primarily in use of inverse kinematics to...

  9. Kinematics of the free throw in basketball

    Science.gov (United States)

    Tan, A.; Miller, G.

    1981-06-01

    The kinematics of the two basic styles of free throw in basketball are discussed. It is shown that from a purely kinematic and trajectory point of view, the overhand push shot is preferable to the underhand loop shot. The advantages of the underhand shot lie in the actual execution of the shot.

  10. New Methods for Kinematic Modelling and Calibration of Robots

    DEFF Research Database (Denmark)

    Søe-Knudsen, Rune

    2014-01-01

    Improving a robot's accuracy increases its ability to solve certain tasks, and is therefore valuable. Practical ways of achieving this improved accuracy, even after robot repair, is also valuable. In this work, we introduce methods that improve the robot's accuracy and make it possible to maintain...... the accuracy in an easy and accessible way. The required equipment is accessible, since the cost is held to a minimum and can be made with conventional processing equipment. Our first method calibrates the kinematics of a robot using known relative positions measured with the robot itself and a plate...... with holes matching the robot tool flange. The second method calibrates the kinematics using two robots. This method allows the robots to carry out the collection of measurements and the adjustment, by themselves, after the robots have been connected. Furthermore, we also propose a method for restoring...

  11. Overcoming obstacles to colour-kinematics duality at two loops

    Science.gov (United States)

    Mogull, Gustav; O'Connell, Donal

    2015-12-01

    The discovery of colour-kinematics duality has allowed great progress in our understanding of the UV structure of gravity. However, it has proven difficult to find numerators which satisfy colour-kinematics duality in certain cases. We discuss obstacles to building a set of such numerators in the context of the five-gluon amplitude with all helicities positive at two loops. We are able to overcome the obstacles by adding more loop momentum to our numerator to accommodate tension between the values of certain cuts and the symmetries of certain diagrams. At the same time, we maintain control over the size of our ansatz by identifying a highly constraining but desirable symmetry property of our master numerator. The resulting numerators have twelve powers of loop momenta rather than the seven one would expect from the Feynman rules.

  12. Kinematics of multigrid Monte Carlo

    International Nuclear Information System (INIS)

    We study the kinematics of multigrid Monte Carlo algorithms by means of acceptance rates for nonlocal Metropolis update proposals. An approximation formula for acceptance rates is derived. We present a comparison of different coarse-to-fine interpolation schemes in free field theory, where the formula is exact. The predictions of the approximation formula for several interacting models are well confirmed by Monte Carlo simulations. The following rule is found: For a critical model with fundametal Hamiltonian Η(φ), absence of critical slowing down can only be expected if the expansion of (Η(φ+ψ)) in terms of the shift ψ contains no relevant (mass) term. We also introduce a multigrid update procedure for nonabelian lattice gauge theory and study the acceptance rates for gauge group SU(2) in four dimensions. (orig.)

  13. Bayesian kinematic earthquake source models

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  14. Automated kinematic generator for surgical robotic systems.

    Science.gov (United States)

    Jung, David L; Dixon, Warren E; Pin, François G

    2004-01-01

    Unlike traditional assembly line robotic systems that have a fixed kinematic structure associated with a single tool for a structured task, next-generation robotic surgical assist systems will be required to use an array of end-effector tools. Once a robot is connected with a tool, the kinematic equations of motion are altered. Given the need to accommodate evolving surgical challenges and to alleviate the restrictions imposed by the confined minimally invasive environment, new surgical tools may resemble small flexible snakes rather than rigid, cable driven instruments. Connecting to these developing articulated tools will significantly alter the overall kinematic structure of a robotic system. In this paper we present a technique for real-time automated generation and evaluation of manipulator kinematic equations that exhibits the combined advantages of existing methods-speed and flexibility to kinematic change--without their disadvantages. PMID:15544260

  15. Efficient kinematics for jet-propelled swimming

    Science.gov (United States)

    Alben, Silas; Miller, Laura; Peng, Jifeng

    2013-11-01

    We use vortex sheet and viscous simulations and an analytical model to search for efficient jet-propelled swimming kinematics at large Reynolds numbers (1000 and above). We prescribe different power-law kinematics for the bell contraction and expansion. In the simulations, two types of efficient kinematics are found: a bell radius velocity which is a nearly linear function of time, and a ``burst-and-coast'' kinematics. The analytical model studies the contraction phase only, and finds that the efficiency-optimizing kinematics transition from a nearly linear bell radius velocity (similar to the numerics) for small-to-moderate output power to an exponentially-decaying bell radius velocity for large output power.

  16. Kinematic modelling of disc galaxies using graphics processing units

    Science.gov (United States)

    Bekiaris, G.; Glazebrook, K.; Fluke, C. J.; Abraham, R.

    2016-01-01

    With large-scale integral field spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the graphics processing unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and nested sampling algorithms, but also a naive brute-force approach based on nested grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ˜100 when compared to a single-threaded CPU, and up to a factor of ˜10 when compared to a multithreaded dual CPU configuration. Our method's accuracy, precision and robustness are assessed by successfully recovering the kinematic properties of simulated data, and also by verifying the kinematic modelling results of galaxies from the GHASP and DYNAMO surveys as found in the literature. The resulting GBKFIT code is available for download from: http://supercomputing.swin.edu.au/gbkfit.

  17. Edge-driven microplate kinematics

    Science.gov (United States)

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  18. Star cluster kinematics with AAOmega

    CERN Document Server

    Kiss, L L; Szabo, Gy M; Parker, Q A; Frew, D J

    2008-01-01

    The high-resolution setup of the AAOmega spectrograph on the Anglo-Australian Telescope makes it a beautiful radial velocity machine, with which one can measure velocities of up to 350-360 stars per exposure to +/-1--2 km/s in a 2-degree field of view. Here we present three case studies of star cluster kinematics, each based on data obtained on three nights in February 2008. The specific aims included: (i) cluster membership determination for NGC 2451A and B, two nearby open clusters in the same line-of-sight; (ii) a study of possible membership of the planetary nebula NGC 2438 in the open cluster M46; and (iii) the radial velocity dispersion of M4 and NGC 6144, a pair of two globular clusters near Antares. The results which came out of only three nights of AAT time illustrate very nicely the potential of the instrument and, for example, how quickly one can resolve decades of contradiction in less than two hours of net observing time.

  19. Robot Kinematics, using Dual Quaternions

    Directory of Open Access Journals (Sweden)

    Mahmoud Gouasmi

    2012-03-01

    Full Text Available From the point of view of classical mechanics, deriving the equations of motion for systems of coupled rigid bodies is regarded as a straightforward procedure: once a suitable set of generalized coordinates and reference frames have been chosen, what remains is to either apply Lagrange’s equations or Newton and Euler’s equations to obtain the differential equations of motion. As the complexity of multibody system increases, the need for more elegant formulation of the equation of motion becomes an issue of paramount importance. Our primary focus is on the kinematic analysis of rigid bodies and serial manipulators (robotic systems  using simultaneously, both homogeneous transformations (4x4 matrices and Dual Quaternions, for the sake of results comparisons (cost,complexity,storage capacity etc. . This paper has been done mainly for educational and peadagogical purposes, hoping that the scientific community will finally adopt and use Dual Quaternions at least when dealing with multibody systems and specially robotics.

  20. Interactive scan control for kinematic study in open MRI

    International Nuclear Information System (INIS)

    A tool to support the subject is generally used for kinematic joint imaging with an open MRI apparatus because of difficulty setting the image plane correctly. However, use of a support tool requires a complicated procedure to position the subject, and setting the image plane when the joint angle changes is time consuming. Allowing the subject to move freely enables better diagnoses when kinematic joint imaging is performed. We therefore developed an interactive scan control (ISC) to facilitate the easy, quick, and accurate setting of the image plane even when a support tool is not used. We used a 0.4T magnetic resonance (MR) imaging system open in the horizontal direction. The ISC determines the image plane interactively on the basis of fluoroscopy images displayed on a user interface. The imaging pulse is a balanced steady-state acquisition with rewound gradient echo (SARGE) sequence with update time less than 2 s. Without using a tool to support the knee, we positioned the knee of a healthy volunteer at 4 different joint angles and set the image plane through the patella and femur at each of the angles. Lumbar imaging is also demonstrated with ISC. Setting the image plane was easy and quick at all knee angles, and images obtained clearly showed the patella and femur. Total imaging time was less than 10 min, a fourth of the time needed when a support tool is used. We also used our ISC in kinematic imaging of the lumbar. The ISC shortens total time for kinematic joint imaging, and because a support tool is not needed, imaging can be done more freely in an open MR imaging apparatus. (author)

  1. Kinematics and Dynamics of Roller Chain Drives

    DEFF Research Database (Denmark)

    Fuglede, Niels

    There are two main subjects of this work: Kinematic and dynamic modeling and analysis of roller chain drives. In the kinematic analysis we contribute first with a complete treatment of the roller chain drive modeled as a four-bar mechanism. This includes a general, exact and approximate analysis...... parameters which is useful for predicting the characteristic loading of the roller chain drive. As a completely novel contribution, a kinematic model and analysis is presented which includes both spans and sprockets in a simple chain drive system. A general procedure for determination of the total wrapping...... conditions for real chain drives. Examples are presented of both decoupled and coupled motion. Together, the kinematic and dynamic model and analytical results provides a framework for numerical and experimental investigations of roller chain drive motion and deepens the understanding of roller chain drive...

  2. Kinematic analysis of spatial parallel manipulator

    International Nuclear Information System (INIS)

    In this work we analyses a particularly spatial manipulator, establish initial data and based on fixed geometrical link parameters we conduct a kinematic analysis of manipulator by Denavit-Hartenberg matrix way. (author)

  3. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  4. Kinematic Analysis Of Tricept Parallel Manipulator

    OpenAIRE

    2012-01-01

    Parallel manipulators consist of fixed and moving platforms connected to each other with some actuated links. They have some significant advantages over their serial counterparts. While, they suffer from relatively small workspaces, complex kinematics relations and highly singular points within their workspaces. In this paper, forward kinematics of Tricept parallel manipulator is solved analytically and its workspace optimization is performed. This parallel manipulator has a complex degree of...

  5. Quantum gravity kinematics from extended TQFTs

    OpenAIRE

    Dittrich, Bianca; Geiller, Marc

    2016-01-01

    We show how extended topological quantum field theories (TQFTs) can be used to obtain a kinematical setup for quantum gravity, i.e. a kinematical Hilbert space together with a representation of the observable algebra including operators of quantum geometry. In particular, we consider the holonomy-flux algebra of (2+1)-dimensional Euclidean loop quantum gravity, and construct a new representation of this algebra that incorporates a positive cosmological constant. The vacuum state underlying ou...

  6. DIDACTIC AUTOMATED STATION OF COMPLEX KINEMATICS

    Directory of Open Access Journals (Sweden)

    Mariusz Sosnowski

    2014-03-01

    Full Text Available The paper presents the design, control system and software that controls the automated station of complex kinematics. Control interface and software has been developed and manufactured in the West Pomeranian University of Technology in Szczecin in the Department of Automated Manufacturing Systems Engineering and Quality. Conducting classes designed to teach programming and design of structures and systems for monitoring the robot kinematic components with non-standard structures was the reason for installation of the control system and software.

  7. DIDACTIC AUTOMATED STATION OF COMPLEX KINEMATICS

    OpenAIRE

    Mariusz Sosnowski; Jędrzej Jaskowski

    2014-01-01

    The paper presents the design, control system and software that controls the automated station of complex kinematics. Control interface and software has been developed and manufactured in the West Pomeranian University of Technology in Szczecin in the Department of Automated Manufacturing Systems Engineering and Quality. Conducting classes designed to teach programming and design of structures and systems for monitoring the robot kinematic components with non-standard structures was the reaso...

  8. Kinematical coincidence method in transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, L.; Amorini, F. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G., E-mail: cardella@ct.infn.it [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Chatterjiee, M.B. [Saha Institute for Nuclear Physics, Kolkata (India); De Filippo, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Francalanza, L.; Gianì, R. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Grassi, L. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Rudjer Boskovic Institute, Zagreb (Croatia); Grzeszczuk, A. [Institut of Physics, University of Silesia, Katowice (Poland); La Guidara, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Loria, D.; Minniti, T. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Pagano, E.V. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); and others

    2013-07-01

    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematics is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of {sup 10}Be+p→{sup 9}Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained. The range of applicability of the method is discussed.

  9. Kinematical coincidence method in transfer reactions

    CERN Document Server

    Acosta, L; Auditore, L; Berceanu, I; Cardella, G; Chatterjiee, M B; De Filippo, E; FrancalanzA, L; Gianì, R; Grassi, L; Grzeszczuk, A; La Guidara, E; Lanzalone, G; Lombardo, I; Loria, D; Minniti, T; Pagano, E V; Papa, M; Pirrone, S; Politi, G; Pop, A; Porto, F; Rizzo, F; Rosato, E; Russotto, P; Santoro, S; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M

    2012-01-01

    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematic is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of 10Be+p-->9Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained.

  10. A kinematical analysis of NGC 2992

    OpenAIRE

    Marquez, I.; Boisson, C.; Durret, F.; P. Petitjean

    1998-01-01

    We present long slit spectroscopy for the [OIII] and H$\\alpha$ wavelength ranges along nine different position angles for the Sa Seyfert 1.9 galaxy NGC 2992. Double profiles are present in several regions, suggesting that the gas is not simply following galaxy rotation. A simple kinematical model, which takes into account circular rotation together with a constant radial outflow, seems to be a good approximation to account for the observed kinematics.

  11. Dynamic Control of Kinematically Redundant Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Erling Lunde

    1987-07-01

    Full Text Available Several methods for task space control of kinematically redundant manipulators have been proposed in the literature. Most of these methods are based on a kinematic analysis of the manipulator. In this paper we propose a control algorithm in which we are especially concerned with the manipulator dynamics. The algorithm is particularly well suited for the class of redundant manipulators consisting of a relatively small manipulator mounted on a larger positioning part.

  12. Kinematic Deviations In Children With Cerebral Palsy

    OpenAIRE

    Sangeux, Morgan; ARMAND, Stéphane

    2015-01-01

    In gait analysis, a large portion of the work consists in finding the underlying causes of the abnormal movement observed during walking. The patient’s kinematics of walking is compared to that of typically developed children and the deviations are further analysed. Over the years, clinicians have observed multiple-joints kinematics deviations that were frequent in children with cerebral palsy and devised gait patterns in order to group patients and support management algorithms. However, the...

  13. Relevant Explanations: Allowing Disjunctive Assignments

    OpenAIRE

    Shimony, Solomon Eyal

    2013-01-01

    Relevance-based explanation is a scheme in which partial assignments to Bayesian belief network variables are explanations (abductive conclusions). We allow variables to remain unassigned in explanations as long as they are irrelevant to the explanation, where irrelevance is defined in terms of statistical independence. When multiple-valued variables exist in the system, especially when subsets of values correspond to natural types of events, the over specification problem, alleviated by inde...

  14. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight

    Science.gov (United States)

    Wolf, Thomas; Konrath, Robert

    2015-02-01

    This paper presents results of high-resolution three-dimensional wing shape measurements performed on free-flying barn owls in flapping flight. The applied measurement technique is introduced together with a moving camera set-up, allowing for an investigation of the free flapping flight of birds with high spatial and temporal resolution. Based on the three-dimensional surface data, a methodology for parameterizing the wing profile along with wing kinematics during flapping flight has been developed. This allowed a description of the spanwise varying kinematics and aerodynamic parameters (e.g. effective angles of attack, camber, thickness) of the wing in dependence on the flapping phase. The results are discussed in detail using the data of a single flight, whereas a comparison of some kinematic parameters obtained from different flights is given too.

  15. Clifford algebras geometric modelling and chain geometries with application in kinematics

    CERN Document Server

    Klawitter, Daniel

    2015-01-01

    After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...

  16. A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for the lower limbs

    Science.gov (United States)

    Sergi, Fabrizio; Accoto, Dino; Tagliamonte, Nevio L.; Carpino, Giorgio; Guglielmelli, Eugenio

    2011-03-01

    The choice of non-anthropomorphic kinematic solutions for wearable robots is motivated both by the necessity of improving the ergonomics of physical Human-Robot Interaction and by the chance of exploiting the intrinsic dynamical properties of the robotic structure so to improve its performances. Under these aspects, this new class of robotic solutions is potentially advantageous over the one of anthropomorphic robotic orthoses. However, the process of kinematic synthesis of non-anthropomorphic wearable robots can be too complex to be solved uniquely by relying on conventional synthesis methods, due to the large number of open design parameters. A systematic approach can be useful for this purpose, since it allows to obtain the complete list of independent kinematic solutions with desired properties. In this perspective, this paper presents a method, which allows to generalize the problem of kinematic synthesis of a non-anthropomorphic wearable robot for the assistance of a specified set of contiguous body segments. The methodology also includes two novel tests, specifically devised to solve the problem of enumeration of kinematic structures of wearable robots: the HR-isomorphism and the HR-degeneracy tests. This method has been implemented to derive the atlas of independent kinematic solutions suitable to be used for the kinematic design of a planar wearable robot for the lower limbs.

  17. Computing broadband accelerograms using kinematic rupture modeling

    International Nuclear Information System (INIS)

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k-2 source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w2 model with spectral amplitudes at high frequency scaled to the coefficient of directivity Cd. To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of Cd, as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, Mw 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  18. Emission allowances stall in marketplace

    International Nuclear Information System (INIS)

    Misinformation and public misunderstanding have given emissions trading a bad reputation in the public marketplace, says William F. Malec, executive vice president of the Tennessee Valley Authority (TVA), in Knoxville, Tennessee. Media coverage of a May 1992 emissions-allowance trade between TVA and Wisconsin Power and Light open-quotes focused on the agreement's pollution-trading aspects, not its overall potential economic and environmental benefits,close quotes Malec says. Such negative portrayal of TVA's transaction sparked severe public criticism and charges that emissions trading gives utilities the right to pollute. open-quotes The fact is that TVA sought the emissions-trading agreement as a means to reduce overall emissions in the most cost-effective way,close quotes Malec explains. Emissions trading allows a company with emission levels lower than clean-air standards to earn open-quotes credits.close quotes These credits then may be purchased by a company with emission levels that exceed federal standards. Under this arrangement, the environment is protected and companies that buy credits save money because they do not have to purchase expensive emissions-control devices or reduce their production levels. Malec says TVA decided to enter into the emissions-allowance market, not only to cut costs, but also to publicize the existence and benefits of emissions trading. However, TVA's experience proves that open-quotes people will not accept what they do not understand,close quotes concludes Malec, open-quotes especially when complex environmental issues are involved.close quotes

  19. Galactic kinematics with RAVE data - I. The distribution of stars towards the Galactic poles

    NARCIS (Netherlands)

    Veltz, L.; Bienayme, O.; Freeman, K. C.; Binney, J.; Bland-Hawthorn, J.; Gibson, B. K.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Siebert, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Wyse, R. F. G.; Zwitter, T.

    2008-01-01

    We analyze the distribution of G and K type stars towards the Galactic poles using RAVE and ELODIE radial velocities, 2MASS photometric star counts, and UCAC2 proper motions. The combination of photometric and 3D kinematic data allows us to disentangle and describe the vertical distribution of dwarf

  20. Kinematics of Electrons in the Volume of a Planar Vacuum Diode

    CERN Document Server

    Stoyanov, Dimitar G

    2011-01-01

    The kinematics laws of electrons motion in the volume of planar vacuum diode are obtained. The physically acceptable initial and boundary conditions for the regime of changing of current are presented. A new solution allowing diode self-clogging is suggested.

  1. Energy dependence of 238U fission yields investigated in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Veselsky M.

    2010-03-01

    Full Text Available The production cross sections of neutron-rich fission residues produced in reactions induced by a 238U beam impinging onto Pb and Be targets were investigated at the Fragment Separator (FRS at GSI using the inverse kinematic technique. These data allowed us to discuss the optimum energies in fission for producing the most neutron-rich residues.

  2. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  3. Morpho-kinematic of distant galaxies with JWST and MOSAIC

    Science.gov (United States)

    Rodrigues, M.; Hammer, F.; Puech, M.; Flores, H.

    2015-12-01

    The combination of high spatial resolution from space imagery and 3D spectroscopy from ground is a remarkable tool to dissect distant galaxies and their internal motions. Using HST and VLT observations, we have captured the strong evolution of disk galaxies over the past 8 billion years (z˜1), which suggests disk (re)formation after gas rich mergers. At higher lookback time, the morpho-kinmatics of galaxies is strongly limited by the lower signal-to-noise and coarse spatial resolution of the observations. In the next decade, the synergy between JWST/NIRCAM and MOSAIC the futur MOS at the E-ELT will allow us to capture the morpho-kinematics up to the first galaxies and unveil the physical processes dominating their formation. The lesson learned at intermediate redshift will allow us to optimize the specification for MOSAIC to achieve the morpho-kinematics follow-up of galaxies from z˜4 to z=0.

  4. Computer Assisted Mechanical Axis and Kinematic TKA

    Science.gov (United States)

    McEwen, Peter; Mahoharan, Varaguna

    2016-01-01

    Introduction: Total knee arthroplasty (TKA) has traditionally been and largely continues to be aligned mechanically, that being with a neutral coronal plane mechanical tibiofemoral axis and a joint line orientated at 900 to this axis. Femoral component rotation is set by gap balancing or by externally rotating 30 from any of a number femoral reference lines. This produces a rectangular flexion gap and relaxes patellar tracking. Kinematic alignment (KA) is an alternative technique that aims to restore premorbid alignment, joint orientation and ligament tension. The basic premise for this technique is based on evidence that the medial and lateral femoral condyles consistently equate to cylinders of equal or near equal size and that therefore with a fixed radius, cruciate retaining implant, matched distal femoral, posterior femoral and proximal tibial resections, accounting for bone and cartilage already lost will reproduce the premorbid joint line and restore native premorbid kinematics. Femoral rotation is therefore referenced off the prearthritic posterior condylar axis (PCA) that is on average internally rotated to the AP axis. Kinematic alignment therefore has the potential to challenge patellar tracking, increase patellar load and potentially increase patellar complications. Method: Case control study – level of evidence III-2. Between November 2012 and June 2013 the senior author completed 104 consecutive computer assisted (CAS) kinematically aligned total knee arthroplasties (TKA) with a cruciate retaining, fixed bearing, single radius implant. The results of these surgeries were compared with the results of 91 consecutive CAS mechanically aligned TKA done between November 2011 and October 2012 using the same navigation system and implant Implant sizing and positioning as well as gap measurement and ligament balance was done with computer assistance in all cases. Data was collected prospectively and analysed retrospectively. Results: The Oxford Knee Score

  5. Highly damped kinematic coupling for precision instruments

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Layton C. (Livermore, CA); Jensen, Steven A. (Livermore, CA)

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  6. Kinematic and Elastostatic Design Optimisation of the 3-DOF Gantry-Tau Parallel Kinematic Manipulator

    Directory of Open Access Journals (Sweden)

    Ilya Tyapin

    2009-04-01

    Full Text Available One of the main advantages of the Gantry-Tau machine is a large accessible workspace/footprint ratio compared to many other parallel machines. The Gantry-Tau improves this ration further by allowing a change of assembly mode without internal link collisions or collisions between the links and end-effector. The reconfigurable Gantry-Tau kinematic design obtained by multi-objective optimisation according to this paper gives the following features: 3-D workspace/footprint ratio is more than 3.19, lowest Cartesian stiffness in the workspace is $5N/mu m$ and no link collisions detected. The optimisation parameters are the support frame lengths, the actuator positions and the robot's arm lengths. The results comparison between the evolutionary complex search algorithm and gradient-based method used for the Gantry-Tau design in the past is also presented in this paper. The detailed statics model analysis of the Gantry-Tau based on a functionally dependency is presented in this paper for the first time. Both the statics model and complex search algorithm may be applied for other 3-DOF Hexapods without major changes. The existing lab prototype of the Gantry-Tau was assembled and completed at the University of Agder, Norway.

  7. Kinematics and Control of Robot Manipulators

    Science.gov (United States)

    Paden, Bradley Evan

    This dissertation focuses on the kinematics and control of robot manipulators. The contribution to kinematics is a fundamental theorem on the design of manipulators with six revolute joints. The theorem states, roughly speaking, that manipulators which have six revolute joints and are modeled after the human arm are optimal and essentially unique. In developing the mathematical framework to prove this theorem, we define precisely the notions of length of a manipulator, well-connected-workspace, and work-volume. We contribute to control a set of analysis techniques for the design of variable structure (sliding mode) controllers for manipulators. The organization of the dissertation is the following. After introductory remarks in chapter one, the group of proper rigid motions, G, is introduced in chapter two. The tangent bundle of G is introduced and it is shown that the velocity of a rigid body can be represented by an element in the Lie algebra of G (commonly called a twist). Further, rigid motions which are exponentials of twists are used to describe four commonly occurring subproblems in robot kinematics. In chapter three, the exponentials of twists are used to write the forward kinematic map of robot manipulators and the subproblems of chapter two are used to solve the Stanford manipulator and an elbow manipulator. Chapter four focuses on manipulator singularities. Twist coordinates are used to find critical points of the forward kinematic map. The contribution to kinematics is contained in chapter five where a mathematical framework for studying the relationship between the design of 6R manipulators and their performance is developed. Chapter seven contains the contribution to control. The work of A. F. Filippov on differential equations with discontinuous right-hand-side and the work of F. H. Clarke on generalized gradients are combined to obtain a calculus for analyzing nonsmooth gradient systems. The techniques developed are applied to design a simple

  8. Kinematic Issues of GPDs in DVCS

    International Nuclear Information System (INIS)

    Generalized Parton Distributions (GPDs) in Deeply Virtual Compton Scattering (DVCS) have been widely recognized and used as a useful tool to explore the quark and gluon structure of the target hadrons. However, we recently pointed out treacherous kinematic issues in analyzing DVCS in terms of GPDs. We present our key findings in the simplest possible level of complete amplitude including the lepton current. We also discuss an implication on theoretical frameworks to cover the kinematic region of DVCS experiment with the 12 GeV upgrade at Jefferson Lab

  9. Controlling chaotic robots with kinematical redundancy

    Science.gov (United States)

    Li, Li; Liu, Zhaohui; Zhang, Dengcai; Zhang, H.

    2006-03-01

    Robots with kinematical redundancy under the pseudoinverse control exhibit undesirable chaotic joint motion, which leads to erratic behaviors. In this study, we used the delayed feedback method to control chaotic motions of a planar 3R rigid and a planar 3R flexible redundant robot under the pseudoinverse control when the end-effector traces a closed-path repeatedly in the work space. It was demonstrated that chaotic motions of robots with kinematical redundancy can be turned into regular motion when the delayed feedback method was applied with some appropriate parameters. This study provides a new insight helpful to solve the repeatability problem of redundant manipulators.

  10. Inverse Kinematics of a Serial Robot

    Directory of Open Access Journals (Sweden)

    Amici Cinzia

    2016-01-01

    Full Text Available This work describes a technique to treat the inverse kinematics of a serial manipulator. The inverse kinematics is obtained through the numerical inversion of the Jacobian matrix, that represents the equation of motion of the manipulator. The inversion is affected by numerical errors and, in different conditions, due to the numerical nature of the solver, it does not converge to a reasonable solution. Thus a soft computing approach is adopted to mix different traditional methods to obtain an increment of algorithmic convergence.

  11. The Kinematic Theory of Solar Dynamo

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Generation of the Sun's magnetic fields by self-inductive processes inthe solar electrically conducting interior, the solar dynamo theory, is a fundamen-tally important subject in astrophysics. The kinematic dynamo theory concernshow the magnetic fields are produced by kinematically possible flows without beingconstrained by the dynamic equation. We review a number of basic aspects of thekinematic dynamo theory, including the magnetohydrodynamic approximation forthe dynamo equation, the impossibility of dynamo action with the solar differentialrotation, the Cowling's anti-dynamo theorem in the solar context, the turbulent al-pha effect and recently constructed three-dimensional interface dynamos controlledby the solar tachocline at the base of the convection zone.

  12. Kinematic restoration of the Mediterranean region since the Triassic

    Science.gov (United States)

    van Hinsbergen, Douwe; Torsvik, Trond; Matenco, Liviu; Schmid, Stefan; Maffione, Marco; Spakman, Wim

    2014-05-01

    platform for kinematic reconstructions is the freely available GPlates plate kinematic reconstruction software (http://www.gplates.org). We provide the first fully quantitatively described GPlates-based kinematic reconstruction of the Mediterranean region back to Triassic time. Classic plate reconstructions assume plate rigidity, and motion concentrated along discrete plate boundaries. Convergence between Africa-Europe plate boundary in the Mediterranean region is, however, associated with regionally distributed deformation. In this reconstruction, we attempt to restore this distributed deformation, which in practice means that we allow for polygons to change shape and area over time. This reconstruction may (i) be used as input for numerical models that aim to constrain the geodynamic evolution of (parts of) the Mediterranean history, (ii) allow comparing relative tectonic motions of the Mediterranean region to the mantle using mantle reference frames, and (iii) provide regional kinematic context for future geological studies. Upon final publication, all shape and rotation files of this reconstruction will be made publically available, which may serve as a platform for further improvement when new constraints demand so, or when the reader wishes to test different tectonic scenarios.

  13. Calibration of parallel kinematic devices using sequential determination of kinematic parameters

    Energy Technology Data Exchange (ETDEWEB)

    JOKIEL JR.,BERNHARD; BIEG,LOTHAR F.; ZIEGERT,JOHN C.

    2000-04-06

    In PKM Machines, the Cartesian position and orientation of the tool point carried on the platform is obtained from a kinematic model of the particular machine. Accurate positioning of these machines relies on the accurate knowledge of the parameters of the kinematic model unique to the particular machine. The parameters in the kinematic model include the spatial locations of the joint centers on the machine base and moving platform, the initial strut lengths, and the strut displacements. The strut displacements are readily obtained from sensors on the machine. However, the remaining kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. The size and complexity of these machines generally makes it difficult and somewhat undesirable to determine the remaining kinematic parameters by direct inspection such as in a coordinate measuring machine. In order for PKMs to be useful for precision positioning applications, techniques must be developed to quickly calibrate the machine by determining the kinematic parameters without disassembly of the machine. A number of authors have reported techniques for calibration of PKMs (Soons, Masory, Zhuang et. al., Ropponen). In two other papers, the authors have reported on work recently completed by the University of Florida and Sandia National Laboratories on calibration of PKMs, which describes a new technique to sequentially determine the kinematic parameters of an assembled parallel kinematic device. The technique described is intended to be used with a spatial coordinate measuring device such as a portable articulated CMM measuring arm (Romer, Faro, etc.), a Laser Ball Bar (LBB), or a laser tracker (SMX< API, etc.). The material to be presented is as follows: (1) methods to identify the kinematic parameters of 6--6 variant Stewart platform manipulators including joint center locations relative to the workable and spindle nose

  14. A kinematic study on (unintentional imitation in bottlenose dolphins

    Directory of Open Access Journals (Sweden)

    Luisa Sartori

    2015-08-01

    Full Text Available The aim of the present study was to investigate the effect of observing other’s movements on subsequent performance in bottlenose dolphins. The imitative ability of non-human animals has intrigued a number of researchers. So far, however, studies in dolphins have been confined to intentional imitation concerned with the explicit request to imitate other agents. In the absence of instruction to imitate, do dolphins (unintentionally replicate other’s movement features? To test this, dolphins were filmed while reaching and touching a stimulus before and after observing another dolphin (i.e., model performing the same action. All videos were reviewed and segmented in order to extract the relevant movements. A marker was inserted post-hoc via software on the videos upon the anatomical landmark of interest (i.e. rostrum and was tracked throughout the time course of the movement sequence. The movement was analyzed using an in-house software developed to perform two-dimensional (2D post-hoc kinematic analysis. The results indicate that dolphins’ kinematics is sensitive to other’s movement features. Movements performed for the ‘visuomotor priming’ condition were characterized by a kinematic pattern similar to that performed by the observed dolphin (i.e., model. Addressing the issue of spontaneous imitation in bottlenose dolphins might allow ascertaining whether the potential or impulse to produce an imitative action is generated, not just when they intend to imitate, but whenever they watch another conspecific’s behavior. In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability.

  15. The influence of binarity on the morpho-kinematics of planetary nebulae

    CERN Document Server

    Jones, David; Lloyd, Myfanwy; Santander-Garcia, Miguel

    2011-01-01

    The role of central star binarity in the shaping of planetary nebulae (PNe) has been the subject of much debate, with single stars believed to be incapable of producing the most highly collimated morphologies. However, observational support for binary-induced shaping has been sadly lacking. Here, we highlight the results of a continuing programme to spatio-kinematically model the morphologies of all PNe known to contain a close binary central star. Spatio-kinematical modelling is imperative for these objects, as it circumvents the degeneracy between morphology and orientation which can adversely affect determinations of morphology based on imaging alone. Furthermore, spatio-kinematical modelling accurately determines the orientation of the nebular shell, allowing the theoretically predicted perpendicular alignment, between nebular symmetry axis and binary orbital plane, to be tested. To date, every PN subjected to this investigation has displayed the predicted alignment, indicating that binarity has played an...

  16. Rotational laxity after anterior cruciate ligament injury by kinematic evaluation of clinical tests.

    Science.gov (United States)

    Zaffagnini, S; Martelli, S; Falcioni, B; Motta, M; Marcacci, M

    2000-01-01

    Despite the numerous studies on anterior cruciate ligament biomechanics and clinical tests, some disagreements still exist in the literature on the role of ACL in restraining rotations and which kinematic test after ACL injuries is the most suitable to evaluate this instability. This work analyses the capability of passive clinical and stress tests to detect an ACL state quantifying rotational instability. The study was conducted on animal knees with a new protocol. We found that an internal-external stress test can give a useful indication on the ACL state when used to estimate the side to side differences while varus-valgus laxity and secondary motions in standard kinematic tests did not seem to be affected by ACL injury. The kinematic protocol performed could be used intra-operatively to quantify rotations, allowing a more accurate evaluation of knee instability to guide surgical reconstruction and improve its final outcome. PMID:11204247

  17. Ionized gas kinematics of galaxies in the CALIFA survey I: Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems

    CERN Document Server

    Garcia-Lorenzo, B; Barrera-Ballesteros, J K; Masegosa, J; Husemann, B; Falcón-Barroso, J; Lyubenova, M; Sanchez, S F; Walcher, J; Mast, D; Garcia-Benito, R; Mendez-Abreu, J; van de Ven, G; Spekkens, K; Holmes, L; Monreal-Ibero, A; del Olmo, A; Ziegler, B; Bland-Hawthorn, J; Sanchez-Blazquez, P; Iglesias-Paramo, J; Aguerri, J A L; Papaderos, P; Gomes, J M; Marino, R A; Delgado, R M Gonzalez; Cortijo-Ferrero, C; Lopez-Sanchez, A R; Bekeraite, S; Wisotzki, L; Bomans, D

    2014-01-01

    This work provides an overall characterization of the kinematic behavior of the ionized gas of the galaxies included in the Calar Alto Legacy Integral field Area (CALIFA), offering kinematic clues to potential users of this survey for including kinematical criteria for specific studies. From the first 200 galaxies observed by CALIFA, we present the 2D kinematic view of the 177 galaxies satisfying a gas detection threshold. After removing the stellar contribution, we used the cross-correlation technique to obtain the radial velocity of the dominant gaseous component. The main kinematic parameters were directly derived from the radial velocities with no assumptions on the internal motions. Evidence of the presence of several gaseous components with different kinematics were detected by using [OIII] profiles. Most objects in the sample show regular velocity fields, although the ionized-gas kinematics are rarely consistent with simple coplanar circular motions. 35% of the objects present evidence of a displacemen...

  18. The stellar halos of massive elliptical galaxies. III. Kinematics at large radius

    International Nuclear Information System (INIS)

    We present a two-dimensional kinematic analysis out to ∼2-5 effective radii (Re ) of 33 massive elliptical galaxies with stellar velocity dispersions σ > 150 km s–1. Our observations were taken using the Mitchell Spectrograph (formerly VIRUS-P), a spectrograph with a large 107 × 107 arcsec2 field of view that allows us to construct robust, spatially resolved kinematic maps of V and σ for each galaxy extending to at least 2 Re . Using these maps, we study the radial dependence of the stellar angular momentum and other kinematic properties. We see the familiar division between slow and fast rotators persisting out to a large radius in our sample. Centrally slow rotating galaxies, which are almost universally characterized by some form of kinematic decoupling or misalignment, remain slowly rotating in their halos. The majority of fast-rotating galaxies show either increases in specific angular momentum outward or no change beyond Re . The generally triaxial nature of the slow rotators suggests that they formed through mergers, consistent with a 'two-phase' picture of elliptical galaxy formation. However, we do not observe the sharp transitions in kinematics proposed in the literature as a signpost of moving from central dissipationally formed components to outer accretion-dominated halos.

  19. Compton Effect with Non-Relativistic Kinematics

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  20. KINEMATICS OF STELLAR POPULATIONS IN POSTSTARBURST GALAXIES

    International Nuclear Information System (INIS)

    Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O II] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populations in distinct spectral regions: the Balmer region, the Mg IB region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber-Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger

  1. Compton's Kinematics and Einstein - Ehrenfest's radiation theory

    International Nuclear Information System (INIS)

    The Compton Kinematic relations are obtained from entirely classical arguments, that is, without the corpuscular concept of the photon. The calculations are nonrelativistic and result from Einstein and Ehrenfest's radiation theory modified in order to introduce the effects of the classical zero-point fileds characteristic of Stochastic Electrodynamics. (author)

  2. Planet Host Stars: Mass, Age and Kinematics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We determine the mass, age and kinematics of 51 extra-solar planet host stars. The results are then used to search for signs of connection of the data with metallicity and to investigate the population nature. We find that the increase in mean metallicity with stellar mass is similar to that in normal field stars, so it seems unsuitable to use this relation as a constraint on the theory of planet formation. The age and kinematic distributions seem to favour the metallicity of extra-solar planet host stars being initial. Although the kinematic data of these stars indicate their origin from two populations - the thin and the thick disks, kinematics may not help in the maintenance of the planet around the host. Stars with planets, brown dwarfs or stellar companions are sorted into three groups and re-investigated separately for their formation mechanism. The main results indicate that stars with M2 < 25MJ have [Fe/H] > -0.1 and a wide period range, but there are no other differences.Thus, there does not seem to be any physically distinguishable characteristics among the three star groups.

  3. The kinematic algebras from the scattering equations

    International Nuclear Information System (INIS)

    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant

  4. Multiplanar breast kinematics during different exercise modalities

    OpenAIRE

    Risius, Debbie; Milligan, Alexandra; Mills, Chris; Scurr, Joanna

    2015-01-01

    Multiplanar breast movement reduction is crucial to increasing physical activity participation amongst women. To date, research has focused on breast movement during running, but until breast movement is understood during different exercise modalities, the breast support requirements for specific activities are unknown. To understand breast support requirements during different exercise modalities, this study aimed to determine multiplanar breast kinematics during running, jumping and agility...

  5. About the kinematics of spinning particles

    International Nuclear Information System (INIS)

    Inserting the correct Lorentz factor into the definition of the 4-velocity vμ for spinning particles entails new kinematical properties for v2. The well-know constraint (identically true for scalar particles, but entering also the Dirac theory, and assumed a priori in all spinning particle models) Pμvμ=m is here derived in a self-consistent way

  6. Geometric configuration in robot kinematic design

    OpenAIRE

    Rooney, Joe

    2006-01-01

    A lattice of geometries is presented and compared for representing some geometrical aspects of the kinematic design of robot systems and subsystems. Three geometries (set theory, topology and projective geometry) are briefly explored in more detail in the context of three geometric configurations in robotics (robot groupings, robot connectivities and robot motion sensor patterns).

  7. Kinematic Measurements from YouTube Videos

    Science.gov (United States)

    Ruiz, Michael J.

    2009-01-01

    Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…

  8. Action experience changes attention to kinematic cues

    Directory of Open Access Journals (Sweden)

    Courtney eFilippi

    2016-02-01

    Full Text Available The current study used remote corneal reflection eye-tracking to examine the relationship between motor experience and action anticipation in 13-month-old infants. To measure online anticipation of actions infants watched videos where the actor’s hand provided kinematic information (in its orientation about the type of object that the actor was going to reach for. The actor’s hand orientation either matched the orientation of a rod (congruent cue or did not match the orientation of the rod (incongruent cue. To examine relations between motor experience and action anticipation, we used a 2 (reach first vs. observe first x 2 (congruent kinematic cue vs. incongruent kinematic cue between-subjects design. We show that 13-month-old infants in the observe first condition spontaneously generate rapid online visual predictions to congruent hand orientation cues and do not visually anticipate when presented incongruent cues. We further demonstrate that the speed that these infants generate predictions to congruent motor cues is correlated with their own ability to pre-shape their hands. Finally, we demonstrate that following reaching experience, infants generate rapid predictions to both congruent and incongruent hand shape cues—suggesting that short-term experience changes attention to kinematics.

  9. Modelling of kinematics of biped robot

    Czech Academy of Sciences Publication Activity Database

    Grepl, Robert; Zezula, P.

    Prague: Institute of Thermomechanics AS CR, 2006 - (Pešek, L.), s. 17-23 ISBN 80-85918-97-8. [Dynamics of machines 2006 : colloquium. Praha (CZ), 07.02.2006-08.02.2006] Institutional research plan: CEZ:AV0Z20760514 Keywords : biped robot * spatial kinematics * simmechanics Subject RIV: JD - Computer Applications, Robot ics

  10. The Maiden Voyage of a Kinematics Robot

    Science.gov (United States)

    Greenwolfe, Matthew L.

    2015-04-01

    In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).

  11. Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children.

    Science.gov (United States)

    Gilliaux, Maxime; Dierckx, Floriane; Vanden Berghe, Lola; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine

    2015-05-01

    The use of kinematics is recommended to quantitatively evaluate upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish norms in healthy children. Ninety-three healthy children, aged 3-12 years, participated in this study. Twenty-eight kinematic indices were computed from four tasks. Each task was performed with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-four of the 28 indices showed an improvement during childhood. Indeed, older children showed better upper limb movements. This study was the first to use a robotic device to show the age effects on upper limb kinematics and establish norms in healthy children. PMID:25413362

  12. Small Scale Parallel Manipulator Kinematics for Flexible Snake Robot Application

    Directory of Open Access Journals (Sweden)

    Raisuddin Khan

    2014-01-01

    Full Text Available A small-scale parallel manipulator is designed in this paper. The kinematic analysis of the manipulator is also elucidated for the development of multilinked snake robot. A compliant central colum is used to connect two parallel platforms of Incompletely Restrained Positioning Mechanism (IRPM. The compliant column allows the configuration to achieve 3 DOFs with 3 tendons of active materials connected between the upper and loer platform of the mechanism. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing an active linkable module that can be connected to one another so as to form a “snake robot” of sorts. For an arbitrary angular displacement of the platforms, the corresponding length of each tendon can be determined through inverse kinematics. From the experimental result, the extreme bending of the central column plane of 30° angular displacement with the of the horizontal axis.

  13. Motor resonance facilitates movement execution: an ERP and kinematic study

    Directory of Open Access Journals (Sweden)

    Mathilde Ménoret

    2013-10-01

    Full Text Available Action observation, simulation and execution share neural mechanisms that allow for a common motor representation. It is known that when these overlapping mechanisms are simultaneously activated by action observation and execution, motor performance is influenced by observation and vice versa. To understand the neural dynamics underlying this influence and to measure how variations in brain activity impact the precise kinematics of motor behaviour, we coupled kinematics and electrophysiological recordings of participants while they performed and observed congruent or non-congruent actions or during action execution alone. We found that movement velocities and the trajectory deviations of the executed actions increased during the observation of congruent actions compared to the observation of non-congruent actions or action execution alone. This facilitation was also discernible in the motor-related potentials of the participants; the motor-related potentials were transiently more negative in the congruent condition around the onset of the executed movement, which occurred 300 ms after the onset of the observed movement. This facilitation seemed to depend not only on spatial congruency but also on the optimal temporal relationship of the observation and execution events.

  14. Kinematics in galactic tidal tails - A source for Hypervelocity stars?

    CERN Document Server

    Piffl, Tilmann; Steinmetz, Matthias

    2011-01-01

    [abridged] In this work we study in detail the kinematics of tidal debris stars to investigate the implications of the new scenario that the observed sample of Hypervelocity stars could partly originate from a dwarf-host galaxy collision. We use a suite of N-body simulations following the encounter of a satellite galaxy with its Milky Way-type host galaxy to gather statistics on the properties of stripped-off stars. We study especially the orbital energy distribution of this population. We quantify the typical pattern in angular and phase space formed by the debris stars. We further develop a simple stripping model predicting the kinematics of stripped-off stars. We show that the distribution of orbital energies in the tidal debris has a typical form which can be described quite accurately by a simple function. Based on this we develop a method to predict the energy distribution which allows us to evaluate the significance and the implications of high velocity stars in satellite tidal debris. Generally tidal ...

  15. A New Topological Description Method of Kinematic Chain

    Institute of Scientific and Technical Information of China (English)

    Ding Huafeng; Huang Zhen; Cao Yi

    2004-01-01

    This paper presents a novel method for the description of kinematic chains, namely the canonical description of kinematic chains including the synthetic degree-sequences and the canonical adjacency matrices sets of kinematic chains. The most important characteristic of this new description method is its uniqueness. Based on the new principle the isomorphism identification becomes easy and the structures of all kinds of kinematic chains can be stored in computer for the benefits of the realization of automation and intelligence of machine design.

  16. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    Science.gov (United States)

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  17. KINEMATICS AND DYNAMICS MODELS OF CYLINDRICAL ROLLER BEARING OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    A. V. Gaydamaka

    2014-05-01

    Full Text Available Purpose. Lack of kinematics models and imperfection of the known dynamics models of the roller bearings of railway rolling stock axle-boxes do not allow designing the optimal structure of bearing cages, providing the required service life and reliability of bearing units of wheel sets for cars and locomotives. The studies of kinematics and dynamics of roller bearings of axle boxes for cars and locomotives and modeling of their parts interaction to create the analytical method of bearing cages calculation are necessary. Methodology. This purpose has been achieved due to the modeling of kinematics of the ideal (without gaps and real (taking account the gaps, manufacturing and installation errors bearings, substantiation of the transfer mechanism of motion from the rollers to bearing cage, modeling the dynamics of rolling, research of interaction forces of the rollers with bearing cage. Findings. It is established that the kinematics of ideal bearing is determined by the contact deformations of the rollers and rings, when the kinematics of real bearing depends mainly on the side gaps in the windows of the bearing cage. On the basis of studies of the real bearing kinematics the dynamics models of the rollers and bearing cage interaction were constructed. The conducted studies of kinematics and dynamics of rolling bearings have changed our view of them as of the planetary mechanism, explained the reason of bearing cage loading, and confirmed the possibility of destruction during operation. Originality. It was first proposed a mechanism for motion transfer from the rollers to the bearing cage of roller bearings, consisting in that the side gap in the bearing cage window is reduced gradually multiple of the number of rollers of radial loading area according to the bearing cage motion. The models of roller bearing dynamics, which allow calculating the interaction forces of parts for all modes of operation, were improved. Practical value. Use of the

  18. System reliability analysis for kinematic performance of planar mechanisms

    Institute of Scientific and Technical Information of China (English)

    ZHANG YiMin; HUANG XianZhen; ZHANG XuFang; HE XiangDong; WEN BangChun

    2009-01-01

    Based on the reliability and mechanism kinematic accuracy theories, we propose a general methodology for system reliability analysis of kinematic performance of planar mechanisms. The loop closure equations are used to estimate the kinematic performance errors of planar mechanisms. Reliability and system reliability theories are introduced to develop the limit state functions (LSF) for failure of kinematic performance qualities. The statistical fourth moment method and the Edgeworth series technique are used on system reliability analysis for kinematic performance of planar mechanisms, which relax the restrictions of probability distribution of design variables. Finally, the practicality, efficiency and accuracy of the proposed method are demonstrated by numerical examples.

  19. The spallation in reverse kinematics: what for a coincidence measurement?

    International Nuclear Information System (INIS)

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe56 + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  20. Multiple populations in globular clusters: constraints from kinematics and dynamics

    CERN Document Server

    Hénault-Brunet, Vincent

    2015-01-01

    We discuss constraints on the formation of multiple populations in globular clusters (GCs) imposed by their present-day kinematics (velocity dispersion and anisotropy) and spatial distribution. We argue that the observational evidence collected so far in the outer parts of clusters is generally consistent with an enriched population forming more centrally concentrated compared to the primordial population, in agreement with all the scenarios proposed to date (in some cases by design), but not sufficient to favour a particular scenario. We highlight that the differential rotation of subpopulations is a signature that may provide crucial new constraints and allow us to distinguish between various scenarios. Finally, we discuss the spatial distribution of subpopulations in the central regions of GCs and speculate that mass segregation between subpopulations may be due to a difference in their binary fraction.

  1. The interacting galaxy pair KPG 390: H$\\alpha$ kinematics

    CERN Document Server

    Repetto, P; Gabbasov, R; Fuentes-Carrera, I

    2010-01-01

    In this work we present scanning Fabry-Perot H$\\alpha$ observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 we also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with a disk+halo components. We test three different types of halo (pseudo-isothermal, Hernquist and Navarro Frenk White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by pseudo-isothermal profile is about ten times smaller than, that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lanes distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.

  2. Time-Dependent Kinematics of Complex Human Structures

    Science.gov (United States)

    Shaibani, Saami J.

    2013-03-01

    The human body can be arranged in numerous geometrical configurations, including many interesting scenarios from the sport of gymnastics. One particularly challenging analytical example among these is the forward flip with maximum separation from the ground at the apex of the flight. The temporal aspects of this move involve the evaluation of multiple different positions during the trajectory, which adds significantly to the effort required. When a forward flip was executed during a football game, ready access to the recording of this allowed a detailed kinematic examination to be performed. Careful application of highly intricate protocols produces results which are consistent with similar athletic environments. The emphasis in this research is to transcend standard approaches elsewhere, which are severely limited to generic athletes and/or generic circumstances. Pedagogical benefits of the rigorous methodology adopted here are explored beyond what was introduced in a recent related study.

  3. Kinematic measurements using an infrared sensor

    CERN Document Server

    Marinho, F

    2016-01-01

    The use of an infrared sensor as a new alternative to measure position as a function of time in kinematic experiments was investigated using a microcontroller as data acquisition and control device. These are versatile sensors that offer advantages over the typical ultrasound devices. The setup described in this paper enables students to develop their own experiments promoting opportunities for learning physical concepts such as the different types of forces that can act on a body (gravitational, elastic, drag, etc.) and the resulting types of movements with good sensitivity within the $\\rm 4-30~cm$ range. As proof of concept we also present the application of a prototype designed to record the kinematics of mass-spring systems.

  4. 6th International Workshop on Computational Kinematics

    CERN Document Server

    Gracia, Alba

    2014-01-01

    Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, construction of novel mechanical devices, as well as detection and treatment of singularities. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics. Indexed in Conference Proceedings Citation Index- Science (CPCI-S).

  5. The kinematic advantage of electric cars

    Science.gov (United States)

    Meyn, Jan-Peter

    2015-11-01

    Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.

  6. Plasma electron-hole kinematics: momentum conservation

    CERN Document Server

    Hutchinson, I H

    2016-01-01

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, that behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside it, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  7. A Kinematical Calibration of the Galactocentric Distance

    Institute of Scientific and Technical Information of China (English)

    Ming Shen; Zi Zhu

    2007-01-01

    We present a new determination of the Galactocentric distance by a pure kinematical model. Two subgroups of components from the Galactic thin disk, the O-B5 stars and the Galactic open clusters, were selected for our analysis. On the basis of kinematical data of around 1200 O-B5 stars, we obtained an estimated value of R0=8.25±0.79 kpc, while a similar evaluation from 270 Galactic open clusters gives R0=7.95±0.62 kpc. Considering the scatter of R0 given by individual investigators with different methods, our present determinations agree well with the best value proposed by Reid.

  8. Kinematic Analysis of a Hybrid Structure

    Directory of Open Access Journals (Sweden)

    Duan Q.J.

    2012-11-01

    Full Text Available This paper presents a kinematic analysis and simulation of a hybrid structure applied to the new design cable‐suspended feed structure (CSFS for the next generation of large spherical radio telescopes. First, considering the requirement that feeds should be tilted from 40° to 60° and that the tracking precision in steady state is 4mm, a novel design of the feed supporting structure including a cable‐cabin structure, an AB axis structure and a Stewart platform is performed. Next, kinematic analysis and the simulation of the CSFS are done. Simulations have been developed in combination with the 50m CSFS model, which demonstrate the effectiveness and feasibility of the proposed three‐level cable‐suspended feed system.

  9. The kinematic component of the cosmological redshift

    CERN Document Server

    Chodorowski, Michał

    2009-01-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to settle properly this problem, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant COSMIC TIME. We find that the resulting relation between the transported velocity and the redshift of arriving photons is NOT given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational component. We perform such a decomposition for arbitrar...

  10. Surface growth kinematics via local curve evolution

    KAUST Repository

    Moulton, Derek E.

    2012-11-18

    A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.

  11. A classification of finite quantum kinematics

    International Nuclear Information System (INIS)

    Quantum mechanics in Hilbert spaces of finite dimension N is reviewed from the number theoretic point of view. For composite numbers N possible quantum kinematics are classified on the basis of Mackey's Imprimitivity Theorem for finite Abelian groups. This yields also a classification of finite Weyl-Heisenberg groups and the corresponding finite quantum kinematics. Simple number theory gets involved through the fundamental theorem describing all finite discrete Abelian groups of order N as direct products of cyclic groups, whose orders are powers of not necessarily distinct primes contained in the prime decomposition of N. The representation theoretic approach is further compared with the algebraic approach, where the basic object is the corresponding operator algebra. The consideration of fine gradings of this associative algebra then brings a fresh look on the relation between the mathematical formalism and physical realizations of finite quantum systems

  12. The kinematic origin of the cosmological redshift

    CERN Document Server

    Bunn, Emory F

    2008-01-01

    A common belief among cosmologists is that the cosmological redshift cannot be properly viewed as a Doppler shift (that is, as evidence for a recession velocity), but must instead be viewed in terms of the stretching of space. We argue that the most natural interpretation of the redshift is in fact as a Doppler shift, or rather as the accumulation of many infinitesimal Doppler shifts. The stretching-of-space interpretation obscures a central idea of relativity, namely that of coordinate freedom, specifically the idea that it is always valid to choose a coordinate system that is locally Minkowski. We show that, in any spacetime, an observed frequency shift can be interpreted either as a kinematic (Doppler) shift or a gravitational shift by imagining a family of observers along the photon's path. In the context of the expanding Universe, the kinematic interpretation corresponds to a family of comoving observers and hence seems to be the more natural one.

  13. Kinematical uniqueness of homogeneous isotropic LQC

    CERN Document Server

    Engle, Jonathan

    2016-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space $\\mathbb{R}_{\\mathrm{Bohr}}$, as well as for the Fleischhack one $\\mathbb{R} \\sqcup \\mathbb{R}_{\\mathrm{Bohr}}$. We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on $\\mathbb{R}_{\\mathrm{Bohr}}$ is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on $\\mathbb{R}$ in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  14. Kinematic Analysis Of Tricept Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Mir Amin Hosseini

    2012-01-01

    Full Text Available Parallel manipulators consist of fixed and moving platforms connected to each other with some actuated links. They have some significant advantages over their serial counterparts. While, they suffer from relatively small workspaces, complex kinematics relations and highly singular points within their workspaces. In this paper, forward kinematics of Tricept parallel manipulator is solved analytically and its workspace optimization is performed. This parallel manipulator has a complex degree of freedom, therefore leads to dimensional in-homogeneous Jacobian matrices. Thus, we divide some entries of the Jacobian by units of length, thereby producing a new Jacobian that is dimensionally homogeneous. Moreover, its workspace is parameterized using some design parameters. Then, using GA method, the workspace is optimized subjects to some geometric constraints. Finally, dexterity of the design is evaluated. Keywords- Kinematic, Workspace, Singularity, TriceptABSTRAK - Manipulator selari terdiri daripada platform tetap dan bergerak yang bersambung antara satu sama lain dengan beberapa pautan bergerak. Manipulator selari mempunyai beberapa kebaikan tertentu dibandingkan dengan yang bersamaan dengannya. Walaupun ia mempunyai ruang kerja yang sempit, hubungan kinematik kompleks dan titik tunggal tinggi dalam linkungan ruang kerjanya. Dalam kajian ini, kinematik ke hadapan manipulator selari Tricept diselesaikan secara analisa dan pengoptimuman ruang kerja dijalankan. Manipulator selari ini mempunyai darjah kebebasan yang kompleks, yang menyebabkan ia mendorong kepada kehomogenan dimensi matriks Jacobian. Catatan Jacobian dibahagikan kepada unit panjang, dimana ia menghasilkan Jacobian baru yang homogen dimensinya. Tambahan, ruang kerjanya diparameterkan dengan menggunakan beberapa parameter reka bentuk. Kemudian, dengan kaedah GA, ruang kerja mengoptimakan subjek kepada beberapa kekangan geometrik. Akhirnya, kecakatan reka bentuk dinilaikan

  15. Terrain modelling by kinematical GPS survey

    OpenAIRE

    Nico, G.; P. Rutigliano; Benedetto, C.; F. Vespe

    2005-01-01

    This work presents the first results of an experiment aiming to derive a high resolution Digital Terrain Model (DTM) by kinematic GPS surveying. The accuracy of the DTM depends on both the operational GPS precision and the density of GPS samples. The operational GPS precision, measured in the field, is about 10cm. A Monte Carlo analysis is performed to study the dependence of the DTM error on the sampling procedure. The outcome of this analysis is that the accuracy of the to...

  16. About the kinematics of spinning particles

    OpenAIRE

    Salesi, Giovanni; Recami, Erasmo

    1996-01-01

    Inserting the correct Lorentz factor into the definition of the 4-velocity v^mu for spinning particles entails new kinematical properties for v^2. The well-known constraint (identically true for scalar particles, but entering also the Dirac theory, and assumed a priori in all spinning particle models) p_mu v^mu = m is here derived in a self-consistent way.

  17. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  18. Scapulothoracic kinematics during tennis forehand drive

    OpenAIRE

    ROGOWSKI, Isabelle; Creveaux, Thomas; CHEZE, Laurence; Dumas, Raphaël

    2014-01-01

    Scapular dyskinesis is recognized as an abnormality in the kinetic chain; yet, there has been little research quantifying scapular motion during sport tasks. Tennis forehand drives of eight highly skilled tennis players were studied to assess the scapulothoracic kinematics and evaluate repeatability using video-based motion analysis. Scapulothoracic downward/upward rotation, posterior/anterior tilt, and internal/external rotation were computed using an acromial marker cluster. On average, the...

  19. Kinematics of Hooke universal joint robot wrists

    Science.gov (United States)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  20. Modelling of Bipedal Robot : Kinematical Numerical Models

    Czech Academy of Sciences Publication Activity Database

    Grepl, Robert

    Brno: VUT Brno, FSI ÚMTMB, 2005 - (Houfek, L.; Šlechtová, M.; Náhlík, L.; Fuis, V.), s. 27-29 ISBN 80-214-2373-0. [International Scientific Conference Applied mechanics 2005 /7./. Hrotovice (CZ), 29.03.2005-01.04.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : kinematics of robot * walking robot Subject RIV: JD - Computer Applications, Robot ics

  1. Kinematics of Straight Right Punch in Boxing

    Directory of Open Access Journals (Sweden)

    Mahdi Cheraghi

    2014-07-01

    Full Text Available The purpose of this study was to describe biomechanical parameters of head, upper and lower body extremities during a straight right punch throw related to performance and injury mechanism. Subjects were eight elite right-handed male (age 20.4 ± 2.1yrs; height 177.4 ± 8.5 cm; mass 70.4 ± 16.8 kg amateur boxers. 3D motion analysis was used to assess the kinematics of the right side extremities and head. Ensemble averaging of time normalized kinematic parameters was used to have better visual inspection. Results showed a similar pattern between subjects with some considerable variation in some parameters that pointed out to individualized pattern in elite boxers. Investigation of lower body joints kinematics explained boxers throw punch using leg drive. Stretch-shortening cycle detected in the technique implies potential for performance enhancing using plyometrics. Head velocity measured in anterior-posterior and medial-lateral direction would intensify potential head injuries.

  2. Kinematic gait analyses in healthy Golden Retrievers

    Directory of Open Access Journals (Sweden)

    Gabriela C.A. Silva

    2014-12-01

    Full Text Available Kinematic analysis relates to the relative movement between rigid bodies and finds application in gait analysis and other body movements, interpretation of their data when there is change, determines the choice of treatment to be instituted. The objective of this study was to standardize the march of Dog Golden Retriever Healthy to assist in the diagnosis and treatment of musculoskeletal disorders. We used a kinematic analysis system to analyse the gait of seven dogs Golden Retriever, female, aged between 2 and 4 years, weighing 21.5 to 28 kg, clinically normal. Flexion and extension were described for shoulder, elbow, carpal, hip, femorotibialis and tarsal joints. The gait was characterized lateral and had accepted hypothesis of normality for all variables, except for the stance of hip and elbow, considering a confidence level of 95%, significance level α = 0.05. Variations have been attributed to displacement of the stripes during movement and the duplicated number of reviews. The kinematic analysis proved to be a consistent method of evaluation of the movement during canine gait and the data can be used in the diagnosis and evaluation of canine gait in comparison to other studies and treatment of dogs with musculoskeletal disorders.

  3. Brain dopamine and kinematics of graphomotor functions.

    Science.gov (United States)

    Lange, Klaus W; Mecklinger, Lara; Walitza, Susanne; Becker, Georg; Gerlach, Manfred; Naumann, Markus; Tucha, Oliver

    2006-10-01

    Three experiments were performed in an attempt to achieve a better understanding of the effect of dopamine on handwriting. In the first experiment, kinematic aspects of handwriting movements were compared between healthy participants and patients with Parkinson's disease (PD) on their usual dopaminergic treatment and following withdrawal of dopaminergic medication. In the second experiment, the writing performance of healthy participants with a hyperechogenicity of the substantia nigra as detected by transcranial sonography (TCS) was compared with the performance of healthy participants with low echogenicity of the substantia nigra. The third experiment examined the effect of central dopamine reduction on kinematic aspects of handwriting movements in healthy adults using acute phenylalanine and tyrosine depletion (APTD). A digitising tablet was used for the assessment of handwriting movements. Participants were asked to perform a simple writing task. Movement time, distance, velocity, acceleration and measures of fluency of handwriting movements were measured. The kinematic analysis of handwriting movements revealed that alterations of central dopaminergic neurotransmission adversely affect movement execution during handwriting. In comparison to the automatic processing of handwriting movements displayed by control participants, participants with an altered dopaminergic neurotransmission shifted from an automatic to a controlled processing of movement execution. Central dopamine appears to be of particular importance with regard to the automatic execution of well-learned movements. PMID:16859791

  4. A CP-Violating Kinematic Structure

    CERN Document Server

    Ahluwalia, D V

    2000-01-01

    A CP violating kinematic structure is presented. The essential physical input is to question the textbook wisdom, ``Now when a particle is at rest, one cannot define its spin as either left- or right-handed, so phi_R(0) = phi_L(0),'' as found, e.g., in Lewis Ryder's Quantum Field Theory, and in many other books on the representations of the Lorentz group. It is suggested that this equality is true only up to a phase. The demand of C, P, and T covariances, separately, fixes this phase to be pm 1. If these conditions are relaxed, a natural CP-violating kinematic structure emerges. Having established a CP-violating kinematic structure, we then discuss how Planck scale physics necessarily invokes non-commutative space-time and that such changes in the structure of space-time will force upon us additional violations/deformations of the CPT structure of space-time, and a violation of the principle of equivalence via a violation of the Lorentz symmetries. The latter may carry significant consequences for understandi...

  5. Scapula Kinematics of Youth Baseball Players

    Directory of Open Access Journals (Sweden)

    Oliver Gretchen

    2015-12-01

    Full Text Available Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg, with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER and maximum humeral internal rotation (MIR during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly.

  6. Conserved quantities in kinematic dynamo theory

    International Nuclear Information System (INIS)

    Using a Lagrangian approach to the magnetic induction equation in an infinite medium, it is demonstrated that there exist seven conserved quantities which, by analogy with classical mechanics, labeled as ''energy,'' ''momentum,'' and ''angular momentum.'' For prescribed fluid motions the detailed conservation equations are spelled out. For a fluid motion which is turbulent one also gives the average conserved quantities. In a pragmatic sense it is expected that these conservation laws will be of use in attempts to obtain numerically accurate solutions to the turbulent kinematic dynamo equations. Since the magnetic induction equation is not self-adjoint, numerical attempts to date have to impose some extraneous ad hoc ''criteria of goodness'' at any given level of numerical truncation. The conserved quantities given provide an internal check of the accuracy of any numerical calculation without the necessity for arbitrarily imposed external criteria of accuracy. As such they should be a powerful tool in rapidly increasing the accuracy of numerical solutions to the kinematic dynamo equations. It is also pointed out that the conserved quantities can be used to indicate the possibility of kinematic dynamo activity ahead of any detailed calculations

  7. Material technical regulation on allowable stress

    International Nuclear Information System (INIS)

    It starts with applicability. Next it tell about setting regulation of allowable stress in general examination, allowable stress of steel material and nonferrous metals and allowable stress of blot material. It has three charts of the text.

  8. The Stellar Kinematic Fields of NGC 3379

    Science.gov (United States)

    Statler, Thomas S.; Smecker-Hane, Tammy

    1999-02-01

    We have measured the stellar kinematic profiles of NGC 3379 along four position angles, using absorption lines in spectra obtained with the Multiple Mirror Telescope. We derive a far more detailed description of the kinematic fields through the main body of the galaxy than could be obtained from previous work. Our data extend 90" from the center, at essentially seeing-limited resolution out to 17". The derived mean velocities and dispersions have total errors (internal and systematic) better than +/-10 km s^-1, and frequently better than 5 km s^-1, out to 55". We find very weak (3 km s^-1) rotation on the minor axis interior to 12" and no detectable rotation above 6 km s^-1 from 12" to 50" or above 16 km s^-1 out to 90" (95% confidence limits). However, a Fourier reconstruction of the mean velocity field from all four sampled PAs does indicate a ~5 deg twist of the kinematic major axis, in the direction opposite to the known isophotal twist. The h_3 and h_4 parameters are found to be generally small over the entire observed region. The azimuthally averaged dispersion profile joins smoothly at large radii with the velocity dispersions of planetary nebulae. Unexpectedly, we find sharp bends in the major axis rotation curve, also visible (though less pronounced) on the diagonal position angles. The outermost bend closely coincides in position with other sharp kinematic features: an abrupt flattening of the dispersion profile, and local peaks in h_3 and h_4. All of these features are in a photometrically interesting region in which the surface brightness profile departs significantly from an r^1/4 law. Features such as these are not generally known in elliptical galaxies owing to a lack of data at comparable resolution. Very similar behavior, however, is seen the kinematics of the edge-on S0 galaxy NGC 3115. We discuss the suggestion that NGC 3379 could be a misclassified S0 galaxy; preliminary results from dynamical modeling indicate that it may be a flattened, weakly

  9. Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders.

    Science.gov (United States)

    Jarque-Bou, N; Gracia-Ibáñez, V; Sancho-Bru, J L; Vergara, M; Pérez-González, A; Andrés, F J

    2016-09-01

    The kinematic analysis of human grasping is challenging because of the high number of degrees of freedom involved. The use of principal component and factorial analyses is proposed in the present study to reduce the hand kinematics dimensionality in the analysis of posture for ergonomic purposes, allowing for a comprehensive study without losing accuracy while also enabling velocity and acceleration analyses to be performed. A laboratory study was designed to analyse the effect of weight and diameter in the grasping posture for cylinders. This study measured the hand posture from six subjects when transporting cylinders of different weights and diameters with precision and power grasps. The hand posture was measured using a Vicon(®) motion-tracking system, and the principal component analysis was applied to reduce the kinematics dimensionality. Different ANOVAs were performed on the reduced kinematic variables to check the effect of weight and diameter of the cylinders, as well as that of the subject. The results show that the original twenty-three degrees of freedom of the hand were reduced to five, which were identified as digit arching, closeness, palmar arching, finger adduction and thumb opposition. Both cylinder diameter and weight significantly affected the precision grasping posture: diameter affects closeness, palmar arching and opposition, while weight affects digit arching, palmar arching and closeness. The power-grasping posture was mainly affected by the cylinder diameter, through digit arching, closeness and opposition. The grasping posture was largely affected by the subject factor and this effect couldn't be attributed only to hand size. In conclusion, this kinematic reduction allowed identifying the effect of the diameter and weight of the cylinders in a comprehensive way, being diameter more important than weight. PMID:27184310

  10. APOGEE Kinematics I: Overview of the Kinematics of the Galactic Bulge as Mapped by APOGEE

    CERN Document Server

    Ness, M; Johnson, J A; Athanassoula, E; Majewski, S R; Perez, A E Garcia; Bird, J; Nidever, D; Schneider, Donald P; Sobeck, J; Frinchaboy, P; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey

    2015-01-01

    We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the mid-plane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes 0 deg -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,|b|) -1.0, and the chemodynamics across (l,b) suggests the stars in the inner Galaxy with [Fe/H] > -1.0 have an origin in the disk.

  11. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints

    Science.gov (United States)

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  12. Step kinematic calibration of a 3-DOF planar parallel kinematic machine tool

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a novel step kinematic calibration method for a 3 degree-of-freedom(DOF) planar parallel kinematic machine tool,based on the minimal linear combinations(MLCs) of error parameters.The method using mapping of linear combinations of parameters in error transfer multi-parameters coupling system changes the modeling,identification and error compensation of geometric parameters in the general kinematic calibration into those of linear combinations of parameters.By using the four theorems of the MLCs,the sets of the MLCs that are respectively related to the relative precision and absolute precision are determined.All simple and feasible measurement methods in practice are given,and identification analysis of the set of the MLCs for each measurement is carried out.According to the identification analysis results,a step calibration including step measurement,step identification and step error compensation is determined by taking into account both measurement costs and observability.The experiment shows that the proposed method has the following merits:(1) the parameter errors that cannot influence precision are completely avoided;(2) it reflects the mapping of linear combinations of parameters more accurately and enhances the precision of identification;and(3) the method is robust,efficient and effective,so that the errors in position and orientation are kept at the same order of the measurement noise.Due to these merits,the present method is attractive for the 3-DOF planar parallel kinematic machine tool and can be also applied to other parallel kinematic machine tools with weakly nonlinear kinematics.

  13. 46 CFR 154.421 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and...

  14. 46 CFR 154.440 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.440 Section 154.440 Shipping COAST... Tank Type A § 154.440 Allowable stress. (a) The allowable stresses for an independent tank type A must... Commandant (CG-522). (b) A greater allowable stress than required in paragraph (a)(1) of this section may...

  15. Wave kinematics and response of slender offshore structures. Vol 4: Wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The kinematics of large surface waves has been measured by means of sonar's placed on the sea floor at the Tyra field. Measurements from the most severe storm are analysed and extreme wave velocity profiles are compared to Stoke wave velocity profiles. Statistical distributions of crest velocity and wave celerity are presented. The analysis shows how the deviation from the Stokes prediction varies with wave heights and steepness. Analyses of the directional wave field leads to the conclusion that the extreme waves are three-dimensional. It is shown that the peculiar kinematics of extreme waves is of great relevance to the design of jacket type structures. (au)

  16. Topological grounds for the fast kinematic dynamo origin in a knotted thermonuclear reactor

    International Nuclear Information System (INIS)

    The paper deals with the topological grounds for the possibility of effective fast kinematic dynamo origin in socalled knotted thermonuclear reactors. On the basis of the utilization of the topologic spirality invariant the additional arguments in favour of plasma strings stability raise in such reactors are given. It is supposed that in the reactors with cavities like linking torical knots plasma confinement characteristics may be essentially improved that would allow carrying out thermonuclear synthesis.

  17. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    OpenAIRE

    Reifarth René; Litvinov Yuri A.; Endres Anne; Göbel Kathrin; Heftrich Tanja; Glorius Jan; Koloczek Alexander; Sonnabend Kerstin; Travaglio Claudia; Weigand Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will ...

  18. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Grente L.

    2016-01-01

    Full Text Available The SOFIA (Studies On FIssion with Aladin experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  19. State Estimation for Legged Robots, Consistent Fusion of Leg Kinematics and IMU

    OpenAIRE

    Bloesch, Michael; Hutter, Marco; Hoepflinger, Mark A.; Leutenegger, Stefan; Gehring, Christian; Remy, C. David; Siegwart, Roland

    2012-01-01

    This paper introduces a state estimation framework for legged robots that allows estimating the full pose of the robot without making any assumptions about the geometrical structure of its environment. This is achieved by means of an Observability Constrained Extended Kalman Filter that fuses kinematic encoder data with on-board IMU measurements. By including the absolute position of all footholds into the filter state, simple model equations can be formulated which accurately capture the unc...

  20. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    Science.gov (United States)

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques. PMID:23364690

  1. Kinematics modeling and simulation of an autonomous omni-directional mobile robot

    Directory of Open Access Journals (Sweden)

    Daniel Garcia Sillas

    2015-08-01

    Full Text Available Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio® and Matlab® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.

  2. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Science.gov (United States)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  3. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    International Nuclear Information System (INIS)

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  4. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  5. Kinematics of transition during human accelerated sprinting

    Directory of Open Access Journals (Sweden)

    Ryu Nagahara

    2014-07-01

    Full Text Available This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed.

  6. Locomotion of Gymnarchus Niloticus: Experiment and Kinematics

    Institute of Scientific and Technical Information of China (English)

    Li Fei; Hu Tian-jiang; Wang Guang-ming; Shen Lin-cheng

    2005-01-01

    In addition to forward undulatory swimming, Gymnarchus niloticus can swim via undulations of the dorsal fin while the body axis remains straight; furthermore, it swims forward and backward in a similar way, which indicates that the undulation of the dorsal fin can simultaneously provide bidirectional propulsive and maneuvering forces with the help of the tail fin. A high-resolution Charge-Coupled Device (CCD) imaging camera system is used to record kinematics of steady swimming as well as maneuvering in G. niloticus. Based on experimental data, this paper discusses the kinematics ( cruising speed, wave speed, cycle frequency, amplitude, lateral displacement) of forward as well as backward swimming and maneuvering.During forward swimming, the propulsive force is generated mainly by undulations of the dorsal fin while the body axis remains straight. The kinematic parameters (wave speed, wavelength, cycle frequency, amplitude ) have statistically significant correlations with cruising speed. In addition, the yaw at the head is minimal during steady swimming. From experimental data, the maximal lateral displacement of head is not more than 1% of the body length, while the maximal lateral displacement of the whole body is not more than 5% of the body length. Another important feature is that G. niloticus swims backwards using an undulatory mechanism that resembles the forward undulatory swimming mechanism. In backward swimming, the increase of lateral displacement of the head is comparatively significant; the amplitude profiles of the propulsive wave along the dorsal fin are significantly different from those in forward swimming. When G. niloticus does fast maneuvering, its body is first bent into either a C shape or an S shape, then it is rapidly unwound in a travelling wave fashion. It rarely maneuvers without the help of the tail fin and body bending.

  7. Kinematic and chemical components in the solar neighbourhood

    Directory of Open Access Journals (Sweden)

    Navarro J.F.

    2012-02-01

    Full Text Available Abundance data on solar neighbourhood stars suggest the presence of chemically-distinct stellar components in the solar neighbourhood. When the abundances of Fe, α elements, and the r-process element Eu are considered together, stars separate neatly into two groups that delineate the thin and thick disk components of the Milky Way. The group akin to the thin disk is traced by stars of relatively high Fe content and low [α/Fe] ratios. The thick disk-like group overlaps the thin disk in [Fe/H] but has higher abundances of α elements and Eu. Fe-poor stars with low [α/Fe] ratios, however, seem to belong to a separate, dynamically-cold, non-rotating component likely associated with debris from past accretion events. The kinematically-hot stellar halo dominates the sample at the metal-poor end. These results suggest that it may be possible to define the main dynamical components of the solar neighbourhood using only their chemistry, an approach with a number of interesting consequences. For example, the average rotation speed and velocity dispersion of thin disk stars is roughly independent of metallicity, a result unexpected in most current theories of thin-disk formation. In this scenario, the familiar increase in the velocity dispersion of disk stars with decreasing metallicity is the result of the increasing prevalence of the thick disk at lower metallicities, rather than of the sustained operation of a dynamical heating mechanism. The substantial overlap in [Fe/H] and, likely, stellar age, of the various components might affect other reported trends in the properties of stars in the solar neighbourhood. A purely chemical characterization of these components allows the use of their kinematics to assess their origin, an powerful approach denied to traditional ways of apportioning stars to the various Galactic components.

  8. The influence of limited kinematic hardening in shakedown analysis

    International Nuclear Information System (INIS)

    The use of the Design by Analysis concept is a trend in modern pressure vessel and piping calculations. DBA flexibility allow us to deal with unexpected configurations detected at in-service inspections. It is also important, in life extension calculations, when deviations of the original standard hypothesis adopted initially in Design by Formula, can happen. To apply the DBA to structures under variable mechanic and thermal loads, it is necessary that, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. These are two basic failure modes considered by ASME or European Standards in DBA. The shakedown theory is the tool available to achieve this goal. In order to apply it, is necessary only the range of the variable loads and the material properties. Precise, robust and efficient algorithms to solve the very large nonlinear optimization problems generated in numerical applications of the shakedown theory is a recent achievement. Zouain and co-workers developed one of these algorithms for elastic ideally-plastic materials. But, it is necessary to consider more realistic material properties in real practical applications. This paper shows an enhancement of this algorithm to dealing with limited kinematic hardening, a typical property of the usual steels. This is done using internal thermodynamic variables. A discrete algorithm is obtained using a plane stress, mixed finite element, with internal variable. An example, a beam encased in an end, under constant axial force and variable moment is presented to show the importance of considering the limited kinematic hardening in a shakedown analysis. (author)

  9. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    Science.gov (United States)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2016-07-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  10. Theory of gearing kinematics, geometry, and synthesis

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    The first book of its kind, Theory of Gearing: Kinematics, Geometry, and Synthesis systematically develops a scientific theory of gearing that makes it possible to synthesize novel gears with the desired performance. Written by a leading gearing expert who holds more than 200 patents, it presents a modern methodology for gear design. The proposed theory is based on a key postulate: all the design parameters for an optimal gear pair for a particular application can be derived from (a) a given configuration of the rotation vectors of the driving and driven shafts and (b) the power transmitted by

  11. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  12. Geneva University - Kinematics at Hadron Colliders - POSTPONED!!!

    CERN Multimedia

    2007-01-01

    The seminar is postponed.Ecole de physique - Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 - Fax: (022) 379 69 92 Wednesday 12 décembre 2007 PARTICLE PHYSICS SEMINAR at 17:00 – Stückelberg Auditorium Kinematics at Hadron Colliders by Prof. Drew Baden, University of Maryland Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: J.-S. Graulich

  13. JFKengine: A Jacobian and Forward Kinematics Generator

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K.N.

    2003-02-13

    During robot path planning and control the equations that describe the robot motions are determined and solved. Historically these expressions were derived analytically off-line. For robots that must adapt to their environment or perform a wide range of tasks, a way is needed to rapidly re-derive these expressions to take into account the robot kinematic changes, such as when a tool is added to the end-effector. The JFKengine software was developed to automatically produce the expressions representing the manipulator arm motion, including the manipulator arm Jacobian and the forward kinematic expressions. Its programming interface can be used in conjunction with robot simulation software or with robot control software. Thus, it helps to automate the process of configuration changes for serial robot manipulators. If the manipulator undergoes a geometric change, such as tool acquisition, then JFKengine can be invoked again from the control or simulation software, passing it parameters for the new arm configuration. This report describes the automated processes that are implemented by JFKengine to derive the kinematic equations and the programming interface by which it is invoked. Then it discusses the tree data structure that was chosen to store the expressions, followed by several examples of portions of expressions as represented in the tree. The C++ classes and their methods that implement the expression differentiation and evaluation operations are described. The algorithms used to construct the Jacobian and forward kinematic equations using these basic building blocks are then illustrated. The activity described in this report is part of a larger project entitled ''Multi-Optimization Criteria-Based Robot Behavioral Adaptability and Motion Planning'' that focuses on the development of a methodology for the generalized resolution of robot motion equations with time-varying configurations, constraints, and task objective criteria. A specific

  14. A kinematical approach to dark energy studies

    OpenAIRE

    Rapetti, David; Allen, Steven W.; Amin, Mustafa A.; Blandford, Roger D.

    2006-01-01

    We present and employ a new kinematical approach to cosmological `dark energy' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q_0 and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all LCDM models have j(t)=1 (constant), which facilitates simple tests for departures from the LCDM paradigm. Applying our...

  15. Static And Kinematic Formulation Of Planar Reciprocal Assemblies

    DEFF Research Database (Denmark)

    Parigi, Dario; Kirkegaard, Poul Henning

    Planar reciprocal frames are two dimensional structures formed by elements joined together according to the principle of structural reciprocity. In this paper a rigorous formulation of the static and kinematic problem is proposed and developed by extending the work on pin-jointed assemblies by...... Pellegrino & Calladine [1986]. This formulation is used to evaluate the static and kinematic determinacy of reciprocal assemblies from the properties of their equilibrium and kinematic matrices....

  16. Static and kinematic formulation of planar reciprocal assemblies

    DEFF Research Database (Denmark)

    Parigi, Dario; Sassone, Mario; Kirkegaard, Poul Henning; Napoli, Paolo

    2014-01-01

    Planar reciprocal frames are two dimensional structures formed by elements joined together according to the principle of structural reciprocity. In this paper a rigorous formulation of the static and kinematic problem is proposed and developed extending the theory of pin-jointed assemblies. This...... formulation is used to evaluate the static and kinematic determinacy of reciprocal assemblies from the properties of their equilibrium and kinematic matrices...

  17. Kinematic Modeling, Linearization and First-Order Error Analysis

    OpenAIRE

    Pott, Andreas; Hiller, Manfred

    2008-01-01

    The contribution describes a general method for kinematic modeling of many wide-spread parallel kinematic machines, i.e. for the Stewart-Gough-platform, the Delta-robot, and Linaglide machines. The kinetostatic method is applied for a comprehensive kinematic analysis of these machines. Based on that model, a general method is proposed to compute the linearization of the transmission behaviour from geometric parameters to the endeffector motion of these machines. By applying the force transmis...

  18. THE KINEMATIC AND INERTIAL SOIL-PILE INTERACTIONS: CENTRIFUGE MODELLING

    OpenAIRE

    Chenaf, Nawel; CHAZELAS, Jean-Louis

    2008-01-01

    International audience Piles supporting superstructures undergo with the soil two interactions during an earthquake: the kinematic interaction and the inertial interaction. The kinematic soil-pile interaction is the pile loading by the soil displacement produced by the seismic waves propagating. Inertial superstructure-pile-soil interaction results from forces due to the superstructure actuation by the kinematic interaction. These two interactions are superimposed in seismic events and the...

  19. Direct Kinematic modeling of 6R Robot using Robotics Toolbox

    Directory of Open Access Journals (Sweden)

    Prashant Badoni

    2016-01-01

    Full Text Available The traditional approaches are insufficient to solve the complex kinematics problems of the redundant robotic manipulators. To overcome such intricacy, Peter Corke’s Robotics Toolbox [1] is utilized in the present study. This paper aims to model the direct kinematics of a 6 degree of freedom (DOF Robotic arm. The Toolbox uses the Denavit-Hartenberg (DH Methodology [2] to compute the kinematic model of the robot.

  20. Kinematic Analysis of 3-UCR Parallel Robot Leg

    OpenAIRE

    Gang, Cheng; Shi-rong, Ge

    2010-01-01

    Based on principal screw theory and imaginary manipulator method, the kinematic characteristics of 3-UCR spatial parallel robot leg with three DOF were analyzed. According to the topologic structure of limbs, the screw coordinate system was obtained and the kinematics of limbs was studied. By the relation of the matrices of influence coefficient between limbs and moving platform, the kinematic model with the screw coordinates was established. It shows that the matrices of influence coefficien...

  1. Direct Kinematic modeling of 6R Robot using Robotics Toolbox

    OpenAIRE

    Prashant Badoni

    2016-01-01

    The traditional approaches are insufficient to solve the complex kinematics problems of the redundant robotic manipulators. To overcome such intricacy, Peter Corke’s Robotics Toolbox [1] is utilized in the present study. This paper aims to model the direct kinematics of a 6 degree of freedom (DOF) Robotic arm. The Toolbox uses the Denavit-Hartenberg (DH) Methodology [2] to compute the kinematic model of the robot.

  2. Kinematics and Workspace of a 4-DOF Hybrid Palletizing Robot

    OpenAIRE

    Yong Tao; Fang Chen; Hegen Xiong

    2014-01-01

    We presented the kinematical analysis of a 4-DOF hybrid palletizing robot. The palletizing robot structure was proposed and the arm model of the robot was presented. The kinematical analysis of the end robotic manipulator was given. As a result, the position, velocity, and acceleration curves as well as the maximum workspace were demonstrated by simulation in Matlab. This study would be useful for the kinematical characteristics of the 4-DOF palletizing robot in space.

  3. Kinematic analysis of modern dance movement “stag jump” within the context of impact loads, injury to the locomotor system and its prevention

    OpenAIRE

    Gorwa, Joanna; Dworak, Lechosław B.; Michnik, Robert; Jurkojć, Jacek

    2014-01-01

    Background This paper presents a case study of kinematic analysis of the modern dance movement known as the “stag jump”. Detailed analysis of the kinematic structure of this movement as performed by the dancers, accompanied by measurements of impact forces during landing, will allow the authors to determine, in subsequent model-based research phases, the forces acting in knee joints of the lower landing limb. Material/Methods Two professional modern dancers participated in the study: a male a...

  4. Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis

    OpenAIRE

    Bender, John A.; Simpson, Elaine M.; Tietz, Brian R.; Daltorio, Kathryn A.; Roger D. Quinn; Ritzmann, Roy E.

    2011-01-01

    Earlier observations had suggested that cockroaches might show multiple patterns of leg coordination, or gaits, but these were not followed by detailed behavioral or kinematic measurements that would allow a definite conclusion. We measured the walking speeds of cockroaches exploring a large arena and found that the body movements tended to cluster at one of two preferred speeds, either very slow (

  5. Kinematical analysis on the several linkage drives for mechanical presses

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Kyung Chun; Jang, Dong Hwan [Inha Technical College, Incheon (Korea, Republic of)

    2009-02-15

    In this paper, a kinematical analysis is preformed to see mechanical characteristics of various linkage drives for a mechanical press. Mechanical characteristics of conventional and newly designed drives are investigated and compared in terms of slide velocity, productivity, load capacity and possible work-piece size. A crank-slider mechanism with arc crank-pin guide is introduced and analyzed particularly for kinematical performance using kinematical analysis software. The new linkage drive turns out to be effective in terms of load and velocity characteristics and productivity. Kinematical performance also provides a basis for the proper selection of mechanical presses

  6. Allowance Holdings and Transfers Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Allowance Holdings and Transfers Data Inventory contains measured data on holdings and transactions of allowances under the NOx Budget Trading Program (NBP), a...

  7. Kinematics of M51-type interacting galaxies

    CERN Document Server

    Gunthardt, G; Aguero, M P

    2016-01-01

    We present a kinematic catalogue for 21 M51-type galaxies. It consists of radial velocity distributions both from main and satellite components, along different position angles, which we obtained from long-slit spectroscopy. We detect deviations from circular motion in most of the main galaxies of each pair, due to the gravitational perturbation produced by the satellite galaxy. However somesystems do not show significant distortions in their radial velocity curves. We found some differences between the directions of photometric and kinematic major axes in main galaxies with a bar subsystem. The Tully-Fisher relation in the B-band and Ks-band for the present sample of M51-type systems is flatter when compared with isolated galaxies. Using the radial velocity data set, we built a synthetic normalized radial velocity distribution, as a reference for future modeling of these peculiar systems. The relative position angles between main galaxy major axis and companion location, as well as the velocity difference am...

  8. Kinematics of novel 6-HTRT parallel robot

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A parallel robot featwes low inertia moment of end effector,high mechanical rigitity,high mobility,no accumulation of motion error at end effector and high capacity of load,and it has found a wide applications in various fields such as automobile assembly line,earth-digging machine,conjuncture of aircraft and flight simulator.In this paper the kinematics of a novel style 6-HTRT Parallel Robot is studied.The algorithm for an inverse kinematic problem of the parallel robot considering the constraint condition is presented.By the use of vector cross product method,the comprehensive coefficient of the parallel mechanism is introduced and the Jacobian matrix of a 6-HTRT parallel robot is presented.The relationship between the velocity of end manipulator and the generalized velocity is also studied with the method of Jacobian matrix.Using the result of study in mechanical dimension synthesis,better performance is achieved with the parallel robot.In motion control,it will be helpful for us to simplify the control algorithm and make more efficient trajectory planning.

  9. Terrain modelling by kinematical GPS survey

    Directory of Open Access Journals (Sweden)

    G. Nico

    2005-01-01

    Full Text Available This work presents the first results of an experiment aiming to derive a high resolution Digital Terrain Model (DTM by kinematic GPS surveying. The accuracy of the DTM depends on both the operational GPS precision and the density of GPS samples. The operational GPS precision, measured in the field, is about 10cm. A Monte Carlo analysis is performed to study the dependence of the DTM error on the sampling procedure. The outcome of this analysis is that the accuracy of the topographic reconstruction is less than 1m even in areas with a density of samples as low as one sample per 100m2, and becomes about 30cm in areas with at least one sample per 10m2. The kinematic GPS technique gives a means for a fast and accurate mapping of terrain surfaces with an extension of a few km2. Examples of application are the investigation of archaeological sites and the stability analysis of landslide prone areas.

  10. A mechanical simulator of cardiac wall kinematics.

    Science.gov (United States)

    Cutrì, Elena; Bagnoli, Paola; Marcelli, Emanuela; Biondi, Federico; Cercenelli, Laura; Costantino, Maria Laura; Plicchi, Gianni; Fumero, Roberto

    2010-01-01

    Aim of this study is to develop a mechanical simulator (MS) reproducing cardiac wall kinematics [i.e., radial (R), longitudinal (L) and rotational (RT) motions] to test piezoelectric gyroscopic sensors (GS) that are able to measure cardiac torsion that has proved to be a sensitive index of cardiac performance. The MS consists of three brushless motors controlled by a dedicated software either separately or simultaneously reproducing the three main cardiac wall movements (R, L, RT) obtained by implementing different physiologic or pathologic velocity profiles derived from in vivo data. GS accuracy (max % error) was experimentally tested by connecting it to the MS driven in velocity in different working conditions [i.e., cardiac period (515-1030 ms), RT angle (4-16 degrees), GS axis inclination (0-90 degrees) with respect to the cardiac rotation axis]. The MS reproduced the tested velocity profiles well. The GS showed high accuracy in measuring both physiologic and pathologic RT velocity profiles, whereas they proved insensitive to R and L motions. GS axis inclination influenced measurements; however, it was possible to correct this taking the inclination angle cosine into account. The MS proved to be a useful tool to study cardiac wall kinematics and test GS reliability with a view to in vivo application. PMID:20404720

  11. Friction Stir Welding at MSFC: Kinematics

    Science.gov (United States)

    Nunes, A. C., Jr.

    2001-01-01

    In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.

  12. Kinematics and Aerodynamics of Backward Flying Dragonflies

    Science.gov (United States)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo

    2015-11-01

    Highly maneuverable insects such as dragonflies have a wide range of flight capabilities; precise hovering, fast body reorientations, sideways flight and backward takeoff are only a few to mention. In this research, we closely examined the kinematics as well as aerodynamics of backward takeoff in dragonflies and compared them to those of forward takeoff. High speed videography and accurate 3D surface reconstruction techniques were employed to extract details of the wing and body motions as well as deformations during both flight modes. While the velocities of both forward and backward flights were similar, the body orientation as well as the wing kinematics showed large differences. Our results indicate that by tilting the stroke plane angle of the wings as well as changing the orientation of the body relative to the flight path, dragonflies control the direction of the flight like a helicopter. In addition, our detailed analysis of the flow in these flights shows important differences in the wake capture phenomena among these flight modes. This work is supported by NSF CBET-1313217.

  13. Kinematical Structure of the Magellanic System

    CERN Document Server

    van der Marel, Roeland P; Besla, Gurtina

    2008-01-01

    We review our understanding of the kinematics of the LMC and the SMC, and their orbit around the Milky Way. The line-of-sight velocity fields of both the LMC and SMC have been mapped with high accuracy using thousands of discrete traces, as well as HI gas. The LMC is a rotating disk for which the viewing angles have been well-established using various methods. The disk is elliptical in its disk plane. The disk thickness varies depending on the tracer population, with V/sigma ranging from 2-10 from the oldest to the youngest population. For the SMC, the old stellar population resides in a spheroidal distribution with considerable line-of-sight depth and low V/sigma. Young stars and HI gas reside in a more irregular rotating disk. Mass estimates based on the kinematics indicate that each Cloud is embedded in a dark halo. Proper motion measurements with HST show that both galaxies move significantly more rapidly around the Milky Way than previously believed. This indicates that for a canonical 10^12 solar mass M...

  14. Application of vector spherical harmonics for kinematic analysis of stars from zonal catalogues

    Science.gov (United States)

    Vityazev, V. V.; Tsvetkov, A. S.

    2011-12-01

    We solve the problem on a kinematic analysis of the three-dimensional velocity field of stars from zonal catalogues, i.e., catalogues in which the stars are presented at all right ascensions in some declination zones. We have constructed a system of vector spherical harmonics with the properties of completeness and orthogonality for a chosen declination zone. We suggest a method that allows the Ogorodnikov-Milne model parameters in the Galactic coordinate system to be estimated by analyzing the proper motions and radial velocities of stars in the equatorial coordinate system. The vector spherical harmonics are shown to have the following advantages over the standard approach based on a direct leastsquares estimation of the parameters for a specific model. First, in contrast to the standard approach, the new method can reveal all systematic components of the velocity field irrespective of a particular model. Second, it allows one to get rid of the correlation between the sought-for parameters, which presents a serious problem for the conventional method in the case of zonal catalogues. Third, the method of vector spherical harmonics allows the kinematic parameters to be estimated at least by two techniques. Comparison of these two solutions makes it possible to test the standard kinematic model for compatibility with the observational data. The developed method has been tested on the basis of numerical experiments and applied for a kinematic analysis of the proper motions of Tycho-2 stars in the southern hemisphere for which the parallaxes can be estimated using data from the Tycho-2 Spectral Type Catalogue.

  15. 46 CFR 154.428 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.428 Section 154.428 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.428 Allowable stress. The membrane tank and the supporting insulation must have allowable...

  16. 46 CFR 154.447 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.447 Section 154.447 Shipping COAST... Tank Type B § 154.447 Allowable stress. (a) An independent tank type B designed from bodies of revolution must have allowable stresses 3 determined by the following formulae: 3 See Appendix B for...

  17. Rate effects on timing, key velocity, and finger kinematics in piano performance.

    Science.gov (United States)

    Bella, Simone Dalla; Palmer, Caroline

    2011-01-01

    We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound. PMID:21731615

  18. Rate effects on timing, key velocity, and finger kinematics in piano performance.

    Directory of Open Access Journals (Sweden)

    Simone Dalla Bella

    Full Text Available We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound.

  19. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238U beam and a 12C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  20. A Kinematical Approach to Dark Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rapetti, David; Allen, Steven W.; Amin, Mustafa A.; Blandford, Roger D.; /KIPAC, Menlo Park

    2006-06-06

    We present and employ a new kinematical approach to cosmological ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t) = 1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to the three best available sets of redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t) = j, we measure q{sub 0} = -0.81 {+-} 0.14 and j = 2.16{sub -0.75}{sup +0.81}, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. A standard ''dynamical'' analysis of the same data, employing the Friedmann equations and modeling the dark energy as a fluid with an equation of state parameter, w (constant), gives {Omega}{sub m} = 0.306{sub -0.040}{sup +0.042} and w = -1.15{sub -0.18}{sup +0.14}, also consistent with {Lambda}CDM at about the 1{sigma} level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible. Our results provide further interesting support for the concordance {Lambda}CDM paradigm.

  1. Kinematics of the South Atlantic rift

    Directory of Open Access Journals (Sweden)

    C. Heine

    2013-01-01

    Full Text Available The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. While the relative motions between South America and Africa for post-breakup times are well resolved, many issues pertaining to the fit reconstruction and particular the relation between kinematics and lithosphere dynamics during pre-breakup remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-breakup evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we have been able to indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the São Paulo High. We model an initial E–W directed extension between South America and Africa (fixed in present-day position at very low extensional velocities until Upper Hauterivian times (≈126 Ma when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the

  2. Kinematic Signatures of Telic and Atelic Events in ASL Predicates

    Science.gov (United States)

    Malaia, Evie; Wilbur, Ronnie B.

    2012-01-01

    This article presents an experimental investigation of kinematics of verb sign production in American Sign Language (ASL) using motion capture data. The results confirm that event structure differences in the meaning of the verbs are reflected in the kinematic formation: for example, in the telic verbs (throw, hit), the end-point of the event is…

  3. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  4. Zero-Inertial Recession for a Kinematic Wave Model

    Science.gov (United States)

    Kinematic-wave models of surface irrigation assume a fixed relationship between depth and discharge (typically, normal depth). When surface irrigation inflow is cut off, the calculated upstream flow depth goes to zero, since the discharge is zero. For short time steps, use of the Kinematic Wave mode...

  5. Kinematic synthesis of a new 3D printing solution

    Directory of Open Access Journals (Sweden)

    Giberti Hermes

    2016-01-01

    The object of this article is the kinematic synthesis of a 5Dofs robot, based on two PKM machines, for additive manufacturing in order to compliant with the requirements of this new technology. Robot kinematics have been optimized by genetic algorithm in order to cover the required workspace and the design of the robot and outline of the control system are also given.

  6. A School Experiment in Kinematics: Shooting from a Ballistic Cart

    Science.gov (United States)

    Kranjc, T.; Razpet, N.

    2011-01-01

    Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…

  7. SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.

  8. Kinematic analysis of the 3-RPR parallel manipulator

    CERN Document Server

    Chablat, Damien; Bonev, Ilian

    2007-01-01

    The aim of this paper is the kinematic study of a 3-RPR planar parallel manipulator where the three fixed revolute joints are actuated. The direct and inverse kinematic problem as well as the singular configuration is characterized. On parallel singular configurations, the motion produce by the mobile platform can be compared to the Reuleaux straight-line mechanism.

  9. Space reconstruction of the morphology and kinematics of axisymmetric radio sources

    CERN Document Server

    Diep, P N; Hoai, D T; Nhung, P T; Thao, N T; Tuan-Anh, P; Darriulat, P

    2016-01-01

    The unprecedented quality of the observations available from the Atacama Large Millimetre/sub-millimetre Array (ALMA) calls for analysis methods making the best of them. Reconstructing in space the morphology and kinematics of radio sources is an underdetermined problem that requires imposing additional constraints for its solution. The hypothesis of rotational invariance about a well-defined star axis, which is a good approximation to the description of the gas envelopes of many evolved stars and protostars, is particularly efficient in this role. In the first part of the article, a systematic use of simulated observations allows for identifying the main problems and for constructing quantities aimed at solving them. In particular the evaluation of the orientation of the star axis in space and the differentiation between expansion along the star axis and rotation about it are given special attention. The use of polar rather than Cartesian sky coordinates is shown to better match the morphology and kinematics...

  10. Kinematic imprints from the bar and spiral structures in the galatic disk

    Science.gov (United States)

    Figueras, F.; Antoja, T.; Valenzuela, O.; Romero-Gómez, M.; Pichardo, B.; Moreno, E.

    2011-12-01

    At 140 years of the discovery of the moving groups, these stellar streams are emerging as powerful tools to constrain the models for the spiral arms and the Galactic bar in the Gaia era. From the kinematic-age-metallicity analysis in the solar neighbourhood it is now well established that some of these kinematic structures have a dynamical origin, different from the classical cluster disruption hypothesis. Test particle simulations allow us to definitively establish that these local structures can be created by the dynamical resonances of material spiral arms and not exclusively by the Galactic bar. First studies to evaluate the capabilities of the future Gaia data to detect and characterize moving groups at 2-6 kpc from the solar neighborhood are discussed.

  11. Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

    Directory of Open Access Journals (Sweden)

    Fai Chen Chen

    2013-01-01

    Full Text Available In the last few years, the number of projects studying the human hand from the robotic point of view has increased rapidly, due to the growing interest in academic and industrial applications. Nevertheless, the complexity of the human hand given its large number of degrees of freedom (DoF within a significantly reduced space requires an exhaustive analysis, before proposing any applications. The aim of this paper is to provide a complete summary of the kinematic and dynamic characteristics of the human hand as a preliminary step towards the development of hand devices such as prosthetic/robotic hands and exoskeletons imitating the human hand shape and functionality. A collection of data and constraints relevant to hand movements is presented, and the direct and inverse kinematics are solved for all the fingers as well as the dynamics; anthropometric data and dynamics equations allow performing simulations to understand the behavior of the finger.

  12. Kinematic numerators and a double-copy formula for N=4 super-Yang-Mills residues

    Science.gov (United States)

    Litsey, Sean; Stankowicz, James

    2014-07-01

    Recent work by Cachazo et al.arXiv:1309.0885 shows that connected prescription residues obey the global identities of N=4 super-Yang-Mills amplitudes. In particular, they obey the Bern-Carrasco-Johansson (BCJ) amplitude identities. Here we offer a new way of interpreting this result via objects that we call residue numerators. These objects behave like the kinematic numerators introduced by BCJ except that they are associated with individual residues. In particular, these new objects satisfy a double-copy formula relating them to the residues appearing in recently discovered analogs of the connected prescription integrals for N=8 supergravity. Along the way, we show that the BCJ amplitude identities are equivalent to the consistency condition that allows kinematic numerators to be expressed as amplitudes using a generalized inverse.

  13. Kinematic Solar Dynamo with Spot Deposition

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark S.

    2016-05-01

    We have recently developed a kinematic dynamo model by including the observed differential rotation and the meridional flow. This model includes the emergence of sunspots from the deep-seated toroidal field and their subsequent decay at the surface, i.e., the Babcock-Leighton process for the generation of poloidal field.We shall show that this model reproduces most of the basic features of the solar magnetic cycle including the polarity reversals, 11 years periodicity, equatorward migration of sunspots at low latitudes and the poleward migration of the radial field at the surface. This model also produces the observed cycle variations when the fluctuations in the active-region tilt are included. North-south asymmetries of cycles from this model will also be demonstrated.

  14. Elbow joint instability: A kinematic model.

    Science.gov (United States)

    Olsen, B S; Henriksen, M G; Søjbjerg, J O; Helmig, P; Sneppen, O

    1994-05-01

    The effect of simultaneous ulnar and radial collateral ligament division on the kinematics of the elbow joint is studied in a cadaveric model. Severance of the anterior part of the ulnar collateral ligament and the annular ligament led to significant elbow joint instability in valgus and varus stress and in forced external and internal rotation. The mean maximum laxity in valgus stress and forced external rotation were 5.7° and 13.2°. The forearms of the elbow joint specimens were transfixed in maximum pronation. During valgus and varus stress the corresponding spontaneous ulnar rotation of the specimens was recorded. The reproducibility of the instability pattern suggests that this model is suitable for evaluating stabilizing procedures aimed at correction of elbow joint instability before these procedures are introduced into patient care. PMID:22959690

  15. Internal kinematics of modelled interacting disc galaxies

    CERN Document Server

    Kronberger, T; Schindler, S; Böhm, A; Kutdemir, E; Ziegler, B L

    2006-01-01

    We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied in observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys significantly disturb the velocity fields and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are rising or falling profiles in direction to the companion galaxy and bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. The appearance of these distortions depends, however, strongly on the viewing angle. The velocity ...

  16. Color-kinematic duality for form factors

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  17. A quantum kinematics for asymptotically flat spacetimes

    CERN Document Server

    Campiglia, Miguel

    2014-01-01

    We construct a quantum kinematics for asymptotically flat spacetimes based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying Loop Quantum Gravity (LQG) which supports, in addition to the usual LQG operators, the action of `background exponential operators' which are connection dependent operators labelled by `background' $su(2)$ electric fields. KS states have, in addition to the LQG state label corresponding to 1 dimensional excitations of the triad, a label corresponding to a `background' electric field which describes 3 dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields which label the {\\em states} and the background electric fields which label the {\\em operators}. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We...

  18. Color-kinematic duality for form factors

    International Nuclear Information System (INIS)

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  19. Galaxy simulations: Kinematics and mock observations

    Science.gov (United States)

    Moody, Christopher E.

    2013-08-01

    There are six topics to my thesis, which are: (1) slow rotator production in varied simulation schemes and kinematically decoupled cores and twists in those simulations, (2) the change in number of clumps in radiation pressure and no-radiation pressure simulations, (3) Sunrise experiments and failures including UVJ color-color dust experiments and UVbeta slopes, (4) the Sunrise image pipeline and algorithms. Cosmological simulations of have typically produced too many stars at early times. We find that the additional radiation pressure (RP) feedback suppresses star formation globally by a factor of ~ 3. Despite this reduction, the simulation still overproduces stars by a factor of ~ 2 with respect to the predictions provided by abundance matching methods. In simulations with RP the number of clumps falls dramatically. However, only clumps with masses Mclump/Mdisk ≤ 8% are impacted by the inclusion of RP, and clump counts above this range are comparable. Above this mass, the difference between and RP and no-RP contrast ratios diminishes. If we restrict our selection to galaxies hosting at least a single clump above this mass range then clump numbers, contrast ratios, survival fractions and total clump masses show little discrepancy between RP and no-RP simulations. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps. New kinematic observations from ATLAS3D have highlighted the need to understand the evolutionary mechanism leading to a spectrum of fast-rotator and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamic simulations sampling idealized galaxy merger formation scenarios constructed from model

  20. Kinematical Analysis of an Articulated Mechanism

    CERN Document Server

    Fleischfresser, Luciano

    2015-01-01

    The purpose of this work is twofold: to present mathematical expressions for the kinematics of an articulated mechanism and to perform numerical experiments with the implemented Fortran code. The system of rigid parts is made of two slender bars and a disk. A constant 2 rad/s counterclockwise rotation rate is imposed on the disk triggering the planar motion of the longer bar (link) and the rotation of the shorter one (output). Angular relations, velocities and accelerations are analyzed for a 90-degree turn of the disk. The inversion of the linking bar sense of rotation is well captured by the simulation, and the paper and pencil solutions that may lead to wrong conclusions are explained. Equations are derived from first principles and the Fortran code is placed under version control (currently, v.0.8-beta). This computer project is relevant for those in charge of vector dynamics courses and wishing to expose students to project-based learning activities.

  1. Parton Shower with NLO Kinematic Power Corrections

    CERN Document Server

    Baumgart, Matthew; Stewart, Iain W

    2010-01-01

    We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1 -> 2 and 1 -> 3 branchings. The interference structure induced by collinear terms with subleading powers ...

  2. Kinematics of chiropteran shoulder girdle in flight.

    Science.gov (United States)

    Panyutina, A A; Kuznetsov, A N; Korzun, L P

    2013-03-01

    New data on the mechanisms of movements of the shoulder girdle and humerus of bats are described; potential mobility is compared to the movements actually used in flight. The study was performed on the basis of morphological and functional analysis of anatomical specimens of 15 species, high speed and high definition filming of two species and X-ray survey of Rousettus aegyptiacus flight. Our observations indicate that any excursions of the shoulder girdle in bats have relatively small input in the wing amplitude. Shoulder girdle movements resemble kinematics of a crank mechanism: clavicle plays the role of crank, and scapula-the role of connecting rod. Previously described osseous "locking mechanisms" in shoulder joint of advanced bats do not affect the movements, actually used in flight. The wing beats in bats are performed predominantly by movements of humerus relative to shoulder girdle, although these movements occupy the caudal-most sector of available shoulder mobility. PMID:23381941

  3. Feeding kinematics of juvenile swellsharks, Cephaloscyllium ventriosum

    Science.gov (United States)

    Ferry-Graham

    1997-01-01

    To investigate how feeding behaviors change with prey size, high-speed video recording was used to examine the kinematics of prey capture and transport in 1-year-old swellsharks Cephaloscyllium ventriosum (Scyliorhinidae: Carchariniformes) feeding on two differently sized prey items. Prey capture in these sharks generally consisted of an initially ram-dominated capture bite, one or more manipulation bites, a holding phase during which the food was held in the teeth of the shark, and then suction-dominated prey transport. During initial capture and transport, most of the water taken in is forced back out of the mouth anteriorly rather than continuing posteriorly out through the gill openings. Dye experiments in which dye-perfused prey items were ingested by the sharks confirm this observation; distinct jets of colored water were video-taped as they were ejected from the mouth. Very late in prey transport, a bolus of water is ejected through the gill slits; however, by this time, the majority of water appears already to have exited the buccal cavity through the mouth. Such patterns were observed for sharks feeding on both small and large prey items. Although a basic pattern of prey capture and transport was regularly repeated among strikes, kinematic patterns during prey capture and transport were variable both within and among individuals, indicating that prey acquisition is not tightly controlled. However, the amount of variability was similar among prey sizes. In addition, there were no detectable changes in behavior due to prey item size. Ram-suction index values confirmed that similar capture modes were being utilized for both prey sizes. PMID:9319118

  4. 21st Century Kinematics : The 2012 NSF Workshop

    CERN Document Server

    2013-01-01

    21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will be provide admirable supporting theory for a graduate course in modern kinematics and should be of consid...

  5. 2nd Conference on Interdisciplinary Applications in Kinematics

    CERN Document Server

    Flores, Francisco

    2015-01-01

    This book collects a number of important contributions presented during the Second Conference on Interdisciplinary Applications of Kinematics (IAK 2013) held in Lima, Peru. The conference brought together scientists from several research fields, such as computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics, computational chemistry, and vibration analysis, and embraced all key aspects of kinematics, namely, theoretical methods, modeling, optimization, experimental validation, industrial applications, and design. Kinematics is an exciting area of computational mechanics and plays  a central role in a great variety of fields and industrial applications nowadays. Apart from research in pure kinematics, the field deals with problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The results presented in this book should be of interest for practicing and research engineers as well as Ph.D. stud...

  6. Expressions of manipulator kinematic equations via symbolic computation

    International Nuclear Information System (INIS)

    While it is simple in principle to determine the position and orientation of the manipulator hand, its computational process has been regarded as extremely laborious since trigonometric functions must be calculated many times in operations of revolute or rotation. Due to development of a general class of kinematic algorithm based on iterative methods, however, we have come to a satisfactory settlement of this problem. In the present article, we consider to construct symbolic kinematic equations in an automatic fashion making use of the algorithm. To this end, recursive expressions are applied to a symbolic computation system REDUCE. As a concrete result, a complete kinematic model for a six-jointed arm having all kinematic attributes is provided. Together with work space analysis, the computer-aided generation of kinematic equations in symbolic form will serve to liberate us from their cumbersome derivations. (author)

  7. Numerical analysis of kinematic soil—pile interaction

    Science.gov (United States)

    Castelli, Francesco; Maugeri, Michele; Mylonakis, George

    2008-07-01

    In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000@. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.

  8. Forward and inverse kinematics of double universal joint robot wrists

    Science.gov (United States)

    Williams, Robert L., II

    1991-01-01

    A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.

  9. BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling

    Science.gov (United States)

    Bunget, Gheorghe; Seelecke, Stefan

    2008-03-01

    The overall objective of the BATMAV project is the development of a biologically inspired bat-like Micro-Aerial Vehicle (MAV) with flexible and foldable wings, capable of flapping flight. This first phase of the project focuses particularly on the kinematical analysis of the wing motion in order to build an artificial-muscle-driven actuation system in the future. While flapping flight in MAV has been previously studied and a number of models were realized using light-weight nature-inspired rigid wings, this paper presents a first model for a platform that features bat-inspired wings with a number of flexible joints which allows mimicking the kinematics of the real flyer. The bat was chosen after an extensive analysis of the flight physics of small birds, bats and large insects characterized by superior gust rejection and obstacle avoidance. Typical engineering parameters such as wing loading, wing beat frequency etc. were studied and it was concluded that bats are a suitable platform that can be actuated efficiently using artificial muscles. Also, due to their wing camber variation, they can operate effectively at a large range of speeds and allow remarkably maneuverable flight. In order to understand how to implement the artificial muscles on a bat-like platform, the analysis was followed by a study of bat flight kinematics. Due to their obvious complexity, only a limited number of degrees of freedom (DOF) were selected to characterize the flexible wing's stroke pattern. An extended analysis of flight styles in bats based on the data collected by Norberg and the engineering theory of robotic manipulators resulted in a 2 and 4-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The results of the kinematical model can be used to optimize the lengths and the attachment locations of the wires such that enough lift, thrust and wing stroke are obtained.

  10. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel....

  11. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Payments: Stipends; dependency allowances; travel allowances. 61.9 Section 61.9 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... allowances; travel allowances. Payments for stipends, dependency allowances, and the travel...

  12. 42 CFR 405.2468 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... to the limit on the all-inclusive rate for allowable costs. (3) Allowable graduate medical education.... (f) Graduate medical education. (1) Effective for that portion of cost reporting periods occurring on... receive direct graduate medical education payment for those residents. (2) Direct graduate...

  13. 27 CFR 28.334 - Credit allowance.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Credit allowance. 28.334... OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Action on Claims § 28.334 Credit allowance. Where the credit relates to internal revenue taxes on beer that have been determined but not yet paid by...

  14. 38 CFR 49.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 49.27 Allowable... for State, Local, and Indian Tribal Governments.” The allowability of costs incurred by non-profit organizations is determined in accordance with the provisions of OMB Circular A-122, “Cost Principles for...

  15. 36 CFR 1210.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program... Circular A-87, “Cost Principles for State and Local Governments.” The allowability of costs incurred by non... Principles for Non-Profit Organizations.” The allowability of costs incurred by institutions of...

  16. 22 CFR 226.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Financial and Program Management § 226.27 Allowable costs. For each kind..., “Cost Principles for State and Local Governments.” The allowability of costs incurred by...

  17. 22 CFR 518.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 518.27 Allowable costs. For each kind of recipient, there is a set of... allowability of costs incurred by non-profit organizations is determined in accordance with the provisions...

  18. 15 CFR 14.27 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 14.27 Allowable costs. For each kind of..., Local and Indian Tribal Governments.” The allowability of costs incurred by non-profit organizations...

  19. 20 CFR 435.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 435.27 Allowable costs. For each kind..., Local, and Indian Tribal Governments.” (b) Allowability of costs incurred by non-profit organizations...

  20. 45 CFR 2543.27 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 2543.27 Allowable costs. For each kind... and Local Governments.” The allowability of costs incurred by non-profit organizations is...

  1. 20 CFR 617.46 - Travel allowance.

    Science.gov (United States)

    2010-04-01

    ... mile at the prevailing mileage rate authorized under the Federal travel regulations (see 41 CFR part... prevailing per diem allowance rate authorized under the Federal travel regulations (see 41 CFR part 101-7... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Travel allowance. 617.46 Section...

  2. 40 CFR 30.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... of appendix E of 45 CFR part 74, “Principles for Determining Costs Applicable to Research and... NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 30.27 Allowable..., “Cost Principles for State and Local Governments.” The allowability of costs incurred by...

  3. 28 CFR 70.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ...-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 70.27 Allowable costs. (a... for State and Local Governments.” The allowability of costs incurred by non-profit organizations is determined in accordance with the provisions of OMB Circular A-122, “Cost Principles for...

  4. Utility allowed returns and market extremes

    International Nuclear Information System (INIS)

    In recent years interest rates have fluctuated from exceptionally high levels in the early 1980s to their current levels, the lowest in two decades. Observers and analysts generally have assumed that allowed returns by regulatory commissions follow the movement of interest rates; indeed some analysts use a risk premium method to estimate the cost of common equity, assuming a constant and linear relationship between interest rates and the cost of common equity. That suggests we could expect a relatively stable relationship between interest rates and allowed returns, as well. However, a simple comparison of allowed returns and interest rates shows that this is not the case in recent years. The relationship between market interest rates and the returns allowed by commissions varies and is obviously a great deal more complicated. Empirically, there appears to be only a narrow range where market interest rates significantly affect the allowed returns on common stock set by state commissions, at least for electric and combination utilities. If rates are at historically low levels, allowed returns based largely on market rates will hasten subsequent rate filings, and commissions appear to look beyond the low rate levels. Conversely, it appears that regulators do not let historically high market rates determine allowed returns either. At either high or low interest levels, caution seems to be the policy

  5. Carbon allowance allocation in the transportation industry

    International Nuclear Information System (INIS)

    This study proposes models for projecting reductions in CO2 emissions of 10%, 20%, 30%, and 40% compared to business as usual (BAU), using a carbon allowance allocation policy and both unimodal and intermodal modes of transportation. The results show that for 10% to 80% decreases in free carbon allowance, the intermodal ratio increased from 1.01% to 53.44%, which led to decreases in carbon emissions and demand ranging from 10.41% to 48.19% and 8.45% to 7.57%, respectively. When free carbon allowances are decreased, the demand for intermodal systems increases accordingly. These results suggest that a carbon allowance allocation policy could mitigate transportation carbon emissions with a relatively small negative impact on economic activity. - Highlights: • This study proposes models for CO2 reduction by using carbon allowance policy. • This study found decreases in carbon allowance allocation, the intermodal ratio increased. • Truck-only transport will be replaced by intermodal transport. • The carbon allowance allocation policy cause small negative impact on economic activity

  6. Dating COINS: Kinematic Ages for Compact Symmetric Objects

    CERN Document Server

    Gugliucci, N E; Peck, A B; Giroletti, M

    2004-01-01

    We present multi-epoch VLBA observations of Compact Symmetric Objects (CSOs) from the COINS sample (CSOs Observed In the Northern Sky). These observations allow us to make estimates of, or place limits on, the kinematic ages for those sources with well-identified hot spots. This study significantly increases the number of CSOs with well-determined ages or limits. The age distribution is found to be sharply peaked under 500 years, suggesting that many CSOs die young, or are episodic in nature, and very few survive to evolve into FR II sources like Cygnus A. Jet components are found to have higher velocities than hot spots which is consistent with their movement down cleared channels. We also report on the first detections of significant polarization in two CSOs, J0000+4054 (2.1%) and J1826+1831 (8.8%). In both cases the polarized emission is found in jet components on the stronger side of the center of activity.

  7. Complex, Quiescent Kinematics in a Highly Filamentary Infrared Dark Cloud

    CERN Document Server

    Henshaw, Jonathan D; Fontani, Francesco; Jimenez-Serra, Izaskun; Tan, Jonathan C; Hernandez, Audra K

    2012-01-01

    Infrared Dark Clouds (IRDCs) host the initial conditions under which massive stars and stellar clusters form. We have obtained high sensitivity and high spectral resolution observations with the IRAM 30m antenna, which allowed us to perform detailed analysis of the kinematics within one IRDC, G035.39-00.33. We focus on the 1-0 and 3-2 transitions of N2H+, C18O (1-0), and make comparison with SiO (2-1) observations and extinction mapping. Three interacting filaments of gas are found. We report large-scale velocity coherence throughout the cloud, evidenced through small velocity gradients and relatively narrow line widths. This suggests that the merging of these filaments is somewhat "gentle", possibly regulated by magnetic fields. This merging of filaments may be responsible for the weak parsec-scale SiO emission detected by Jimenez-Serra et al. 2010, via grain mantle vaporization. A systematic velocity shift between the N2H+ (1-0) and C18O (1-0) gas throughout the cloud of 0.18 +/- 0.04 kms^{-1} is also found...

  8. Kinematic Modelling of Disc Galaxies using Graphics Processing Units

    CERN Document Server

    Bekiaris, Georgios; Fluke, Christopher J; Abraham, Roberto

    2015-01-01

    With large-scale Integral Field Spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the Graphics Processing Unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and Nested Sampling algorithms, but also a naive brute-force approach based on Nested Grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ~100 when compared to a single-threaded CPU, and up to a factor of ~10 when compared to a multi-threaded dual CPU configuration. Our method's accuracy, precision and robustness a...

  9. Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity

    Directory of Open Access Journals (Sweden)

    Pedro Figueiredo, Rafael Nazario, Marisa Sousa, Jailton Gregório Pelarigo, João Paulo Vilas-Boas, Ricardo Fernandes

    2014-09-01

    Full Text Available The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS. Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA, allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%: stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation. However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity.

  10. Sign Patterns That Allow the Given Matrix

    Institute of Scientific and Technical Information of China (English)

    邵燕灵; 孙良

    2003-01-01

    Let P be a property referring to a real matrix. For a sign pattern A, if there exists a real matrix B in the qualitative class of A such that B has property P, then we say A allows P. Three cases that A allows an M-matrix, an inverse M-matrix and a P0-matrix are considered. The complete characterizations are obtained.

  11. FINANCIAL-ACCOUNTING ASPECTS REGARDING FAMILY ALLOWANCES

    OpenAIRE

    Iuliana Cenar

    2010-01-01

    The importance of family and ensuring its social protection are indisputable in any society. It is the reason why in this paper we plan to create an overall picture of how social protection is achieved through family allowances and other social benefits, as well as the role of accounting in this process. Thus, we considered appropriate to present the institutional and legal frameworks for the social protection of the family thorough family allowances and additional social benefits related to ...

  12. Child Allowances, Educational Subsidies and Economic Growth

    OpenAIRE

    Chen, Hung-Ju

    2013-01-01

    This paper examines the effects on economic growth attributable to government policies of child allowances and educational subsidies. We show that multiple steady states may arise under these two policies, with club convergence occurring, and the initial condition being of relevance, if the tax rate is fairly high. Under a policy of child allowances, an increase in the tax rate is found to raise the quantity of children, but lower the quality of adults; however, under a policy of educational ...

  13. Geometry and Kinematics of Fault-Propagation Folds with Variable Interlimb Angles

    Science.gov (United States)

    Dhont, D.; Jabbour, M.; Hervouet, Y.; Deroin, J.

    2009-12-01

    amount. This model allows also: (i) to easily explain folds with wide variety of geometries; (ii) to understand the deep architecture of anticlines; and (iii) to deduce the kinematic evolution of folding with time. Mitra, S., 1990, Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, v. 74, no. 6, p. 921-945.

  14. Regulatory treatment of allowances and compliance costs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K. [National Regulatory Research Institute, Columbus, OH (United States)

    1993-07-01

    The Clean Air Act Amendments of 1990 (CAAA) established a national emission allowance trading system, a market-based form of environmental regulation designed to reduce and limit sulfur dioxide emissions. However, the allowance trading system is being applied primarily to an economically regulated electric utility industry. The combining of the new form of environmental regulation and economic regulation of electric utilities has raised a number of questions including what the role should be of the federal and state utility regulating commissions and how those actions will affect the decision making process of the utilities and the allowance market. There are several dimensions to the regulatory problems that commissions face. Allowances and utility compliance expenditures have implications for least-cost/IPR (integrated resource planning), prudence review procedures, holding company and multistate utility regulation and ratemaking treatment. The focus of this paper is on the ratemaking treatment. The following topics are covered: ratemaking treatment of allowances and compliance costs; Traditional cost-recovery mechanisms; limitations to the traditional approach; traditional approach and the allowance trading market; market-based cost recovery mechanisms; methods of determining the benchmark; determining the split between ratepayers and the utility; other regulatory approaches; limitations of incentive mechanisms.

  15. Computational neural learning formalisms for manipulator inverse kinematics

    Science.gov (United States)

    Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama

    1989-01-01

    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.

  16. Forward position kinematics of a parallel manipulator with new architecture

    International Nuclear Information System (INIS)

    The forward position kinematics of a parallel manipulator with new architecture supposed to be used as a moving mechanism in a flight simulator project is discussed in this paper. The closed form solution for the forward position kinematics problem of the manipulator is first determined. It has, then, been shown that there are at most 24 solutions for forward position kinematics problem. This result has been verified by using other techniques such as geometric approach and a numerical method known as polynomial continuation. Numerical examples are performed to display all possible solutions available for the devised manipulator

  17. Dose exposure work planning using DMU kinematics tools

    International Nuclear Information System (INIS)

    The study on the possibility of using DMU Kinematics module in CAE tools for dose exposure work planning was carried out. A case scenario was created using 3D CAD software and transferred to DMU Kinematics module in CAE software. A work plan was created using DMU Kinematics tools and animated to simulate a real time scenario. Data on the phantom position against the radioactive source was collected by activating positioning sensors in the module. The data was used to estimate dose rate exposure for the phantom. The results can be used to plan the safest and optimum procedures in carrying out the radiation related task. (author)

  18. Kinematic Chains in Ski Jumping In-run Posture

    OpenAIRE

    Janurová, Eva; Janura, Miroslav; Cabell, Lee; Svoboda, Zdeněk; Vařeka, Ivan; Elfmark, Milan

    2013-01-01

    The concept of kinematic chains has been systematically applied to biological systems since the 1950s. The course of a ski jump can be characterized as a change between closed and open kinematic chains. The purpose of this study was to determine a relationship between adjacent segments within the ski jumper’s body’s kinematic chain during the in-run phase of the ski jump. The in-run positions of 267 elite male ski jumpers who participated in the FIS World Cup events in Innsbruck, ...

  19. Ankle Kinematics Described By Means Of Stereophotogrammetry And Mathematical Modelling

    Science.gov (United States)

    Allard, Paul; Nagata, Susan D.; Duhaime, Morris; Labelle, Hubert; Murphy, Norman

    1986-07-01

    The ankle is a complex structure allowing foot mobility while providing stability. In an attempt to improve the knowledge of the kinematics of the ankle, an approach incorporating both experimental and analytical techniques was developed. Stereophotogrammetry combined with the Direct Linear Transformation (DLT) technique, was used to quantify the spatial displacements of the foot. Four motorized cameras were fixed on a baseboard 0.62 m from a support frame so as to obtain two stereopairs, one medial and one lateral. For a pair, the cameras were 0.52 m apart and maintained a convergent angle of 21.5°. The support frame was designed to fix the tibia while allowing foot motion. A device comprised of 76 markers, 38 of which were visible to each pair of cameras was used for the calibration. The spatial position of each marker was measured to a precision of 0.05 mm whereas their computed spatial position using the DLT technique was accurate to 0.4 mm. For the experiment, two embalmed cadaver legs and feet, amputated at midshank and of normal appearance were used. After a partial dissection, three pin markers were embedded into each of the medial and lateral sides of the talus permitting the calculation of its center of rotation. Each foot was photographed in 5 positions at 10° intervals, ranging from 30 ° of plantarflexion to 10° of dorsiflexion. An analytical model was developed to spatially describe the rotation of the foot about the ankle. The model calculates the plane of motion and the orientation of the axis of rotation relative to the sagittal, frontal and transverse planes. These were found respectively to be for foot one: 100°, 86°, 15° and for foot two: 91°, 69°, 21°.

  20. Resolved rate and torque control schemes for large scale space based kinematically redundant manipulators

    Science.gov (United States)

    Bailey, Robert W.; Quiocho, Leslie J.

    1991-01-01

    Resolved rate control of kinematically redundant ground based manipulators is a challenging problem. The structural, actuator, and control loop frequency characteristics of industrial grade robots generally allow operation with resolved rate control; a rate command is achievable with good accuracy. However, space based manipulators are different, typically have less structural stiffness, more motor and joint friction, and lower control loop cycle frequencies. These undesirable characteristics present a considerable Point of Resolution (POR) control problem for space based, kinematically redundant manipulators for the following reason: a kinematically redundant manipulator requires an arbitrary constraint to solve for the joint rate commands. A space manipulator will not respond to joint rate commands because of these characteristics. A space based manipulator simulation, including free end rigid body dynamics, motor dynamics, motor striction/friction, gearbox backlash, joint striction/friction, and Space Station Remote Manipulator System type configuration parameters, is used to evaluate the performance of a documented resolved rate control law. Alternate schemes which include torque control are also evaluated.

  1. Spectroscopy of 16O using α + 12C resonant scattering in inverse kinematics

    International Nuclear Information System (INIS)

    A measurement of α + 12C resonant scattering in inverse kinematics has been performed using resonant scattering with a gas target. The main advantage of this is that unlike previous experiments [1-3] where an excitation function of 16O was scanned using many different beam energies, a He gas target allows a range of resonances in 16O to be traced out as the 12C nuclei loose energy in the target. As such, many resonances can be obtained at single beam energy, without significant loss in the quality of data compared with that of a normal kinematics experiment. Beam energies of 46, 52, 56 and 63 MeV were used to populate resonances in the excitation energy range of 11.6 to 22.9 MeV in 16O. The angular distributions of the elastic scattering were measured at zero degrees, using an array of segmented silicon strip detectors with a minimum range of 0o to 30o in the centre-of-mass. The spins of 8 resonances between 14.01 and 18.47 MeV were obtained, confirming spin assignments made using elastic scattering in normal kinematics. An R-matrix analysis of the data was performed which indicates that the present understanding of 16O, in this region, is good but not complete.(author)

  2. Development of a Microcontroller-based Wireless Accelerometer for Kinematic Analysis

    Directory of Open Access Journals (Sweden)

    Maria Clarissa Alvarez Carasco

    2015-06-01

    Full Text Available Wireless sensor networks (WSNs allow real-time measurement and monitoring with less complexity and more efficient in terms of obtaining data when the subject is in motion. It eliminates the limitations introduced by wired connections between the sensors and the central processing unit. Although wireless technology is widely used around the world, not much has been applied for education. Through VISSER, a low cost WSN using nRF24L01+ RF transceiver that is developed to observe and analyze the kinematics of a moving object is discussed in this paper. Data acquisition and transmission is realized with the use of a low power and low cost microcontroller ATtiny85 that obtains data from the ADXL345 three-axis accelerometer. An ATtiny85 also controls the receiving module with a UART connection to the computer. Data gathered are then processed in an open-source programming language to determine properties of an object’s motion such as pitch and roll (tilt, acceleration and displacement. This paper discusses the application of the developed WSN for the kinematics analysis of a toy car moving on flat and inclined surfaces along the three axes. The developed system can be used in various motion detection and other kinematics applications, as well as physics laboratory activities for educational purposes.

  3. Kinematics of symmetric Galactic longitudes to probe the spiral arms of the Milky Way with Gaia

    CERN Document Server

    Antoja, T; de Bruijne, J; Prusti, T

    2016-01-01

    We model the effects of the spiral arms on the disk stellar kinematics by using both controlled orbital integrations in analytic potentials and self-consistent simulations. We compare the stellar kinematics of symmetric Galactic longitudes (+l and -l). This approach does not require the assumption of an axisymmetric model. The differences of the median transverse velocity, i.e. from parallaxes and proper motions, show clear trends that depend strongly on the properties of the spiral arms. Thus, this method can be used to quantify the importance of the spiral arms effects on the stellar orbits in the different regions of the disk and also constrain the location of the arms, their main resonances and, thus, their pattern speed. Moreover, the method give us indications of the dynamical nature of the spiral structure (e.g. grand-design versus transient multiple arms) and, therefore, allow us to test different origin scenarios of spiral arms. The typical differences of the measured kinematics in symmetric longitud...

  4. The valuable use of Microsoft Kinect™ sensor 3D kinematic in the rehabilitation process in basketball

    Science.gov (United States)

    Braidot, Ariel; Favaretto, Guillermo; Frisoli, Melisa; Gemignani, Diego; Gumpel, Gustavo; Massuh, Roberto; Rayan, Josefina; Turin, Matías

    2016-04-01

    Subjects who practice sports either as professionals or amateurs, have a high incidence of knee injuries. There are a few publications that show studies from a kinematic point of view of lateral-structure-knee injuries, including meniscal (meniscal tears or chondral injury), without anterior cruciate ligament rupture. The use of standard motion capture systems for measuring outdoors sport is hard to implement due to many operative reasons. Recently released, the Microsoft Kinect™ is a sensor that was developed to track movements for gaming purposes and has seen an increased use in clinical applications. The fact that this device is a simple and portable tool allows the acquisition of data of sport common movements in the field. The development and testing of a set of protocols for 3D kinematic measurement using the Microsoft Kinect™ system is presented in this paper. The 3D kinematic evaluation algorithms were developed from information available and with the use of Microsoft’s Software Development Kit 1.8 (SDK). Along with this, an algorithm for calculating the lower limb joints angles was implemented. Thirty healthy adult volunteers were measured, using five different recording protocols for sport characteristic gestures which involve high knee injury risk in athletes.

  5. TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Blanco

    2015-05-01

    Full Text Available The autonomous navigation of vehicles typically combines two kinds of methods: a path is first planned, and then the robot is driven by a local obstacle-avoidance controller. The present work, which focuses on path planning, proposes an extension to the well-known rapidly-exploring random tree (RRT algorithm to allow its integration with a trajectory parameter-space (TP-space as an efficient method to detect collision-free, kinematically feasible paths for arbitrarily-shaped vehicles. In contrast to original RRT, this proposal generates navigation trees, with poses as nodes, whose edges are all kinematically-feasible paths, suitable to being accurately followed by vehicles driven by pure reactive algorithms. Initial experiments demonstrate the suitability of the method with an Ackermann-steering vehicle model whose severe kinematic constraints cannot be obviated. An important result that sets this work apart from previous research is the finding that employing several families of potential trajectories to expand the tree, which can be done efficiently under the TP-space formalism, improves the optimality of the planned trajectories. A reference C++ implementation has been released as open-source.

  6. Understanding the spiral structure of the Milky Way using the local kinematic groups

    CERN Document Server

    Antoja, T; Romero-Gómez, M; Pichardo, B; Valenzuela, O; Moreno, E

    2011-01-01

    We study the spiral arm influence on the solar neighbourhood stellar kinematics. As the nature of the Milky Way (MW) spiral arms is not completely determined, we study two models: the Tight-Winding Approximation (TWA) model, which represents a local approximation, and a model with self-consistent material arms named PERLAS. This is a mass distribution with more abrupt gravitational forces. We perform test particle simulations after tuning the two models to the observational range for the MW spiral arm properties. We explore the effects of the arm properties and find that a significant region of the allowed parameter space favours the appearance of kinematic groups. The velocity distribution is mostly sensitive to the relative spiral arm phase and pattern speed. In all cases the arms induce strong kinematic imprints for pattern speeds around 17 km/s/kpc (close to the 4:1 inner resonance) but no substructure is induced close to corotation. The groups change significantly if one moves only ~0.6 kpc in galactocen...

  7. Algebraic analysis of kinematics of multibody systems

    Directory of Open Access Journals (Sweden)

    S. Piipponen

    2013-02-01

    Full Text Available The constructive commutative algebra is very useful in the kinematical analysis of the mechanisms because a large class of systems can be described using polynomial equations. We show that one can analyze quite complicated systems using a sort of divide and conquer strategy to decompose the system, and hence the configuration space, into simpler parts. The key observation is that it seems that typically systems indeed have a lot of distinct components, but usually only one of them is physically relevant. Hence if one finds the equations describing the component of interest the analysis of this system can be surprisingly simple compared to the original system. In particular typically the possible singularities of the original system disappear when one restricts the attention to the relevant component. On the technical side we show that some basic constraints used to define joints in 3 dimensional mechanisms can be decomposed to simpler parts. This has significant practical consequences because using these fundamental decompositions when writing the equations for complicated mechanisms decreases dramatically the complexity of the required computations.

  8. Virtual sine arm kinematic mount system

    International Nuclear Information System (INIS)

    A novel kinematic mount system for a vertical focusing mirror of the soft x-ray spectroscopy beamline at the Advanced Photon Source is described. The system contains three points in a horizontal plane. Each point consists of two horizontal linear precision stages, a spherical ball bearing, and a vertical precision stage. The horizontal linear stages are aligned orthogonally and are conjoined by a spherical ball bearing, supported by the vertical linear stage at each point. The position of each confined horizontal stage is controlled by a motorized micrometer head by spring-loading the flat tip of the micrometer head onto a tooling ball fixing on the carriage of the stage. A virtual sine arm is formed by tilting the upstream horizontal stage down and the two downstream horizontal stages up by a small angle. The fine pitch motion is achieved by adjusting the upstream stage. This supporting structure is extremely steady due to a relatively large span across the supporting points and yields extremely high resolution on the pitch motion. With a one degree tilt and a microstepping motor, the authors achieved a 0.4 nanoradian resolution on the mirror pitch motion

  9. Kinematics of the South Atlantic rift

    CERN Document Server

    Heine, Christian; Müller, R Dietmar

    2013-01-01

    The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the S\\~ao Paulo High. We model an initial E-W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times ($\\approx$126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial $\\approx$17 Myr-long stretching episode the Pre-salt basin width on the conjugate Br...

  10. SHIELD: Neutral Gas Kinematics and Dynamics

    Science.gov (United States)

    McNichols, Andrew; Teich, Yaron; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we present new results of detailed kinematic analyses of these systems using multi-configuration, high spatial (˜300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array. For each source, we produce velocity fields and dispersion maps using different spatial and spectral resolution representations of the data in order to attempt derivation of an inclination-corrected rotation curve. While both two- and three-dimensional fitting techniques are employed, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make multiple position-velocity cuts across each galaxy to determine the maximum circular rotation velocity (≤ 30 km-1 for the survey population). Baryonic masses are calculated using single-dish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are contextualized on the baryonic Tully-Fisher relation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  11. Kinematical Diagrams for Conical Relativistic Jets

    Indian Academy of Sciences (India)

    Gopal-Krishna; Pronoy Sircar; Samir Dhurde

    2007-03-01

    We present diagrams depicting the expected inter-dependences of two key kinematical parameters of radio knots in the parsec-scale jets of blazars, deduced from VLBI observations. The two parameters are the apparent speed (app = capp) and the effective Doppler boosting factor (eff) of the relativistically moving radio knot. A novel aspect of these analytical computations of – diagrams is that they are made for parsecscale jets having a conical shape, with modest opening angles ( up to 10°), in accord with the VLBI observations of the nuclei of the nearest radio galaxies. Another motivating factor is the recent finding that consideration of a conical geometry can have important implications for the interpretation of a variety of radio observations of blazar jets. In addition to uniform jet flows (i.e., those having a uniform bulk Lorentz factor, ), computational results are also presented for stratified jets where an ultra-relativistic central spine along the jet axis is surrounded by a slower moving sheath, possibly arising from a velocity shear.

  12. Kinematic dynamo, supersymmetry breaking, and chaos

    Science.gov (United States)

    Ovchinnikov, Igor V.; Enßlin, Torsten A.

    2016-04-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.

  13. A kinematical approach to dark energy studies

    CERN Document Server

    Rapetti, D; Amin, M A; Blandford, R D; Rapetti, David; Allen, Steven W.; Amin, Mustafa A.; Blandford, Roger D.

    2006-01-01

    We present and employ a new kinematical approach to cosmological `dark energy' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q_0 and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all LCDM models have j(t)=1 (constant), which facilitates simple tests for departures from the LCDM paradigm. Applying our model to the three best available sets of redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q_0=-0.81+-0.14 and j=2.16+0.81-0.75, results that are consistent with LCDM at about the 1sigma confidence level. A standard `dynamical' analysis of the same data, employing the Friedmann equations an...

  14. Kinematics analysis of a robotic rock grinder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the aim to discover water, life and resources in other planets, robotic sampling instrument is a crucial part of the space exploration robot. To remove dusty and weathered surfaces and expose the fresh rock underneath the planetary surface, a robotic rock grinder is considered to replace the geologist's rock hammer to carry out the geological investigation. A primary prototype of the robotic rock grinder with three degrees of freedom has been developed in this paper. Planetary transmission system is used in the grinding driving system with two inputs (rotation motor and revolution motor) and two outputs (grinding wheel and cutting brush). The grinding wheel with two teeth has been used to abrade the rock. The cutting brush is used to sweep the debris. The third actuator is to feed the grinding system. Kinematics of the grinding system has been analyzed. To get a continuous and smooth fresh face over the rock, grinding trajectory of the grinding wheel has been discussed and planned. Lastly, abrasion experiments have been made to testify the feasibility and the basic function of this system.

  15. Kinematic analysis of rope skipper's stability

    Science.gov (United States)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  16. US utility regulations and allowance trading

    International Nuclear Information System (INIS)

    This paper provides a layman's review of the history of US regulations, including trans-boundary problems between the US and Canada, the philosophy and justification involved in recent actions, the steps being taken to meet present compliance and allowance requirements, and some projections as to the future of emission-control activities in the United States. The total SO2 emissions for all utility power plants have now been mandated to be lowered to about half of recent projected values, and this total cannot be exceeded in the future in spite of possible growth needs. Because anyone wishing to build a coal-fired power plant in the future will probably need some allowances, as even with the best of controls some SO2 may be emitted, the availability of allowances in the future is an important planning consideration

  17. Allowance System: Proposed acid-rain rule

    International Nuclear Information System (INIS)

    The U.S. Environmental Protection Agency (EPA) has proposed four rules containing the core acid rain requirements: the Permits Rule (40 CFR Part 72), the Allowance System Rule (40 CFR Part 73), the Continuous Emission Monitoring Rule (40 CFR Part 75), and the Excess Emissions Rule (40 CFR Part 77). EPA will also propose additional rules at a future date. These rules will include requirements for facilities that elect to opt into the Acid Rain Program (40 CFR Part 74) and for the nitrogen oxide (NOx) control program (40 CFR Part 76). The fact sheet summarizes the key components of EPA's proposed Allowance System

  18. Correlation Between University Students' Kinematic Achievement and Learning Styles

    Science.gov (United States)

    Çirkinoǧlu, A. G.; Dem&ircidot, N.

    2007-04-01

    In the literature, some researches on kinematics revealed that students have many difficulties in connecting graphs and physics. Also some researches showed that the method used in classroom affects students' further learning. In this study the correlation between university students' kinematics achieve and learning style are investigated. In this purpose Kinematics Achievement Test and Learning Style Inventory were applied to 573 students enrolled in general physics 1 courses at Balikesir University in the fall semester of 2005-2006. Kinematics Test, consists of 12 multiple choose and 6 open ended questions, was developed by researchers to assess students' understanding, interpreting, and drawing graphs. Learning Style Inventory, a 24 items test including visual, auditory, and kinesthetic learning styles, was developed and used by Barsch. The data obtained from in this study were analyzed necessary statistical calculations (T-test, correlation, ANOVA, etc.) by using SPSS statistical program. Based on the research findings, the tentative recommendations are made.

  19. STAR CLUSTERS IN M31: OLD CLUSTERS WITH BAR KINEMATICS

    International Nuclear Information System (INIS)

    We analyze our accurate kinematical data for the old clusters in the inner regions of M31. These velocities are based on high signal-to-noise Hectospec data. The data are well suited for analysis of M31's inner regions because we took particular care to correct for contamination by unresolved field stars from the disk and bulge in the fibers. The metal-poor clusters show kinematics that are compatible with a pressure-supported spheroid. The kinematics of metal-rich clusters, however, argue for a disk population. In particular the innermost region (inside 2 kpc) shows the kinematics of the x2 family of bar periodic orbits, arguing for the existence of an inner Lindblad resonance in M31.

  20. Kinematics, Dynamics, and the Structure of Physical Theory

    CERN Document Server

    Curiel, Erik

    2016-01-01

    Every physical theory has (at least) two different forms of mathematical equations to represent its target systems: the dynamical (equations of motion) and the kinematical (kinematical constraints). Kinematical constraints are differentiated from equations of motion by the fact that their particular form is fixed once and for all, irrespective of the interactions the system enters into. By contrast, the particular form of a system's equations of motion depends essentially on the particular interaction the system enters into. All contemporary accounts of the structure and semantics of physical theory treat dynamics, i.e., the equations of motion, as the most important feature of a theory for the purposes of its philosophical analysis. I argue to the contrary that it is the kinematical constraints that determine the structure and empirical content of a physical theory in the most important ways: they function as necessary preconditions for the appropriate application of the theory; they differentiate types of p...

  1. Kinematics and Dynamics of an Asymmetrical Parallel Robotic Wrist

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2014-01-01

    This paper introduces an asymmetrical parallel robotic wrist, which can generate a decoupled unlimited-torsion motion and achieve high positioning accuracy. The kinematics, dexterity, and singularities of the manipulator are investigated to visualize the performance contours of the manipulator...

  2. Analytical kinematics analysis and synthesis of planar mechanisms

    CERN Document Server

    Gans, Deborah

    2013-01-01

    Using computational techniques and a complex variable formulation, this book teaches the student of kinematics to handle increasingly difficult problems in both the analysis and design of mechanisms all based on the fundamental loop closure equation.

  3. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi

    2013-06-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  4. Kinematic analysis of platform-type robotic manipulators

    Science.gov (United States)

    Shi, Xiaolun

    New methods are developed for the kinematic analysis of serial and platform-type parallel robotic manipulators, including forward and inverse kinematic solutions, singularity identifications and workspace evaluation. Differences between serial and platform-type parallel manipulators, which can provide substantially improved end-point rigidity compared with the conventional serial robotic arms, are addressed. The problem of determining the screw parameters of rigid body motion from initial and final position data is discussed, as a basis to search for a general and efficient procedure to solve the complex forward kinematics problem of platform-type manipulators. Several Screw-Theory based approaches for solving the inverse instantaneous problem of 6 DOF serial manipulators are studied and compared in terms of their computational efficiency, accuracy, sensitivity to data error and capability of dealing with singularities. A modified Vector Decomposition method is then proposed for solving the IIK problem and for singularity analysis of serial kinematic chains, the method is especially effective when applied to the wrist partitioned serial manipulators, which are essential components to any platform-type parallel manipulators. By using the data of three point positions, velocities, and accelerations of the end effector a general method is developed for solving the forward kinematics problem, including position, velocity and acceleration kinematics, of platform-type manipulators. The solution procedure can be applied to a wide variety of platform-type manipulators such as the 6 DOF Steward Platform manipulator and other models. It is found that while the solution for the forward position kinematics of a platform-type manipulator can be obtained by solving a non-linear system of equations, the closed-form solutions for forward rate and acceleration kinematics can be found by solving a system of linear equations. Based on the proposed kinematic formulations, an algorithm

  5. Kinematics and Load Formulation of Engine Crank Mechanism

    OpenAIRE

    Nigus, Hailemariam

    2015-01-01

    International audience This paper presents the kinematics formulation of an internal combustion engine crank mechanism. The kinematics formulation of the crank mechanism is done using vector loop method and cosine rule are applied to describe the position of the piston. Following the velocity of piston and connecting rod is performed by differentiating the position in terms of the crank angle and connecting rod angle respectively. The acceleration equation with brief form is derived from t...

  6. Numerical kinematic transformation calculations for a parallel link manipulator

    International Nuclear Information System (INIS)

    Parallel link manipulators are often considered for particular robotic applications because of the unique advantages they provide. Unfortunately, they have significant disadvantages with respect to calculating the kinematic transformations because of the high-order equations that must be solved. Presented is a manipulator design that exploits the mechanical advantages of parallel links yet also has a corresponding numerical kinematic solution that can be solved in real time on common microcomputers

  7. Kinematics and kinetics of an accidental lateral ankle sprain

    OpenAIRE

    Kristianslund, Eirik; Bahr, Roald; Krosshaug, Tron

    2011-01-01

    Ankle sprains are common during sporting activities and can have serious consequences. Understanding of injury mechanisms is essential to prevent injuries, but only two previous studies have provided detailed descriptions of the kinematics of lateral ankle sprains and measures of kinetics are missing. In the present study a female handball player accidentally sprained her ankle during sidestep cutting in a motion analysis laboratory. Kinematics and kinetics were calculated from 240 Hz recordi...

  8. New GPS constraints on the kinematics of the Apennines subduction

    OpenAIRE

    Devoti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Riguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Cuffaro, M.; Igag, CNR; Doglioni, C.; La Sapienza University

    2008-01-01

    We present the velocity field of the Italian area derived from continuous GPS observations from 2003 to 2007. The GPS sites were installed by different institutions and for different purposes; they cover the whole country with a mean inter-site distance of about 60 km and provide a valuable source of data to map the present day kinematics of the region. The absolute ITRF2005 rotation poles and rates of Eurasia, Africa and Adriatic plates are estimated, to study the kinematics a...

  9. Kinematics of A 3-PRP planar parallel robot

    OpenAIRE

    Chablat, Damien; Staicu, Stefan

    2009-01-01

    Recursive modelling for the kinematics of a 3-PRP planar parallel robot is presented in this paper. Three planar chains connecting to the moving platform of the manipulator are located in a vertical plane. Knowing the motion of the platform, we develop the inverse kinematics and determine the positions, velocities and accelerations of the robot. Several matrix equations offer iterative expressions and graphs for the displacements, velocities and accelerations of three prismatic actuators.

  10. Intergalactic spaceflight: an uncommon way to relativistic kinematics and dynamics

    OpenAIRE

    Greber, Thomas; Blatter, Heinz

    2006-01-01

    In the Special Theory of Relativity space and time intervals are different in different frames of reference. As a consequence, the quantity 'velocity' of classical mechanics splits into different quantities in Special Relativity, coordinate velocity, proper velocity and rapidity. The introduction and clear distinction of these quantities provides a basis to introduce the kinematics of uniform and accelerated motion in an elementary and intuitive way. Furthermore, rapidity links kinematics to ...

  11. Singular divergence instability thresholds of kinematically constrained circulatory systems

    International Nuclear Information System (INIS)

    Static instability or divergence threshold of both potential and circulatory systems with kinematic constraints depends singularly on the constraints' coefficients. Particularly, the critical buckling load of the kinematically constrained Ziegler's pendulum as a function of two coefficients of the constraint is given by the Plücker conoid of degree n=2. This simple mechanical model exhibits a structural instability similar to that responsible for the Velikhov–Chandrasekhar paradox in the theory of magnetorotational instability.

  12. Improving the kinematic control of robots with computer vision

    OpenAIRE

    Fallon, J. Barry

    1995-01-01

    This dissertation describes the development and application of a computer vision system for improving the performance of robots. The vision-based approach determines position and orientation (pose) parameters more directly than conventional approaches that are based on kinematics and joint feedback. Traditional robot control systems rely on kinematic models, measured joint variables, knowledge of objects in the workspace, and the calibrated robot base pose to correctly position...

  13. Manpower Training Allowances: Financial Assistance or Investment?

    Science.gov (United States)

    Latour, Georges

    1975-01-01

    The author compares the differing approaches of Germany, Sweden, France, and Australia for providing financial support to adults enrolled in vocational training programs, focusing on training allowances for recurrent education. He concludes that without some governmental maintenance program, it is unlikely that adults can utilize even tuition-free…

  14. 7 CFR 550.25 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... at 2 CFR part 225. The allowability of costs incurred by non-profit organizations is determined in... commercial organizations and those non-profit organizations listed in appendix C to Circular A-122 (2 CFR... AGRICULTURE GENERAL ADMINISTRATIVE POLICY FOR NON-ASSISTANCE COOPERATIVE AGREEMENTS Management of...

  15. 29 CFR 1470.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... to that circular 48 CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 1470.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set...

  16. 24 CFR 85.22 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... Circular A-122 as not subject to that circular 48 CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting standards that comply with cost principles acceptable to the Federal agency. ... TRIBAL GOVERNMENTS Post-Award Requirements Financial Administration § 85.22 Allowable costs....

  17. Allowance trading: Market operations and regulatory response

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, K.A.; South, D.W.; McDermott, K.A.

    1992-01-01

    The use of the SO[sub 2] allowance system as defined by Title IV of the 1990 Clean Air Act Amendments offers utilities greater compliance flexibility than EPA technology standards, State Implementation Plan (SEP) performance standards, or EPA bubble/offset strategies. Traditional methods at best offered the utility the ability to trade emissions between different units at a particular plant. The SO[sub 2] emissions trading system advocated under Title IV will allow a utility to trade emissions across its utility system, and/or trade emissions between utilities to take advantage of interfirm control cost differences. The use of transferable emission allowances offers utilities greater flexibility in the choice of how to control emissions: the choices include fuel switching, flue gas scrubbing, environmental dispatch, repowering, and even the choice not to control emissions [as long as the New Source Performance Standards (NSPS) and Prevention of Significant Deterioration (PSD) requirements are met]. The added flexibility allows utilities to choose the least cost manner of compliance with Title IV requirements. It is hoped (intended) that pollution control cost-minimization by individual utilities will in turn reduce the cost of controlling SO[sub 2] for the electric utility industry in aggregate. In addition, through the use of NO[sub x] emission averaging, the utility would average NO[sub x] emissions from different point sources in order to comply with the prescribed emission standard.

  18. Allowance trading: Market operations and regulatory response

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, K.A.; South, D.W.; McDermott, K.A.

    1992-12-31

    The use of the SO{sub 2} allowance system as defined by Title IV of the 1990 Clean Air Act Amendments offers utilities greater compliance flexibility than EPA technology standards, State Implementation Plan (SEP) performance standards, or EPA bubble/offset strategies. Traditional methods at best offered the utility the ability to trade emissions between different units at a particular plant. The SO{sub 2} emissions trading system advocated under Title IV will allow a utility to trade emissions across its utility system, and/or trade emissions between utilities to take advantage of interfirm control cost differences. The use of transferable emission allowances offers utilities greater flexibility in the choice of how to control emissions: the choices include fuel switching, flue gas scrubbing, environmental dispatch, repowering, and even the choice not to control emissions [as long as the New Source Performance Standards (NSPS) and Prevention of Significant Deterioration (PSD) requirements are met]. The added flexibility allows utilities to choose the least cost manner of compliance with Title IV requirements. It is hoped (intended) that pollution control cost-minimization by individual utilities will in turn reduce the cost of controlling SO{sub 2} for the electric utility industry in aggregate. In addition, through the use of NO{sub x} emission averaging, the utility would average NO{sub x} emissions from different point sources in order to comply with the prescribed emission standard.

  19. 22 CFR 145.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... of appendix E of 45 CFR part 74, “Principles for Determining Costs Applicable to Research and..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 145..., “Cost Principles for State and Local Governments.” The allowability of costs incurred by...

  20. 40 CFR 31.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... not subject to that circular 48 CFR part 31, Contract Cost Principles and Procedures, or uniform cost... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allowable costs. 31.22 Section 31.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE...

  1. 19 CFR 191.101 - Drawback allowance.

    Science.gov (United States)

    2010-04-01

    ... Preparations (Including Perfumery) Manufactured From Domestic Tax-Paid Alcohol § 191.101 Drawback allowance. (a... perfumery) manufactured or produced in the United States in part from the domestic tax-paid alcohol. (b... tax on flavoring extracts or medicinal or toilet preparations (including perfumery) manufactured...

  2. Study of the 6Li + p → 3He + 4He reaction in inverse kinematics

    International Nuclear Information System (INIS)

    Angular distribution measurements were performed for the 6Li + p → 3He + 4He reaction in inverse kinematics at incident energies of 2.7, 3.3, 4.2 and 4.8 MeV/u. The detection of both recoils (3He and 4He) over the laboratory angle range θlab = 16 circle to 34 circle allowed the determination of the angular distribution over a wide angular range in the center-of-mass frame (θc.m. ∝ 40 circle to 140 circle). The results clarify inconsistencies between existing data sets and are consistent with compound nucleus model calculations. (orig.)

  3. Estimation of field irrigation water demand based on lumped kinematic wave model considering soil moisture balance

    Science.gov (United States)

    Hori, Tomoharu; Sugimoto, Takeyuki; Nakayama, Masayuki; Ichikawa, Yutaka; Shiiba, Michiharu

    An estimation model of farm field irrigation water demand is developed. The model is based on the lumped kinematic wave model considering soil water balance. The lumped model approach reduces the computational load in rainfall-runoff analysis and allows application to large river basins. Evapotranspiration is estimated on hourly basis by the improvement of FAO's method. Not only water volume necessary for farm field irrigation but also the number of the water charge and its interval can be estimated by the combined use of the lumped runoff model and the hourly evapotranspiration model.

  4. Kinematics of the wire-driven parallel robot MARIONET using linear actuators

    OpenAIRE

    Merlet, Jean-Pierre

    2007-01-01

    Wire-driven parallel robots are special types of Gough-Stewart platform in which the rigid extensible legs are substituted by extensible wires. Usually wire length change is obtained by coiling the wire on a drum actuated by a rotary motor. We present here a robot using linear actuator and a pulley system allowing a higher modularity of the actuation system. The kinematics of this redundant system (the system has 7 wires), taking into account the elasticity of the wires, is presented. Inverse...

  5. Kinematics and Dynamics of a Tensegrity-Based Water Wave Energy Harvester

    Directory of Open Access Journals (Sweden)

    Min Lin

    2016-01-01

    Full Text Available A tensegrity-based water wave energy harvester is proposed. The direct and inverse kinematic problems are investigated by using a geometric method. Afterwards, the singularities and workspaces are discussed. Then, the Lagrangian method was used to develop the dynamic model considering the interaction between the harvester and water waves. The results indicate that the proposed harvester allows harvesting 13.59% more energy than a conventional heaving system. Therefore, tensegrity systems can be viewed as one alternative solution to conventional water wave energy harvesting systems.

  6. The kinematics of the redundant $N-1$ wire driven parallel robot

    OpenAIRE

    Merlet, Jean-Pierre

    2013-01-01

    We address the kinematics of the redundant $N-1$ wire-driven parallel robot, i.e. a robot with $N > 3$ wires connected at the same point on the platform. The redundancy allows one to increase the workspace size. But we show, both theoretically and experimentally that if the wires are not elastic, then the redundancy cannot be used to control the wire tensions. Indeed we show that whatever are the number of wires there will always be only at most 3 wires in tension, while th...

  7. Measurement of resonances in 12 C + 4 He through inverse kinematics with thick targets

    International Nuclear Information System (INIS)

    The excitation function of elastic scattering for the system 12 C + 4 He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  8. A numerical and experimental study of the kinematics of a tennis ball

    Science.gov (United States)

    Navarro Sorroche, Juan

    A numerical and experimental study of the kinematics of a tennis ball. An experimental apparatus to collect data of the tennis ball in motion is designed and constructed. Data collected by the experimental apparatus is corrected by the intrinsic and extrinsic camera distortions before numeric calculation predictions of the ball's point of impact with the court are made. The experimental apparatus constructed together with comprehensive numeric computations including atmospheric conditions and spin decay, allowed making predictions of the ball's point of impact with the court with and errors <0.029%

  9. Development of Calculation Algorithm for ECCS Kinematic Shock

    International Nuclear Information System (INIS)

    The void fraction of inverted U-pipes in front of SI(Safety Injection) pumps impact on the pipe system of ECCS(Emergency Core Cooling Systems). This phenomena is called as 'Kinematic Shock'. The purpose of this paper is to achieve the more exactly calculation when the kinematic shock is calculated by simplified equation. The behavior of the void packet of the ECCS pipes is illustrated by the simplified (other name is kinematic shock equation).. The kinematic shock is defined as the depth of total length of void clusters in the pipes of ECCS when the void cluster is continually reached along the part of pipes in vertical direction. In this paper, the simplified equation is evaluated by comparing calculation error each other.]. The more exact methods of calculating the depth of the kinematic shock in ECCS is achieved. The error of kinematic shock calculation is strongly depended on the calculation search gap and the order of Taylor's expansion. From this study, to select the suitable search gap and the suitable calculation order, differential root method, secant method, and Taylor's expansion form are compared one another

  10. Kinematic Chains in Ski Jumping In-run Posture

    Science.gov (United States)

    Janurová, Eva; Janura, Miroslav; Cabell, Lee; Svoboda, Zdeněk; Vařeka, Ivan; Elfmark, Milan

    2013-01-01

    The concept of kinematic chains has been systematically applied to biological systems since the 1950s. The course of a ski jump can be characterized as a change between closed and open kinematic chains. The purpose of this study was to determine a relationship between adjacent segments within the ski jumper’s body’s kinematic chain during the in-run phase of the ski jump. The in-run positions of 267 elite male ski jumpers who participated in the FIS World Cup events in Innsbruck, Austria, between 1992 and 2001 were analyzed (656 jumps). Two-dimensional (2-D) kinematic data were collected from the bodies of the subjects. Relationships between adjacent segments of the kinematic chain in the ski jumper’s body at the in-run position are greater nearer the chain’s ground contact. The coefficient of determination between the ankle and knee joint angles is 0.67. Changes in the segments’ positions in the kinematic chain of the ski jumper’s body are stable during longitudinal assessment. Changes in shank and thigh positions, in the sense of increase or decrease, are the same. PMID:24511342

  11. 76 FR 16629 - Federal Travel Regulation (FTR); Relocation Allowances-Relocation Income Tax Allowance (RITA) Tables

    Science.gov (United States)

    2011-03-24

    ... Register (73 FR 35952) specifying that the General Services Administration (GSA) would no longer publish... ADMINISTRATION Federal Travel Regulation (FTR); Relocation Allowances-- Relocation Income Tax Allowance (RITA...), Office of Travel, Transportation, and Asset Management (MT), General Services Administration at (202)...

  12. The complexity of South China Sea kinematics

    Science.gov (United States)

    Sibuet, Jean-Claude; Gao, Jinyao; Zhao, Minghui; Wu, Jonny; Ding, Weiwei; Yeh, Yi-Ching; Lee, Chao-Shing

    2016-04-01

    Magnetic modeling shows that the age of the youngest South China Sea (SCS) oceanic crust is controversial (e.g. 15.5 Ma, Briais et al., JGR 1993 and 20.5 Ma, Barckhausen et al., MPG 2014). Close to the rift axis of the East sub-basin, Ar-Ar age dating of oceanic crustal rocks collected during IODP Leg 349 gives ages of 15 and 15.2 +/- 0.2 Ma (Koppers, Fall AGU meeting, 2014), which seems to favor the 15.5 Ma age given by Briais et al. modeling. However, basaltic samples might belong to a sill and not to the typical oceanic crust. As post-spreading magmatic activity (~8-13 Ma) largely masks the spreading fabric, in particular near the previously identified E-W portion of the extinct ridge axis of the East sub-basin, the published locations of the axial magnetic anomaly and spreading rates are incorrect. The compilation of available swath bathymetric data shows that if post-spreading volcanics hide the seafloor spreading magnetic fabric mostly along and near the extinct spreading axis, the whole SCS is globally characterized by rift directions following three directions: N055°in the youngest portion of the SCS, N065° and N085° in the oldest portions of the SCS (Sibuet et al., Tectonophysics 2016) suggesting the extinct ridge axis is N055° trending instead of E-W. We present an updated version of the whole SCS structural sketch based on previously published swath bathymetric trends and new detailed magnetic lineations trends compiled from an extremely dense set of magnetic data. The new structural sketch shows: - The distribution of conjugate kinematic domains, - The early opening of the NW and East sub-basins, before a jump of the rift axis, - A second ridge jump in the East basin, - The different expressions of the post-spreading magmatism in the East and SW sub-basins. In the East sub-basin, crustal magmatic intrusions led to the formation of extrusive basalts associated with the presence of numerous volcanoes (Wang et al., Geological Journal 2016). In the SW

  13. The Relationships between Logical Thinking, Gender, and Kinematics Graph Interpretation Skills

    Science.gov (United States)

    Bektasli, Behzat; White, Arthur L.

    2012-01-01

    Problem Statement: Kinematics is one of the topics in physics where graphs are used broadly. Kinematics includes many abstract formulas, and students usually try to solve problems with those formulas. However, using a kinematics graph instead of formulas might be a better option for problem solving in kinematics. Graphs are abstract…

  14. A New Decoupling Method for Explicit Stiffness Analysis of Kinematically Redundant Planar Parallel Kinematic Mechanism

    Directory of Open Access Journals (Sweden)

    Hyun-Pyo Shin

    2015-01-01

    Full Text Available Optimization and control of stiffness for parallel kinematic mechanisms (PKM are critical issues because stiffness is directly related to the precision and response characteristics of the end-effector of PKMs. Unlike nonredundant PKMs, redundant PKMs have additional actuators exceeding their essential degrees-of-freedom (DOF, resulting in an increase in the redundancy of control. The stiffness of redundant PKMs is divided into passive and active stiffness. Active stiffness is changeable even in cases of fixed kinematic parameters and end-effector posture. However, it is not easy and intuitive to control the active stiffness of redundant PKMs for the complexity of Hessian matrix operations. This paper describes a new decoupling method for explicit stiffness analysis of redundant PKM with the well-known two-DOF and one-redundant planar five-bar PKM. Three actuating joints are decoupled to three groups containing two actuating joints. With this mathematical configuration, the stiffness matrix for one-redundant actuation is also divided into three stiffness matrices for nonredundant actuation, and the contribution of each actuator can be intuitively investigated. Stiffness matrices for the original and decoupled cases are compared in detail. In particular, this decoupling method is applicable to redundant PKMs with many passive joints. Finding optimal joints for one- or two-redundant actuation with various candidates is more intuitive with this decoupling method.

  15. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  16. Fundamental Principles of Proper Space Kinematics

    Science.gov (United States)

    Wade, Sean

    It is desirable to understand the movement of both matter and energy in the universe based upon fundamental principles of space and time. Time dilation and length contraction are features of Special Relativity derived from the observed constancy of the speed of light. Quantum Mechanics asserts that motion in the universe is probabilistic and not deterministic. While the practicality of these dissimilar theories is well established through widespread application inconsistencies in their marriage persist, marring their utility, and preventing their full expression. After identifying an error in perspective the current theories are tested by modifying logical assumptions to eliminate paradoxical contradictions. Analysis of simultaneous frames of reference leads to a new formulation of space and time that predicts the motion of both kinds of particles. Proper Space is a real, three-dimensional space clocked by proper time that is undergoing a densification at the rate of c. Coordinate transformations to a familiar object space and a mathematical stationary space clarify the counterintuitive aspects of Special Relativity. These symmetries demonstrate that within the local universe stationary observers are a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and Uncertainty the use of the imaginary number i is restricted for application to the labeling of mass as either material or immaterial. This material phase difference accounts for both the perceived constant velocity of light and its apparent statistical nature. The application of Proper Space Kinematics will advance more accurate representations of microscopic, oscopic, and cosmological processes and serve as a foundation for further study and reflection thereafter leading to greater insight.

  17. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  18. An in-vitro study of rotator cuff tear and repair kinematics using single- and double-row suture anchor fixation

    Directory of Open Access Journals (Sweden)

    Angela E Kedgley

    2013-01-01

    Full Text Available Purpose: Double-row suture anchor fixation of the rotator cuff was developed to reduce repair failure rates. The purpose of this study was to determine the effects of simulated rotator cuff tears and subsequent repairs using single- and double-row suture anchor fixation on three-dimensional shoulder kinematics. It was hypothesized that both single- and double-row repairs would be effective in restoring active intact kinematics of the shoulder. Materials and Methods: Sixteen fresh-frozen cadaveric shoulder specimens (eight matched pairs were tested using a custom loading apparatus designed to simulate unconstrained motion of the shoulder. In each specimen, the rotator cuff was sectioned to create a medium-sized (2 cm tear. Within each pair, one specimen was randomized to a single-row suture anchor repair, while the contralateral side underwent a double-row suture anchor repair. Joint kinematics were recorded for intact, torn, and repaired scenarios using an electromagnetic tracking device. Results: Active kinematics confirmed that a medium-sized rotator cuff tear affected glenohumeral kinematics when compared to the intact state. Single- and double-row suture anchor repairs restored the kinematics of the intact specimen. Conclusions: This study illustrates the effects of medium-sized rotator cuff tears and their repairs on active glenohumeral kinematics. No significant difference ( P ≥ 0.10 was found between the kinematics of single- and double-row techniques in medium-sized rotator cuff repairs. Clinical Relevance: Determining the relative effects of single- and double-row suture anchor repairs of the rotator cuff will allow physicians to be better equipped to treat patients with rotator cuff disease.

  19. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, David R. [NRC Herzberg Institute of Astrophysics, 5071 W Saanich Road, Victoria, BC V9E 2E7 (Canada); Bershady, Matthew A., E-mail: david.andersen@nrc-cnrc.gc.ca, E-mail: mab@astro.wisc.edu [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States)

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.

  20. Realization of allowable qeneralized quantum gates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The most general duality gates were introduced by Long,Liu and Wang and named allowable generalized quantum gates (AGQGs,for short).By definition,an allowable generalized quantum gate has the form of U=YfkjsckUK,where Uk’s are unitary operators on a Hilbert space H and the coefficients ck’s are complex numbers with |Yfijo ck\\ ∧ 1 an d 1ck| <1 for all k=0,1,...,d-1.In this paper,we prove that an AGQG U=YfkZo ck∧k is realizable,i.e.there are two d by d unitary matrices W and V such that ck=W0kVk0 (0

  1. Allowable Differential Settlement of Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Zahra Faeli

    2010-10-01

    Full Text Available Abstract The allowable settlement of pipelines has been mentioned rarely in design references and codes. The present paper studies the effects of differential settlement of pipeline bed on resulted forces and deformations and then determines the allowable differential settlement of pipelines in two conditions as follows: (i heterogeneous soil bed and (ii adjacent to steel tanks. To accomplish the studies, numerical simulation of pipeline is used. The pipeline bed is idealized by Winkler springs and four-element standard viscoelastic Burger model. Also, the use of geosynthetic reinforcement is studied in heterogeneous soil beds and the effect of geosynthetics on decreasing the settlement is investigated. The pipeline-tank joints in two cases of fixed and flexible joints are investigated and the results for two kinds of joints are compared.

  2. Making It Personal: Per Capita Carbon Allowances

    DEFF Research Database (Denmark)

    Fawcett, Tina; Hvelplund, Frede; Meyer, Niels I

    2009-01-01

    The Chapter highligts the importance of introducing new, efficient schemes for mitigation of global warming. One such scheme is Personal Carbon Allowances (PCA), whereby individuals are allotted a tradable ration of CO2 emission per year.This chapter reviews the fundamentals of PCA and analyzes its...... merits and problems. The United Kingdom and Denmark have been chosen as case studies because the energy situation and the institutional setup are quite different between the two countries....

  3. The US SO2 allowance trading program

    International Nuclear Information System (INIS)

    The US SO2 Allowance Trading Program is the world's first large-scale application of a cap-and-trade mechanism for limiting emissions, and it is often cited as an example for the control of other pollutants and of greenhouse gases. Drawing upon experience with this novel approach to omissions control since 1995, this article makes five observations that address common misunderstandings about emissions trading and that are applicable to the control of greenhouse gases. First, emissions trading did not compromise environmental effectiveness, and even enhanced it. Second, the program works because of the simplicity of the compliance requirement, the unavoidably strict accountability of the system, and the complete flexibility given to emitting sources. All three go together to form what may be regarded as a virtuous circle. Third, despite fears to the contrary, allowance markets developed in response to trading opportunities. Fourth, the politics of allowance allocation can be helpful in overcoming objections to emission control measures. Finally, provisions for voluntary accession present problems of moral hazard that must be carefully considered. (author)

  4. Configuration space control of a parallel delta robot with a neural network based inverse kinematics

    OpenAIRE

    Uzunovic, Tarik; Golubovic, Edin; Baran, Eray Abdurrahman; Şabanoviç, Asif; SABANOVIC, Asif

    2013-01-01

    This paper describes configuration space control of a Delta robot with a neural network based kinematics. Mathematical model of the kinematics for parallel Delta robot used for manipulation purposes in microfactory was validated, and experiments showed that this model is not describing “real” kinematics properly. Therefore a new solution for kinematics mapping had to be investigated. Solution was found in neural network utilization, and it was used to model robot's inverse kinematics. It show...

  5. Geometric and kinematic variations along the active Pernicana fault: Implication for the dynamics of Mount Etna NE flank (Italy)

    OpenAIRE

    Bonforte, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Branca, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Palano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia

    2007-01-01

    Geological and structural analyses and ground deformation measurements performed along the eastern portion of the Pernicana fault system and its splay segments allow the structural setting and the kinematic behaviour of the fault to be defined. In addition, the interrelationship between the deformation style of fault segments and the variations of the volcanic pile thickness along the fault strike are investigated using detailed sedimentary basement data. Brittle deformation dominate...

  6. Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm

    Directory of Open Access Journals (Sweden)

    Joel C. Perry

    2009-01-01

    shoulder and elbow, and nearly half of the total torque at the wrist. These results suggest that the majority of human arm joint torques are devoted to supporting the human arm position in space while compensating gravitational loads whereas a minor portion of the joint torques is dedicated to arm motion itself. A unique axial orientation at the base of the exoskeleton allowed the singular configuration of the shoulder joint to be moved towards the boundary of the human arm workspace while supporting 95% of the arm's workspace. At the same time, this orientation allowed the best exoskeleton manipulability at the most commonly used human arm configuration during ADLs. One of the potential implications of these results might be the need to compensate gravitational load during robotic-assistive rehabilitation treatment. Moreover, results of a manipulability analysis of the exoskeleton system indicate that the singular configuration of the exoskeleton system may be moved out of the human arm physiological workspace while maximising the overlap between the human arm and the exoskeleton workspaces. The collected database along with kinematic and dynamic analyses may provide a fundamental basis towards the development of assistive technologies for the human arm.

  7. Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity

    Science.gov (United States)

    Figueiredo, Pedro; Nazario, Rafael; Sousa, Marisa; Pelarigo, Jailton Gregório; Vilas-Boas, João Paulo; Fernandes, Ricardo

    2014-01-01

    The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS). Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA), allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%): stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation). However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity. Key Points In MLSS swimming intensity, stability of the stroke length and stroke frequency occurs after an initial adaptation. Efficiency indicators seem to be more sensitive to possible changes occurring through time at MLSS intensity. MLSS is a useful and practical swimming intensity to be maintained for a long period of time, but some constraints in technique can occur. PMID:25177189

  8. Continuum Deformation Explains the Kinematics of Iranian Continental Convergence

    Science.gov (United States)

    Walters, R. J.; England, P. C.; Houseman, G. A.

    2014-12-01

    Iran is one of the most rapidly deforming zones of active continental convergence, and a large and growing population within the country is exposed to high seismic hazard. However, despite the region's tectonic importance, the force balance responsible for Iran's large-scale deformation field is not well understood. Previous continuum deformation models for Iran suggest that lateral variations in lithospheric strength are necessary to account for the non-deforming region of Central Iran, but these studies were undertaken before the availability of a GPS velocity field against which to compare such models. Here we use a physical model that treats the Iranian lithosphere as a thin sheet of viscous material overlying an inviscid substrate. We find that the GPS velocity field is well described by such a continuum model with homogeneous properties. Contrary to the suggestions of previous studies, we find that an anomalously strong Central Iran is not required to match the strain-rate field. Instead, this distribution of deformation can be replicated by considering buoyancy forces acting in the lithosphere. We also find that overthrusting of South Caspian oceanic lithosphere by Iranian continental lithosphere in the Talesh mountains plays an important role in determining local kinematics in NW Iran. Finally, we develop a novel method for estimating seismic hazard where velocity measurements are sparse. We assume that the motion of upper crustal blocks conforms to the velocity field derived from our dynamical calculations, and allow the geometry of blocks to be specified from geological considerations. We then solve for the Euler rotation vector for each block that best fits our model velocities. We use these rotation vectors to derive fault slip rates along block boundaries, and find that our predicted rates agree well with independent Quaternary and geological estimates.

  9. Disc and halo kinematic populations from HIPPARCOS and Geneva-Copenhagen surveys of the solar neighbourhood

    Science.gov (United States)

    Cubarsi, R.; Alcobé, S.; Vidojević, S.; Ninković, S.

    2010-02-01

    Discontinuities in the local velocity distribution associated with stellar populations are studied using the Maximum Entropy of the Mixture Probability from HIerarchical Segregation (MEMPHIS) improved statistical method, by combining a sampling parameter, an optimisation of the mixture approach, and a maximisation of the partition entropy for the constituent populations of the stellar sample. The sampling parameter is associated with isolating integrals of the stellar motion and is used to build a hierarchical family of subsamples. We provide an accurate characterisation of the entropy graph, in which a local maximum of entropy takes place simultaneously with a local minimum of the χ^2 error. By analysing different sampling parameters, the method is applied to samples from the HIPPARCOS and Geneva-Copenhagen survey (GCS) to determine the kinematic parameters and the stellar population mixture of the thin disc, thick disc, and halo. The sampling parameter P=|(U,V,W)|, which is the absolute heliocentric velocity, allows us to build an optimal subsample containing both thin and thick disc stars, omitting most of the halo population. The sampling parameter P=|W|, which is absolute perpendicular velocity, allows us to create an optimal subsample of all disc and halo stars, although it does not allow an optimal differentiation of thin and thick discs. Other sampling parameters, such as P=|(U,W)| or P=|V|, are found to provide less information about the populations. By comparing both samples, HIPPARCOS provides more accurate estimates for the thick disc and halo, and GCS for the total disc. In particular, the radial velocity dispersion of the halo fits perfectly into the empirical Titius-Bode-like law σU = 6.6 (4/3)3n+2, previously proposed for discrete kinematical components, where the values n=0,1,2,3 represent early-type stars, thin disc, thick disc, and halo populations, respectively. The kinematic parameters are used to segregate thin disc, thick disc, and halo

  10. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Xin Zhao; Liang Wen; Tie-Bing Qu; Li-Li Hou; Dong Xiang; Jia Bin

    2015-01-01

    Background:The goal of total knee arthroplasty (TKA) is to restore knee kinematics.Knee prosthesis design plays a very important role in successful restoration.Here,kinematics models of normal and prosthetic knees were created and validated using previously published data.Methods:Computed tomography and magnetic resonance imaging scans of a healthy,anticorrosive female cadaver were used to establish a model of the entire lower limbs,including the femur,tibia,patella,fibula,distal femur cartilage,and medial and lateral menisci,as well as the anterior cruciate,posterior cruciate,medial collateral,and lateral collateral ligaments.The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis,which was then validated by comparison with a previous study.The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion.Results:Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study,suggesting that this model can be used for further analyses.The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient,or insufficiently aggressive,"rollback" compared with the lateral femur of the normal knee.In addition,a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis.Conclusions:There were still several differences between the kinematics of the PS knee prosthesis and a normal knee,suggesting room for improving the design of the PS knee prosthesis.The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.

  11. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Zhao

    2015-01-01

    Full Text Available Background: The goal of total knee arthroplasty (TKA is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Results: Both the output data trends and the measured values derived from the normal knee′s kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.

  12. The Kinematics of Treadmill Locomotion in Space

    Science.gov (United States)

    Thornton, W. E.; Cavanagh, P. R.; Buczek, F. L.; Burgess-Milliron, M. J.; Davis, B. L.

    1997-01-01

    Locomotion on a treadmill in 0 G will probably remain a centerpiece of NASA's exercise countermeasures programme. This form of physical activity has the potential to cause large bone and muscle forces as well as loading during a period of continuous treadmill exercise. A critical concern is the provision of a treadmill which can approximate 1 G performance in space. At this point, no adequate objective measurements of in-flight treadmill kinetics or of the human response to this activity have been made. Interpretation of the results obtained in the present study is limited by the following: (1) bungee tensions were not measured; (2) ground reaction forces were not measured in parallel with the kinematic measurements; and (3) the instrumentation used to film the astronauts could itself have been affected by microgravity. Despite these shortcomings, what is apparent is that exercise during NASA missions STS 7 and STS 8 resulted in leg motions that were similar to those found during 1 G locomotion on an inclined passive treadmill and on an active treadmill at an even steeper grade. In addition, it was apparent that the majority of the loads were transmitted through the forefoot, and one can surmise that this style of running would result in physiologically significant tensions in the calf musculature and resultant ankle compressive loading. Further speculation regarding limb loading is complicated by the fact that varying amounts of force are transmitted through (1) the treadmill handle and (2) bungee cords that act as a tether. New generations of treadmills are being manufactured that could provide I important information for planners of long-duration space missions. If these types of treadmill are flown on future missions, it will be possible to control bungee tensions more precisely, control for grade and speed, and, most importantly, provide data on the rates and magnitudes of limb loading. These data could then be incorporated into biomechanical models of the

  13. Kinematic synthesis of adjustable robotic mechanisms

    Science.gov (United States)

    Chuenchom, Thatchai

    1993-01-01

    Conventional hard automation, such as a linkage-based or a cam-driven system, provides high speed capability and repeatability but not the flexibility required in many industrial applications. The conventional mechanisms, that are typically single-degree-of-freedom systems, are being increasingly replaced by multi-degree-of-freedom multi-actuators driven by logic controllers. Although this new trend in sophistication provides greatly enhanced flexibility, there are many instances where the flexibility needs are exaggerated and the associated complexity is unnecessary. Traditional mechanism-based hard automation, on the other hand, neither can fulfill multi-task requirements nor are cost-effective mainly due to lack of methods and tools to design-in flexibility. This dissertation attempts to bridge this technological gap by developing Adjustable Robotic Mechanisms (ARM's) or 'programmable mechanisms' as a middle ground between high speed hard automation and expensive serial jointed-arm robots. This research introduces the concept of adjustable robotic mechanisms towards cost-effective manufacturing automation. A generalized analytical synthesis technique has been developed to support the computational design of ARM's that lays the theoretical foundation for synthesis of adjustable mechanisms. The synthesis method developed in this dissertation, called generalized adjustable dyad and triad synthesis, advances the well-known Burmester theory in kinematics to a new level. While this method provides planar solutions, a novel patented scheme is utilized for converting prescribed three-dimensional motion specifications into sets of planar projections. This provides an analytical and a computational tool for designing adjustable mechanisms that satisfy multiple sets of three-dimensional motion specifications. Several design issues were addressed, including adjustable parameter identification, branching defect, and mechanical errors. An efficient mathematical scheme for

  14. Kinematic modeling of the Milky Way using the RAVE and GCS stellar surveys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Binney, J. [Rudolf Peierls Center for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Freeman, K. C. [RSAA Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, Canberra, ACT 72611 (Australia); Steinmetz, M.; Williams, M. E. K. [Leibniz Institut für Astrophysik Potsdam (AIP), An der Sterwarte 16, D-14482 Potsdam (Germany); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, D-69120 Heidelberg (Germany); Bienaymé, O.; Siebert, A. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg (France); Gibson, B. K. [Jeremiah Horrocks Institute for Astrophysics and Super-computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G. F.; Kordopatis, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Munari, U. [INAF-Astronomical Observatory of Padova, I-36012 Asiago (VI) (Italy); Navarro, J. F. [University of Victoria, P.O. Box 3055, Station CSC, Victoria, BC V8W 3P6 (Canada); Parker, Q. A.; Reid, W. A. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT (United Kingdom); Watson, F. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); and others

    2014-09-20

    We investigate the kinematic parameters of the Milky Way disk using the Radial Velocity Experiment (RAVE) and Geneva-Copenhagen Survey (GCS) stellar surveys. We do this by fitting a kinematic model to the data and taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (ℓ, b, v {sub los}). Using the Markov Chain Monte Carlo technique, we investigate the full posterior distributions of the parameters given the data. We investigate the age-velocity dispersion relation for the three kinematic components (σ {sub R}, σ{sub φ}, σ {sub z}), the radial dependence of the velocity dispersions, the solar peculiar motion (U {sub ☉}, V {sub ☉}, W {sub ☉}), the circular speed Θ{sub 0} at the Sun, and the fall of mean azimuthal motion with height above the midplane. We confirm that the Besançon-style Gaussian model accurately fits the GCS data but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles noncircular orbits more accurately and provides a better fit to the kinematic data. The Gaussian DF not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. The radial scale length of the velocity dispersion profile of the thick disk was found to be smaller than that of the thin disk. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in V {sub ☉} and Θ{sub 0}. We find that, for an extended sample of stars, Θ{sub 0} is underestimated by as much as 10% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without

  15. Kinematic modeling of the Milky Way using the RAVE and GCS stellar surveys

    International Nuclear Information System (INIS)

    We investigate the kinematic parameters of the Milky Way disk using the Radial Velocity Experiment (RAVE) and Geneva-Copenhagen Survey (GCS) stellar surveys. We do this by fitting a kinematic model to the data and taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (ℓ, b, v los). Using the Markov Chain Monte Carlo technique, we investigate the full posterior distributions of the parameters given the data. We investigate the age-velocity dispersion relation for the three kinematic components (σ R, σφ, σ z), the radial dependence of the velocity dispersions, the solar peculiar motion (U ☉, V ☉, W ☉), the circular speed Θ0 at the Sun, and the fall of mean azimuthal motion with height above the midplane. We confirm that the Besançon-style Gaussian model accurately fits the GCS data but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles noncircular orbits more accurately and provides a better fit to the kinematic data. The Gaussian DF not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. The radial scale length of the velocity dispersion profile of the thick disk was found to be smaller than that of the thin disk. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in V ☉ and Θ0. We find that, for an extended sample of stars, Θ0 is underestimated by as much as 10% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without any need for V ☉ being larger than that estimated locally by

  16. Modeling kinematic hardening in a dispersion strengthened aluminum alloy using a stochastic cellular automation

    International Nuclear Information System (INIS)

    loading and unloading of dispersion strengthened aluminum alloy. Reactions to loading increments are allowed to take place sequentially, based on a probabilistic determination and conditions within each cell. Yielding in a cell results in a redistribution of stress to neighboring cells. Model results are compared to experimental results on the kinematic hardening of a sub-micron grain size, dispersoid containing aluminum alloy (AA8009). Refs. 2 (author)

  17. Measurement of the magnetic moment of the 2$^{+}$ state in neutron-rich radioactive $^{72,74}$Zn using the transient field technique in inverse kinematics

    CERN Multimedia

    Kruecken, R; Speidel, K; Voulot, D; Neyens, G; Gernhaeuser, R A; Fraile prieto, L M; Leske, J

    We propose to measure the sign and magnitude of the g-factors of the first 2$^{+}$ states in radioactive neutron-rich $^{72,74}$Zn applying the transient field (TF) technique in inverse kinematics. The result of this experiment will allow to probe the $\

  18. Kinematic evolution of simulated star-forming galaxies

    International Nuclear Information System (INIS)

    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last ∼8 billion years since z = 1.2, undergoing a process of 'disk settling'. For the first time, we study the kinematic evolution of a suite of four state of the art 'zoom in' hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking because the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (σg) and increase in ordered rotation (Vrot) with time. The slopes of the relations between both σg and Vrot with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling'.

  19. ON THE KINEMATIC GEOMETRY OF MANY BODY SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Wu-YIHSIANG

    1999-01-01

    In mechanics, both classical and quantum, one studies the profound interaction between two types of energy, namely, the kinetic energy and the potential energy. The former can be organized as the kinematic metric on the configuration space while the latter can be represented by a suitable potential function, such as the Newtonian potential in celestial mechanics and the Coulomb potential in quantum mechanics of atomic and molecular physics. In this paper, the author studies the kinematic geometry of n-body systems. The main results axe (i) the introduction of a canonical coordinate system which reveals the total amount of kinematic symmetry by an SO(З) × O(n - 1) action in such a canonieal coordinate representation; (ii) an in depth analysis of the above kinematic system both in the setting of classical invariant theory and by the technique of equivarjant Riemannian geometry; (iii) a remarkably simple formula for the potential function in such a canonical coordinate system which reveals the well-fitting between the kinematic symmetry and the potential energy.

  20. Off-shell currents and color–kinematics duality

    Directory of Open Access Journals (Sweden)

    Pierpaolo Mastrolia

    2016-02-01

    Full Text Available We elaborate on the color–kinematics duality for off-shell diagrams in gauge theories coupled to matter, by investigating the scattering process gg→ss,qq¯,gg, and show that the Jacobi relations for the kinematic numerators of off-shell diagrams, built with Feynman rules in axial gauge, reduce to a color–kinematics violating term due to the contributions of sub-graphs only. Such anomaly vanishes when the four particles connected by the Jacobi relation are on their mass shell with vanishing squared momenta, being either external or cut particles, where the validity of the color–kinematics duality is recovered. We discuss the role of the off-shell decomposition in the direct construction of higher-multiplicity numerators satisfying color–kinematics identity in four as well as in d dimensions, for the latter employing the Four Dimensional Formalism variant of the Four Dimensional Helicity scheme. We provide explicit examples for the QCD process gg→qq¯g.

  1. Inverse Kinematic Analysis of a Redundant Hybrid Climbing Robot

    Directory of Open Access Journals (Sweden)

    Adrian Peidro

    2015-11-01

    Full Text Available This paper presents the complete inverse kinematic analysis of a novel redundant truss climbing robot with 10 degrees of freedom. The robot is bipedal and has a hybrid serial-parallel architecture, where each leg consists of two parallel mechanisms connected in series. By separating the equation for inverse kinematics into two parts - with each part associated with a different leg - an analytic solution to the inverse kinematics is derived. In the obtained solution, all the joint coordinates are calculated in terms of four or five decision variables (depending on the desired orientation whose values can be freely decided due to the redundancy of the robot. Next, the constrained inverse kinematic problem is also solved, which consists of finding the values of the decision variables that yield a desired position and orientation satisfying the joint limits. Taking the joint limits into consideration, it is shown that all the feasible solutions that yield a given desired position and orientation can be represented as 2D and 3D sets in the space of the decision variables. These sets provide a compact and complete solution to the inverse kinematics, with applications for motion planning.

  2. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-04-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  3. Kinematic Evolution of Simulated Star-Forming Galaxies

    Science.gov (United States)

    Kassin, Susan A.; Brooks, Alyson; Governato, Fabio; Weiner, Benjamin J.; Gardner, Jonathan P.

    2014-01-01

    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last approximately 8 billion years since z = 1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma(sub g)) and increase in ordered rotation (V(sub rot)) with time. The slopes of the relations between both sigma(sub g) and V(sub rot) with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.

  4. Decoupling Kinematic Loops for Real-Time Multibody Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Omar Mohamed

    2016-01-01

    Full Text Available Earth moving equipment are typically equipped with hydraulic cylinder actuators to perform the designated tasks. Multibody modelling of such systems results in models with kinematic loops that couples the motion variables of the loop bodies. Iterative solutions will be needed to satisfy the loop constraints and the applied constraints, which require evaluation of the constraint Jacobean matrix. The size of the Jacobean matrix and the associated projections depends on the number of motion variables in each kinematic loop. Consequently, the computational cost significantly increases as the number of variables in the kinematic loop increases. Real-time control and hybrid hardware-in-the-loop systems both require efficient and fast computational algorithms. Eliminating the kinematic loops can improve the computational efficiency and effectiveness of the control algorithms. This paper presents an efficient approach to eliminate the coupling due to the cylinder-rod connections and consequently the kinematic loops in the multibody models leading to efficient simulation. The proposed approach calculates the spatial accelerations and inertia forces of the actuator bodies and the interaction forces with other components. The actuator forces are then projected onto the connecting bodies leading to exact dynamics of the system.

  5. Kinematic characterization and optimization of vehicle front-suspension design based on ADAMS

    Institute of Scientific and Technical Information of China (English)

    YU Hai-bo; LI You-de; MEN Yu-zhuo

    2008-01-01

    To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of -10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.

  6. A kinematics analysis of three best 100 m performances ever.

    Science.gov (United States)

    Krzysztof, Maćkała; Mero, Antti

    2013-03-01

    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt's three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt's sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt's anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt's 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 - 12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of Ballerieich

  7. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants

    Science.gov (United States)

    James, John T.

    2008-01-01

    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  8. 75 FR 14442 - Federal Travel Regulation (FTR); Relocation Allowances-Relocation Income Tax Allowance (RITA) Tables

    Science.gov (United States)

    2010-03-25

    ... Amendment 2008-04 in the Federal Register (73 FR 35952) specifying that GSA would no longer publish the RITA... ADMINISTRATION Federal Travel Regulation (FTR); Relocation Allowances-- Relocation Income Tax Allowance (RITA...: Mr. Ed Davis, Office of Governmentwide Policy (M), Office of Travel, Transportation, and...

  9. 78 FR 26637 - Federal Travel Regulation (FTR); Relocation Allowance-Relocation Income Tax (RIT) Allowable Tables

    Science.gov (United States)

    2013-05-07

    ... June 25, 2008 (73 FR 35952), specifying that GSA would no longer publish the RIT Allowance tables in... From the Federal Register Online via the Government Publishing Office GENERAL SERVICES ADMINISTRATION Federal Travel Regulation (FTR); Relocation Allowance--Relocation Income Tax (RIT)...

  10. 40 CFR 82.8 - Grant of essential use allowances and critical use allowances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Grant of essential use allowances and critical use allowances. 82.8 Section 82.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production and Consumption Controls § 82.8 Grant of essential use...

  11. ISS Squat and Deadlift Kinematics on the Advanced Resistive Exercise Device

    Science.gov (United States)

    Newby, N.; Caldwell, E.; Sibonga, J.; Ploutz-Snyder, L.

    2014-01-01

    Visual assessment of exercise form on the Advanced Resistive Exercise Device (ARED) on orbit is difficult due to the motion of the entire device on its Vibration Isolation System (VIS). The VIS allows for two degrees of device translational motion, and one degree of rotational motion. In order to minimize the forces that the VIS must damp in these planes of motion, the floor of the ARED moves as well during exercise to reduce changes in the center of mass of the system. To help trainers and other exercise personnel better assess squat and deadlift form a tool was developed that removes the VIS motion and creates a stick figure video of the exerciser. Another goal of the study was to determine whether any useful kinematic information could be obtained from just a single camera. Finally, the use of these data may aid in the interpretation of QCT hip structure data in response to ARED exercises performed in-flight. After obtaining informed consent, four International Space Station (ISS) crewmembers participated in this investigation. Exercise was videotaped using a single camera positioned to view the side of the crewmember during exercise on the ARED. One crewmember wore reflective tape on the toe, heel, ankle, knee, hip, and shoulder joints. This technique was not available for the other three crewmembers, so joint locations were assessed and digitized frame-by-frame by lab personnel. A custom Matlab program was used to assign two-dimensional coordinates to the joint locations throughout exercise. A second custom Matlab program was used to scale the data, calculate joint angles, estimate the foot center of pressure (COP), approximate normal and shear loads, and to create the VIS motion-corrected stick figure videos. Kinematics for the squat and deadlift vary considerably for the four crewmembers in this investigation. Some have very shallow knee and hip angles, and others have quite large ranges of motion at these joints. Joint angle analysis showed that crewmembers

  12. Scaling of Hadronic Form Factors in Point Form Kinematics

    CERN Document Server

    Coester, F

    2003-01-01

    The general features of baryon form factors calculated with point form kinematics are derived. With point form kinematics and spectator currents hadronic form factors are functions of $\\eta:={1\\over 4}(v_{out}-v_{in})^2$ and, over a range of $\\eta$ values are insensitive to unitary scale transformations of the model wave functions when the extent of the wave function is small compared to the scale defined by the constituent mass, $ \\ll 1/m^2$. The form factors are sensitive to the shape of such compact wave functions. Simple 3-quark proton wave functions are employed to illustrate these features. Rational and algebraic model wave functions lead to a reasonable representation of the empirical form factors, while Gaussian wave functions fail. For large values of $\\eta$ point form kinematics with spectator currents leads to power law behavior of the wave functions.

  13. Kinematic Performances of a Novel TLPM Parallel Robot

    Directory of Open Access Journals (Sweden)

    Fu Jianxun

    2016-01-01

    Full Text Available This paper investigates the kinematic performances of kinematics, Jacobian, singularity and interferences of a novel six-degree-of freedom (DOF parallel manipulator. Analytical solutions of the forward position kinematics have been worked out. Three-dimensional Cartesian space generated by a stroke interval from lmin to lmax fulfils the point workspace are illustrated, and the reachable workspaces are obtained. The notion of pure translational Jacobian of constraint matrix is introduced, and two types of conventional singularities are analyzed. Finally, auxiliary vectors are introduced to determine the link interferences, shown that there are two kinds of interferences in the system, one is angle-interference in one limb, and the other is distance-interference in adjacent limbs.

  14. Detailed HI kinematics of Tully-Fisher calibrator galaxies

    CERN Document Server

    Ponomareva, Anastasia A; Bosma, Albert

    2016-01-01

    We present spatially-resolved HI kinematics of 32 spiral galaxies which have Cepheid or/and Tip of the Red Giant Branch distances, and define a calibrator sample for the Tully-Fisher relation. The interferometric HI data for this sample were collected from available archives and supplemented with new GMRT observations. This paper describes an uniform analysis of the HI kinematics of this inhomogeneous data set. Our main result is an atlas for our calibrator sample that presents global HI profiles, integrated HI column-density maps, HI surface density profiles and, most importantly, detailed kinematic information in the form of high-quality rotation curves derived from highly-resolved, two-dimensional velocity fields and position-velocity diagrams.

  15. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gauss's law and Faraday's law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  16. The kinematics of very low mass dwarfs: splinter session summary

    CERN Document Server

    Burgasser, Adam J; Schmidt, Sarah; West, Andrew A; Osorio, Maria Rosa Zapatero; Pineda, J Sebastian; Burningham, Ben; Nicholls, C; Sanderson, Robyn; Shkolnik, Evgenya; Rodriguez, David; Riedel, Adric; Joergens, Viki

    2013-01-01

    Kinematic investigations are being increasingly deployed in studies of the lowest mass stars and brown dwarfs to investigate their origins, characterize their atmospheres, and examine the evolution of their physical parameters. This article summarizes the contributions made at the Kinematics of Very Low Mass Dwarfs Splinter Session. Results discussed include analysis of kinematic distributions of M, L and T dwarfs; theoretical tools for interpreting these distributions; identifications of very low mass halo dwarfs and wide companions to nearby stars; radial velocity variability among young and very cool brown dwarfs; and the search and identification of M dwarfs in young moving groups. A summary of discussion points at the conclusion of the Splinter is also presented.

  17. Kinematic classification of non-interacting spiral galaxies

    CERN Document Server

    Wiegert, Theresa

    2013-01-01

    Using neutral hydrogen (HI) rotation curves of 79 galaxies, culled from the literature, as well as measured from HI data, we present a method for classifying disk galaxies by their kinematics. In order to investigate fundamental kinematic properties we concentrate on non-interacting spiral galaxies. We employ a simple parameterized form for the rotation curve in order to derive the three parameters: the maximum rotational velocity, the turnover radius and a measure of the slope of the rotation curve beyond the turnover radius. Our approach uses the statistical Hierarchical Clustering method to guide our division of the resultant 3D distribution of galaxies into five classes. Comparing the kinematic classes in this preliminary classification scheme to a number of galaxy properties we find that our class containing galaxies with the largest rotational velocities has a mean morphological type of Sb/Sbc while the other classes tend to later types. Other trends also generally agree with those described by previous...

  18. Quantifying Dragonfly Kinematics During Unsteady Free-Flight Maneuvers

    Science.gov (United States)

    Melfi, James; Lin, Huai-Ti; Mischiati, Matteo; Leonardo, Anthony; Wang, Z. Jane

    2012-11-01

    What make dragonflies such interesting fliers are the unsteady high-speed aerial maneuvers they perform. Until recently, the study of dragonflies in mid-flight has been limited to steady-state motions such as hovering and forward flight. In this talk, we report our kinematic analyses of the dragonfly flight recorded in a custom dragonfly arena at HHMI, Janelia Farm. Dragonfly's turning motions often involve all three degrees of freedom about its body axes: yaw, roll, and pitch. We examine the wing kinematics changes associated with different turning maneuvers, and seek the key variables in the wing kinematics that are responsible for each specific maneuver. This work is supported by a grant to ZJW and AL through the visitor program at Janelia Farm, HHMI.

  19. The Kinematic design of a 3-dof Hybrid Manipulator

    CERN Document Server

    Chablat, Damien; Angeles, Jorge

    1998-01-01

    This paper focuses on the kinematic properties of a new three-degree-of-freedom hybrid manipulator. This manipulator is obtained by adding in series to a five-bar planar mechanism (similar to the one studied by Bajpai and Roth) a third revolute passing through the line of centers of the two actuated revolute joints of the above linkage. The resulting architecture is hybrid in that it has both serial and parallel links. Fully-parallel manipulators are known for the existence of particularly undesirable singularities (referred to as parallel singularities) where control is lost [4] and [6]. On the other hand, due to their cantilever type of kinematic arrangement, fully serial manipulators suffer from a lack of stiffness and from relatively large positioning errors. The hybrid manipulator studied is intrinsically stiffer and more accurate. Furthermore, since all actuators are located on the first axis, the inertial effects are considerably reduced. In addition, it is shown that the special kinematic structure of...

  20. Pure gravities via color-kinematics duality for fundamental matter

    Science.gov (United States)

    Johansson, Henrik; Ochirov, Alexander

    2015-11-01

    We give a prescription for the computation of loop-level scattering amplitudes in pure Einstein gravity, and four-dimensional pure supergravities, using the color-kinematics duality. Amplitudes are constructed using double copies of pure (super-)Yang-Mills parts and additional contributions from double copies of fundamental matter, which are treated as ghosts. The opposite-statistics states cancel the unwanted dilaton and axion in the bosonic theory, as well as the extra matter supermultiplets in the supergravity theories. As a spinoff, we obtain a prescription for obtaining amplitudes in supergravities with arbitrary non-self-interacting matter. As a prerequisite, we extend the color-kinematics duality from the adjoint to the fundamental representation of the gauge group. We explain the numerator relations that the fundamental kinematic Lie algebra should satisfy. We give nontrivial evidence supporting our construction using explicit tree and loop amplitudes, as well as more general arguments.

  1. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime

    2016-01-01

    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  2. Generation of closed-form inverse kinematics for reconfigurable robots

    Institute of Scientific and Technical Information of China (English)

    Jie ZHAO; Weizhong WANG; Yongsheng GAO; Hegao CAI

    2008-01-01

    For reconfigurable robots, the automatic gen-eration of inverse kinematics is a key problem, because such robots may assume various configurations. In this paper, the screw and product-of-exponentials (POE) formula are used to model the kinematics of reconfigurable robots. The POE formula can be converted to canonical subproblems through decomposition and adjoint transfor-mation. Three classes and 28 types of subproblems containing geometric or algebraic solutions are identified and solved, which can be reused in different configurations. A generalized, decomposable, and reusable approach for close-form inverse kinematics of reconfigurable robots is developed based on POE and subproblems. The effective-ness of this method is shown in an example.

  3. Kinematic Characteristics Analysis of 3-PRS Parallel Manipulator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fan; YANG Jiang-guo; LI Bei-zhi

    2008-01-01

    The 3-PRS parallel mechanisms, whose kinematic chain is connected by prismatic joint P, revolute joint R and spherical joint S, have two rotational and one translational DOF. But the DOF of 3-PRS parallel mechanism cannot be explained by the Grubler-Kutzbach method or Herve method. To illuminate the special kinematic characteristics of 3-PRS parallel mechanism, a novel analytical approach is proposed in this paper. All the feasible instantaneous motions of 3-PRS mechanism are studied by using this method. The analysis of kinematic characteristics of 3-PRS mechanism help to understand the mechanism and estimate the motion capacity of mechanism. Finally, it is also helpful to optimize the topology of the mechanism and the trajectory for desired performance.

  4. The Kinematics of Completely-Faceted Surfaces

    OpenAIRE

    Norris, Scott A.; Watson, Stephen J.

    2009-01-01

    We fully generalize a previously-developed computational geometry tool [1] to perform large-scale simulations of arbitrary two-dimensional faceted surfaces $z = h(x,y)$. Our method uses a three-component facet/edge/junction storage model, which by naturally mirroring the intrinsic surface structure allows both rapid simulation and easy extraction of geometrical statistics. The bulk of this paper is a comprehensive treatment of topological events, which are detected and performed explicitly. I...

  5. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  6. Of gluons and gravitons. Exploring color-kinematics duality

    International Nuclear Information System (INIS)

    In this thesis color-kinematics duality will be investigated. This duality is a statement about the kinematical dependence of a scattering amplitude in Yang-Mills gauge theories obeying group theoretical relations similar to that of the color gauge group. The major consequence of this duality is that gravity amplitudes can be related to a certain double copy of gauge theory amplitudes. The main focus of this thesis is on exploring the foundations of color-kinematics duality and its consequences. It is shown how color-kinematics duality can be made manifest at the one-loop level for rational amplitudes. A Lagrangian-based argument will be given for the validity of the double copy construction for these amplitudes including explicit examples at four points. Secondly, it is studied how color-kinematics duality can be used to improve powercounting in gravity theories. To this end the duality is reformulated in terms of linear maps. It is shown as an example how this can be used to derive the large BCFW shift behavior of a gravity integrand constructed through the duality to any loop order up to subtleties inherent to the duality that is addressed. As it becomes clear the duality implies massive cancellations with respect to the usual powercounting of Feynman graphs indicating that gravity theories are much better behaved than naively expected. As another example the linear map approach will be used to investigate the question of UV-finiteness of N=8 supergravity, and it is seen that the amount of cancellations depends on the exact implementation of the duality at loop level. Lastly, color-kinematics duality is considered from a Feynman-graph perspective reproducing some of the results of the earlier chapters thus giving non-trivial evidence for the duality at the loop level from a different perspective.

  7. Kinematic variables of table vault on artistic gymnastics

    Directory of Open Access Journals (Sweden)

    Sarah Maria Boldrini FERNANDES

    2016-03-01

    Full Text Available Abstract The table vault is an event of male and female Artistics Gymnastics. Although it can be performed in a variety of rotations and body positions in different phases, it can be separated in three groups: handspring, Yurchenko and Tsukahara. It is believed that kinematic variables of vault may vary according to group of vault or gymnast body position, but few studies compares the real differences among the three groups of vaults, comparing and describing the variables in different phases. Vault kinematic variables could be diversifying according to the approach or position of the vaulting, but little has been studied about the biomechanical differences, comparing and describing behaviours at different stages. The aim of this study was to organize critical, objective and to systematize the most relevant kinematic variables to performance on vaulting. A Meta analysis over the basis Pubmed, Sport Discus and Web of Science were performed about this issue. From the selected references, we described and analyzed the kinematics of the table vault. Vault can be characterized in seven phases of analysis. Most of the studies are descriptive, and some do not descript all phases. Differences among vault variables according to group vaults, technical level and gender were analysed only in recent studies. There still gaps of knowledge about kinematic variables of table vault, in order to provide comprehensive information about all possibilities of vaults in this gymnastic event. It is concluded that kinematic variables of table vault depends upon vault group and may be considered to the improvement of technical performance. More researches are needed to approach the coaching interface with biomechanics applicable knowledge.

  8. Freeform correction polishing for optics with semi-kinematic mounting

    Science.gov (United States)

    Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao

    2015-10-01

    Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).

  9. Of gluons and gravitons. Exploring color-kinematics duality

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, Reinke Sven

    2013-06-15

    In this thesis color-kinematics duality will be investigated. This duality is a statement about the kinematical dependence of a scattering amplitude in Yang-Mills gauge theories obeying group theoretical relations similar to that of the color gauge group. The major consequence of this duality is that gravity amplitudes can be related to a certain double copy of gauge theory amplitudes. The main focus of this thesis is on exploring the foundations of color-kinematics duality and its consequences. It is shown how color-kinematics duality can be made manifest at the one-loop level for rational amplitudes. A Lagrangian-based argument will be given for the validity of the double copy construction for these amplitudes including explicit examples at four points. Secondly, it is studied how color-kinematics duality can be used to improve powercounting in gravity theories. To this end the duality is reformulated in terms of linear maps. It is shown as an example how this can be used to derive the large BCFW shift behavior of a gravity integrand constructed through the duality to any loop order up to subtleties inherent to the duality that is addressed. As it becomes clear the duality implies massive cancellations with respect to the usual powercounting of Feynman graphs indicating that gravity theories are much better behaved than naively expected. As another example the linear map approach will be used to investigate the question of UV-finiteness of N=8 supergravity, and it is seen that the amount of cancellations depends on the exact implementation of the duality at loop level. Lastly, color-kinematics duality is considered from a Feynman-graph perspective reproducing some of the results of the earlier chapters thus giving non-trivial evidence for the duality at the loop level from a different perspective.

  10. Cluster approach allows budgeting, planning with DRGs.

    Science.gov (United States)

    Grimaldi, P L

    1984-01-01

    Measuring costs and revenues on a diagnosis related group (DRG) basis allows health care managers to define product lines, identify market shares, and examine the effects of case mix and physician behavior on profitability. It also enables public agencies to predict bed needs and evaluate certificate-of-need applications. The large number of DRGs, however, and other managerial considerations may discourage the use of DRG-based budgeting and planning. To save time and enhance data usefulness, financial officers may consolidate the DRGs into fewer groups. Revenue, for example, can be estimated by grouping the DRGs into 23 major diagnostic categories or by clustering them according to cost weight or into one group. Comparisons of payment rates and costs will identify the DRGs that lose money and will determine whether departmental costs are excessive. Strategic planning units formed from the 468 DRGs will help health care managers analyze and project performance. Product lines for this purpose may be clustered according to major diagnostic category, physician specialty, or clinical department. Since a potentially enormous amount of DRG-based clinical and financial information could be generated, hospitals should create data committees to ensure that managers receive only the information they need. PMID:10310693

  11. Whole analogy between Daniel Bernoulli solution and direct kinematics solution

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2010-01-01

    Full Text Available In this paper, the relationship between the original Euler-Bernoulli's rod equation and contemporary knowledge is established. The solution which Daniel Bernoulli defined for the simplest conditions is essentially the solution of 'direct kinematics'. For this reason, special attention is devoted to dynamics and kinematics of elastic mechanisms configuration. The Euler-Bernoulli equation and its solution (used in literature for a long time should be expanded according to the requirements of the mechanisms motion complexity. The elastic deformation is a dynamic value that depends on the total mechanism movements dynamics. Mathematical model of the actuators comprises also elasticity forces.

  12. On the Motion of a Free Particle in Kinematic Relativity

    Science.gov (United States)

    Popescu, Ioan Antoniu

    From the viewpoint that Milne's Kinematic Relativity is a fundamental theory of matter in all domain, from elementary particle physics tocosmology, we study the problem of a free particle in the presence of the Universe at large, in the classical and quantum pictures. We formulate the Hamilton-Jacobi, Dirac, and Kelin-Gordon equations for a free particle in the presence of the Universe at large. The form of these equations suggests that Kinematic Relativity is more suitable to serve as a basis for a description of the Early Universe than the ordinary relativistic and quantum theories of contemporary physics.

  13. Breathing Thorax Simulation based on Pleura Behaviour and Rib Kinematics

    OpenAIRE

    Didier, Anne-Laure; Villard, Pierre-Frédéric; Bayle, Jean-Yves; Beuve, Michaël; Shariat, Behzad

    2007-01-01

    To monitor a lung mechanical model and then predict tumour motion we proposed a approach based on the pleura physiology. By comparing the predictions to landmarks set by medical experts, we observed better results with regards to the one obtained with approaches found in the literature. Beside, we focus on the rib cage kinematics, which play a significant role in the pleura outer-surface motion and therefore in the lung motion. We proposed a kinematic model of the rib cage based on the finite...

  14. Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws

    OpenAIRE

    Salucci, Paolo; Wilkinson, Mark I.; Walker, Matthew G.; Gilmore, Gerard F.; Grebel, Eva K.; Koch, Andreas; Martins, Christiane Frigerio; Wyse, Rosemary F. G.

    2011-01-01

    Kinematic surveys of the dwarf spheroidal (dSph) satellites of the Milky Way are revealing tantalising hints about the structure of dark matter (DM) haloes at the low-mass end of the galaxy luminosity function. At the bright end, modelling of spiral galaxies has shown that their rotation curves are consistent with the hypothesis of a Universal Rotation Curve whose shape is supported by a cored dark matter halo. In this paper, we investigate whether the internal kinematics of the Milky Way dSp...

  15. Kinematic and Dynamic Analyses of the Orthoglide 5-axis

    CERN Document Server

    Ur-Rehman, Raza; Chablat, Damien; Wenger, Philippe

    2008-01-01

    This paper deals with the kinematic and dynamic analyses of the Orthoglide 5-axis, a five-degree-of-freedom manipulator. It is derived from two manipulators: i) the Orthoglide 3-axis; a three dof translational manipulator and ii) the Agile eye; a parallel spherical wrist. First, the kinematic and dynamic models of the Orthoglide 5-axis are developed. The geometric and inertial parameters of the manipulator are determined by means of a CAD software. Then, the required motors performances are evaluated for some test trajectories. Finally, the motors are selected in the catalogue from the previous results.

  16. Quaternion and euler angles in kinematics; Quaternion to oira kaku ni yoru kinematics hyogen no hikaku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, I.; Kida, T.; Okamoto, O.; Okami, Y. [National Aerospace Laboratory, Tokyo (Japan)

    1991-06-01

    A summary of quaternion in the kinematics of rigid body dynamics, particularly for an aeroplane or an artificial satellite, is presented. Quaternion is a four-parameter system for specifying the orientation of a rigid body, and applied to evade singular points of differential equations in kinematics. In this paper, after the coordinate systems and vectors are defined, quaternion is introduced. Then, characteristics in a typical representation of body orientation by quaternion, relationships between quaternion and direction cosine matrixes, and constitution of differential quaternion equations by angular velocity vectors are discussed, with consideration to computer simulation algorithm and in comparison with the conventional representation by Euler angles. Finally, derivation of equations of motion is shown by using quaternion to express the kinematics of a rigid body. 6 refs., 6 figs., 4 tabs.

  17. A submillimetre survey of the kinematics of the Perseus molecular cloud - III. Clump kinematics

    Science.gov (United States)

    Curtis, Emily I.; Richer, John S.

    2011-01-01

    We explore the kinematic properties of dense continuum clumps in the Perseus molecular cloud, derived from our wide-field C18O J = 3 → 2 data across four regions - NGC 1333, IC 348/HH 211, L1448 and L1455. Two distinct populations are examined, identified using the automated algorithms CLFIND (85 clumps) and GAUSSCLUMPS (122 clumps) on existing SCUBA 850-μm data. These kinematic signatures are compared to the clumps' dust continuum properties. We calculate each clump's non-thermal linewidth and virial mass from the associated C18O J = 3 → 2 spectrum. The clumps have supersonic linewidths, = 1.76 ± 0.09 (CLFIND population) and 1.71 ± 0.05 (with GAUSSCLUMPS). The linewidth distributions suggest the C18O line probes a lower density `envelope' rather than a dense inner core. Similar linewidth distributions for protostellar and starless clumps imply protostars do not have a significant impact on their immediate environment. The proximity to an active young stellar cluster seems to affect the linewidths: those in NGC 1333 are greater than elsewhere. In IC 348 the proximity to the old infrared cluster has little influence, with the linewidths being the smallest of all. The virial analysis suggests that the clumps are bound and close to equipartition, with virial masses similar to the masses derived from the continuum emission. In particular, the starless clumps occupy the same parameter space as the protostars, suggesting they are true stellar precursors and will go on to form stars. We also search for ordered C18O velocity gradients across the face of each core. Approximately one-third have significant detections, which we mainly interpret in terms of rotation. However, we note a correlation between the directions of the identified gradients and outflows across the protostars, indicating we may not have a purely rotational signature. The fitted gradients are in the range ? to 16 km s-1 pc-1, larger than found in previous work, probably as a result of the higher

  18. Rotating gravitational lenses: a kinematic approach

    CERN Document Server

    Walters, Steve

    2014-01-01

    This paper uses the Kerr geodesic equations for massless particles to derive an acceleration vector in both Boyer-Lindquist and Cartesian coordinates. As a special case, the Schwarzschild acceleration due to a non-rotating mass has a particularly simple and elegant form in Cartesian coordinates. Using forward integration, these equations are used to plot the caustic pattern due to a system consisting of a rotating point mass with a smaller non-rotating planet. Additionally, first and second order approximations to the paths are identified, which allows for fast approximations of paths, deflection angles and travel-time delays.

  19. ANALYSIS METHOD OF AUTOMATIC PLANETARY TRANSMISSION KINEMATICS

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2014-06-01

    Full Text Available In the present paper, planetary automatic transmission is modeled by means of contour graphs. The goals of modeling could be versatile: ratio calculating via algorithmic equation generation, analysis of velocity and accelerations. The exemplary gears running are analyzed, several drives/gears are consecutively taken into account discussing functional schemes, assigned contour graphs and generated system of equations and their solutions. The advantages of the method are: algorithmic approach, general approach where particular drives are cases of the generally created model. Moreover, the method allows for further analyzes and synthesis tasks e.g. checking isomorphism of design solutions.

  20. A kinematic study on (un)intentional imitation in bottlenose dolphins.

    Science.gov (United States)

    Sartori, Luisa; Bulgheroni, Maria; Tizzi, Raffaella; Castiello, Umberto

    2015-01-01

    The aim of the present study was to investigate the effect of observing other's movements on subsequent performance in bottlenose dolphins. The imitative ability of non-human animals has intrigued a number of researchers. So far, however, studies in dolphins have been confined to intentional imitation concerned with the explicit request to imitate other agents. In the absence of instruction to imitate, do dolphins (un)intentionally replicate other's movement features? To test this, dolphins were filmed while reaching and touching a stimulus before and after observing another dolphin (i.e., model) performing the same action. All videos were reviewed and segmented in order to extract the relevant movements. A marker was inserted post hoc via software on the videos upon the anatomical landmark of interest (i.e., rostrum) and was tracked throughout the time course of the movement sequence. The movement was analyzed using an in-house software developed to perform two-dimensional (2D) post hoc kinematic analysis. The results indicate that dolphins' kinematics is sensitive to other's movement features. Movements performed for the "visuomotor priming" condition were characterized by a kinematic pattern similar to that performed by the observed dolphin (i.e., model). Addressing the issue of spontaneous imitation in bottlenose dolphins might allow ascertaining whether the potential or impulse to produce an imitative action is generated, not just when they intend to imitate, but whenever they watch another conspecific's behavior. In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability. PMID:26300764

  1. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.

    Science.gov (United States)

    Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A

    2007-07-01

    Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the

  2. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio

    2016-06-01

    The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts. PMID:26367468

  3. Kinematics of the Southwestern Caribbean from New Geodetic Observations

    Science.gov (United States)

    Ruiz, G.; La Femina, P. C.; Tapia, A.; Camacho, E.; Chichaco, E.; Mora-Paez, H.; Geirsson, H.

    2014-12-01

    The interaction of the Caribbean, Cocos, Nazca, and South American plates has resulted in a complex plate boundary zone and the formation of second order tectonic blocks (e.g., the North Andean, Choco and Central America Fore Arc blocks). The Panama Region [PR], which is bounded by these plates and blocks, has been interpreted and modeled as a single tectonic block or deformed plate boundary. Previous research has defined the main boundaries: 1) The Caribbean plate subducts beneath the isthmus along the North Panama Deformed Belt, 2) The Nazca plate converges at very high obliquity with the PR and motion is assumed along a left lateral transform fault and the South Panama Deformed Belt, 3) The collision of PR with NW South America (i.e., the N. Andean and Choco blocks) has resulted in the Eastern Panama Deformed Belt, and 4) collision of the Cocos Ridge in the west is accommodated by crustal shortening, Central American Fore Arc translation and deformation across the Central Costa Rican Deformed Belt. In addition, there are several models that suggest internal deformation of this region by cross-isthmus strike-slip faults. Recent GPS observations for the PR indicates movement to the northeast relative to a stable Caribbean plate at rates of 6.9±4.0 - 7.8±4.8 mm a-1 from southern Costa Rica to eastern Panama, respectively (Kobayashi et al., 2014 and references therein). However, the GPS network did not have enough spatial density to estimate elastic strain accumulation across these faults. Recent installation and expansion of geodetic networks in southwestern Caribbean (i.e., Costa Rica, Panama, and Colombia) combined with geological and geophysical observations provide a new input to investigate crustal deformation processes in this complex tectonic setting, specifically related to the PR. We use new and existing GPS data to calculate a new velocity field for the region and to investigate the kinematics of the PR, including elastic strain accumulation on the

  4. Sagittal distal limb kinematics inside the hoof capsule captured using high-speed fluoroscopy in walking and trotting horses.

    Science.gov (United States)

    Roach, J M; Pfau, T; Bryars, J; Unt, V; Channon, S B; Weller, R

    2014-10-01

    Kinematic evaluation of the distal limb of the horse using standard methods is challenging, mainly due to the hoof capsule restricting visualisation, but the recent development of a high-speed fluoroscopy (HSF) system has allowed in vivo cineradiographic assessment of moving skeletal structures at high speeds. The application of this non-invasive method to the equine distal limb is used to describe 'internal' distal limb kinematics including intra-horse and inter-horse variability, and variability between walk and trot. Distal limb kinematic data were collected at walk and trot from six non-lame horses using HSF set over a force plate. The dorsal proximal interphalangeal joint (PIPJ) angle and the dorsal distal interphalangeal joint (DIPJ) angle were measured at toe-on and at 25%, 50% and 75% of stance. The PIPJ and DIPJ showed overall extension through stance. The mean ± SD range of motion (ROM) during stance of the PIPJ was 9.7 ± 2.7° (walk) and 8.7 ± 3.0° (trot) and of the DIPJ was 28.6 ± 4.6° (walk) and 26.5 ± 6.3° (trot) showing significant differences between gaits and changes through stance (P < 0.001). Inter- and intra- horse variations were also significant for both joint angles (P < 0.001). HSF allowed for kinematic assessment of the distal limb within the hoof capsule. The ROM of the PIPJ observed was similar to results published in the literature whilst the ROM for the DIPJ was less than values previously reported. Future studies will use HSF to estimate strain in the tendons and ligaments within the hoof capsule, which are a common site of lameness in the horse. PMID:25163612

  5. Hydrodynamic and kinematic parameters of hydraulic capsule flow

    Czech Academy of Sciences Publication Activity Database

    Berman, V.; Kril, S.; Vlasák, Pavel

    Volume 1. Cranfield : BHR Group Limited, 2002 - (Heywood, N.), s. 233-245 ISBN 1-85598-039-8. [International Conference on Hydrotransport /15./. Banff, Canada (CA), 03.06.2002-05.06.2002] R&D Projects: GA AV ČR IBS2060007 Keywords : hydrodynamics * kinematics * capsule flow Subject RIV: BK - Fluid Dynamics

  6. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    Science.gov (United States)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  7. Bayesian Inference of Kinematics and Memberships of Open Cluster

    Science.gov (United States)

    Shao, Z. Y.; Chen, L.; Zhong, J.; Hou, J. L.

    2014-07-01

    Based on the Bayesian Inference (BI) method, the Multiple-modelling approach is improved to combine coordinative positions, proper motions (PM) and radial velocities (RV), to separate the motion of the open cluster from field stars, as well as to describe the intrinsic kinematic status of the cluster.

  8. KINEMATIC DETERMINANTS OF EARLY ACCELERATION IN FIELD SPORT ATHLETES

    Directory of Open Access Journals (Sweden)

    Robert G. Lockie

    2003-12-01

    Full Text Available Acceleration performance is important for field sport athletes that require a high level of repeat sprint ability. Although acceleration is widely trained for, there is little evidence outlining which kinematic factors delineate between good and poor acceleration. The aim of this study was to investigate the kinematic differences between individuals with fast and slow acceleration. Twenty field sport athletes were tested for sprint ability over the first three steps of a 15m sprint. Subjects were filmed at high speed to determine a range of lower body kinematic measures. For data analysis, subjects were then divided into relatively fast (n = 10 and slow (n = 10 groups based on their horizontal velocity. Groups were then compared across kinematic measures, including stride length and frequency, to determine whether they accounted for observed differences in sprint velocity. The results showed the fast group had significantly lower (~11-13% left and right foot contact times (p < .05, and an increased stride frequency (~9%, as compared to the slow group. Knee extension was also significantly different between groups (p < .05. There was no difference found in stride length. It was concluded that those subjects who are relatively fast in early acceleration achieve this through reduced ground contact times resulting in an improved stride frequency. Training for improved acceleration should be directed towards using coaching instructions and drills that specifically train such movement adaptations

  9. 2D kinematic signatures of boxy/peanut bulges

    CERN Document Server

    Iannuzzi, Francesca

    2015-01-01

    We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disk galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrised up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the midplane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically-symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second bucklin...

  10. Kinematics of roller chain drives - Exact and approximate analysis

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    2016-01-01

    angular position, velocity and acceleration, as well as span length, are calculated and their (discontinuous) variation with driver angular position and main design parameters is illustrated. Kinematic predictions for the chain span motion are compared to results of multibody simulation, and there is seen...

  11. Scapular kinematic is altered after electromyography biofeedback training.

    Science.gov (United States)

    San Juan, Jun G; Gunderson, Samantha R; Kane-Ronning, Kai; Suprak, David N

    2016-06-14

    Electromyography (EMG) biofeedback training affords patients a better sense of the different muscle activation patterns involved in the movement of the shoulder girdle. It is important to address scapular kinematics with labourers who have daily routines involving large amounts of lifting at shoulder level or higher. This population is at a heightened risk of developing subacromial impingement syndrome (SAIS). The purpose of this study was to investigate the acute effects of scapular stabilization exercises with EMG biofeedback training on scapular kinematics. Twenty-three healthy subjects volunteered for the study. Electrodes were placed on the upper and lower trapezius, serratus anterior, and lumbar paraspinals to measure EMG activity. Subjects underwent scapular kinematic testing, which consisted of humeral elevation in the scapular plane, before and after biofeedback training. The latter consisted of 10 repetitions of the I, W, T, and Y scapular stabilization exercises. Subjects were told to actively reduce the muscle activation shown on the screen for the upper trapezius during the exercises. The scapular external rotation had a statistically significant difference at all humeral elevation angles (porientation with a mean difference of 6.5°. There were no significant differences found with scapular upward rotation, or posterior tilt at all humeral elevation angles following biofeedback. Scapular kinematics are altered by EMG biofeedback training utilizing scapular stabilization exercises. However, only scapular external rotation was affected by the exercises. PMID:27161990

  12. Kinematics and critical swimming speed of juvenile scalloped hammerhead sharks

    Science.gov (United States)

    Lowe

    1996-01-01

    Kinematics and critical swimming speed (Ucrit) of juvenile scalloped hammerhead sharks Sphyrna lewini were measured in a Brett-type flume (635 l). Kinematic parameters were also measured in sharks swimming in a large pond for comparison with those of sharks swimming in the flume. Sharks in the flume exhibited a mean Ucrit of 65±11 cm s-1 (± s.d.) or 1.17±0.21 body lengths per second (L s-1), which are similar to values for other species of sharks. In both the flume and pond, tailbeat frequency (TBF) and stride length (LS) increased linearly with increases in relative swimming speed (Urel=body lengths traveled per second). In the flume, tailbeat amplitude (TBA) decreased with increasing speed whereas TBA did not change with speed in the pond. Differences in TBF and LS between sharks swimming in the flume and the pond decreased with increases in Urel. Sharks swimming at slow speeds (e.g. 0.55 L s-1) in the pond had LS 19 % longer and TBF 21 % lower than sharks in the flume at the same Urel. This implies that sharks in the flume expended more energy while swimming at comparable velocities. Comparative measurements of swimming kinematics from sharks in the pond can be used to correct for effects of the flume on shark swimming kinematics and energetics. PMID:9320537

  13. Inertial systems related to the kinematics of discrete mass distributions

    International Nuclear Information System (INIS)

    It is shown that there exists a kinematic acceleration which has a behavior that is identical to the motion generated by the cosmological constant Λ occurring in the field equations of general relativity. This kinematic acceleration is found to be generated by particle motion and may therefore supply a physical explanation of the cause of motion generated by the Λ constant. The method developed here is physically based on the use of discrete distributions of matter in space, rather than the continuous distributions used in relativity theory, in order to describe kinematic effects contained in the motion between galaxies. The mathematical method developed here is based on the use of matrix coordinate transformations that have the unusual property of containing translations of origins between coordinate systems. Results show that at least part of the Hubble recessional motion could be attributed to the effects of kinematic forces, and that each galaxy experiencing this motion can be considered to be at rest within its own local inertial system, even though the galaxies accelerate relative to each other. When the motion of light is described relative to these inertial systems, a horizon is shown to be associated with them which limits the ability of an observer to see either the center or edge of a finite Euclidean universe

  14. Kinematics Analysis Based on Screw Theory of a Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    MAN Cui-hua; FAN Xun; LI Cheng-rong; ZHAO Zhong-hui

    2007-01-01

    A humanoid robot is a complex dynamic system for its idiosyncrasy. This paper aims to provide a mathematical and theoretical foundation for the design of the configuration, kinematics analysis of a novel humanoid robot. It has a simplified configuration and design for entertainment purpose. The design methods, principle and mechanism are discussed. According to the design goals of this research, there are ten degrees of freedom in the two bionic arms.Modularization, concurrent design and extension theory methods were adopted in the configuration study and screw theory was introduced into the analysis of humanoid robot kinematics. Comparisons with other methods show that: 1) only two coordinates need to be established in the kinematics analysis of humanoid robot based on screw theory; 2) the spatial manipulator Jacobian obtained by using twist and exponential product formula is succinct and legible; 3) adopting screw theory to resolve the humanoid robot arms kinematics question can avoid singularities; 4) using screw theory can solve the question of specification insufficiency.

  15. 2D kinematics of simulated disc merger remnants

    NARCIS (Netherlands)

    Jesseit, Roland; Naab, Thorsten; Peletier, Reynier F.; Burkert, Andreas

    2007-01-01

    We present a 2D kinematic analysis for a sample of simulated binary disc merger remnants with mass ratios 1:1 and 3:1. For the progenitor discs we used pure stellar models as well as models with 10 per cent of their mass in gas. A multitude of phenomena also observed in real galaxies are found in th

  16. Effects of load on good morning kinematics and EMG activity

    Directory of Open Access Journals (Sweden)

    Andrew David Vigotsky

    2015-01-01

    Full Text Available Many strength and conditioning coaches utilize the good morning (GM to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  17. The Stellar and Gas Kinematics of Several Irregular Galaxies

    CERN Document Server

    Hunter, D A; Swaters, R A; Sparke, L S; Levine, S E; Hunter, Deidre A.; Rubin, Vera C.; Swaters, Rob A.; Sparke, Linda S.; Levine, Stephen E.

    2002-01-01

    We present long-slit spectra of three irregular galaxies from which we determinethe stellar kinematics in two of the galaxies (NGC 1156 and NGC 4449) and ionized-gas kinematics in all three (including NGC 2366). We compare this to the optical morphology and to the HI kinematics of the galaxies. In the ionized gas, we see a linear velocity gradient in all three galaxies. In NGC 1156 we also detect a weak linear velocity gradient in the stars of (5+/-1/sin i) km/s/kpc to a radius of 1.6 kpc. The stars and gas are rotating about the same axis, but this is different from the major axis of the stellar bar which dominates the optical light of the galaxy. In NGC 4449 we do not detect organized rotation of the stars and place an upper limit of (3/sin i) km/s/kpc to a radius of 1.2 kpc. For NGC 4449, which has signs of a past interaction with another galaxy, we develop a model to fit the observed kinematics of the stars and gas. In this model the stellar component is in a rotating disk seen nearly face-on while the ga...

  18. A finite element kinematic analysis of planar granular solids flow

    Energy Technology Data Exchange (ETDEWEB)

    Watson, G.R.; Rotter, J.M. [University of Edinburgh, Edinburgh (United Kingdom). Dept. of Civil Engineering and Building Science

    1996-08-01

    A finite element analysis is presented to calculate the steady-state velocity fields in a cohesionless granular solid discharging from a planar flat-bottomed silo. The work treats a wide range of geometries, material properties and boundary conditions. The approach is kinematic and gravity-based, solving for the velocity field and assuming complete stress independence. 36 refs., 22 figs.

  19. Differences in Soccer Kick Kinematics between Blind Players and Controls

    Science.gov (United States)

    Giagazoglou, Paraskevi; Katis, Athanasios; Kellis, Eleftherios; Natsikas, Christos

    2011-01-01

    The purpose of the current study was to examine the kinematic differences during instep soccer kicks between players who were blind and sighted controls. Eleven male soccer players who were blind and nine male sighted performed instep kicks under static and dynamic conditions. The results indicated significantly higher (p less than 0.05) ball…

  20. Low Cost Computer Graphics Simulation of Basic Kinematic Linkages.

    Science.gov (United States)

    Smith, Donald A.; Jacquot, Raymond G.

    1984-01-01

    Presents algorithms for the simulation and motion display of the three basic kinematic devices: (1) four bar linkages; (2) the slider crank; and (3) the inverted slider crank mechanisms. The algorithms were implemented on a Commodore-VIC 20 microcomputer system with 6500 bytes of available memory. (Author/JN)

  1. Kinematic Analysis of Rotary Deep-Depth Turning Parameters

    Science.gov (United States)

    Gurtyakov, A. M.; Babaev, A. S.; Chudinova, A. I.

    2016-04-01

    This article offers a parameterization procedure for deep-depth turning without simplifying assumptions. In this paper the authors will show comparative results of researching parameters for rotary turning according to the developed methodology and according to the methodology of finish-machining conditions. A theoretically found kinematic coefficient of rotary cutting is presented in the paper

  2. Kinematics in the starbusting circumnuclear region of M100

    NARCIS (Netherlands)

    Allard, E. L.; Peletier, R. F.; Knapen, J. H.

    2004-01-01

    Abstract: We have obtained integral-field spectroscopic data, using the SAURON instrument, of the bar and starbursting circumnuclear region in the barred spiral galaxy M100. From our data we have derived kinematic maps of the mean velocity and velocity dispersion of the stars and the gas, which we p

  3. Pose, posture, formation and contortion in kinematic systems

    OpenAIRE

    Rooney, J.; Tanev, T.K.

    2002-01-01

    The concepts of pose, posture, formation and contortion are defined for serial, parallel and hybrid kinematic systems. Workspace and jointspace structure is examined in terms of these concepts. The inter-relationships of pose, posture, formation and contortion are explored for a range of robot workspace and jointspace types.

  4. Adding Image Constraints to Inverse Kinematics for Human Motion Capture

    Directory of Open Access Journals (Sweden)

    Jaume-i-Capó Antoni

    2010-01-01

    Full Text Available In order to study human motion in biomechanical applications, a critical component is to accurately obtain the 3D joint positions of the user's body. Computer vision and inverse kinematics are used to achieve this objective without markers or special devices attached to the body. The problem of these systems is that the inverse kinematics is "blinded" with respect to the projection of body segments into the images used by the computer vision algorithms. In this paper, we present how to add image constraints to inverse kinematics in order to estimate human motion. Specifically, we explain how to define a criterion to use images in order to guide the posture reconstruction of the articulated chain. Tests with synthetic images show how the scheme performs well in an ideal situation. In order to test its potential in real situations, more experiments with task specific image sequences are also presented. By means of a quantitative study of different sequences, the results obtained show how this approach improves the performance of inverse kinematics in this application.

  5. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  6. Updated Kinematic Constraints on a Dark Disk

    Science.gov (United States)

    Kramer, Eric David; Randall, Lisa

    2016-06-01

    We update the method of the Holmberg & Flynn study, including an updated model of the Milky Way’s interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, using the traditional method, we subtract the mean velocity and displacement from the tracers’ phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an oscillating tracer distribution. Despite updates in the mass model and reddening map, the traditional method results remain consistent with those of HF2000. The second, non-equilibrium technique, however, allows a surface density as large as 14 {M}ȯ {{{pc}}}-2 (and as small as 0 {M}ȯ {{{pc}}}-2), demonstrating much weaker constraints. For both techniques, the bound on surface density is weaker for larger scale height. In future analyses of Gaia data it will be important to verify whether the tracer populations are in equilibrium.

  7. Kinematic Identification of Parallel Mechanisms by a Divide and Conquer Strategy

    DEFF Research Database (Denmark)

    Durango, Sebastian; Restrepo, David; Ruiz, Oscar; Restrepo-Giraldo, John Dairo; Achiche, Sofiane

    using the inverse calibration method. The identification poses are selected optimizing the observability of the kinematic parameters from a Jacobian identification matrix. With respect to traditional identification methods the main advantages of the proposed Divide and Conquer kinematic identification...... strategy are: (i) reduction of the kinematic identification computational costs, (ii) improvement of the numerical efficiency of the kinematic identification algorithm and, (iii) improvement of the kinematic identification results. The contributions of the paper are: (i) The formalization of the inverse...... calibration method as the Divide and Conquer strategy for the kinematic identification of parallel symmetrical mechanisms and, (ii) a new kinematic identification protocol based on the Divide and Conquer strategy. As an application of the proposed kinematic identification protocol the identification of a...

  8. STRUCTURAL IDENTIFICATION OF DISTINCT INVERSIONS OF PLANAR KINEMATIC CHAINS

    Directory of Open Access Journals (Sweden)

    Dr. Shubhashis Sanyal

    2011-12-01

    Full Text Available 0 0 1 171 979 International Islamic University 8 2 1148 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} Inversions are various structural possibilities of a kinematic chain. The number of inversions depends on the number of links of a kinematic chain. At the stage of structural synthesis, identification of distinct structural inversions of a particular type of kinematic chain is necessary. Various researchers have proposed methods for identification of distinct inversions. Present method based on Link joint connectivity is proposed to identify the distinct inversions of a planar kinematic chain. Method is tested successfully on single degree and multiple degree of freedom planar kinematic chains. ABSTRAK: Penyonsangan merupakan kebarangkalian pelbagai struktur suatu rangkaian kinematik. Jumlah songsangan bergantung kepada jumlah hubungan suatu rangkaian kinematik. Pada peringkat sintesis struktur, pengenalan songsangan struktur yang berbeza untuk suatu jenis rangkaian kinematik adalah perlu. Ramai penyelidik telah mencadangkan pelbagai kaedah pengenalan songsangan yang berbeza. Kaedah terkini berdasarkan hubungan kesambungan bersama telah dicadangkan untuk mengenalpasti songsangan yang berbeza dalam suatu satah rangkaian kinematik.

  9. The gait standard deviation, a single measure of kinematic variability.

    Science.gov (United States)

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. PMID:27131201

  10. Smartphones as Integrated Kinematic and Dynamic Sensors for Amusement Park Physics Applications

    Science.gov (United States)

    Peterson, Stephanie; Dennison, J. R.

    2010-10-01

    USU has hosted Physics Day at Lagoon and has attracted more than 120,000 secondary educators and students over 21 years. During this educational day, students explore basic physics concepts and apply their classroom content outdoors, in real world applications. As part of the event, USU's Physics Department provides curriculum to be used at Lagoon, in similar outside venues, and in the classroom. One such educational instrument, which is a primary focus of this work, is student workbooks filled with activities ranging from very simple to more advanced topics. Workbooks cover the properties of waves, relative velocity, and acceleration, topics which have historically challenged students and future topics include kinematics, energy, and forces. The topics were selected based on requests from teachers throughout the Intermountain Region and identified deficiencies in student performance on core curriculum assessments. An innovative approach is to identify physical application of iPhone and Android smartphone software technologies, which make use of dynamic and kinematic sensors. These technologies will allow students to realize their ability to do quantitative physics calculations anywhere, anytime; a smart device which is highly salable to today's teenage learners. This also provides an exciting approach to more fully engage students in learning physics concepts.

  11. Slow neutron reactions in inverse kinematics for isotope production: a primer

    International Nuclear Information System (INIS)

    It appears possible that slow-neutron reactions can be induced in inverse kinematics when a beam of reactant-nuclei of right kinetic energy pass through a column of thermal-neutrons, however no experimental attempts in this direction have been reported. In attempting the inverse kinematics reactions, an obvious disadvantage is the low reactant density in a beam of particles; however, the situation is changing for the better. Advances taking place presently in ion, plasma, and neutral beam technologies would allow hyper-velocity ion and atom flow in a controlled manner (our interest is in few tens of km/s range) and particle densities in such beams are rapidly increasing. It is also pointed out that inverse reaction of above type is uniquely positioned to take advantage of the very high reaction cross-sections available at certain discrete-resonances, and of a possibility for online separation of transmuted-isotopes, the latter facilitated by use of reactants in form of hyper-velocity beams. It is therefore worthwhile to investigate if the reaction rates realizable by this method is suitable to produce radioactive tracer isotopes

  12. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  13. Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.

    2013-04-01

    In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.

  14. A kinematic study and membership analysis of the Lupus star-forming region

    CERN Document Server

    Galli, P A B; Teixeira, R; Ducourant, C

    2013-01-01

    This paper is dedicated to investigating the kinematic properties of the Lupus moving group of young stars with the primary objective of deriving individual parallaxes for each group member. We identify those stars in the Lupus star-forming region that define the comoving association of young stars by utilizing our new and improved convergent point search method that allows us to derive the precise position of the convergent point of the comoving association from the stars' proper motions. We used published proper motion catalogs and searched the literature for radial velocities, which are needed to compute individual parallaxes. We supplemented the radial velocity data with new measurements from spectroscopic observations performed with the FEROS spectrograph mounted on the MPG/ESO 2.2m telescope at La Silla. We identify a comoving group with 109 pre-main sequence stars and candidates that define the kinematic properties of the Lupus low-mass star-forming region. We derive individual parallaxes for stars wit...

  15. Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium

    International Nuclear Information System (INIS)

    A Stirling engine with nominal output power of 1 kW is tested using air and helium as working gases. The influence of working pressure, engine speed and temperature of the hot source is studied, analyzing instantaneous gas pressure as well as instantaneous and stationary temperature at different positions to derive the effective power. A zero dimensional finite-time thermodynamic, three zones model of a generic Stirling engine is developed and successfully validated against experimental gas temperature and pressure in each zone, providing the effective power. This validation underlines the interest of different working gases as well as different geometric configurations for different applications. Furthermore, the validated model allows parametric studies of the engine, with regard to geometry, working gas and engine kinematics. It is used in order to optimize the kinematic of a Stirling engine for different working points and gases. - Highlights: • A Stirling engine of 1 kW is tested using air and helium as working gas. • Effects of working pressure, speed and temperature on power are studied. • A zero dimensional finite-time thermodynamic, three zones model of it is validated. • The validated model is used for parametric studies and optimization of the engine

  16. Feeding kinematics, suction, and hydraulic jetting performance of harbor seals (Phoca vitulina).

    Science.gov (United States)

    Marshall, Christopher D; Wieskotten, Sven; Hanke, Wolf; Hanke, Frederike D; Marsh, Alyssa; Kot, Brian; Dehnhardt, Guido

    2014-01-01

    The feeding kinematics, suction and hydraulic jetting capabilities of captive harbor seals (Phoca vitulina) were characterized during controlled feeding trials. Feeding trials were conducted using a feeding apparatus that allowed a choice between biting and suction, but also presented food that could be ingested only by suction. Subambient pressure exerted during suction feeding behaviors was directly measured using pressure transducers. The mean feeding cycle duration for suction-feeding events was significantly shorter (0.15±0.09 s; Pseals occasionally alternated suction with hydraulic jetting, or used hydraulic jetting independently, to remove fish from the apparatus. Suction and biting feeding modes were kinematically distinct regardless of feeding location (in-water vs. on-land). Suction was characterized by a significantly smaller gape (1.3±0.23 cm; Pseals were able to jet water at food items using suprambient pressure, also known as hydraulic jetting. The maximum hydraulic jetting force recorded was 53.9 kPa. Suction and hydraulic jetting where employed 90.5% and 9.5%, respectively, during underwater feeding events. Harbor seals displayed a wide repertoire of behaviorally flexible feeding strategies to ingest fish from the feeding apparatus. Such flexibility of feeding strategies and biomechanics likely forms the basis of their opportunistic, generalized feeding ecology and concomitant breadth of diet. PMID:24475170

  17. Kinematics of intraoral transport and swallowing in the herbivorous lizard uromastix acanthinurus

    Science.gov (United States)

    Herrel; Vree

    1999-05-01

    The kinematics of intraoral transport and swallowing in lizards of the species Uromastix acanthinurus (Chamaeleonidae, Leiolepidinae) were investigated using cineradiography (50 frames s-1). Additional recordings were also made using high-speed (500 frames s-1) and conventional video systems (25 frames s-1). Small metal markers were inserted into different parts of the upper and lower jaw and the tongue. Cineradiographic images were digitised, and displacements of the body, head, upper and lower jaw and the tongue were quantified. Twenty additional variables depicting displacements and the timing of events were calculated. Multivariate analyses of variance indicated significant differences between feeding stages. Remarkably, only very few food-type-dependent differences were observed during intraoral transport, and no such differences could be demonstrated during swallowing. Using previously published data for the closely related insectivorous lizard Plocederma stellio, the effect of dietary specialisation in U. acanthinurus on the kinematic variables while eating locusts was examined. Species differed in a number of gape- and tongue-related variables. These differences may be related to differences in tongue structure between the species. Clearly, U. acanthinurus possesses a specialised gut and dental structure that allows them efficiently to cut pieces from whole leaves. However, a decrease in modulatory capacity seems to be a consequence of dietary specialisation in Uromastix acanthinurus. PMID:10101110

  18. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan region of Iraq)

    Science.gov (United States)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2012-06-01

    This paper compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross sections in collision orogens. The studied area and the reconstructed NE-SW trending, 55.5 km long cross section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The present-day geometry of the cross section has been constructed from field as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip domain method to 11%-15%. Then the same cross section is used in a numerical finite element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian versus power law viscous rheology or the presence of a basement, affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  19. The kinematics of the California sea lion foreflipper during forward swimming

    International Nuclear Information System (INIS)

    To determine the two-dimensional kinematics of the California sea lion foreflipper during thrust generation, a digital, high-definition video is obtained using a non-research female sea lion at the Smithsonian National Zoological Park in Washington, DC. The observational videos are used to extract maneuvers of interest—forward acceleration from rest using the foreflippers and banked turns. Single camera videos are analyzed to digitize the flipper during the motions using 10 points spanning root to tip in each frame. Digitized shapes were then fitted with an empirical function that quantitatively allows for both comparison between different claps, and for extracting kinematic data. The resulting function shows a high degree of curvature (with a camber of up to 32%). Analysis of sea lion acceleration from rest shows thrust production in the range of 150–680 N and maximum flipper angular velocity (for rotation about the shoulder joint) as high as 20 rad s−1. Analysis of turning maneuvers indicate extreme agility and precision of movement driven by the foreflipper surfaces. (paper)

  20. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Directory of Open Access Journals (Sweden)

    José Luis Torres-Moreno

    2016-03-01

    Full Text Available This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs. Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF and the unscented Kalman filter (UKF, in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics.

  1. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs.

    Science.gov (United States)

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  2. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Science.gov (United States)

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  3. Studying upper-limb kinematic using inertial sensors embedded in smartphones

    OpenAIRE

    Cuesta Vargas, Antonio; Roldan Jimenez, Cristina; Bennett, Paul

    2014-01-01

    Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that...

  4. 76 FR 32340 - Federal Travel Regulation; Temporary Duty (TDY) Travel Allowances (Taxes); Relocation Allowances...

    Science.gov (United States)

    2011-06-06

    ... number of Federal agencies have made the WTA optional to the employee. Nothing in tax law or existing... state and local tax law. At the same time, this rule carries forward from the current 302-17 the... including Social Security tax, if applicable, and Medicare tax. Current law does not allow Federal...

  5. Wheel skid correction is a prerequisite to reliably measure wheelchair sports kinematics based on inertial sensors

    NARCIS (Netherlands)

    Van der Slikke, R.M.A.; Berger, M.A.M.; Bregman, D.J.J.; Veeger, H.E.J.

    2015-01-01

    Accurate knowledge of wheelchair kinematics during a match could be a significant factor in performance improvement in wheelchair basketball. To date, most systems for measuring wheelchair kinematics are not suitable for match applications or lack detail in key kinematic outcomes. This study describ

  6. NGC 2440 : A morpho-kinematical model

    CERN Document Server

    Lago, Paulo J A

    2016-01-01

    This work describes the modelling of the 3D structure and position-velocity (P-V) diagrams of NGC 2440, a well known planetary nebula, aiming to describe the morphology of this object, specially its core. We have used high resolution spectra and P-V diagrams to reproduce the 3D structure of the nebula using SHAPE, a software that allows 3D modelling. HST high angular resolution images were used as reference to the model. The observational data point to a segmented core, and the simulations confirm this assumption; the best model for the nebula is a torus segmented in three pieces. The simulated P-V diagrams agree with the observations. We suggest that the torus was torn apart by interaction with the surrounding medium, either as winds or the radiation field. For the two bipolar lobes, orientation angles to the plane of the sky of $27\\pm$5 and $-5\\pm3$ degrees, respectively for the bipolar components with PA of 85 and 35 degrees, were derived. No additional bipolar lobes were required to model the observed fea...

  7. Updated Kinematic Constraints on a Dark Disk

    CERN Document Server

    Kramer, Eric David

    2016-01-01

    We update the method of the Holmberg & Flynn (2000) study, including an updated model of the Milky Way's interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, traditional method, we subtract the mean velocity and displacement from the tracers' phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an...

  8. NGC 602 Environment, Kinematics and Origins

    CERN Document Server

    Nigra, L; Smith, L J; Stanimirovic, S; Nota, A; Sabbi, E

    2008-01-01

    The young star cluster NGC 602 and its associated HII region, N90, formed in a relatively isolated and diffuse environment in the Wing of the Small Magellanic Cloud. Its isolation from other regions of massive star formation and the relatively simple surrounding HI shell structure allows us to constrain the processes that may have led to its formation and to study conditions leading to massive star formation. We use images from Hubble Space Telescope and high resolution echelle spectrographic data from the Anglo-Australian Telescope along with 21-cm neutral hydrogen (HI) spectrum survey data and the shell catalogue derived from it to establish a likely evolutionary scenario leading to the formation of NGC 602. We identify a distinct HI cloud component that is likely the progenitor cloud of the cluster and HII region which probably formed in blister fashion from the cloud's periphery. We also find that the past interaction of HI shells can explain the current location and radial velocity of the nebula. The sur...

  9. Kinematics and trajectory synthesis of manipulation robots

    CERN Document Server

    Vukobratović, Miomir

    1986-01-01

    A few words about the series "Scientific Fundamentals of Robotics" should be said on the occasion of publication of the present monograph. This six-volume series has been conceived so as to allow the readers to master a contemporary approach to the construction and synthesis of con­ trol for manipulation ~obots. The authors' idea was to show how to use correct mathematical models of the dynamics of active spatial mecha­ nisms for dynamic analysis of robotic systems, optimal design of their mechanical parts based on the accepted criteria and imposed constraints, optimal choice of actuators, synthesis of dynamic control algorithms and their microcomputer implementation. In authors' oppinion this idea has been relatively successfully realized within the six-volume mono­ graphic series. Let us remind the readers of the books of this series. Volumes 1 and 2 are devoted to the dynamics and control algorithms of manipulation ro­ bots, respectively. They form the first part of the series which has a certain topic...

  10. Towards a naturalistic brain-machine interface: hybrid torque and position control allows generalization to novel dynamics.

    Science.gov (United States)

    Chhatbar, Pratik Y; Francis, Joseph T

    2013-01-01

    Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine Interface (BMI) and is achieved by predictions of kinematic parameters, e.g. position or velocity. However, execution of natural movements, such as swinging baseball bats of different weights at the same speed, requires advanced planning for necessary context-specific forces in addition to kinematic control. Here we show, for the first time, the control of a virtual arm with representative inertial parameters using real-time neural control of torques in non-human primates (M. radiata). We found that neural control of torques leads to ballistic, possibly more naturalistic movements than position control alone, and that adding the influence of position in a hybrid torque-position control changes the feedforward behavior of these BMI movements. In addition, this level of control was achievable utilizing the neural recordings from either contralateral or ipsilateral M1. We also observed changed behavior of hybrid torque-position control under novel external dynamic environments that was comparable to natural movements. Our results demonstrate that inclusion of torque control to drive a neuroprosthetic device gives the user a more direct handle on the movement execution, especially when dealing with novel or changing dynamic environments. We anticipate our results to be a starting point of more sophisticated algorithms for sensorimotor neuroprostheses, eliminating the need of fully automatic kinematic-to-dynamic transformations as currently used by traditional kinematic-based decoders. Thus, we propose that direct control of torques, or other force related variables, should allow for more natural neuroprosthetic movements by

  11. Towards a naturalistic brain-machine interface: hybrid torque and position control allows generalization to novel dynamics.

    Directory of Open Access Journals (Sweden)

    Pratik Y Chhatbar

    Full Text Available Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine Interface (BMI and is achieved by predictions of kinematic parameters, e.g. position or velocity. However, execution of natural movements, such as swinging baseball bats of different weights at the same speed, requires advanced planning for necessary context-specific forces in addition to kinematic control. Here we show, for the first time, the control of a virtual arm with representative inertial parameters using real-time neural control of torques in non-human primates (M. radiata. We found that neural control of torques leads to ballistic, possibly more naturalistic movements than position control alone, and that adding the influence of position in a hybrid torque-position control changes the feedforward behavior of these BMI movements. In addition, this level of control was achievable utilizing the neural recordings from either contralateral or ipsilateral M1. We also observed changed behavior of hybrid torque-position control under novel external dynamic environments that was comparable to natural movements. Our results demonstrate that inclusion of torque control to drive a neuroprosthetic device gives the user a more direct handle on the movement execution, especially when dealing with novel or changing dynamic environments. We anticipate our results to be a starting point of more sophisticated algorithms for sensorimotor neuroprostheses, eliminating the need of fully automatic kinematic-to-dynamic transformations as currently used by traditional kinematic-based decoders. Thus, we propose that direct control of torques, or other force related variables, should allow for more natural

  12. Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity.

    Science.gov (United States)

    Zhang, Qi; Lessley, David L; Riley, Patrick; Toczyski, Jacek; Lockerby, Jack; Foltz, Patrick; Overby, Brian; Seppi, Jeremy; Crandall, Jeff R; Kerrigan, Jason R

    2014-11-01

    Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs. Trajectories (head, T1, T4, T10, L1 and sacrum), spinal segment (head-to-T1, T1-to-T4, T4-T10, T10-L1, and L1-to-sacrum) rotations relative to the rollover buck, and spinal segment extension/compression were calculated from the collected kinematics data from an optical motion tracking system. Response differences among the ATDs were observed mainly due to the different lateral bending stiffness of the spine from their varied architecture, while the additional thoracic joint in Polar II and THOR did not seem to provide more flexion/extension compliance than the other ATDs. In addition, the ATD response data were compared to PMHS response corridors developed from similar tests for assessing ATD biofidelity. All of the ATDs, generally, drifted outboard and upward during the tests similar to the PMHS. However, accompanied with this upward and outward motion, the ATD head and upper torso pitched forward (~10 degrees) while the PMHS' head and upper torso pitching rearward (~10 to ~15 degrees), due to the absence of flexion/extension compliance in the ATD spine. The differences in these pitch motions resulted in a difference of 130 mm to 160 mm in the longitudinal position of the head at 195 degrees of roll angle. Finally

  13. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    Science.gov (United States)

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-06-01

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions. PMID:27194213

  14. Probing Nuclear Effects at the T2K Near Detector Using Transverse Kinematic Imbalance

    CERN Document Server

    Dolan, Stephen

    2016-01-01

    In this work we utilise variables characterising kinematic imbalance in the plane transverse to an incoming neutrino, which have recently been shown to act as a direct probe of nuclear effects (such as final state interactions, Fermi motion and multi-nucleon processes) in $\\mathcal{O}$(GeV) neutrino scattering. We present a methodology to measure the charged current differential cross-section with no final state pions and at least one final state proton ($CC0\\pi+Np, N \\geq 1$) in these variables at the near detector of the T2K experiment (ND280), using the upstream Fine Grained Detector (FGD1) as a hydrocarbon target. Overall these measurements will allow us to better understand the impact of nuclear effects on the observables in neutrino scattering, providing valuable constraints on the systematic uncertainties associated with neutrino oscillation and scattering measurements for both T2K and other experiments with similar energy neutrino beams.

  15. The Effect of Body Weight Support on Kinetics and Kinematics of a Repetitive Plyometric Task.

    Science.gov (United States)

    Elias, Audrey R; Hammill, Curt D; Mizner, Ryan L

    2016-02-01

    Though essential to athletic performance, the ability to land from a jump often remains limited following injury. While recommended, jump training is difficult to include in rehabilitation programs due to high impact forces. Body weight support (BWS) is frequently used in rehabilitation of gait following neurological and orthopedic injury, and may also allow improved rehabilitation of high-impact tasks. There is a differential effect of BWS on walking and running gaits, and the effect of BWS on movements with relatively large vertical displacement is unknown. The current study evaluates the effect of BWS on a replicable single-leg hopping task. We posited that progressive BWS would decrease limb loading while maintaining the joint kinematics of the task. Twenty-eight participants repetitively hopped on and off a box at each of four BWS levels. Peak vertical ground reaction forces decreased by 22.5% between 0% and 30% BWS (P rehabilitation of jumping tasks. PMID:26398961

  16. A gas bubble-based parallel micro manipulator: conceptual design and kinematics model

    International Nuclear Information System (INIS)

    The parallel mechanism has become an alternative solution when micro manipulators are demanded in the fields of micro manipulation and micro assembly. In this technical note, a three-degree-of-freedom (3-DOF) parallel micro manipulator is presented, which is directly driven by three micro gas bubbles. Since the micro gas bubbles are generated and maintained due to the surface tension between the gas and liquid media, the proposed novel system can be used in the liquid environment which allows for rotation about the X and Y axes and translation along the Z axis. In this technical note, the conceptual design of micro gas bubble-based parallel manipulator is introduced and the input/output characteristic of the actuator is analyzed in detail. The kinematics model of the parallel micro manipulator is also established, based on which the workspace and the system motion resolution are analyzed as a criterion and reference for future prototype development. (technical note)

  17. SUSY parameter determination at the LHC using cross sections and kinematic edges

    CERN Document Server

    Dreiner, Herbi K; Lindert, Jonas M; O'Leary, Ben

    2010-01-01

    We study the determination of supersymmetric parameters at the LHC from a global fit including cross sections and edges of kinematic distributions. For illustration, we focus on a minimal supergravity scenario and discuss how well it can be constrained at the LHC operating at 7 and 14 TeV collision energy, respectively. We find that the inclusion of cross sections greatly improves the accuracy of the SUSY parameter determination, and allows to reliably extract model parameters even in the initial phase of LHC data taking with 7 TeV collision energy and 1/fb integrated luminosity. Moreover, cross section information may be essential to study more general scenarios, such as those with non-universal gaugino masses, and distinguish them from minimal, universal, models.

  18. Students' reading images in kinematics: the case of real-time graphs

    Science.gov (United States)

    Testa, Italo; Monroy, Gabriella; Sassi, Elena

    2002-03-01

    Graphs of real-time experiments are useful tools in science education; their intrinsic features allow innovative didactic approaches. The use of such images is spreading and is likely to become common classroom practice. This paper describes a study in which secondary school students were called upon to read and interpret documents containing images of real-time kinematics graphs specially designed to address common learning problems and to minimize iconic difficulties. Both novice students and those with a little experience of real-time experiments were involved. The overall didactic intentions of the presented documents were fulfilled. Some reading difficulties related to specific features were detected and are discussed. Suggestions are made regarding the acquisition of some specific capabilities that are needed to avoid misinterpreting these images and are of transversal value across several contexts. Finally, some implications for teacher training and class activities are discussed.

  19. Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity

    Directory of Open Access Journals (Sweden)

    Nathan Fitzsimmons

    2009-03-01

    Full Text Available The ability to walk may be critically impacted as the result of neurological injury or disease. While recent advances in brain-machine interfaces (BMIs have demonstrated the feasibility of upper-limb neuroprostheses, BMIs have not been evaluated as a means to restore walking. Here, we demonstrate that chronic recordings from ensembles of cortical neurons can be used to predict the kinematics of bipedal walking in rhesus macaques – both offline and in real-time. Linear decoders extracted 3D coordinates of leg joints and leg muscle EMGs from the activity of hundreds of cortical neurons. As more complex patterns of walking were produced by varying the gait speed and direction, larger neuronal populations were needed to accurately extract walking patterns. Extraction was further improved using a switching decoder which designated a submodel for each walking paradigm. We propose that BMIs may one day allow severely paralyzed patients to walk again.

  20. Kinematical analysis with the Emulsion Cloud Chamber in the OPERA experiment

    CERN Document Server

    Di Capua, F

    2010-01-01

    The OPERA experiment aims at measuring for the first time neutrino oscil- lation in appearance mode through the detection of ni-tau in an almost pure niμ beam produced at CERN SPS (CNGS), 730 km far from the detector. The ni-tau appearance signal is identified through the measurement of the decay daughter particles of the " lepton produced in CC ni-tau interactions. Since the short-lived " particle has, at the energy of the beam, an average decay length shorter than a 1 mm, a micrometric detection resolution is needed. The OPERA appara- tus is hybrid, using nuclear emulsion as high precision tracker and electronic detectors for the time stamp, event localization in the target and muon recon- struction. The Emulsion Cloud Chamber technique fulfils the requirement of a microscopic resolution together with a large target mass. The kinematical analysis allowed by this technique is described.

  1. Studying the Kinematics of Faint Stellar Populations with the Planetary Nebula Spectrograph

    CERN Document Server

    Merrifield, Michael R

    2015-01-01

    Galaxies are faint enough when one observes just their light distributions, but in studying their full dynamical structure the stars are spread over the six dimensions of phase space rather than just the three spatial dimensions, making their densities very low indeed. This low signal is unfortunate, as stellar dynamics hold important clues to these systems' life histories, and the issue is compounded by the fact that the most interesting information comes from the faintest outer parts of galaxies, where dynamical timescales (and hence memories of past history) are longest. To extract this information, we have constructed a special-purpose instrument, the Planetary Nebula Spectrograph, which observes planetary nebulae as kinematic tracers of the stellar population, and allows one to study the stellar dynamics of galaxies down to extremely low surface brightnesses. Here, we present results from this instrument that illustrate how it can uncover the nature of low surface-brightness features such as thick disks ...

  2. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  3. A novel mechanism for emulating insect wing kinematics.

    Science.gov (United States)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-09-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. PMID:22677520

  4. VRACK: measuring pedal kinematics during stationary bike cycling.

    Science.gov (United States)

    Farjadian, Amir B; Kong, Qingchao; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos

    2013-06-01

    Ankle impairment and lower limb asymmetries in strength and coordination are common symptoms for individuals with selected musculoskeletal and neurological impairments. The virtual reality augmented cycling kit (VRACK) was designed as a compact mechatronics system for lower limb and mobility rehabilitation. The system measures interaction forces and cardiac activity during cycling in a virtual environment. The kinematics measurement was added to the system. Due to the constrained problem definition, the combination of inertial measurement unit (IMU) and Kalman filtering was recruited to compute the optimal pedal angular displacement during dynamic cycling exercise. Using a novel benchmarking method the accuracy of IMU-based kinematics measurement was evaluated. Relatively accurate angular measurements were achieved. The enhanced VRACK system can serve as a rehabilitation device to monitor biomechanical and physiological variables during cycling on a stationary bike. PMID:24187270

  5. Kinematics of t bar t events at CDF

    International Nuclear Information System (INIS)

    The kinematic properties of t bar t events are studied in the W+multijet channel using data collected with the CDF detector during the 1992 - 1995 runs at the Fermilab Tevatron collider corresponding to an integrated luminosity of 109 pb-1. Distributions of a variety of kinematic variables chosen to be sensitive to different aspects of t bar t production are compared with those expected from Monte Carlo calculations. A sample of 34 events rich in t bar t pairs is obtained by requiring at least one jet identified by the silicon vertex detector (SVX) as having a displaced vertex consistent with the decay of a b hadron. The data are found to be in good agreement with predictions of the leading order t bar t matrix element with color coherent parton shower evolution. copyright 1999 The American Physical Society

  6. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  7. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  8. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint. PMID:26072625

  9. Effect of environmental pH on sperm kinematic characteristics

    DEFF Research Database (Denmark)

    Alipour, Hiva; Dardmeh, Fereshteh; Dissing, Marianne Charlotte;

    2015-01-01

    differences in the details of the sperm movement (kinematics) of human sperm provided by computerized sperm analysis systems. This study was designed to assess the effect of two different media pH levels on kinematic parameters of the human sperm. Samples were prepared using the 40%/80% Pureception (Sage, USA...... of this study illustrated a general insignificant decrease in the ratio of progressively motile and hyperactive sperm after 6 and 24 hours. However a significant difference between the test groups was observed in the curvilinear, straight line and Mean path velocity and Straightness after 6 and 24 hours....... Linearity and Wobble showed significant difference after 24 hours. This study demonstrated a difference in the sperm motion pattern and velocity in different environmental pH levels. Based on these findings, further investigations are required to elucidate knowledge about possible effect of marginal p...

  10. Kinematical fingerprints of star cluster early dynamical evolution

    CERN Document Server

    Vesperini, Enrico; McMillan, Stephen L W; Zepf, Stephen E

    2014-01-01

    We study the effects of the external tidal field on the violent relaxation phase of star clusters dynamical evolution, with particular attention to the kinematical properties of the equilibrium configurations emerging at the end of this phase.We show that star clusters undergoing the process of violent relaxation in the tidal field of their host galaxy can acquire significant internal differential rotation and are characterized by a distinctive radial variation of the velocity anisotropy. These kinematical properties are the result of the symmetry breaking introduced by the external tidal field in the collapse phase and of the action of the Coriolis force on the orbit of the stars. The resulting equilibrium configurations are characterized by differential rotation, with a peak located between one and two half-mass radii. As for the anisotropy, similar to clusters evolving in isolation, the systems explored in this Letter are characterized by an inner isotropic core, followed by a region of increasing radial a...

  11. The spectral, morphological and kinematical investigations of Kazarian galaxies

    Science.gov (United States)

    Adibekyan, Vardan Zh.

    2009-04-01

    In this thesis, I investigate the spectroscopic, kinematical and porphological properties of UV- excess Kazarian Galaxies. In the first scientific chapter the entire Kazarian galaxies catalog is presented, which combines extensive new measurements of their optical parameters with a literature and database search. In the second chapter I present the results of detailed morphological and spectral analysis of 5 Kazarian galaxies (Kaz 5, Kaz 69, Kaz 92 Kaz 390 and Kaz 460), observed on 2.6-m telescope at the Byurakan Observatory using the VAGR (TIGER) multiaperture spectrograph. We studied the kinematics and individual morphological structures of the galaxies in details. In the third chapter the results of spectral investigation of Kazarian galaxies and individual HII regions (using SDSS spectra) is presented. The study includes derivation of the chemical abundances and star formation rates of the mentioned objects.

  12. Apples, oranges, and angles: Comparative kinematic analysis of disparate limbs.

    Science.gov (United States)

    Gatesy, Stephen M; Pollard, Nancy S

    2011-08-01

    Tetrapod limbs exhibit diverse postures and movements during terrestrial locomotion. As with morphological traits, the history of kinematic evolution should be accessible to reconstruction through analysis of limb motion patterns in a phylogenetic framework. However, the angular data comprising most kinematic descriptions appear to suffer from limitations that preclude meaningful comparison among disparate species. Using simple planar models, we discuss how geometric constraints render joint and elevation angles independent of neither morphology, degree of crouch, nor one another during the stance phase of locomotion. The implicit null hypothesis of potential similarity is invalidated because angular data are not viably transferable among limbs of dissimilar proportion and/or degree of crouch. Overlooking or dismissing the effect of constraints on angular parameterization hampers efforts to quantitatively elucidate the evolution of locomotion. We advocate a search for alternative methods of measuring limb movement that can decouple intersegmental coordination from morphology and posture. PMID:21600220

  13. Intergalactic spaceflight: an uncommon way to relativistic kinematics and dynamics

    CERN Document Server

    Greber, T; Blatter, Heinz; Greber, Thomas

    2006-01-01

    In the Special Theory of Relativity space and time intervals are different in different frames of reference. As a consequence, the quantity 'velocity' of classical mechanics splits into different quantities in Special Relativity, coordinate velocity, proper velocity and rapidity. The introduction and clear distinction of these quantities provides a basis to introduce the kinematics of uniform and accelerated motion in an elementary and intuitive way. Furthermore, rapidity links kinematics to dynamics and provides a rigorous way to derive Newtons Second Law in the relativistic version. Although the covariant tensorial notation of relativity is a powerful tool for dealing with relativistic problems, its mathematical difficulties may obscure the physical background of relativity for undergraduate students. Proper velocity and proper acceleration are the spatial components of the relativistic velocity and acceleration vectors, and thus, they provide a possibility to introduce and justify the vectorial notation of...

  14. Kinematics and Kinetics of Youth Baseball Catchers and Pitchers

    Directory of Open Access Journals (Sweden)

    Gretchen Oliver

    2015-09-01

    Full Text Available The purpose of this study was to compare the throwing kinematics and kinetics of youth catchers and pitchers. It was hypothesized that catchers and pitchers would exhibit differences throughout the throwing motion. Descriptive statistics were used to investigate kinematics during the four events of throwing: foot contact (FC, maximum shoulder external rotation (MER, ball release (BR and maximum shoulder internal rotation (MIR. Additionally, kinetics were investigated within phases of the events: Phase 1 (cocking; FC to MER, Phase 2 (acceleration; MER to BR and Phase 3 (deceleration; BR to MIR. Results revealed significant difference in torso flexion, lateral flexion, pelvis lateral flexion and segment velocities between the catchers and pitchers. Based on data from the current study, it appears that the youth catchers execute their throw as they have been instructed. It is unclear if the throwing mechanics displayed by these youth are efficient for a catcher, thus further investigation is needed to determine long-term injury susceptibility.

  15. Visualized kinematics code for two-body nuclear reactions

    Science.gov (United States)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  16. Evolution of the gas kinematics of galaxies in cosmological simulations

    CERN Document Server

    De Rossi, Maria E

    2013-01-01

    We studied the evolution of the gas kinematics of galaxies by performing hydrodynamical simulations in a cosmological scenario. We paid special attention to the origin of the scatter of the Tully-Fisher relation and the features which could be associated with mergers and interactions. We extended the study by De Rossi et al. (2010) and analysed their whole simulated sample which includes both, gas disc-dominated and spheroid-dominated systems. We found that mergers and interactions can affect the rotation curves directly or indirectly inducing a scatter in the Tully-Fisher Relation larger than the simulated evolution since z=3. In agreement with previous works, kinematical indicators which combine the rotation velocity and dispersion velocity in their definitions lead to a tighter relation. In addition, when we estimated the rotation velocity at the maximum of the rotation curve, we obtained the best proxy for the potential well regardless of morphology.

  17. Allocation of CO2 emission allowances. Distribution of emission allowances in a European emissions trading scheme

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, H.; Van der Kolk, J. [KPMG Sustainability, Amstelveen (Netherlands); Kerssemeeckers, M.; De Beer, J. [Ecofys, Utrecht (Netherlands)

    2002-10-01

    The European Commission has submitted a draft directive on Emissions Trading on 23 October 2001. In this system, each Member State has to submit an allocation plan that describes the allowances that will be distributed, and how these will be distributed among the operators of each participating installation. In this study the possible allocation options and their consequences are investigated; the potential bottlenecks are assessed, which would occur if the Netherlands developed a national allocation plan; the criteria for national allocation plans are assessed (Annex III draft directive); and some possibilities for solutions are presented.

  18. Kinematic couplings: A review of design principles and applications

    OpenAIRE

    Slocum, Alexander H.

    2009-01-01

    From the humble three-legged milking stool to a SEMI standard wafer pod location to numerous sub-micron fixturing applications in instruments and machines, exactly constrained mechanisms provide precision, robustness, and certainty of location and design. Kinematic couplings exactly constrain six degrees of freedom between two parts and hence closed-form equations can be written to describe the structural performance of the coupling. Hertz contact theory can also be used to design the contact...

  19. Design of hybrid-kinematic mechanisms for machine tools

    OpenAIRE

    Pham, Patric

    2009-01-01

    The machine tool industry is a well established, old and extremely important branch of today's manufacturing industry. With the ongoing globalization and the resulting increase of competition in this industry, the manufacturers have to push their technology to the limits in order to stay competitive. The architecture (kinematics) of most machine tools is based on a serial arrangement of joints and segments, like a human arm. The requirements regarding dynamics, stiffness and precision of thes...

  20. Statistical Shape Model-Based Femur Kinematics from Biplane Fluoroscopy

    DEFF Research Database (Denmark)

    Baka, N.; de Bruijne, Marleen; Walsum, T. van;

    2012-01-01

    Studying joint kinematics is of interest to improve prosthesis design and to characterize postoperative motion. State of the art techniques register bones segmented from prior computed tomography or magnetic resonance scans with X-ray fluoroscopic sequences. Elimination of the prior 3D acquisition...... was 1.48 ± 0.41 mm.The resulting tracking precision was 1-1.5 mm, with the largest errors occurring in the rotation around the femoral shaft (about 2.5° precision)....

  1. 2D kinematic signatures of boxy/peanut bulges

    Science.gov (United States)

    Iannuzzi, Francesca; Athanassoula, E.

    2015-07-01

    We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disc galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrized up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the mid-plane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second buckling and find that this phenomenon spurs an additional set of even deeper minima in the fourth moment. Finally, we show how the results evolve when inclining the disc away from perfectly edge-on and face-on. The behaviour of stars born during the course of the simulations is discussed and confronted to that of the pre-existing disc. The general aim of our study is providing a handle to identify boxy/peanut structures and their properties in latest generation Integral Field Unit observations of nearby disc galaxies.

  2. Kinematic analysis of a novel 3-CRU translational parallel mechanism

    OpenAIRE

    Li, B; Li, Y. M.; Zhao, X. H.; W. M. Ge

    2015-01-01

    In this paper, a modified 3-DOF (degrees of freedom) translational parallel mechanism (TPM) three-CRU (C, R, and U represent the cylindrical, revolute, and universal joints, respectively) structure is proposed. The architecture of the TPM is comprised of a moving platform attached to a base through three CRU jointed serial linkages. The prismatic motions of the cylindrical joints are considered to be actively actuated. Kinematics and performance of the TPM are studied system...

  3. Predicting power-optimal kinematics of avian wings

    OpenAIRE

    Parslew, Ben

    2015-01-01

    A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model uneart...

  4. Kinematical & Chemical Characteristics of the Thin and Thick Disks

    OpenAIRE

    Wyse, Rosemary F. G.

    2008-01-01

    I discuss how the chemical abundance distributions, kinematics and age distributions of stars in the thin and thick disks of the Galaxy can be used to decipher the merger history of the Milky Way, a typical large galaxy. The observational evidence points to a rather quiescent past merging history, unusual in the context of the `consensus' cold-dark-matter cosmology favoured from observations of structure on scales larger than individual galaxies.

  5. Kinematical Analysis of a Sample of Bipolar Planetary Nebulae

    OpenAIRE

    Dobrincic, Martina; Villaver, Eva; Guerrero, Martin A.; Manchado, Arturo

    2008-01-01

    We present the kinematics of a sample of bipolar planetary nebulae (PNe) which cover a wide range of observed morphologies and collimation degrees, from bipolar PNe with a marked equatorial ring and wide lobes to highly collimated objects. We use an empirical model in order to derive the expansion velocity, collimation degree, and inclination angle of the PN with respect to the plane of the sky. The equatorial expansion velocities measured in the objects in our sample are always in the low to...

  6. Kinematic Fitting in the Presence of ISR at the ILC

    CERN Document Server

    List, Jenny; List, Benno

    2009-01-01

    Kinematic fitting is a well-established tool to improve jet energy and invariant mass resolutions by fitting the measured values under constraints (e.g. energy conservation). However, in the presence of substantial ISR and Beamstrahlung, naive energy and (longitudinal) momentum constraints fail due to the a priori unknown amount of undetected momentum carried away by collinear photons. It is possible to take care of those two effects and thus obtain significantly higher mass resolutions.

  7. Variable kinematic plate elements coupled via Arlequin method

    OpenAIRE

    GIUNTA, GAETANO; Biscani, Fabio; Carrera, Erasmo

    2012-01-01

    In this work, plate elements based on different kinematic assumptions and variational principles are combined through the Arlequin method. Computational costs are reduced assuming refined models only in those zones with a quasi-three-dimensional stress field, whereas computationally cheap, low-order elements are used in the remaining parts of the plate. Plate elements are formulated on the basis of a unified formulation (UF). Via UF, higher-order, layer-wise and mixed theories can be easily f...

  8. Doubly Special Relativity versus $\\kappa$-deformation of relativistic kinematics

    OpenAIRE

    Lukierski, J.; Nowicki, A.

    2002-01-01

    We argue that recently proposed by Amelino-Camelia et all [1,2] so-called doubly special relativity (DSR), with deformed boost transformations identical with the formulae for $\\kappa$-deformed kinematics in bicrossproduct basis is a classical special relativity in nonlinear disguise. The choice of symmetric composition law for deformed fourmomenta as advocated in [1, 2] implies that DSR is obtained by considering nonlinear fourmomenta basis of classical Poincar\\'{e} algebra and it does not le...

  9. Simulation of Kinematics of Special Theory of Relativity

    OpenAIRE

    Matveev, V. N.; Matvejev, O. V.

    2011-01-01

    The principles of the special theory of relativity are extremely simple. A knowledge of the Pythagorean theorem and an ability to perform the simplest algebraic operations are sufficient to be conversant with the kinematics of the special theory of relativity, as well as the time dilation and contraction of the longitudinal dimensions of moving bodies that are associated with relative motion. However, the simplicity of the fundamentals of the theory of relativity are in surprising contrast wi...

  10. Cervical facet joint kinematics during bilateral facet dislocation

    OpenAIRE

    Panjabi, Manohar M.; Simpson, Andrew K.; Ivancic, Paul C.; Pearson, Adam M.; Tominaga, Yasuhiro; Yue, James J.

    2007-01-01

    Previous biomechanical models of cervical bilateral facet dislocation (BFD) are limited to quasi-static loading or manual ligament transection. The goal of the present study was to determine the facet joint kinematics during high-speed BFD. Dislocation was simulated using ten cervical functional spinal units with muscle force replication by frontal impact of the lower vertebra, tilted posteriorly by 42.5°. Average peak rotations and anterior sliding (displacement of upper articulating facet s...

  11. Cellular Phones Helping to Get a Clearer Picture of Kinematics

    Science.gov (United States)

    Falcao, A. E. G., Jr.; Gomes, R. A.; Pereira, J. M.; Coelho, L. F. S.; Santos, A. C. F.

    2009-01-01

    The main purpose of this paper is to add to the list of examples of how cell phones may be used as teaching tools in the classroom. One very interesting example of this comes from the study of projectile motion, the classical "cannon ball" problem. This problem is central to the study of kinematics, the very first topic a student meets in physics.…

  12. Altered Perceptual Sensitivity to Kinematic Invariants in Parkinson's Disease

    OpenAIRE

    Dayan, Eran; Inzelberg, Rivka; Flash, Tamar

    2012-01-01

    Ample evidence exists for coupling between action and perception in neurologically healthy individuals, yet the precise nature of the internal representations shared between these domains remains unclear. One experimentally derived view is that the invariant properties and constraints characterizing movement generation are also manifested during motion perception. One prominent motor invariant is the “two-third power law,” describing the strong relation between the kinematics of motion and th...

  13. Single cell mechanics: stress stiffening and kinematic hardening

    CERN Document Server

    Fernández, Pablo

    2007-01-01

    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the nonlinear rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Our results show, that in spite of cell complexity its mechanical properties can be cast into simple, well-defined rules, which provide mechanical cell strength and robustness via control of crosslink slippage.

  14. Single cell mechanics: stress stiffening and kinematic hardening.

    Science.gov (United States)

    Fernández, Pablo; Ott, Albrecht

    2008-06-13

    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the complex rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Despite the complexity of the living cell, its mechanical properties can be cast into simple, well-defined rules. Our results reveal the key role of crosslink slippage in determining mechanical cell strength and robustness. PMID:18643547

  15. Kinematic Analyses of a Parallel-type Independently Controllable Transmission

    OpenAIRE

    Guan-Shyong Hwang; Der-Min Tsay; Wei-Hsiang Liao; Jao-Hwa Kuang; Tzuen-Lih Chern

    2011-01-01

    This study proposes a novel design of a parallel-type Independently Controllable Transmission (ICT). The parallel-type ICT can produce a continuously variable transmission ratio and a required angular output velocity that can be independently manipulated by a controller yet not affected by the angular velocity of the input shaft. The proposed parallel-type ICT is composed of two planetary gear trains and two transmission-connecting members. A prototype was built to investigate its kinematic c...

  16. Kinematic Cusps with Two Missing Particles II: Cascade Decay Topology

    OpenAIRE

    Han, Tao; Kim, Ian-Woo; Song, Jeonghyeon

    2012-01-01

    Three-step cascade decays into two invisible particles and two visible particles via two intermediate on-shell particles develop cusped peak structures in several kinematic distributions. We study the basic properties of the cusps and endpoints in various distributions and demonstrate that the masses of the missing particles and the intermediate particles can be determined by the cusp and endpoint positions. Effects from realistic considerations such as finite decay widths, longitudinal boost...

  17. Kinematic and Structural Evolution of Field and Cluster Spiral Galaxies

    OpenAIRE

    Ziegler, Bodo L.; Kutdemir, Elif; Da Rocha, Cristiano; Böhm, Asmus; Peletier, Reynier F; Verdugo, Miguel

    2009-01-01

    To understand the processes that build up galaxies we investigate the stellar structure and gas kinematics of spiral and irregular galaxies out to redshift 1. We target 92 galaxies in four cluster (z = 0.3 & 0.5) fields to study the environmental influence. Their stellar masses derived from multiband VLT/FORS photometry are distributed around but mostly below the characteristic Schechter-fit mass. From HST/ACS images we determine morphologies and structural parameters like disk length, positi...

  18. Kinematics for chicane-beam electron coincidence experiments

    International Nuclear Information System (INIS)

    The kinematics for coincidence electrodisintegration experiments are investigated. 'Out-of-plane' measurements designed to completely determine the unpolarized cross section are analyzed by an alternate method that considers the situation where the primary electron beam is redirected through the plane formed by the target and the spectrometer. Specific cases, namely, pion production in a light nucleus, proton electroproduction in the giant resonance region and deuteron electrodisintegration in the quasielastic region are examined. (orig.)

  19. Real time on-the-fly kinematic GPS

    OpenAIRE

    Roberts, Gethin Wyn

    1997-01-01

    Considerable interest has been show in the development and application of real time On-The-Fly (OTF) kinematic GPS. A major error source and limitation of such a positioning technique is that caused by cycle slips. When these occur, the integer ambiguities must be resolved for, which can take hundreds of epochs to complete depending on satellite availability and geometry. This research has focused on investigating the applications of real time OTF GPS, as well as its limitations and preci...

  20. Generalized Quantum Relativistic Kinematics: a Stability Point of View

    OpenAIRE

    Chryssomalakos, C.; Okon, E

    2004-01-01

    We apply Lie algebra deformation theory to the problem of identifying the stable form of the quantum relativistic kinematical algebra. As a warm up, given Galileo's conception of spacetime as input, some modest computer code we wrote zeroes in on the Poincare-plus-Heisenberg algebra in about a minute. Further ahead, along the same path, lies a three dimensional deformation space, with an instability double cone through its origin. We give physical as well as geometrical arguments supporting o...