WorldWideScience

Sample records for allosteric sites revealed

  1. γ-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin.

    Science.gov (United States)

    Pozdnyakov, Nikolay; Murrey, Heather E; Crump, Christina J; Pettersson, Martin; Ballard, T Eric; Am Ende, Christopher W; Ahn, Kwangwook; Li, Yue-Ming; Bales, Kelly R; Johnson, Douglas S

    2013-04-05

    γ-Secretase is an intramembrane aspartyl protease that cleaves the amyloid precursor protein to produce neurotoxic β-amyloid peptides (i.e. Aβ42) that have been implicated in the pathogenesis of Alzheimer disease. Small molecule γ-secretase modulators (GSMs) have emerged as potential disease-modifying treatments for Alzheimer disease because they reduce the formation of Aβ42 while not blocking the processing of γ-secretase substrates. We developed clickable GSM photoaffinity probes with the goal of identifying the target of various classes of GSMs and to better understand their mechanism of action. Here, we demonstrate that the photoaffinity probe E2012-BPyne specifically labels the N-terminal fragment of presenilin-1 (PS1-NTF) in cell membranes as well as in live cells and primary neuronal cultures. The labeling is competed in the presence of the parent imidazole GSM E2012, but not with acid GSM-1, allosteric GSI BMS-708163, or substrate docking site peptide inhibitor pep11, providing evidence that these compounds have distinct binding sites. Surprisingly, we found that the cross-linking of E2012-BPyne to PS1-NTF is significantly enhanced in the presence of the active site-directed GSI L-685,458 (L458). In contrast, L458 does not affect the labeling of the acid GSM photoprobe GSM-5. We also observed that E2012-BPyne specifically labels PS1-NTF (active γ-secretase) but not full-length PS1 (inactive γ-secretase) in ANP.24 cells. Taken together, our results support the hypothesis that multiple binding sites within the γ-secretase complex exist, each of which may contribute to different modes of modulatory action. Furthermore, the enhancement of PS1-NTF labeling by E2012-BPyne in the presence of L458 suggests a degree of cooperativity between the active site of γ-secretase and the modulatory binding site of certain GSMs.

  2. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    Energy Technology Data Exchange (ETDEWEB)

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura (Pfizer)

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  3. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    Science.gov (United States)

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  4. Identification of the allosteric regulatory site of insulysin.

    Directory of Open Access Journals (Sweden)

    Nicholas Noinaj

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  5. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W.; Gerrard, Juliet Ann

    2011-06-24

    Background Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. Principal Findings The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Conclusions/Significance Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  6. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W. (U. Sao Paulo); (Kentucky)

    2012-05-25

    Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the A{beta} peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  7. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    Science.gov (United States)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-08-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.

  8. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  9. The origins of enhanced activity in factor VIIa analogs and the interplay between key allosteric sites revealed by hydrogen exchange mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Andersen, Mette D; Olsen, Ole H;

    2008-01-01

    to investigate the conformational effects of site-directed mutagenesis at key positions in FVIIa and the origins of enhanced intrinsic activity of FVIIa analogs. The differences in hydrogen exchange of two highly active variants, FVIIa(DVQ) and FVIIa(VEAY), imply that enhanced catalytic efficiency was attained...

  10. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    CERN Document Server

    Amor, Benjamin R C; Yaliraki, Sophia N; Barahona, Mauricio

    2016-01-01

    Allosteric regulation is central to many biochemical processes. Allosteric sites provide a target to fine-tune protein activity, yet we lack computational methods to predict them. Here, we present an efficient graph-theoretical approach for identifying allosteric sites and the mediating interactions that connect them to the active site. Using an atomistic graph with edges weighted by covalent and non-covalent bond energies, we obtain a bond-to-bond propensity that quantifies the effect of instantaneous bond fluctuations propagating through the protein. We use this propensity to detect the sites and communication pathways most strongly linked to the active site, assessing their significance through quantile regression and comparison against a reference set of 100 generic proteins. We exemplify our method in detail with three well-studied allosteric proteins: caspase-1, CheY, and h-Ras, correctly predicting the location of the allosteric site and identifying key allosteric interactions. Consistent prediction of...

  11. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  12. ASBench: benchmarking sets for allosteric discovery.

    Science.gov (United States)

    Huang, Wenkang; Wang, Guanqiao; Shen, Qiancheng; Liu, Xinyi; Lu, Shaoyong; Geng, Lv; Huang, Zhimin; Zhang, Jian

    2015-08-01

    Allostery allows for the fine-tuning of protein function. Targeting allosteric sites is gaining increasing recognition as a novel strategy in drug design. The key challenge in the discovery of allosteric sites has strongly motivated the development of computational methods and thus high-quality, publicly accessible standard data have become indispensable. Here, we report benchmarking data for experimentally determined allosteric sites through a complex process, including a 'Core set' with 235 unique allosteric sites and a 'Core-Diversity set' with 147 structurally diverse allosteric sites. These benchmarking sets can be exploited to develop efficient computational methods to predict unknown allosteric sites in proteins and reveal unique allosteric ligand-protein interactions to guide allosteric drug design.

  13. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  14. The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity.

    Science.gov (United States)

    Rigden, D J; Phillips, S E; Michels, P A; Fothergill-Gilmore, L A

    1999-08-20

    Glycolysis occupies a central role in cellular metabolism, and is of particular importance for the catabolic production of ATP in protozoan parasites such as Leishmania and Trypanosoma. In these organisms pyruvate kinase plays a key regulatory role, and is unique in responding to fructose 2,6-bisphosphate as allosteric activator. The determination of the first eukaryotic pyruvate kinase crystal structure in the T-state is reported. A comparison of the leishmania and yeast R-state enzymes reveals fewer differences than the previous comparison of Escherichia coli T-state and rabbit muscle non-allosteric enzymes. Structural changes related to the allosteric transition can therefore be distinguished from those that are a consequence of the inherent wide structural divergence between bacterial and mammalian proteins. The allosteric transition involves significant changes in a tightly packed array of eight alpha helices at the interface near the catalytic site. At the other interface the allosteric transition appears to be accompanied by the bending of a ten-stranded intersubunit beta sheet adjacent to the effector site. Helix Calpha1 makes contacts to the N-terminal helical domain and bridges both interfaces. A comparison of the effector sites of the leishmania and yeast enzymes reveals the structural basis for the different effector specificity. Two loops comprising residues 443-453 and 480-489 adopt very different conformations in the two enzymes, and Lys453 and His480 that are a feature of trypanosomatid enzymes provide probable ligands for the 2-phospho group of the effector molecule. These differences offer an opportunity for the design of drugs that would bind to the trypanosomatid enzymes but not to those of the mammalian host.

  15. A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins.

    Science.gov (United States)

    Chen, Ava S-Y; Westwood, Nicholas J; Brear, Paul; Rogers, Graeme W; Mavridis, Lazaros; Mitchell, John B O

    2016-04-01

    We created a computational method to identify allosteric sites using a machine learning method trained and tested on protein structures containing bound ligand molecules. The Random Forest machine learning approach was adopted to build our three-way predictive model. Based on descriptors collated for each ligand and binding site, the classification model allows us to assign protein cavities as allosteric, regular or orthosteric, and hence to identify allosteric sites. 43 structural descriptors per complex were derived and were used to characterize individual protein-ligand binding sites belonging to the three classes, allosteric, regular and orthosteric. We carried out a separate validation on a further unseen set of protein structures containing the ligand 2-(N-cyclohexylamino) ethane sulfonic acid (CHES).

  16. Multiple allosteric effectors control the affinity of DasR for its target sites.

    Science.gov (United States)

    Tenconi, Elodie; Urem, Mia; Świątek-Połatyńska, Magdalena A; Titgemeyer, Fritz; Muller, Yves A; van Wezel, Gilles P; Rigali, Sébastien

    2015-08-14

    The global transcriptional regulator DasR connects N-acetylglucosamine (GlcNAc) utilization to the onset of morphological and chemical differentiation in the model actinomycete Streptomyces coelicolor. Previous work revealed that glucosamine-6-phosphate (GlcN-6P) acts as an allosteric effector which disables binding by DasR to its operator sites (called dre, for DasR responsive element) and allows derepression of DasR-controlled/GlcNAc-dependent genes. To unveil the mechanism by which DasR controls S. coelicolor development, we performed a series of electromobility shift assays with histidine-tagged DasR protein, which suggested that N-acetylglucosamine-6-phosphate (GlcNAc-6P) could also inhibit the formation of DasR-dre complexes and perhaps even more efficiently than GlcN-6P. The possibility that GlcNAc-6P is indeed an efficient allosteric effector of DasR was further confirmed by the high and constitutive activity of the DasR-repressed nagKA promoter in the nagA mutant, which lacks GlcNAc-6P deaminase activity and therefore accumulates GlcNAc-6P. In addition, we also observed that high concentrations of organic or inorganic phosphate enhanced binding of DasR to its recognition site, suggesting that the metabolic status of the cell could determine the selectivity of DasR in vivo, and hence its effect on the expression of its regulon.

  17. Towards the identification of the allosteric Phe-binding site in phenylalanine hydroxylase.

    Science.gov (United States)

    Carluccio, Carla; Fraternali, Franca; Salvatore, Francesco; Fornili, Arianna; Zagari, Adriana

    2016-01-01

    The enzyme phenylalanine hydroxylase (PAH) is defective in the inherited disorder phenylketonuria. PAH, a tetrameric enzyme, is highly regulated and displays positive cooperativity for its substrate, Phe. Whether Phe binds to an allosteric site is a matter of debate, despite several studies worldwide. To address this issue, we generated a dimeric model for Phe-PAH interactions, by performing molecular docking combined with molecular dynamics simulations on human and rat wild-type sequences and also on a human G46S mutant. Our results suggest that the allosteric Phe-binding site lies at the dimeric interface between the regulatory and the catalytic domains of two adjacent subunits. The structural and dynamical features of the site were characterized in depth and described. Interestingly, our findings provide evidence for lower allosteric Phe-binding ability of the G46S mutant than the human wild-type enzyme. This also explains the disease-causing nature of this mutant.

  18. Identification of the Allosteric Site for Phenylalanine in Rat Phenylalanine Hydroxylase.

    Science.gov (United States)

    Zhang, Shengnan; Fitzpatrick, Paul F

    2016-04-01

    Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that requires activation by phenylalanine for full activity. The location of the allosteric site for phenylalanine has not been established. NMR spectroscopy of the isolated regulatory domain (RDPheH(25-117) is the regulatory domain of PheH lacking residues 1-24) of the rat enzyme in the presence of phenylalanine is consistent with formation of a side-by-side ACT dimer. Six residues in RDPheH(25-117) were identified as being in the phenylalanine-binding site on the basis of intermolecular NOEs between unlabeled phenylalanine and isotopically labeled protein. The location of these residues is consistent with two allosteric sites per dimer, with each site containing residues from both monomers. Site-specific variants of five of the residues (E44Q, A47G, L48V, L62V, and H64N) decreased the affinity of RDPheH(25-117) for phenylalanine based on the ability to stabilize the dimer. Incorporation of the A47G, L48V, and H64N mutations into the intact protein increased the concentration of phenylalanine required for activation. The results identify the location of the allosteric site as the interface of the regulatory domain dimer formed in activated PheH.

  19. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases

    Science.gov (United States)

    Chio, Cynthia M.; Yu, Xiaoling; Bishop, Anthony C.

    2015-01-01

    Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are critical regulators of metazoan cell signaling and have emerged as potential drug targets for a range of human diseases. Strategies for chemically targeting the function of individual PTPs selectively could serve to elucidate the signaling roles of these enzymes and would potentially expedite validation of the therapeutic promise of PTP inhibitors. Here we report a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs; these sites, which can be introduced into target PTPs through protein engineering, serve to sensitize target PTPs to potent and selective inhibition by a biarsenical small molecule. Building on the recent discovery of a naturally occurring cryptic allosteric site in wild-type Src-homology-2 domain containing PTP (Shp2) that can be targeted by biarsenical compounds, we hypothesized that Shp2’s unusual sensitivity to biarsenicals could be strengthened through rational design and that the Shp2-specific site could serve as a blueprint for the introduction of non-natural inhibitor sensitivity in other PTPs. Indeed, we show here that the strategic introduction of a cysteine residue at a position removed from the Shp2 active site can serve to increase the potency and selectivity of the interaction between Shp2’s allosteric site and the biarsenical inhibitor. Moreover, we find that “Shp2-like” allosteric sites can be installed de novo in PTP enzymes that do not possess naturally occurring sensitivity to biarsenical compounds. Using primary-sequence alignments to guide our enzyme engineering, we have successfully introduced allosteric-inhibition sites in four classical PTPs—PTP1B, PTPH-1, FAP-1, and HePTP—from four different PTP subfamilies, suggesting that our sensitization approach can likely be applied widely across the classical PTP family to generate biarsenical-responsive PTPs. PMID:25828055

  20. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases

    Science.gov (United States)

    Chen, Huaibin; Marsiglia, William M; Cho, Min-Kyu; Huang, Zhifeng; Deng, Jingjing; Blais, Steven P; Gai, Weiming; Bhattacharya, Shibani; Neubert, Thomas A; Traaseth, Nathaniel J; Mohammadi, Moosa

    2017-01-01

    Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the ‘molecular brake’, ‘DFG latch’, ‘A-loop plug’, and ‘αC tether’. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs. DOI: http://dx.doi.org/10.7554/eLife.21137.001 PMID:28166054

  1. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2011-10-01

    Full Text Available The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level.

  2. An Allosteric Pathway Revealed in the Ribosome Binding Stress Factor BipA

    Energy Technology Data Exchange (ETDEWEB)

    Makanji, H.; deLivron, M; Robinson, V

    2009-01-01

    BipA is a highly conserved prokaryotic GTPase that functions as a master regulator of stress and virulence processes in bacteria. It is a member of the translational factor family of GTPases along with EF-G, IF-2 and LepA. Structural and biochemical data suggest that ribosome binding specificity for each member of this family lies in an effector domain. As with other bacterial GTPases, the ribosome binding and GTPase activities of this protein are tightly coupled. However, the mechanism by which this occurs is still unknown. A series of experiments have been designed to probe structural features of the protein to see if we can pinpoint specific areas of BipA, perhaps even individual residues, which are important to its association with the ribosome. Included in the list are the C-terminal effector domain of the protein, which is distinct to the BipA family of proteins, and amino acid residues in the switch I and II regions of the G domain. Using sucrose density gradients, we have shown that the C-terminal domain is required in order for BipA to bind to the ribosome. Moreover, deletion of this domain increases the GTP hydrolysis rates of the protein, likely through relief of inhibitory contacts. Additional evidence has revealed an allosteric connection between the conformationally flexible switch II region and the C-terminal domain of BipA. Site directed mutagenesis, sucrose gradients and malachite green assays are being used to elucidate the details of this coupling.

  3. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.

    Directory of Open Access Journals (Sweden)

    Michael V LeVine

    2014-05-01

    Full Text Available Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i-channels for long-distance information sharing between functional sites, and (ii-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.

  4. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.

    Science.gov (United States)

    LeVine, Michael V; Weinstein, Harel

    2014-05-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.

  5. NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT

    Science.gov (United States)

    LeVine, Michael V.; Weinstein, Harel

    2014-01-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems. PMID:24785005

  6. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.

    Science.gov (United States)

    Doshi, Urmi; Holliday, Michael J; Eisenmesser, Elan Z; Hamelberg, Donald

    2016-04-26

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general.

  7. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  8. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Boesgaard, Michael W; Munk, Christian;

    2017-01-01

    . Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. RESULTS: We uncover one common site for both positive and negative modulators with different amino acid layouts that can......MOTIVATION: Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry...

  9. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation.

    Science.gov (United States)

    Staus, Dean P; Strachan, Ryan T; Manglik, Aashish; Pani, Biswaranjan; Kahsai, Alem W; Kim, Tae Hun; Wingler, Laura M; Ahn, Seungkirl; Chatterjee, Arnab; Masoudi, Ali; Kruse, Andrew C; Pardon, Els; Steyaert, Jan; Weis, William I; Prosser, R Scott; Kobilka, Brian K; Costa, Tommaso; Lefkowitz, Robert J

    2016-07-21

    G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and β-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses (‘efficacy’). Furthermore, increasing biophysical evidence, primarily using the β2-adrenergic receptor (β2AR) as a model system, supports the existence of multiple active and inactive conformational states. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct β2AR conformations using single domain camelid antibodies (nanobodies)—a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for β2AR in the presence of Nb80 compared to the affinity of isoprenaline for β2AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the β2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of

  10. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  11. Elucidation of the ATP7B N-domain Mg2+-ATP coordination site and its allosteric regulation.

    Directory of Open Access Journals (Sweden)

    Claude Hercend

    Full Text Available The diagnostic of orphan genetic disease is often a puzzling task as less attention is paid to the elucidation of the pathophysiology of these rare disorders at the molecular level. We present here a multidisciplinary approach using molecular modeling tools and surface plasmonic resonance to study the function of the ATP7B protein, which is impaired in the Wilson disease. Experimentally validated in silico models allow the elucidation in the Nucleotide binding domain (N-domain of the Mg(2+-ATP coordination site and answer to the controversial role of the Mg(2+ ion in the nucleotide binding process. The analysis of protein motions revealed a substantial effect on a long flexible loop branched to the N-domain protein core. We demonstrated the capacity of the loop to disrupt the interaction between Mg(2+-ATP complex and the N-domain and propose a role for this loop in the allosteric regulation of the nucleotide binding process.

  12. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening.

    Science.gov (United States)

    Yilmaz, Oya Gursoy; Olmez, Elif Ozkirimli; Ulgen, Kutlu O

    2014-02-01

    Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.

  13. Mapping of the Allosteric Site in Cholesterol Hydroxylase CYP46A1 for Efavirenz, a Drug That Stimulates Enzyme Activity.

    Science.gov (United States)

    Anderson, Kyle W; Mast, Natalia; Hudgens, Jeffrey W; Lin, Joseph B; Turko, Illarion V; Pikuleva, Irina A

    2016-05-27

    Cytochrome P450 46A1 (CYP46A1) is a microsomal enzyme and cholesterol 24-hydroxylase that controls cholesterol elimination from the brain. This P450 is also a potential target for Alzheimer disease because it can be activated pharmacologically by some marketed drugs, as exemplified by efavirenz, the anti-HIV medication. Previously, we suggested that pharmaceuticals activate CYP46A1 allosterically through binding to a site on the cytosolic protein surface, which is different from the enzyme active site facing the membrane. Here we identified this allosteric site for efavirenz on CYP46A1 by using a combination of hydrogen-deuterium exchange coupled to MS, computational modeling, site-directed mutagenesis, and analysis of the CYP46A1 crystal structure. We also mapped the binding region for the CYP46A1 redox partner oxidoreductase and found that the allosteric and redox partner binding sites share a common border. On the basis of the data obtained, we propose the mechanism of CYP46A1 allostery and the pathway for the signal transmission from the P450 allosteric site to the active site.

  14. Identification of an Allosteric Pocket on Human Hsp70 Reveals a Mode of Inhibition of This Therapeutically Important Protein

    Science.gov (United States)

    Rodina, Anna; Patel, Pallav D.; Kang, Yanlong; Patel, Yogita; Baaklini, Imad; Wong, Michael J.H.; Taldone, Tony; Yan, Pengrong; Yang, Chenghua; Maharaj, Ronnie; Gozman, Alexander; Patel, Maulik R.; Patel, Hardik J.; Chirico, William; Erdjument-Bromage, Hediye; Talele, Tanaji T.; Young, Jason C.; Chiosis, Gabriela

    2014-01-01

    SUMMARY Hsp70s are important cancer chaperones that act upstream of Hsp90 and exhibit independent anti-apoptotic activities. To develop chemical tools for the study of human Hsp70, we developed a homology model that unveils a previously unknown allosteric site located in the nucleotide binding domain of Hsp70. Combining structure-based design and phenotypic testing, we discovered a previously unknown inhibitor of this site, YK5. In cancer cells, this compound is a potent and selective binder of the cytosolic but not the organellar human Hsp70s and has biological activity partly by interfering with the formation of active oncogenic Hsp70/Hsp90/client protein complexes. YK5 is a small molecule inhibitor rationally designed to interact with an allosteric pocket of Hsp70 and represents a previously unknown chemical tool to investigate cellular mechanisms associated with Hsp70. PMID:24239008

  15. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands.

    Science.gov (United States)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone's active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  16. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  17. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery

    Directory of Open Access Journals (Sweden)

    Daura Xavier

    2010-03-01

    Full Text Available Abstract Background With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in the search for new types of targets and strategies to drug development. Given that allostery represents one of the most common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this direction is to identify and characterize putative effector sites that may be present in already available structural data. Results We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating publicly available information on protein sequences, structures and active sites for more than a thousand protein families. By identifying common pockets across different structures of the same protein family we developed a method to measure the pocket's structural conservation. The method was first parameterized using known active sites. We characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that pockets with putative functional and effector characteristics are widespread across

  18. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  19. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    Science.gov (United States)

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  20. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  1. Development of a radioligand, [(3)H]LY2119620, to probe the human M(2) and M(4) muscarinic receptor allosteric binding sites.

    Science.gov (United States)

    Schober, Douglas A; Croy, Carrie H; Xiao, Hongling; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    In this study, we characterized a muscarinic acetylcholine receptor (mAChR) potentiator, LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy]thieno[2,3-b]pyridine-2-carboxamide) as a novel probe of the human M2 and M4 allosteric binding sites. Since the discovery of allosteric binding sites on G protein-coupled receptors, compounds targeting these novel sites have been starting to emerge. For example, LY2033298 (3-amino-5-chloro-6-methoxy-4-methyl-thieno(2,3-b)pyridine-2-carboxylic acid cyclopropylamid) and a derivative of this chemical scaffold, VU152100 (3-amino-N-(4-methoxybenzyl)-4,6-dim​ethylthieno[2,3-b]pyridine carboxamide), bind to the human M4 mAChR allosteric pocket. In the current study, we characterized LY2119620, a compound similar in structure to LY2033298 and binds to the same allosteric site on the human M4 mAChRs. However, LY2119620 also binds to an allosteric site on the human M2 subtype. [(3)H]NMS ([(3)H]N-methylscopolamine) binding experiments confirm that LY2119620 does not compete for the orthosteric binding pocket at any of the five muscarinic receptor subtypes. Dissociation kinetic studies using [(3)H]NMS further support that LY2119620 binds allosterically to the M2 and M4 mAChRs and was positively cooperative with muscarinic orthosteric agonists. To probe directly the allosteric sites on M2 and M4, we radiolabeled LY2119620. Cooperativity binding of [(3)H]LY2119620 with mAChR orthosteric agonists detects significant changes in Bmax values with little change in Kd, suggesting a G protein-dependent process. Furthermore, [(3)H]LY2119620 was displaced by compounds of similar chemical structure but not by previously described mAChR allosteric compounds such as gallamine or WIN 62,577 (17-β-hydroxy-17-α-ethynyl-δ-4-androstano[3,2-b]pyrimido[1,2-a]benzimidazole). Our results therefore demonstrate the development of a radioligand, [(3)H]LY2119620 to probe specifically the human M2 and M4 muscarinic

  2. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed......γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...

  3. Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites

    DEFF Research Database (Denmark)

    Plenge, Per; Gether, Ulrik; Rasmussen, Søren G

    2007-01-01

    SERT and the three mutants. Further, R-citalopram previously thought of as an inactive enantiomer strongly attenuated dissociation of the wild-type [(3)H]-imipramine:hSERT complex, whereas S-citalopram had almost no effect on this complex. These results suggest that 1: The allosteric site on hSERT is distinct from...... the site to which S-citalopram binds with high affinity. 2: The allosteric effects of R-citalopram on the dissociation of [(3)H]-imipramine from hSERT indicate that R-citalopram introduces a conformational change in hSERT....

  4. Controlling allosteric networks in proteins

    Science.gov (United States)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  5. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  6. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  7. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  8. Crystal structure and biochemical investigations reveal novel mode of substrate selectivity and illuminate substrate inhibition and allostericity in a subfamily of Xaa-Pro dipeptidases.

    Science.gov (United States)

    Are, Venkat N; Kumar, Ashwani; Kumar, Saurabh; Goyal, Venuka Durani; Ghosh, Biplab; Bhatnagar, Deepak; Jamdar, Sahayog N; Makde, Ravindra D

    2017-02-01

    Xaa-Pro dipeptidase (XPD) catalyzes hydrolysis of iminopeptide bond in dipeptides containing trans-proline as a second residue. XPDs are found in all living organisms and are believed to play an essential role in proline metabolism. Here, we report crystal structures and extensive enzymatic studies of XPD from Xanthomonas campestris (XPDxc), the first such comprehensive study of a bacterial XPD. We also report enzymatic activities of its ortholog from Mycobacterium tuberculosis (XPDmt). These enzymes are strictly dipeptidases with broad substrate specificities. They exhibit substrate inhibition and allostericity, as described earlier for XPD from Lactococcus lactis (XPDll). The structural, mutational and comparative data have revealed a novel mechanism of dipeptide selectivity and substrate binding in these enzymes. Moreover, we have identified conserved sequence motifs that distinguish these enzymes from other prolidases, thus defining a new subfamily. This study provides a suitable structural template for explaining unique properties of this XPDxc subfamily. In addition, we report unique structural features of XPDxc protein like an extended N-terminal tail region and absence of a conserved Tyr residue near the active site.

  9. The rational design of specific peptide inhibitor against p38α MAPK at allosteric-site: a therapeutic modality for HNSCC.

    Directory of Open Access Journals (Sweden)

    Kamaldeep Gill

    Full Text Available p38α is a significant target for drug designing against cancer. The overproduction of p38α MAPK promotes tumorigenesis in head and neck squamous cell carcinoma (HNSCC. The ATP binding and an allosteric site referred as DFG are the key sites of the p38α mitogen activated protein kinase (MAPK exploited for the design of inhibitors. This study demonstrated design of peptide inhibitor on the basis of allosteric site using Glide molecular docking software and the biochemical analysis of the best modeled peptide. The best fitted tetrapeptide (FWCS in the allosteric site inhibited the pure recombinant and serum p38α of HNSCC patients by 74 and 72%, respectively. The potency of the peptide was demonstrated by its IC50 (4.6 nM and KD (3.41×10-10 M values, determined by ELISA and by surface plasmon resonance (SPR technology, respectively. The cell viability of oral cancer i.e. KB cell line was reduced in dose dependent manner by 60 and 97% by the treatment of peptide and the IC50 was 600 and 210 µM after 24 and 72 h incubation, respectively. Our result provides an insight for the development of a proficient small peptide as a promising anticancer agent targeting DFG site of p38α kinase.

  10. Mutations within the putative active site of heterodimeric deoxyguanosine kinase block the allosteric activation of the deoxyadenosine kinase subunit.

    Science.gov (United States)

    Park, Inshik; Ives, David H

    2002-03-31

    Replacement of the Asp-84 residue of the deoxyguanosine kinase subunit of the tandem deoxyadenosine kinase/ deoxyguanosine kinase (dAK/dGK) from Lactobacillus acidophilus R-26 by Ala, Asn, or Glu produced increased Km values for deoxyguanosine on dGK. However, it did not seem to affect the binding of Mg-ATP. The Asp-84 dGK replacements had no apparent effect on the binding of deoxyadenosine by dAK. However, the mutant dGKs were no longer inhibited by dGTP, normally a potent distal endproduct inhibitor of dGK. Moreover, the allosteric activation of dAK activity by dGTP or dGuo was lost in the modified heterodimeric dAK/dGK enzyme. Therefore, it seems very likely that Asp-84 participates in dGuo binding at the active site of the dGK subunit of dAK/dGK from Lactobacillus acidophilus R-26.

  11. The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available As the prototypical member of the PTP family, protein tyrosine phosphatase 1B (PTP1B is an attractive target for therapeutic interventions in type 2 diabetes. The extremely conserved catalytic site of PTP1B renders the design of selective PTP1B inhibitors intractable. Although discovered allosteric inhibitors containing a benzofuran sulfonamide scaffold offer fascinating opportunities to overcome selectivity issues, the allosteric inhibitory mechanism of PTP1B has remained elusive. Here, molecular dynamics (MD simulations, coupled with a dynamic weighted community analysis, were performed to unveil the potential allosteric signal propagation pathway from the allosteric site to the catalytic site in PTP1B. This result revealed that the allosteric inhibitor compound-3 induces a conformational rearrangement in helix α7, disrupting the triangular interaction among helix α7, helix α3, and loop11. Helix α7 then produces a force, pulling helix α3 outward, and promotes Ser190 to interact with Tyr176. As a result, the deviation of Tyr176 abrogates the hydrophobic interactions with Trp179 and leads to the downward movement of the WPD loop, which forms an H-bond between Asp181 and Glu115. The formation of this H-bond constrains the WPD loop to its open conformation and thus inactivates PTP1B. The discovery of this allosteric mechanism provides an overall view of the regulation of PTP1B, which is an important insight for the design of potent allosteric PTP1B inhibitors.

  12. Structural and regulatory elements of HCV NS5B polymerase--β-loop and C-terminal tail--are required for activity of allosteric thumb site II inhibitors.

    Directory of Open Access Journals (Sweden)

    Sarah E Boyce

    Full Text Available Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B--the C-terminal tail and β-loop--in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor-NS5B complex are absent in the inhibitor-bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop.

  13. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant.

    Science.gov (United States)

    Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie

    2009-10-25

    The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.

  14. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5.

    Science.gov (United States)

    Andrews, Glen; Jones, Carolyn; Wreggett, Keith A

    2008-03-01

    A novel mechanism for antagonism of the human chemokine receptors CCR4 and CCR5 has been discovered with a series of small-molecule compounds that seems to interact with an allosteric, intracellular site on the receptor. The existence of this site is supported by a series of observations: 1) intracellular access of these antagonists is required for their activity; 2) specific, saturable binding of a radiolabeled antagonist requires the presence of CCR4; and 3) through engineering receptor chimeras by reciprocal transfer of C-terminal domains between CCR4 and CCR5, compound binding and the selective structure-activity relationships for antagonism of these receptors seem to be associated with the integrity of that intracellular region. Published antagonists from other chemical series do not seem to bind to the novel site, and their interaction with either CCR4 or CCR5 is not affected by alteration of the C-terminal domain. The precise location of the proposed binding site remains to be determined, but the known close association of the C-terminal domain, including helix 8, as a proposed intracellular region that interacts with transduction proteins (e.g., G proteins and beta-arrestin) suggests that this could be a generic allosteric site for chemokine receptors and perhaps more broadly for class A G protein-coupled receptors. The existence of such a site that can be targeted for drug discovery has implications for screening assays for receptor antagonists, which would need, therefore, to consider compound properties for access to this intracellular site.

  15. The allosteric regulation of pyruvate kinase.

    Science.gov (United States)

    Valentini, G; Chiarelli, L; Fortin, R; Speranza, M L; Galizzi, A; Mattevi, A

    2000-06-16

    Pyruvate kinase (PK) is critical for the regulation of the glycolytic pathway. The regulatory properties of Escherichia coli were investigated by mutating six charged residues involved in interdomain salt bridges (Arg(271), Arg(292), Asp(297), and Lys(413)) and in the binding of the allosteric activator (Lys(382) and Arg(431)). Arg(271) and Lys(413) are located at the interface between A and C domains within one subunit. The R271L and K413Q mutant enzymes exhibit altered kinetic properties. In K413Q, there is partial enzyme activation, whereas R271L is characterized by a bias toward the T-state in the allosteric equilibrium. In the T-state, Arg(292) and Asp(297) form an intersubunit salt bridge. The mutants R292D and D297R are totally inactive. The crystal structure of R292D reveals that the mutant enzyme retains the T-state quaternary structure. However, the mutation induces a reorganization of the interface with the creation of a network of interactions similar to that observed in the crystal structures of R-state yeast and M1 PK proteins. Furthermore, in the R292D structure, two loops that are part of the active site are disordered. The K382Q and R431E mutations were designed to probe the binding site for fructose 1, 6-bisphosphate, the allosteric activator. R431E exhibits only slight changes in the regulatory properties. Conversely, K382Q displays a highly altered responsiveness to the activator, suggesting that Lys(382) is involved in both activator binding and allosteric transition mechanism. Taken together, these results support the notion that domain interfaces are critical for the allosteric transition. They couple changes in the tertiary and quaternary structures to alterations in the geometry of the fructose 1, 6-bisphosphate and substrate binding sites. These site-directed mutagenesis data are discussed in the light of the molecular basis for the hereditary nonspherocytic hemolytic anemia, which is caused by mutations in human erythrocyte PK gene.

  16. Transfer of noncovalent chiral information along an optically inactive helical peptide chain: allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site.

    Science.gov (United States)

    Ousaka, Naoki; Inai, Yoshihito

    2009-02-20

    This study aims at demonstrating end-to-end transfer of noncovalent chiral information along a peptide chain. The domino-type induction of helical sense is proven by using achiral peptides 1-m of bis-chromophoric sequence with different chain lengths: H-(Aib-Delta(Z)Phe)(m)-(Aib-Delta(Z)Bip)(2)-Aib-OCH(3) [m = 2, 4, and 6; Aib = alpha-aminoisobutyric acid; Delta(Z)Phe = (Z)-alpha,beta-didehydrophenylalanine; Delta(Z)Bip = (Z)-beta-(4,4'-biphenyl)-alpha,beta-didehydroalanine]. They all showed the tendency to adopt a 3(10)-helix. Whereas peptide 1-m originally shows no circular dichroism (CD) signals, marked CD signals were induced at around 270-320 nm based on both the beta-aryl didehydroresidues by chiral Boc-proline (Boc = tert-butoxycarbonyl). The observed CD spectra were interpreted on the basis of the exciton chirality method and theoretical CD simulation of several helical conformations that were energy-minimized. The experimental and theoretical CD analysis reveals that Boc-l-proline induces the preference for a right-handed helicity in the whole chain of 1-m. Such noncovalent chiral induction was not observed in the corresponding N-terminally protected 1-m. Obviously, helicity induction in 1-m originates from the binding of Boc-proline to the N-terminal site. In the 17-mer (1-6), the information of helix sense reaches the 16th residue from the N-terminus. We have monitored precise transfer of noncovalent chiral stimulus along a helical peptide chain. The present study also proposes a primitive allosteric model of a single protein-mimicking backbone. Here chiral molecule binding the N-terminal site of 1-6 controls the chiroptical signals and helical sense of the C-terminal site about 30 A away.

  17. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning.

    Directory of Open Access Journals (Sweden)

    Z Nevin Gerek

    2011-10-01

    Full Text Available The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS that couples elastic network models with linear response theory (LRT to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain. With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i dynamics plays a key role in allosteric regulations of PDZs, (ii the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.

  18. Identification of an Allosteric Binding Site on Human Lysosomal Alpha-Galactosidase Opens the Way to New Pharmacological Chaperones for Fabry Disease

    Science.gov (United States)

    den-Haan, Helena; Pérez-Sánchez, Horacio; Del Prete, Rosita; Liguori, Ludovica; Cimmaruta, Chiara; Lukas, Jan; Andreotti, Giuseppina

    2016-01-01

    Personalized therapies are required for Fabry disease due to its large phenotypic spectrum and numerous different genotypes. In principle, missense mutations that do not affect the active site could be rescued with pharmacological chaperones. At present pharmacological chaperones for Fabry disease bind the active site and couple a stabilizing effect, which is required, to an inhibitory effect, which is deleterious. By in silico docking we identified an allosteric hot-spot for ligand binding where a drug-like compound, 2,6-dithiopurine, binds preferentially. 2,6-dithiopurine stabilizes lysosomal alpha-galactosidase in vitro and rescues a mutant that is not responsive to a mono-therapy with previously described pharmacological chaperones, 1-deoxygalactonojirimycin and galactose in a cell based assay. PMID:27788225

  19. Using distal site mutations and allosteric inhibition to tune, extend and narrow the useful dynamic range of aptamer-based sensors

    Science.gov (United States)

    Porchetta, Alessandro; Vallée-Bélisle, Alexis; Plaxco, Kevin W.; Ricci, Francesco

    2012-01-01

    Here we demonstrate multiple, complementary approaches by which to tune, extend or narrow the dynamic range of aptamer-based sensors. Specifically, we have employed both distal site mutations and allosteric control to tune the affinity and dynamic range of a fluorescent aptamer beacon. We show that allosteric control, achieved by using a set of easily designed oligonucleotide inhibitors that competes against the folding of the aptamer, allows to rationally and finely tune the affinity of our model aptamer across three orders of magnitude of target concentration with greater precision than that achieved using mutational approaches. Using these methods we generate sets of aptamers varying significantly in target affinity, which we then combined to recreate several of the mechanisms employed by nature to both narrow and broaden the dynamic range of biological receptors. Such ability to finely control the affinity and dynamic range of aptamers may find many applications in synthetic biology, drug delivery and targeted therapies, fields in which aptamers are of rapidly growing importance. PMID:23215257

  20. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    Science.gov (United States)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  1. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli.

    Science.gov (United States)

    Chen, Lin; Chen, Zhen; Zheng, Ping; Sun, Jibin; Zeng, An-Ping

    2013-04-01

    Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.

  2. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  3. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act?

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2007-01-01

    Many small-molecule agonists also display allosteric properties. Such ago-allosteric modulators act as co-agonists, providing additive efficacy--instead of partial antagonism--and they can affect--and often improve--the potency of the endogenous agonist. Surprisingly, the apparent binding sites...... different binding modes. In another, dimeric, receptor scenario, the endogenous agonist binds to one protomer while the ago-allosteric modulator binds to the other, 'allosteric' protomer. It is suggested that testing for ago-allosteric properties should be an integral part of the agonist drug discovery...... process because a compound that acts with--rather than against--the endogenous agonist could be an optimal agonist drug....

  4. Unraveling structural mechanisms of allosteric drug action.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung

    2014-05-01

    Orthosteric drugs block the active site to obstruct function; allosteric drugs modify the population of the active state, to modulate function. Available data lead us to propose that allosteric drugs can constitute anchors and drivers. The anchor docks into an allosteric pocket. The conformation with which it interacts is unchanged during the transition between the inactive and active states. The anchor provides the foundation that allows the driver to exert a 'pull' and/or 'push' action that shifts the receptor population from the inactive to the active state. The presence or absence of driver atom in an allosteric drug can exert opposite agonism. We map a strategy for driver identification and expect the allosteric trigger concept to transform agonist/antagonist drug discovery.

  5. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis.

    Science.gov (United States)

    Ayoub, Mohammed Akli; Yvinec, Romain; Jégot, Gwenhaël; Dias, James A; Poli, Sonia-Maria; Poupon, Anne; Crépieux, Pascale; Reiter, Eric

    2016-11-15

    Biased signaling has recently emerged as an interesting means to modulate the function of many G protein-coupled receptors (GPCRs). Previous studies reported two negative allosteric modulators (NAMs) of follicle-stimulating hormone receptor (FSHR), ADX68692 and ADX68693, with differential effects on FSHR-mediated steroidogenesis and ovulation. In this study, we attempted to pharmacologically profile these NAMs on the closely related luteinizing hormone/chorionic gonadotropin hormone receptor (LH/CGR) with regards to its canonical Gs/cAMP pathway as well as to β-arrestin recruitment in HEK293 cells. The NAMs' effects on cAMP, progesterone and testosterone production were also assessed in murine Leydig tumor cell line (mLTC-1) as well as rat primary Leydig cells. We found that both NAMs strongly antagonized LH/CGR signaling in the different cell models used with ADX68693 being more potent than ADX68692 to inhibit hCG-induced cAMP production in HEK293, mLTC-1 and rat primary Leydig cells as well as β-arrestin 2 recruitment in HEK293 cells. Interestingly, differential antagonism of the two NAMs on hCG-promoted steroidogenesis in mLTC-1 and rat primary Leydig cells was observed. Indeed, a significant inhibition of testosterone production by the two NAMs was observed in both cell types, whereas progesterone production was only inhibited by ADX68693 in rat primary Leydig cells. In addition, while ADX68693 totally abolished testosterone production, ADX68692 had only a partial effect in both mLTC-1 and rat primary Leydig cells. These observations suggest biased effects of the two NAMs on LH/CGR-dependent pathways controlling steroidogenesis. Interestingly, the pharmacological profiles of the two NAMs with respect to steroidogenesis were found to differ from that previously shown on FSHR. This illustrates the complexity of signaling pathways controlling FSHR- and LH/CGR-mediated steroidogenesis, suggesting differential implication of cAMP and β-arrestins mediated by

  6. Advances in the research of tageting DFG-out allosteric binding site of inactive kinases%靶向非活性激酶DFG-out变构结合位点的研究进展

    Institute of Scientific and Technical Information of China (English)

    彭文; 张小猛; 张仓; 王芳; 尤启冬

    2012-01-01

    目前大多数激酶抑制剂是通过模拟ATP的结构,以识别激酶的活性构象来竞争性结合于ATP结合位点,从而抑制激酶的自磷酸化和下游的信号传导.然而,最近人们对已上市药物甲磺酸伊马替尼、尼罗替尼及对甲苯磺酸索拉非尼的晶体结构研究发现,在非活性激酶中ATP结合位点的相邻位置存在着第二个能与激酶抑制剂结合的位点——DFG-out变构结合位点.该位点的发现为以蛋白激酶为靶标的小分子激酶抑制剂的设计与开发指明了新的方向,成为抗肿瘤研究领域的新热点之一.因此,本文对非活性激酶的DFG-out变构结合位点的发现、非活性激酶与其抑制剂的结合方式及处于临床研究阶段的非活性激酶抑制剂进行了综述.%Up to nowadays, a majority of kinase inhibitors identify the activity conformation of protein ki-nase to integrate competitively with ATP binding site by simulating the structure of ATP. In this way, kinase inhibitors can inhibit kinase autophosphorylation and restrain signal transduction of downstream. However, the crystal structures of imatinib mesylate, nilotnib and sorafenib tosylate have revealed a secondary binding site adjacent to the ATP binding site, which is also bound by kinase inhibitors, known as the DFG-out allosteric binding site, in the inactive conformation of protein kinase. The discovery of the site has pointed out a new direction for the design and development of small molecule kinase inhibitors, which lakes protein kinase as a target. This becomes a new hotspot in antineoplastic research field. In this paper, we reviewed the discovery and inhibitors of the DFG-out allosteric binding site, and the binding mode between inactive kinases, as well as the inactive kinase inhibitors in clinical studies.

  7. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    Science.gov (United States)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D'Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  8. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey (Case Western); (Colorado)

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  9. Role of arginine 293 and glutamine 288 in communication between catalytic and allosteric sites in yeast ribonucleotide reductase.

    Science.gov (United States)

    Ahmad, Md Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey

    2012-06-22

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 (α) that contains the catalytic site and RR2 (β) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-(β,γ-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  10. Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor FcεRI.

    Science.gov (United States)

    Dhaliwal, Balvinder; Yuan, Daopeng; Pang, Marie O Y; Henry, Alistair J; Cain, Katharine; Oxbrow, Amanda; Fabiane, Stella M; Beavil, Andrew J; McDonnell, James M; Gould, Hannah J; Sutton, Brian J

    2012-07-31

    The role of IgE in allergic disease mechanisms is performed principally through its interactions with two receptors, FcεRI on mast cells and basophils, and CD23 (FcεRII) on B cells. The former mediates allergic hypersensitivity, the latter regulates IgE levels, and both receptors, also expressed on antigen-presenting cells, contribute to allergen uptake and presentation to the immune system. We have solved the crystal structure of the soluble lectin-like "head" domain of CD23 (derCD23) bound to a subfragment of IgE-Fc consisting of the dimer of Cε3 and Cε4 domains (Fcε3-4). One CD23 head binds to each heavy chain at the interface between the two domains, explaining the known 2:1 stoichiometry and suggesting mechanisms for cross-linking membrane-bound trimeric CD23 by IgE, or membrane IgE by soluble trimeric forms of CD23, both of which may contribute to the regulation of IgE synthesis by B cells. The two symmetrically located binding sites are distant from the single FcεRI binding site, which lies at the opposite ends of the Cε3 domains. Structural comparisons with both free IgE-Fc and its FcεRI complex reveal not only that the conformational changes in IgE-Fc required for CD23 binding are incompatible with FcεRI binding, but also that the converse is true. The two binding sites are allosterically linked. We demonstrate experimentally the reciprocal inhibition of CD23 and FcεRI binding in solution and suggest that the mutual exclusion of receptor binding allows IgE to function independently through its two receptors.

  11. Identification of a negative allosteric site on human α4β2 and α3β4 neuronal nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Ryan E Pavlovicz

    Full Text Available Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs. These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological

  12. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site

    Science.gov (United States)

    Oguievetskaia, Ksenia; Martin-Chanas, Laetitia; Vorotyntsev, Artem; Doppelt-Azeroual, Olivia; Brotel, Xavier; Adcock, Stewart A.; de Brevern, Alexandre G.; Delfaud, Francois; Moriaud, Fabrice

    2009-08-01

    Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix α2 (L5/α2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software.

  13. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  14. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    Science.gov (United States)

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme β-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. β-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for β-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples.

  15. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  16. LIBSA--a method for the determination of ligand-binding preference to allosteric sites on receptor ensembles.

    Science.gov (United States)

    Hocker, Harrison J; Rambahal, Nandini; Gorfe, Alemayehu A

    2014-02-24

    Incorporation of receptor flexibility into computational drug discovery through the relaxed complex scheme is well suited for screening against a single binding site. In the absence of a known pocket or if there are multiple potential binding sites, it may be necessary to do docking against the entire surface of the target (global docking). However no suitable and easy-to-use tool is currently available to rank global docking results based on the preference of a ligand for a given binding site. We have developed a protocol, termed LIBSA for LIgand Binding Specificity Analysis, that analyzes multiple docked poses against a single or ensemble of receptor conformations and returns a metric for the relative binding to a specific region of interest. By using novel filtering algorithms and the signal-to-noise ratio (SNR), the relative ligand-binding frequency at different pockets can be calculated and compared quantitatively. Ligands can then be triaged by their tendency to bind to a site instead of ranking by affinity alone. The method thus facilitates screening libraries of ligand cores against a large library of receptor conformations without prior knowledge of specific pockets, which is especially useful to search for hits that selectively target a particular site. We demonstrate the utility of LIBSA by showing that it correctly identifies known ligand binding sites and predicts the relative preference of a set of related ligands for different pockets on the same receptor.

  17. Allosteric modulation of the HIV-1 gp120-gp41 association site by adjacent gp120 variable region 1 (V1 N-glycans linked to neutralization sensitivity.

    Directory of Open Access Journals (Sweden)

    Heidi E Drummer

    Full Text Available The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb. Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and C-terminal segments of gp120 and the disulfide-bonded region (DSR of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn¹³⁶ in V1 (T138N mutation in conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N¹³⁹INN sequence, which ablates the overlapping Asn¹⁴¹-Asn¹⁴²-Ser-Ser potential N-linked glycosylation sequons in V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu⁵⁹³, Trp⁵⁹⁶ and Lys⁶⁰¹. The 136 and/or 142 glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan

  18. Ago-allosteric modulation and other types of allostery in dimeric 7TM receptors

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2006-01-01

    Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own...... influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous......, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric...

  19. Allosteric Inhibition via R-state Destabilization in ATP Sulfurylase from Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    MacRae, I. J.

    2002-01-01

    The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 {angstrom} resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 {angstrom} movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.

  20. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  1. Computation of conformational coupling in allosteric proteins.

    Directory of Open Access Journals (Sweden)

    Brian A Kidd

    2009-08-01

    Full Text Available In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.

  2. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    OpenAIRE

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar; Ballmer-Hofer, Kurt

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron...

  3. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    Science.gov (United States)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  4. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2016-01-01

    Full Text Available P2Y1 receptor (P2Y1R, which belongs to G protein-coupled receptors (GPCRs, is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM. And the hits were filtered by Lipinski’s rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM.

  5. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    Science.gov (United States)

    Lu, Fang; Jiang, Lu-di; Qiao, Lian-sheng; Xiang, Yu-hong

    2016-01-01

    P2Y1 receptor (P2Y1R), which belongs to G protein-coupled receptors (GPCRs), is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM). And the hits were filtered by Lipinski's rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM. PMID:27635149

  6. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase

    Science.gov (United States)

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase catalyzes the decarboxylation of isocitrate (ICT) into α-ketoglutarate in the Krebs cycle. It exists as the α2βγ heterotetramer composed of the αβ and αγ heterodimers. Previously, we have demonstrated biochemically that the α2βγ heterotetramer and αγ heterodimer can be allosterically activated by citrate (CIT) and ADP. In this work, we report the crystal structures of the αγ heterodimer with the γ subunit bound without or with different activators. Structural analyses show that CIT, ADP and Mg2+ bind adjacent to each other at the allosteric site. The CIT binding induces conformational changes at the allosteric site, which are transmitted to the active site through the heterodimer interface, leading to stabilization of the ICT binding at the active site and thus activation of the enzyme. The ADP binding induces no further conformational changes but enhances the CIT binding through Mg2+-mediated interactions, yielding a synergistic activation effect. ICT can also bind to the CIT-binding subsite, which induces similar conformational changes but exhibits a weaker activation effect. The functional roles of the key residues are verified by mutagenesis, kinetic and structural studies. Our structural and functional data together reveal the molecular mechanism of the allosteric regulation of the αγ heterodimer. PMID:28098230

  7. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines.

    Science.gov (United States)

    Mony, Laetitia; Zhu, Shujia; Carvalho, Stéphanie; Paoletti, Pierre

    2011-06-17

    NMDA receptors (NMDARs) form glutamate-gated ion channels that have central roles in neuronal communication and plasticity throughout the brain. Dysfunctions of NMDARs are involved in several central nervous system disorders, including stroke, chronic pain and schizophrenia. One hallmark of NMDARs is that their activity can be allosterically regulated by a variety of extracellular small ligands. While much has been learned recently regarding allosteric inhibition of NMDARs, the structural determinants underlying positive allosteric modulation of these receptors remain poorly defined. Here, we show that polyamines, naturally occurring polycations that selectively enhance NMDARs containing the GluN2B subunit, bind at a dimer interface between GluN1 and GluN2B subunit N-terminal domains (NTDs). Polyamines act by shielding negative charges present on GluN1 and GluN2B NTD lower lobes, allowing their close apposition, an effect that in turn prevents NTD clamshell closure. Our work reveals the mechanistic basis for positive allosteric modulation of NMDARs. It provides the first example of an intersubunit binding site in this class of receptors, a discovery that holds promise for future drug interventions.

  8. Calculated pKa Variations Expose Dynamic Allosteric Communication Networks.

    Science.gov (United States)

    Lang, Eric J M; Heyes, Logan C; Jameson, Geoffrey B; Parker, Emily J

    2016-02-17

    Allosteric regulation of protein function, the process by which binding of an effector molecule provokes a functional response from a distal site, is critical for metabolic pathways. Yet, the way the allosteric signal is communicated remains elusive, especially in dynamic, entropically driven regulation mechanisms for which no major conformational changes are observed. To identify these dynamic allosteric communication networks, we have developed an approach that monitors the pKa variations of ionizable residues over the course of molecular dynamics simulations performed in the presence and absence of an allosteric regulator. As the pKa of ionizable residues depends on their environment, it represents a simple metric to monitor changes in several complex factors induced by binding an allosteric effector. These factors include Coulombic interactions, hydrogen bonding, and solvation, as well as backbone motions and side chain fluctuations. The predictions that can be made with this method concerning the roles of ionizable residues for allosteric communication can then be easily tested experimentally by changing the working pH of the protein or performing single point mutations. To demonstrate the method's validity, we have applied this approach to the subtle dynamic regulation mechanism observed for Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first enzyme of aromatic biosynthesis. We were able to identify key communication pathways linking the allosteric binding site to the active site of the enzyme and to validate these findings experimentally by reestablishing the catalytic activity of allosterically inhibited enzyme via modulation of the working pH, without compromising the binding affinity of the allosteric regulator.

  9. In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase.

    Science.gov (United States)

    Tripathi, Ashutosh; Safo, Martin K

    2012-01-01

    Identification of allosteric binding site modulators have gained increased attention lately for their potential to be developed as selective agents with a novel chemotype and targeting perhaps a new and unique binding site with probable fewer side effects. Erythrocyte pyruvate kinase (R-PK) is an important glycolytic enzyme that can be pharmacologically modulated through its allosteric effectors for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction. An in-silico screening approach was applied to identify novel allosteric modulators of pyruvate kinase. A small-molecules database of the National Cancer Institute (NCI), was virtually screened based on structure/ligand-based pharmacophore. The virtual screening campaign led to the identification of several compounds with similar pharmacophoric features as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the kinase. The compounds were subsequently docked into the FBP-binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates were obtained from the NCI and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK).

  10. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.

    Science.gov (United States)

    Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu

    2015-03-01

    Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites.

  11. The allosteric switching mechanism in bacteriophage MS2

    Science.gov (United States)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  12. Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand.

    Science.gov (United States)

    Wang, Ningkun; Lodge, Jean M; Fierke, Carol A; Mapp, Anna K

    2014-08-19

    Allosteric binding events play a critical role in the formation and stability of transcriptional activator-coactivator complexes, perhaps in part due to the often intrinsically disordered nature of one or more of the constituent partners. The kinase-inducible domain interacting (KIX) domain of the master coactivator CREB binding protein/p300 is a conformationally dynamic domain that complexes with transcriptional activators at two discrete binding sites in allosteric communication. The complexation of KIX with the transcriptional activation domain of mixed-lineage leukemia protein leads to an enhancement of binding by the activation domain of CREB (phosphorylated kinase-inducible domain of CREB) to the second site. A transient kinetic analysis of the ternary complex formation aided by small molecule ligands that induce positive or negative cooperative binding reveals that positive cooperativity is largely governed by stabilization of the bound complex as indicated by a decrease in koff. Thus, this suggests the increased binding affinity for the second ligand is not due to an allosteric creation of a more favorable binding interface by the first ligand. This is consistent with data from us and from others indicating that the on rates of conformationally dynamic proteins approach the limits of diffusion. In contrast, negative cooperativity is manifested by alterations in both kon and koff, suggesting stabilization of the binary complex.

  13. Virtual Screening for Potential Allosteric Inhibitors of Cyclin-Dependent Kinase 2 from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Fang Lu

    2016-09-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2, a member of Cyclin-dependent kinases (CDKs, plays an important role in cell division and DNA replication. It is regarded as a desired target to treat cancer and tumor by interrupting aberrant cell proliferation. Compared to lower subtype selectivity of CDK2 ATP-competitive inhibitors, CDK2 allosteric inhibitor with higher subtype selectivity has been used to treat CDK2-related diseases. Recently, the first crystal structure of CDK2 with allosteric inhibitor has been reported, which provides new opportunities to design pure allosteric inhibitors of CDK2. The binding site of the ATP-competition inhibitors and the allosteric inhibitors are partially overlapped in space position, so the same compound might interact with the two binding sites. Thus a novel screening strategy was essential for the discovery of pure CDK2 allosteric inhibitors. In this study, pharmacophore and molecular docking were used to screen potential CDK2 allosteric inhibitors and ATP-competition inhibitors from Traditional Chinese Medicine (TCM. In the docking result of the allosteric site, the compounds which can act with the CDK2 ATP site were discarded, and the remaining compounds were regarded as the potential pure allosteric inhibitors. Among the results, prostaglandin E1 and nordihydroguaiaretic acid (NDGA were available and their growth inhibitory effect on human HepG2 cell lines was determined by MTT assay. The two compounds could substantially inhibit the growth of HepG2 cell lines with an estimated IC50 of 41.223 μmol/L and 45.646 μmol/L. This study provides virtual screening strategy of allosteric compounds and a reliable method to discover potential pure CDK2 allosteric inhibitors from TCM. Prostaglandin E1 and NDGA could be regarded as promising candidates for CDK2 allosteric inhibitors.

  14. Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase.

    Science.gov (United States)

    Versées, Wim; Spaepen, Stijn; Wood, Martin D H; Leeper, Finian J; Vanderleyden, Jos; Steyaert, Jan

    2007-11-30

    Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.

  15. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis.

    Directory of Open Access Journals (Sweden)

    Zoltan Palmai

    2014-01-01

    Full Text Available 3-Phosphogycerate kinase (PGK is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA, we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule.

  16. The N-terminal domain allosterically regulates cleavage and activation of the epithelial sodium channel.

    Science.gov (United States)

    Kota, Pradeep; Buchner, Ginka; Chakraborty, Hirak; Dang, Yan L; He, Hong; Garcia, Guilherme J M; Kubelka, Jan; Gentzsch, Martina; Stutts, M Jackson; Dokholyan, Nikolay V

    2014-08-15

    The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.

  17. The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel*

    Science.gov (United States)

    Kota, Pradeep; Buchner, Ginka; Chakraborty, Hirak; Dang, Yan L.; He, Hong; Garcia, Guilherme J. M.; Kubelka, Jan; Gentzsch, Martina; Stutts, M. Jackson; Dokholyan, Nikolay V.

    2014-01-01

    The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation. PMID:24973914

  18. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase.

    Science.gov (United States)

    Taylor, Alexander B; Hu, Gang; Hart, P John; McAlister-Henn, Lee

    2008-04-18

    Mitochondrial NAD(+)-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD(+)-specific IDH from yeast in three forms: 1) without ligands, 2) with bound analog citrate, and 3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the "on-off" regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.

  19. Allosteric Motions in Structures of Yeast NAD+-Specific Isocitrate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,A.; Hu, G.; Hart, P.; McAlister-Henn, L.

    2008-01-01

    Mitochondrial NAD+-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD+-specific IDH from yeast in three forms: (1) without ligands, (2) with bound analog citrate, and (3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the 'on-off' regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.

  20. Identification of novel allosteric regulators of human-erythrocyte pyruvate kinase.

    Science.gov (United States)

    Kharalkar, Shilpa S; Joshi, Gajanan S; Musayev, Faik N; Fornabaio, Micaela; Abraham, Donald J; Safo, Martin K

    2007-11-01

    Erythrocyte pyruvate kinase (PK) is an important glycolytic enzyme, and manipulation of its regulatory behavior by allosteric modifiers is of interest for medicinal purposes. Human-erythrocyte PK was expressed in Rosetta cells and purified on an Ni-NTA column. A search of the small-molecules database of the National Cancer Institute (NCI), using the UNITY software, led to the identification of several compounds with similar pharmacophores as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the human kinases. The compounds were subsequently docked into the FBP binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates, compounds 1-7, were obtained from the NCI, and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK). The allosteric effectors discovered in this study could prove to be lead compounds for developing medications for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction.

  1. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis.

    Science.gov (United States)

    Palmai, Zoltan; Seifert, Christian; Gräter, Frauke; Balog, Erika

    2014-01-01

    3-Phosphogycerate kinase (PGK) is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA), we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule.

  2. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    Science.gov (United States)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  3. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks.

    Science.gov (United States)

    Menniti, Frank S; Lindsley, Craig W; Conn, P Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved.

  4. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.

    2017-02-06

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  5. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV

    2010-01-01

    ) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells....

  6. Allosteric modulators of the hERG K{sup +} channel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyi, E-mail: z.yu@lacdr.leidenuniv.nl; Klaasse, Elisabeth, E-mail: elisabethklaasse@hotmail.com; Heitman, Laura H., E-mail: l.h.heitman@lacdr.leidenuniv.nl; IJzerman, Adriaan P., E-mail: ijzerman@lacdr.leidenuniv.nl

    2014-01-01

    Drugs that block the cardiac K{sup +} channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K{sup +} channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [{sup 3}H]astemizole and [{sup 3}H]dofetilide to the hERG K{sup +} channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC{sub 50} values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC{sub 50} values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K{sup +} channel, which is discussed in the light of findings on other ion channels. - Highlights: • Allosteric modulators on the hERG K{sup +} channel were evaluated in binding assays. • LUF6200 was identified as a potent allosteric inhibitor. • Potassium ions were found to behave as allosteric enhancers. • Positive cooperativity and distinct allosteric sites for them were proposed.

  7. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    Science.gov (United States)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  8. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

    DEFF Research Database (Denmark)

    Hindie, Valerie; Stroba, Adriana; Zhang, Hua

    2009-01-01

    Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-d...

  9. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    Science.gov (United States)

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  10. Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action.

    Science.gov (United States)

    Kortagere, Sandhya; Fontana, Andreia Cristina Karklin; Rose, Deja Renée; Mortensen, Ole Valente

    2013-09-01

    Serotonin transporters (SERTs) play an essential role in the termination and regulation of serotonin signaling in the brain. SERT is also the target of antidepressants and psychostimulants. Molecules with novel activities and modes of interaction with regard to SERT function are of great scientific and clinical interest. We explored structural regions outside the putative serotonin translocation pathway to identify potential binding sites for allosteric transporter modulators (ATMs). Mutational studies revealed a pocket of amino acids outside the orthosteric substrate binding sites located in the interface between extracellular loops 1 and 3 that when mutated affect transporter function. Using the structure of the bacterial transporter homolog leucine transporter as a template, we developed a structural model of SERT. We performed molecular dynamics simulations to further characterize the allosteric pocket that was identified by site-directed mutagenesis studies and employed this pocket in a virtual screen for small-molecule modulators of SERT function. In functional transport assays, we found that one of the identified molecules, ATM7, increased the reuptake of serotonin, possibly by facilitating the interaction of serotonin with transport-ready conformations of SERT when concentrations of serotonin were low and rate limiting. In addition, ATM7 potentiates 3,4-methylenedioxy-N-methylamphetamine (MDMA, "Ecstasy")-induced reversed transport by SERT. Taking advantage of a conformationally sensitive residue in transmembrane domain 6, we demonstrate that ATM7 mechanistically stabilizes an outward-facing conformation of SERT. Taken together these observations demonstrate that ATM7 acts through a novel mechanism that involves allosteric modulation of SERT function.

  11. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    OpenAIRE

    Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many th...

  12. Statistical Mechanics of Allosteric Enzymes.

    Science.gov (United States)

    Einav, Tal; Mazutis, Linas; Phillips, Rob

    2016-07-07

    The concept of allostery in which macromolecules switch between two different conformations is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take a step toward this goal by modeling allosteric enzymes and their interaction with two key molecular players-allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition.

  13. 5-(N, N-Hexamethylene) amiloride is a GABA-A ρ1 receptor positive allosteric modulator.

    Science.gov (United States)

    Snell, Heather D; Gonzales, Eric B

    2016-11-01

    Guanidine compounds act as ion channel modulators. In the case of Cys-loop receptors, the guanidine compound amiloride antagonized the heteromeric GABA-A, glycine, and nicotinic acetylcholine receptors. However, amiloride exhibits characteristics consistent with a positive allosteric modulator for the human GABA-A (hGABA-A) ρ1 receptor. Site-directed mutagenesis revealed that the positive allosteric modulation was influenced by the GABA-A ρ1 second transmembrane domain 15' position, a site implicated in ligand allosteric modulation of Cys-loop receptors. There are a variety of amiloride derivatives that provide opportunities to assess the significance of amiloride functional groups (e.g., the guanidine group, the pyrazine ring, etc.) in the modulation of the GABA-A ρ1 receptor activity. We utilized 3 amiloride derivatives (benzamil, phenamil, and 5-(N, N-Hexamethylene) amiloride) to assess the contribution of these groups toward the potentiation of the GABA-A ρ1 receptor. Benzamil and phenamil failed to potentiate on the wild type GABA-A ρ1 GABA-mediated current while HMA demonstrated efficacy only at the highest concentration studied. The hGABA-A ρ1 (I15'N) mutant receptor activity was potentiated by lower HMA concentrations compared to the wild type receptor. Our findings suggest that an exposed guanidine group on amiloride and amiloride derivatives is critical for modulating the GABA-A ρ1 receptor. The present study provides a conceptual framework for predicting which amiloride derivatives will demonstrate positive allosteric modulation of the GABA-A ρ1 receptor.

  14. Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

    Science.gov (United States)

    Nguyen, Thuy; Li, Jun-Xu; Thomas, Brian F; Wiley, Jenny L; Kenakin, Terry P; Zhang, Yanan

    2016-11-23

    The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.

  15. Kinetic analysis of ligand binding to the Ehrlich cell nucleoside transporter: Pharmacological characterization of allosteric interactions with the sup 3 Hnitrobenzylthioinosine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.R. (Department of Pharmacology and Toxicology, University of Western Ontario, London (Canada))

    1991-06-01

    Kinetic analysis of the binding of {sup 3}Hnitrobenzylthioinosine ({sup 3}H NBMPR) to Ehrlich ascites tumor cell plasma membranes was conducted in the presence and absence of a variety of nucleoside transport inhibitors and substrates. The association of {sup 3}H NBMPR with Ehrlich cell membranes occurred in two distinct phases, possibly reflecting functional conformation changes in the {sup 3}HNBMPR binding site/nucleoside transporter complex. Inhibitors of the equilibrium binding of {sup 3}HNBMPR, tested at submaximal inhibitory concentrations, generally decreased the rate of association of {sup 3}HNBMPR, but the magnitude of this effect varied significantly with the agent tested. Adenosine and diazepam had relatively minor effects on the association rate, whereas dipyridamole and mioflazine slowed the rate dramatically. Inhibitors of nucleoside transport also decreased the rate of dissociation of {sup 3}HNBMPR, with an order of potency significantly different from their relative potencies as inhibitors of the equilibrium binding of {sup 3}HNBMPR. Dilazep, dipyridamole, and mioflazine were effective inhibitors of both {sup 3}HNBMPR dissociation and equilibrium binding. The lidoflazine analogue R75231, on the other hand, had no effect on the rate of dissociation of {sup 3}HNBMPR at concentrations below 300 microM, even though it was one of the most potent inhibitors of {sup 3}HNBMPR binding tested (Ki less than 100 nM). In contrast, a series of natural substrates for the nucleoside transport system enhanced the rate of dissociation of {sup 3}HNBMPR with an order of effectiveness that paralleled their relative affinities for the permeant site of the transporter. The most effective enhancers of {sup 3}HNBMPR dissociation, however, were the benzodiazepines diazepam, chlordiazepoxide, and triazolam.

  16. Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor*

    OpenAIRE

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J.; Madjidi, Azadeh; Jacob E Corn; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M.; Allan, Bernard B.

    2013-01-01

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the ext...

  17. Allosteric regulation of phenylalanine hydroxylase.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2012-03-15

    The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.

  18. Allosteric Regulation of Phenylalanine Hydroxylase

    OpenAIRE

    Fitzpatrick, Paul F.

    2011-01-01

    The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.

  19. Structures of pyruvate kinases display evolutionarily divergent allosteric strategies.

    Science.gov (United States)

    Morgan, Hugh P; Zhong, Wenhe; McNae, Iain W; Michels, Paul A M; Fothergill-Gilmore, Linda A; Walkinshaw, Malcolm D

    2014-09-01

    The transition between the inactive T-state (apoenzyme) and active R-state (effector bound enzyme) of Trypanosoma cruzi pyruvate kinase (PYK) is accompanied by a symmetrical 8° rigid body rocking motion of the A- and C-domain cores in each of the four subunits, coupled with the formation of additional salt bridges across two of the four subunit interfaces. These salt bridges provide increased tetramer stability correlated with an enhanced specificity constant (k cat/S 0.5). A detailed kinetic and structural comparison between the potential drug target PYKs from the pathogenic protists T. cruzi, T. brucei and Leishmania mexicana shows that their allosteric mechanism is conserved. By contrast, a structural comparison of trypanosomatid PYKs with the evolutionarily divergent PYKs of humans and of bacteria shows that they have adopted different allosteric strategies. The underlying principle in each case is to maximize (k cat/S 0.5) by stabilizing and rigidifying the tetramer in an active R-state conformation. However, bacterial and mammalian PYKs have evolved alternative ways of locking the tetramers together. In contrast to the divergent allosteric mechanisms, the PYK active sites are highly conserved across species. Selective disruption of the varied allosteric mechanisms may therefore provide a useful approach for the design of species-specific inhibitors.

  20. Structure and evolution of protein allosteric sites

    OpenAIRE

    Panjkovich, Alejandro

    2014-01-01

    La presente tesis estudia los sitios alostéricos desde una perspectiva estructural y evolutiva. La regulación alostérica es un aspecto fundamental de la vida a nivel molecular, ya que es el mecanismo más potente y frecuente en la regulación de la actividad proteica: mediante la unión de un ligando a un sitio que no es el sitio activo. Este fenómeno fue descrito por primera vez hace más de 50 años y desde entonces no ha dejado de captar la atención de la comunidad científica, llegando incluso ...

  1. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor.

    Science.gov (United States)

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J; Madjidi, Azadeh; Corn, Jacob E; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M; Allan, Bernard B

    2013-12-13

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.

  2. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP.

    Science.gov (United States)

    De Vos, Dirk; Xu, Ying; Aerts, Tony; Van Petegem, Filip; Van Beeumen, Jozef J

    2008-07-18

    Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.

  3. Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch

    Science.gov (United States)

    Wang, Wei; Jiang, Cheng; Zhang, Jinmai; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-01-01

    Riboswitches are a class of metabolism control elements mostly found in bacteria. Due to their fundamental importance in bacteria gene regulation, riboswitches have been proposed as antibacterial drug targets. Prequeuosine (preQ1) is the last free precursor in the biosynthetic pathway of queuosine that is crucial for translation efficiency and fidelity. However, the regulation mechanism for the preQ1 riboswitch remains unclear. Here we constructed fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in the bound riboswitch is distinctly different from that in the apo riboswitch. The community network indicates that the information freely transfers from the binding site of preQ1 to the expression platform of the P3 helix in the bound riboswitch and the P3 helix is a bottleneck in the apo riboswitch. Thus, a hypothesis of “preQ1-binding induced allosteric switching” is proposed to link riboswitch and translation regulation. The community networks of mutants support this hypothesis. Finally, a possible allosteric pathway of A50-A51-A52-U10-A11-G12-G56 was also identified based on the shortest path algorithm and confirmed by mutations and network perturbation. The novel fluctuation network analysis method can be used as a general strategy in studies of riboswitch structure-function relationship. PMID:27484311

  4. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis.

    Science.gov (United States)

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H; Hickson, Gilles R; Archambault, Vincent

    2014-10-27

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.

  5. Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core.

    Science.gov (United States)

    Kim, Elizabeth D; Buckley, Rebecca; Learman, Sarah; Richard, Jessica; Parke, Courtney; Worthylake, David K; Wojcik, Edward J; Walker, Richard A; Kim, Sunyoung

    2010-06-11

    Essential in mitosis, the human Kinesin-5 protein is a target for >80 classes of allosteric compounds that bind to a surface-exposed site formed by the L5 loop. Not established is why there are differing efficacies in drug inhibition. Here we compare the ligand-bound states of two L5-directed inhibitors against 15 Kinesin-5 mutants by ATPase assays and IR spectroscopy. Biochemical kinetics uncovers functional differences between individual residues at the N or C termini of the L5 loop. Infrared evaluation of solution structures and multivariate analysis of the vibrational spectra reveal that mutation and/or ligand binding not only can remodel the allosteric binding surface but also can transmit long range effects. Changes in L5-localized 3(10) helix and disordered content, regardless of substitution or drug potency, are experimentally detected. Principal component analysis couples these local structural events to two types of rearrangements in beta-sheet hydrogen bonding. These transformations in beta-sheet contacts are correlated with inhibitory drug response and are corroborated by wild type Kinesin-5 crystal structures. Despite considerable evolutionary divergence, our data directly support a theorized conserved element for long distance mechanochemical coupling in kinesin, myosin, and F(1)-ATPase. These findings also suggest that these relatively rapid IR approaches can provide structural biomarkers for clinical determination of drug sensitivity and drug efficacy in nucleotide triphosphatases.

  6. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    Science.gov (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  7. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  8. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  9. [G-protein-coupled receptors targeting: the allosteric approach].

    Science.gov (United States)

    Sebag, Julien A; Pantel, Jacques

    2012-10-01

    G-protein-coupled receptors (GPCR) are a major family of drug targets. Essentially all drugs targeting these receptors on the market compete with the endogenous ligand (agonists or antagonists) for binding the receptor. Recently, non-competitive compounds binding to distinct sites from the cognate ligand were documented in various classes of these receptors. These compounds, called allosteric modulators, generally endowed of a better selectivity are able to modulate specifically the endogenous signaling of the receptor. To better understand the promising potential of this class of GPCRs targeting compounds, this review highlights the properties of allosteric modulators, the strategies used to identify them and the challenges associated with the development of these compounds.

  10. The Allosteric Switching Mechanism in Bacteriophage MS2

    CERN Document Server

    Perkett, Matthew R

    2015-01-01

    In this article we use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopt different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We disc...

  11. Allosteric Activation of the Phosphoinositide Phosphatase Sac1 by Anionic Phospholipids

    Science.gov (United States)

    2012-01-01

    Sac family phosphoinositide phosphatases comprise an evolutionarily conserved family of enzymes in eukaryotes. Our recently determined crystal structure of the Sac phosphatase domain of yeast Sac1, the founding member of the Sac family proteins, revealed a unique conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. We now report a unique mechanism for the regulation of its phosphatase activity. Sac1 is an allosteric enzyme that can be activated by its product phosphatidylinositol or anionic phospholipid phosphatidylserine. The activation of Sac1 may involve conformational changes of the catalytic P-loop induced by direct binding with the regulatory anionic phospholipids in the large cationic catalytic groove. These findings highlight the fact that lipid composition of the substrate membrane plays an important role in the control of Sac1 function. PMID:22452743

  12. Local site effects in Kumamoto City revealed by the 2016 Kumamoto earthquake

    Science.gov (United States)

    Tsuno, Seiji; Korenaga, Masahiro; Okamoto, Kyosuke; Yamanaka, Hiroaki; Chimoto, Kosuke; Matsushima, Takeshi

    2017-03-01

    To evaluate local site effects in Kumamoto City, we installed six temporary seismic stations along a 6-km north-south survey line in the city immediately after the 2016 Kumamoto earthquake foreshock (Mj 6.4), which occurred on April 14, 2016. Seismic data from the 2016 Kumamoto earthquake (Mj 7.3), which occurred on April 16, 2016, were successfully recorded at two sites and indicated large amplitudes in the frequency range of 0.5-3 Hz. Site amplifications estimated from weak ground motion data, with a station at Mt. Kinbo used as a reference, are relatively variable along this survey line; however, site amplification factors in the frequency range of 0.5-3 Hz are not large enough to explain the amplitudes produced by the main shock. Nevertheless, site amplifications estimated from strong ground motion data recorded at the two sites during the main shock are large in the frequency range of 1-3 Hz. These findings reveal that the strong ground motions in the frequency range of 1-3 Hz were enhanced by nonlinear behavior of the subsurface soil in Kumamoto City. Moreover, it is observed that the frequency contents of the main shock data in the frequency range of 0.7-3 Hz differ significantly between the two sites, despite the proximity of these sites (600-m interval). Therefore, we also performed single-station microtremor measurements with an interval distance of approximately 100 m between these two sites. We confirmed that the peak frequencies of the horizontal-to-vertical spectral ratios of microtremors have trends that are similar to those of the site amplification factors between the two sites. However, these results could not explain the differences in strong ground motions observed at the two sites during the 2016 Kumamoto earthquake.[Figure not available: see fulltext.

  13. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain.

    Science.gov (United States)

    Burgess, Selena G; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W; Vernos, Isabelle; Matthews, David; Bayliss, Richard

    2016-07-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.

  14. Preclinical pharmacokinetic and toxicological evaluation of MIF-1 peptidomimetic, PAOPA: examining the pharmacology of a selective dopamine D2 receptor allosteric modulator for the treatment of schizophrenia.

    Science.gov (United States)

    Tan, Mattea L; Basu, Dipannita; Kwiecien, Jacek M; Johnson, Rodney L; Mishra, Ram K

    2013-04-01

    Schizophrenia is a mental illness characterized by a breakdown in cognition and emotion. Over the years, drug treatment for this disorder has mainly been compromised of orthosteric ligands that antagonize the active site of the dopamine D2 receptor. However, these drugs are limited in their use and often lead to the development of adverse movement and metabolic side effects. Allosteric modulators are an emerging class of therapeutics with significant advantages over orthosteric ligands, including an improved therapeutic and safety profile. This study investigates our newly developed allosteric modulator, PAOPA, which is a specific modulator of the dopamine D2 receptor. Previous studies have shown PAOPA to attenuate schizophrenia-like behavioral abnormalities in preclinical models. To advance this newly developed allosteric drug from the preclinical to clinical stage, this study examines the pharmacokinetic behavior and toxicological profile of PAOPA. Results from this study prove the effectiveness of PAOPA in reaching the implicated regions of the brain for therapeutic action, particularly the striatum. Pharmacokinetic parameters of PAOPA were found to be comparable to current market antipsychotic drugs. Necropsy and histopathological analyses showed no abnormalities in all examined organs. Acute and chronic treatment of PAOPA indicated no movement abnormalities commonly found with the use of current typical antipsychotic drugs. Moreover, acute and chronic PAOPA treatment revealed no hematological or metabolic abnormalities classically found with the use of atypical antipsychotic drugs. Findings from this study demonstrate a better safety profile of PAOPA, and necessitates the progression of this newly developed therapeutic for the treatment of schizophrenia.

  15. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  16. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention...... in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many theoretical advantages over their orthosteric counterparts, including more complex modes of action, improved...... safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge...

  17. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Science.gov (United States)

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  18. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs).

    Science.gov (United States)

    Kuduk, Scott D; Beshore, Douglas C

    2014-01-01

    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  19. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  20. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    Science.gov (United States)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  1. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate;

    2012-01-01

    ,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals...... that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle...

  2. Characteristic features of kynurenine aminotransferase allosterically regulated by (alpha-ketoglutarate in cooperation with kynurenine.

    Directory of Open Access Journals (Sweden)

    Ken Okada

    Full Text Available Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT, which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN to kynurenic acid (KYNA. We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5'-phosphate (PLP, KYN and α-ketoglutaric acid (2OG or oxaloacetic acid (OXA. 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor.

  3. Allosteric regulation of deubiquitylase activity through ubiquitination

    Directory of Open Access Journals (Sweden)

    Serena eFaggiano

    2015-02-01

    Full Text Available Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

  4. Synthesis and biological evaluation of indole-2-carboxamides bearing photoactivatable functionalities as novel allosteric modulators for the cannabinoid CB1 receptor.

    Science.gov (United States)

    Qiao, Chang-Jiang; Ali, Hamed I; Ahn, Kwang H; Kolluru, Srikanth; Kendall, Debra A; Lu, Dai

    2016-10-04

    5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ORG27569, 1) is a prototypical allosteric modulator for the cannabinoid CB1 receptor. Based on this indole-2-carboxamide scaffold, we designed and synthesized novel CB1 allosteric modulators that possess photoactivatable functionalities, which include benzophenone, phenyl azide, aliphatic azide and phenyltrifluoromethyldiazrine. To assess their allosteric effects, the dissociation constant (KB) and allosteric binding cooperativity factor (α) were determined and compared to their parent compounds. Within this series, benzophenone-containing compounds 26 and 27, phenylazide-containing compound 28, and the aliphatic azide containing compound 36b showed allosteric binding parameters (KB and α) comparable to their parent compound 1, 7, 8, and 9, respectively. We further assessed these modulators for their impact on G-protein coupling activity. Interestingly, these compounds exhibited negative allosteric modulator properties in a manner similar to their parent compounds, which antagonize agonist-induced G-protein coupling. These novel CB1 allosteric modulators, possessing photoactivatable functionalities, provide valuable tools for future photo-affinity labeling and mapping the CB1 allosteric binding site(s).

  5. Allosteric modulation of ATP-gated P2X receptor channels

    Science.gov (United States)

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  6. Bioinformatic scaling of allosteric interactions in biomedical isozymes

    Science.gov (United States)

    Phillips, J. C.

    2016-09-01

    Allosteric (long-range) interactions can be surprisingly strong in proteins of biomedical interest. Here we use bioinformatic scaling to connect prior results on nonsteroidal anti-inflammatory drugs to promising new drugs that inhibit cancer cell metabolism. Many parallel features are apparent, which explain how even one amino acid mutation, remote from active sites, can alter medical results. The enzyme twins involved are cyclooxygenase (aspirin) and isocitrate dehydrogenase (IDH). The IDH results are accurate to 1% and are overdetermined by adjusting a single bioinformatic scaling parameter. It appears that the final stage in optimizing protein functionality may involve leveling of the hydrophobic limits of the arms of conformational hydrophilic hinges.

  7. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins*

    Science.gov (United States)

    Yao, Xin-Qiu; Malik, Rabia U.; Griggs, Nicholas W.; Skjærven, Lars; Traynor, John R.; Sivaramakrishnan, Sivaraj; Grant, Barry J.

    2016-01-01

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. PMID:26703464

  8. Theoretical Study on the Allosteric Regulation of an Oligomeric Protease from Pyrococcus horikoshii by Cl− Ion

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2014-02-01

    Full Text Available The thermophilic intracellular protease (PH1704 from Pyrococcus horikoshii that functions as an oligomer (hexamer or higher forms has proteolytic activity and remarkable stability. PH1704 is classified as a member of the C56 family of peptidases. This study is the first to observe that the use of Cl− as an allosteric inhibitor causes appreciable changes in the catalytic activity of the protease. Theoretical methods were used for further study. Quantum mechanical calculations indicated the binding mode of Cl− with Arg113. A molecular dynamics simulation explained how Cl− stabilized distinct contact species and how it controls the enzyme activity. The new structural insights obtained from this study are expected to stimulate further biochemical studies on the structures and mechanisms of allosteric proteases. It is clear that the discovery of new allosteric sites of the C56 family of peptidases may generate opportunities for pharmaceutical development and increases our understanding of the basic biological processes of this peptidase family.

  9. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A Structural Perspective of Ligands and Mutants

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G

    2015-01-01

    modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different m...

  10. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  11. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang; (NU Sinapore); (Nankai); (Oxford); (Chinese Aca. Sci.); (Tsinghua)

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  12. Recent CR1 non-LTR retrotransposon activity in coscoroba reveals an insertion site preference

    Directory of Open Access Journals (Sweden)

    Quinn Thomas W

    2008-11-01

    Full Text Available Abstract Background Chicken repeat 1 (CR1 is a taxonomically widespread non-LTR retrotransposon. Insertion site bias, or lack thereof, has not been demonstrated for CR1. Recent CR1 retrotranspositions were used to examine flanking regions for GC content and nucleotide bias at the insertion site. Results Elucidation of the exact octomer repeat sequence (TTCTGTGA allowed for the identification of younger insertion events. The number of octomer repeats associated with a CR1 element increases after insertion with CR1s having one octomer being youngest. These young CR1s are flanked by regions of low GC content (38%. Furthermore, a bias for specific bases within the first four positions at the site of insertion was revealed. Conclusion This study focused on those loci where the insertion event has been most recent, as this would tend to minimize noise introduced by post-integration mutational events. Our data suggest that CR1 is not inserting into regions of higher GC content within the coscoroba genome; but rather, preferentially inserting into regions of lower GC content. Furthermore, there appears to be a base preference (TTCT for the insertion site. The results of this study increase the current level of understanding regarding the elusive CR1 non-LTR retrotransposon.

  13. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.

    Science.gov (United States)

    Ozsolak, Fatih; Kapranov, Philipp; Foissac, Sylvain; Kim, Sang Woo; Fishilevich, Elane; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-12-10

    The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.

  14. Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity.

    Science.gov (United States)

    Axarli, Irine; Muleta, Abdi W; Vlachakis, Dimitrios; Kossida, Sophia; Kotzia, Georgia; Maltezos, Anastasios; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2016-03-01

    A library of Tau class GSTs (glutathione transferases) was constructed by DNA shuffling using the DNA encoding the Glycine max GSTs GmGSTU2-2, GmGSTU4-4 and GmGSTU10-10. The parental GSTs are >88% identical at the sequence level; however, their specificity varies towards different substrates. The DNA library contained chimaeric structures of alternated segments of the parental sequences and point mutations. Chimaeric GST sequences were expressed in Escherichia coli and their enzymatic activities towards CDNB (1-chloro-2,4-dinitrobenzene) and the herbicide fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether) were determined. A chimaeric clone (Sh14) with enhanced CDNB- and fluorodifen-detoxifying activities, and unusual co-operative kinetics towards CDNB and fluorodifen, but not towards GSH, was identified. The structure of Sh14 was determined at 1.75 Å (1 Å=0.1 nm) resolution in complex with S-(p-nitrobenzyl)-glutathione. Analysis of the Sh14 structure showed that a W114C point mutation is responsible for the altered kinetic properties. This was confirmed by the kinetic properties of the Sh14 C114W mutant. It is suggested that the replacement of the bulky tryptophan residue by a smaller amino acid (cysteine) results in conformational changes of the active-site cavity, leading to enhanced catalytic activity of Sh14. Moreover, the structural changes allow the strengthening of the two salt bridges between Glu(66) and Lys(104) at the dimer interface that triggers an allosteric effect and the communication between the hydrophobic sites.

  15. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes.

    Science.gov (United States)

    Nowosinski, Karol; von Krbek, Larissa K S; Traulsen, Nora L; Schalley, Christoph A

    2015-10-16

    A detailed thermodynamic analysis of the axle-wheel binding in di- and trivalent secondary ammonium/[24]crown-8 pseudorotaxanes is presented. Isothermal titration calorimetry (ITC) data and double mutant cycle analyses reveal an interesting interplay of positive as well as negative allosteric and positive chelate cooperativity thus providing profound insight into the effects governing multivalent binding in these pseudorotaxanes.

  16. Protonation sites of isolated fluorobenzene revealed by IR spectroscopy in the fingerprint range.

    Science.gov (United States)

    Dopfer, Otto; Solcà, Nicola; Lemaire, Joel; Maitre, Philippe; Crestoni, Maria-Elisa; Fornarini, Simonetta

    2005-09-08

    Protonated fluorobenzene ions (C6H6F+) are produced by chemical ionization of C6H5F in the cell of a FT-ICR mass spectrometer using either CH5+ or C2H5+. The resulting protonation sites are probed by IR multiphoton dissociation (IRMPD) spectroscopy in the 600-1700 cm-1 fingerprint range employing the free electron laser at CLIO (Centre Laser Infrarouge Orsay). Comparison with quantum chemical calculations reveals that the IRMPD spectra are consistent with protonation in para and/or ortho position, which are the thermodynamically favored protonation sites. The lack of observation of protonation at the F substituent, when CH5+ is used as protonating agent, is attributed to the low-pressure conditions in the ICR cell where the ions are produced. Comparison of the C6H6F+ spectrum with IR spectra of C6H5F and C6H7+ reveals the effects of both protonation and H F substitution on the structural properties of these fundamental aromatic molecules.

  17. Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chenqimogou site, located at the south bank of Tao River, is comprised of a large group of graves dated to ~4000 a BP. For its large scale, unique mortuary system, and abundant of typical artifacts, the site was named one of "Top Ten Archaeological Discoveries of 2008 in China". Many intact human skeletons have been excavated from the graves. Three teeth from two adult skeletons excavated from graves M187 and M194 were examined. Forty-eight starch grains were retrieved from dental calculus of three teeth. Six of those starch grains could not be identified because of damage. The others were classified into seven groups. Most of them were from wheat (Triticum aestivum) and/or barley (Hordeum vulgare). Remains possibly from foxtail millet (Setaria italica), buckwheat (Fagopyrum esculentum), gingkgo (Ginkgo biloba), acorn (Quercus spp.), bean, roots or tubers were identified. Ancient starch grains from dental calculus indicate that human foodstuffs primarily sourced from wheat, buckwheat, and foxtail millet. Acorn, beans, tubers or roots were supplements. A variety of starch grains retrieved from dental calculus revealed that diverse crops were cultivated in the Chenqimogou site 4000 years ago, and both dry-land farming and gathering were engaged.

  18. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

    Science.gov (United States)

    Noetzel, Meredith J; Rook, Jerri M; Vinson, Paige N; Cho, Hyekyung P; Days, Emily; Zhou, Y; Rodriguez, Alice L; Lavreysen, Hilde; Stauffer, Shaun R; Niswender, Colleen M; Xiang, Zixiu; Daniels, J Scott; Jones, Carrie K; Lindsley, Craig W; Weaver, C David; Conn, P Jeffrey

    2012-02-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu(5)-expressing cell lines. All mGlu(5) PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu(5) pure PAMs that are devoid of detectable agonist activity and structurally related mGlu(5) ago-PAMs that activate mGlu(5) alone in cell lines. Studies of mGlu(5) PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu(5) receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu(5) PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu(5) PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.

  19. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.

    Science.gov (United States)

    Mathieu, Valéry; Fastrez, Jacques; Soumillion, Patrice

    2010-09-01

    In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.

  20. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    Directory of Open Access Journals (Sweden)

    Nadine Veith

    Full Text Available Pyruvate kinase (PYK is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric

  1. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors.

    Science.gov (United States)

    Croy, Carrie H; Schober, Douglas A; Xiao, Hongling; Quets, Anne; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    The M(4) receptor is a compelling therapeutic target, as this receptor modulates neural circuits dysregulated in schizophrenia, and there is clinical evidence that muscarinic agonists possess both antipsychotic and procognitive efficacy. Recent efforts have shifted toward allosteric ligands to maximize receptor selectivity and manipulate endogenous cholinergic and dopaminergic signaling. In this study, we present the pharmacological characterization of LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy] thieno[2,3-b]pyridine-2-carboxamide), a M(2)/M(4) receptor-selective positive allosteric modulator (PAM), chemically evolved from hits identified through a M4 allosteric functional screen. Although unsuitable as a therapeutic due to M(2) receptor cross-reactivity and, thus, potential cardiovascular liability, LY2119620 surpassed previous congeners in potency and PAM activity and broadens research capabilities through its development into a radiotracer. Characterization of LY2119620 revealed evidence of probe dependence in both binding and functional assays. Guanosine 5'-[γ-(35)S]-triphosphate assays displayed differential potentiation depending on the orthosteric-allosteric pairing, with the largest cooperativity observed for oxotremorine M (Oxo-M) LY2119620. Further [(3)H]Oxo-M saturation binding, including studies with guanosine-5'-[(β,γ)-imido]triphosphate, suggests that both the orthosteric and allosteric ligands can alter the population of receptors in the active G protein-coupled state. Additionally, this work expands the characterization of the orthosteric agonist, iperoxo, at the M(4) receptor, and demonstrates that an allosteric ligand can positively modulate the binding and functional efficacy of this high efficacy ligand. Ultimately, it was the M(2) receptor pharmacology and PAM activity with iperoxo that made LY2119620 the most suitable allosteric partner for the M(2) active-state structure recently solved

  2. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration

    Energy Technology Data Exchange (ETDEWEB)

    He, Huawei; Yang, Taehong; Terman, Jonathan R.; Zhang, Xuewu; (UTSMC)

    2010-01-20

    Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.

  3. Elastic network model of allosteric regulation in protein kinase PDK1

    Directory of Open Access Journals (Sweden)

    Williams Gareth

    2010-05-01

    Full Text Available Abstract Background Structural switches upon binding of phosphorylated moieties underpin many signalling networks. The ligand activation is a form of allosteric modulation of the protein, where the binding site is remote from the structural change in the protein. Recently this structural switch has been elegantly demonstrated with the crystallisation of the activated form of 3-phosphoinositide-dependent protein kinase-1 (PDK1. The purpose of the present work is to determine whether the allosteric coupling in PDK1 emerges at the level of a simple coarse grained model of protein dynamics. Results It is shown here that the allosteric effects of the agonist binding to the small lobe upon the activation loop in the large lobe of PDK1 are explainable within a simple 'ball and spring' elastic network model (ENM of protein dynamics. In particular, the model shows that the bound phospho peptide mimetic fluctuations have a high degree of correlation with the activation loop of PDK1. Conclusions The ENM approach to small molecule activation of proteins may offer a first pass predictive methodology where affinity is encoded in residues remote from the active site, and aid in the design of specific protein agonists that enhance the allosteric coupling and antagonist that repress it.

  4. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  5. Architecture and Co-Evolution of Allosteric Materials

    CERN Document Server

    Yan, Le; Brito, Carolina; Wyart, Matthieu

    2016-01-01

    We introduce a numerical scheme to evolve functional materials that can accomplish a specified mechanical task. In this scheme, the number of solutions, their spatial architectures and the correlations among them can be computed. As an example, we consider an "allosteric" task, which requires the material to respond specifically to a stimulus at a distant active site. We find that functioning materials evolve a less-constrained trumpet-shaped region connecting the stimulus and active sites and that the amplitude of the elastic response varies non-monotonically along the trumpet. As previously shown for some proteins, we find that correlations appearing during evolution alone are sufficient to identify key aspects of this design. Finally, we show that the success of this architecture stems from the emergence of soft edge modes recently found to appear near the surface of marginally connected materials. Overall, our in silico evolution experiment offers a new window to study the relationship between structure, ...

  6. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    Science.gov (United States)

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS.

  7. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor.

    Science.gov (United States)

    Pamplona, Fabricio A; Ferreira, Juliano; Menezes de Lima, Octávio; Duarte, Filipe Silveira; Bento, Allisson Freire; Forner, Stefânia; Villarinho, Jardel G; Bellocchio, Luigi; Bellochio, Luigi; Wotjak, Carsten T; Lerner, Raissa; Monory, Krisztina; Lutz, Beat; Canetti, Claudio; Matias, Isabelle; Calixto, João Batista; Marsicano, Giovanni; Guimarães, Marilia Z P; Takahashi, Reinaldo N

    2012-12-18

    Allosteric modulation of G-protein-coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A(4) is an endogenous allosteric enhancer of the CB(1) cannabinoid receptor. Lipoxin A(4) was detected in brain tissues, did not compete for the orthosteric binding site of the CB(1) receptor (vs. (3)H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating the effects of this endocannabinoid both in vitro and in vivo. In addition, lipoxin A(4) displayed a CB(1) receptor-dependent protective effect against β-amyloid (1-40)-induced spatial memory impairment in mice. The discovery of lipoxins as a class of endogenous allosteric modulators of CB(1) receptors may foster the therapeutic exploitation of the endocannabinoid system, in particular for the treatment of neurodegenerative disorders.

  8. Allosteric activation and contrasting properties of L-serine dehydratase types 1 and 2.

    Science.gov (United States)

    Chen, Shawei; Xu, Xiao Lan; Grant, Gregory A

    2012-07-01

    Bacterial L-serine dehydratases differ from mammalian L- and D-serine dehydratases and bacterial D-serine dehydratases by the presence of an iron-sulfur center rather than a pyridoxyl phosphate prosthetic group. They exist in two forms, types 1 and 2, distinguished by their sequence and oligomeric configuration. Both types contain an ASB domain, and the type 1 enzymes also contain an ACT domain in a tandem arrangement with the ASB domain like that in type 1 D-3-phosphoglycerate dehydrogenases (PGDHs). This investigation reveals striking kinetic differences between L-serine dehydratases from Bacillus subtilis (bsLSD, type 1) and Legionella pneumophila (lpLSD, type 2). lpLSD is activated by monovalent cations and inhibited by monovalent anions. bsLSD is strongly activated by cations, particularly potassium, and shows a mixed response to anions. Flouride is a competitive inhibitor for lpLSD but an apparent activator for bsLSD at low concentrations and an inhibitor at high concentrations. The reaction products, pyruvate and ammonia, also act as activators but to different extents for each type. Pyruvate activation is competitive with L-serine, but activation of the enzyme is not compatible with it simply competing for binding at the active site and suggests the presence of a second, allosteric site. Because activation can be eliminated by higher levels of L-serine, it may be that this second site is actually a second serine binding site. This is consistent with type 1 PGDH in which the ASB domain functions as a second site for substrate binding and activation.

  9. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design

    Science.gov (United States)

    Larsson, Andreas; Nordlund, Paer; Jansson, Anna; Anand, Ganesh S.

    2016-01-01

    A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). PMID:27253209

  10. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan

    2016-06-01

    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  11. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells

    Directory of Open Access Journals (Sweden)

    Anne L Fletcher

    2011-09-01

    Full Text Available Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  12. Site directed mutagenesis of StSUT1 reveals target amino acids of regulation and stability.

    Science.gov (United States)

    Krügel, Undine; Wiederhold, Elena; Pustogowa, Jelena; Hackel, Aleksandra; Grimm, Bernhard; Kühn, Christina

    2013-11-01

    Plant sucrose transporters (SUTs) are functional as sucrose-proton-cotransporters with an optimal transport activity in the acidic pH range. Recently, the pH optimum of the Solanum tuberosum sucrose transporter StSUT1 was experimentally determined to range at an unexpectedly low pH of 3 or even below. Various research groups have confirmed these surprising findings independently and in different organisms. Here we provide further experimental evidence for a pH optimum at physiological extrema. Site directed mutagenesis provides information about functional amino acids, which are highly conserved and responsible for this extraordinary increase in transport capacity under extreme pH conditions. Redox-dependent dimerization of the StSUT1 protein was described earlier. Here the ability of StSUT1 to form homodimers was demonstrated by heterologous expression in Lactococcus lactis and Xenopus leavis using Western blots, and in plants by bimolecular fluorescence complementation. Mutagenesis of highly conserved cysteine residues revealed their importance in protein stability. The accessibility of regulatory amino acid residues in the light of StSUT1's compartmentalization in membrane microdomains is discussed.

  13. Structure analysis reveals the flexibility of the ADAMTS-5 active site

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D. (Pfizer)

    2012-03-02

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

  14. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    Science.gov (United States)

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  15. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Buhrman, Greg; O; #8242; Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla (NCSU); (MCW); (BU)

    2012-09-17

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.

  16. Coarse-Grained Molecular Simulations of Allosteric Cooperativity

    CERN Document Server

    Nandigrami, Prithviraj

    2015-01-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two calcium ions to each domain of calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding is treated implicitly at the mean field level. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energy to the open and closed ensembles accurately describe...

  17. The cyclic di-nucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function

    Science.gov (United States)

    Precit, Mimi; Delince, Matthieu; Pensinger, Daniel; Huynh, TuAnh Ngoc; Jurado, Ashley R.; Goo, Young Ah; Sadilek, Martin; Iavarone, Anthony T.; Sauer, John-Demian; Tong, Liang; Woodward, Joshua J.

    2014-01-01

    SUMMARY Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected enzyme catalysis of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic di-nucleotide. PMID:25215494

  18. Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

    Directory of Open Access Journals (Sweden)

    Alessio Bocedi

    Full Text Available Human serum albumin (HSA, the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s. As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i of carbon monoxide (CO binding to ferrous human serum heme-albumin (HSA-heme-Fe(II by warfarin (WF, and (ii of WF binding to HSA-heme-Fe(II by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II, respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands. This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II. The HSA-heme-Fe(II populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i upon CO binding a conformational change of HSA-heme-Fe(II takes place (likely reflecting the displacement of an endogenous ligand by CO, and (ii CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II.

  19. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    Science.gov (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  20. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav;

    2016-01-01

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn(2+) (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site...

  1. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Raquel S Linheiro

    Full Text Available Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.

  2. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...... for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon...... sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites...

  3. Changes in BQCA Allosteric Modulation of [(3)H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations.

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-05-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [(3)H]pirenzepine binding. Surprisingly, there was no change in [(3)H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [(3)H]pirenzepine and [(3)H]NMS binding to human cortex and showed total [(3)H]pirenzepine and [(3)H]NMS binding was reduced by Zn(2+), acetylcholine displacement of [(3)H]NMS binding was enhanced by Mg(2+) and Zn(2+), acetylcholine displacement of [(3)H]pirenzepine was reduced by Mg(2+) and enhanced by Zn(2+), whereas BQCA effects on [(3)H]NMS, but not [(3)H]pirenzepine, binding was enhanced by Mg(2+) and Zn(2+). These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia.

  4. Convergent transmission of RNAi guide-target mismatch information across Argonaute internal allosteric network.

    Directory of Open Access Journals (Sweden)

    Thomas T Joseph

    Full Text Available In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the

  5. Convergent Transmission of RNAi Guide-Target Mismatch Information across Argonaute Internal Allosteric Network

    Science.gov (United States)

    Joseph, Thomas T.; Osman, Roman

    2012-01-01

    In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand “seed region” have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative

  6. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation.

    Science.gov (United States)

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-05-07

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.

  7. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.

    Directory of Open Access Journals (Sweden)

    Shuichi Takeda

    Full Text Available The actin capping protein (CP tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity. Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1. V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a

  8. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones.

    Science.gov (United States)

    Rousaki, Aikaterini; Miyata, Yoshinari; Jinwal, Umesh K; Dickey, Chad A; Gestwicki, Jason E; Zuiderweg, Erik R P

    2011-08-19

    Hsp70 (heat shock protein 70 kDa) chaperones are key to cellular protein homeostasis. However, they also have the ability to inhibit tumor apoptosis and contribute to aberrant accumulation of hyperphosphorylated tau in neuronal cells affected by tauopathies, including Alzheimer's disease. Hence, Hsp70 chaperones are increasingly becoming identified as targets for therapeutic intervention in these widely abundant diseases. Hsp70 proteins are allosteric machines and offer, besides classical active-site targets, also opportunities to target the mechanism of allostery. In this work, it is demonstrated that the action of the potent anticancer compound MKT-077 (1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride) occurs through a differential interaction with Hsp70 allosteric states. MKT-077 is therefore an "allosteric drug." Using NMR spectroscopy, we identify the compound's binding site on human HSPA8 (Hsc70). The binding pose is obtained from NMR-restrained docking calculations, subsequently scored by molecular-dynamics-based energy and solvation computations. Suggestions for the improvement of the compound's properties are made on the basis of the binding location and pose.

  9. Compact modeling of allosteric multisite proteins: application to a cell size checkpoint.

    Directory of Open Access Journals (Sweden)

    Germán Enciso

    2014-02-01

    Full Text Available We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously. As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a threshold indicating that sufficient growth has occurred.

  10. Archaeology. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago.

    Science.gov (United States)

    Smith, Oliver; Momber, Garry; Bates, Richard; Garwood, Paul; Fitch, Simon; Pallen, Mark; Gaffney, Vincent; Allaby, Robin G

    2015-02-27

    The Mesolithic-to-Neolithic transition marked the time when a hunter-gatherer economy gave way to agriculture, coinciding with rising sea levels. Bouldnor Cliff, is a submarine archaeological site off the Isle of Wight in the United Kingdom that has a well-preserved Mesolithic paleosol dated to 8000 years before the present. We analyzed a core obtained from sealed sediments, combining evidence from microgeomorphology and microfossils with sedimentary ancient DNA (sedaDNA) analyses to reconstruct floral and faunal changes during the occupation of this site, before it was submerged. In agreement with palynological analyses, the sedaDNA sequences suggest a mixed habitat of oak forest and herbaceous plants. However, they also provide evidence of wheat 2000 years earlier than mainland Britain and 400 years earlier than proximate European sites. These results suggest that sophisticated social networks linked the Neolithic front in southern Europe to the Mesolithic peoples of northern Europe.

  11. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level

    DEFF Research Database (Denmark)

    Danielsen, Jannie M R; Sylvestersen, Kathrine B; Bekker-Jensen, Simon;

    2011-01-01

    The covalent attachment of ubiquitin to proteins regulates numerous processes in eukaryotic cells. Here we report the identification of 753 unique lysine ubiquitylation sites on 471 proteins using higher-energy collisional dissociation on the LTQ Orbitrap Velos. In total 5756 putative ubiquitin...... substrates were identified. Lysine residues targeted by the ubiquitin-ligase system show no unique sequence feature. Surface accessible lysine residues located in ordered secondary regions, surrounded by smaller and positively charged amino acids are preferred sites of ubiquitylation. Lysine ubiquitylation...

  12. Does distant homology with Evf reveal a lipid binding site in Bacillus thuringiensis cytolytic toxins?

    Science.gov (United States)

    Rigden, Daniel J

    2009-05-19

    The Cry and Cyt classes of insecticidal toxins derived from the sporulating bacterium Bacillus thuringiensis are valuable substitutes for synthetic pesticides in agricultural contexts. Crystal structures and many biochemical data have provided insights into their molecular mechanisms, generally thought to involve oligomerization and pore formation, but have not localised the site on Cyt toxins responsible for selective binding of phospholipids containing unsaturated fatty acids. Here, distant homology between the structure of Cyt toxins and Erwinia virulence factor (Evf) is demonstrated which, along with sequence conservation analysis, allows a putative lipid binding site to be localised in the toxins.

  13. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites

    OpenAIRE

    Zahid, Henna; Miah, Layeque; Lau, Andy; Brochard, Lea; Hati, Debolina; Bui, T. T.; Drake, A. F.; Gor, Jayesh; Perkins, Stephen J.; McDermott, Lindsay C.

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigate...

  14. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    Science.gov (United States)

    Ahn, Seungkirl; Kahsai, Alem W.; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L.; Strachan, Ryan T.; Staus, Dean P.; Wingler, Laura M.; Sun, Lillian D.; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T.; Hansen, Gwenn M.; Burnett, Michael B.; Lamerdin, Jane E.; Bassoni, Daniel L.; Gavino, Bryant J.; Husemoen, Gitte; Olsen, Eva K.; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J.

    2017-01-01

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein–coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects. PMID:28130548

  15. NMR cross-correlated relaxation rates reveal ion coordination sites in DNA

    NARCIS (Netherlands)

    Fiala, R.; Spackova, N.; Foldynová-Trantírková, S.; Sponer, J.; Sklenár, V.; Trantirek, L.

    2011-01-01

    In this work, a novel NMR method for the identification of preferential coordination sites between physiologically relevant counterions and nucleic acid bases is demonstrated. In this approach, the NMR cross-correlated relaxation rates between the aromatic carbon chemical shift anisotropy and the pr

  16. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

    Science.gov (United States)

    Christopoulos, Arthur; Changeux, Jean-Pierre; Catterall, William A; Fabbro, Doriano; Burris, Thomas P; Cidlowski, John A; Olsen, Richard W; Peters, John A; Neubig, Richard R; Pin, Jean-Philippe; Sexton, Patrick M; Kenakin, Terry P; Ehlert, Frederick J; Spedding, Michael; Langmead, Christopher J

    2014-10-01

    Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.

  17. Allosteric reversion of Haemophilus influenzae β-carbonic anhydrase via a proline shift.

    Science.gov (United States)

    Hoffmann, Katherine M; Million-Perez, H Rachael; Merkhofer, Richard; Nicholson, Hilary; Rowlett, Roger S

    2015-01-20

    Haemophilus influenzae β-carbonic anhydrase (HICA) has been reverse-engineered in the allosteric site region to resemble the nonallosteric Pisum sativum enzyme in order to identify critical features of allostery and intersusbunit communication. Three variants (W39V/G41A, P48S/A49P, and W39V/G41A/P48S/A49P) were identified, through a comparison with a crystal structure of nonallosteric P. sativum β-carbonic anhydrase (PSCA, PDB 1EKJ ), to potentially revert HICA to a nonallosteric enzyme. The W39V/G41A and P48S/A49P mutations decreased the apparent kcat/Km proton dependence from 4 to 2 and 1, respectively, increasing the overall maximal kcat/Km to 16 ± 2 μM(-1) s(-1) (380% of wild type) and 17 ± 3 μM(-1) s(-1) (405% of wild type). The pKa values of the metal-bound water molecule based on the pH-rate profile kinetics (8.32 ± 0.04 for W39V/G41A and 8.3 ± 0.1 for P48S/A49P) were also slightly higher than that for the wild-type enzyme (7.74 ± 0.04). The P48S/A49P variant has lost all pH-rate cooperativity. The W39V/G41A/P48S/A49P variant's kinetics were unusual and were fit with a log-linear function with a slope 0.9 ± 0.2. The crystal structure of the W39V/G41A variant revealed an active site very similar to the T-state wild-type oligomer with bicarbonate trapped in the escort site. By contrast, the X-ray crystal structure of a proline shift variant (P48S/A49P) reveals that it has adopted an active site conformation nearly identical to that of nonallosteric β-carbonic anhydrase (R-state) for one chain, including a tight association with the dimer-exchanged N-terminal helices; the second chain in the asymmetric unit is associated in a biologically relevant oligomer, but it adopts a T-state conformation that is not capped by dimer-exchanged N-terminal helices. The hybrid R/T nature of HICA P48S/A49P structurally recapitulates the interruption of pH-rate cooperativity observed for this variant. Comparison of the conformations of the R and T chains of P48S/A49P

  18. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Science.gov (United States)

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  19. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.

    Science.gov (United States)

    Thomason, Maureen K; Bischler, Thorsten; Eisenbart, Sara K; Förstner, Konrad U; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay; Sharma, Cynthia M; Storz, Gisela

    2015-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.

  20. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques

    Indian Academy of Sciences (India)

    2017-01-01

    Allostery is a mechanism by which the activity of a large numberof proteins is regulated. It is manifested as a change inthe activity, either ligand binding or catalysis of one site of aprotein due to a ligand binding to another distinct site of theprotein. The allosteric effect is transduced by a change in thestructural properties of the protein. It has been traditionallyunderstood using either the concerted MWC (Monod,Wyman and Changeux) model, or the sequential KNF (Koshland,Nemethy and Filmer) model of structural changes. However,allostery is fundamentally a thermodynamic process andrequires an alteration in the enthalpy or entropy associatedwith the process.

  1. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    Energy Technology Data Exchange (ETDEWEB)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  2. A comprehensive immunoinformatics and target site study revealed the corner-stone toward Chikungunya virus treatment.

    Science.gov (United States)

    Hasan, Md Anayet; Khan, Md Arif; Datta, Amit; Mazumder, Md Habibul Hasan; Hossain, Mohammad Uzzal

    2015-05-01

    Recent concerning facts of Chikungunya virus (CHIKV); a Togaviridae family alphavirus has proved this as a worldwide emerging threat which causes Chikungunya fever and devitalizing arthritis. Despite severe outbreaks and lack of antiviral drug, a mere progress has been made regarding to an epitope-based vaccine designed for CHIKV. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites by using various immunoinformatics and docking simulation tools. Initially, whole proteome of CHIKV was retrieved from database and perused to identify the most immunogenic protein. Structural properties of the selected protein were analyzed. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell were checked for the selected protein. The peptide region spanning 9 amino acids from 397 to 405 and the sequence YYYELYPTM were found as the most potential B cell and T cell epitopes respectively. This peptide could interact with as many as 19 HLAs and showed high population coverage ranging from 69.50% to 84.94%. By using in silico docking techniques the epitope was further assessed for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post therapeutic strategy, three dimensional structure was predicted along with validation and verification that resulted in molecular docking study to identify the potential drug binding sites and suitable therapeutic inhibitor against targeted protein. Finally, pharmacophore study was also performed in quest of seeing potent drug activity. However, this computational epitope-based peptide vaccine designing and target site prediction against CHIKV opens up a new horizon which may be the prospective way in Chikungunya virus research; the results require validation by in vitro and in vivo

  3. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie;

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...

  4. Coarse-grained molecular simulations of allosteric cooperativity

    Science.gov (United States)

    Nandigrami, Prithviraj; Portman, John J.

    2016-03-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca2+ ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca2+ with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop's structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.

  5. Discovery & development of small molecule allosteric modulators of glycoprotein hormone receptors

    Directory of Open Access Journals (Sweden)

    Selvaraj G Nataraja

    2015-09-01

    Full Text Available Glycoprotein hormones, follicle-stimulating hormone (FSH, luteinizing hormone (LH, and thyroid stimulating hormone (TSH are heterodimeric proteins with a common subunit and hormone-specific subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G-protein coupled receptors (GPCR. FSH receptor (FSHR and LH receptor (LHR are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women & men respectively. TSH receptor (TSHR is expressed in thyroid cells and regulates the secretion of T3 & T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSH receptor and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical

  6. Mixture model of pottery decorations from Lake Chad Basin archaeological sites reveals ancient segregation patterns.

    Science.gov (United States)

    O'Brien, John D; Lin, Kathryn; MacEachern, Scott

    2016-03-30

    We present a new statistical approach to analysing an extremely common archaeological data type--potsherds--that infers the structure of cultural relationships across a set of excavation units (EUs). This method, applied to data from a set of complex, culturally heterogeneous sites around the Mandara mountains in the Lake Chad Basin, helps elucidate cultural succession through the Neolithic and Iron Age. We show how the approach can be integrated with radiocarbon dates to provide detailed portraits of cultural dynamics and deposition patterns within single EUs. In this context, the analysis supports ancient cultural segregation analogous to historical ethnolinguistic patterning in the region. We conclude with a discussion of the many possible model extensions using other archaeological data types.

  7. Allosteric Inhibition of Phosphoenolpyruvate Carboxylases is Determined by a Single Amino Acid Residue in Cyanobacteria

    Science.gov (United States)

    Takeya, Masahiro; Hirai, Masami Yokota; Osanai, Takashi

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme for CO2 fixation and primary metabolism in photosynthetic organisms including cyanobacteria. The kinetics and allosteric regulation of PEPCs have been studied in many organisms, but the biochemical properties of PEPC in the unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803 have not been clarified. In this study, biochemical analysis revealed that the optimum pH and temperature of Synechocystis 6803 PEPC proteins were 7.3 and 30 °C, respectively. Synechocystis 6803 PEPC was found to be tolerant to allosteric inhibition by several metabolic effectors such as malate, aspartate, and fumarate compared with other cyanobacterial PEPCs. Comparative sequence and biochemical analysis showed that substitution of the glutamate residue at position 954 with lysine altered the enzyme so that it was inhibited by malate, aspartate, and fumarate. PEPC of the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 was purified, and its activity was inhibited in the presence of malate. Substitution of the lysine at position 946 (equivalent to position 954 in Synechocystis 6803) with glutamate made Anabaena 7120 PEPC tolerant to malate. These results demonstrate that the allosteric regulation of PEPC in cyanobacteria is determined by a single amino acid residue, a characteristic that is conserved in different orders. PMID:28117365

  8. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 2. Fluorescence study.

    Science.gov (United States)

    Herman, Petr; Lee, J Ching

    2009-10-13

    The energetic landscape of the allosteric regulatory mechanism of rabbit muscle pyruvate kinase (RMPK) was characterized by isothermal titration calorimetry (ITC). Four novel insights were uncovered. (1) ADP exhibits a dual property. Depending on the temperature, ADP can regulate RMPK activity by switching the enzyme to either the R or T state. (2) The assumption that ligand binding to RMPK is state-dependent is only correct for PEP but not Phe and ADP. (3) The effect of pH on the regulatory behavior of RMPK is partly due to the complex pattern of proton release or absorption linked to the multiple linked equilibria which govern the activity of the enzyme. (4) The R T equilibrium is accompanied by a significant DeltaC(p), rendering RMPK most sensitive to temperature under physiological conditions. To rigorously test the validity of conclusions derived from the ITC data, in this study a fluorescence approach, albeit indirect, that tracks continuous structural perturbations was employed. Intrinsic Trp fluorescence of RMPK in the absence and presence of substrates phosphoenolpyruvate (PEP) and ADP, and the allosteric inhibitor Phe, was measured in the temperature range between 4 and 45 degrees C. For data analysis, the fluorescence data were complemented by ITC experiments to yield an extended data set allowing more complete characterization of the RMPK regulatory mechanism. Twenty-one thermodynamic parameters were derived to define the network of linked interactions involved in regulating the allosteric behavior of RMPK through global analysis of the ITC and fluorescent data sets. In this study, 27 independent curves with more than 1600 experimental points were globally analyzed. Consequently, the consensus results substantiate not only the conclusions derived from the ITC data but also structural information characterizing the transition between the active and inactive states of RMPK and the antagonism between ADP and Phe binding. The latter observation reveals a

  9. Discovery of Novel Thiophene-Based, Thumb Pocket 2 Allosteric Inhibitors of the Hepatitis C NS5B Polymerase with Improved Potency and Physicochemical Profiles.

    Science.gov (United States)

    Court, John J; Poisson, Carl; Ardzinski, Andrzej; Bilimoria, Darius; Chan, Laval; Chandupatla, Kishan; Chauret, Nathalie; Collier, Philip N; Das, Sanjoy Kumar; Denis, Francois; Dorsch, Warren; Iyer, Ganesh; Lauffer, David; L'Heureux, Lucille; Li, Pan; Luisi, Brian S; Mani, Nagraj; Nanthakumar, Suganthi; Nicolas, Olivier; Rao, B Govinda; Ronkin, Steven; Selliah, Subajini; Shawgo, Rebecca S; Tang, Qing; Waal, Nathan D; Yannopoulos, Constantin G; Green, Jeremy

    2016-07-14

    The hepatitis C viral proteins NS3/4A protease, NS5B polymerase, and NS5A are clinically validated targets for direct-acting antiviral therapies. The NS5B polymerase may be inhibited directly through the action of nucleosides or nucleotide analogues or allosterically at a number of well-defined sites. Herein we describe the further development of a series of thiophene carboxylate allosteric inhibitors of NS5B polymerase that act at the thumb pocket 2 site. Lomibuvir (1) is an allosteric HCV NS5B inhibitor that has demonstrated excellent antiviral activity and potential clinical utility in combination with other direct acting antiviral agents. Efforts to further explore and develop this series led to compound 23, a compound with comparable potency and improved physicochemical properties.

  10. Allosteric Regulation by a Critical Membrane

    CERN Document Server

    Kimchi, Ofer; Machta, Benjamin B

    2016-01-01

    Many of the processes that underly neural computation are carried out by ion channels embedded in the plasma membrane, a two-dimensional liquid that surrounds all cells. Recent experiments have demonstrated that this membrane is poised close to a liquid-liquid critical point in the Ising universality class. Here we use both exact and stochastic techniques on the lattice Ising model to explore the ramifications of proximity to criticality for proteins that are allosterically coupled to Ising composition modes. Owing to diverging generalized susceptibilities, such a protein's activity becomes strongly influenced by perturbations that influence the two relevant parameters of the critical point, especially the critical temperature. In addition, the protein's kinetics acquire a range of time scales from its surrounding membrane, naturally leading to non-Markovian dynamics.

  11. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  12. Starch grain analysis reveals function of grinding stone tools at Shangzhai site, Beijing

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoYan; YU JinCheng; LI HouYuan; CUI TianXing; GUO JingNing; GE QuanSheng

    2009-01-01

    Prehistoric groundstone tools including slabs (metate, mo-pan) and mullers (mano, mo-bang) are often considered to be tools that were used to process cereals in ancient China. Most archaeologists believe that groundstone tools are indicators of an agrarian economy. This study employed starch grain analysis to examine a slab and a muller excavated from the Shangzhai Site (7500--7000 cal a BP), Beijing. Identifiable starch grains recovered from the stone tools were classified into 9 genera and 12 species, most of which were from acorns and foxtail millets. Remains from the oak species Q. mongolicus, Q. acuttssima, and Q. dentate were identified as well as a few starch grains from broomcorn (Panicum miliaseum) and bean (Vigna sp.). Other starch grains were from unidenUfiable roots and grasses. A variety of starch grains indicates that the grinding stone tools were used to process not only cereals, but also other seeds or roots that had to be ground or husked, thus bringing into question the aforementioned cereal hypothesis. Because the numbers of starch grains from nuts and millets were so large, both gathering and cultivation might have been important economic patterns before 7000 years ago in Beijing area. Moreover, the starch remains are derived from plants that indicate that the paleoclimate of Beijing was wetter and warmer than today's.

  13. Starch grain analysis reveals function of grinding stone tools at Shangzhai site, Beijing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Prehistoric groundstone tools including slabs (metate, mo-pan) and mullers (mano, mo-bang) are often considered to be tools that were used to process cereals in ancient China. Most archaeologists believe that groundstone tools are indicators of an agrarian economy. This study employed starch grain analysis to examine a slab and a muller excavated from the Shangzhai Site (7500-7000 cal a BP), Beijing. Identifiable starch grains recovered from the stone tools were classified into 9 genera and 12 species, most of which were from acorns and foxtail millets. Remains from the oak species Q. mongolicus, Q. acuttssima, and Q. dentate were identified as well as a few starch grains from broomcorn (Panicum miliaseum) and bean (Vigna sp.). Other starch grains were from unidentifiable roots and grasses. A variety of starch grains indicates that the grinding stone tools were used to process not only cereals, but also other seeds or roots that had to be ground or husked, thus bringing into question the aforementioned cereal hypothesis. Because the numbers of starch grains from nuts and millets were so large, both gathering and cultivation might have been important economic patterns before 7000 years ago in Beijing area. Moreover, the starch remains are derived from plants that indicate that the paleoclimate of Beijing was wetter and warmer than today’s.

  14. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  15. The action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Hui; Wang, Wei; Zhao, Zhijing; Ge, Yali; Zhang, Jinsong; Yu, Daihua; Chai, Wei; Wu, Shengxi; Xu, Lixian

    2010-12-01

    Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessions. In session 1, the Observer's Assessment of Alertness/Sedation Scale was performed to evaluate asleep to awake/alert status. In session 2, images with blood oxygen level dependence contrast were obtained with echo-planar imaging on a 1.5-T Philips Gyroscan Magnetic Resonance System and analyzed. In both sessions, subjects were intravenously administered with saline (for 3 min) and then propofol (for 1.5 min) and saline again (for 10.5 min) with a constant speed infusion pump. Observer's Assessment of Alertness/Sedation Scale scoring showed that the subjects experienced conscious–sedative–unconscious–analepsia, which correlated well with the signal decreases in the anesthesia states. Propofol induced significant signal decreases in hypothalamus (18.2%±3.6%), frontal lobe (68.5%±11.2%), and temporal lobe (34.7%±6.1%). Additionally, the signals at these three sites were fulminant and changed synchronously. While in the thalamus, the signal decrease was observed in 5 of 10 of the subjects and the magnitude of decrease was 3.9%±1.6%. These results suggest that there is most significant inhibition in hypothalamus, frontal lobe, and temporal in propofol anesthesia and moderate inhibition in thalamus. These brain regions might be the targets of propofol anesthesia in human brain.

  16. High-Resolution Profiling of Drosophila Replication Start Sites Reveals a DNA Shape and Chromatin Signature of Metazoan Origins

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    2015-05-01

    Full Text Available At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  17. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.

    Science.gov (United States)

    Comoglio, Federico; Schlumpf, Tommy; Schmid, Virginia; Rohs, Remo; Beisel, Christian; Paro, Renato

    2015-05-05

    At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  18. Computational Investigation on the Allosteric Modulation of Androgen Receptor

    Institute of Scientific and Technical Information of China (English)

    OU Min-Rui; LI Jun-Qian

    2012-01-01

    Androgens have similar structures with different biological activities. To identify molecular determinants responsible for the activity difference, we have docked six steroidal androgens to the binding site or the surface of androgen receptor by using molecular docking with computational investigation. The energy was calculated respectively based on the QM (quantum mechanics) and MM (molecular mechanics) methods. The result shows that the allosteric modulation of androgen receptor plays an important role in the binding process between androgens and receptor. The open state receptor is less stable than the close state one, but the latter is more favorable for binding with androgens. It is worthy of note that when the androgen receptors binding or without binding with androgen are in close state, they are difficult to return to their open state. This phenomenon is an exception of the well known two-state model theory in which the two states are reversible. Whether the internal of close state androgen receptor has a combination of androgen or not, the androgen receptor surface can be combined with another androgen, and their surface binding energies could be very close. The result is consistent with the experimental observations, but this phenomenon of continuous combination from open state is also an exception of the two-state model theory.

  19. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry

    Science.gov (United States)

    McMillan, Kirk; Adler, Marc; Auld, Douglas S.; Baldwin, John J.; Blasko, Eric; Browne, Leslie J.; Chelsky, Daniel; Davey, David; Dolle, Ronald E.; Eagen, Keith A.; Erickson, Shawn; Feldman, Richard I.; Glaser, Charles B.; Mallari, Cornell; Morrissey, Michael M.; Ohlmeyer, Michael H. J.; Pan, Gonghua; Parkinson, John F.; Phillips, Gary B.; Polokoff, Mark A.; Sigal, Nolan H.; Vergona, Ronald; Whitlow, Marc; Young, Tish A.; Devlin, James J.

    2000-01-01

    Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies. PMID:10677491

  20. Salvinorin A: allosteric interactions at the mu-opioid receptor.

    Science.gov (United States)

    Rothman, Richard B; Murphy, Daniel L; Xu, Heng; Godin, Jonathan A; Dersch, Christina M; Partilla, John S; Tidgewell, Kevin; Schmidt, Matthew; Prisinzano, Thomas E

    2007-02-01

    Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.

  1. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2.

    Science.gov (United States)

    Lundström, L; Bissantz, C; Beck, J; Dellenbach, M; Woltering, T J; Wichmann, J; Gatti, S

    2017-02-16

    The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist (3)[H]-LY354740 and mGlu2 PAM (3)[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of (3)[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of (3)[H]-LY354740 binding sites. (3)[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr(3.40) and Asn(5.46). Also of remark, in the described experimental conditions S731A (Ser(5.42)) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity.

  2. Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies

    DEFF Research Database (Denmark)

    Mansari, Mostafa El; Wiborg, Ove; Mnie-Filali, Ouissame

    2006-01-01

    of escitalopram. This effect was suggested to occur via an allosteric modulation at the level of the 5-HT transporter. Using in-vitro binding assays at membranes from COS-1 cells expressing the human 5-HT transporter (hSERT) and in-vivo electrophysiological and microdialysis techniques in rats, the present study...... was directed at determining whether R-citalopram modifies the action of selective serotonin reuptake inhibitors (SSRIs) known to act on allosteric sites namely escitalopram, and to a lesser extent paroxetine, compared to fluoxetine, which has no affinity for these sites. In-vitro binding studies showed that R......-citalopram attenuated the association rates of escitalopram and paroxetine to the 5-HT transporter, but had no effect on the association rates of fluoxetine, venlafaxine or sertraline. In the rat dorsal raphe nucleus, R-citalopram (250 microg/kg i.v.) blocked the suppressant effect on neuronal firing activity of both...

  3. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have...... been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime...... example of intraprotein control of the electron-transfer rates by allosteric interactions....

  4. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, Sean W.; Horn, James R. (NIU)

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.

  5. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    OpenAIRE

    Chatzidaki, A.; D Oyley, J. M.; Gill-Thind, J. K.; Sheppard, T. D.; Millar, N S

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  6. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    OpenAIRE

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K.; Sheppard, Tom D; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  7. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    Science.gov (United States)

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.

  8. Site-to-site interdomain communication may mediate different loss-of-function mechanisms in a cancer-associated NQO1 polymorphism

    Science.gov (United States)

    Medina-Carmona, Encarnación; Neira, Jose L.; Salido, Eduardo; Fuchs, Julian E.; Palomino-Morales, Rogelio; Timson, David J.; Pey, Angel L.

    2017-01-01

    Disease associated genetic variations often cause intracellular enzyme inactivation, dysregulation and instability. However, allosteric communication of mutational effects to distant functional sites leading to loss-of-function remains poorly understood. We characterize here interdomain site-to-site communication by which a common cancer-associated single nucleotide polymorphism (c.C609T/p.P187S) reduces the activity and stability in vivo of NAD(P)H:quinone oxidoreductase 1 (NQO1). NQO1 is a FAD-dependent, two-domain multifunctional stress protein acting as a Phase II enzyme, activating cancer pro-drugs and stabilizing p53 and p73α oncosuppressors. We show that p.P187S causes structural and dynamic changes communicated to functional sites far from the mutated site, affecting the FAD binding site located at the N-terminal domain (NTD) and accelerating proteasomal degradation through dynamic effects on the C-terminal domain (CTD). Structural protein:protein interaction studies reveal that the cancer-associated polymorphism does not abolish the interaction with p73α, indicating that oncosuppressor destabilization largely mirrors the low intracellular stability of p.P187S. In conclusion, we show how a single disease associated amino acid change may allosterically perturb several functional sites in an oligomeric and multidomain protein. These results have important implications for the understanding of loss-of-function genetic diseases and the identification of novel structural hot spots as targets for pharmacological intervention. PMID:28291250

  9. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2015-07-07

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  10. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter

    2011-01-01

    The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects. In resista......The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects....... In resistance arteries, the long-lasting contractile effects can only be partly and reversibly relaxed by low-molecular-weight ET(A) antagonists (ERAs). However, the neuropeptide calcitonin-gene-related peptide selectively terminates binding of ET1 to ET(A). We propose that ET1 binds polyvalently to ET(A......) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  11. Ryanodine receptors: allosteric ion channel giants.

    Science.gov (United States)

    Van Petegem, Filip

    2015-01-16

    The endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR) form major intracellular Ca(2+) stores. Ryanodine receptors (RyRs) are large tetrameric ion channels in the SR and ER membranes that can release Ca(2+) upon triggering. With molecular masses exceeding 2.2MDa, they represent the pinnacle of ion channel complexity. RyRs have adopted long-range allosteric mechanisms, with pore opening resulting in conformational changes over 200Å away. Together with tens of protein and small molecule modulators, RyRs have adopted rich and complex regulatory mechanisms. Structurally related to inositol-1,4,5-trisphosphate receptors (IP3Rs), RyRs have been studied extensively using cryo-electron microscopy (cryo-EM). Along with more recent X-ray crystallographic analyses of individual domains, these have resulted in pseudo-atomic models. Over 500 mutations in RyRs have been linked to severe genetic disorders, which underscore their role in the contraction of cardiac and skeletal muscles. Most of these have been linked to gain-of-function phenotypes, resulting in premature or prolonged leak of Ca(2+) in the cytosol. This review outlines our current knowledge on the structure of RyRs at high and low resolutions, their relationship to IP3Rs, an overview of the most commonly studied regulatory mechanisms, and models that relate disease-causing mutations to altered channel function.

  12. Quantitative expression profiling guided by common retroviral insertion sites reveals novel and cell type–specific cancer genes in leukemia

    Science.gov (United States)

    Sauvageau, Martin; Miller, Michelle; Lemieux, Sébastien; Lessard, Julie; Hébert, Josée; Sauvageau, Guy

    2017-01-01

    Proviral insertional mutagenesis is a powerful tool for the discovery of cancer-associated genes. The ability of integrated proviruses to affect gene expression over long distances combined with the lack of methods to determine the expression levels of large numbers of genes in a systematic and truly quantitative manner have limited the identification of cancer genes by proviral insertional mutagenesis. Here, we have characterized a new model of proviral insertional mutagenesis-induced lymphoid tumors derived from Eed Polycomb group gene mutant mice and quantitatively determined the expression levels of all genes within 100 kb of 20 different retroviral common insertion sites (CISs) identified in these tumors. Using high-throughput quantitative reverse transcription–polymerase chain reaction (Q-RT-PCR), we document an average of 13 CIS-associated genes deregulated per tumor, half of which are leukemia subtype–specific, while the others are coordinately deregulated in the majority of tumors analyzed. Interestingly, we find that genes located distantly from common proviral integration sites are as frequently deregulated as proximal genes, with multiple genes affected per integration. Our studies reveal an unsuspected conservation in the group of genes deregulated among phenotypically similar subtypes of lymphoid leukemias, and suggest that identification of common molecular determinants of this disease is within reach. PMID:17906077

  13. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH.

    Science.gov (United States)

    Ksiazczyk, T; Taciak, M; Zwierzykowski, Z

    2010-01-01

    This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.

  14. In vitro binding of a radio-labeled positive allosteric modulator for metabotropic glutamate receptor subtype 5.

    Science.gov (United States)

    Zysk, John R; Spear, Nathan; Fieles, William; Stein, Mark M; Sygowski, Linda S; King, Megan M; Hoesch, Valerie; Hastings, Richard; Brockel, Becky; Do, Mylinh; Ström, Peter; Gadient, Reto; Chhajlani, Vijay; Elmore, Charles S; Maier, Donna L

    2013-03-01

    The positive allosteric modulator (PAM) binding site for metabotropic glutamate receptor subtype 5 (mGlu(5)) lacks a readily available radio-labeled tracer fordetailed structure-activity studies. This communication describes a selective mGlu(5) compound, 7-methyl-2-(4-(pyridin-2-yloxy)benzyl)-5-(pyridin-3-yl)isoindolin-1-one (PBPyl) that binds with high affinity to human mGlu(5) and exhibits functional PAM activity. Analysis of PBPyl by FLIPR revealed an EC(50) of 87 nM with an 89% effect in transfected HEK293 cells and an EC(50) of 81 nM with a 42% effect in rat primary neurons. PBPyl exhibited 5-fold higher functional selectivity for mGlu(5) in a full mGlu receptor panel. Unlabeled PBPyl was tested for specific binding using a liquid chromatography mass spectrometry (LC/MS/MS)-based filtration binding assay and exhibited 40% specific binding in recombinant membranes, a value higher than any candidate compound tested. In competition binding studies with [(3)H]MPEP, the mGlu(5) receptor negative allosteric modulator (NAM), PBPyl exhibited a k(i) value of 34 nM. PBPyl also displaced [(3)H]ABP688, a mGluR(5) receptor NAM, in tissue sections from mouse and rat brain using autoradiography. Areas of specific binding included the frontal cortex, striatum and nucleus accumbens. PBPyl was radiolabeled to a specific activity of 15 Ci/mmol and tested for specific binding in a filter plate format. In recombinant mGlu(5b) membranes, [(3)H] PBPyl exhibited saturable binding with a K(d) value of 18.6 nM. In competition binding experiments, [(3)H] PBPyl was displaced by high affinity mGlu(5) positive and negative modulators. Further tests showed that PBPyl displays less than optimal characteristics as an in vivo tool, including a high volume of distribution and ClogP, making it more suitable as an in vitro compound. However, as a first report of direct binding of an mGlu(5) receptor PAM, this study offers value toward the development of novel PET imaging agents for this important

  15. Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA.

    Science.gov (United States)

    Grossoehme, Nicholas E; Giedroc, David P

    2009-12-16

    The linked equilibria of an allosterically regulated protein are defined by the structures, residue-specific dynamics and global energetics of interconversion among all relevant allosteric states. Here, we use isothermal titration calorimetry (ITC) to probe the global thermodynamics of allosteric negative regulation of the binding of the paradigm ArsR-family zinc sensing repressor Staphylococcus aureus CzrA to the czr DNA operator (CzrO) by Zn(2+). Zn(2+) binds to the two identical binding sites on the free CzrA homodimer in two discernible steps. A larger entropic driving force Delta(-TDeltaS) of -4.7 kcal mol(-1) and a more negative DeltaC(p) characterize the binding of the first Zn(2+) relative to the second. These features suggest a modest structural transition in forming the Zn(1) state followed by a quenching of the internal dynamics on filling the second zinc site, which collectively drive homotropic negative cooperativity of Zn(2+) binding (Delta(DeltaG) = 1.8 kcal mol(-1)). Negative homotropic cooperativity also characterizes Zn(2+) binding to the CzrA*CzrO complex (Delta(DeltaG) = 1.3 kcal mol(-1)), although the underlying energetics are vastly different, with homotropic Delta(DeltaH) and Delta(-TDeltaS) values both small and slightly positive. In short, Zn(2+) binding to the complex fails to induce a large structural or dynamical change in the CzrA bound to the operator. The strong heterotropic negative linkage in this system (DeltaG(c)(t) = 6.3 kcal mol(-1)) therefore derives from the vastly different structures of the apo-CzrA and CzrA*CzrO reference states (DeltaH(c)(t) = 9.4 kcal mol(-1)) in a way that is reinforced by a global rigidification of the allosterically inhibited Zn(2) state off the DNA (TDeltaS(c)(t) = -3.1 kcal mol(-1), i.e., DeltaS(c)(t) > 0). The implications of these findings for other metalloregulatory proteins are discussed.

  16. Study on the Model for Regulation of the Allosteric Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    LI,Qian-Zhong(李前忠); LUO,Liao-Fu(罗辽复); ZHANG,Li-Rong(张利绒)

    2002-01-01

    The effects of activator molecule and repressive molecule on binding process between allosteric enzyme and substrate are disused by considering the heterotropic effect of the regulating molecule that binds to allosteric enzyme. A model of allosteric enzyme with heterotropic effect is presented. The cooperativity and anticooperativity in the regulation process are studied.

  17. A Molecular Dynamics Study of Allosteric Transitions in Leishmania mexicana Pyruvate Kinase.

    Science.gov (United States)

    Naithani, Ankita; Taylor, Paul; Erman, Burak; Walkinshaw, Malcolm D

    2015-09-15

    A comparative molecular dynamics analysis of the pyruvate kinase from Leishmania mexicana is presented in the absence and presence of the allosteric effector fructose 2,6-bisphosphate. Comparisons of the simulations of the large 240 kDa apo and holo tetramers show that binding of fructose 2,6-bisphosphate cools the enzyme and reduces dynamic movement, particularly of the B-domain. The reduced dynamic movement of the holo form traps the pyruvate kinase tetramer in its enzymatically active state with the B-domain acting as a lid to cover the active site. The simulations are also consistent with a transition of the mobile active-site α6' helix, which would adopt a helical conformation in the active R-state and a less structured coil conformation in the inactive T-state. Analysis of the rigid body motions over the trajectory highlights the concerted anticorrelated rigid body rocking motion of the four protomers, which drives the T to R transition. The transitions predicted by these simulations are largely consistent with the Monod-Wyman-Changeux model for allosteric activation but also suggest that rigidification or cooling of the overall structure upon effector binding plays an additional role in enzyme activation.

  18. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    Science.gov (United States)

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  19. X-Ray studies reveal lanthanide binding sites at the A/B5 interface of E. coli heat labile enterotoxin

    NARCIS (Netherlands)

    Sixma, Titia K.; Terwisscha van Scheltinga, Anke C.; Kalk, Kor H.; Zhou, Kangjing; Wartna, Ellen S.; Hol, Wim G.J.

    1992-01-01

    The crystal structure determination of heat labile enterotoxin (LT) bound to two different lanthanide ions, erbium and samarium, revealed two distinct ion binding sites in the interface of the A subunit and the B pentamer of the toxin. One of the interface sites is conserved in the very similar chol

  20. X-RAY STUDIES REVEAL LANTHANIDE BINDING-SITES AT THE A/B5 INTERFACE OF ESCHERICHIA-COLI HEAT LABILE ENTEROTOXIN

    NARCIS (Netherlands)

    SIXMA, TK; VANSCHELTINGA, ACT; KALK, KH; WARTNA, ES; HOL, WGJ

    1992-01-01

    The crystal structure determination of heat labile enterotoxin (LT) bound to two different lanthanide ions, erbium and samarium, revealed two distinct ion binding sites in the interface of the A subunit and the B pentamer of the toxin. One of the interface sites is conserved in the very similar chol

  1. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    Science.gov (United States)

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  2. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling

    Science.gov (United States)

    Lim, Siew Pheng; Noble, Christian Guy; Seh, Cheah Chen; Soh, Tingjin Sherryl; El Sahili, Abbas; Chan, Grace Kar Yarn; Lescar, Julien; Arora, Rishi; Benson, Timothy; Nilar, Shahul; Manjunatha, Ujjini; Wan, Kah Fei; Dong, Hongping; Xie, Xuping; Yokokawa, Fumiaki

    2016-01-01

    Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a “de novo” initiation mechanism. Crystal structures of the flavivirus RdRp revealed a “closed” conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the “GDD” active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed “N pocket”). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1–2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses. PMID:27500641

  3. How allosteric effectors can bind to the same protein residue and produce opposite shifts in the allosteric equilibrium.

    Science.gov (United States)

    Abraham, D J; Safo, M K; Boyiri, T; Danso-Danquah, R E; Kister, J; Poyart, C

    1995-11-21

    Monoaldehyde allosteric effectors of hemoglobin were designed, using molecular modeling software (GRID), to form a Schiff base adduct with the Val 1 alpha N-terminal nitrogens and interact via a salt bridge with Arg 141 alpha of the opposite subunit. The designed molecules were synthesized if not available. It was envisioned that the molecules, which are aldehyde acids, would produce a high-affinity hemoglobin with potential interest as antisickling agents similar to other aldehyde acids reported earlier. X-ray crystallographic analysis indicated that the aldehyde acids did bind as modeled de novo in symmetry-related pairs to the alpha subunit N-terminal nitrogens. However, oxygen equilibrium curves run on solutions obtained from T- (tense) state hemoglobin crystals of reacted effector molecules produced low-affinity hemoglobins. The shift in the allosteric equilibrium was opposite to that expected. We conclude that the observed shift in allosteric equilibrium was due to the acid group on the monoaldehyde aromatic ring that forms a salt bridge with the guanidinium ion of Arg 141 alpha on the opposite subunit. This added constraint to the T-state structure that ties two subunits across the molecular symmetry axis shifts the equilibrium further toward the T-state. We tested this idea by comparing aldehydes that form Schiff base interactions with the same Val 1 alpha residues but do not interact across the dimer subunit symmetry axis (a new one in this study with no acid group and others that have had determined crystal structures). The latter aldehydes shift the allosteric equilibrium toward the R-state. A hypothesis to predict the direction in shift of the allosteric equilibrium is made and indicates that it is not exclusively where the molecule binds but how it interacts with the protein to stabilize or destabilize the T- (tense) allosteric state.

  4. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    Science.gov (United States)

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  5. Functional Impact of Allosteric Agonist Activity of Selective Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 in Regulating Central Nervous System Function

    OpenAIRE

    Noetzel, Meredith J.; Rook, Jerri M.; Vinson, Paige N.; Cho, Hyekyung P.; Days, Emily; Zhou, Y.; Rodriguez, Alice L.; Lavreysen, Hilde; Stauffer, Shaun R.; Niswender, Colleen M.; Xiang, Zixiu; Daniels, J. Scott; Jones, Carrie K.; Lindsley, Craig W.; Weaver, C. David

    2012-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu5 PAMs act as pure PAMs, only potentiating mGlu5 responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu5-expressing cell lines....

  6. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency.

    Directory of Open Access Journals (Sweden)

    Lily Alvarez-Jaimes

    Full Text Available Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3 is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM, 3-[3,5-Bis(trifluoromethylphenyl]-1-(3,4-dichlorobenzyl-1-[2-(5-methoxy-1H-indol-3-ylethyl]urea (135PAM1. Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2 and R3/I5(NH2 with pEC50 values of 6.54 (6.46 to 6.64 and 6.07 (5.94 to 6.20, respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27 in the presence of a probe (10 nM concentration of relaxin-3(NH2. 135PAM1 does not compete for binding with the orthosteric radioligand, [(125I] R3I5 (amide, in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe

  7. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wupeng; Stone, Everett; Zhang, Yan Jessie

    2017-02-01

    Enzyme therapeutics that can degrade l-methionine (l-Met) are of great interest as numerous malignancies are exquisitely sensitive to l-Met depletion. To exhaust the pool of methionine in human serum, we previously engineered an l-Met-degrading enzyme based on the human cystathionine-γ-lyase scaffold (hCGL-NLV) to circumvent immunogenicity and stability issues observed in the preclinical application of bacterially derived methionine-γ-lyases. To gain further insights into the structure–activity relationships governing the chemistry of the hCGL-NLV lead molecule, we undertook a biophysical characterization campaign that captured crystal structures (2.2 Å) of hCGL-NLV with distinct reaction intermediates, including internal aldimine, substrate-bound, gem-diamine, and external aldimine forms. Curiously, an alternate form of hCGL-NLV that crystallized under higher-salt conditions revealed a locally unfolded active site, correlating with inhibition of activity as a function of ionic strength. Subsequent mutational and kinetic experiments pinpointed that a salt bridge between the phosphate of the essential cofactor pyridoxal 5'-phosphate (PLP) and residue R62 plays an important role in catalyzing β- and γ-eliminations. Our study suggests that solvent ions such as NaCl disrupt electrostatic interactions between R62 and PLP, decreasing catalytic efficiency.

  8. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Nissen, Silke [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Shah, Manesh B [ORNL; Pffifner, Susan [University of Tennessee, Knoxville (UTK); Hettich, Robert {Bob} L [ORNL; Loeffler, Frank E [ORNL

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  9. Allosteric analysis of glucocorticoid receptor-DNA interface induced by cyclic Py-Im polyamide: a molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yaru Wang

    Full Text Available BACKGROUND: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. CONCLUSIONS/SIGNIFICANCE: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a >4 Å widening of the DNA minor groove and a compression of the major groove by more than 4 Å as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression of DNA major groove surface causes GRDBD to move away from the DNA major groove with the initial average distance of ∼4 Å to the final average distance of ∼10 Å during 40 ns simulation course. Therefore, this study straightforward explores how small molecule targeting specific sites in the DNA minor groove disrupts the transcription factor-DNA interface in DNA major groove, and consequently modulates gene expression.

  10. An additional substrate binding site in a bacterial phenylalanine hydroxylase.

    Science.gov (United States)

    Ronau, Judith A; Paul, Lake N; Fuchs, Julian E; Corn, Isaac R; Wagner, Kyle T; Liedl, Klaus R; Abu-Omar, Mahdi M; Das, Chittaranjan

    2013-09-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.

  11. The structure and allosteric regulation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2011-09-01

    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy.

  12. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    DEFF Research Database (Denmark)

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona

    2016-01-01

    ) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates b2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located...... near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however...... cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions....

  13. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone.

    Science.gov (United States)

    Steinchen, Wieland; Schuhmacher, Jan S; Altegoer, Florian; Fage, Christopher D; Srinivasan, Vasundara; Linne, Uwe; Marahiel, Mohamed A; Bange, Gert

    2015-10-27

    Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named "(p)ppGpp"] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp-but not ppGpp-positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles.

  14. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface.

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-04-15

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl.

  15. Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function.

    Science.gov (United States)

    Hackos, David H; Lupardus, Patrick J; Grand, Teddy; Chen, Yelin; Wang, Tzu-Ming; Reynen, Paul; Gustafson, Amy; Wallweber, Heidi J A; Volgraf, Matthew; Sellers, Benjamin D; Schwarz, Jacob B; Paoletti, Pierre; Sheng, Morgan; Zhou, Qiang; Hanson, Jesse E

    2016-03-02

    To enhance physiological function of NMDA receptors (NMDARs), we identified positive allosteric modulators (PAMs) of NMDARs with selectivity for GluN2A subunit-containing receptors. X-ray crystallography revealed a binding site at the GluN1-GluN2A dimer interface of the extracellular ligand-binding domains (LBDs). Despite the similarity between the LBDs of NMDARs and AMPA receptors (AMPARs), GluN2A PAMs with good selectivity against AMPARs were identified. Potentiation was observed with recombinant triheteromeric GluN1/GluN2A/GluN2B NMDARs and with synaptically activated NMDARs in brain slices from wild-type (WT), but not GluN2A knockout (KO), mice. Individual GluN2A PAMs exhibited variable degrees of glutamate (Glu) dependence, impact on NMDAR Glu EC50, and slowing of channel deactivation. These distinct PAMs also exhibited differential impacts during synaptic plasticity induction. The identification of a new NMDAR modulatory site and characterization of GluN2A-selective PAMs provide powerful molecular tools to dissect NMDAR function and demonstrate the feasibility of a therapeutically desirable type of NMDAR enhancement.

  16. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    DEFF Research Database (Denmark)

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A;

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  17. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation.

    Science.gov (United States)

    Smith, Steven D; Bridou, Romain; Johs, Alexander; Parks, Jerry M; Elias, Dwayne A; Hurt, Richard A; Brown, Steven D; Podar, Mircea; Wall, Judy D

    2015-05-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative "cap helix" region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  18. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS genes.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Xue

    Full Text Available Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL class and the other is the CC-NBS-LRR (CNL class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL, reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL. Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.

  19. Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA.

    Science.gov (United States)

    Berndsen, Zachary T; Keller, Nicholas; Smith, Douglas E

    2015-01-20

    We report evidence for an unconventional type of allosteric regulation of a biomotor. We show that the genome-packaging motor of phage ϕ29 is regulated by a sensor that detects the density and conformation of the DNA packaged inside the viral capsid, and slows the motor by a mechanism distinct from the effect of a direct load force on the motor. Specifically, we show that motor-ATP interactions are regulated by a signal that is propagated allosterically from inside the viral shell to the motor mounted on the outside. This signal continuously regulates the motor speed and pausing in response to changes in either density or conformation of the packaged DNA, and slows the motor before the buildup of large forces resisting DNA confinement. Analysis of motor slipping reveals that the force resisting packaging remains low (<1 pN) until ∼ 70% and then rises sharply to ∼ 23 pN at high filling, which is a several-fold lower value than was previously estimated under the assumption that force alone slows the motor. These findings are consistent with recent studies of the stepping kinetics of the motor. The allosteric regulatory mechanism we report allows double-stranded DNA viruses to achieve rapid, high-density packing of their genomes by limiting the buildup of nonequilibrium load forces on the motor.

  20. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  1. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  2. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.

    Directory of Open Access Journals (Sweden)

    Sergio Zonszein

    Full Text Available The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P deaminase from Escherichia coli (EcGNPDA as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P. We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the

  3. Crystallographic and Fluorescence Studies of the Interaction of Haloalkane Dehalogenase with Halide Ions. Studies with Halide Compounds Reveal a Halide Binding Site in the Active Site

    NARCIS (Netherlands)

    VERSCHUEREN, KHG; Kingma, Jacob; ROZEBOOM, HJ; KALK, KH; JANSSEN, DB; DIJKSTRA, BW

    1993-01-01

    Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 catalyzes the conversion of 1,2-dichloroethane to 2-chloroethanol and chloride without use of oxygen or cofactors. The active site is situated in an internal cavity, which is accesible from the solvent, even in the crystal. Crystal structu

  4. An allosteric photoredox catalyst inspired by photosynthetic machinery.

    Science.gov (United States)

    Lifschitz, Alejo M; Young, Ryan M; Mendez-Arroyo, Jose; Stern, Charlotte L; McGuirk, C Michael; Wasielewski, Michael R; Mirkin, Chad A

    2015-03-30

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.

  5. Discovery of a novel allosteric modulator of 5-HT3 receptor

    DEFF Research Database (Denmark)

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B

    2012-01-01

    class of negative allosteric modulators of the 5HT3 receptors (5HT3Rs). PU02 (6[(1naphthylmethyl)thio]9Hpurine) is a potent and selective antagonist displaying IC50 values ~1 µM at 5-HT3Rs and substantially lower activities at other Cys-loop receptors. In an elaborate mutagenesis study of the 5HT3A...... receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)subunit and TM1 and TM2 in the (minus)subunit. The Ser248, Leu288, Ile290, Thr294 and Gly306 residues are identified as important...

  6. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    Energy Technology Data Exchange (ETDEWEB)

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  7. Allosteric process of human glucokinase conducive to fight against diabetes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ More than 200 million people worldwide have diabetes. In China alone, about 60 million people are suffering from the disease.Fortunately, scientists are pushing back its boundaries. For instance, a recent study by CAS researchers may shed new light on the treatment of the disease by making cutting-edge progress on studies of the allosteric process of human glucokinase, which has been published by the latest issue of the Proceedings of National Academy of Sciences.

  8. Novel bivalent positive allosteric modulators of AMPA receptor.

    Science.gov (United States)

    Lavrov, M I; Grigor'ev, V V; Bachurin, S O; Palyulin, V A; Zefirov, N S

    2015-01-01

    A positive allosteric modulator of AMPA receptors has been designed using computer-aided molecular modeling techniques. It possessed a record high experimentally confirmed potency in the picomolar concentration range and belongs to a new type of bivalent AMPA receptor ligands containing bicyclo[3.3.1]nonane scaffold. The suggested structure could serve as a basis for further optimization and development of drugs for the treatment of neurodegenerative diseases, cognition enhancement, and improvement of memory.

  9. Modeling the allosteric modulation of CCR5 function by Maraviroc.

    Science.gov (United States)

    Lagane, Bernard; Garcia-Perez, Javier; Kellenberger, Esther

    2013-01-01

    Maraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand that has recently been marketed for the treatment of HIV infected individuals. This review discusses recent molecular modeling studies of CCR5 by homology to CXC chemokine receptor 4, their contribution to the understanding of the allosteric mode of action of the inhibitor and their potential for the development of future drugs with improved efficiency and preservation of CCR5 biological functions.

  10. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    Science.gov (United States)

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  11. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via www.ab.wur.nl/sliderbio and set the stage for further investigations of protein-protein binding sites. To assess our method, we first show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next, we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light on evolutionary processes that shape protein-protein interaction networks.

  12. Use of binding enthalpy to drive an allosteric transition.

    Science.gov (United States)

    Brown, Patrick H; Beckett, Dorothy

    2005-03-01

    The Escherichia coli biotin repressor is an allosteric DNA binding protein and is activated by the small molecule bio-5'-AMP. Binding of this small molecule promotes transcription repression complex assembly between the repressor and the biotin operator of the biotin biosynthetic operon. The ability of the adenylate to activate the assembly process reflects its effect on biotin repressor dimerization. Thus concomitant with small molecule binding the free energy of repressor dimerization becomes more favorable by approximately -4 kcal/mol. The structural, dynamic, and energetic changes in the repressor monomer that accompany allosteric activation are not known. In this work the thermodynamics of binding of four allosteric activators to the repressor have been characterized by isothermal titration calorimetry. While binding of two of the effectors results in relatively modest activation of the dimerization process, binding of the other two small molecules, including the physiological effector, leads to large changes in repressor dimerization energetics. Results of the calorimetric measurements indicate that strong effector binding is accompanied by an enthalpically costly transition in the protein. This transition is "paid for" by the enthalpy that would have otherwise been realized from the formation of noncovalent bonds between the ligand and repressor monomer.

  13. Experimental conditions can obscure the second high-affinity site in LeuT.

    Science.gov (United States)

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-01-15

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated.

  14. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    Science.gov (United States)

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators.

  15. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    Science.gov (United States)

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring.

  16. Count trends for migratory Bald Eagles reveal differences between two populations at a spring site along the Lake Ontario shoreline.

    Science.gov (United States)

    Wright, Kyle R

    2016-01-01

    The recovery of Bald Eagles (Haliaeetus leucophalus), after DDT and other organochlorine insecticides were banned in the United States, can be regarded as one of the most iconic success stories resulting from the Endangered Species Act. Interest remains high in the recovery and growth of the Bald Eagle population. Common to evaluating growth and recovery rates are counts at nesting sites and analyses of individuals fledged per season. But this is merely one snapshot that ignores survival rates as eagles grow to maturity. By analyzing indices from migration counts, we get a different snapshot better reflecting the survival of young birds. Different populations of Bald Eagles breed at different sites at different times of the year. Typical migration count analyses do not separate the populations. A separation of two distinct populations can be achieved at spring count sites by taking advantage of the tendency for northern summer breeding birds to migrate north in spring earlier than southern winter breeding birds who disperse north later in spring. In this paper I analyze migratory indices at a spring site along Lake Ontario. The analysis shows that eagles considered to be primarily of the northern summer breeding population showed an estimated growth rate of 5.3 ± 0.85% (SE) per year with 49% of eagles tallied in adult plumage, whereas the migrants considered to be primarily of the southern breeding population had an estimated growth rate of 14.0 ± 1.79% with only 22% in adult plumage. Together these results argue that the populations of southern breeding Bald Eagles are growing at a substantially higher rate than northern breeding eagles. These findings suggest that aggregate population indices for a species at migration counting sites can sometimes obscure important differences among separate populations at any given site and that separating counts by time period can be a useful way to check for differences among sub-populations.

  17. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site.

    Directory of Open Access Journals (Sweden)

    Yuval Tabach

    Full Text Available BACKGROUND: Transcription factors (TF regulate expression by binding to specific DNA sequences. A binding event is functional when it affects gene expression. Functionality of a binding site is reflected in conservation of the binding sequence during evolution and in over represented binding in gene groups with coherent biological functions. Functionality is governed by several parameters such as the TF-DNA binding strength, distance of the binding site from the transcription start site (TSS, DNA packing, and more. Understanding how these parameters control functionality of different TFs in different biological contexts is a must for identifying functional TF binding sites and for understanding regulation of transcription. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a novel method to screen the promoters of a set of genes with shared biological function (obtained from the functional Gene Ontology (GO classification against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. More than 8,000 human (and 23,000 mouse genes, were assigned to one of 134 GO sets. Their promoters were searched (from 200 bp downstream to 1,000 bp upstream the TSS for 414 known DNA motifs. We optimized the sequence similarity score threshold, independently for every location window, taking into account nucleotide heterogeneity along the promoters of the target genes. The method, combined with binding sequence and location conservation between human and mouse, identifies with high probability functional binding sites for groups of functionally-related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were tested experimentally. CONCLUSIONS/SIGNIFICANCE: We identified reliably functional TF binding sites. This is an essential step towards constructing regulatory networks. The promoter region proximal to the TSS is of central

  18. Encoding the microtubule structure: Allosteric interactions between the microtubule +TIP complex master regulators and TOG-domain proteins

    Science.gov (United States)

    Grimaldi, Ashley D; Zanic, Marija; Kaverina, Irina

    2015-01-01

    Since their initial discovery, the intriguing proteins of the +TIP network have been the focus of intense investigation. Although many of the individual +TIP functions have been revealed, the capacity for +TIP proteins to regulate each other has not been widely addressed. Importantly, recent studies involving EBs, the master regulators of the +TIP complex, and several TOG-domain proteins have uncovered a novel mechanism of mutual +TIP regulation: allosteric interactions through changes in microtubule structure. These findings have added another level of complexity to the existing evidence on +TIP regulation and highlight the cooperative nature of the +TIP protein network. PMID:25895033

  19. Ion-Regulated Allosteric Binding of Fullerenes (C-60 and C-70) by Tetrathiafulvalene-Calix[4]pyrroles

    DEFF Research Database (Denmark)

    Davis, C. M.; Lim, J. M.; Larsen, K. R.

    2014-01-01

    crystal X-ray diffraction methods and in dichloromethane solution by means of continuous variation plots and UV-vis spectroscopic titrations. These analyses revealed a 1:1 stoichiometry between the anion-bound TTF-C4Ps and the complexed ftillerenes. The latter guests are bound within the bowl-like cup...... of the two test fullerenes by inducing a conformational change from the 1,3-alternate to the cone conformer of the TTF-C4Ps, thus acting as positive heterotropic allosteric effectors. For a particular halide anion, the choice of tetraalkylammonium salts serves to modulate the strength of the TTF-C4P...

  20. Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes.

    Science.gov (United States)

    Le Tallec, Benoît; Millot, Gaël Armel; Blin, Marion Esther; Brison, Olivier; Dutrillaux, Bernard; Debatisse, Michelle

    2013-08-15

    Cancer genomes exhibit numerous deletions, some of which inactivate tumor suppressor genes and/or correspond to unstable genomic regions, notably common fragile sites (CFSs). However, 70%-80% of recurrent deletions cataloged in tumors remain unexplained. Recent findings that CFS setting is cell-type dependent prompted us to reevaluate the contribution of CFS to cancer deletions. By combining extensive CFS molecular mapping and a comprehensive analysis of CFS features, we show that the pool of CFSs for all human cell types consists of chromosome regions with genes over 300 kb long, and different subsets of these loci are committed to fragility in different cell types. Interestingly, we find that transcription of large genes does not dictate CFS fragility. We further demonstrate that, like CFSs, cancer deletions are significantly enriched in genes over 300 kb long. We now provide evidence that over 50% of recurrent cancer deletions originate from CFSs associated with large genes.

  1. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers

    NARCIS (Netherlands)

    Zeuschner, D.; Geerts, W.J.C.; Donselaar, E. van; Humbel, B.M.; Slot, J.W.; Koster, A.J.; Klumperman, J.

    2006-01-01

    Transport from the endoplasmic reticulum (ER) to the Golgi complex requires assembly of the COPII coat complex at ER exit sites. Recent studies have raised the question as to whether in mammalian cells COPII coats give rise to COPIIcoated transport vesicles or instead form ER sub-domains that collec

  2. Interactome-Wide Prediction of Protein-Protein Binding Sites Reveals Effects of Protein Sequence Variation in Arabidopsis thaliana

    NARCIS (Netherlands)

    Valentim, F.L.; Neven, F.; Boyen, P.; Dijk, van A.D.J.

    2012-01-01

    The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in thos

  3. Structural and functional energetic linkages in allosteric regulation of muscle pyruvate kinase.

    Science.gov (United States)

    Lee, J Ching; Herman, Petr

    2011-01-01

    The understanding of the molecular mechanisms of allostery in rabbit muscle pyruvate kinase (RMPK) is still in its infancy. Although, there is a paucity of knowledge on the ground rules on how its functions are regulated, RMPK is an ideal system to address basic questions regarding the fundamental chemical principles governing the regulatory mechanisms about this enzyme which has a TIM (α/β)(8) barrel structural motif [Copley, R. R., and Bork, P. (2000). Homology among (βα)8 barrels: Implications for the evolution of metabolic pathways. J. Mol. Biol.303, 627-640; Farber, G. K., and Petsko, G. A. (1990). The evolution of α/ß barrel enzymes. Trends Biochem.15, 228-234; Gerlt, J. A., and Babbitt, P. C. (2001). Divergent evolution of enzymatic function: Mechanistically diverse superfamilies and functionally distinct superfamilies. Annu. Rev. Biochem.70, 209-246; Heggi, H., and Gerstein, M. (1999). The relationship between protein structure and function: A comprehensive survey with application to the yeast genome. J. Mol. Biol.288, 147-164; Wierenga, R. K. (2001). The TIM-barrel fold: A versatile framework for efficient enzymes. FEB Lett.492, 193-198]. RMPK is a homotetramer. Each subunit consists of 530 amino acids and multiple domains. The active site resides between the A and B domains. Besides the basic TIM-barrel motif, RMPK also exhibits looped-out regions in the α/β barrel of each monomer forming the B- and C-domains. The two isozymes of PK, namely, the kidney and muscle isozymes, exhibit very different allosteric behaviors under the same experimental condition. The only amino acid sequence differences between the mammalian kidney and muscle PK isozymes are located in the C-domain and are involved in intersubunit interactions. Thus, embedded in these two isozymes of PK are the rules involved in engineering the popular TIM (α/β)(8) motif to modulate its allosteric properties. The PK system exhibits a lot of the properties that will allow mining of the

  4. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Julien

    Full Text Available New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml(-1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664 reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.

  5. Allosteric activation of the 5-HT3AB receptor by mCPBG.

    Science.gov (United States)

    Miles, Timothy F; Lester, Henry A; Dougherty, Dennis A

    2015-04-01

    The 5-HT3AB receptor contains three A and two B subunits in an A-A-B-A-B order. However, serotonin function at the 5-HT3AB receptor has been shown to depend solely on the A-A interface present in the homomeric receptor. Using mutations at sites on both the primary (E122) and complementary (Y146) faces of the B subunit, we demonstrate that meta-chlorophenyl biguanide (mCPBG), a 5-HT3 selective agonist, is capable of binding to and activating the 5-HT3AB receptor at all five subunit interfaces of the heteromer. Further, mCPBG is capable of allosterically modulating the activity of serotonin from these sites. While these five binding sites are similar enough that they conform to a monophasic dose - response relationship, we uncover subtle differences in the heteromeric binding sites. We also find that the A-A interface appears to contribute disproportionately to the efficacy of 5-HT3AB receptor activation.

  6. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    Energy Technology Data Exchange (ETDEWEB)

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  7. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    Science.gov (United States)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  8. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    Science.gov (United States)

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  9. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    OpenAIRE

    Angelbeck-Schulze, Mandy; Mischke, Reinhard; Rohn, Karl; Hewicker-Trautwein, Marion; Naim, Hassan Y.; Bäumer, Wolfgang

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by ...

  10. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site.

    Science.gov (United States)

    Lamparter, Tilman; Michael, Norbert; Mittmann, Franz; Esteban, Berta

    2002-09-03

    Phytochromes are photochromic photoreceptors with a bilin chromophore that are found in plants and bacteria. The soil bacterium Agrobacterium tumefaciens contains two genes that code for phytochrome-homologous proteins, termed Agrobacterium phytochrome 1 and 2 (Agp1 and Agp2). To analyze its biochemical and spectral properties, Agp1 was purified from the clone of an E. coli overexpressor. The protein was assembled with the chromophores phycocyanobilin and biliverdin, which is the putative natural chromophore, to photoactive holoprotein species. Like other bacterial phytochromes, Agp1 acts as light-regulated His kinase. The biliverdin adduct of Agp1 represents a previously uncharacterized type of phytochrome photoreceptor, because photoreversion from the far-red absorbing form to the red-absorbing form is very inefficient, a feature that is combined with a rapid dark reversion. Biliverdin bound covalently to the protein; blocking experiments and site-directed mutagenesis identified a Cys at position 20 as the binding site. This particular position is outside the region where plant and some cyanobacterial phytochromes attach their chromophore and thus represents a previously uncharacterized binding site. Sequence comparisons imply that the region around Cys-20 is a ring D binding motif in phytochromes.

  11. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture .

    Science.gov (United States)

    Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E

    2013-11-05

    Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.

  12. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction.

    Science.gov (United States)

    Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N

    2007-07-01

    The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diametersKd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in

  13. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis.

    Science.gov (United States)

    Dombrauckas, Jill D; Santarsiero, Bernard D; Mesecar, Andrew D

    2005-07-12

    Four isozymes of pyruvate kinase are differentially expressed in human tissue. Human pyruvate kinase isozyme M2 (hPKM2) is expressed in early fetal tissues and is progressively replaced by the other three isozymes, M1, R, and L, immediately after birth. In most cancer cells, hPKM2 is once again expressed to promote tumor cell proliferation. Because of its almost ubiquitous presence in cancer cells, hPKM2 has been designated as tumor specific PK-M2, and its presence in human plasma is currently being used as a molecular marker for the diagnosis of various cancers. The X-ray structure of human hPKM2 complexed with Mg(2+), K(+), the inhibitor oxalate, and the allosteric activator fructose 1,6-bisphosphate (FBP) has been determined to a resolution of 2.82 A. The active site of hPKM2 is in a partially closed conformation most likely resulting from a ligand-induced domain closure promoted by the binding of FBP. In all four subunits of the enzyme tetramer, a conserved water molecule is observed on the 2-si face of the prospective enolate and supports the hypothesis that a proton-relay system is acting as the proton donor of the reaction (1). Significant structural differences among the human M2, rabbit muscle M1, and the human R isozymes are observed, especially in the orientation of the FBP-activating loop, which is in a closed conformation when FBP is bound. The structural differences observed between the PK isozymes could potentially be exploited as unique structural templates for the design of allosteric drugs against the disease states associated with the various PK isozymes, especially cancer and nonspherocytic hemolytic anemia.

  14. Allosteric modulation of neurotoxin binding to voltage-sensitive sodium channels by Ptychodiscus brevis toxin 2.

    Science.gov (United States)

    Sharkey, R G; Jover, E; Couraud, F; Baden, D G; Catterall, W A

    1987-03-01

    The effects of Ptychodiscus brevis toxin 2 (PbTx-2) on the binding of neurotoxins at four different neurotoxin receptor sites on voltage-sensitive sodium channels in rat brain synaptosomes were examined. Binding of saxitoxin at neurotoxin receptor site 1 and Leiurus quinquestriatus alpha-scorpion toxin (LqTx) at neurotoxin receptor site 3 was unaffected. PbTx-2 enhanced binding of batrachotoxinin A 20-alpha-benzoate (BTX-B) to neurotoxin receptor site 2 and Centruroides suffusus suffusus beta-scorpion toxin (CsTx II) to site 4 on sodium channels. These results support the proposal that PbTx-2 and related toxins act at a new receptor site (site 5) that has not been previously analyzed in binding experiments. Half-maximal effects of PbTx-2 were observed in the range of 20-50 nM PbTx-2. The enhancement of BTX-B binding was reduced by depolarization. Saturating concentrations of PbTx-2 reduced KD values for binding of BTX-B and CsTx-II 2.9-fold and 2.6-fold, respectively. The effects of PbTx-2 and LqTx in enhancing BTX-B binding were synergistic. A model involving both preferential binding of BTX-B, PbTx-2, LqTx, and CsTx II to active states of sodium channels and allosteric interactions among the four receptor sites at which these toxins act accommodates these and previous results.

  15. Revealing the ionization ability of binding site I of human serum albumin using 2-(2'-hydroxyphenyl)benzoxazole as a pH sensitive probe.

    Science.gov (United States)

    Abou-Zied, Osama K

    2012-02-28

    The ability of site I of human serum albumin (HSA) to bind medium sized molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, we show that this binding site has the ionization ability that may alter the drug structure during the process of its delivery. We reveal this ability by employing 2-(2'-hydroxyphenyl)benzoxazole (HBO) as a pH sensitive probe. Binding of HBO in site I is studied here at physiological pH 7.2 using steady-state and lifetime spectroscopic measurements, molecular docking and molecular dynamics (MD) simulation methods. The complex photophysics of HBO and the unique fluorescence signature of its anionic form indicate that, upon binding with HSA, the molecule exists in equilibrium between the anionic and the syn-keto forms. The position of HBO inside the binding site was determined experimentally by measuring the fluorescence quenching of W214, the sole tryptophan residue in HSA. The ionization degree of HBO inside the binding site was estimated to be close to the ionization degree of HBO in an aqueous solution of pH 10. This was concluded by comparing the fluorescence behavior of bound HBO to that of HBO in different solvents and in aqueous solutions of different pH values. Molecular docking and MD simulations show that HBO binds in site I close to W214, confirming the experimental results, and pinpoint the dominant role of hydrophobic interactions in the binding site. The formation of the anionic form is proposed to be due to through-space interaction between the OH group of HBO and both R222 and I290 with a binding mode similar to that of warfarin in site I. Comparison of the results with those of HBO mixed with key amino acids in solution indicates the importance of through-space interaction in the formation of the anion, similar to enzymatic reactions.

  16. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

    Directory of Open Access Journals (Sweden)

    Anoop Narayanan

    Full Text Available Expression of KdpFABC, a K(+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS via the winged helix-turn-helix type DNA binding domain (KdpE(DBD. Exploration of E. coli KdpE(DBD and kdpFABC(BS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.

  17. Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact.

    Science.gov (United States)

    Ikeda, Y; Noguchi, T

    1998-05-15

    Pyruvate kinase M2 isozyme mutants with amino acid substitutions in the subunit interface were prepared and characterized. The substitutions were made in the allosteric M2 isozyme by the corresponding residues of the nonallosteric M1 isozyme to identify the residue involved in the allosteric effects. The replacement of Cys-423 by Leu led to substantial loss of both homotropic and heterotropic allosteric effects while the substitutions at Phe-389, Arg-398, Ala-401, Pro-402, Thr-408, and Ile-427 did not. The altered kinetic properties of the Cys-423-substituted mutant resulted from the shift of the allosteric transition toward the active R-state since the mutant exhibits the allosteric properties in the presence of an allosteric inhibitor, L-phenylalanine. The inverse correlation between the hydrophobicity of residue 423 and the extent of stabilization of the R-state was found by analysis of mutants with un-ionizable amino acids at position 423. Furthermore, the modification of Cys-423 with methyl methanethiosulfonate led to a shift of the allosteric transition toward the R-state, probably the result of increased hydrophobicity of the residue. These results suggest that Cys-423 is involved in the allosteric regulation of the enzyme through hydrophobic interactions.

  18. Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands.

    Science.gov (United States)

    Feldman, Hannah C; Tong, Michael; Wang, Likun; Meza-Acevedo, Rosa; Gobillot, Theodore A; Lebedev, Ivan; Gliedt, Micah J; Hari, Sanjay B; Mitra, Arinjay K; Backes, Bradley J; Papa, Feroz R; Seeliger, Markus A; Maly, Dustin J

    2016-08-19

    The accumulation of unfolded proteins under endoplasmic reticulum (ER) stress leads to the activation of the multidomain protein sensor IRE1α as part of the unfolded protein response (UPR). Clustering of IRE1α lumenal domains in the presence of unfolded proteins promotes kinase trans-autophosphorylation in the cytosol and subsequent RNase domain activation. Interestingly, there is an allosteric relationship between the kinase and RNase domains of IRE1α, which allows ATP-competitive inhibitors to modulate the activity of the RNase domain. Here, we use kinase inhibitors to study how ATP-binding site conformation affects the activity of the RNase domain of IRE1α. We find that diverse ATP-competitive inhibitors of IRE1α promote dimerization and activation of RNase activity despite blocking kinase autophosphorylation. In contrast, a subset of ATP-competitive ligands, which we call KIRAs, allosterically inactivate the RNase domain through the kinase domain by stabilizing monomeric IRE1α. Further insight into how ATP-competitive inhibitors are able to divergently modulate the RNase domain through the kinase domain was gained by obtaining the first structure of apo human IRE1α in the RNase active back-to-back dimer conformation. Comparison of this structure with other existing structures of IRE1α and integration of our extensive structure activity relationship (SAR) data has led us to formulate a model to rationalize how ATP-binding site ligands are able to control the IRE1α oligomeric state and subsequent RNase domain activity.

  19. Novel structure--function information on biogenic amine transporters revealed by site-directed mutagenesis and alkylation.

    Science.gov (United States)

    Reith, Maarten E A

    2013-07-01

    The study reported by Wenge and Bönisch in this issue provides critical structural information regarding extracellular loop 2 (EL2) of the human norepinephrine transporter (NET). A systematic search among all 10 cysteine and 13 histidine residues in NET led to His222 in EL2 as the target for N-ethylmaleimide: its alkylation interferes with [(3)H]nisoxetine binding, indicating the part of EL2 containing His 222 reaches back into the protein interior where it prevents access by nisoxetine to its binding site. Thus, EL2 in human NET does much more than conformationally assisting substrate translocation. The present study underscores the importance of site-directed mutagenesis approaches to elucidate structural features that cannot be deduced from crystals of homolog proteins. In the case of NET, the closest crystal structure is that of the homolog LeuT, but EL2 is difficult to align with 22 less loop residues in LeuT than in NET. The present results could only be achieved by the systematic mutagenesis study of all cysteines and all histidines in NET.

  20. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation.

    Science.gov (United States)

    Percher, Avital; Ramakrishnan, Srinivasan; Thinon, Emmanuelle; Yuan, Xiaoqiu; Yount, Jacob S; Hang, Howard C

    2016-04-19

    Fatty acylation of cysteine residues provides spatial and temporal control of protein function in cells and regulates important biological pathways in eukaryotes. Although recent methods have improved the detection and proteomic analysis of cysteine fatty (S-fatty) acylated proteins, understanding how specific sites and quantitative levels of this posttranslational modification modulate cellular pathways are still challenging. To analyze the endogenous levels of protein S-fatty acylation in cells, we developed a mass-tag labeling method based on hydroxylamine-sensitivity of thioesters and selective maleimide-modification of cysteines, termed acyl-PEG exchange (APE). We demonstrate that APE enables sensitive detection of protein S-acylation levels and is broadly applicable to different classes of S-palmitoylated membrane proteins. Using APE, we show that endogenous interferon-induced transmembrane protein 3 is S-fatty acylated on three cysteine residues and site-specific modification of highly conserved cysteines are crucial for the antiviral activity of this IFN-stimulated immune effector. APE therefore provides a general and sensitive method for analyzing the endogenous levels of protein S-fatty acylation and should facilitate quantitative studies of this regulated and dynamic lipid modification in biological systems.

  1. Identification of selective agonists and positive allosteric modulators for µ- and δ-opioid receptors from a single high-throughput screen.

    Science.gov (United States)

    Burford, Neil T; Wehrman, Tom; Bassoni, Daniel; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Alt, Andrew

    2014-10-01

    Hetero-oligomeric complexes of G protein-coupled receptors (GPCRs) may represent novel therapeutic targets exhibiting different pharmacology and tissue- or cell-specific site of action compared with receptor monomers or homo-oligomers. An ideal tool for validating this concept pharmacologically would be a hetero-oligomer selective ligand. We set out to develop and execute a 1536-well high-throughput screen of over 1 million compounds to detect potential hetero-oligomer selective ligands using a β-arrestin recruitment assay in U2OS cells coexpressing recombinant µ- and δ-opioid receptors. Hetero-oligomer selective ligands may bind to orthosteric or allosteric sites, and we might anticipate that the formation of hetero-oligomers may provide novel allosteric binding pockets for ligand binding. Therefore, our goal was to execute the screen in such a way as to identify positive allosteric modulators (PAMs) as well as agonists for µ, δ, and hetero-oligomeric receptors. While no hetero-oligomer selective ligands were identified (based on our selection criteria), this single screen did identify numerous µ- and δ-selective agonists and PAMs as well as nonselective agonists and PAMs. To our knowledge, these are the first µ- and δ-opioid receptor PAMs described in the literature.

  2. Allosteric activation mechanism of the cys-loop receptors

    Institute of Scientific and Technical Information of China (English)

    Yong-chang CHANG; Wen WU; Jian-liang ZHANG; Yao HUANG

    2009-01-01

    Binding of a neurotransmitter to its ionotropic receptor opens a distantly located ion channel, a process termed allosteric activation. Here we review recent advances in the molecular mechanism by which the cys-loop receptors are activated with emphasis on the best studied nicotinic acetylcholine receptors (nAChRs). With a combination of affinity labeling, mutagenesis, electrophysiology, kinetic modeling, electron microscopy (EM), and crystal structure analysis, the allosteric activation mechanism is emerging. Specifically, the binding domain and gating domain are interconnected by an allosteric activation network. Agonist binding induces conformational changes, resulting in the rotation of a β sheet of amino-terminal domain and outward movement of loop 2, loop F, and cys-loop, which are coupled to the M2-M3 linker to pull the channel to open. However, there are still some controversies about the movement of the channel-lining domain M2. Nine angstrom resolution EM structure of a nAChR imaged in the open state suggests that channel opening is the result of rotation of the M2 domain. In contrast, recent crystal structures of bacterial homologues of the cys-loop receptor family in apparently open state have implied an M2 tilting model with pore dilation and quaternary twist of the whole pentameric receptor. An elegant study of the nAChR using protonation scanning of M2 domain supports a similar pore dilation activation mechanism with minimal rotation of M2. This remains to be validated with other approaches including high resolution structure determination of the mammalian cys-loop receptors in the open state.

  3. Indole-based allosteric inhibitors of HIV-1 integrase.

    Science.gov (United States)

    Patel, Pratiq A; Kvaratskhelia, Nina; Mansour, Yara; Antwi, Janet; Feng, Lei; Koneru, Pratibha; Kobe, Mathew J; Jena, Nivedita; Shi, Guqin; Mohamed, Mosaad S; Li, Chenglong; Kessl, Jacques J; Fuchs, James R

    2016-10-01

    Employing a scaffold hopping approach, a series of allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) have been synthesized based on an indole scaffold. These compounds incorporate the key elements utilized in quinoline-based ALLINIs for binding to the IN dimer interface at the principal LEDGF/p75 binding pocket. The most potent of these compounds displayed good activity in the LEDGF/p75 dependent integration assay (IC50=4.5μM) and, as predicted based on the geometry of the five- versus six-membered ring, retained activity against the A128T IN mutant that confers resistance to many quinoline-based ALLINIs.

  4. The ternary structure of the double-headed arrowhead protease inhibitor API-A complexed with two trypsins reveals a novel reactive site conformation.

    Science.gov (United States)

    Bao, Rui; Zhou, Cong-Zhao; Jiang, Chunhui; Lin, Sheng-Xiang; Chi, Cheng-Wu; Chen, Yuxing

    2009-09-25

    The double-headed arrowhead protease inhibitors API-A and -B from the tubers of Sagittaria sagittifolia (Linn) feature two distinct reactive sites, unlike other members of their family. Although the two inhibitors have been extensively characterized, the identities of the two P1 residues in both API-A and -B remain controversial. The crystal structure of a ternary complex at 2.48 A resolution revealed that the two trypsins bind on opposite sides of API-A and are 34 A apart. The overall fold of API-A belongs to the beta-trefoil fold and resembles that of the soybean Kunitz-type trypsin inhibitors. The two P1 residues were unambiguously assigned as Leu(87) and Lys(145), and their identities were further confirmed by site-directed mutagenesis. Reactive site 1, composed of residues P5 Met(83) to P5' Ala(92), adopts a novel conformation with the Leu(87) completely embedded in the S1 pocket even though it is an unfavorable P1 residue for trypsin. Reactive site 2, consisting of residues P5 Cys(141) to P5' Glu(150), binds trypsin in the classic mode by employing a two-disulfide-bonded loop. Analysis of the two binding interfaces sheds light on atomic details of the inhibitor specificity and also promises potential improvements in enzyme activity by engineering of the reactive sites.

  5. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release

    Science.gov (United States)

    Hinde, Elizabeth; Thammasiraphop, Kitiphume; Duong, Hien T. T.; Yeow, Jonathan; Karagoz, Bunyamin; Boyer, Cyrille; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.

  6. Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity.

    Science.gov (United States)

    De Samblanx, G W; Goderis, I J; Thevissen, K; Raemaekers, R; Fant, F; Borremans, F; Acland, D P; Osborn, R W; Patel, S; Broekaert, W F

    1997-01-10

    Mutational analysis of Rs-AFP2, a radish antifungal peptide belonging to a family of peptides referred to as plant defensins, was performed using polymerase chain reaction-based site-directed mutagenesis and yeast as a system for heterologous expression. The strategy followed to select candidate amino acid residues for substitution was based on sequence comparison of Rs-AFP2 with other plant defensins exhibiting differential antifungal properties. Several mutations giving rise to peptide variants with reduced antifungal activity against Fusarium culmorum were identified. In parallel, an attempt was made to construct variants with enhanced antifungal activity by substituting single amino acids by arginine. Two arginine substitution variants were found to be more active than wild-type Rs-AFP2 in media with high ionic strength. Our data suggest that Rs-AFP2 possesses two adjacent sites that appear to be important for antifungal activity, namely the region around the type VI beta-turn connecting beta-strands 2 and 3, on the one hand, and the region formed by residues on the loop connecting beta-strand 1 and the alpha-helix and contiguous residues on the alpha-helix and beta-strand 3, on the other hand. When added to F. culmorum in a high ionic strength medium, Rs-AFP2 stimulated Ca2+ uptake by up to 20-fold. An arginine substitution variant with enhanced antifungal activity caused increased Ca2+ uptake by up to 50-fold, whereas a variant that was virtually devoid of antifungal activity did not stimulate Ca2+ uptake.

  7. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  8. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  9. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.

    Directory of Open Access Journals (Sweden)

    Dipannita Basu

    Full Text Available The activity of G protein-coupled receptors (GPCRs is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R-[(2(S-pyrrolidinylcarbonylamino]-2-oxo-1-pyrrolidineacetamide (PAOPA, in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK 1/2. Additionally, an in vitro cellular model was also used to study PAOPA's effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA's development into a novel drug for the

  10. Probing FtsZ and tubulin with C8-substituted GTP analogs reveals differences in their nucleotide binding sites.

    Science.gov (United States)

    Läppchen, Tilman; Pinas, Victorine A; Hartog, Aloysius F; Koomen, Gerrit-Jan; Schaffner-Barbero, Claudia; Andreu, José Manuel; Trambaiolo, Daniel; Löwe, Jan; Juhem, Aurélie; Popov, Andrei V; den Blaauwen, Tanneke

    2008-02-01

    The cytoskeletal proteins, FtsZ and tubulin, play a pivotal role in prokaryotic cell division and eukaryotic chromosome segregation, respectively. Selective inhibitors of the GTP-dependent polymerization of FtsZ could constitute a new class of antibiotics, while several inhibitors of tubulin are widely used in antiproliferative therapy. In this work, we set out to identify selective inhibitors of FtsZ based on the structure of its natural ligand, GTP. We found that GTP analogs with small hydrophobic substituents at C8 of the nucleobase efficiently inhibit FtsZ polymerization, whereas they have an opposite effect on the polymerization of tubulin. The inhibitory activity of the GTP analogs on FtsZ polymerization allowed us to crystallize FtsZ in complex with C8-morpholino-GTP, revealing the binding mode of a GTP derivative containing a nonmodified triphosphate chain.

  11. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    Full Text Available We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant and a new planting site (NewPlant in Beijing. Dwarfing apple nurseries of 'Fuji'/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil and from the new planting site (NewSoil was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant. More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria. The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition.

  12. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators.

    Science.gov (United States)

    Delmore, Kira E; Fox, James W; Irwin, Darren E

    2012-11-22

    Migratory divides are contact zones between breeding populations that use divergent migratory routes and have been described in a variety of species. These divides are of major importance to evolution, ecology and conservation but have been identified using limited band recovery data and/or indirect methods. Data from band recoveries and mitochondrial haplotypes suggested that inland and coastal Swainson's thrushes (Catharus ustulatus) form a migratory divide in western North America. We attached light-level geolocators to birds at the edges of this contact zone to provide, to our knowledge, the first direct test of a putative divide using data from individual birds over the entire annual cycle. Coastal thrushes migrated along the west coast to Mexico, Guatemala and Honduras. Some of these birds used multiple wintering sites. Inland thrushes migrated across the Rocky Mountains, through central North America to Columbia and Venezuela. These birds migrated longer distances than coastal birds and performed a loop migration, navigating over the Gulf of Mexico in autumn and around this barrier in spring. These findings support the suggestion that divergent migratory behaviour could contribute to reproductive isolation between migrants, advance our understanding of their non-breeding ecology, and are integral to development of detailed conservation strategies for this group.

  13. Crystal structure of Bombyx mori arylphorins reveals a 3:3 heterohexamer with multiple papain cleavage sites.

    Science.gov (United States)

    Hou, Yong; Li, Jianwei; Li, Yi; Dong, Zhaoming; Xia, Qingyou; Yuan, Y Adam

    2014-06-01

    In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level.

  14. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features.

    Science.gov (United States)

    Lei, Jian; Mesters, Jeroen R; Drosten, Christian; Anemüller, Stefan; Ma, Qingjun; Hilgenfeld, Rolf

    2014-09-01

    The Middle-East Respiratory Syndrome coronavirus (MERS-CoV) causes severe acute pneumonia and renal failure. The MERS-CoV papain-like protease (PL(pro)) is a potential target for the development of antiviral drugs. To facilitate these efforts, we determined the three-dimensional structure of the enzyme by X-ray crystallography. The molecule consists of a ubiquitin-like domain and a catalytic core domain. The catalytic domain displays an extended right-hand fold with a zinc ribbon and embraces a solvent-exposed substrate-binding region. The overall structure of the MERS-CoV PL(pro) is similar to that of the corresponding SARS-CoV enzyme, but the architecture of the oxyanion hole and of the S3 as well as the S5 specificity sites differ from the latter. These differences are the likely reason for reduced in vitro peptide hydrolysis and deubiquitinating activities of the MERS-CoV PL(pro), compared to the homologous enzyme from the SARS coronavirus. Introduction of a side-chain capable of oxyanion stabilization through the Leu106Trp mutation greatly enhances the in vitro catalytic activity of the MERS-CoV PL(pro). The unique features observed in the crystal structure of the MERS-CoV PL(pro) should allow the design of antivirals that would not interfere with host ubiquitin-specific proteases.

  15. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    Science.gov (United States)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  16. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells.

    Science.gov (United States)

    Metzakopian, Emmanouil; Bouhali, Kamal; Alvarez-Saavedra, Matías; Whitsett, Jeffrey A; Picketts, David J; Ang, Siew-Lan

    2015-04-01

    Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrinsic and intrinsic molecules regulate a precise temporal and spatial programme of neurogenesis in midbrain dopamine progenitors. To elucidate direct molecular interactions between multiple regulatory factors during neuronal differentiation in mice, we characterised genome-wide binding sites of the forkhead/winged helix transcription factor Foxa1, which functions redundantly with Foxa2 to regulate the differentiation of mDA neurons. Interestingly, our studies identified a rostral brain floor plate Neurog2 enhancer that requires direct input from Otx2, Foxa1, Foxa2 and an E-box transcription factor for its transcriptional activity. Furthermore, the chromatin remodelling factor Smarca1 was shown to function downstream of Foxa1 and Foxa2 to regulate differentiation from immature to mature midbrain dopaminergic neurons. Our genome-wide Foxa1-bound cis-regulatory sequences from ChIP-Seq and Foxa1/2 candidate target genes from RNA-Seq analyses of embryonic midbrain dopamine cells also provide an excellent resource for probing mechanistic insights into gene regulatory networks involved in the differentiation of midbrain dopamine neurons.

  17. Site-specific structural dynamics of α-Synuclein revealed by time-resolved fluorescence spectroscopy: a review

    Science.gov (United States)

    Sahay, Shruti; Krishnamoorthy, G.; Maji, Samir K.

    2016-12-01

    Aggregation of α-Synuclein (α-Syn) into amyloid fibrils is known to be associated with the pathogenesis of Parkinson’s disease (PD). Several missense mutations of the α-Syn gene have been associated with rare, early onset familial forms of PD. Despite several studies done so far, the local/residue-level structure and dynamics of α-Syn in its soluble and aggregated fibril form and how these are affected by the familial PD associated mutations are still not clearly understood. Here, we review studies performed by our group as well as other research groups, where time-resolved fluorescence spectroscopy has been used to understand the site-specific structure and dynamics of α-Syn under physiological conditions as well as under conditions that alter the aggregation properties of the protein such as low pH, high temperature, presence of membrane mimics and familial PD associated mutations. These studies have provided important insights into the critical structural properties of α-Syn that may govern its aggregation. The review also highlights time-resolved fluorescence as a promising tool to study the critical conformational transitions associated with early oligomerization of α-Syn, which are otherwise not accessible using other commonly used techniques such as thioflavin T (ThT) binding assay.

  18. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    Science.gov (United States)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  19. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  20. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    Energy Technology Data Exchange (ETDEWEB)

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.

    2007-01-01

    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  1. Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas.

    Science.gov (United States)

    Roskoski, Robert

    2017-03-01

    The Ras-Raf-MEK-ERK (Map kinase) cellular pathway is a highly conserved eukaryotic signaling module that transduces extracellular signals from growth factors and cytokines into intracellular regulatory events that are involved in cell growth and proliferation or the contrary pathway of cell differentiation. Dysregulation of this pathway occurs in more than one-third of all malignancies, a process that has fostered the development of targeted Map kinase pathway inhibitors. Cutaneous melanomas, which arise from skin melanocytes, are the most aggressive form of skin cancer. Mutations that activate the Map kinase pathway occur in more than 90% of these melanomas. This has led to the development of the combination of dabrafenib and trametinib or vemurafenib and cobimetanib for the treatment of BRAF V600E mutant melanomas. Dabrafenib and vemurafenib target V600E/K BRAF mutants while trametinib and cobimetanib target MEK1/2. The latter two agents bind to MEK1/2 at a site that is adjacent to, but separate from, the ATP-binding site and are therefore classified as type III allosteric protein kinase inhibitors. These agents form a hydrogen bond with a conserved β3-lysine and they make numerous hydrophobic contacts with residues within the αC-helix, the β5 strand, and within the activation segment, regions of the protein kinase domain that exhibit greater diversity than those found within the ATP-binding site. One advantage of such allosteric inhibitors is that they do not have to compete with millimolar concentrations of cellular ATP, which most FDA-approved small molecule competitive inhibitors such as imatinib must do. Owing to the wide spread activation of this pathway in numerous neoplasms, trametinib and cobimetinib are being studied in combination with other targeted and cytotoxic drugs in a variety of clinical situations. Except for BRAF and NRAS mutations, there are no other biomarkers correlated with treatment responses following MEK1/2 inhibition and the

  2. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes.

    Science.gov (United States)

    Chen, Poyin; den Bakker, Henk C; Korlach, Jonas; Kong, Nguyet; Storey, Dylan B; Paxinos, Ellen E; Ashby, Meredith; Clark, Tyson; Luong, Khai; Wiedmann, Martin; Weimer, Bart C

    2017-02-01

    Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism.

  3. High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase.

    Science.gov (United States)

    Kitahara, R; Sareth, S; Yamada, H; Ohmae, E; Gekko, K; Akasaka, K

    2000-10-24

    A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the first. Thermodynamic analysis of the pressure and temperature dependencies indicates that the second conformer is characterized by a smaller partial molar volume (DeltaV = -25 mL/mol at 15 degrees C) and smaller enthalpy and entropy values, suggesting that the second conformer is more open and hydrated than the first. The splittings of the cross-peaks (by approximately 1 ppm on (15)N axis at 2000 bar) arise from the hinges of the M20 loop, the C-helix, and the F-helix, all of which constitute the major binding site for the cofactor NADPH, suggesting that major differences in conformation occur in the orientations of the NADPH binding units. The Gibbs free energy of the second, open conformer is 5.2 kJ/mol above that of the first at 1 bar, giving an equilibrium population of about 10%. The second, open conformer is considered to be crucial for NADPH binding, and the NMR line width indicates that the upper limit for the rate of opening is 20 s(-)(1) at 2000 bar. These experiments show that high pressure NMR is a generally useful tool for detecting and analyzing "open" structures of a protein that may be directly involved in function.

  4. Crystal structure and site-directed mutational analysis reveals key residues involved in Escherichia coli ZapA function.

    Science.gov (United States)

    Roach, Elyse J; Kimber, Matthew S; Khursigara, Cezar M

    2014-08-22

    FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.

  5. ALV-J GP37 molecular analysis reveals novel virus-adapted sites and three tyrosine-based Env species.

    Directory of Open Access Journals (Sweden)

    Jianqiang Ye

    Full Text Available Compared to other avian leukosis viruses (ALV, ALV-J primarily induces myeloid leukemia and hemangioma and causes significant economic loss for the poultry industry. The ALV-J Env protein is hypothesized to be related to its unique pathogenesis. However, the molecular determinants of Env for ALV-J pathogenesis are unclear. In this study, we compared and analyzed GP37 of ALV-J Env and the EAV-HP sequence, which has high homology to that of ALV-J Env. Phylogenetic analysis revealed five groups of ALV-J GP37 and two novel ALV-J Envs with endemic GP85 and EAV-HP-like GP37. Furthermore, at least 15 virus-adapted mutations were detected in GP37 compared to the EAV-HP sequence. Further analysis demonstrated that three tyrosine-based motifs (YxxM, ITIM (immune tyrosine-based inhibitory motif and ITAM-like (immune tyrosine-based active motif like associated with immune disease and oncogenesis were found in the cytoplasmic tail of GP37. Based on the potential function and distribution of these motifs in GP37, ALV-J Env was grouped into three species, inhibitory Env, bifunctional Env and active Env. Accordingly, 36.91%, 61.74% and 1.34% of ALV-J Env sequences from GenBank are classified as inhibitory, bifunctional and active Env, respectively. Additionally, the Env of the ALV-J prototype strain, HPRS-103, and 17 of 18 EAV-HP sequences belong to the inhibitory Env. And models for signal transduction of the three ALV-J Env species were predicted. Our findings and models provide novel insights for identifying the roles and molecular mechanism of ALV-J Env in the unique pathogenesis of ALV-J.

  6. ALV-J GP37 molecular analysis reveals novel virus-adapted sites and three tyrosine-based Env species.

    Science.gov (United States)

    Ye, Jianqiang; Fan, Zhonglei; Shang, Jianjun; Tian, Xiaoyan; Yang, Jialiang; Chen, Hongjun; Shao, Hongxia; Qin, Aijian

    2015-01-01

    Compared to other avian leukosis viruses (ALV), ALV-J primarily induces myeloid leukemia and hemangioma and causes significant economic loss for the poultry industry. The ALV-J Env protein is hypothesized to be related to its unique pathogenesis. However, the molecular determinants of Env for ALV-J pathogenesis are unclear. In this study, we compared and analyzed GP37 of ALV-J Env and the EAV-HP sequence, which has high homology to that of ALV-J Env. Phylogenetic analysis revealed five groups of ALV-J GP37 and two novel ALV-J Envs with endemic GP85 and EAV-HP-like GP37. Furthermore, at least 15 virus-adapted mutations were detected in GP37 compared to the EAV-HP sequence. Further analysis demonstrated that three tyrosine-based motifs (YxxM, ITIM (immune tyrosine-based inhibitory motif) and ITAM-like (immune tyrosine-based active motif like)) associated with immune disease and oncogenesis were found in the cytoplasmic tail of GP37. Based on the potential function and distribution of these motifs in GP37, ALV-J Env was grouped into three species, inhibitory Env, bifunctional Env and active Env. Accordingly, 36.91%, 61.74% and 1.34% of ALV-J Env sequences from GenBank are classified as inhibitory, bifunctional and active Env, respectively. Additionally, the Env of the ALV-J prototype strain, HPRS-103, and 17 of 18 EAV-HP sequences belong to the inhibitory Env. And models for signal transduction of the three ALV-J Env species were predicted. Our findings and models provide novel insights for identifying the roles and molecular mechanism of ALV-J Env in the unique pathogenesis of ALV-J.

  7. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains*

    Science.gov (United States)

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2015-01-01

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL. PMID:25505244

  8. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition.

    Science.gov (United States)

    Fitoussi, A; Dellu-Hagedorn, F; De Deurwaerdère, P

    2013-01-01

    The dopamine (DA), noradrenalin (NA) and serotonin (5-HT) monoaminergic systems are deeply involved in cognitive processes via their influence on cortical and subcortical regions. The widespread distribution of these monoaminergic networks is one of the main difficulties in analyzing their functions and interactions. To address this complexity, we assessed whether inter-individual differences in monoamine tissue contents of various brain areas could provide information about their functional relationships. We used a sensitive biochemical approach to map endogenous monoamine tissue content in 20 rat brain areas involved in cognition, including 10 cortical areas and examined correlations within and between the monoaminergic systems. Whereas DA content and its respective metabolite largely varied across brain regions, the NA and 5-HT contents were relatively homogenous. As expected, the tissue content varied among individuals. Our analyses revealed a few specific relationships (10%) between the tissue content of each monoamine in paired brain regions and even between monoamines in paired brain regions. The tissue contents of NA, 5-HT and DA were inter-correlated with a high incidence when looking at a specific brain region. Most correlations found between cortical areas were positive while some cortico-subcortical relationships regarding the DA, NA and 5-HT tissue contents were negative, in particular for DA content. In conclusion, this work provides a useful database of the monoamine tissue content in numerous brain regions. It suggests that the regulation of these neuromodulatory systems is achieved mainly at the terminals, and that each of these systems contributes to the regulation of the other two.

  9. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus

    DEFF Research Database (Denmark)

    Christoffersen, Stig; Kadziola, Anders; Johansson, Eva

    2009-01-01

    Uracil phosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl- a-1-diphosphate (PRPP) and uracil to uridine monophosphate (UMP) and diphosphate (PPi). The tetrameric enzyme from Sulfolobus solfataricus has a unique type of allosteric regulation by cytidine triphosphate (CTP......) and guanosine triphosphate (GTP). Here we report two structures of the activated state in complex with GTP. One structure (refined at 2.8-Å resolution) contains PRPP in all active sites, while the other structure (refined at 2.9-Å resolution) has PRPP in two sites and the hydrolysis products, ribose-5-phosphate...

  10. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.

    Science.gov (United States)

    Bachelard, H S

    1971-11-01

    1. Substrate-saturation curves of brain hexokinase for MgATP(2-) were sigmoidal at sub-saturating concentrations of glucose when the Mg(2+)/ATP ratio was maintained at 1:1. Under identical conditions, except that Mg(2+) was present in excess, hyperbolic curves were observed. 2. The number of binding sites (calculated from Hill plots) is 1.8 at a Mg(2+)/ATP ratio 1:1, and 1.0 with excess of Mg(2+). The apparent K(m) for MgATP(2-) is 6.5x10(-4)m at a Mg(2+)/ATP ratio 1:1, and 3.5x10(-4)m with excess of Mg(2+). 3. Interdependence between substrate-binding sites was indicated by the effects of varying the concentration of glucose. The sigmoidality and deviation from Michaelis-Menten kinetics at a Mg(2+)/ATP ratio 1:1 became less pronounced with increasing glucose concentration. Also, although substrate-saturation curves for glucose were hyperbolic when the Mg(2+)/ATP ratio was 1:1, reciprocal plots were non-linear. These were linear with excess of Mg(2+). 4. High concentrations of Mg(2+) (Mg(2+)/ATP ratios above 5:1) were inhibitory. 5. The results are taken to indicate homotropic co-operative binding of MgATP(2-) and that Mg(2+) is an allosteric activator. Possible implications in regulation are discussed.

  11. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P

    Science.gov (United States)

    Koutmou, Kristin S.; Casiano-Negroni, Anette; Getz, Melissa M.; Pazicni, Samuel; Andrews, Andrew J.; Penner-Hahn, James E.; Al-Hashimi, Hashim M.; Fierke, Carol A.

    2010-01-01

    Functionally critical metals interact with RNA through complex coordination schemes that are currently difficult to visualize at the atomic level under solution conditions. Here, we report a new approach that combines NMR and XAS to resolve and characterize metal binding in the most highly conserved P4 helix of ribonuclease P (RNase P), the ribonucleoprotein that catalyzes the divalent metal ion-dependent maturation of the 5′ end of precursor tRNA. Extended X-ray absorption fine structure (EXAFS) spectroscopy reveals that the Zn2+ bound to a P4 helix mimic is six-coordinate, with an average Zn-O/N bond distance of 2.08 Å. The EXAFS data also show intense outer-shell scattering indicating that the zinc ion has inner-shell interactions with one or more RNA ligands. NMR Mn2+ paramagnetic line broadening experiments reveal strong metal localization at residues corresponding to G378 and G379 in B. subtilis RNase P. A new “metal cocktail” chemical shift perturbation strategy involving titrations with , Zn2+, and confirm an inner-sphere metal interaction with residues G378 and G379. These studies present a unique picture of how metals coordinate to the putative RNase P active site in solution, and shed light on the environment of an essential metal ion in RNase P. Our experimental approach presents a general method for identifying and characterizing inner-sphere metal ion binding sites in RNA in solution. PMID:20133747

  12. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition

    Science.gov (United States)

    Kondo, Yasushi; Oubridge, Chris; van Roon, Anne-Marie M; Nagai, Kiyoshi

    2015-01-01

    U1 snRNP binds to the 5′ exon-intron junction of pre-mRNA and thus plays a crucial role at an early stage of pre-mRNA splicing. We present two crystal structures of engineered U1 sub-structures, which together reveal at atomic resolution an almost complete network of protein–protein and RNA-protein interactions within U1 snRNP, and show how the 5′ splice site of pre-mRNA is recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between pre-mRNA and the 5′-end of U1 snRNA. The binding of the RNA duplex is stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA backbone around the splice junction but U1-C makes no base-specific contacts with pre-mRNA. The structure, together with RNA binding assays, shows that the selection of 5′-splice site nucleotides by U1 snRNP is achieved predominantly through basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched 5′-splice sites. DOI: http://dx.doi.org/10.7554/eLife.04986.001 PMID:25555158

  13. Electromobility Shift Assay Reveals Evidence in Favor of Allele-Specific Binding of RUNX1 to the 5' Hypersensitive Site 4-Locus Control Region.

    Science.gov (United States)

    Dehghani, Hossein; Ghobakhloo, Sepideh; Neishabury, Maryam

    2016-08-01

    In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies.

  14. The Crystal Structure of the Ivy delta4-16:0-ACP Desaturase Reveals Structural Details of the Oxidized Active Site and Potential Determinants of Regioselectivity

    Energy Technology Data Exchange (ETDEWEB)

    Guy,J.; Whittle, E.; Kumaran, D.; Lindqvist, Y.; Shanklin, J.

    2007-01-01

    The multifunctional acyl-acyl carrier protein (ACP) desaturase from Hedera helix (English ivy) catalyzes the {Delta}{sup 4} desaturation of 16:0-ACP and the{Delta}{sup 9} desaturation of 18:0-ACP and further desaturates{Delta}{sup 9}-16:1 or {Delta}{sup 9}-18:1 to the corresponding {Delta}{sup 4,9} dienes. The crystal structure of the enzyme has been solved to 1.95{angstrom} resolution, and both the iron-iron distance of 3.2{angstrom} and the presence of a {mu}-oxo bridge reveal this to be the only reported structure of a desaturase in the oxidized FeIII-FeIII form. Significant differences are seen between the oxidized active site and the reduced active site of the Ricinus communis (castor) desaturase; His{sup 227} coordination to Fe2 is lost, and the side chain of Glu{sup 224}, which bridges the two iron ions in the reduced structure, does not interact with either iron. Although carboxylate shifts have been observed on oxidation of other diiron proteins, this is the first example of the residue moving beyond the coordination range of both iron ions. Comparison of the ivy and castor structures reveal surface amino acids close to the annulus of the substrate-binding cavity and others lining the lower portion of the cavity that are potential determinants of their distinct substrate specificities. We propose a hypothesis that differences in side chain packing explains the apparent paradox that several residues lining the lower portion of the cavity in the ivy desaturase are bulkier than their equivalents in the castor enzyme despite the necessity for the ivy enzyme to accommodate three more carbons beyond the diiron site.

  15. Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Hansman, Grant S.; Biertümpfel, Christian; Georgiev, Ivelin; McLellan, Jason S.; Chen, Lei; Zhou, Tongqing; Katayama, Kazuhiko; Kwong, Peter D. (NIH); (NIID-Japan)

    2011-10-10

    Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal {alpha}fucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical {alpha}fucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.

  16. Site-Specific Mutation of Staphylococcus aureus VraS Reveals a Crucial Role for the VraR-VraS Sensor in the Emergence of Glycopeptide Resistance▿

    Science.gov (United States)

    Galbusera, Elena; Renzoni, Adriana; Andrey, Diego O.; Monod, Antoinette; Barras, Christine; Tortora, Paolo; Polissi, Alessandra; Kelley, William L.

    2011-01-01

    An initial response of Staphylococcus aureus to encounter with cell wall-active antibiotics occurs by transmembrane signaling systems that orchestrate changes in gene expression to promote survival. Histidine kinase two-component sensor-response regulators such as VraRS contribute to this response. In this study, we examined VraS membrane sensor phosphotransfer signal transduction and explored the genetic consequences of disrupting signaling by engineering a site-specific vraS chromosomal mutation. We have used in vitro autophosphorylation assay with purified VraS[64-347] lacking its transmembrane anchor region and tested site-specific kinase domain histidine mutants. We identified VraS H156 as the probable site of autophosphorylation and show phosphotransfer in vitro using purified VraR. Genetic studies show that the vraS(H156A) mutation in three strain backgrounds (ISP794, Newman, and COL) fails to generate detectable first-step reduced susceptibility teicoplanin mutants and severely reduces first-step vancomycin mutants. The emergence of low-level glycopeptide resistance in strain ISP794, derived from strain 8325 (ΔrsbU), did not require a functional σB, but rsbU restoration could enhance the emergence frequency supporting a role for this alternative sigma factor in promoting glycopeptide resistance. Transcriptional analysis of vraS(H156A) strains revealed a pronounced reduction but not complete abrogation of the vraRS operon after exposure to cell wall-active antibiotics, suggesting that additional factors independent of VraS-driven phosphotransfer, or σB, exist for this promoter. Collectively, our results reveal important details of the VraRS signaling system and predict that pharmacologic blockade of the VraS sensor kinase will have profound effects on blocking emergence of cell wall-active antibiotic resistance in S. aureus. PMID:21173175

  17. Allosteric activation of coagulation factor VIIa visualized by hydrogen exchange

    DEFF Research Database (Denmark)

    Rand, Kasper Dyrberg; Jørgensen, Thomas; Olsen, Ole H;

    2006-01-01

    Coagulation factor VIIa (FVIIa) is a serine protease that, after binding to tissue factor (TF), plays a pivotal role in the initiation of blood coagulation. We used hydrogen exchange monitored by mass spectrometry to visualize the details of FVIIa activation by comparing the exchange kinetics...... tissue factor binding, FVIIa undergoes dramatic structural stabilization as indicated by decreased exchange rates localized throughout the protease domain and in distant parts of the light chain, spanning across 50A and revealing a concerted interplay between functional sites in FVIIa. The results...... of distinct molecular states, namely zymogen FVII, endoproteolytically cleaved FVIIa, TF-bound zymogen FVII, TF-bound FVIIa, and FVIIa in complex with an active site inhibitor. The hydrogen exchange kinetics of zymogen FVII and FVIIa are identical indicating highly similar solution structures. However, upon...

  18. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Science.gov (United States)

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer's disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer's disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs) of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs. PMID:28163934

  19. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  20. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    ., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus...... experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution...

  1. Allosteric control in a metalloprotein dramatically alters function.

    Science.gov (United States)

    Baxter, Elizabeth Leigh; Zuris, John A; Wang, Charles; Vo, Phu Luong T; Axelrod, Herbert L; Cohen, Aina E; Paddock, Mark L; Nechushtai, Rachel; Onuchic, Jose N; Jennings, Patricia A

    2013-01-15

    Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs.

  2. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  3. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1).

    Science.gov (United States)

    German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan

    2014-09-25

    The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.

  4. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    Science.gov (United States)

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  5. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process.

  6. Activation of α7 nicotinic receptors by orthosteric and allosteric agonists: influence on single-channel kinetics and conductance.

    Science.gov (United States)

    Pałczyńska, Magda M; Jindrichova, Marie; Gibb, Alasdair J; Millar, Neil S

    2012-11-01

    Nicotinic acetylcholine receptors (nAChRs) are oligomeric transmembrane proteins in which five subunits coassemble to form a central ion channel pore. Conventional agonists, such as acetylcholine (ACh), bind to an orthosteric site, located at subunit interfaces in the extracellular domain. More recently, it has been demonstrated that nAChRs can also be activated by ligands binding to an allosteric transmembrane site. In the case of α7 nAChRs, ACh causes rapid activation and almost complete desensitization. In contrast, allosteric agonists such as 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c] quin oline-8-sulfonamide (4BP-TQS) activate α7 nAChRs more slowly and cause only low levels of apparent desensitization. In the present study, single-channel patch-clamp recording has been used to investigate differences in the mechanism of activation of α7 nAChRs by ACh and 4BP-TQS. The most striking difference between activation by ACh and 4BP-TQS is in single-channel kinetics. In comparison with activation by ACh, single-channel open times and burst lengths are substantially longer (~160-800-fold, respectively), and shut times are shorter (~8-fold) when activated by 4BP-TQS. In addition, coapplication of ACh and 4BP-TQS results in a further increase in single-channel burst lengths. Mean burst lengths seen when the two agonists are coapplied (3099 ± 754 ms) are ~2.5-fold longer than with 4BP-TQS alone and ∼370-fold longer than with ACh alone. Intriguingly, the main single-channel conductance of α7 nAChRs, was significantly larger when activated by 4BP-TQS (100.3 ± 2.4 pS) than when activated by ACh (90.0 ± 2.7 pS), providing evidence that activation by allosteric and orthosteric agonists results in different α7 nAChRs open-channel conformations.

  7. Crystal Structure of Mouse Thymidylate Synthase in Tertiary Complex with dUMP and Raltitrexed Reveals N-Terminus Architecture and Two Different Active Site Conformations

    Directory of Open Access Journals (Sweden)

    Anna Dowierciał

    2014-01-01

    Full Text Available The crystal structure of mouse thymidylate synthase (mTS in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB and thus supporting tighter binding of ligands, and the other being more open (dimer CD and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.

  8. Crystal structure of mouse thymidylate synthase in tertiary complex with dUMP and raltitrexed reveals N-terminus architecture and two different active site conformations.

    Science.gov (United States)

    Dowierciał, Anna; Wilk, Piotr; Rypniewski, Wojciech; Rode, Wojciech; Jarmuła, Adam

    2014-01-01

    The crystal structure of mouse thymidylate synthase (mTS) in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB) and thus supporting tighter binding of ligands, and the other being more open (dimer CD) and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.

  9. The crystal structure of HIV CRF07 B′/C gp41 reveals a hyper-mutant site in the middle of HR2 heptad repeat

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiansen; Xue, Hailing; Ma, Jing; Liu, Fang [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhou, Jianhua [Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Shao, Yiming [State Key Laboratory for Infectious Disease Prevention and Control, and National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Qiao, Wentao, E-mail: wentaoqiao@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Liu, Xinqi, E-mail: liu2008@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-11-15

    HIV CRF07 B′/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is important in HIV mediated cell–cell fusion and plays critical roles in conformational changes during viral invasion. - Highlights: • We solved the crystal structure of HIV CRF07 gp41 core region. • A hyper-mutant cluster in the middle of HR2 heptads repeat was identified. • The hyper-mutant site is important in HIV-cell fusion. • The model will help to understand the HIV fusion process.

  10. Shift in the equilibrium between on and off states of the allosteric switch in Ras-GppNHp affected by small molecules and bulk solvent composition.

    Science.gov (United States)

    Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla

    2012-08-07

    Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the "on" state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the "ordered off" state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-β. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.

  11. Shift in the Equilibrium between On and Off States of the Allosteric Switch in Ras-GppNHp Affected by Small Molecules and Bulk Solvent Composition

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla (NCSU)

    2012-08-31

    Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the 'on' state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the 'ordered off' state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-{beta}. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.

  12. Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site.

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, M. A.; Otwinowski, Z.; Perrakis, A.; Anderson, P. M.; Joachimiak, A.; Biosciences Division; Univ. of Texas; European Molecular Biology Lab.; Univ. of Minnesota; Northwestern Univ.

    2000-01-01

    Cyanase is an enzyme found in bacteria and plants that catalyzes the reaction of cyanate with bicarbonate to produce ammonia and carbon dioxide. In Escherichia coli, cyanase is induced from the cyn operon in response to extracellular cyanate. The enzyme is functionally active as a homodecamer of 17 kDa subunits, and displays half-site binding of substrates or substrate analogs. The enzyme shows no significant amino acid sequence homology with other proteins. We have determined the crystal structure of cyanase at 1.65 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method. Cyanase crystals are triclinic and contain one homodecamer in the asymmetric unit. Selenomethionine-labeled protein offers 40 selenium atoms for use in phasing. Structures of cyanase with bound chloride or oxalate anions, inhibitors of the enzyme, allowed identification of the active site. The cyanase monomer is composed of two domains. The N-terminal domain shows structural similarity to the DNA-binding {alpha}-helix bundle motif. The C-terminal domain has an 'open fold' with no structural homology to other proteins. The subunits of cyanase are arranged in a novel manner both at the dimer and decamer level. The dimer structure reveals the C-terminal domains to be intertwined, and the decamer is formed by a pentamer of these dimers. The active site of the enzyme is located between dimers and is comprised of residues from four adjacent subunits of the homodecamer. The structural data allow a conceivable reaction mechanism to be proposed.

  13. Ancient DNA analyses of early archaeological sites in New Zealand reveal extreme exploitation of moa (Aves: Dinornithiformes) at all life stages

    Science.gov (United States)

    Oskam, Charlotte L.; Allentoft, Morten E.; Walter, Richard; Scofield, R. Paul; Haile, James; Holdaway, Richard N.; Bunce, Michael; Jacomb, Chris

    2012-10-01

    The human colonisation of New Zealand in the late thirteenth century AD led to catastrophic impacts on the local biota and is among the most compelling examples of human over-exploitation of native fauna, including megafauna. Nearly half of the species in New Zealand' s pre-human avifauna are now extinct, including all nine species of large, flightless moa (Aves: Dinornithiformes). The abundance of moa in early archaeological sites demonstrates the significance of these megaherbivores in the diet of the first New Zealanders. Combining moa assemblage data, based on DNA identification of eggshell and bone, with morphological identification of bone (literature and museum catalogued specimens), we present the most comprehensive audit of moa to date from several significant 13th-15th century AD archaeological deposits across the east coast of the South Island. Mitochondrial DNA (mtDNA) was amplified from 251 of 323 (78%) eggshell fragments and 22 of 27 (88%) bone samples, and the analyses revealed the presence of four moa species: Anomalopteryx didiformis; Dinornis robustus; Emeus crassus and Euryapteryx curtus. The mtDNA, along with polymorphic microsatellite markers, enabled an estimate of the minimum number of individual eggs consumed at each site. Remarkably, in one deposit over 50 individual eggs were identified - a number that likely represents a considerable proportion of the total reproductive output of moa in the area and emphasises that human predation of all life stages of moa was intense. Molecular sexing was conducted on bones (n = 11). Contrary to previous ancient DNA studies from natural sites that consistently report an excess of female moa, we observed an excess of males (2.7:1), suggestive that males were preferential targets. This could be related to different behaviour between the two highly size-dimorphic sexes in moa. Lastly, we investigated the moa species from recovered skeletal and eggshell remains from seven Wairau Bar burials, and identified

  14. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    Science.gov (United States)

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  15. The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator.

    Science.gov (United States)

    Fisher, Janet L

    2009-01-01

    Stiripentol (STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anti-convulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABA(A) receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of alpha3-containing receptors and reduced potentiation when the beta1 or epsilon subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the alpha3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on beta1- and beta2/beta3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at alpha3-containing receptors as well as its activity at delta-containing receptors may provide a unique opportunity to target selected populations of GABARs.

  16. The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening

    Directory of Open Access Journals (Sweden)

    Fudan Zheng

    2016-04-01

    Full Text Available Soil-transmitted helminth infections in humans and livestock cause significant debility, reduced productivity and economic losses globally. There are a limited number of effective anthelmintic drugs available for treating helminths infections, and their frequent use has led to the development of resistance in many parasite species. There is an urgent need for novel therapeutic drugs for treating these parasites. We have chosen the ACR-16 nicotinic acetylcholine receptor of Ascaris suum (Asu-ACR-16, as a drug target and have developed three-dimensional models of this transmembrane protein receptor to facilitate the search for new bioactive compounds. Using the human α7 nAChR chimeras and Torpedo marmorata nAChR for homology modeling, we defined orthosteric and allosteric binding sites on the Asu-ACR-16 receptor for virtual screening. We identified four ligands that bind to sites on Asu-ACR-16 and tested their activity using electrophysiological recording from Asu-ACR-16 receptors expressed in Xenopus oocytes. The four ligands were acetylcholine inhibitors (SB-277011-A, IC50, 3.12 ± 1.29 μM; (+-butaclamol Cl, IC50, 9.85 ± 2.37 μM; fmoc-1, IC50, 10.00 ± 1.38 μM; fmoc-2, IC50, 16.67 ± 1.95 μM that behaved like negative allosteric modulators. Our work illustrates a structure-based in silico screening method for seeking anthelmintic hits, which can then be tested electrophysiologically for further characterization.

  17. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.

    Directory of Open Access Journals (Sweden)

    Kevin A James

    Full Text Available The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced "superacceptor" activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD motif in the catalytic loop and the Asp-Phe-Gly (DFG motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not

  18. Allosteric inhibition of Staphylococcus aureus d-alanine:d-alanine ligase revealed by crystallographic studies

    OpenAIRE

    Liu, Shenping; Chang, Jeanne S.; Herberg, John T.; Horng, Miao-Miao; Tomich, Paul K.; Lin, Alice H.; Marotti, Keith R

    2006-01-01

    d-alanine:d-alanine ligase (DDl) is an essential enzyme in bacterial cell wall biosynthesis and an important target for developing new antibiotics. It catalyzes the formation of d-alanine:d-alanine dipeptide, sequentially by using one d-alanine and one ATP as substrates for the first-half reaction, and a second d-alanine substrate to complete the reaction. Some gain of function DDl mutants can use an alternate second substrate, causing resistance to vancomycin, one of the last lines of defens...

  19. Mutation of putative N-linked glycosylation sites on the human nucleotide receptor P2X7 reveals a key residue important for receptor function.

    Science.gov (United States)

    Lenertz, Lisa Y; Wang, Ziyi; Guadarrama, Arturo; Hill, Lindsay M; Gavala, Monica L; Bertics, Paul J

    2010-06-08

    The nucleotide receptor P2X(7) is an immunomodulatory cation channel and a potential therapeutic target. P2X(7) is expressed in immune cells such as monocytes and macrophages and is activated by extracellular ATP following tissue injury or infection. Ligand binding to P2X(7) can stimulate ERK1/2, the transcription factor CREB, enzymes linked to the production of reactive oxygen species and interleukin-1 isoforms, and the formation of a nonspecific pore. However, little is known about the biochemistry of P2X(7), including whether the receptor is N-linked glycosylated and if this modification affects receptor function. Here we provide evidence that P2X(7) is sensitive to the glycosidases EndoH and PNGase F and that the human receptor appears glycosylated at N187, N202, N213, N241, and N284. Mutation of N187 results in weakened P2X(7) agonist-induced phosphorylation of ERK1/2, CREB, and p90 ribosomal S6 kinase, as well as a decreased level of pore formation. In further support of a role for glycosylation in receptor function, treatment of RAW 264.7 macrophages with the N-linked glycosylation synthesis inhibitor tunicamycin attenuates P2X(7) agonist-induced, but not phorbol ester-induced, ERK1/2 phosphorylation. Interestingly, residue N187 belongs to an N-linked glycosylation consensus sequence found in six of the seven P2X family members, suggesting this site is fundamentally important to P2X receptor function. To address the mechanism whereby N187 mutation attenuates receptor activity, we developed a live cell proteinase K digestion assay that demonstrated altered cell surface expression of P2X(7) N187A. This is the first report to map human P2X(7) glycosylation sites and reveal residue N187 is critical for receptor trafficking and function.

  20. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    Directory of Open Access Journals (Sweden)

    Lucas R. Watterson

    2013-12-01

    Full Text Available Positive allosteric modulators (PAMs of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

  1. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  2. microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs.

    Science.gov (United States)

    Georgakilas, Georgios; Vlachos, Ioannis S; Paraskevopoulou, Maria D; Yang, Peter; Zhang, Yuhong; Economides, Aris N; Hatzigeorgiou, Artemis G

    2014-12-10

    A large fraction of microRNAs (miRNAs) are derived from intergenic non-coding loci and the identification of their promoters remains 'elusive'. Here, we present microTSS, a machine-learning algorithm that provides highly accurate, single-nucleotide resolution predictions for intergenic miRNA transcription start sites (TSSs). MicroTSS integrates high-resolution RNA-sequencing data with active transcription marks derived from chromatin immunoprecipitation and DNase-sequencing to enable the characterization of tissue-specific promoters. MicroTSS is validated with a specifically designed Drosha-null/conditional-null mouse model, generated using the conditional by inversion (COIN) methodology. Analyses of global run-on sequencing data revealed numerous pri-miRNAs in human and mouse either originating from divergent transcription at promoters of active genes or partially overlapping with annotated long non-coding RNAs. MicroTSS is readily applicable to any cell or tissue samples and constitutes the missing part towards integrating the regulation of miRNA transcription into the modelling of tissue-specific regulatory networks.

  3. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells.

    Science.gov (United States)

    Longen, Sebastian; Richter, Florian; Köhler, Yvette; Wittig, Ilka; Beck, Karl-Friedrich; Pfeilschifter, Josef

    2016-07-14

    H2S is an important signalling molecule involved in diverse biological processes. It mediates the formation of cysteine persulfides (R-S-SH), which affect the activity of target proteins. Like thiols, persulfides show reactivity towards electrophiles and behave similarly to other cysteine modifications in a biotin switch assay. In this manuscript, we report on qPerS-SID a mass spectrometry-based method allowing the isolation of persulfide containing peptides in the mammalian proteome. With this method, we demonstrated that H2S donors differ in their efficacy to induce persulfides in HEK293 cells. Furthermore, data analysis revealed that persulfide formation affects all subcellular compartments and various cellular processes. Negatively charged amino acids appeared more frequently adjacent to cysteines forming persulfides. We confirmed our proteomic data using pyruvate kinase M2 as a model protein and showed that several cysteine residues are prone to persulfide formation finally leading to its inactivation. Taken together, the site-specific identification of persulfides on a proteome scale can help to identify target proteins involved in H2S signalling and enlightens the biology of H2S and its releasing agents.

  4. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1.

    Directory of Open Access Journals (Sweden)

    Chiori Yabuki

    Full Text Available Selective free fatty acid receptor 1 (FFAR1/GPR40 agonist fasiglifam (TAK-875, an antidiabetic drug under phase 3 development, potentiates insulin secretion in a glucose-dependent manner by activating FFAR1 expressed in pancreatic β cells. Although fasiglifam significantly improved glycemic control in type 2 diabetes patients with a minimum risk of hypoglycemia in a phase 2 study, the precise mechanisms of its potent pharmacological effects are not fully understood. Here we demonstrate that fasiglifam acts as an ago-allosteric modulator with a partial agonistic activity for FFAR1. In both Ca(2+ influx and insulin secretion assays using cell lines and mouse islets, fasiglifam showed positive cooperativity with the FFAR1 ligand γ-linolenic acid (γ-LA. Augmentation of glucose-induced insulin secretion by fasiglifam, γ-LA, or their combination was completely abolished in pancreatic islets of FFAR1-knockout mice. In diabetic rats, the insulinotropic effect of fasiglifam was suppressed by pharmacological reduction of plasma free fatty acid (FFA levels using a lipolysis inhibitor, suggesting that fasiglifam potentiates insulin release in conjunction with plasma FFAs in vivo. Point mutations of FFAR1 differentially affected Ca(2+ influx activities of fasiglifam and γ-LA, further indicating that these agonists may bind to distinct binding sites. Our results strongly suggest that fasiglifam is an ago-allosteric modulator of FFAR1 that exerts its effects by acting cooperatively with endogenous plasma FFAs in human patients as well as diabetic animals. These findings contribute to our understanding of fasiglifam as an attractive antidiabetic drug with a novel mechanism of action.

  5. Molecular Motions as a Drug Target: Mechanistic Simulations of Anthrax Toxin Edema Factor Function Led to the Discovery of Novel Allosteric Inhibitors

    Directory of Open Access Journals (Sweden)

    Arnaud Blondel

    2012-07-01

    Full Text Available Edema Factor (EF is a component of Bacillus anthracis toxin essential for virulence. Its adenylyl cyclase activity is induced by complexation with the ubiquitous eukaryotic cellular protein, calmodulin (CaM. EF and its complexes with CaM, nucleotides and/or ions, have been extensively characterized by X-ray crystallography. Those structural data allowed molecular simulations analysis of various aspects of EF action mechanism, including the delineation of EF and CaM domains through their association energetics, the impact of calcium binding on CaM, and the role of catalytic site ions. Furthermore, a transition path connecting the free inactive form to the CaM-complexed active form of EF was built to model the activation mechanism in an attempt to define an inhibition strategy. The cavities at the surface of EF were determined for each path intermediate to identify potential sites where the binding of a ligand could block activation. A non-catalytic cavity (allosteric was found to shrink rapidly at early stages of the path and was chosen to perform virtual screening. Amongst 18 compounds selected in silico and tested in an enzymatic assay, 6 thiophen ureidoacid derivatives formed a new family of EF allosteric inhibitors with IC50 as low as 2 micromolars.

  6. Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model.

    Science.gov (United States)

    Morgan, Hugh P; McNae, Iain W; Nowicki, Matthew W; Hannaert, Véronique; Michels, Paul A M; Fothergill-Gilmore, Linda A; Walkinshaw, Malcolm D

    2010-04-23

    Allosteric regulation provides a rate management system for enzymes involved in many cellular processes. Ligand-controlled regulation is easily recognizable, but the underlying molecular mechanisms have remained elusive. We have obtained the first complete series of allosteric structures, in all possible ligated states, for the tetrameric enzyme, pyruvate kinase, from Leishmania mexicana. The transition between inactive T-state and active R-state is accompanied by a simple symmetrical 6 degrees rigid body rocking motion of the A- and C-domain cores in each of the four subunits. However, formation of the R-state in this way is only part of the mechanism; eight essential salt bridge locks that form across the C-C interface provide tetramer rigidity with a coupled 7-fold increase in rate. The results presented here illustrate how conformational changes coupled with effector binding correlate with loss of flexibility and increase in thermal stability providing a general mechanism for allosteric control.

  7. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  8. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  9. Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes.

    Science.gov (United States)

    Sigel, E; Baur, R

    1988-01-01

    Chick brain mRNA was isolated and injected into Xenopus oocytes. This led to the expression in the surface membrane of functional GABA-activated channels with properties reminiscent of vertebrate GABAA channels. The GABA-induced current was analyzed quantitatively under voltage-clamp conditions. Picrotoxin inhibited this current in a concentration-dependent manner with IC50 = 0.6 microM. The allosteric modulation of GABA currents by a number of drugs acting at the benzodiazepine binding site was characterized quantitatively. In the presence of the benzodiazepine receptor ligands diazepam and clorazepate, GABA responses were enhanced, and in the presence of the convulsant beta-carboline compound methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), they were depressed. Maximal stimulation of the response elicited by 10 microM GABA was 160% with diazepam and 90% with clorazepate, and maximal inhibition was 42% with DMCM, 30% with methyl beta-carboline-3-carboxylate (beta-CCM), 15% with ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a][1,4]benzodiazepine-3-carboxylate (Ro 15-1788), and 12% with ethyl beta-carboline-3-carboxylate (beta-CCE). Half-maximal stimulation was observed with 20 nM diazepam and 390 nM clorazepate, respectively, and half-maximal inhibition with 6 nM DMCM. beta-CCM had a similar effect to DMCM, whereas beta-CCE and Ro 15-1788 showed only small inhibition at low concentrations (less than 1 microM). All the tested carboline compounds and Ro 15-1788 showed a biphasic action and stimulated GABA current at concentrations higher than 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Greene, T.W.; Woodbury, R.L.; Okita, T.W. [Washington State Univ., Pullman, WA (United States)

    1996-11-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production. One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to I{sub 2} vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wildtype recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA. The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. 28 refs., 3 figs., 1 tab.

  11. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase.

    Science.gov (United States)

    Greene, T W; Woodbury, R L; Okita, T W

    1996-01-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509-1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to l3 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. PMID:8938421

  12. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.

    Science.gov (United States)

    Trampari, Eleftheria; Stevenson, Clare E M; Little, Richard H; Wilhelm, Thomas; Lawson, David M; Malone, Jacob G

    2015-10-01

    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.

  13. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals.

    Science.gov (United States)

    Mathieu, Cécile; Bui, Linh-Chi; Petit, Emile; Haddad, Iman; Agbulut, Onnik; Vinh, Joelle; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-02-03

    Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 10(5) m(-1) s(-1)). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys(318)-Cys(326)), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.

  14. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour

    Science.gov (United States)

    Motamedi-Shad, Neda; Jagger, Alistair M.; Liedtke, Maximilian; Faull, Sarah V.; Nanda, Arjun Scott; Salvadori, Enrico; Wort, Joshua L.; Kay, Christopher W.M.; Heyer-Chauhan, Narinder; Miranda, Elena; Perez, Juan; Ordóñez, Adriana; Haq, Imran; Irving, James A.; Lomas, David A.

    2016-01-01

    Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A — on the opposite face of the molecule — more liable to adopt an ‘open’ state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin–enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the ‘open’ state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation. PMID:27407165

  15. Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief

    Science.gov (United States)

    Moriconi, Alessio; Cunha, Thiago M.; Souza, Guilherme R.; Lopes, Alexandre H.; Cunha, Fernando Q.; Carneiro, Victor L.; Pinto, Larissa G.; Brandolini, Laura; Aramini, Andrea; Bizzarri, Cinzia; Bianchini, Gianluca; Beccari, Andrea R.; Fanton, Marco; Bruno, Agostino; Costantino, Gabriele; Bertini, Riccardo; Galliera, Emanuela; Locati, Massimo; Ferreira, Sérgio H.; Teixeira, Mauro M.; Allegretti, Marcello

    2014-01-01

    Chronic pain resulting from inflammatory and neuropathic disorders causes considerable economic and social burden. Pharmacological therapies currently available for certain types of pain are only partially effective and may cause severe adverse side effects. The C5a anaphylatoxin acting on its cognate G protein-coupled receptor (GPCR), C5aR, is a potent pronociceptive mediator in several models of inflammatory and neuropathic pain. Although there has long been interest in the identification of C5aR inhibitors, their development has been complicated, as for many peptidomimetic drugs, mostly by poor drug-like properties. Herein, we report the de novo design of a potent and selective C5aR noncompetitive allosteric inhibitor, DF2593A, guided by the hypothesis that an allosteric site, the “minor pocket,” previously characterized in CXC chemokine receptors-1 and -2, is functionally conserved in the GPCR class. In vitro, DF2593A potently inhibited C5a-induced migration of human and rodent neutrophils. In vivo, oral administration of DF2593A effectively reduced mechanical hyperalgesia in several models of acute and chronic inflammatory and neuropathic pain, without any apparent side effects. Mechanical hyperalgesia after spared nerve injury was also reduced in C5aR−/− mice compared with WT mice. Furthermore, treatment of C5aR−/− mice with DF2593A did not produce any further antinociceptive effect compared with C5aR−/− mice treated with vehicle. The successful medicinal chemistry strategy confirms that a conserved minor pocket is amenable for the rational design of selective inhibitors and the pharmacological results support that the allosteric blockade of the C5aR represents a highly promising therapeutic approach to control chronic inflammatory and neuropathic pain. PMID:25385614

  16. Site-directed mutagenesis reveals new and essential elements for iron-coordination of the sulfur oxygenasereductase from the acidothermophilic Acidianus teng-chongensis

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiWei; JIANG ChengYing; LIU ShuangJiang

    2009-01-01

    Previous study on refolding of sulfur oxygenase reductase (SOR) inclusion bodies from recombinant Escherichia coli showed that iron was critical to the activity of the SOR from Acidianus ambivalens. In this study, enzymatic assays showed that 2,2'-Dipyridyl, Tiron and 8-hydroxyquinoline, which are spe-cific for chelating ferrous or ferric ions, strongly inhibited the activity of SOR from A. tengchongensis, suggesting that iron atom is essential for SOR activity. Alignment of several functionally identified SORs and SOR-like sequences from genome database revealed a conserved, putative iron binding motif, H86-X3-H90-Xn-E114-Xn-E129 (numbering according to the Acidianus tengchongensis SOR sequence). Three mutants of SOR were generated by site-directed mutagenesis of H86, H90 and E129 into phenyla-lanine or alanine residue in this study. Circular dichroism spectrum determination indicated that there was no change of the secondary structures of mutant SORs, H86F, H90F and E129A, but all mutants were completely inactive. Through determination of iron contents we found that SOR mutants of H86F, H90F and E129A completely or partially lost iron, while mutants of C31S, C101S, and C104S (generated in a pre-vious study) did not. This result indicated that H86, H90 and E129 but not C31, C101, and C104 were involved in binding to iron atom. Based on this and previous studies, it is proposed that the conserved motifs, C31-Xn-C101-X2-C104 and H86-X3-H90-X23-E114-X14-(E/D)129, are respectively for sulfur and molecular oxygen binding and activation. These two conserved motifs are essential elements for the SOR activity.

  17. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119

    DEFF Research Database (Denmark)

    Hassing, Helle A; Fares, Suzan; Larsen, Olav;

    2016-01-01

    for 2h with the 2-MAG-lipase inhibitor JZL84 doubled the constitutive activity, indicating that endogenous lipids contribute to the apparent constitutive activity. Finally, besides being an agonist, AR231453 acted as a positive allosteric modulator of OEA and increased its potency by 54-fold at 100nM AR......231453. Our studies uncovering broad and biased signaling, masked constitutive activity by endogenous MAGs, and ago-allosteric properties of synthetic ligands may explain why many GPR119 drug-discovery programs have failed so far....

  18. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    Science.gov (United States)

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation.

  19. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Directory of Open Access Journals (Sweden)

    Gu Jenny

    2007-02-01

    Full Text Available Abstract Background The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2, a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. Results TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2. The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. Conclusion The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function.

  20. Variations in clique and community patterns in protein structures during allosteric communication: investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes.

    Science.gov (United States)

    Ghosh, Amit; Vishveshwara, Saraswathi

    2008-11-04

    The allosteric concept has played a key role in understanding the biological functions of proteins. The rigidity or plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. Although molecular insights have been gained from a large number of structures, a precise assessment of the ligand-induced conformational changes in proteins at different levels, ranging from gross topology to intricate details, remains a challenge. In this study, we have explored the conformational changes in the complexes of methionyl tRNA synthetase (MetRS) through novel network parameters such as cliques and communities, which identify the rigid regions in the protein structure networks (PSNs) constructed from the noncovalent interactions of amino acid side chains. MetRS belongs to the aminoacyl tRNA synthetase (aaRS) family that plays a crucial role in the translation of genetic code. These enzymes are modular with distinct domains from which extensive genetic, kinetic, and structural data are available, highlighting the role of interdomain communication. The network parameters evaluated here on the conformational ensembles of MetRS complexes, generated from molecular dynamics simulations, have enabled us to understand the interdomain communication in detail. Additionally, the characterization of conformational changes in terms of cliques and communities has also become possible, which had eluded conventional analyses. Furthermore, we find that most of the residues participating in cliques and communities are strikingly different from those that take part in long-range communication. The cliques and communities evaluated here for the first time on PSNs have beautifully captured the local geometries in detail within the framework of global topology. Here the allosteric effect is revealed at the residue level via identification of the important residues specific for structural rigidity and functional flexibility in MetRS. This ought

  1. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  2. An allosteric rheostat in HIV-1 gp120 reduces CCR5 stoichiometry required for membrane fusion and overcomes diverse entry limitations.

    Science.gov (United States)

    Platt, Emily J; Durnin, James P; Shinde, Ujwal; Kabat, David

    2007-11-16

    Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1(JRCSF) variants that more efficiently use mutant CCR5s, including CCR5(Delta18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1(JRCSF) variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Delta18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Delta18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1(JRCSF) is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an

  3. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  4. Characterization of an allosteric citalopram-binding site at the serotonin transporter

    DEFF Research Database (Denmark)

    Chen, Fenghua; Breum Larsen, Mads; Neubauer, Henrik Amtoft

    2005-01-01

          rate, of [3H]S-citalopram from human SERT, is retarded by the presence of       serotonin, as well as by several antidepressants, when present in the       dissociation buffer. Dissociation of [3H]S-citalopram from SERT is most       potently inhibited by S-citalopram followed by R...... is independent of       temperature, or the presence of Na+ in the dissociation buffer.       Dissociation of [3H]S-citalopram from a complex with the SERT       double-mutant, N208Q/N217Q, which has been suggested to be unable to       self-assemble into oligomeric complexes, is retarded to an extent similar...

  5. An Allosteric Receptor by Simultaneous "Casting" and "Molding" in a Dynamic Combinatorial Library

    NARCIS (Netherlands)

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2015-01-01

    Allosteric synthetic receptors are difficult to access by design. Herein we report a dynamic combinatorial strategy towards such systems based on the simultaneous use of two different templates. Through a process of simultaneous casting (the assembly of a library member around a template) and moldin

  6. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.

    Science.gov (United States)

    Popovych, Nataliya; Tzeng, Shiou-Ru; Tonelli, Marco; Ebright, Richard H; Kalodimos, Charalampos G

    2009-04-28

    The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.

  7. Allosteric modulators affect the internalization of human adenosine A1 receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; Hout, G. van den; Roerink, S.F.; Grip, W.J. de; IJzerman, A.P.; Beukers, M.W.

    2005-01-01

    To study the effect of allosteric modulators on the internalization of human adenosine A(1) receptors, the receptor was equipped with a C-terminal yellow fluorescent protein tag. The introduction of this tag did not affect the radioligand binding properties of the receptor. CHO cells stably expressi

  8. Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

    NARCIS (Netherlands)

    Faulkner, Adele; van Leeuwen, Thomas; Feringa, Ben L; Wezenberg, Sander J

    2016-01-01

    The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e. zi

  9. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    Science.gov (United States)

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  10. The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody.

    Science.gov (United States)

    Zhou, Xi; Pan, Shujuan; Sun, Le; Corvera, Joe; Lin, Sue-Hwa; Kuang, Jian

    2008-09-01

    Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], a component of the endosomal sorting machinery, contains a three-dimensional docking site for HIV-1 p6(Gag) or EIAV (equine infectious anaemia virus) p9(Gag), and binding of the viral protein to this docking site allows the virus to hijack the host endosomal sorting machinery for budding from the plasma membrane. In the present study, we identified a monoclonal antibody that specifically recognizes the docking site for p6(Gag)/p9(Gag) and we used this antibody to probe the accessibility of the docking site in Alix. Our results show that the docking site is not available in cytosolic or recombinant Alix under native conditions and becomes available upon addition of the detergent Nonidet P40 or SDS. In HEK (human embryonic kidney)-293 cell lysates, an active p6(Gag)/p9(Gag) docking site is specifically available in Alix from the membrane fraction. The findings of the present study demonstrate that formation or exposure of the p6(Gag)/p9(Gag) docking site in Alix is a regulated event and that Alix association with the membrane may play a positive role in this process.

  11. Synthesis and structure-activity relationships of indazole arylsulfonamides as allosteric CC-chemokine receptor 4 (CCR4) antagonists.

    Science.gov (United States)

    Procopiou, Panayiotis A; Barrett, John W; Barton, Nicholas P; Begg, Malcolm; Clapham, David; Copley, Royston C B; Ford, Alison J; Graves, Rebecca H; Hall, David A; Hancock, Ashley P; Hill, Alan P; Hobbs, Heather; Hodgson, Simon T; Jumeaux, Coline; Lacroix, Yannick M L; Miah, Afjal H; Morriss, Karen M L; Needham, Deborah; Sheriff, Emma B; Slack, Robert J; Smith, Claire E; Sollis, Steven L; Staton, Hugo

    2013-03-14

    A series of indazole arylsulfonamides were synthesized and examined as human CCR4 antagonists. Methoxy- or hydroxyl-containing groups were the more potent indazole C4 substituents. Only small groups were tolerated at C5, C6, or C7, with the C6 analogues being preferred. The most potent N3-substituent was 5-chlorothiophene-2-sulfonamide. N1 meta-substituted benzyl groups possessing an α-amino-3-[(methylamino)acyl]-group were the most potent N1-substituents. Strongly basic amino groups had low oral absorption in vivo. Less basic analogues, such as morpholines, had good oral absorption; however, they also had high clearance. The most potent compound with high absorption in two species was analogue 6 (GSK2239633A), which was selected for further development. Aryl sulfonamide antagonists bind to CCR4 at an intracellular allosteric site denoted site II. X-ray diffraction studies on two indazole sulfonamide fragments suggested the presence of an important intramolecular interaction in the active conformation.

  12. Anti-tumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding

    Science.gov (United States)

    Dings, Ruud P.M.; Miller, Michelle C.; Nesmelova, Irina; Astorgues-Xerri, Lucile; Kumar, Nigam; Serova, Maria; Chen, Xuimei; Raymond, Eric; Hoye, Thomas R.; Mayo, Kevin H.

    2012-01-01

    Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, 15N-1H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin’s carbohydrate binding site, and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of anti-tumor calixarene compound 0118. PMID:22575017

  13. Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta; Zhang, Yong-Mei; Yun, Mi-Kyung; Zhou, Ruobing; Zeng, Fu-Yue; Lin, Wenwei; Cui, Jimmy; Chen, Taosheng; Rock, Charles O.; White, Stephen W.; Jackowski, Suzanne (SJCH)

    2010-09-27

    Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3 acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated or repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.

  14. Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive

    Science.gov (United States)

    Bagchi, Damayanti; Ghosh, Abhijit; Singh, Priya; Dutta, Shreyasi; Polley, Nabarun; Althagafi, Ismail. I.; Jassas, Rabab S.; Ahmed, Saleh A.; Pal, Samir Kumar

    2016-09-01

    The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

  15. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 1. Calorimetric study.

    Science.gov (United States)

    Herman, Petr; Lee, J Ching

    2009-10-13

    Rabbit muscle pyruvate kinase (RMPK) is an important allosteric enzyme of the glycolytic pathway catalyzing a transfer of the phosphate from phosphoenolpyruvate (PEP) to ADP. The energetic landscape of the allosteric regulatory mechanism of RMPK was characterized by isothermal titration calorimetry (ITC) in the temperature range from 4 to 45 degrees C. ITC data for RMPK binding to substrates PEP and ADP, for the allosteric inhibitor Phe, and for combination of ADP and Phe were globally analyzed. The thermodynamic parameters characterizing the linked-multiple-equilibrium system were extracted. Four novel insights were uncovered. (1) The binding preference of ADP for either the T or R state is temperature-dependent, namely, more favorable to the T and R states at high and low temperatures, respectively. This crossover of affinity toward R and T states implies that ADP plays a complex role in modulating the allosteric behavior of RMPK. Depending on the temperature, binding of ADP can regulate RMPK activity by favoring the enzyme to either the R or T state. (2) The binding of Phe is negatively coupled to that of ADP; i.e., Phe and ADP prefer not to bind to the same subunit of RMPK. (3) The release or absorption of protons linked to the various equilibria is specific to the particular reaction. As a consequence, pH will exert a complex effect on these linked equilibria, resulting in the proton being an allosteric regulatory ligand of RMPK. (4) The R T equilibrium is accompanied by a significant DeltaC(p), rendering RMPK most sensitive to temperature under physiological conditions. During muscle activity, both pH and temperature fluctuations are known to happen; thus, results of this study are physiologically relevant.

  16. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  17. N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Reveals an Intronic Residue Critical for Caenorhabditis elegans 3′ Splice Site Function in Vivo

    Science.gov (United States)

    Itani, Omar A.; Flibotte, Stephane; Dumas, Kathleen J.; Guo, Chunfang; Blumenthal, Thomas; Hu, Patrick J.

    2016-01-01

    Metazoan introns contain a polypyrimidine tract immediately upstream of the AG dinucleotide that defines the 3′ splice site. In the nematode Caenorhabditis elegans, 3′ splice sites are characterized by a highly conserved UUUUCAG/R octamer motif. While the conservation of pyrimidines in this motif is strongly suggestive of their importance in pre-mRNA splicing, in vivo evidence in support of this is lacking. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in Caenorhabditis elegans, we have isolated a strain containing a point mutation in the octamer motif of a 3′ splice site in the daf-12 gene. This mutation, a single base T-to-G transversion at the -5 position relative to the splice site, causes a strong daf-12 loss-of-function phenotype by abrogating splicing. The resulting transcript is predicted to encode a truncated DAF-12 protein generated by translation into the retained intron, which contains an in-frame stop codon. Other than the perfectly conserved AG dinucleotide at the site of splicing, G at the –5 position of the octamer motif is the most uncommon base in C. elegans 3′ splice sites, occurring at closely paired sites where the better match to the splicing consensus is a few bases downstream. Our results highlight both the biological importance of the highly conserved –5 uridine residue in the C. elegans 3′ splice site octamer motif as well as the utility of using ENU as a mutagen to study the function of polypyrimidine tracts and other AU- or AT-rich motifs in vivo. PMID:27172199

  18. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1.

    Science.gov (United States)

    Pushie, M Jake; Shaw, Katharine; Franz, Katherine J; Shearer, Jason; Haas, Kathryn L

    2015-09-08

    Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.

  19. Positive Allosteric Modulators of Type 5 Metabotropic Glutamate Receptors (mGluR5 and Their Therapeutic Potential for the Treatment of CNS Disorders

    Directory of Open Access Journals (Sweden)

    Richard M. Cleva

    2011-03-01

    Full Text Available Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated thattype 5 metabotropic glutamate receptors (mGluR5 are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS, including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson’s disease, and gastroesophageal reflux disease. However, in recent years, the development of positive allosteric modulators (PAMs of the mGluR5 receptor have revealed that allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here we summarize the discovery and characterization of various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also review animal studies showing that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the ability toenhance synaptic plasticity, improve performance in various learning and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits produced by chronic drug use.

  20. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells.

    Science.gov (United States)

    Legeay, Samuel; Clere, Nicolas; Hilairet, Grégory; Do, Quoc-Tuan; Bernard, Philippe; Quignard, Jean-François; Apaire-Marchais, Véronique; Lapied, Bruno; Faure, Sébastien

    2016-06-27

    The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation.

  1. A Cretaceous-Palaeogene boundary geological site, revealed by planktic foraminifera and dinoflagellate cysts, at Ouled Haddou, eastern external Rif Chain, Morocco

    Science.gov (United States)

    Slimani, Hamid; Toufiq, Abdelkabir

    2013-12-01

    Planktic foraminifera and organic-walled dinoflagellate cyst investigations in the Ouled Haddou outcrop (eastern external Rif Belt) in northern Morocco, revealed a continuous sedimentation and a complete record of the Cretaceous-Palaeogene (K-Pg) transition. Both planktic foraminifera and dinoflagellate cyst assemblages observed in the studied Maastrichtian-Danian boundary interval are diverse and well-preserved and contain numerous chronostratigraphically significant bio-events that have allowed a high resolution biostratigraphic analysis, based on the first and last occurrences of index species and also on the massive disappearance and abundance changes of different taxa. Planktic foraminifera allow correlation of the studied interval with the uppermost Maastrichtian Abathomphalus mayaroensis Zone and the lower Danian Guembelitria cretacea, Parvularugoglobigerina eugubina, Parasubbotina pseudobulloides and Subbotina triloculinoides zones. A mass extinction of planktic foraminifera is observed at the end of the Abathomphalus mayaroensis Zone. This mass extinction is followed by three renewal steps of planktic foraminifera in the basal Danian. The Cretaceous-Palaeogene boundary is placed just above the mass extinction of Globotruncanids and Heterohelicids and below the first appearences of earliest Danian markers genera Globoconusa, and Parvularugoglobigerina. According to dinoflagellate cysts, the recognition of the latest Maastrichtian and earliest Danian is based on global bio-events, including the first occurrence of the latest Maastrichtian species Disphaerogena carposphaeropsis, Glaphyrocysta perforata, and Manumiella seelandica, the latest Maastrichtian acme of Manumiella seelandica, and the first occurrence of the earliest Danian markers Carpatella cornuta, Damassadinium californicum and Senoniasphaera inornata. The dinoflagellate Damassadinium californicum Zone characterizing the Danian in the Northern Hemisphere is recognized in this section. The

  2. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain.

    Science.gov (United States)

    Sevcík, Jozef; Hostinová, Eva; Solovicová, Adriana; Gasperík, Juraj; Dauter, Zbigniew; Wilson, Keith S

    2006-05-01

    Most glucoamylases (alpha-1,4-D-glucan glucohydrolase, EC 3.2.1.3) have structures consisting of both a catalytic and a starch binding domain. The structure of a glucoamylase from Saccharomycopsis fibuligera HUT 7212 (Glu), determined a few years ago, consists of a single catalytic domain. The structure of this enzyme with the resolution extended to 1.1 A and that of the enzyme-acarbose complex at 1.6 A resolution are presented here. The structure at atomic resolution, besides its high accuracy, shows clearly the influence of cryo-cooling, which is manifested in shrinkage of the molecule and lowering the volume of the unit cell. In the structure of the complex, two acarbose molecules are bound, one at the active site and the second at a site remote from the active site, curved around Tyr464 which resembles the inhibitor molecule in the 'sugar tongs' surface binding site in the structure of barley alpha-amylase isozyme 1 complexed with a thiomalto-oligosaccharide. Based on the close similarity in sequence of glucoamylase Glu, which does not degrade raw starch, to that of glucoamylase (Glm) from S. fibuligera IFO 0111, a raw starch-degrading enzyme, it is reasonable to expect the presence of the remote starch binding site at structurally equivalent positions in both enzymes. We propose the role of this site is to fix the enzyme onto the surface of a starch granule while the active site degrades the polysaccharide. This hypothesis is verified here by the preparation of mutants of glucoamylases Glu and Glm.

  3. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1 Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    Directory of Open Access Journals (Sweden)

    Ekaterina N Lyukmanova

    Full Text Available SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1 differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM of human oral keratinocytes (Het-1A cells. Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM. It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1 did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the

  4. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    Science.gov (United States)

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis; Bychkov, Maxim L; Kulbatskii, Dmitrii S; Kasheverov, Igor E; Astapova, Maria V; Feofanov, Alexey V; Thomsen, Morten S; Mikkelsen, Jens D; Shenkarev, Zakhar O; Tsetlin, Victor I; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  5. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes

    Science.gov (United States)

    Vega, Yolanda; Delgado, Elena; de la Barrera, Jorge; Carrera, Cristina; Zaballos, Ángel; Cuesta, Isabel; Mariño, Ana; Ocampo, Antonio; Miralles, Celia; Pérez-Castro, Sonia; Álvarez, Hortensia; López-Miragaya, Isabel; García-Bodas, Elena; Díez-Fuertes, Francisco; Thomson, Michael M.

    2016-01-01

    HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS), and doubly spliced (DS). Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G), were identified. In four samples, three of non-B subtypes, five 3’ splice sites (3’ss) mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides) to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3’ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h) and a subtype G (A7i) viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3’ss. Usage of unusual 3’ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known. PMID:27355361

  6. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes.

    Directory of Open Access Journals (Sweden)

    Yolanda Vega

    Full Text Available HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS, and doubly spliced (DS. Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G, were identified. In four samples, three of non-B subtypes, five 3' splice sites (3'ss mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3'ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h and a subtype G (A7i viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3'ss. Usage of unusual 3'ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known.

  7. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity.

    Science.gov (United States)

    Bythell-Douglas, Rohan; Suttisansanee, Uthaiwan; Flematti, Gavin R; Challenor, Michael; Lee, Mihwa; Panjikar, Santosh; Honek, John F; Bond, Charles S

    2015-01-07

    The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal-dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X-ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal-binding arrangement consistent with half-of-sites activity: one active site contains a single activating Ni(2+) ion, whereas the other contains two inactivating Zn(2+) ions. Enzymological experiments prompted by the binuclear Zn(2+) site identified a novel catalytic property of GloA2. The enzyme can function as a Zn(2+) /Co(2+) -dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal-binding arrangements simultaneously, each of which catalyzes a different reaction.

  8. The structures of pyruvate oxidase from Aerococcus viridans with cofactors and with a reaction intermediate reveal the flexibility of the active-site tunnel for catalysis

    OpenAIRE

    Juan, Ella Czarina Magat; Hoque, Md Mominul; Hossain, Md Tofazzal; Yamamoto, Tamotsu; Imamura, Shigeyuki; Suzuki, Kaoru; Sekiguchi, Takeshi; Takénaka, Akio

    2007-01-01

    The crystal structures of pyruvate oxidase from A. viridans in complex with flavin adenine dinucleotide, thiamine diphosphate and the reaction intermediate 2-acetyl-thiamine diphosphate reveal details of substrate recognition and catalysis.

  9. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in> Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst...

  10. New Insights Into the Transmissibility of Leishmania infantum From Dogs to Sand Flies: Experimental Vector-Transmission Reveals Persistent Parasite Depots at Bite Sites

    Science.gov (United States)

    Aslan, Hamide; Oliveira, Fabiano; Meneses, Claudio; Castrovinci, Philip; Gomes, Regis; Teixeira, Clarissa; Derenge, Candace A.; Orandle, Marlene; Gradoni, Luigi; Oliva, Gaetano; Fischer, Laurent; Valenzuela, Jesus G.; Kamhawi, Shaden

    2016-01-01

    Canine leishmaniasis (CanL) is a chronic fatal disease of dogs and a major source of human infection through propagation of parasites in vectors. Here, we infected 8 beagles through multiple experimental vector transmissions with Leishmania infantum–infected Lutzomyia longipalpis. CanL clinical signs varied, although live parasites were recovered from all dog spleens. Splenic parasite burdens correlated positively with Leishmania-specific interleukin 10 levels, negatively with Leishmania-specific interferon γ and interleukin 2 levels, and negatively with Leishmania skin test reactivity. A key finding was parasite persistence for 6 months in lesions observed at the bite sites in all dogs. These recrudesced following a second transmission performed at a distal site. Notably, sand flies efficiently acquired parasites after feeding on lesions at the primary bite site. In this study, controlled vector transmissions identify a potentially unappreciated role for skin at infectious bite sites in dogs with CanL, providing a new perspective regarding the mechanism of Leishmania transmissibility to vector sand flies. PMID:26768257

  11. Plasma Proteins Modified by Advanced Glycation End Products (AGEs) Reveal Site-specific Susceptibilities to Glycemic Control in Patients with Type 2 Diabetes.

    Science.gov (United States)

    Greifenhagen, Uta; Frolov, Andrej; Blüher, Matthias; Hoffmann, Ralf

    2016-04-29

    Protein glycation refers to the reversible reaction between aldoses (or ketoses) and amino groups yielding relatively stable Amadori (or Heyns) products. Consecutive oxidative cleavage reactions of these products or the reaction of amino groups with other reactive substances (e.g. α-dicarbonyls) yield advanced glycation end products (AGEs) that can alter the structures and functions of proteins. AGEs have been identified in all organisms, and their contents appear to rise with some diseases, such as diabetes and obesity. Here, we report a pilot study using highly sensitive and specific proteomics approach to identify and quantify AGE modification sites in plasma proteins by reversed phase HPLC mass spectrometry in tryptic plasma digests. In total, 19 AGE modification sites corresponding to 11 proteins were identified in patients with type 2 diabetes mellitus under poor glycemic control. The modification degrees of 15 modification sites did not differ among cohorts of normoglycemic lean or obese and type 2 diabetes mellitus patients under good and poor glycemic control. The contents of two amide-AGEs in human serum albumin and apolipoprotein A-II were significantly higher in patients with poor glycemic control, although the plasma levels of both proteins were similar among all plasma samples. These two modification sites might be useful to predict long term, AGE-related complications in diabetic patients, such as impaired vision, increased arterial stiffness, or decreased kidney function.

  12. Structural arrangement of tRNA binding sites on Escherichia coli ribosomes, as revealed from data on affinity labelling with photoactivatable tRNA derivatives.

    Science.gov (United States)

    Graifer, D M; Babkina, G T; Matasova, N B; Vladimirov, S N; Karpova, G G; Vlassov, V V

    1989-07-01

    A systematic study of protein environment of tRNA in ribosomes in model complexes representing different translation steps was carried out using the affinity labelling of the ribosomes with tRNA derivatives bearing aryl azide groups scattered statistically over tRNA guanine residues. Analysis of the proteins crosslinked to tRNA derivatives showed that the location of the derivatives in the aminoacyl (A) site led to the labelling of the proteins S5 and S7 in all complexes studied, whereas the labelling of the proteins S2, S8, S9, S11, S14, S16, S17, S18, S19, S21 as well as L9, L11, L14, L15, L21, L23, L24, L29 depended on the state of tRNA in A site. Similarly, the location of tRNA derivatives in the peptidyl (P) site resulted in the labelling of the proteins L27, S11, S13 and S19 in all states, whereas the labelling of the proteins S5, S7, S9, S12, S14, S20, S21 as well as L2, L13, L14, L17, L24, L27, L31, L32, L33 depended on the type of complex. The derivatives of tRNA(fMet) were found to crosslink to S1, S3, S5, S7, S9, S14 and L1, L2, L7/L12, L27. Based on the data obtained, a general principle of the dynamic functioning of ribosomes has been proposed: (i) the formation of each type of ribosomal complex is accompanied by changes in mutual arrangement of proteins - 'conformational adjustment' of the ribosome - and (ii) a ribosome can dynamically change its internal structure at each step of initiation and elongation; on the 70 S ribosome there are no rigidly fixed structures forming tRNA-binding sites (primarily A and P sites).

  13. Reverse Genetics of Escherichia coli Glycerol Kinase Allosteric Regulation and Glucose Control of Glycerol Utilization In Vivo

    OpenAIRE

    Holtman, C. Kay; Pawlyk, Aaron C.; Meadow, Norman D.; Pettigrew, Donald W.

    2001-01-01

    Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIAGlc (formerly known as IIIglc), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose control of both glycerol utilization and expression of the glpK gene. Genetics methods based on homologous recombination are used to place glp...

  14. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    Science.gov (United States)

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  15. Allosteric Regulation of Serine Protease HtrA2 through Novel Non-Canonical Substrate Binding Pocket

    Science.gov (United States)

    Singh, Nitu; Gadewal, Nikhil; Chaganti, Lalith K.; Sastry, G. Madhavi; Bose, Kakoli

    2013-01-01

    HtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated. Although allostery has been found in some of its homologs, it has not been characterized in HtrA2 so far. Here, with an in silico and biochemical approach we have shown that allostery does regulate HtrA2 activity. Our studies identified a novel non-canonical selective binding pocket in HtrA2 which initiates signal propagation to the distal active site through a complex allosteric mechanism. This non-classical binding pocket is unique among HtrA family proteins and thus unfolds a novel mechanism of regulation of HtrA2 activity and hence apoptosis. PMID:23457469

  16. Allosteric regulation of serine protease HtrA2 through novel non-canonical substrate binding pocket.

    Directory of Open Access Journals (Sweden)

    Pruthvi Raj Bejugam

    Full Text Available HtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated. Although allostery has been found in some of its homologs, it has not been characterized in HtrA2 so far. Here, with an in silico and biochemical approach we have shown that allostery does regulate HtrA2 activity. Our studies identified a novel non-canonical selective binding pocket in HtrA2 which initiates signal propagation to the distal active site through a complex allosteric mechanism. This non-classical binding pocket is unique among HtrA family proteins and thus unfolds a novel mechanism of regulation of HtrA2 activity and hence apoptosis.

  17. Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo

    DEFF Research Database (Denmark)

    Robel, Stefanie; Bardehle, Sophia; Lepier, Alexandra;

    2011-01-01

    It is generally suggested that astrocytes play important restorative functions after brain injury, yet little is known regarding their recruitment to sites of injury, despite numerous in vitro experiments investigating astrocyte polarity. Here, we genetically manipulated one of the proposed key...... signals, the small RhoGTPase Cdc42, selectively in mouse astrocytes in vitro and in vivo. We used an in vitro scratch assay as a minimal wounding model and found that astrocytes lacking Cdc42 (Cdc42Δ) were still able to form protrusions, although in a nonoriented way. Consequently, they failed to migrate...... in a directed manner toward the scratch. When animals were injured in vivo through a stab wound, Cdc42Δ astrocytes developed protrusions properly oriented toward the lesion, but the number of astrocytes recruited to the lesion site was significantly reduced. Surprisingly, however, lesions in Cdc42Δ animals...

  18. Revealing the ‘real’ me, searching for the ‘actual’ you : presentations of self on an internet dating site

    OpenAIRE

    Monica T. Whitty

    2008-01-01

    This paper considers the presentation of self on an internet dating site. Thirty men and 30 women were interviewed about their online dating experiences. They were asked about how they constructed their profiles and how they viewed other individuals’ profiles. Which types of presentations of self led to more successful offline romantic relationships were also investigated. Additionally, gender differences were examined. In line with previous research on presentation of self online, individual...

  19. Microseconds simulations reveal a new sodium-binding site and the mechanism of sodium-coupled substrate uptake by LeuT.

    Science.gov (United States)

    Zomot, Elia; Gur, Mert; Bahar, Ivet

    2015-01-02

    The bacterial sodium-coupled leucine/alanine transporter LeuT is broadly used as a model system for studying the transport mechanism of neurotransmitters because of its structural and functional homology to mammalian transporters such as serotonin, dopamine, or norepinephrine transporters, and because of the resolution of its structure in different states. Although the binding sites (S1 for substrate, and Na1 and Na2 for two co-transported sodium ions) have been resolved, we still lack a mechanistic understanding of coupled Na(+)- and substrate-binding events. We present here results from extensive (>20 μs) unbiased molecular dynamics simulations generated using the latest computing technology. Simulations show that sodium binds initially the Na1 site, but not Na2, and, consistently, sodium unbinding/escape to the extracellular (EC) region first takes place at Na2, succeeded by Na1. Na2 diffusion back to the EC medium requires prior dissociation of substrate from S1. Significantly, Na(+) binding (and unbinding) consistently involves a transient binding to a newly discovered site, Na1″, near S1, as an intermediate state. A robust sequence of substrate uptake events coupled to sodium bindings and translocations between those sites assisted by hydration emerges from the simulations: (i) bindings of a first Na(+) to Na1″, translocation to Na1, a second Na(+) to vacated Na1″ and then to Na2, and substrate to S1; (ii) rotation of Phe(253) aromatic group to seclude the substrate from the EC region; and (iii) concerted tilting of TM1b and TM6a toward TM3 and TM8 to close the EC vestibule.

  20. Crystal Structure of Phosphatidylglycerophosphatase (PGPase), a Putative Membrane-Bound Lipid Phosphatase, Reveals a Novel Binuclear Metal Binding Site and Two Proton Wires

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran,D.; Bonnano, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.

  1. Positive Allosteric Modulation of Kv Channels by Sevoflurane: Insights into the Structural Basis of Inhaled Anesthetic Action.

    Directory of Open Access Journals (Sweden)

    Qiansheng Liang

    Full Text Available Inhalational general anesthesia results from the poorly understood interactions of haloethers with multiple protein targets, which prominently includes ion channels in the nervous system. Previously, we reported that the commonly used inhaled anesthetic sevoflurane potentiates the activity of voltage-gated K+ (Kv channels, specifically, several mammalian Kv1 channels and the Drosophila K-Shaw2 channel. Also, previous work suggested that the S4-S5 linker of K-Shaw2 plays a role in the inhibition of this Kv channel by n-alcohols and inhaled anesthetics. Here, we hypothesized that the S4-S5 linker is also a determinant of the potentiation of Kv1.2 and K-Shaw2 by sevoflurane. Following functional expression of these Kv channels in Xenopus oocytes, we found that converse mutations in Kv1.2 (G329T and K-Shaw2 (T330G dramatically enhance and inhibit the potentiation of the corresponding conductances by sevoflurane, respectively. Additionally, Kv1.2-G329T impairs voltage-dependent gating, which suggests that Kv1.2 modulation by sevoflurane is tied to gating in a state-dependent manner. Toward creating a minimal Kv1.2 structural model displaying the putative sevoflurane binding sites, we also found that the positive modulations of Kv1.2 and Kv1.2-G329T by sevoflurane and other general anesthetics are T1-independent. In contrast, the positive sevoflurane modulation of K-Shaw2 is T1-dependent. In silico docking and molecular dynamics-based free-energy calculations suggest that sevoflurane occupies distinct sites near the S4-S5 linker, the pore domain and around the external selectivity filter. We conclude that the positive allosteric modulation of the Kv channels by sevoflurane involves separable processes and multiple sites within regions intimately involved in channel gating.

  2. Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Science.gov (United States)

    Jung, J.; Kawamura, K.

    2011-05-01

    In order to investigate the carbon episodes at Gosan background super-site (33.17° N, 126.10° E) in East Asia during spring of 2007 and 2008, total suspended particles (TSP) were collected and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The carbon episodes at the Gosan site were categorized as long-range transported anthropogenic pollutant (LTP) from Asian continent, Asian dust (AD) accompanying with LTP, and local pollen episodes. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during the pollen episodes (range: -26.2 ‰ to -23.5 ‰, avg.: -25.2 ± 0.9 ‰), followed by the LTP episodes (range: -23.5 ‰ to -23.0 ‰, avg.: -23.3 ± 0.3 ‰) and the AD episodes (range: -23.3 to -20.4 %, avg.: -21.8 ± 2.0 ‰). The δ13CTC of the airborne pollens (-28.0 ‰) collected at the Gosan site showed value similar to that of tangerine fruit (-28.1 ‰) produced from Jeju Island. Based on the carbon isotope mass balance equation and the TN and TC regression approach, we found that ∼40-45 % of TC in the TSP samples during the pollen episodes was attributed to airborne pollens from Japanese cedar trees planted around tangerine farms in Jeju Island. The δ13C of citric acid in the airborne pollens (-26.3 ‰) collected at the Gosan site was similar to that in tangerine fruit (-27.4 ‰). The negative correlation between the citric acid-carbon/TC ratios and δ13CTC were obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollens and then transported to the Gosan site. Based on the thermal evolution pattern of organic aerosols during the carbon episodes, we found that organic aerosols originated from East China are more volatile on heating and are more likely to form pyrolized organic carbon than the pollen-enriched organic aerosols and organic

  3. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    Science.gov (United States)

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  4. Antagonists and the purinergic nerve hypothesis: 2, 2'-pyridylisatogen tosylate (PIT), an allosteric modulator of P2Y receptors. A retrospective on a quarter century of progress.

    Science.gov (United States)

    Spedding, M; Menton, K; Markham, A; Weetman, D F

    2000-07-01

    2,2'-Pyridylisatogen tosylate (PIT) is a selective antagonist of P2Y responses in smooth muscle and does not antagonise the effects of adenosine. Responses to purinergic nerve stimulation are resistant to PIT. PIT is an allosteric modulator of responses to ATP in recombinant P2Y(1) receptors expressed in Xenopus oocytes with potentiation of ATP at low concentrations (0.1-10 microM) and antagonism at higher ones (>10 microM). A radioligand binding profile showed that PIT did not interact with any other receptors, with the exception of low affinity for the adenosine A(1) receptor (pK(i), 5.3). The compound recognises purine sites and then may cause irreversible binding to sulfhydryl groups following prolonged incubation or high concentrations. PIT is a potent spin trapper.

  5. Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2

    Science.gov (United States)

    Pagano, Mario A.; Marin, Oriano; Cozza, Giorgio; Sarno, Stefania; Meggio, Flavio; Treharne, Kate J.; Mehta, Anil; Pinna, Lorenzo A.

    2011-01-01

    Cystic fibrosis mostly follows a single Phe508 deletion in CFTR (cystic fibrosis transmembrane regulator) (CFTRΔF508), thereby causing premature fragmentation of the nascent protein with concomitant alterations of diverse cellular functions. We show that CK2, the most pleiotropic protein kinase, undergoes allosteric control of its different cellular forms in the presence of short CFTR peptides encompassing the Phe508 deletion: these CFTRΔF508 peptides drastically inhibit the isolated catalytic subunit (α) of the kinase and yet up-regulate the holoenzyme, composed of two catalytic and two non-catalytic (β) subunits. Remarkable agreement between in silico docking and our biochemical data point to different sites for the CFTRΔF508 peptide binding on isolated CK2α and on CK2β assembled into the holoenzyme, suggesting that CK2 targeting may be perturbed in cells expressing CFTRΔF508; this could shed light on some pleiotropic aspects of cystic fibrosis disease. PMID:19925455

  6. Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Malmgaard-Clausen, Mikkel; Engel-Andreasen, Jens;

    2012-01-01

    Among 18 human chemokine receptors, CCR1, CCR4, CCR5, and CCR8 were activated by metal ion Zn(II) or Cu(II) in complex with 2,2'-bipyridine or 1,10-phenanthroline with similar potencies (EC(50) from 3.9 to 172 μM). Besides being agonists, they acted as selective allosteric enhancers of CCL3. Thes...

  7. Allosteric inhibitors of hepatitis C polymerase: discovery of potent and orally bioavailable carbon-linked dihydropyrones.

    Science.gov (United States)

    Li, Hui; Linton, Angelica; Tatlock, John; Gonzalez, Javier; Borchardt, Allen; Abreo, Mel; Jewell, Tanya; Patel, Leena; Drowns, Matthew; Ludlum, Sarah; Goble, Mike; Yang, Michele; Blazel, Julie; Rahavendran, Ravi; Skor, Heather; Shi, Stephanie; Lewis, Cristina; Fuhrman, Shella

    2007-08-23

    The discovery and optimization of a novel class of carbon-linked dihydropyrones as allosteric HCV NS5B polymerase inhibitors are presented. Replacement of the sulfur linker atom with carbon reduced compound acidity and greatly increased cell permeation. Further structure-activity relationship (SAR) studies led to the identification of compounds, exemplified by 23 and 24, with significantly improved antiviral activities in the cell-based replicon assay and favorable pharmacokinetic profiles.

  8. Allosteric modulation of GABA(B) receptor function in human frontal cortex.

    Science.gov (United States)

    Olianas, Maria C; Ambu, Rossano; Garau, Luciana; Onali, Pierluigi

    2005-01-01

    In the present study, the effects of different allosteric modulators on the functional activity of gamma-aminobutyric acid (GABA)B receptors in membranes of post-mortem human frontal cortex were examined. Western blot analysis indicated that the tissue preparations expressed both GABA(B1) and GABA(B2) subunits of the GABA(B) receptor heterodimer. In [35S]-GTPgammaS binding assays, Ca2+ ion (1 mM) enhanced the potency of the agonists GABA and 3-aminopropylphosphinic acid (3-APA) and that of the antagonist CGP55845, but not that of the GABA(B) receptor agonist (-)-baclofen. CGP7930 (2,6-di-t-Bu-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol), a positive allosteric modulator of GABA(B) receptors, potentiated both GABA(B) receptor-mediated stimulation of [35S]-GTPgammaS binding and inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity. Chelation of Ca2+ ion by EGTA reduced the CGP7930 enhancement of GABA potency in stimulating [35S]-GTPgammaS binding by two-fold. Fendiline, also reported to act as a positive allosteric modulator of GABA(B) receptors, failed to enhance GABA stimulation of [35S]-GTPgammaS binding but inhibited the potentiating effect of CGP7930. The inhibitory effect was mimicked by the phenothiazine antipsychotic trifluoperazine (TFP), but not by other compounds, such as verapamil or diphenydramine (DPN). These data demonstrate that the function of GABA(B) receptors of human frontal cortex is positively modulated by Ca2+ ion and CGP7930, which interact synergistically. Conversely, fendiline and trifluoperazine negatively affect the allosteric regulation by CGP7930.

  9. Essential Genes for In Vitro Growth of the Endophyte Herbaspirillum seropedicae SmR1 as Revealed by Transposon Insertion Site Sequencing

    OpenAIRE

    Rosconi, Federico; de Vries, Stefan P. W.; Baig, Abiyad; Fabiano, Elena; Grant, Andrew J

    2016-01-01

    ABSTRACT The interior of plants contains microorganisms (referred to as endophytes) that are distinct from those present at the root surface or in the surrounding soil. Herbaspirillum seropedicae strain SmR1, belonging to the betaproteobacteria, is an endophyte that colonizes crops, including rice, maize, sugarcane, and sorghum. Different approaches have revealed genes and pathways regulated during the interactions of H. seropedicae with its plant hosts. However, functional genomic analysis o...

  10. Comparative Genomic Study Reveals a Transition from TA Richness in Invertebrates to GC Richness in Vertebrates at CpG Flanking Sites: An Indication for Context-Dependent Mutagenicity of Methylated CpG Sites

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Frederick C.C. Leung

    2008-01-01

    Vertebrate genomes are characterized with CpG deficiency, particularly for GC-poor regions. The GC content-related CpG deficiency is probably caused by context-dependent deamination of methylated CpG sites. This hypothesis was examined in this study by comparing nucleotide frequencies at CpG flanking positions among invertebrate and vertebrate genomes. The finding is a transition of nucleotide preference of 5' T to 5' A at the invertebrate-vertebrate boundary, indicating that a large number of CpG sites with 5' Ts were depleted because of global DNA methylation developed in vertebrates. At genome level, we investigated CpG observed/expected (obs/exp) values in 500 bp fragments, and found that higher CpG obs/exp value is shown in GC-poor regions of invertebrate genomes (except sea urchin) but in GC-rich sequences of vertebrate genomes. We next compared GC content at CpG flanking positions with genomic average, showing that the GC content is lower than the average in invertebrate genomes, but higher than that in vertebrate genomes. These results indicate that although 5' T and 5' A are different in inducing deamination of methylated CpG sites, GC content is even more important in affecting the deamination rate. In all the tests, the results of sea urchin are similar to vertebrates perhaps due to its fractional DNA methylation.CpG deficiency is therefore suggested to be mainly a result of high mutation rates of methylated CpG sites in GC-poor regions.

  11. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Science.gov (United States)

    Jung, J.; Kawamura, K.

    2011-11-01

    In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E) in East Asia, total suspended particles (TSP) were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during pollen emission episodes (range: -26.2‰ to -23.5‰, avg. -25.2 ± 0.9‰), approaching those of the airborne pollen (-28.0‰) collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C). Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  12. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    Science.gov (United States)

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  13. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  14. Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue.

    Science.gov (United States)

    Coddeville, Bernadette; Wu, Sz-Wei; Fabre, Emeline; Brassart, Colette; Rombouts, Yoann; Burguière, Adeline; Kremer, Laurent; Khoo, Kay-Hooi; Elass-Rochard, Elisabeth; Guérardel, Yann

    2012-10-22

    The 45/47 kDa Apa, an immuno-dominant antigen secreted by Mycobacterium tuberculosis is O-mannosylated at multiple sites. Glycosylation of Apa plays a key role in colonization and invasion of the host cells by M. tuberculosis through interactions of Apa with the host immune system C-type lectins. Mycobacterium marinum (M.ma) a fish pathogen, phylogenetically close to M. tuberculosis, induces a granulomatous response with features similar to those described for M. tuberculosis in human. Although M.ma possesses an Apa homologue, its glycosylation status is unknown, and whether this represents a crucial element in the pathophysiology induced by M.ma remains to be addressed. To this aim, we have identified two concanavalin A-reactive 45/47 kDa proteins from M.ma, which have been further purified by a two-step anion exchange chromatography process. Advanced liquid chromatography-nanoESI mass spectrometry-based proteomic analyses of peptides, derived from either tryptic digestion alone or in combination with the Asp-N endoproteinase, established that M.ma Apa possesses up to seven distinct O-mannosylated sites with mainly single mannose substitutions, which can be further extended at the Ser/Thr/Pro rich region near the N-terminus. This opens the way to further studies focussing on the involvement and biological functions of Apa O-mannosylation using the M.ma/zebrafish model.

  15. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wubben, T.; Mesecar, A.D. (Purdue); (UIC)

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  16. The putative effector-binding site of Leishmania mexicana pyruvate kinase studied by site-directed mutagenesis.

    Science.gov (United States)

    Hannaert, Véronique; Yernaux, Cédric; Rigden, Daniel J; Fothergill-Gilmore, Linda A; Opperdoes, Fred R; Michels, Paul A M

    2002-03-13

    The activity of pyruvate kinase of Leishmania mexicana is allosterically regulated by fructose 2,6-bisphosphate (F-2,6-P(2)), contrary to the pyruvate kinases from other eukaryotes that are usually stimulated by fructose 1,6-bisphosphate (F-1,6-P(2)). Based on the comparison of the three-dimensional structure of Saccharomyces cerevisiae pyruvate kinase crystallized with F-1,6-P(2) present at the effector site (R-state) and the L. mexicana enzyme crystallized in the T-state, two residues (Lys453 and His480) were proposed to bind the 2-phospho group of the effector. This hypothesis was tested by site-directed mutagenesis. The allosteric activation by F-2,6-P(2) appeared to be entirely abrogated in the mutated enzymes confirming our predictions.

  17. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  18. A novel HMM-based method for detecting enriched transcription factor binding sites reveals RUNX3 as a potential target in pancreatic cancer biology.

    Directory of Open Access Journals (Sweden)

    Liron Levkovitz

    Full Text Available BACKGROUND: Pancreatic adenocarcinoma (PAC is one of the most intractable malignancies. In order to search for potential new therapeutic targets, we relied on computational methods aimed at identifying transcription factor binding sites (TFBSs over-represented in the promoter regions of genes differentially expressed in PAC. Though many computational methods have been implemented to accomplish this, none has gained overall acceptance or produced proven novel targets in PAC. To this end we have developed DEMON, a novel method for motif detection. METHODOLOGY: DEMON relies on a hidden Markov model to score the appearance of sequence motifs, taking into account all potential sites in a promoter of potentially varying binding affinities. We demonstrate DEMON's accuracy on simulated and real data sets. Applying DEMON to PAC-related data sets identifies the RUNX family as highly enriched in PAC-related genes. Using a novel experimental paradigm to distinguish between normal and PAC cells, we find that RUNX3 mRNA (but not RUNX1 or RUNX2 mRNAs exhibits time-dependent increases in normal but not in PAC cells. These increases are accompanied by changes in mRNA levels of putative RUNX gene targets. CONCLUSIONS: The integrated application of DEMON and a novel differentiation system led to the identification of a single family member, RUNX3, which together with four of its putative targets showed a robust response to a differentiation stimulus in healthy cells, whereas this regulatory mechanism was absent in PAC cells, emphasizing RUNX3 as a promising target for further studies.

  19. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site.

    Directory of Open Access Journals (Sweden)

    Brooke Hamilton

    Full Text Available Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.

  20. Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity

    Directory of Open Access Journals (Sweden)

    Hsiao William W

    2011-06-01

    Full Text Available Abstract Background Acinetobacter baumannii has recently emerged as a significant global pathogen, with a surprisingly rapid acquisition of antibiotic resistance and spread within hospitals and health care institutions. This study examines the genomic content of three A. baumannii strains isolated from distinct body sites. Isolates from blood, peri-anal, and wound sources were examined in an attempt to identify genetic features that could be correlated to each isolation source. Results Pulsed-field gel electrophoresis, multi-locus sequence typing and antibiotic resistance profiles demonstrated genotypic and phenotypic variation. Each isolate was sequenced to high-quality draft status, which allowed for comparative genomic analyses with existing A. baumannii genomes. A high resolution, whole genome alignment method detailed the phylogenetic relationships of sequenced A. baumannii and found no correlation between phylogeny and body site of isolation. This method identified genomic regions unique to both those isolates found on the surface of the skin or in wounds, termed colonization isolates, and those identified from body fluids, termed invasive isolates; these regions may play a role in the pathogenesis and spread of this important pathogen. A PCR-based screen of 74 A. baumanii isolates demonstrated that these unique genes are not exclusive to either phenotype or isolation source; however, a conserved genomic region exclusive to all sequenced A. baumannii was identified and verified. Conclusions The results of the comparative genome analysis and PCR assay show that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease regardless of the isolation source.

  1. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action.

    Science.gov (United States)

    Brautigan, D L; Brown, M; Grindrod, S; Chinigo, G; Kruszewski, A; Lukasik, S M; Bushweller, J H; Horal, M; Keller, S; Tamura, S; Heimark, D B; Price, J; Larner, A N; Larner, J

    2005-08-23

    Insulin-stimulated glucose disposal in skeletal muscle proceeds predominantly through a nonoxidative pathway with glycogen synthase as a rate-limiting enzyme, yet the mechanisms for insulin activation of glycogen synthase are not understood despite years of investigation. Isolation of putative insulin second messengers from beef liver yielded a pseudo-disaccharide consisting of pinitol (3-O-methyl-d-chiro-inositol) beta-1,4 linked to galactosamine chelated with Mn(2+) (called INS2). Here we show that chemically synthesized INS2 has biological activity that significantly enhances insulin reduction of hyperglycemia in streptozotocin diabetic rats. We used computer modeling to dock INS2 onto the known three-dimensional crystal structure of protein phosphatase 2C (PP2C). Modeling and FlexX/CScore energy minimization predicted a unique favorable site on PP2C for INS2 in a surface cleft adjacent to the catalytic center. Binding of INS2 is predicted to involve formation of multiple H-bonds, including one with residue Asp163. Wild-type PP2C activity assayed with a phosphopeptide substrate was potently stimulated in a dose-dependent manner by INS2. In contrast, the D163A mutant of PP2C was not activated by INS2. The D163A mutant and wild-type PP2C in the absence of INS2 had the same Mn(2+)-dependent phosphatase activity with p-nitrophenyl phosphate as a substrate, showing that this mutation did not disrupt the catalytic site. We propose that INS2 allosterically activates PP2C, fulfilling the role of a putative mediator mimetic of insulin signaling to promote protein dephosphorylation and metabolic responses.

  2. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus.

    Science.gov (United States)

    Rey-Burusco, M Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R; Roe, Andrew J; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2015-11-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male.

  3. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus

    Science.gov (United States)

    Rey-Burusco, M. Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R.; Roe, Andrew J.; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W.; Córsico, Betina; Smith, Brian O.

    2015-01-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein–ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  4. Quantification of Leishmania (Viannia) Kinetoplast DNA in Ulcers of Cutaneous Leishmaniasis Reveals Inter-site and Inter-sampling Variability in Parasite Load

    Science.gov (United States)

    Suárez, Milagros; Valencia, Braulio M.; Jara, Marlene; Alba, Milena; Boggild, Andrea K.; Dujardin, Jean-Claude; Llanos-Cuentas, Alejandro; Arevalo, Jorge; Adaui, Vanessa

    2015-01-01

    Background Cutaneous leishmaniasis (CL) is a skin disease caused by the protozoan parasite Leishmania. Few studies have assessed the influence of the sample collection site within the ulcer and the sampling method on the sensitivity of parasitological and molecular diagnostic techniques for CL. Sensitivity of the technique can be dependent upon the load and distribution of Leishmania amastigotes in the lesion. Methodology/Principal Findings We applied a quantitative real-time PCR (qPCR) assay for Leishmania (Viannia) minicircle kinetoplast DNA (kDNA) detection and parasite load quantification in biopsy and scraping samples obtained from 3 sites within each ulcer (border, base, and center) as well as in cytology brush specimens taken from the ulcer base and center. A total of 248 lesion samples from 31 patients with laboratory confirmed CL of recent onset (≤3 months) were evaluated. The kDNA-qPCR detected Leishmania DNA in 97.6% (242/248) of the examined samples. Median parasite loads were significantly higher in the ulcer base and center than in the border in biopsies (P<0.0001) and scrapings (P = 0.0002). There was no significant difference in parasite load between the ulcer base and center (P = 0.80, 0.43, and 0.07 for biopsy, scraping, and cytology brush specimens, respectively). The parasite load varied significantly by sampling method: in the ulcer base and center, the descending order for the parasite load levels in samples was: cytology brushes, scrapings, and biopsies (P<0.0001); in the ulcer border, scrapings had higher parasite load than biopsies (P<0.0001). There was no difference in parasite load according to L. braziliensis and L. peruviana infections (P = 0.4). Conclusion/Significance Our results suggest an uneven distribution of Leishmania amastigotes in acute CL ulcers, with higher parasite loads in the ulcer base and center, which has implications for bedside collection of diagnostic specimens. The use of scrapings and cytology brushes is

  5. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    Energy Technology Data Exchange (ETDEWEB)

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David [UCLA; (UCB)

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  6. Seasonal and annual dynamics of harmful algae and algal toxins revealed through weekly monitoring at two coastal ocean sites off southern California, USA

    KAUST Repository

    Seubert, Erica L.

    2013-01-04

    Reports of toxic harmful algal blooms (HABs) attributed to the diatom Pseudo-nitzschia spp. have been increasing in California during the last several decades. Whether this increase can be attributed to enhanced awareness and monitoring or to a dramatic upswing in the development of HAB events remains unresolved. Given these uncertainties, the ability to accurately and rapidly identify an emerging HAB event is of high importance. Monitoring of HAB species and other pertinent chemical/physical parameters at two piers in southern California, Newport and Redondo Beach, was used to investigate the development of a site-specific bloom definition for identifying emerging domoic acid (DA) events. Emphasis was given to abundances of the Pseudo-nitzschia seriata size category of Pseudo-nitzschia due to the prevalence of this size class in the region. P. seriata bloom thresholds were established for each location based on deviations from their respective long-term mean abundances, allowing the identification of major and minor blooms. Sixty-five percent of blooms identified at Newport Beach coincided with measurable DA concentrations, while 36 % of blooms at Redondo Beach coincided with measurable DA. Bloom definitions allowed for increased specificity in multiple regression analysis of environmental forcing factors significant to the presence of DA and P. seriata. The strongest relationship identified was between P. seriata abundances 2 weeks following upwelling events at Newport Beach. © 2012 Springer-Verlag Berlin Heidelberg.

  7. Target-cell-dependent plasticity within the mossy fibre-CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites.

    Science.gov (United States)

    Pelkey, Kenneth A; McBain, Chris J

    2008-03-15

    Individual axons of central neurons innervate a large number of distinct postsynaptic targets belonging to divergent functional categories such as glutamatergic principal cells and inhibitory interneurons. While each bouton along a common axon should experience the same activity pattern in response to action potential firing within the parent presynaptic neuron, accumulating evidence suggests that neighbouring boutons contacting functionally distinct postsynaptic targets regulate their release properties independently, despite being separated by only a few microns. This target-cell-specific autonomy of presynaptic function can greatly expand the computational prowess of central axons to allow for precise coordination of large neuronal ensembles within a given circuit. An excellent example of target-cell-specific presynaptic mechanisms occurs in the CA3 hippocampus where mossy fibre (MF) axons of dentate gyrus granule cells target both principal cells and local circuit inhibitory interneurons via both anatomically and functionally specialized terminals. Of particular interest, mechanisms of both short- and long-term plasticity remain autonomous at these divergent release sites due to an anatomical and biochemical segregation of discrete molecular signalling cascades. Here we review roughly a decades worth of research on the MF-CA3 pathway to showcase the target-cell dependence of presynaptically expressed NMDA receptor-independent synaptic plasticity.

  8. Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation

    Science.gov (United States)

    Barría, María Inés; González, Angel; Vera-Otarola, Jorge; León, Ursula; Vollrath, Valeska; Marsac, Delphine; Monasterio, Octavio; Pérez-Acle, Tomás; Soza, Alejandro; López-Lastra, Marcelo

    2009-01-01

    The HCV internal ribosome entry site (IRES) spans a region of ∼340 nt that encompasses most of the 5′ untranslated region (5′UTR) of the viral mRNA and the first 24–40 nt of the core-coding region. To investigate the implication of altering the primary sequence of the 5′UTR on IRES activity, naturally occurring variants of the 5′UTR were isolated from clinical samples and analyzed. The impact of the identified mutations on translation was evaluated in the context of RLuc/FLuc bicistronic RNAs. Results show that depending on their location within the RNA structure, these naturally occurring mutations cause a range of effects on IRES activity. However, mutations within subdomain IIId hinder HCV IRES-mediated translation. In an attempt to explain these data, the dynamic behavior of the subdomain IIId was analyzed by means of molecular dynamics (MD) simulations. Despite the loss of function, MD simulations predicted that mutant G266A/G268U possesses a structure similar to the wt-RNA. This prediction was validated by analyzing the secondary structure of the isolated IIId RNAs by circular dichroism spectroscopy in the presence or absence of Mg2+ ions. These data strongly suggest that the primary sequence of subdomain IIId plays a key role in HCV IRES-mediated translation. PMID:19106142

  9. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O& apos; Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  10. Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor.

    Science.gov (United States)

    Bahl, Christopher D; Morisseau, Christophe; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; O'Toole, George A; Madden, Dean R

    2010-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other alpha/beta hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-A resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of alpha/beta hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  11. Discovery and SAR of a novel series of non-MPEP site mGlu₅ PAMs based on an aryl glycine sulfonamide scaffold.

    Science.gov (United States)

    Rodriguez, Alice L; Zhou, Ya; Williams, Richard; Weaver, C David; Vinson, Paige N; Dawson, Eric S; Steckler, Thomas; Lavreysen, Hilde; Mackie, Claire; Bartolomé, José M; Macdonald, Gregor J; Daniels, J Scott; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2012-12-15

    Herein we report the discovery and SAR of a novel series of non-MPEP site metabotropic glutamate receptor 5 (mGlu(5)) positive allosteric modulators (PAMs) based on an aryl glycine sulfonamide scaffold. This series represents a rare non-MPEP site mGlu(5) PAM chemotype.

  12. Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites

    Energy Technology Data Exchange (ETDEWEB)

    Prochazkova, Katerina; Shuvalova, Ludmilla A.; Minasov, George; Voburka, Zden& #283; k; Anderson, Wayne F.; Satchell, Karla J.F.; (NWU); (Czech Academy)

    2009-10-05

    The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP{sub 6}). In this study, we demonstrated that InsP{sub 6} is not simply an allosteric cofactor, but rather binding of InsP{sub 6} stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-{angstrom} crystal structure of this InsP{sub 6}-bound unprocessed form of CPD was determined and revealed the scissile bond Leu{sup 3428}-Ala{sup 3429} captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP{sub 6}, but was reactivated for high affinity binding of InsP{sub 6} by cooperative binding of both a new substrate and InsP{sub 6}. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.

  13. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    Science.gov (United States)

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  14. An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains.

    Directory of Open Access Journals (Sweden)

    Alvaro L Pérez-Quintero

    Full Text Available Transcription Activators-Like Effectors (TALEs belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs.

  15. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions

    Science.gov (United States)

    Adlanmerini, Marine; Solinhac, Romain; Abot, Anne; Fabre, Aurélie; Raymond-Letron, Isabelle; Guihot, Anne-Laure; Boudou, Frédéric; Sautier, Lucile; Vessières, Emilie; Kim, Sung Hoon; Lière, Philippe; Fontaine, Coralie; Krust, Andrée; Chambon, Pierre; Katzenellenbogen, John A.; Gourdy, Pierre; Shaul, Philip W.; Henrion, Daniel; Arnal, Jean-François; Lenfant, Françoise

    2014-01-01

    Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERα is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERα (C451A-ERα) to obtain membrane-specific loss of function of ERα. The abrogation of membrane localization of ERα in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERα mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERα mice. A complementary mutant mouse lacking the transactivation function AF-2 of ERα (ERα-AF20) provided selective loss of function of nuclear ERα actions. In ERα-AF20, the acceleration of endothelial repair in response to estrogen–dendrimer conjugate, which is a membrane-selective ER ligand, was unaltered, demonstrating integrity of MISS actions. In genome-wide analysis of uterine gene expression, the vast majority of E2-dependent gene regulation was abrogated in ERα-AF20, whereas in C451A-ERα it was nearly fully preserved, indicating that membrane-to-nuclear receptor cross-talk in vivo is modest in the uterus. Thus, this work genetically segregated membrane versus nuclear actions of a steroid hormone receptor and demonstrated their in vivo tissue-specific roles. PMID:24371309

  16. Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis.

    Science.gov (United States)

    Xu, Lian-Hua; Fushinobu, Shinya; Takamatsu, Satoshi; Wakagi, Takayoshi; Ikeda, Haruo; Shoun, Hirofumi

    2010-05-28

    The polyene macrolide antibiotic filipin is widely used as a probe for cholesterol and a diagnostic tool for type C Niemann-Pick disease. Two position-specific P450 enzymes are involved in the post-polyketide modification of filipin during its biosynthesis, thereby providing molecular diversity to the "filipin complex." CYP105P1 and CYP105D6 from Streptomyces avermitilis, despite their high sequence similarities, catalyze filipin hydroxylation at different positions, C26 and C1', respectively. Here, we determined the crystal structure of the CYP105P1-filipin I complex. The distal pocket of CYP105P1 has the second largest size among P450 hydroxylases that act on macrolide substrates. Compared with previously determined substrate-free structures, the FG helices showed significant closing motion on substrate binding. The long BC loop region adopts a unique extended conformation without a B' helix. The binding site is essentially hydrophobic, but numerous water molecules are involved in recognizing the polyol side of the substrate. Therefore, the distal pocket of CYP105P1 provides a specific environment for the large filipin substrate to bind with its pro-S side of position C26 directed toward the heme iron. The ligand-free CYP105D6 structure was also determined. A small sub-pocket accommodating the long alkyl side chain of filipin I was observed in the CYP105P1 structure but was absent in the CYP105D6 structure, indicating that filipin cannot bind to CYP105D6 with a similar orientation due to steric hindrance. This observation can explain the strict regiospecificity of these enzymes.

  17. Revealing Ligand Binding Sites and Quantifying Subunit Variants of Non-Covalent Protein Complexes in a Single Native Top-Down FTICR MS Experiment

    Science.gov (United States)

    Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2015-01-01

    “Native” mass spectrometry (MS) has been proven increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD MS hADH dimer shows that each subunit (E and S chain) binds not only to two zinc atoms, but also the NAD+/NADH ligand, with a higher NAD+/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains. PMID:24912433

  18. Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment.

    Science.gov (United States)

    Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L; Ogorzalek Loo, Rachel R; Loo, Joseph A

    2014-12-01

    "Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.

  19. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.

    Science.gov (United States)

    Liberman, Joseph A; Suddala, Krishna C; Aytenfisu, Asaminew; Chan, Dalen; Belashov, Ivan A; Salim, Mohammad; Mathews, David H; Spitale, Robert C; Walter, Nils G; Wedekind, Joseph E

    2015-07-07

    PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer forms a HLout-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, we determined the crystal structure of the class III preQ1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ1 binds tightly (KD,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3' RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ1 enhances P4 reorientation toward P1-P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (kdock ∼ 0.6 s(-1)) and undocking (kundock ∼ 1.1 s(-1)). Discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs.

  20. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    Science.gov (United States)

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Apply