WorldWideScience

Sample records for allosteric modulator binding

  1. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act?

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2007-01-01

    Many small-molecule agonists also display allosteric properties. Such ago-allosteric modulators act as co-agonists, providing additive efficacy--instead of partial antagonism--and they can affect--and often improve--the potency of the endogenous agonist. Surprisingly, the apparent binding sites...... different binding modes. In another, dimeric, receptor scenario, the endogenous agonist binds to one protomer while the ago-allosteric modulator binds to the other, 'allosteric' protomer. It is suggested that testing for ago-allosteric properties should be an integral part of the agonist drug discovery...... process because a compound that acts with--rather than against--the endogenous agonist could be an optimal agonist drug....

  2. Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

    Directory of Open Access Journals (Sweden)

    Alessio Bocedi

    Full Text Available Human serum albumin (HSA, the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s. As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i of carbon monoxide (CO binding to ferrous human serum heme-albumin (HSA-heme-Fe(II by warfarin (WF, and (ii of WF binding to HSA-heme-Fe(II by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II, respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands. This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II. The HSA-heme-Fe(II populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i upon CO binding a conformational change of HSA-heme-Fe(II takes place (likely reflecting the displacement of an endogenous ligand by CO, and (ii CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II.

  3. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Klein-Seetharaman Judith

    2008-02-01

    Full Text Available Abstract Metabotropic glutamate receptors (mGluRs are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%, the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%, the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86% and 8/9 (89% for ArgusLab and 10/14 (71% and 7/9 (78% for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by

  4. Changes in BQCA Allosteric Modulation of [(3)H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations.

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-05-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [(3)H]pirenzepine binding. Surprisingly, there was no change in [(3)H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [(3)H]pirenzepine and [(3)H]NMS binding to human cortex and showed total [(3)H]pirenzepine and [(3)H]NMS binding was reduced by Zn(2+), acetylcholine displacement of [(3)H]NMS binding was enhanced by Mg(2+) and Zn(2+), acetylcholine displacement of [(3)H]pirenzepine was reduced by Mg(2+) and enhanced by Zn(2+), whereas BQCA effects on [(3)H]NMS, but not [(3)H]pirenzepine, binding was enhanced by Mg(2+) and Zn(2+). These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia.

  5. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed......γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...

  6. γ-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin.

    Science.gov (United States)

    Pozdnyakov, Nikolay; Murrey, Heather E; Crump, Christina J; Pettersson, Martin; Ballard, T Eric; Am Ende, Christopher W; Ahn, Kwangwook; Li, Yue-Ming; Bales, Kelly R; Johnson, Douglas S

    2013-04-05

    γ-Secretase is an intramembrane aspartyl protease that cleaves the amyloid precursor protein to produce neurotoxic β-amyloid peptides (i.e. Aβ42) that have been implicated in the pathogenesis of Alzheimer disease. Small molecule γ-secretase modulators (GSMs) have emerged as potential disease-modifying treatments for Alzheimer disease because they reduce the formation of Aβ42 while not blocking the processing of γ-secretase substrates. We developed clickable GSM photoaffinity probes with the goal of identifying the target of various classes of GSMs and to better understand their mechanism of action. Here, we demonstrate that the photoaffinity probe E2012-BPyne specifically labels the N-terminal fragment of presenilin-1 (PS1-NTF) in cell membranes as well as in live cells and primary neuronal cultures. The labeling is competed in the presence of the parent imidazole GSM E2012, but not with acid GSM-1, allosteric GSI BMS-708163, or substrate docking site peptide inhibitor pep11, providing evidence that these compounds have distinct binding sites. Surprisingly, we found that the cross-linking of E2012-BPyne to PS1-NTF is significantly enhanced in the presence of the active site-directed GSI L-685,458 (L458). In contrast, L458 does not affect the labeling of the acid GSM photoprobe GSM-5. We also observed that E2012-BPyne specifically labels PS1-NTF (active γ-secretase) but not full-length PS1 (inactive γ-secretase) in ANP.24 cells. Taken together, our results support the hypothesis that multiple binding sites within the γ-secretase complex exist, each of which may contribute to different modes of modulatory action. Furthermore, the enhancement of PS1-NTF labeling by E2012-BPyne in the presence of L458 suggests a degree of cooperativity between the active site of γ-secretase and the modulatory binding site of certain GSMs.

  7. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  8. Allosteric modulation of neurotoxin binding to voltage-sensitive sodium channels by Ptychodiscus brevis toxin 2.

    Science.gov (United States)

    Sharkey, R G; Jover, E; Couraud, F; Baden, D G; Catterall, W A

    1987-03-01

    The effects of Ptychodiscus brevis toxin 2 (PbTx-2) on the binding of neurotoxins at four different neurotoxin receptor sites on voltage-sensitive sodium channels in rat brain synaptosomes were examined. Binding of saxitoxin at neurotoxin receptor site 1 and Leiurus quinquestriatus alpha-scorpion toxin (LqTx) at neurotoxin receptor site 3 was unaffected. PbTx-2 enhanced binding of batrachotoxinin A 20-alpha-benzoate (BTX-B) to neurotoxin receptor site 2 and Centruroides suffusus suffusus beta-scorpion toxin (CsTx II) to site 4 on sodium channels. These results support the proposal that PbTx-2 and related toxins act at a new receptor site (site 5) that has not been previously analyzed in binding experiments. Half-maximal effects of PbTx-2 were observed in the range of 20-50 nM PbTx-2. The enhancement of BTX-B binding was reduced by depolarization. Saturating concentrations of PbTx-2 reduced KD values for binding of BTX-B and CsTx-II 2.9-fold and 2.6-fold, respectively. The effects of PbTx-2 and LqTx in enhancing BTX-B binding were synergistic. A model involving both preferential binding of BTX-B, PbTx-2, LqTx, and CsTx II to active states of sodium channels and allosteric interactions among the four receptor sites at which these toxins act accommodates these and previous results.

  9. In vitro binding of a radio-labeled positive allosteric modulator for metabotropic glutamate receptor subtype 5.

    Science.gov (United States)

    Zysk, John R; Spear, Nathan; Fieles, William; Stein, Mark M; Sygowski, Linda S; King, Megan M; Hoesch, Valerie; Hastings, Richard; Brockel, Becky; Do, Mylinh; Ström, Peter; Gadient, Reto; Chhajlani, Vijay; Elmore, Charles S; Maier, Donna L

    2013-03-01

    The positive allosteric modulator (PAM) binding site for metabotropic glutamate receptor subtype 5 (mGlu(5)) lacks a readily available radio-labeled tracer fordetailed structure-activity studies. This communication describes a selective mGlu(5) compound, 7-methyl-2-(4-(pyridin-2-yloxy)benzyl)-5-(pyridin-3-yl)isoindolin-1-one (PBPyl) that binds with high affinity to human mGlu(5) and exhibits functional PAM activity. Analysis of PBPyl by FLIPR revealed an EC(50) of 87 nM with an 89% effect in transfected HEK293 cells and an EC(50) of 81 nM with a 42% effect in rat primary neurons. PBPyl exhibited 5-fold higher functional selectivity for mGlu(5) in a full mGlu receptor panel. Unlabeled PBPyl was tested for specific binding using a liquid chromatography mass spectrometry (LC/MS/MS)-based filtration binding assay and exhibited 40% specific binding in recombinant membranes, a value higher than any candidate compound tested. In competition binding studies with [(3)H]MPEP, the mGlu(5) receptor negative allosteric modulator (NAM), PBPyl exhibited a k(i) value of 34 nM. PBPyl also displaced [(3)H]ABP688, a mGluR(5) receptor NAM, in tissue sections from mouse and rat brain using autoradiography. Areas of specific binding included the frontal cortex, striatum and nucleus accumbens. PBPyl was radiolabeled to a specific activity of 15 Ci/mmol and tested for specific binding in a filter plate format. In recombinant mGlu(5b) membranes, [(3)H] PBPyl exhibited saturable binding with a K(d) value of 18.6 nM. In competition binding experiments, [(3)H] PBPyl was displaced by high affinity mGlu(5) positive and negative modulators. Further tests showed that PBPyl displays less than optimal characteristics as an in vivo tool, including a high volume of distribution and ClogP, making it more suitable as an in vitro compound. However, as a first report of direct binding of an mGlu(5) receptor PAM, this study offers value toward the development of novel PET imaging agents for this important

  10. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  11. Ago-allosteric modulation and other types of allostery in dimeric 7TM receptors

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2006-01-01

    Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own...... influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous......, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric...

  12. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  13. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  14. GTP is an allosteric modulator of the interaction between the guanylate-binding protein 1 and the prosurvival kinase PIM1.

    Science.gov (United States)

    Persico, Marco; Petrella, Lella; Orteca, Nausicaa; Di Dato, Antonio; Mariani, Marisa; Andreoli, Mirko; De Donato, Marta; Scambia, Giovanni; Novellino, Ettore; Ferlini, Cristiano; Fattorusso, Caterina

    2015-02-16

    GBP1 and PIM1 are known to interact with a molar ratio 1:1. GBP1:PIM1 binding initiates a signaling pathway that induces resistance to common chemotherapeutics such as paclitaxel. Since GBP1 is a large GTPase which undergoes conformational changes in a nucleotide-dependent manner, we investigated the effect of GTP/GDP binding on GBP1:PIM1 interaction by using computational and biological studies. It resulted that only GTP decreases the formation of the GBP1:PIM1 complex through an allosteric mechanism, putting the bases for the identification of new compounds potentially able to revert resistance to paclitaxel.

  15. Allosteric modulators of the hERG K{sup +} channel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyi, E-mail: z.yu@lacdr.leidenuniv.nl; Klaasse, Elisabeth, E-mail: elisabethklaasse@hotmail.com; Heitman, Laura H., E-mail: l.h.heitman@lacdr.leidenuniv.nl; IJzerman, Adriaan P., E-mail: ijzerman@lacdr.leidenuniv.nl

    2014-01-01

    Drugs that block the cardiac K{sup +} channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K{sup +} channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [{sup 3}H]astemizole and [{sup 3}H]dofetilide to the hERG K{sup +} channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC{sub 50} values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC{sub 50} values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K{sup +} channel, which is discussed in the light of findings on other ion channels. - Highlights: • Allosteric modulators on the hERG K{sup +} channel were evaluated in binding assays. • LUF6200 was identified as a potent allosteric inhibitor. • Potassium ions were found to behave as allosteric enhancers. • Positive cooperativity and distinct allosteric sites for them were proposed.

  16. Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

    Science.gov (United States)

    Nguyen, Thuy; Li, Jun-Xu; Thomas, Brian F; Wiley, Jenny L; Kenakin, Terry P; Zhang, Yanan

    2016-11-23

    The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.

  17. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter

    2011-01-01

    The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects. In resista......The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects....... In resistance arteries, the long-lasting contractile effects can only be partly and reversibly relaxed by low-molecular-weight ET(A) antagonists (ERAs). However, the neuropeptide calcitonin-gene-related peptide selectively terminates binding of ET1 to ET(A). We propose that ET1 binds polyvalently to ET(A......) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  18. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav;

    2016-01-01

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn(2+) (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site...

  19. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A Structural Perspective of Ligands and Mutants

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G

    2015-01-01

    modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different m...

  20. Computational Investigation on the Allosteric Modulation of Androgen Receptor

    Institute of Scientific and Technical Information of China (English)

    OU Min-Rui; LI Jun-Qian

    2012-01-01

    Androgens have similar structures with different biological activities. To identify molecular determinants responsible for the activity difference, we have docked six steroidal androgens to the binding site or the surface of androgen receptor by using molecular docking with computational investigation. The energy was calculated respectively based on the QM (quantum mechanics) and MM (molecular mechanics) methods. The result shows that the allosteric modulation of androgen receptor plays an important role in the binding process between androgens and receptor. The open state receptor is less stable than the close state one, but the latter is more favorable for binding with androgens. It is worthy of note that when the androgen receptors binding or without binding with androgen are in close state, they are difficult to return to their open state. This phenomenon is an exception of the well known two-state model theory in which the two states are reversible. Whether the internal of close state androgen receptor has a combination of androgen or not, the androgen receptor surface can be combined with another androgen, and their surface binding energies could be very close. The result is consistent with the experimental observations, but this phenomenon of continuous combination from open state is also an exception of the two-state model theory.

  1. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Julien

    Full Text Available New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml(-1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664 reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.

  2. Allosteric modulators affect the internalization of human adenosine A1 receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; Hout, G. van den; Roerink, S.F.; Grip, W.J. de; IJzerman, A.P.; Beukers, M.W.

    2005-01-01

    To study the effect of allosteric modulators on the internalization of human adenosine A(1) receptors, the receptor was equipped with a C-terminal yellow fluorescent protein tag. The introduction of this tag did not affect the radioligand binding properties of the receptor. CHO cells stably expressi

  3. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    Science.gov (United States)

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  4. Use of binding enthalpy to drive an allosteric transition.

    Science.gov (United States)

    Brown, Patrick H; Beckett, Dorothy

    2005-03-01

    The Escherichia coli biotin repressor is an allosteric DNA binding protein and is activated by the small molecule bio-5'-AMP. Binding of this small molecule promotes transcription repression complex assembly between the repressor and the biotin operator of the biotin biosynthetic operon. The ability of the adenylate to activate the assembly process reflects its effect on biotin repressor dimerization. Thus concomitant with small molecule binding the free energy of repressor dimerization becomes more favorable by approximately -4 kcal/mol. The structural, dynamic, and energetic changes in the repressor monomer that accompany allosteric activation are not known. In this work the thermodynamics of binding of four allosteric activators to the repressor have been characterized by isothermal titration calorimetry. While binding of two of the effectors results in relatively modest activation of the dimerization process, binding of the other two small molecules, including the physiological effector, leads to large changes in repressor dimerization energetics. Results of the calorimetric measurements indicate that strong effector binding is accompanied by an enthalpically costly transition in the protein. This transition is "paid for" by the enthalpy that would have otherwise been realized from the formation of noncovalent bonds between the ligand and repressor monomer.

  5. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs).

    Science.gov (United States)

    Kuduk, Scott D; Beshore, Douglas C

    2014-01-01

    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  6. Allosteric modulation of ATP-gated P2X receptor channels

    Science.gov (United States)

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  7. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks.

    Science.gov (United States)

    Menniti, Frank S; Lindsley, Craig W; Conn, P Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved.

  8. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors.

    Science.gov (United States)

    Croy, Carrie H; Schober, Douglas A; Xiao, Hongling; Quets, Anne; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    The M(4) receptor is a compelling therapeutic target, as this receptor modulates neural circuits dysregulated in schizophrenia, and there is clinical evidence that muscarinic agonists possess both antipsychotic and procognitive efficacy. Recent efforts have shifted toward allosteric ligands to maximize receptor selectivity and manipulate endogenous cholinergic and dopaminergic signaling. In this study, we present the pharmacological characterization of LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy] thieno[2,3-b]pyridine-2-carboxamide), a M(2)/M(4) receptor-selective positive allosteric modulator (PAM), chemically evolved from hits identified through a M4 allosteric functional screen. Although unsuitable as a therapeutic due to M(2) receptor cross-reactivity and, thus, potential cardiovascular liability, LY2119620 surpassed previous congeners in potency and PAM activity and broadens research capabilities through its development into a radiotracer. Characterization of LY2119620 revealed evidence of probe dependence in both binding and functional assays. Guanosine 5'-[γ-(35)S]-triphosphate assays displayed differential potentiation depending on the orthosteric-allosteric pairing, with the largest cooperativity observed for oxotremorine M (Oxo-M) LY2119620. Further [(3)H]Oxo-M saturation binding, including studies with guanosine-5'-[(β,γ)-imido]triphosphate, suggests that both the orthosteric and allosteric ligands can alter the population of receptors in the active G protein-coupled state. Additionally, this work expands the characterization of the orthosteric agonist, iperoxo, at the M(4) receptor, and demonstrates that an allosteric ligand can positively modulate the binding and functional efficacy of this high efficacy ligand. Ultimately, it was the M(2) receptor pharmacology and PAM activity with iperoxo that made LY2119620 the most suitable allosteric partner for the M(2) active-state structure recently solved

  9. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines.

    Science.gov (United States)

    Mony, Laetitia; Zhu, Shujia; Carvalho, Stéphanie; Paoletti, Pierre

    2011-06-17

    NMDA receptors (NMDARs) form glutamate-gated ion channels that have central roles in neuronal communication and plasticity throughout the brain. Dysfunctions of NMDARs are involved in several central nervous system disorders, including stroke, chronic pain and schizophrenia. One hallmark of NMDARs is that their activity can be allosterically regulated by a variety of extracellular small ligands. While much has been learned recently regarding allosteric inhibition of NMDARs, the structural determinants underlying positive allosteric modulation of these receptors remain poorly defined. Here, we show that polyamines, naturally occurring polycations that selectively enhance NMDARs containing the GluN2B subunit, bind at a dimer interface between GluN1 and GluN2B subunit N-terminal domains (NTDs). Polyamines act by shielding negative charges present on GluN1 and GluN2B NTD lower lobes, allowing their close apposition, an effect that in turn prevents NTD clamshell closure. Our work reveals the mechanistic basis for positive allosteric modulation of NMDARs. It provides the first example of an intersubunit binding site in this class of receptors, a discovery that holds promise for future drug interventions.

  10. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars;

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the ligand-binding domain and stabilize the agonist-bound conformation slow...... by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in development of drugs against cognitive disorders....

  11. Synthesis and biological evaluation of indole-2-carboxamides bearing photoactivatable functionalities as novel allosteric modulators for the cannabinoid CB1 receptor.

    Science.gov (United States)

    Qiao, Chang-Jiang; Ali, Hamed I; Ahn, Kwang H; Kolluru, Srikanth; Kendall, Debra A; Lu, Dai

    2016-10-04

    5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ORG27569, 1) is a prototypical allosteric modulator for the cannabinoid CB1 receptor. Based on this indole-2-carboxamide scaffold, we designed and synthesized novel CB1 allosteric modulators that possess photoactivatable functionalities, which include benzophenone, phenyl azide, aliphatic azide and phenyltrifluoromethyldiazrine. To assess their allosteric effects, the dissociation constant (KB) and allosteric binding cooperativity factor (α) were determined and compared to their parent compounds. Within this series, benzophenone-containing compounds 26 and 27, phenylazide-containing compound 28, and the aliphatic azide containing compound 36b showed allosteric binding parameters (KB and α) comparable to their parent compound 1, 7, 8, and 9, respectively. We further assessed these modulators for their impact on G-protein coupling activity. Interestingly, these compounds exhibited negative allosteric modulator properties in a manner similar to their parent compounds, which antagonize agonist-induced G-protein coupling. These novel CB1 allosteric modulators, possessing photoactivatable functionalities, provide valuable tools for future photo-affinity labeling and mapping the CB1 allosteric binding site(s).

  12. Allosteric modulation of GABA(B) receptor function in human frontal cortex.

    Science.gov (United States)

    Olianas, Maria C; Ambu, Rossano; Garau, Luciana; Onali, Pierluigi

    2005-01-01

    In the present study, the effects of different allosteric modulators on the functional activity of gamma-aminobutyric acid (GABA)B receptors in membranes of post-mortem human frontal cortex were examined. Western blot analysis indicated that the tissue preparations expressed both GABA(B1) and GABA(B2) subunits of the GABA(B) receptor heterodimer. In [35S]-GTPgammaS binding assays, Ca2+ ion (1 mM) enhanced the potency of the agonists GABA and 3-aminopropylphosphinic acid (3-APA) and that of the antagonist CGP55845, but not that of the GABA(B) receptor agonist (-)-baclofen. CGP7930 (2,6-di-t-Bu-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol), a positive allosteric modulator of GABA(B) receptors, potentiated both GABA(B) receptor-mediated stimulation of [35S]-GTPgammaS binding and inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity. Chelation of Ca2+ ion by EGTA reduced the CGP7930 enhancement of GABA potency in stimulating [35S]-GTPgammaS binding by two-fold. Fendiline, also reported to act as a positive allosteric modulator of GABA(B) receptors, failed to enhance GABA stimulation of [35S]-GTPgammaS binding but inhibited the potentiating effect of CGP7930. The inhibitory effect was mimicked by the phenothiazine antipsychotic trifluoperazine (TFP), but not by other compounds, such as verapamil or diphenydramine (DPN). These data demonstrate that the function of GABA(B) receptors of human frontal cortex is positively modulated by Ca2+ ion and CGP7930, which interact synergistically. Conversely, fendiline and trifluoperazine negatively affect the allosteric regulation by CGP7930.

  13. Novel bivalent positive allosteric modulators of AMPA receptor.

    Science.gov (United States)

    Lavrov, M I; Grigor'ev, V V; Bachurin, S O; Palyulin, V A; Zefirov, N S

    2015-01-01

    A positive allosteric modulator of AMPA receptors has been designed using computer-aided molecular modeling techniques. It possessed a record high experimentally confirmed potency in the picomolar concentration range and belongs to a new type of bivalent AMPA receptor ligands containing bicyclo[3.3.1]nonane scaffold. The suggested structure could serve as a basis for further optimization and development of drugs for the treatment of neurodegenerative diseases, cognition enhancement, and improvement of memory.

  14. Positive versus negative modulation of different endogenous chemokines for CC-chemokine receptor 1 by small molecule agonists through allosteric versus orthosteric binding

    DEFF Research Database (Denmark)

    Jensen, Pia C; Thiele, Stefanie; Ulven, Trond

    2008-01-01

    5 and not CCL3 activation is affected by substitutions in the main ligand binding pocket including the conserved GluVII:06 anchor point. A series of metal ion chelator complexes were found to act as full agonists on CCR1 and to be critically affected by the same substitutions in the main ligand...

  15. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2.

    Science.gov (United States)

    Lundström, L; Bissantz, C; Beck, J; Dellenbach, M; Woltering, T J; Wichmann, J; Gatti, S

    2017-02-16

    The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist (3)[H]-LY354740 and mGlu2 PAM (3)[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of (3)[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of (3)[H]-LY354740 binding sites. (3)[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr(3.40) and Asn(5.46). Also of remark, in the described experimental conditions S731A (Ser(5.42)) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity.

  16. How allosteric effectors can bind to the same protein residue and produce opposite shifts in the allosteric equilibrium.

    Science.gov (United States)

    Abraham, D J; Safo, M K; Boyiri, T; Danso-Danquah, R E; Kister, J; Poyart, C

    1995-11-21

    Monoaldehyde allosteric effectors of hemoglobin were designed, using molecular modeling software (GRID), to form a Schiff base adduct with the Val 1 alpha N-terminal nitrogens and interact via a salt bridge with Arg 141 alpha of the opposite subunit. The designed molecules were synthesized if not available. It was envisioned that the molecules, which are aldehyde acids, would produce a high-affinity hemoglobin with potential interest as antisickling agents similar to other aldehyde acids reported earlier. X-ray crystallographic analysis indicated that the aldehyde acids did bind as modeled de novo in symmetry-related pairs to the alpha subunit N-terminal nitrogens. However, oxygen equilibrium curves run on solutions obtained from T- (tense) state hemoglobin crystals of reacted effector molecules produced low-affinity hemoglobins. The shift in the allosteric equilibrium was opposite to that expected. We conclude that the observed shift in allosteric equilibrium was due to the acid group on the monoaldehyde aromatic ring that forms a salt bridge with the guanidinium ion of Arg 141 alpha on the opposite subunit. This added constraint to the T-state structure that ties two subunits across the molecular symmetry axis shifts the equilibrium further toward the T-state. We tested this idea by comparing aldehydes that form Schiff base interactions with the same Val 1 alpha residues but do not interact across the dimer subunit symmetry axis (a new one in this study with no acid group and others that have had determined crystal structures). The latter aldehydes shift the allosteric equilibrium toward the R-state. A hypothesis to predict the direction in shift of the allosteric equilibrium is made and indicates that it is not exclusively where the molecule binds but how it interacts with the protein to stabilize or destabilize the T- (tense) allosteric state.

  17. In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase.

    Science.gov (United States)

    Tripathi, Ashutosh; Safo, Martin K

    2012-01-01

    Identification of allosteric binding site modulators have gained increased attention lately for their potential to be developed as selective agents with a novel chemotype and targeting perhaps a new and unique binding site with probable fewer side effects. Erythrocyte pyruvate kinase (R-PK) is an important glycolytic enzyme that can be pharmacologically modulated through its allosteric effectors for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction. An in-silico screening approach was applied to identify novel allosteric modulators of pyruvate kinase. A small-molecules database of the National Cancer Institute (NCI), was virtually screened based on structure/ligand-based pharmacophore. The virtual screening campaign led to the identification of several compounds with similar pharmacophoric features as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the kinase. The compounds were subsequently docked into the FBP-binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates were obtained from the NCI and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK).

  18. Discovery & development of small molecule allosteric modulators of glycoprotein hormone receptors

    Directory of Open Access Journals (Sweden)

    Selvaraj G Nataraja

    2015-09-01

    Full Text Available Glycoprotein hormones, follicle-stimulating hormone (FSH, luteinizing hormone (LH, and thyroid stimulating hormone (TSH are heterodimeric proteins with a common subunit and hormone-specific subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G-protein coupled receptors (GPCR. FSH receptor (FSHR and LH receptor (LHR are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women & men respectively. TSH receptor (TSHR is expressed in thyroid cells and regulates the secretion of T3 & T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSH receptor and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical

  19. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    Science.gov (United States)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  20. Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action.

    Science.gov (United States)

    Kortagere, Sandhya; Fontana, Andreia Cristina Karklin; Rose, Deja Renée; Mortensen, Ole Valente

    2013-09-01

    Serotonin transporters (SERTs) play an essential role in the termination and regulation of serotonin signaling in the brain. SERT is also the target of antidepressants and psychostimulants. Molecules with novel activities and modes of interaction with regard to SERT function are of great scientific and clinical interest. We explored structural regions outside the putative serotonin translocation pathway to identify potential binding sites for allosteric transporter modulators (ATMs). Mutational studies revealed a pocket of amino acids outside the orthosteric substrate binding sites located in the interface between extracellular loops 1 and 3 that when mutated affect transporter function. Using the structure of the bacterial transporter homolog leucine transporter as a template, we developed a structural model of SERT. We performed molecular dynamics simulations to further characterize the allosteric pocket that was identified by site-directed mutagenesis studies and employed this pocket in a virtual screen for small-molecule modulators of SERT function. In functional transport assays, we found that one of the identified molecules, ATM7, increased the reuptake of serotonin, possibly by facilitating the interaction of serotonin with transport-ready conformations of SERT when concentrations of serotonin were low and rate limiting. In addition, ATM7 potentiates 3,4-methylenedioxy-N-methylamphetamine (MDMA, "Ecstasy")-induced reversed transport by SERT. Taking advantage of a conformationally sensitive residue in transmembrane domain 6, we demonstrate that ATM7 mechanistically stabilizes an outward-facing conformation of SERT. Taken together these observations demonstrate that ATM7 acts through a novel mechanism that involves allosteric modulation of SERT function.

  1. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  2. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Science.gov (United States)

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer's disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer's disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs) of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs. PMID:28163934

  3. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  4. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    Science.gov (United States)

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  5. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation.

    Science.gov (United States)

    Wu, Zhuang; Li, Linlang; Zheng, Long-Tai; Xu, Zhihong; Guo, Lin; Zhen, Xuechu

    2015-09-01

    Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).

  6. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning.

    Directory of Open Access Journals (Sweden)

    Z Nevin Gerek

    2011-10-01

    Full Text Available The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS that couples elastic network models with linear response theory (LRT to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain. With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i dynamics plays a key role in allosteric regulations of PDZs, (ii the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.

  7. Functional Impact of Allosteric Agonist Activity of Selective Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 in Regulating Central Nervous System Function

    OpenAIRE

    Noetzel, Meredith J.; Rook, Jerri M.; Vinson, Paige N.; Cho, Hyekyung P.; Days, Emily; Zhou, Y.; Rodriguez, Alice L.; Lavreysen, Hilde; Stauffer, Shaun R.; Niswender, Colleen M.; Xiang, Zixiu; Daniels, J. Scott; Jones, Carrie K.; Lindsley, Craig W.; Weaver, C. David

    2012-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu5 PAMs act as pure PAMs, only potentiating mGlu5 responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu5-expressing cell lines....

  8. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    OpenAIRE

    Chatzidaki, A.; D Oyley, J. M.; Gill-Thind, J. K.; Sheppard, T. D.; Millar, N S

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  9. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    OpenAIRE

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K.; Sheppard, Tom D; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have divers...

  10. Controlling allosteric networks in proteins

    Science.gov (United States)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  11. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  12. Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies

    DEFF Research Database (Denmark)

    Mansari, Mostafa El; Wiborg, Ove; Mnie-Filali, Ouissame

    2006-01-01

    of escitalopram. This effect was suggested to occur via an allosteric modulation at the level of the 5-HT transporter. Using in-vitro binding assays at membranes from COS-1 cells expressing the human 5-HT transporter (hSERT) and in-vivo electrophysiological and microdialysis techniques in rats, the present study...... was directed at determining whether R-citalopram modifies the action of selective serotonin reuptake inhibitors (SSRIs) known to act on allosteric sites namely escitalopram, and to a lesser extent paroxetine, compared to fluoxetine, which has no affinity for these sites. In-vitro binding studies showed that R......-citalopram attenuated the association rates of escitalopram and paroxetine to the 5-HT transporter, but had no effect on the association rates of fluoxetine, venlafaxine or sertraline. In the rat dorsal raphe nucleus, R-citalopram (250 microg/kg i.v.) blocked the suppressant effect on neuronal firing activity of both...

  13. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    Science.gov (United States)

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  14. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Science.gov (United States)

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  15. Towards the identification of the allosteric Phe-binding site in phenylalanine hydroxylase.

    Science.gov (United States)

    Carluccio, Carla; Fraternali, Franca; Salvatore, Francesco; Fornili, Arianna; Zagari, Adriana

    2016-01-01

    The enzyme phenylalanine hydroxylase (PAH) is defective in the inherited disorder phenylketonuria. PAH, a tetrameric enzyme, is highly regulated and displays positive cooperativity for its substrate, Phe. Whether Phe binds to an allosteric site is a matter of debate, despite several studies worldwide. To address this issue, we generated a dimeric model for Phe-PAH interactions, by performing molecular docking combined with molecular dynamics simulations on human and rat wild-type sequences and also on a human G46S mutant. Our results suggest that the allosteric Phe-binding site lies at the dimeric interface between the regulatory and the catalytic domains of two adjacent subunits. The structural and dynamical features of the site were characterized in depth and described. Interestingly, our findings provide evidence for lower allosteric Phe-binding ability of the G46S mutant than the human wild-type enzyme. This also explains the disease-causing nature of this mutant.

  16. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    Directory of Open Access Journals (Sweden)

    Lucas R. Watterson

    2013-12-01

    Full Text Available Positive allosteric modulators (PAMs of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

  17. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  18. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  19. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    Science.gov (United States)

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  20. Synthesis, pharmacological and structural characterization, and thermodynamic aspects of GluA2-positive allosteric modulators with a 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide scaffold

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Olsen, Lars

    2013-01-01

    Positive allosteric modulators of ionotropic glutamate receptors are potential compounds for treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind within the dimer interface of the ligand-binding domain (LBD) and stabilize the agonist-bound conformation, thereby slowing...

  1. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP

    OpenAIRE

    Mathiesen, Jesper Mosolff; Svendsen, Nannette; Bräuner-Osborne, Hans; Thomsen, Christian; Ramirez, M Teresa

    2003-01-01

    We have identified 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) and 2-methyl-6-phenylethynyl pyridine hydrochloride (MPEP) as positive allosteric modulators for the hmGluR4. SIB-1893 and MPEP enhanced the potency and efficacy of L-2-amino-4-phophonobutyrate (L-AP4) in guanosine 5′-O-(3-[35S]thiotriphosphate ([35S]GTPγS) binding and efficacy in cAMP studies. These effects were fully blocked by the mGluR4 competitive antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), indicating a...

  2. Modeling the allosteric modulation of CCR5 function by Maraviroc.

    Science.gov (United States)

    Lagane, Bernard; Garcia-Perez, Javier; Kellenberger, Esther

    2013-01-01

    Maraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand that has recently been marketed for the treatment of HIV infected individuals. This review discusses recent molecular modeling studies of CCR5 by homology to CXC chemokine receptor 4, their contribution to the understanding of the allosteric mode of action of the inhibitor and their potential for the development of future drugs with improved efficiency and preservation of CCR5 biological functions.

  3. Specific binding of photoaffinity-labeling peptidomimetics of Pro-Leu-Gly-NH2 to the dopamine D2L receptor: evidence for the allosteric modulation of the dopamine receptor.

    Science.gov (United States)

    Mann, Amandeep; Verma, Vaneeta; Basu, Dipannita; Skoblenick, Kevin J; Beyaert, Michael G R; Fisher, Abigail; Thomas, Nancy; Johnson, Rodney L; Mishra, Ram K

    2010-09-01

    The present study was undertaken to investigate the mechanistic role of l-prolyl-l-leucyl-glycinamide (PLG) in modulating agonist binding to the dopamine D(2L) receptor. Competition and displacement assays indicate that the photoaffinity-labeling peptidomimetics of PLG, 3(R)-[(4(S)-(4-azido-2-hydroxy-benzoyl) amino-2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide hydrochloride (1a) and 3(R)-[(4(S)-(4-azido-2-hydroxy-5-iodo-benzoyl)amino-2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide hydrochloride (1b) bind at the same site as PLG. Autoradiography was used to establish the covalent binding of [(125)I]-1b to an approximately 51kDa protein in bovine striatal membranes. Western blot analysis with a dopamine D(2L)-specific antibody, in combination with autoradiography, following a two-dimensional gel separation, suggested this approximately 51kDa protein to be the dopamine D(2L) receptor. Further evidence for binding of 1b to dopamine D(2L) was provided by samples immunoprecipitated with the D(2L) antibody. These samples were analyzed by western blotting in parallel with autoradiography of [(125)I]-1b labeled protein. Both methods revealed bands at approximately 51kDa. Furthermore, PLG is shown to compete with 1b for binding to the dopamine D(2L) receptor as determined by autoradiography, as well as competition experiments with PLG and 1a. Collectively, these findings suggest the successful development of a photoaffinity-labeling agent, compound 1b, that has been used to elucidate the interaction of PLG specifically with the dopamine D(2L) receptor.

  4. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor.

    Science.gov (United States)

    Ahn, Kwang H; Mahmoud, Mariam M; Samala, Sushma; Lu, Dai; Kendall, Debra A

    2013-03-01

    Allosteric modulation of G-protein coupled receptors (GPCRs) represents a novel approach for fine-tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole-2-carboxamides:5-chloro-3-ethyl-1-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-a) and 5-chloro-3-pentyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-b). Although both ICAM-a and ICAM-b enhanced CP55, 940 binding, ICAM-b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G-protein coupling to CB1, ICAM-b induced β-arrestin-mediated downstream activation of extracellular signal-regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.

  5. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP

    DEFF Research Database (Denmark)

    Mathiesen, Jesper Mosolff; Svendsen, Nannette; Bräuner-Osborne, Hans;

    2003-01-01

    , effects were observed in the cell-based cAMP assay due to media-derived activation as indicated by CPPG inhibition. Positive modulation of the mGluR4 was a receptor-specific effect since SIB-1893 and MPEP had neither effects on mGluR2-expressing cells nor on the parent BHK cell line. In [(3)H]L-AP4...... binding, a two-fold decrease in K(D) but not in B(max) was observed with 100 micro M SIB-1893, whereas MPEP affected neither parameter. Finally, SIB-1893 and MPEP failed to displace [(3)H]L-AP4 binding. Taken together, these data identify positive allosteric modulators for the hmGluR4....

  6. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    Science.gov (United States)

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  7. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  8. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  9. Baclofen and other GABAB receptor agents are allosteric modulators of the CXCL12 chemokine receptor CXCR4.

    Science.gov (United States)

    Guyon, Alice; Kussrow, Amanda; Olmsted, Ian Roys; Sandoz, Guillaume; Bornhop, Darryl J; Nahon, Jean-Louis

    2013-07-10

    CXCR4, a receptor for the chemokine CXCL12 (stromal-cell derived factor-1α), is a G-protein-coupled receptor (GPCR), expressed in the immune and CNS and integrally involved in various neurological disorders. The GABAB receptor is also a GPCR that mediates metabotropic action of the inhibitory neurotransmitter GABA and is located on neurons and immune cells as well. Using diverse approaches, we report novel interaction between GABAB receptor agents and CXCR4 and demonstrate allosteric binding of these agents to CXCR4. First, both GABAB antagonists and agonists block CXCL12-elicited chemotaxis in human breast cancer cells. Second, a GABAB antagonist blocks the potentiation by CXCL12 of high-threshold Ca(2+) channels in rat neurons. Third, electrophysiology in Xenopus oocytes and human embryonic kidney cell line 293 cells in which we coexpressed rat CXCR4 and the G-protein inward rectifier K(+) (GIRK) channel showed that GABAB antagonist and agonist modified CXCL12-evoked activation of GIRK channels. To investigate whether GABAB ligands bind to CXCR4, we expressed this receptor in heterologous systems lacking GABAB receptors and performed competition binding experiments. Our fluorescent resonance energy transfer experiments suggest that GABAB ligands do not bind CXCR4 at the CXCL12 binding pocket suggesting allosteric modulation, in accordance with our electrophysiology experiments. Finally, using backscattering interferometry and lipoparticles containing only the CXCR4 receptor, we quantified the binding affinity for the GABAB ligands, confirming a direct interaction with the CXCR4 receptor. The effect of GABAergic agents on CXCR4 suggests new therapeutic potentials for neurological and immune diseases.

  10. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.

    Directory of Open Access Journals (Sweden)

    Dipannita Basu

    Full Text Available The activity of G protein-coupled receptors (GPCRs is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R-[(2(S-pyrrolidinylcarbonylamino]-2-oxo-1-pyrrolidineacetamide (PAOPA, in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK 1/2. Additionally, an in vitro cellular model was also used to study PAOPA's effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA's development into a novel drug for the

  11. Allosteric role of the large-scale domain opening in biological catch-binding

    Science.gov (United States)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Sokurenko, Evgeni V.

    2009-05-01

    The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.

  12. Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes.

    Science.gov (United States)

    Sigel, E; Baur, R

    1988-01-01

    Chick brain mRNA was isolated and injected into Xenopus oocytes. This led to the expression in the surface membrane of functional GABA-activated channels with properties reminiscent of vertebrate GABAA channels. The GABA-induced current was analyzed quantitatively under voltage-clamp conditions. Picrotoxin inhibited this current in a concentration-dependent manner with IC50 = 0.6 microM. The allosteric modulation of GABA currents by a number of drugs acting at the benzodiazepine binding site was characterized quantitatively. In the presence of the benzodiazepine receptor ligands diazepam and clorazepate, GABA responses were enhanced, and in the presence of the convulsant beta-carboline compound methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), they were depressed. Maximal stimulation of the response elicited by 10 microM GABA was 160% with diazepam and 90% with clorazepate, and maximal inhibition was 42% with DMCM, 30% with methyl beta-carboline-3-carboxylate (beta-CCM), 15% with ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a][1,4]benzodiazepine-3-carboxylate (Ro 15-1788), and 12% with ethyl beta-carboline-3-carboxylate (beta-CCE). Half-maximal stimulation was observed with 20 nM diazepam and 390 nM clorazepate, respectively, and half-maximal inhibition with 6 nM DMCM. beta-CCM had a similar effect to DMCM, whereas beta-CCE and Ro 15-1788 showed only small inhibition at low concentrations (less than 1 microM). All the tested carboline compounds and Ro 15-1788 showed a biphasic action and stimulated GABA current at concentrations higher than 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1.

    Directory of Open Access Journals (Sweden)

    Chiori Yabuki

    Full Text Available Selective free fatty acid receptor 1 (FFAR1/GPR40 agonist fasiglifam (TAK-875, an antidiabetic drug under phase 3 development, potentiates insulin secretion in a glucose-dependent manner by activating FFAR1 expressed in pancreatic β cells. Although fasiglifam significantly improved glycemic control in type 2 diabetes patients with a minimum risk of hypoglycemia in a phase 2 study, the precise mechanisms of its potent pharmacological effects are not fully understood. Here we demonstrate that fasiglifam acts as an ago-allosteric modulator with a partial agonistic activity for FFAR1. In both Ca(2+ influx and insulin secretion assays using cell lines and mouse islets, fasiglifam showed positive cooperativity with the FFAR1 ligand γ-linolenic acid (γ-LA. Augmentation of glucose-induced insulin secretion by fasiglifam, γ-LA, or their combination was completely abolished in pancreatic islets of FFAR1-knockout mice. In diabetic rats, the insulinotropic effect of fasiglifam was suppressed by pharmacological reduction of plasma free fatty acid (FFA levels using a lipolysis inhibitor, suggesting that fasiglifam potentiates insulin release in conjunction with plasma FFAs in vivo. Point mutations of FFAR1 differentially affected Ca(2+ influx activities of fasiglifam and γ-LA, further indicating that these agonists may bind to distinct binding sites. Our results strongly suggest that fasiglifam is an ago-allosteric modulator of FFAR1 that exerts its effects by acting cooperatively with endogenous plasma FFAs in human patients as well as diabetic animals. These findings contribute to our understanding of fasiglifam as an attractive antidiabetic drug with a novel mechanism of action.

  14. Identification of selective agonists and positive allosteric modulators for µ- and δ-opioid receptors from a single high-throughput screen.

    Science.gov (United States)

    Burford, Neil T; Wehrman, Tom; Bassoni, Daniel; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Alt, Andrew

    2014-10-01

    Hetero-oligomeric complexes of G protein-coupled receptors (GPCRs) may represent novel therapeutic targets exhibiting different pharmacology and tissue- or cell-specific site of action compared with receptor monomers or homo-oligomers. An ideal tool for validating this concept pharmacologically would be a hetero-oligomer selective ligand. We set out to develop and execute a 1536-well high-throughput screen of over 1 million compounds to detect potential hetero-oligomer selective ligands using a β-arrestin recruitment assay in U2OS cells coexpressing recombinant µ- and δ-opioid receptors. Hetero-oligomer selective ligands may bind to orthosteric or allosteric sites, and we might anticipate that the formation of hetero-oligomers may provide novel allosteric binding pockets for ligand binding. Therefore, our goal was to execute the screen in such a way as to identify positive allosteric modulators (PAMs) as well as agonists for µ, δ, and hetero-oligomeric receptors. While no hetero-oligomer selective ligands were identified (based on our selection criteria), this single screen did identify numerous µ- and δ-selective agonists and PAMs as well as nonselective agonists and PAMs. To our knowledge, these are the first µ- and δ-opioid receptor PAMs described in the literature.

  15. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  16. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

    Science.gov (United States)

    Noetzel, Meredith J; Rook, Jerri M; Vinson, Paige N; Cho, Hyekyung P; Days, Emily; Zhou, Y; Rodriguez, Alice L; Lavreysen, Hilde; Stauffer, Shaun R; Niswender, Colleen M; Xiang, Zixiu; Daniels, J Scott; Jones, Carrie K; Lindsley, Craig W; Weaver, C David; Conn, P Jeffrey

    2012-02-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu(5)-expressing cell lines. All mGlu(5) PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu(5) pure PAMs that are devoid of detectable agonist activity and structurally related mGlu(5) ago-PAMs that activate mGlu(5) alone in cell lines. Studies of mGlu(5) PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu(5) receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu(5) PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu(5) PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.

  17. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1).

    Science.gov (United States)

    German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan

    2014-09-25

    The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.

  18. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    DEFF Research Database (Denmark)

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A;

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  19. The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening

    Directory of Open Access Journals (Sweden)

    Fudan Zheng

    2016-04-01

    Full Text Available Soil-transmitted helminth infections in humans and livestock cause significant debility, reduced productivity and economic losses globally. There are a limited number of effective anthelmintic drugs available for treating helminths infections, and their frequent use has led to the development of resistance in many parasite species. There is an urgent need for novel therapeutic drugs for treating these parasites. We have chosen the ACR-16 nicotinic acetylcholine receptor of Ascaris suum (Asu-ACR-16, as a drug target and have developed three-dimensional models of this transmembrane protein receptor to facilitate the search for new bioactive compounds. Using the human α7 nAChR chimeras and Torpedo marmorata nAChR for homology modeling, we defined orthosteric and allosteric binding sites on the Asu-ACR-16 receptor for virtual screening. We identified four ligands that bind to sites on Asu-ACR-16 and tested their activity using electrophysiological recording from Asu-ACR-16 receptors expressed in Xenopus oocytes. The four ligands were acetylcholine inhibitors (SB-277011-A, IC50, 3.12 ± 1.29 μM; (+-butaclamol Cl, IC50, 9.85 ± 2.37 μM; fmoc-1, IC50, 10.00 ± 1.38 μM; fmoc-2, IC50, 16.67 ± 1.95 μM that behaved like negative allosteric modulators. Our work illustrates a structure-based in silico screening method for seeking anthelmintic hits, which can then be tested electrophysiologically for further characterization.

  20. Insights into the interaction of negative allosteric modulators with the metabotropic glutamate receptor 5: discovery and computational modeling of a new series of ligands with nanomolar affinity.

    Science.gov (United States)

    Anighoro, Andrew; Graziani, Davide; Bettinelli, Ilaria; Cilia, Antonio; De Toma, Carlo; Longhi, Matteo; Mangiarotti, Fabio; Menegon, Sergio; Pirona, Lorenza; Poggesi, Elena; Riva, Carlo; Rastelli, Giulio

    2015-07-01

    Metabotropic glutamate receptor 5 (mGlu5) is a biological target implicated in major neurological and psychiatric disorders. In the present study, we have investigated structural determinants of the interaction of negative allosteric modulators (NAMs) with the seven-transmembrane (7TM) domain of mGlu5. A homology model of the 7TM receptor domain built on the crystal structure of the mGlu1 template was obtained, and the binding modes of known NAMs, namely MPEP and fenobam, were investigated by docking and molecular dynamics simulations. The results were validated by comparison with mutagenesis data available in the literature for these two ligands, and subsequently corroborated by the recently described mGlu5 crystal structure. Moreover, a new series of NAMs was synthesized and tested, providing compounds with nanomolar affinity. Several structural modifications were sequentially introduced with the aim of identifying structural features important for receptor binding. The synthesized NAMs were docked in the validated homology model and binding modes were used to interpret and discuss structure-activity relationships within this new series of compounds. Finally, the models of the interaction of NAMs with mGlu5 were extended to include important non-aryl alkyne mGlu5 NAMs taken from the literature. Overall, the results provide useful insights into the molecular interaction of negative allosteric modulators with mGlu5 and may facilitate the design of new modulators for this class of receptors.

  1. Modulation of neuronal microcircuit activities within the medial prefrontal cortex by mGluR5 positive allosteric modulator.

    Science.gov (United States)

    Pollard, Marie; Bartolome, Jose Manuel; Conn, P Jeffrey; Steckler, Thomas; Shaban, Hamdy

    2014-10-01

    Suppressing anxiety and fear memory relies on bidirectional projections between the medial prefrontal cortex and the amygdala. Positive allosteric modulators of mGluR5 improve cognition in animal models of schizophrenia and retrieval of newly formed associations such as extinction of fear-conditioned behaviour. The increase in neuronal network activities of the medial prefrontal cortex is influenced by both mGluR1 and mGluR5; however, it is not well understood how they modulate network activities and downstream information processing. To map mGluR5-mediated network activity in relation to its emergence as a viable cognitive enhancer, we tested group I mGluR compounds on medial prefrontal cortex network activity via multi-electrode array neuronal spiking and whole-cell patch clamp recordings. Results indicate that mGluR5 activation promotes feed-forward inhibition that depends on recruitment of neuronal activity by carbachol-evoked up states. The rate of neuronal spiking activity under the influence of carbachol was reduced by the mGluR5 positive allosteric modulator, N-(1,3-Diphenyl-1H-pyrazolo-5-yl)-4-nitrobenzamide (VU-29), and enhanced by the mGluR5 negative allosteric modulator, 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTEP). Spontaneous inhibitory post-synaptic currents were increased upon application of carbachol and in combination with VU-29. These results emphasize a bias towards tonic mGluR5-mediated inhibition that might serve as a signal-to-noise enhancer of sensory inputs projected from associated limbic areas onto the medial prefrontal cortex neuronal microcircuit.

  2. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S;

    2016-01-01

    The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind in a cleft formed by the interface of two neighboring...

  3. Voltage- and temperature-dependent allosteric modulation of alpha7 nicotinic receptors by PNU120596

    Directory of Open Access Journals (Sweden)

    Fabrio eSitzia

    2011-12-01

    Full Text Available Alpha7 nicotinic receptors (a7nAChR are widely distributed throughout the central nervous system (CNS and are found at particularly high levels in the hippocampus and cortex. Several lines of evidence indicate that pharmacological enhancement of a7nAChRs function could be a potential therapeutic route to alleviate disease-related cognitive deficits. A recent pharmacological approach adopted to increase a7nAChR activity has been to identify selective positive allosteric modulators (PAMs. a7nAChR PAMs have been divided into two classes: type I PAMs increase agonist potency with only subtle effects on kinetics, whereas type II agents produce additional dramatic effects on desensitization and deactivation kinetics. Here we report novel observations concerning the pharmacology of the canonical type II PAM, PNU120596. Using patch clamp analysis of acetylcholine (ACh-mediated currents through recombinant rat a7nAChR we show that positive allosteric modulation measured in two different ways is greatly attenuated when the temperature is raised to near physiological levels. Furthermore, PNU120596 largely removes the strong inward rectification usually exhibited by a7nAChR-mediated responses.

  4. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia

    OpenAIRE

    Guy Griebel; Philippe Pichat; Denis Boulay; Vanessa Naimoli; Lisa Potestio; Robert Featherstone; Sukhveen Sahni; Henry Defex; Christophe Desvignes; Franck Slowinski; Xavier Vigé; Bergis, Olivier E.; Rosy Sher; Raymond Kosley; Sathapana Kongsamut

    2016-01-01

    Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated respons...

  5. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    Science.gov (United States)

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators.

  6. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO 0.9 when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5% due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein.

  7. Improved glucose metabolism in vitro and in vivo by an allosteric monoclonal antibody that increases insulin receptor binding affinity.

    Directory of Open Access Journals (Sweden)

    John A Corbin

    Full Text Available Previously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR. We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity. Unlike monoclonal antibody XMetA, XMetS alone had little or no agonist effect on the INSR. However, XMetS was a strong positive allosteric modulator of the INSR that increased the binding affinity for insulin nearly 20-fold. XMetS potentiated insulin-stimulated INSR signaling ∼15-fold or greater including; autophosphorylation of the INSR, phosphorylation of Akt, a major enzyme in the metabolic pathway, and phosphorylation of Erk, a major enzyme in the growth pathway. The enhanced signaling effects of XMetS were more pronounced with Akt than with Erk. In cultured cells, XMetS also enhanced insulin-stimulated glucose transport. In contrast to its effects on the INSR, XMetS did not potentiate IGF-1 activation of the IGF-1 receptor. We studied the effect of XMetS treatment in two mouse models of insulin resistance and diabetes. The first was the diet induced obesity mouse, a hyperinsulinemic, insulin resistant animal, and the second was the multi-low dose streptozotocin/high-fat diet mouse, an insulinopenic, insulin resistant animal. In both models, XMetS normalized fasting blood glucose levels and glucose tolerance. In concert with its ability to potentiate insulin action at the INSR, XMetS reduced insulin and C-peptide levels in both mouse models. XMetS improved the response to exogenous insulin without causing hypoglycemia. These data indicate that an allosteric monoclonal antibody can be generated that markedly enhances the binding affinity of insulin to the INSR. These data also suggest that an INSR monoclonal antibody with these characteristics may have the potential to both improve glucose metabolism in insulinopenic type 2 diabetes mellitus and correct

  8. Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta; Zhang, Yong-Mei; Yun, Mi-Kyung; Zhou, Ruobing; Zeng, Fu-Yue; Lin, Wenwei; Cui, Jimmy; Chen, Taosheng; Rock, Charles O.; White, Stephen W.; Jackowski, Suzanne (SJCH)

    2010-09-27

    Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3 acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated or repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.

  9. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Science.gov (United States)

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain.

  10. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells.

    Science.gov (United States)

    Legeay, Samuel; Clere, Nicolas; Hilairet, Grégory; Do, Quoc-Tuan; Bernard, Philippe; Quignard, Jean-François; Apaire-Marchais, Véronique; Lapied, Bruno; Faure, Sébastien

    2016-06-27

    The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation.

  11. An Allosteric Pathway Revealed in the Ribosome Binding Stress Factor BipA

    Energy Technology Data Exchange (ETDEWEB)

    Makanji, H.; deLivron, M; Robinson, V

    2009-01-01

    BipA is a highly conserved prokaryotic GTPase that functions as a master regulator of stress and virulence processes in bacteria. It is a member of the translational factor family of GTPases along with EF-G, IF-2 and LepA. Structural and biochemical data suggest that ribosome binding specificity for each member of this family lies in an effector domain. As with other bacterial GTPases, the ribosome binding and GTPase activities of this protein are tightly coupled. However, the mechanism by which this occurs is still unknown. A series of experiments have been designed to probe structural features of the protein to see if we can pinpoint specific areas of BipA, perhaps even individual residues, which are important to its association with the ribosome. Included in the list are the C-terminal effector domain of the protein, which is distinct to the BipA family of proteins, and amino acid residues in the switch I and II regions of the G domain. Using sucrose density gradients, we have shown that the C-terminal domain is required in order for BipA to bind to the ribosome. Moreover, deletion of this domain increases the GTP hydrolysis rates of the protein, likely through relief of inhibitory contacts. Additional evidence has revealed an allosteric connection between the conformationally flexible switch II region and the C-terminal domain of BipA. Site directed mutagenesis, sucrose gradients and malachite green assays are being used to elucidate the details of this coupling.

  12. Allosteric Modulation of Beta1 Integrin Function Induces Lung Tissue Repair

    Directory of Open Access Journals (Sweden)

    Rehab AlJamal-Naylor

    2012-01-01

    Full Text Available The cellular cytoskeleton, adhesion receptors, extracellular matrix composition, and their spatial distribution are together fundamental in a cell's balanced mechanical sensing of its environment. We show that, in lung injury, extracellular matrix-integrin interactions are altered and this leads to signalling alteration and mechanical missensing. The missensing, secondary to matrix alteration and cell surface receptor alterations, leads to increased cellular stiffness, injury, and death. We have identified a monoclonal antibody against β1 integrin which caused matrix remodelling and enhancement of cell survival. The antibody acts as an allosteric dual agonist/antagonist modulator of β1 integrin. Intriguingly, this antibody reversed both functional and structural tissue injury in an animal model of degenerative disease in lung.

  13. Discovery of a novel allosteric modulator of 5-HT3 receptor

    DEFF Research Database (Denmark)

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B

    2012-01-01

    class of negative allosteric modulators of the 5HT3 receptors (5HT3Rs). PU02 (6[(1naphthylmethyl)thio]9Hpurine) is a potent and selective antagonist displaying IC50 values ~1 µM at 5-HT3Rs and substantially lower activities at other Cys-loop receptors. In an elaborate mutagenesis study of the 5HT3A...... receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)subunit and TM1 and TM2 in the (minus)subunit. The Ser248, Leu288, Ile290, Thr294 and Gly306 residues are identified as important...

  14. Design and optimization of selective azaindole amide M1 positive allosteric modulators.

    Science.gov (United States)

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei

    2016-01-15

    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies.

  15. Positive Allosteric Modulation of Kv Channels by Sevoflurane: Insights into the Structural Basis of Inhaled Anesthetic Action.

    Directory of Open Access Journals (Sweden)

    Qiansheng Liang

    Full Text Available Inhalational general anesthesia results from the poorly understood interactions of haloethers with multiple protein targets, which prominently includes ion channels in the nervous system. Previously, we reported that the commonly used inhaled anesthetic sevoflurane potentiates the activity of voltage-gated K+ (Kv channels, specifically, several mammalian Kv1 channels and the Drosophila K-Shaw2 channel. Also, previous work suggested that the S4-S5 linker of K-Shaw2 plays a role in the inhibition of this Kv channel by n-alcohols and inhaled anesthetics. Here, we hypothesized that the S4-S5 linker is also a determinant of the potentiation of Kv1.2 and K-Shaw2 by sevoflurane. Following functional expression of these Kv channels in Xenopus oocytes, we found that converse mutations in Kv1.2 (G329T and K-Shaw2 (T330G dramatically enhance and inhibit the potentiation of the corresponding conductances by sevoflurane, respectively. Additionally, Kv1.2-G329T impairs voltage-dependent gating, which suggests that Kv1.2 modulation by sevoflurane is tied to gating in a state-dependent manner. Toward creating a minimal Kv1.2 structural model displaying the putative sevoflurane binding sites, we also found that the positive modulations of Kv1.2 and Kv1.2-G329T by sevoflurane and other general anesthetics are T1-independent. In contrast, the positive sevoflurane modulation of K-Shaw2 is T1-dependent. In silico docking and molecular dynamics-based free-energy calculations suggest that sevoflurane occupies distinct sites near the S4-S5 linker, the pore domain and around the external selectivity filter. We conclude that the positive allosteric modulation of the Kv channels by sevoflurane involves separable processes and multiple sites within regions intimately involved in channel gating.

  16. Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    WU Gang; HUANG Cong-xin; TANG Yan-hong; JIANG Hong; WAN Jun; CHEN Hui; XIE Qiang; HUANG Zheng-rong

    2005-01-01

    Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice. Chronic atrial fibrillation (CAF) is associated with ionic remodeling. However, little is known about the activity of ATP-sensitive potassium current (IK,ATP) during CAF. So we studied the changes of IK,ATP density and allosteric modulation of ATP-sensitivity by intracellular pH during CAF.Methods Myocardium samples were obtained from the right auricular appendage of patients with rheumatic heart disease complicated with valvular disease in sinus rhythm (SR) or CAF. There were 14 patients in SR group and 9 patients in CAF group. Single atrial cells were isolated using an enzyme dispersion technique. IK,ATP was recorded using the whole-cell and inside-out configuration of voltage-clamp techniques. In whole-cell model, myocytes of SR and CAF groups were perfused with simulated ischemic solution to elicit IK,ATP. In inside-out configuration, the internal patch membranes were exposed to different ATP concentrations in pH 7.4 and 6.8.Results Under simulated ischemia, IK,ATP current density of CAF group was significantly higher than in SR group [(83.5±10.8) vs. (58.7±8.4) pA/pF, P<0.01]. IK,ATP of the two groups showed ATP concentration-dependent inhibition. The ATP concentration for 50% current inhibition (IC50) for the SR group was significantly different in pH 7.4 and pH 6.8 (24 vs. 74 μmol/L, P<0.01). The IC50 did not change significantly in CAF group when the pH decreased from 7.4 to 6.8.Conclusions During CAF, IK,ATP current density was increased and its allosteric modulation of ATP-sensitivity by intracellular pH was diminished.

  17. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  18. 5-(N, N-Hexamethylene) amiloride is a GABA-A ρ1 receptor positive allosteric modulator.

    Science.gov (United States)

    Snell, Heather D; Gonzales, Eric B

    2016-11-01

    Guanidine compounds act as ion channel modulators. In the case of Cys-loop receptors, the guanidine compound amiloride antagonized the heteromeric GABA-A, glycine, and nicotinic acetylcholine receptors. However, amiloride exhibits characteristics consistent with a positive allosteric modulator for the human GABA-A (hGABA-A) ρ1 receptor. Site-directed mutagenesis revealed that the positive allosteric modulation was influenced by the GABA-A ρ1 second transmembrane domain 15' position, a site implicated in ligand allosteric modulation of Cys-loop receptors. There are a variety of amiloride derivatives that provide opportunities to assess the significance of amiloride functional groups (e.g., the guanidine group, the pyrazine ring, etc.) in the modulation of the GABA-A ρ1 receptor activity. We utilized 3 amiloride derivatives (benzamil, phenamil, and 5-(N, N-Hexamethylene) amiloride) to assess the contribution of these groups toward the potentiation of the GABA-A ρ1 receptor. Benzamil and phenamil failed to potentiate on the wild type GABA-A ρ1 GABA-mediated current while HMA demonstrated efficacy only at the highest concentration studied. The hGABA-A ρ1 (I15'N) mutant receptor activity was potentiated by lower HMA concentrations compared to the wild type receptor. Our findings suggest that an exposed guanidine group on amiloride and amiloride derivatives is critical for modulating the GABA-A ρ1 receptor. The present study provides a conceptual framework for predicting which amiloride derivatives will demonstrate positive allosteric modulation of the GABA-A ρ1 receptor.

  19. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ

    Science.gov (United States)

    Amal, Ismail; Lutzing, Régis; Stote, Roland H.; Rochette-Egly, Cécile; Rochel, Natacha; Dejaegere, Annick

    2017-01-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity. PMID:28125680

  20. Positive allosteric modulators to peptide GPCRs:a promising class of drugs

    Institute of Scientific and Technical Information of China (English)

    Tamas BARTFAI; Ming-wei WANG

    2013-01-01

    The task of finding selective and stable peptide receptor agonists with low molecular weight,desirable pharmacokinetic properties and penetrable to the blood-brain barrier has proven too difficult for many highly coveted drug targets,including receptors for endothelin,vasoactive intestinal peptide and galanin.These receptors and ligand-gated ion channels activated by structurally simple agonists such as glutamate,glycine and GABA present such a narrow chemical space that the design of subtype-selective molecules capable of distinguishing a dozen of glutamate and GABA receptor subtypes and possessing desirable pharmacokinetic properties has also been problematic.In contrast,the pharmaceutical industry demonstrates a remarkable success in developing 1,4-benzodiazepines,positive allosteric modulators (PMAs) of the GABAA receptor.They were synthesized over 50 years ago and discovered to have anxiolytic potential through an in vivo assay.As exemplified by Librium,Valium and Dormicum,these allosteric ligands of the receptor became the world's first blockbuster drugs.Through molecular manipulation over the past 2 decades,including mutations and knockouts of the endogenous ligands or their receptors,and by in-depth physiological and pharmacological studies,more peptide and glutamate receptors have become well-validated drug targets for which an agonist is sought.In such cases,the pursuit for PAMs has also intensified,and a working paradigm to identify drug candidates that are designed as PAMs has emerged.This review,which focuses on the general principles of finding PAMs of peptide receptors in the 21st century,describes the workflow and some of its resulting compounds such as PAMs of galanin receptor 2 that act as potent anticonvulsant agents.

  1. Antagonists and the purinergic nerve hypothesis: 2, 2'-pyridylisatogen tosylate (PIT), an allosteric modulator of P2Y receptors. A retrospective on a quarter century of progress.

    Science.gov (United States)

    Spedding, M; Menton, K; Markham, A; Weetman, D F

    2000-07-01

    2,2'-Pyridylisatogen tosylate (PIT) is a selective antagonist of P2Y responses in smooth muscle and does not antagonise the effects of adenosine. Responses to purinergic nerve stimulation are resistant to PIT. PIT is an allosteric modulator of responses to ATP in recombinant P2Y(1) receptors expressed in Xenopus oocytes with potentiation of ATP at low concentrations (0.1-10 microM) and antagonism at higher ones (>10 microM). A radioligand binding profile showed that PIT did not interact with any other receptors, with the exception of low affinity for the adenosine A(1) receptor (pK(i), 5.3). The compound recognises purine sites and then may cause irreversible binding to sulfhydryl groups following prolonged incubation or high concentrations. PIT is a potent spin trapper.

  2. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    Science.gov (United States)

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.

  3. Development of a radioligand, [(3)H]LY2119620, to probe the human M(2) and M(4) muscarinic receptor allosteric binding sites.

    Science.gov (United States)

    Schober, Douglas A; Croy, Carrie H; Xiao, Hongling; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    In this study, we characterized a muscarinic acetylcholine receptor (mAChR) potentiator, LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy]thieno[2,3-b]pyridine-2-carboxamide) as a novel probe of the human M2 and M4 allosteric binding sites. Since the discovery of allosteric binding sites on G protein-coupled receptors, compounds targeting these novel sites have been starting to emerge. For example, LY2033298 (3-amino-5-chloro-6-methoxy-4-methyl-thieno(2,3-b)pyridine-2-carboxylic acid cyclopropylamid) and a derivative of this chemical scaffold, VU152100 (3-amino-N-(4-methoxybenzyl)-4,6-dim​ethylthieno[2,3-b]pyridine carboxamide), bind to the human M4 mAChR allosteric pocket. In the current study, we characterized LY2119620, a compound similar in structure to LY2033298 and binds to the same allosteric site on the human M4 mAChRs. However, LY2119620 also binds to an allosteric site on the human M2 subtype. [(3)H]NMS ([(3)H]N-methylscopolamine) binding experiments confirm that LY2119620 does not compete for the orthosteric binding pocket at any of the five muscarinic receptor subtypes. Dissociation kinetic studies using [(3)H]NMS further support that LY2119620 binds allosterically to the M2 and M4 mAChRs and was positively cooperative with muscarinic orthosteric agonists. To probe directly the allosteric sites on M2 and M4, we radiolabeled LY2119620. Cooperativity binding of [(3)H]LY2119620 with mAChR orthosteric agonists detects significant changes in Bmax values with little change in Kd, suggesting a G protein-dependent process. Furthermore, [(3)H]LY2119620 was displaced by compounds of similar chemical structure but not by previously described mAChR allosteric compounds such as gallamine or WIN 62,577 (17-β-hydroxy-17-α-ethynyl-δ-4-androstano[3,2-b]pyrimido[1,2-a]benzimidazole). Our results therefore demonstrate the development of a radioligand, [(3)H]LY2119620 to probe specifically the human M2 and M4 muscarinic

  4. Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) attenuate microglial activation.

    Science.gov (United States)

    Xue, Fengtian; Stoica, Bogdan A; Hanscom, Marie; Kabadi, Shruti V; Faden, Alan I

    2014-01-01

    Traumatic brain injury causes progressive neurodegeneration associated with chronic microglial activation. Recent studies show that neurodegeneration and neuroinflammation after traumatic brain injury can be inhibited as late as one month in animals by the activation of the metabotropic glutamate receptor 5 in microglia using (RS)-2-chloro-5- hydroxy-phenylglycine. However, the therapeutic potential of this agonist is limited due to its relatively weak potency and brain permeability. To address such concerns, we evaluated the anti-inflammatory activities of several positive allosteric modulators using various in vitro assays, and found that 3,3'-difluorobenzaldazine, 3-cyano-N-(1,3-diphenyl-1H-pyrazol- 5-yl)benzamide and 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide showed significantly improved potency which makes them potential lead compounds for further development of positive allosteric modulators for the treatment of traumatic brain injury.

  5. A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects.

    Science.gov (United States)

    Ignatowska-Jankowska, Bogna M; Baillie, Gemma L; Kinsey, Steven; Crowe, Molly; Ghosh, Sudeshna; Owens, Robert A; Damaj, Imad M; Poklis, Justin; Wiley, Jenny L; Zanda, Matteo; Zanato, Chiara; Greig, Iain R; Lichtman, Aron H; Ross, Ruth A

    2015-12-01

    The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.

  6. [Pharmacological characteristics of drugs targeted on calcium-sensing receptor.-properties of cinacalcet hydrochloride as allosteric modulator].

    Science.gov (United States)

    Nagano, Nobuo; Tsutsui, Takaaki

    2016-06-01

    Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.

  7. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    Science.gov (United States)

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  8. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Susanna A Walter

    Full Text Available Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD responses in functional magnetic resonance imaging (fMRI is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  9. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    Science.gov (United States)

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  10. GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators

    Directory of Open Access Journals (Sweden)

    Roberta Agabio

    2015-04-01

    Full Text Available The present paper summarizes experimental and clinical data indicating the therapeutic potential of the GABAB receptor agonist, baclofen, in the treatment of alcohol use disorder (AUD and substance use disorder (SUD. Multiple preclinical studies have demonstrated the ability of baclofen to suppress alcohol drinking (including binge- and relapse-like drinking, oral alcohol self-administration, and intravenous self-administration of cocaine, nicotine, amphetamine, methamphetamine, morphine, and heroin in rodents. Some randomized, controlled trials (RCTs and case reports support the efficacy of baclofen in suppressing alcohol consumption, craving for alcohol, and alcohol withdrawal symptomatology in alcohol-dependent patients. Data from RCTs and open studies investigating baclofen efficacy on SUD are currently less conclusive. Interest in testing high doses of baclofen in AUD and SUD treatment has recently emerged. Preclinical research has extended the anti-addictive properties of baclofen to positive allosteric modulators of the GABAB receptor (GABAB PAMs. In light of their more favourable side effect profile (compared to baclofen, GABAB PAMs may represent a major step forward in a GABAB receptor-based pharmacotherapy of AUD and SUD.

  11. [GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators].

    Science.gov (United States)

    Agabio, Roberta; Colombo, Giancarlo

    2015-01-01

    The present paper summarizes experimental and clinical data indicating the therapeutic potential of the GABAB receptor agonist, baclofen, in the treatment of alcohol use disorder (AUD) and substance use disorder (SUD). Multiple preclinical studies have demonstrated the ability of baclofen to suppress alcohol drinking (including binge- and relapse-like drinking), oral alcohol self-administration, and intravenous self-administration of cocaine, nicotine, amphetamine, methamphetamine, morphine, and heroin in rodents. Some randomized, controlled trials (RCTs) and case reports support the efficacy of baclofen in suppressing alcohol consumption, craving for alcohol, and alcohol withdrawal symptomatology in alcohol-dependent patients. Data from RCTs and open studies investigating baclofen efficacy on SUD are currently less conclusive. Interest in testing high doses of baclofen in AUD and SUD treatment has recently emerged. Preclinical research has extended the anti-addictive properties of baclofen to positive allosteric modulators of the GABAB receptor (GABAB PAMs). In light of their more favourable side effect profile (compared to baclofen), GABAB PAMs may represent a major step forward in a GABAB receptor-based pharmacotherapy of AUD and SUD.

  12. Ion-Regulated Allosteric Binding of Fullerenes (C-60 and C-70) by Tetrathiafulvalene-Calix[4]pyrroles

    DEFF Research Database (Denmark)

    Davis, C. M.; Lim, J. M.; Larsen, K. R.

    2014-01-01

    crystal X-ray diffraction methods and in dichloromethane solution by means of continuous variation plots and UV-vis spectroscopic titrations. These analyses revealed a 1:1 stoichiometry between the anion-bound TTF-C4Ps and the complexed ftillerenes. The latter guests are bound within the bowl-like cup...... of the two test fullerenes by inducing a conformational change from the 1,3-alternate to the cone conformer of the TTF-C4Ps, thus acting as positive heterotropic allosteric effectors. For a particular halide anion, the choice of tetraalkylammonium salts serves to modulate the strength of the TTF-C4P...

  13. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism

    Directory of Open Access Journals (Sweden)

    Lebovitz Evan E

    2012-09-01

    Full Text Available Abstract Background The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. Results Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing

  14. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs

    Science.gov (United States)

    Liang, Xiaowen; Garcia, Brandon L.; Visai, Livia; Prabhakaran, Sabitha; Meenan, Nicola A. G.; Potts, Jennifer R.; Humphries, Martin J.; Höök, Magnus

    2016-01-01

    Adherence of microbes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with α5β1 integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/α5β1integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/α5β1 integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/α5β1 on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic α5β1 interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/α5β1 affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs. PMID:27434228

  15. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    Energy Technology Data Exchange (ETDEWEB)

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura (Pfizer)

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  16. Calculated pKa Variations Expose Dynamic Allosteric Communication Networks.

    Science.gov (United States)

    Lang, Eric J M; Heyes, Logan C; Jameson, Geoffrey B; Parker, Emily J

    2016-02-17

    Allosteric regulation of protein function, the process by which binding of an effector molecule provokes a functional response from a distal site, is critical for metabolic pathways. Yet, the way the allosteric signal is communicated remains elusive, especially in dynamic, entropically driven regulation mechanisms for which no major conformational changes are observed. To identify these dynamic allosteric communication networks, we have developed an approach that monitors the pKa variations of ionizable residues over the course of molecular dynamics simulations performed in the presence and absence of an allosteric regulator. As the pKa of ionizable residues depends on their environment, it represents a simple metric to monitor changes in several complex factors induced by binding an allosteric effector. These factors include Coulombic interactions, hydrogen bonding, and solvation, as well as backbone motions and side chain fluctuations. The predictions that can be made with this method concerning the roles of ionizable residues for allosteric communication can then be easily tested experimentally by changing the working pH of the protein or performing single point mutations. To demonstrate the method's validity, we have applied this approach to the subtle dynamic regulation mechanism observed for Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first enzyme of aromatic biosynthesis. We were able to identify key communication pathways linking the allosteric binding site to the active site of the enzyme and to validate these findings experimentally by reestablishing the catalytic activity of allosterically inhibited enzyme via modulation of the working pH, without compromising the binding affinity of the allosteric regulator.

  17. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  18. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste.

    Science.gov (United States)

    Servant, Guy; Tachdjian, Catherine; Tang, Xiao-Qing; Werner, Sara; Zhang, Feng; Li, Xiaodong; Kamdar, Poonit; Petrovic, Goran; Ditschun, Tanya; Java, Antoniette; Brust, Paul; Brune, Nicole; DuBois, Grant E; Zoller, Mark; Karanewsky, Donald S

    2010-03-01

    To identify molecules that could enhance sweetness perception, we undertook the screening of a compound library using a cell-based assay for the human sweet taste receptor and a panel of selected sweeteners. In one of these screens we found a hit, SE-1, which significantly enhanced the activity of sucralose in the assay. At 50 microM, SE-1 increased the sucralose potency by >20-fold. On the other hand, SE-1 exhibited little or no agonist activity on its own. SE-1 effects were strikingly selective for sucralose. Other popular sweeteners such as aspartame, cyclamate, and saccharin were not enhanced by SE-1 whereas sucrose and neotame potency were increased only by 1.3- to 2.5-fold at 50 microM. Further assay-guided chemical optimization of the initial hit SE-1 led to the discovery of SE-2 and SE-3, selective enhancers of sucralose and sucrose, respectively. SE-2 (50 microM) and SE-3 (200 microM) increased sucralose and sucrose potencies in the assay by 24- and 4.7-fold, respectively. In human taste tests, 100 microM of SE-1 and SE-2 allowed for a reduction of 50% to >80% in the concentration of sucralose, respectively, while maintaining the sweetness intensity, and 100 microM SE-3 allowed for a reduction of 33% in the concentration of sucrose while maintaining the sweetness intensity. These enhancers did not exhibit any sweetness when tasted on their own. Positive allosteric modulators of the human sweet taste receptor could help reduce the caloric content in food and beverages while maintaining the desired taste.

  19. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant.

    Science.gov (United States)

    Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie

    2009-10-25

    The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.

  20. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats.

    Science.gov (United States)

    Nikiforuk, Agnieszka; Kos, Tomasz; Hołuj, Małgorzata; Potasiewicz, Agnieszka; Popik, Piotr

    2016-02-01

    Alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) have generated great interest as targets of new pharmacological treatments for cognitive dysfunction in schizophrenia. One promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs, which demonstrate several advantages over direct agonists. Nevertheless, the efficacy of these newly introduced α7-nAChR agents has not been extensively characterised in animal models of schizophrenia. The aim of the present study was to evaluate the efficacy of type I and II PAMs, N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) and N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI), respectively, and galantamine, an acetylcholinesterase inhibitor (AChE) that also allosterically modulates nAChRs, against ketamine-induced cognitive deficits and social withdrawal in rats. The orthosteric α7-nAChR agonist octahydro-2-methyl-5-(6-phenyl-3-pyridazinyl)-pyrrolo[3,4-c]pyrrole (A-582941) was used as a positive control. Additionally, the antipsychotic activities of the tested compounds were assessed using the conditioned avoidance response (CAR) test. PNU-120596, CCMI, galantamine and A-582941 reversed ketamine-induced cognitive inflexibility, as assessed in the attentional set-shifting task (ASST). The tested compounds were also effective against ketamine-induced impairment in the novel object recognition task (NORT). PNU-120596, CCMI, and A-582941 ameliorated ketamine-induced social interaction deficits, whereas galantamine was ineffective. Moreover, all tested compounds selectively suppressed the CAR. The positive allosteric modulation of α7-nAChRs demonstrates preclinical efficacy not only against schizophrenia-like cognition impairments but also positive and negative symptoms. Therefore, the use of α7-nAChR PAMs as a potential treatment strategy in schizophrenia is supported.

  1. Positive allosteric modulation of mGluR5 accelerates extinction learning but not relearning following methamphetamine self-administration

    Directory of Open Access Journals (Sweden)

    Peter R Kufahl

    2012-11-01

    Full Text Available Recent studies have implicated glutamate neurotransmission as an important substrate for the extinction of conditioned behaviors, including responding for drug reinforcement. Positive allosteric modulation of the type-5 metabotropic glutamate receptor (mGluR5 in particular has emerged as a treatment strategy for the enhancement of extinction of drug-motivated behaviors. Here, we investigated the effects of the mGluR5 positive allosteric modulator CDPPB, a compound known for its cognitive enhancing effects in rodents, on extinction learning in rats with different histories of methamphetamine (METH training. Rats were trained to self-administer METH under two conditions: 16 daily sessions of short access (90 min/day, ShA, or 8 daily sessions of short access followed by 8 sessions of long access (6 hr/day, LgA. Control rats self-administered sucrose pellets in daily 30 min sessions. Next, rats were administered vehicle or 30 mg/kg CDPPB prior to 7 consecutive daily extinction sessions, subjected to additional extinction sessions to re-establish a post-treatment baseline, and then tested for reinstatement of behavior in the presence of METH- or sucrose-paired cues. Rats were then subjected to a second series of extinction sessions, preceded by vehicle or 30 mg/kg CDPPB, and an additional test for cue-triggered reinstatement. CDPPB treatment resulted in a more rapid extinction of responding on the active lever, especially in the early sessions of the first extinction sequence. However, treatment effects were minimal during subsequent cue reinstatement tests and nonexistent during the second series of extinction sessions. Rats with histories of ShA, LgA and sucrose training expressed similar behavioral sensitivities to CDPPB, with LgA rats demonstrating a modestly higher treatment effect. Positive allosteric modulation of mGluR5 may therefore have some beneficial effects on efforts to facilitate extinction learning and reduce methamphetamine seeking.

  2. Thieno[2,3-b]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Lead optimization.

    Science.gov (United States)

    Nógrádi, Katalin; Wágner, Gábor; Domány, György; Bobok, Amrita; Magdó, Ildikó; Kolok, Sándor; Mikó-Bakk, Mónika L; Vastag, Mónika; Sághy, Katalin; Gyertyán, István; Kóti, János; Gál, Krisztina; Farkas, Sándor; Keserű, György M; Greiner, István; Szombathelyi, Zsolt

    2015-04-15

    An HTS campaign of our corporate compound library, and hit-to lead development resulted in thieno[2,3-b]pyridine derivative leads with mGluR5 negative allosteric modulator effects. During the lead optimization process, our objective was to improve affinity and metabolic stability. Modification of the first two targeted regions resulted in compounds with nanomolar affinity, then optimal substitution of the third region improved metabolic stability. One of the most promising compounds showed excellent in vivo efficacy and is a potential development candidate.

  3. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    Science.gov (United States)

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  4. Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites

    DEFF Research Database (Denmark)

    Plenge, Per; Gether, Ulrik; Rasmussen, Søren G

    2007-01-01

    SERT and the three mutants. Further, R-citalopram previously thought of as an inactive enantiomer strongly attenuated dissociation of the wild-type [(3)H]-imipramine:hSERT complex, whereas S-citalopram had almost no effect on this complex. These results suggest that 1: The allosteric site on hSERT is distinct from...... the site to which S-citalopram binds with high affinity. 2: The allosteric effects of R-citalopram on the dissociation of [(3)H]-imipramine from hSERT indicate that R-citalopram introduces a conformational change in hSERT....

  5. Anti-tumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding

    Science.gov (United States)

    Dings, Ruud P.M.; Miller, Michelle C.; Nesmelova, Irina; Astorgues-Xerri, Lucile; Kumar, Nigam; Serova, Maria; Chen, Xuimei; Raymond, Eric; Hoye, Thomas R.; Mayo, Kevin H.

    2012-01-01

    Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, 15N-1H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin’s carbohydrate binding site, and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of anti-tumor calixarene compound 0118. PMID:22575017

  6. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design

    Science.gov (United States)

    Larsson, Andreas; Nordlund, Paer; Jansson, Anna; Anand, Ganesh S.

    2016-01-01

    A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). PMID:27253209

  7. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan

    2016-06-01

    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  8. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach.

    Science.gov (United States)

    Jang, Jae Wan; Cho, Nam-Chul; Min, Sun-Joon; Cho, Yong Seo; Park, Ki Duk; Seo, Seon Hee; No, Kyoung Tai; Pae, Ae Nim

    2016-02-01

    Metabotropic glutamate receptor 1 (mGluR1) is considered as an attractive drug target for neuropathic pain treatments. The hierarchical virtual screening approach for identifying novel scaffolds of mGluR1 allosteric modulators was performed using a homology model built with the dopamine D3 crystal structure as template. The mGluR1 mutagenesis data, conserved amino acid sequences across class A and class C GPCRs, and previously reported multiple sequence alignments of class C GPCRs to the rhodopsin template, were employed for the sequence alignment to overcome difficulties of model generation with low sequence identity of mGluR1 and dopamine D3. The structures refined by molecular dynamics simulations were employed for docking of Asinex commercial libraries after hierarchical virtual screening with pharmacophore and naïve Bayesian models. Five of 35 compounds experimentally evaluated using a calcium mobilization assay exhibited micromolar activities (IC50) with chemotype novelty that demonstrated the validity of our methods. A hierarchical structure and ligand-based virtual screening approach with homology model of class C GPCR based on dopamine D3 class A GPCR structure was successfully performed and applied to discover novel negative mGluR1 allosteric modulators.

  9. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  10. Neurophysiologic and antipsychotic profiles of TASP0433864, a novel positive allosteric modulator of metabotropic glutamate 2 receptor.

    Science.gov (United States)

    Hiyoshi, Tetsuaki; Marumo, Toshiyuki; Hikichi, Hirohiko; Tomishima, Yasumitsu; Urabe, Hiroki; Tamita, Tomoko; Iida, Izumi; Yasuhara, Akito; Karasawa, Jun-ichi; Chaki, Shigeyuki

    2014-12-01

    Excess glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, and the activation of metabotropic glutamate 2 (mGlu2) receptor may exert antipsychotic effects by normalizing glutamate transmission. In the present study, we investigated the neurophysiologic and antipsychotic profiles of TASP0433864 [(2S)-2-[(4-tert-butylphenoxy)methyl]-5-methyl-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide], a newly synthesized positive allosteric modulator (PAM) of mGlu2 receptor. TASP0433864 exhibited PAM activity at human and rat mGlu2 receptors with EC50 values of 199 and 206 nM, respectively, without exerting agonist activity at rat mGlu2 receptor. TASP0433864 produced a leftward and upward shift in the concentration-response curve of glutamate-increased guanosine 5'-O-(3-[(35)S]thio)triphosphate binding to mGlu2 receptor. In contrast, TASP0433864 had negligible activities for other mGlu receptors, including mGlu3 receptor, and did not have any affinity for other receptors or transporters. In hippocampal slices, TASP0433864 potentiated an inhibitory effect of DCG-IV [(2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine], a mGlu2/3 receptor agonist, on the field excitatory postsynaptic potentials in the dentate gyrus, indicating that TASP0433864 potentiates the mGlu2 receptor-mediated presynaptic inhibition of glutamate release. Moreover, TASP0433864 inhibited both MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]- and ketamine-increased cortical γ band oscillation in the rat cortical electroencephalogram, which have been considered to reflect the excess activation of cortical pyramidal neurons. The inhibitory effect of TASP0433864 on cortical activation was also observed in the mouse 2-deoxy-glucose uptake study. In a behavioral study, TASP0433864 significantly inhibited both ketamine- and methamphetamine-increased locomotor activities in mice and rats, respectively. Collectively, these

  11. Glutamate-containing dipeptides do not modulate ligand binding at excitatory amino acid receptors.

    Science.gov (United States)

    Baud, J; Fagg, G E

    1986-10-08

    Dipeptides of the structure X-Glu (e.g. X = Phe, Leu) have been proposed as allosteric modulators of excitatory amino acid receptors in rat brain membranes. Here we report that these dipeptides reduce the binding of L-[3H]Glu (predominantly N-methyl-D-aspartate-sensitive sites) and of [3H]kainate to postsynaptic density preparations isolated from rat brain. However, several observations indicate that the effects of these dipeptides are mediated not by allosteric modulation, but by free L-Glu liberated by the actions of a membrane-associated aminopeptidase. The absolute and relative potencies of the dipeptides are similar at all acidic amino acid binding sites examined to date, suggesting the involvement of a factor with similar activity at each site (e.g. L-Glu). N-Acetyl-Met-Glu is a weak inhibitor of L-Glu and kainate binding, and N-blocked peptides are known to be poor substrates of aminopeptidases. Bestatin, an inhibitor of aminopeptidases, decreases or abolishes the effects of substrate dipeptides on L-Glu and kainate receptor binding, while having no effect itself.

  12. Allosteric Regulation of Serine Protease HtrA2 through Novel Non-Canonical Substrate Binding Pocket

    Science.gov (United States)

    Singh, Nitu; Gadewal, Nikhil; Chaganti, Lalith K.; Sastry, G. Madhavi; Bose, Kakoli

    2013-01-01

    HtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated. Although allostery has been found in some of its homologs, it has not been characterized in HtrA2 so far. Here, with an in silico and biochemical approach we have shown that allostery does regulate HtrA2 activity. Our studies identified a novel non-canonical selective binding pocket in HtrA2 which initiates signal propagation to the distal active site through a complex allosteric mechanism. This non-classical binding pocket is unique among HtrA family proteins and thus unfolds a novel mechanism of regulation of HtrA2 activity and hence apoptosis. PMID:23457469

  13. Allosteric regulation of serine protease HtrA2 through novel non-canonical substrate binding pocket.

    Directory of Open Access Journals (Sweden)

    Pruthvi Raj Bejugam

    Full Text Available HtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated. Although allostery has been found in some of its homologs, it has not been characterized in HtrA2 so far. Here, with an in silico and biochemical approach we have shown that allostery does regulate HtrA2 activity. Our studies identified a novel non-canonical selective binding pocket in HtrA2 which initiates signal propagation to the distal active site through a complex allosteric mechanism. This non-classical binding pocket is unique among HtrA family proteins and thus unfolds a novel mechanism of regulation of HtrA2 activity and hence apoptosis.

  14. Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Malmgaard-Clausen, Mikkel; Engel-Andreasen, Jens;

    2012-01-01

    Among 18 human chemokine receptors, CCR1, CCR4, CCR5, and CCR8 were activated by metal ion Zn(II) or Cu(II) in complex with 2,2'-bipyridine or 1,10-phenanthroline with similar potencies (EC(50) from 3.9 to 172 μM). Besides being agonists, they acted as selective allosteric enhancers of CCL3. Thes...

  15. The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator.

    Science.gov (United States)

    Fisher, Janet L

    2009-01-01

    Stiripentol (STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anti-convulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABA(A) receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of alpha3-containing receptors and reduced potentiation when the beta1 or epsilon subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the alpha3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on beta1- and beta2/beta3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at alpha3-containing receptors as well as its activity at delta-containing receptors may provide a unique opportunity to target selected populations of GABARs.

  16. Allosteric inactivation of a trypsin-like serine protease by an antibody binding to the 37- and 70-loops

    DEFF Research Database (Denmark)

    Kromann-Hansen, Tobias; Lund, Ida K; Liu, Zhuo

    2013-01-01

    Serine protease catalytic activity is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. Inhibitory monoclonal antibodies binding to such exosites are potential therapeutics and offer opportunities...... criteria similar to the E* conformation described for other serine proteases. Hence, agents targeting serine protease conformation through binding to exosites in the 37- and 70-loops represent a new class of potential therapeutics....

  17. Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function.

    Science.gov (United States)

    Hackos, David H; Lupardus, Patrick J; Grand, Teddy; Chen, Yelin; Wang, Tzu-Ming; Reynen, Paul; Gustafson, Amy; Wallweber, Heidi J A; Volgraf, Matthew; Sellers, Benjamin D; Schwarz, Jacob B; Paoletti, Pierre; Sheng, Morgan; Zhou, Qiang; Hanson, Jesse E

    2016-03-02

    To enhance physiological function of NMDA receptors (NMDARs), we identified positive allosteric modulators (PAMs) of NMDARs with selectivity for GluN2A subunit-containing receptors. X-ray crystallography revealed a binding site at the GluN1-GluN2A dimer interface of the extracellular ligand-binding domains (LBDs). Despite the similarity between the LBDs of NMDARs and AMPA receptors (AMPARs), GluN2A PAMs with good selectivity against AMPARs were identified. Potentiation was observed with recombinant triheteromeric GluN1/GluN2A/GluN2B NMDARs and with synaptically activated NMDARs in brain slices from wild-type (WT), but not GluN2A knockout (KO), mice. Individual GluN2A PAMs exhibited variable degrees of glutamate (Glu) dependence, impact on NMDAR Glu EC50, and slowing of channel deactivation. These distinct PAMs also exhibited differential impacts during synaptic plasticity induction. The identification of a new NMDAR modulatory site and characterization of GluN2A-selective PAMs provide powerful molecular tools to dissect NMDAR function and demonstrate the feasibility of a therapeutically desirable type of NMDAR enhancement.

  18. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats

    DEFF Research Database (Denmark)

    Bortz, D M; Upton, B A; Mikkelsen, J D

    2016-01-01

    Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (α7nAChRs) exhibit pro-cognitive effects in animal models of schizophrenia and are targets for the discovery of cognition-enhancing drugs. However, little is known about their in vivo mechanism of action because such st...

  19. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    Science.gov (United States)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D'Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  20. An allosteric model of the inositol trisphosphate receptor with nonequilibrium binding

    Science.gov (United States)

    Jia, Chen; Jiang, Daquan; Qian, Minping

    2014-10-01

    The inositol trisphosphate receptor (IPR) is a crucial ion channel that regulates the Ca2+ influx from the endoplasmic reticulum (ER) to the cytoplasm. A thorough study of the IPR channel contributes to a better understanding of calcium oscillations and waves. It has long been observed that the IPR channel is a typical biological system which performs adaptation. However, recent advances on the physical essence of adaptation show that adaptation systems with a negative feedback mechanism, such as the IPR channel, must break detailed balance and always operate out of equilibrium with energy dissipation. Almost all previous IPR models are equilibrium models assuming detailed balance and thus violate the dissipative nature of adaptation. In this article, we constructed a nonequilibrium allosteric model of single IPR channels based on the patch-clamp experimental data obtained from the IPR in the outer membranes of isolated nuclei of the Xenopus oocyte. It turns out that our model reproduces the patch-clamp experimental data reasonably well and produces both the correct steady-state and dynamic properties of the channel. Particularly, our model successfully describes the complicated bimodal [Ca2+] dependence of the mean open duration at high [IP3], a steady-state behavior which fails to be correctly described in previous IPR models. Finally, we used the patch-clamp experimental data to validate that the IPR channel indeed breaks detailed balance and thus is a nonequilibrium system which consumes energy.

  1. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia.

    Science.gov (United States)

    Griebel, Guy; Pichat, Philippe; Boulay, Denis; Naimoli, Vanessa; Potestio, Lisa; Featherstone, Robert; Sahni, Sukhveen; Defex, Henry; Desvignes, Christophe; Slowinski, Franck; Vigé, Xavier; Bergis, Olivier E; Sher, Rosy; Kosley, Raymond; Kongsamut, Sathapana; Black, Mark D; Varty, Geoffrey B

    2016-10-13

    Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ(35)S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca(2+) mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1(neo-/-) mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.

  2. Positive Allosteric Modulators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors Belonging to 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-pyridothiadiazine Dioxides and Diversely Chloro-Substituted 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides

    DEFF Research Database (Denmark)

    Francotte, Pierre; Nørholm, Ann-Beth; Deva, Taru;

    2014-01-01

    Two 4-ethyl-substituted pyridothiadiazine dioxides belonging to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor positive allosteric modulators were cocrystallized with the GluA2 ligand binding domain in order to decipher the impact of the position of the nitrogen atom...... on their binding mode at the AMPA receptors. The latter was found to be very similar to that of previously described benzothiadiazine-type AMPA receptor modulators. The affinity of the two compounds for the receptor was determined by isothermal titration calorimetry. Accordingly, the synthesis and biological...

  3. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B;

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  4. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.;

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2......-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from...... turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site...

  5. Exploration of allosteric agonism structure-activity relationships within an acetylene series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254).

    Science.gov (United States)

    Turlington, Mark; Noetzel, Meredith J; Chun, Aspen; Zhou, Ya; Gogliotti, Rocco D; Nguyen, Elizabeth D; Gregory, Karen J; Vinson, Paige N; Rook, Jerri M; Gogi, Kiran K; Xiang, Zixiu; Bridges, Thomas M; Daniels, J Scott; Jones, Carrie; Niswender, Colleen M; Meiler, Jens; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2013-10-24

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~ 3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs.

  6. [G-protein-coupled receptors targeting: the allosteric approach].

    Science.gov (United States)

    Sebag, Julien A; Pantel, Jacques

    2012-10-01

    G-protein-coupled receptors (GPCR) are a major family of drug targets. Essentially all drugs targeting these receptors on the market compete with the endogenous ligand (agonists or antagonists) for binding the receptor. Recently, non-competitive compounds binding to distinct sites from the cognate ligand were documented in various classes of these receptors. These compounds, called allosteric modulators, generally endowed of a better selectivity are able to modulate specifically the endogenous signaling of the receptor. To better understand the promising potential of this class of GPCRs targeting compounds, this review highlights the properties of allosteric modulators, the strategies used to identify them and the challenges associated with the development of these compounds.

  7. Computer-aided design of negative allosteric modulators of metabotropic glutamate receptor 5 (mGluR5): Comparative molecular field analysis of aryl ether derivatives.

    Science.gov (United States)

    Selvam, Chelliah; Thilagavathi, Ramasamy; Narasimhan, Balasubramanian; Kumar, Pradeep; Jordan, Brian C; Ranganna, Kasturi

    2016-02-15

    The metabotropic glutamate receptors (mGlu receptors) have emerged as attractive targets for number of neurological and psychiatric disorders. Recently, mGluR5 negative allosteric modulators (NAMs) have gained considerable attention in pharmacological research. Comparative molecular field analysis (CoMFA) was performed on 73 analogs of aryl ether which were reported as mGluR5 NAMs. The study produced a statistically significant model with high correlation coefficient and good predictive abilities.

  8. Thieno[2,3-b]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: hit-to-lead optimization.

    Science.gov (United States)

    Nógrádi, Katalin; Wágner, Gábor; Domány, György; Bobok, Amrita; Magdó, Ildikó; Kiss, Béla; Kolok, Sándor; Fónagy, Katalin; Gyertyán, István; Háda, Viktor; Kóti, János; Gál, Krisztina; Farkas, Sándor; Keserű, György M; Greiner, István; Szombathelyi, Zsolt

    2014-08-15

    An HTS campaign of our corporate compound library resulted in thieno[2,3-b]pyridines derivative hits with mGluR5 negative allosteric modulator effects. During the hit-to-lead development our objective was to improve affinity, and to keep the ligand efficiency values at an acceptable level. After different modifications of the linker resulted in a 2-sulfonyl-thieno[2,3-b]pyridines derivative, which fulfilled the lead criteria.

  9. 1-[(1-methyl-1H-imidazol-2-yl)methyl]-4-phenylpiperidines as mGluR2 positive allosteric modulators for the treatment of psychosis.

    Science.gov (United States)

    Zhang, Lei; Brodney, Michael A; Candler, John; Doran, Angela C; Duplantier, Allen J; Efremov, Ivan V; Evrard, Edel; Kraus, Kenneth; Ganong, Alan H; Haas, Jessica A; Hanks, Ashley N; Jenza, Keith; Lazzaro, John T; Maklad, Noha; McCarthy, Sheryl A; Qian, Weimin; Rogers, Bruce N; Rottas, Melinda D; Schmidt, Christopher J; Siuciak, Judith A; Tingley, F David; Zhang, Andy Q

    2011-03-24

    A novel series of mGluR2 positive allosteric modulators (PAMs), 1-[(1-methyl-1H-imidazol-2-yl)methyl]-4-phenylpiperidines, is herein disclosed. Structure-activity relationship studies led to potent, selective mGluR2 PAMs with excellent pharmacokinetic profiles. A representative lead compound (+)-17e demonstrated dose-dependent inhibition of methamphetamine-induced hyperactivity and mescaline-induced scratching in mice, providing support for potential efficacy in treating psychosis.

  10. Synthesis and SAR of novel, 4-(phenylsulfamoyl)phenylacetamide mGlu4 positive allosteric modulators (PAMs) identified by functional high-throughput screening (HTS).

    Science.gov (United States)

    Engers, Darren W; Gentry, Patrick R; Williams, Richard; Bolinger, Julie D; Weaver, C David; Menon, Usha N; Conn, P Jeffrey; Lindsley, Craig W; Niswender, Colleen M; Hopkins, Corey R

    2010-09-01

    Herein we disclose the synthesis and SAR of a series of 4-(phenylsulfamoyl)phenylacetamide compounds as mGlu(4) positive allosteric modulators (PAMs) that were identified via a functional HTS. An iterative parallel approach to these compounds culminated in the discovery of VU0364439 (11) which represents the most potent (19.8 nM) mGlu(4) PAM reported to date.

  11. Synthesis and evaluation of a series of heterobiarylamides that are centrally penetrant metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulators (PAMs).

    Science.gov (United States)

    Engers, Darren W; Niswender, Colleen M; Weaver, C David; Jadhav, Satyawan; Menon, Usha N; Zamorano, Rocio; Conn, P Jeffrey; Lindsley, Craig W; Hopkins, Corey R

    2009-07-23

    We report the synthesis and evaluation of a series of heterobiaryl amides as positive allosteric modulators of mGluR4. Compounds 9b and 9c showed submicromolar potency at both human and rat mGluR4. In addition, both 9b and 9c were shown to be centrally penetrant in rats using nontoxic vehicles, a major advance for the mGluR4 field.

  12. Allosteric modulation of semicarbazide-sensitive amine oxidase activities in vitro by imidazoline receptor ligands

    OpenAIRE

    2004-01-01

    Evidence indicates that imidazoline I2 binding sites (I2BSs) are present on monoamine oxidase (MAO) and on soluble (plasma) semicarbazide-sensitive amine oxidase enzymes. The binding site on MAO has been described as a modulatory site, although no effects on activity are thought to have been observed as a result of ligands binding to these sites.We examined the effects in vitro of several imidazoline binding site ligands on activities of bovine plasma amine oxidase (BPAO) and porcine kidney d...

  13. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    Dimeric positive allosteric modulators of ionotropic glutamate receptors were designed, synthesized, and characterized pharmacologically in electrophysiological experiments. The designed compounds are dimers of arylpropylsulfonamides and have been constructed without a linker. The monomeric...

  14. Preclinical pharmacokinetic and toxicological evaluation of MIF-1 peptidomimetic, PAOPA: examining the pharmacology of a selective dopamine D2 receptor allosteric modulator for the treatment of schizophrenia.

    Science.gov (United States)

    Tan, Mattea L; Basu, Dipannita; Kwiecien, Jacek M; Johnson, Rodney L; Mishra, Ram K

    2013-04-01

    Schizophrenia is a mental illness characterized by a breakdown in cognition and emotion. Over the years, drug treatment for this disorder has mainly been compromised of orthosteric ligands that antagonize the active site of the dopamine D2 receptor. However, these drugs are limited in their use and often lead to the development of adverse movement and metabolic side effects. Allosteric modulators are an emerging class of therapeutics with significant advantages over orthosteric ligands, including an improved therapeutic and safety profile. This study investigates our newly developed allosteric modulator, PAOPA, which is a specific modulator of the dopamine D2 receptor. Previous studies have shown PAOPA to attenuate schizophrenia-like behavioral abnormalities in preclinical models. To advance this newly developed allosteric drug from the preclinical to clinical stage, this study examines the pharmacokinetic behavior and toxicological profile of PAOPA. Results from this study prove the effectiveness of PAOPA in reaching the implicated regions of the brain for therapeutic action, particularly the striatum. Pharmacokinetic parameters of PAOPA were found to be comparable to current market antipsychotic drugs. Necropsy and histopathological analyses showed no abnormalities in all examined organs. Acute and chronic treatment of PAOPA indicated no movement abnormalities commonly found with the use of current typical antipsychotic drugs. Moreover, acute and chronic PAOPA treatment revealed no hematological or metabolic abnormalities classically found with the use of atypical antipsychotic drugs. Findings from this study demonstrate a better safety profile of PAOPA, and necessitates the progression of this newly developed therapeutic for the treatment of schizophrenia.

  15. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate...

  16. Yellow fluorescent protein-based assay to measure GABA(A channel activation and allosteric modulation in CHO-K1 cells.

    Directory of Open Access Journals (Sweden)

    Teres Johansson

    Full Text Available The γ-aminobutyric acid A (GABA(A ion channels are important drug targets for treatment of neurological and psychiatric disorders. Finding GABA(A channel subtype selective allosteric modulators could lead to new improved treatments. However, the progress in this area has been obstructed by the challenging task of developing functional assays to support screening efforts and the generation of cells expressing functional GABA(A ion channels with the desired subtype composition. To address these challenges, we developed a yellow fluorescent protein (YFP-based assay to be able to study allosteric modulation of the GABA(A ion channel using cryopreserved, transiently transfected, assay-ready cells. We show for the first time how the MaxCyte STX electroporation instrument can be used to generate CHO-K1 cells expressing functional GABA(A α2β3γ2 along with a halide sensing YFP-H148Q/I152L (YFP-GABA(A2 cells. As a basis for a cell-based assay capable of detecting allosteric modulators, experiments with antagonist, ion channel blocker and modulators were used to verify GABA(A subunit composition and functionality. We found that the I(- concentration used in the YFP assay affected both basal quench of YFP and potency of GABA. For the first time the assay was used to study modulation of GABA with 7 known modulators where statistical analysis showed that the assay can distinguish modulatory pEC50 differences of 0.15. In conclusion, the YFP assay proved to be a robust, reproducible and inexpensive assay. These data provide evidence that the assay is suitable for high throughput screening (HTS and could be used to discover novel modulators acting on GABA(A ion channels.

  17. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator

    Directory of Open Access Journals (Sweden)

    Sean C. Piantadosi

    2016-11-01

    Full Text Available Rationale: Current first-line treatments for stress-related disorders such as Major Depressive Disorder (MDD act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted α5-PAM, a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS and treated with α5-PAM acutely (30 minutes prior to assessing behavior or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as behavioral emotionality across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusions: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.

  18. Identification of an Allosteric Binding Site on Human Lysosomal Alpha-Galactosidase Opens the Way to New Pharmacological Chaperones for Fabry Disease

    Science.gov (United States)

    den-Haan, Helena; Pérez-Sánchez, Horacio; Del Prete, Rosita; Liguori, Ludovica; Cimmaruta, Chiara; Lukas, Jan; Andreotti, Giuseppina

    2016-01-01

    Personalized therapies are required for Fabry disease due to its large phenotypic spectrum and numerous different genotypes. In principle, missense mutations that do not affect the active site could be rescued with pharmacological chaperones. At present pharmacological chaperones for Fabry disease bind the active site and couple a stabilizing effect, which is required, to an inhibitory effect, which is deleterious. By in silico docking we identified an allosteric hot-spot for ligand binding where a drug-like compound, 2,6-dithiopurine, binds preferentially. 2,6-dithiopurine stabilizes lysosomal alpha-galactosidase in vitro and rescues a mutant that is not responsive to a mono-therapy with previously described pharmacological chaperones, 1-deoxygalactonojirimycin and galactose in a cell based assay. PMID:27788225

  19. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    Science.gov (United States)

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.

  20. On Allosteric Modulation of P-Type Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette Elisabeth

    2013-01-01

    -specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu+-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca2 +-ATPase (of subclass PIIA). Cu+ ions in the cell...

  1. Structure-activity relationships for negative allosteric mGluR5 modulators

    DEFF Research Database (Denmark)

    Kaae, Birgitte H; Harpsøe, Kasper; Kvist, Trine;

    2012-01-01

    A series of compounds based on the mGluR5-selective ligand 2-methyl-6-(phenylethynyl)pyridine (MPEP) were designed and synthesized. The compounds were found to be either structural analogues of MPEP, substituted monomers, or dimeric analogues. All compounds retained mGluR5 selectivity with only w...... in the pyridine moieties. A homology modeling and ligand docking study was used to understand the binding mode and the observed selectivity of compound 19....

  2. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly.

    Directory of Open Access Journals (Sweden)

    Kelley J Dowd

    Full Text Available The cholesterol-dependent cytolysins (CDCs constitute a family of pore-forming toxins that contribute to the pathogenesis of a large number of Gram-positive bacterial pathogens.The most highly conserved region in the primary structure of the CDCs is the signature undecapeptide sequence (ECTGLAWEWWR. The CDC pore forming mechanism is highly sensitive to changes in its structure, yet its contribution to the molecular mechanism of the CDCs has remained enigmatic. Using a combination of fluorescence spectroscopic methods we provide evidence that shows the undecapeptide motif of the archetype CDC, perfringolysin O (PFO, is a key structural element in the allosteric coupling of the cholesterol-mediated membrane binding in domain 4 (D4 to distal structural changes in domain 3 (D3 that are required for the formation of the oligomeric pore complex. Loss of the undecapeptide function prevents all measurable D3 structural transitions, the intermolecular interaction of membrane bound monomers and the assembly of the oligomeric pore complex. We further show that this pathway does not exist in intermedilysin (ILY, a CDC that exhibits a divergent undecapeptide and that has evolved to use human CD59 rather than cholesterol as its receptor. These studies show for the first time that the undecapeptide of the cholesterol-binding CDCs forms a critical element of the allosteric pathway that controls the assembly of the pore complex.

  3. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli.

    Science.gov (United States)

    Chen, Lin; Chen, Zhen; Zheng, Ping; Sun, Jibin; Zeng, An-Ping

    2013-04-01

    Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.

  4. mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning.

    Science.gov (United States)

    Ayala, Jennifer E; Chen, Yelin; Banko, Jessica L; Sheffler, Douglas J; Williams, Richard; Telk, Alexandra N; Watson, Noreen L; Xiang, Zixiu; Zhang, Yongqin; Jones, Paulianda J; Lindsley, Craig W; Olive, M Foster; Conn, P Jeffrey

    2009-08-01

    Highly selective positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) have emerged as a potential approach to treat positive symptoms associated with schizophrenia. mGluR5 plays an important role in both long-term potentiation (LTP) and long-term depression (LTD), suggesting that mGluR5 PAMs may also have utility in improving impaired cognitive function. However, if mGluR5 PAMs shift the balance of LTP and LTD or induce a state in which afferent activity induces lasting changes in synaptic function that are not appropriate for a given pattern of activity, this could disrupt rather than enhance cognitive function. We determined the effect of selective mGluR5 PAMs on the induction of LTP and LTD at the Schaffer collateral-CA1 synapse in the hippocampus. mGluR5-selective PAMs significantly enhanced threshold theta-burst stimulation (TBS)-induced LTP. In addition, mGluR5 PAMs enhanced both DHPG-induced LTD and LTD induced by the delivery of paired-pulse low-frequency stimulation. Selective potentiation of mGluR5 had no effect on LTP induced by suprathreshold TBS or saturated LTP. The finding that potentiation of mGluR5-mediated responses to stimulation of glutamatergic afferents enhances both LTP and LTD and supports the hypothesis that the activation of mGluR5 by endogenous glutamate contributes to both forms of plasticity. Furthermore, two systemically active mGluR5 PAMs enhanced performance in the Morris water maze, a measure of hippocampus-dependent spatial learning. Discovery of small molecules that enhance both LTP and LTD in an activity-appropriate manner shows a unique action on synaptic plasticity that may provide a novel approach for the treatment of impaired cognitive function.

  5. Novel p21-Activated Kinase 4 (PAK4) Allosteric Modulators Overcome Drug Resistance and Stemness in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Aboukameel, Amro; Muqbil, Irfana; Senapedis, William; Baloglu, Erkan; Landesman, Yosef; Shacham, Sharon; Kauffman, Michael; Philip, Philip A; Mohammad, Ramzi M; Azmi, Asfar S

    2017-01-01

    The p21-activated kinase 4 (PAK4) is a key downstream effector of the Rho family GTPases and is found to be overexpressed in pancreatic ductal adenocarcinoma (PDAC) cells but not in normal human pancreatic ductal epithelia (HPDE). Gene copy number amplification studies in PDAC patient cohorts confirmed PAK4 amplification making it an attractive therapeutic target in PDAC. We investigated the antitumor activity of novel PAK4 allosteric modulators (PAM) on a panel of PDAC cell lines and chemotherapy-resistant flow-sorted PDAC cancer stem cells (CSC). The toxicity and efficacy of PAMs were evaluated in multiple subcutaneous mouse models of PDAC. PAMs (KPT-7523, KPT-7189, KPT-8752, KPT-9307, and KPT-9274) show antiproliferative activity in vitro against different PDAC cell lines while sparing normal HPDE. Cell growth inhibition was concurrent with apoptosis induction and suppression of colony formation in PDAC. PAMs inhibited proliferation and antiapoptotic signals downstream of PAK4. Co-immunoprecipitation experiments showed disruption of PAK4 complexes containing vimentin. PAMs disrupted CSC spheroid formation through suppression of PAK4. Moreover, PAMs synergize with gemcitabine and oxaliplatin in vitro KPT-9274, currently in a phase I clinical trial (clinicaltrials.gov; NCT02702492), possesses desirable pharmacokinetic properties and is well tolerated in mice with the absence of any signs of toxicity when 200 mg/kg daily is administered either intravenously or orally. KPT-9274 as a single agent showed remarkable antitumor activity in subcutaneous xenograft models of PDAC cell lines and CSCs. These proof-of-concept studies demonstrated the antiproliferative effects of novel PAMs in PDAC and warrant further clinical investigations. Mol Cancer Ther; 16(1); 76-87. ©2016 AACR.

  6. ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: in vitro and in vivo characterization.

    Science.gov (United States)

    Kalinichev, Mikhail; Rouillier, Mélanie; Girard, Francoise; Royer-Urios, Isabelle; Bournique, Bruno; Finn, Terry; Charvin, Delphine; Campo, Brice; Le Poul, Emmanuel; Mutel, Vincent; Poli, Sonia; Neale, Stuart A; Salt, Thomas E; Lütjens, Robert

    2013-03-01

    Metabotropic glutamate receptor 7 (mGlu(7)) has been suggested to be a promising novel target for treatment of a range of disorders, including anxiety, post-traumatic stress disorder, depression, drug abuse, and schizophrenia. Here we characterized a potent and selective mGlu(7) negative allosteric modulator (NAM) (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one (ADX71743). In vitro, Schild plot analysis and reversibility tests at the target confirmed the NAM properties of the compound and attenuation of L-(+)-2-amino-4-phosphonobutyric acid-induced synaptic depression confirmed activity at the native receptor. The pharmacokinetic analysis of ADX71743 in mice and rats revealed that it is bioavailable after s.c. administration and is brain penetrant (cerebrospinal fluid concentration/total plasma concentration ratio at C(max) = 5.3%). In vivo, ADX71743 (50, 100, 150 mg/kg, s.c.) caused no impairment of locomotor activity in rats and mice or activity on rotarod in mice. ADX71743 had an anxiolytic-like profile in the marble burying and elevated plus maze tests, dose-dependently reducing the number of buried marbles and increasing open arm exploration, respectively. Whereas ADX71743 caused a small reduction in amphetamine-induced hyperactivity in mice, it was inactive in the mouse 2,5-dimethoxy-4-iodoamphetamine-induced head twitch and the rat conditioned avoidance response tests. In addition, the compound was inactive in the mouse forced swim test. These data suggest that ADX71743 is a suitable compound to help unravel the physiologic role of mGlu(7) and to better understand its implication in central nervous system diseases. Our in vivo tests using ADX71743, reported here, suggest that pharmacological inhibition of mGlu(7) is a valid approach for developing novel pharmacotherapies to treat anxiety disorders, but may not be suitable for treatment of depression or psychosis.

  7. Coarse-Grained Molecular Simulations of Allosteric Cooperativity

    CERN Document Server

    Nandigrami, Prithviraj

    2015-01-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two calcium ions to each domain of calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding is treated implicitly at the mean field level. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energy to the open and closed ensembles accurately describe...

  8. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor.

    Science.gov (United States)

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J; Madjidi, Azadeh; Corn, Jacob E; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M; Allan, Bernard B

    2013-12-13

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.

  9. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs.

    Science.gov (United States)

    Kumar, Rajnish; Nordberg, Agneta; Darreh-Shori, Taher

    2016-01-01

    -β interacts readily in an apolipoprotein-facilitated manner with butyrylcholinesterase, forming highly stable and soluble complexes, BAβACs, which can be separated in their native states by sucrose density gradient technique. Enzymological analyses further evinced that amyloid-β concentration dependently increased the acetylcholine-hydrolyzing capacity of cholinesterases. In silico biomolecular analysis further deciphered the allosteric amino acid fingerprint of the amyloid-β-cholinesterase molecular interaction in formation of BAβACs. In the case of butyrylcholinesterase, the results indicated that amyloid-β interacts with a putative activation site at the mouth of its catalytic tunnel, most likely leading to increased acetylcholine influx into the catalytic site, and thereby increasing the intrinsic catalytic rate of butyrylcholinesterase. In conclusion, at least one of the native physiological functions of amyloid-β is allosteric modulation of the intrinsic catalytic efficiency of cholinesterases, and thereby regulation of synaptic and extrasynaptic cholinergic signalling. High apolipoprotein-E may pathologically alter the biodynamics of this amyloid-β function.

  10. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis.

    Science.gov (United States)

    Ayoub, Mohammed Akli; Yvinec, Romain; Jégot, Gwenhaël; Dias, James A; Poli, Sonia-Maria; Poupon, Anne; Crépieux, Pascale; Reiter, Eric

    2016-11-15

    Biased signaling has recently emerged as an interesting means to modulate the function of many G protein-coupled receptors (GPCRs). Previous studies reported two negative allosteric modulators (NAMs) of follicle-stimulating hormone receptor (FSHR), ADX68692 and ADX68693, with differential effects on FSHR-mediated steroidogenesis and ovulation. In this study, we attempted to pharmacologically profile these NAMs on the closely related luteinizing hormone/chorionic gonadotropin hormone receptor (LH/CGR) with regards to its canonical Gs/cAMP pathway as well as to β-arrestin recruitment in HEK293 cells. The NAMs' effects on cAMP, progesterone and testosterone production were also assessed in murine Leydig tumor cell line (mLTC-1) as well as rat primary Leydig cells. We found that both NAMs strongly antagonized LH/CGR signaling in the different cell models used with ADX68693 being more potent than ADX68692 to inhibit hCG-induced cAMP production in HEK293, mLTC-1 and rat primary Leydig cells as well as β-arrestin 2 recruitment in HEK293 cells. Interestingly, differential antagonism of the two NAMs on hCG-promoted steroidogenesis in mLTC-1 and rat primary Leydig cells was observed. Indeed, a significant inhibition of testosterone production by the two NAMs was observed in both cell types, whereas progesterone production was only inhibited by ADX68693 in rat primary Leydig cells. In addition, while ADX68693 totally abolished testosterone production, ADX68692 had only a partial effect in both mLTC-1 and rat primary Leydig cells. These observations suggest biased effects of the two NAMs on LH/CGR-dependent pathways controlling steroidogenesis. Interestingly, the pharmacological profiles of the two NAMs with respect to steroidogenesis were found to differ from that previously shown on FSHR. This illustrates the complexity of signaling pathways controlling FSHR- and LH/CGR-mediated steroidogenesis, suggesting differential implication of cAMP and β-arrestins mediated by

  11. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.

    Science.gov (United States)

    Popovych, Nataliya; Tzeng, Shiou-Ru; Tonelli, Marco; Ebright, Richard H; Kalodimos, Charalampos G

    2009-04-28

    The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.

  12. 3-Benzyl-1,3-oxazolidin-2-ones as mGluR2 positive allosteric modulators: Hit-to lead and lead optimization.

    Science.gov (United States)

    Duplantier, Allen J; Efremov, Ivan; Candler, John; Doran, Angela C; Ganong, Alan H; Haas, Jessica A; Hanks, Ashley N; Kraus, Kenneth G; Lazzaro, John T; Lu, Jiemin; Maklad, Noha; McCarthy, Sheryl A; O'Sullivan, Theresa J; Rogers, Bruce N; Siuciak, Judith A; Spracklin, Douglas K; Zhang, Lei

    2009-05-01

    The discovery, synthesis and SAR of a novel series of 3-benzyl-1,3-oxazolidin-2-ones as positive allosteric modulators (PAMs) of mGluR2 is described. Expedient hit-to-lead work on a single HTS hit led to the identification of a ligand-efficient and structurally attractive series of mGluR2 PAMs. Human microsomal clearance and suboptimal physicochemical properties of the initial lead were improved to give potent, metabolically stable and orally available mGluR2 PAMs.

  13. Discovery of dual positive allosteric modulators (PAMs) of the metabotropic glutamate 2 receptor and CysLT1 antagonists for treating migraine headache.

    Science.gov (United States)

    Blanco, Maria-Jesus; Benesh, Dana R; Knobelsdorf, James A; Khilevich, Albert; Cortez, Guillermo S; Mokube, Fese; Aicher, Thomas D; Groendyke, Todd M; Marmsater, Fredrik P; Tang, Tony P; Johnson, Kirk W; Clemens-Smith, Amy; Muhlhauser, Mark A; Swanson, Steven; Catlow, John; Emkey, Renee; Johnson, Michael P; Schkeryantz, Jeffrey M

    2017-01-15

    Pyridylmethylsulfonamide series were the first reported example of positive allosteric modulators (PAM) of the mGlu2 receptor. The hydroxyacetophenone scaffold is a second series of mGlu2 PAMs we have identified. This series of molecules are potent mGlu2 potentiators and possess significant CysLT1 (cysteinyl leukotriene receptor 1) antagonist activity, showing in vivo efficacy in a dural plasma protein extravasation (PPE) model of migraine. In this paper, we describe the dual SAR, pharmacokinetics and preclinical in vivo efficacy data for a tetrazole containing hydroxyacetophenone scaffold.

  14. Levamisole: A positive allosteric modulator for the α3β4 nicotinic acetylcholine receptors prevents weight gain in CD-1 mice on a high fat diet.

    Science.gov (United States)

    Lewis, Jeanne A; Yakel, Jerrel L; Pandya, Anshul A

    2016-12-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the function of multiple neurotransmitter pathways throughout the central nervous system. This includes nAChRs found on the proopiomelanocortin neurons in the hypothalamus. Activation of these nAChRs by nicotine causes a decrease in consumption of food in rodents. In this study, we tested the effect of subtype selective allosteric modulators for nAChRs on the body weight of CD-1 mice. Levamisole, an allosteric modulator for the α3β4 subtype of nAChRs, prevented weight gain in mice that were fed a high fat diet. PNU-120596 and desformylflustrabromine are selective PAMs for the α7 and α4β2 nAChR, respectively. Both of these compounds failed to prevent weight gain in CD-1 mice. These results suggest that modulation of hypothalamic α3β4 nAChRs is an important factor in regulating food intake, and the PAMs for these receptors need further investigation as potential therapeutic agents for controlling weight gain.

  15. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates.

    Science.gov (United States)

    Schmitt, Kyle C; Rothman, Richard B; Reith, Maarten E A

    2013-07-01

    The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein-coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders.

  16. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule.

    Science.gov (United States)

    Deng, Gejing; Shen, Junqing; Yin, Ming; McManus, Jessica; Mathieu, Magali; Gee, Patricia; He, Timothy; Shi, Chaomei; Bedel, Olivier; McLean, Larry R; Le-Strat, Frank; Zhang, Ying; Marquette, Jean-Pierre; Gao, Qiang; Zhang, Bailin; Rak, Alexey; Hoffmann, Dietmar; Rooney, Eamonn; Vassort, Aurelie; Englaro, Walter; Li, Yi; Patel, Vinod; Adrian, Francisco; Gross, Stefan; Wiederschain, Dmitri; Cheng, Hong; Licht, Stuart

    2015-01-09

    Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg(2+). A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme.

  17. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats.

    Directory of Open Access Journals (Sweden)

    Morten S Thomsen

    Full Text Available The α7 nicotinic acetylcholine receptor (nAChR is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect of repeated administration of α7 nAChR agonists. We further compare the effect of agonists to that of α7 nAChR positive allosteric modulators (PAMs, which do not induce upregulation of the α7 nAChR. Using the social discrimination test as a measure of short-term memory, we show that the α7 nAChR agonist A-582941 improves short-term memory immediately after repeated (7× daily, but not a single administration. The α7 nAChR PAMs PNU-120596 and AVL-3288 do not affect short-term memory immediately after a single or repeated administration. This demonstrates a fundamental difference in the behavioral effects of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance. Subsequent [(125I]-bungarotoxin autoradiography revealed no direct correlation between α7 nAChR levels in frontal cortical or hippocampal brain regions and short-term memory with either compound. Additionally, repeated treatment with A-582941 did not affect mRNA expression of RIC-3 or the lynx-like gene products lynx1, lynx2, PSCA, or Ly6H, which are known to affect nAChR function. In conclusion, both α7 nAChR agonists and PAMs exhibit sustained pro-cognitive effects after repeated administration, and altered levels of the α7 nAChR per se, or that of endogenous regulators of nAChR function, are likely not the major cause of this effect.

  18. Evaluation of alpha7 nicotinic acetylcholine receptor agonists and positive allosteric modulators using the parallel oocyte electrophysiology test station.

    Science.gov (United States)

    Malysz, John; Grønlien, Jens H; Timmermann, Daniel B; Håkerud, Monika; Thorin-Hagene, Kirsten; Ween, Hilde; Trumbull, Jonathan D; Xiong, Yongli; Briggs, Clark A; Ahring, Philip K; Dyhring, Tino; Gopalakrishnan, Murali

    2009-08-01

    Neuronal acetylcholine receptors (nAChRs) of the alpha7 subtype are ligand-gated ion channels that are widely distributed throughout the central nervous system and considered as attractive targets for the treatment of various neuropsychiatric and neurodegenerative diseases. Both agonists and positive allosteric modulators (PAMs) are being developed as means to enhance the function of alpha7 nAChRs. The in vitro characterization of alpha7 ligands, including agonists and PAMs, relies on multiple technologies, but only electrophysiological measurements assess the channel activity directly. Traditional electrophysiological approaches utilizing two-electrode voltage clamp or patch clamp in isolated cells have very low throughput to significantly impact drug discovery. Abbott (Abbott Park, IL) has developed a two-electrode voltage clamp-based system, the Parallel Oocyte Electrophysiology Test Station (POETs()), that allows for the investigation of ligand-gated ion channels such as alpha7 nAChRs in a higher-throughput manner. We describe the utility of this technology in the discovery of selective alpha7 agonists and PAMs. With alpha7 agonists, POETs experiments involved both single- and multiple-point concentration-response testing revealing diverse activation profiles (zero efficacy desensitizing, partial, and full agonists). In the characterization of alpha7 PAMs, POETs testing has served as a reliable primary or secondary screen identifying compounds that fall into distinct functional types depending on the manner in which current potentiation occurred. Type I PAMs (eg, genistein, NS1738, and 5-hydroxyindole) increase predominantly the peak amplitude response, type II PAMs affect the peak current and current decay (eg, PNU-120,596 and 4-(naphthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), and anothertype slowing the current decay kinetics in the absence of increases in the peak current. In summary, POETs technology allows for significant

  19. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction.

    Science.gov (United States)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh; Jensen, Frank B; Wang, Tobias; Bayley, Mark

    2015-06-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.

  20. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site

    Science.gov (United States)

    Oguievetskaia, Ksenia; Martin-Chanas, Laetitia; Vorotyntsev, Artem; Doppelt-Azeroual, Olivia; Brotel, Xavier; Adcock, Stewart A.; de Brevern, Alexandre G.; Delfaud, Francois; Moriaud, Fabrice

    2009-08-01

    Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix α2 (L5/α2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software.

  1. Positive Allosteric Modulators of Type 5 Metabotropic Glutamate Receptors (mGluR5 and Their Therapeutic Potential for the Treatment of CNS Disorders

    Directory of Open Access Journals (Sweden)

    Richard M. Cleva

    2011-03-01

    Full Text Available Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated thattype 5 metabotropic glutamate receptors (mGluR5 are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS, including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson’s disease, and gastroesophageal reflux disease. However, in recent years, the development of positive allosteric modulators (PAMs of the mGluR5 receptor have revealed that allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here we summarize the discovery and characterization of various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also review animal studies showing that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the ability toenhance synaptic plasticity, improve performance in various learning and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits produced by chronic drug use.

  2. Differential modulation of thresholds for intracranial self-stimulation by mGlu5 positive and negative allosteric modulators: implications for effects on drug self-administration

    Directory of Open Access Journals (Sweden)

    M. Foster eOlive

    2012-01-01

    Full Text Available Pharmacological manipulation of the type 5 metabotropic glutamate (mGlu5 receptor alters various addiction related behaviors such as drug self-administration and the extinction and reinstatement of drug-seeking behavior. However, the effects of pharmacological modulation of mGlu5 receptors on brain reward function have not been widely investigated. We examined the effects of acute administration of positive and negative allosteric modulators (PAMs and NAMs, respectively on brain reward function by assessing thresholds for intracranial self-stimulation (ICSS. In addition, when acute effects were observed, we examined potential changes in altered ICSS thresholds following repeated administration. Male Sprague-Dawley rats were implanted with bipolar electrodes into the medial forebrain bundle and trained to respond for ICSS, followed by assessment of effects of mGlu5 ligands on ICSS thresholds using a discrete trials current intensity threshold determination procedure. Acute administration of the selective mGlu5 NAMs MTEP (0, 0.3, 1 or 3 mg/kg and fenobam (0, 3, 10, or 30 mg/kg dose-dependently increased ICSS thresholds (~70% at the highest dose tested, suggesting a deficit in brain reward function. Acute administration of the mGlu5 PAMs CDPPB (0, 10, 30 and 60 mg/kg or ADX47273 (0, 10, 30 and 60 mg/kg was without effect at any dose tested. When administered once daily for 5 consecutive days, the development of tolerance to the ability of threshold-elevating doses of MTEP and fenobam to increase ICSS thresholds was observed. We conclude that mGlu5 PAMs and NAMs differentially affect brain reward function, and that tolerance to the ability of mGlu5 NAMs to reduce brain reward function develops with repeated administration. These brain reward deficits should be taken into consideration when interpreting acute effects of mGlu5 NAMs on drug self-administration, and repeated administration may be an effective method to reduce these deficits.

  3. 3-(Imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers: a novel series of mGluR2 positive allosteric modulators.

    Science.gov (United States)

    Zhang, Lei; Rogers, Bruce N; Duplantier, Allen J; McHardy, Stanley F; Efremov, Ivan; Berke, Helen; Qian, Weimin; Zhang, Andy Q; Maklad, Noha; Candler, John; Doran, Angela C; Lazzaro, John T; Ganong, Alan H

    2008-10-15

    The synthesis and structure-activity relationship (SAR) of a novel series of 3-(imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers, derived from a high throughput screening (HTS), are described. Subsequent optimization led to identification of potent, metabolically stable and orally available mGluR2 positive allosteric modulators (PAMs).

  4. Statistical Mechanics of Allosteric Enzymes.

    Science.gov (United States)

    Einav, Tal; Mazutis, Linas; Phillips, Rob

    2016-07-07

    The concept of allostery in which macromolecules switch between two different conformations is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take a step toward this goal by modeling allosteric enzymes and their interaction with two key molecular players-allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition.

  5. The S-enantiomer of R, S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism

    DEFF Research Database (Denmark)

    Chen, Fenghua; Larsen, Mads; Sanchez, Connie

    2005-01-01

    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar...... range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram....../hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H...

  6. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors

    DEFF Research Database (Denmark)

    Chen, Fenghua; Larsen, Mads Breum; Sánchez, Connie

    2005-01-01

    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar...... range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram....../hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H...

  7. Allosteric regulation of helicase core activities of the DEAD-box helicase YxiN by RNA binding to its RNA recognition motif.

    Science.gov (United States)

    Samatanga, Brighton; Andreou, Alexandra Z; Klostermeier, Dagmar

    2017-01-23

    DEAD-box proteins share a structurally similar core of two RecA-like domains (RecA_N and RecA_C) that contain the conserved motifs for ATP-dependent RNA unwinding. In many DEAD-box proteins the helicase core is flanked by ancillary domains. To understand the regulation of the DEAD-box helicase YxiN by its C-terminal RNA recognition motif (RRM), we investigated the effect of RNA binding to the RRM on its position relative to the core, and on core activities. RRM/RNA complex formation substantially shifts the RRM from a position close to the RecA_C to the proximity of RecA_N, independent of RNA contacts with the core. RNA binding to the RRM is communicated to the core, and stimulates ATP hydrolysis and RNA unwinding. The conformational space of the core depends on the identity of the RRM-bound RNA. Allosteric regulation of core activities by RNA-induced movement of ancillary domains may constitute a general regulatory mechanism of DEAD-box protein activity.

  8. The α7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat

    DEFF Research Database (Denmark)

    Munro, G; Hansen, Rikke Rie; Erichsen, Hk

    2012-01-01

    ACh receptor agonist compound B with the positive allosteric modulator (PAM) PNU-120596 and the standard non-steroidal anti-inflammatory drug (NSAID), diclofenac, in rats with hind paw inflammation induced by either formalin, carrageenan or complete Freund's adjuvant (CFA). KEY RESULTS: When administered...... before carrageenan, both diclofenac (30 mg·kg(-1) ) and PNU-120596 (30 mg·kg(-1) ) significantly reduced mechanical hyperalgesia and weight-bearing deficits for up to 4 h. Compound B (30 mg·kg(-1) ) also attenuated both measures of pain-like behaviour, albeit less robustly. Whereas compound B and PNU......-120596 attenuated the carrageenan-induced increase in levels of TNF-α and IL-6 within the hind paw oedema, diclofenac only attenuated IL-6 levels. Established mechanical hyperalgesia induced by carrageenan or CFA was also partially reversed by compound B and PNU-120596. However, diclofenac...

  9. Targeting α4β2 nAChRs in CNS disorders: Perspectives on positive allosteric modulation as a therapeutic approach

    DEFF Research Database (Denmark)

    Grupe, Morten; Grunnet, Morten; Bastlund, Jesper F.;

    2015-01-01

    The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels broadly involved in regulating neurotransmission in the central nervous system (CNS) by conducting cation currents through the membrane of neurons. Many different nAChR subtypes exist with each their functional...... characteristics, expression pattern and pharmacological profile. The focus of the present MiniReview is on the heteromeric α4β2 nAChR, as activity at this subtype contributes to cognitive functioning through interactions with multiple neurotransmitter systems and is implicated in various CNS disorders...... be used as a treatment approach in various CNS disorders. As subtype-selective agonists and other cholinergic ligands have only shown limited therapeutic success, the focus of recent drug development endeavours has largely shifted to positive allosteric modulators (PAMs). By potentiating the action...

  10. Unraveling structural mechanisms of allosteric drug action.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung

    2014-05-01

    Orthosteric drugs block the active site to obstruct function; allosteric drugs modify the population of the active state, to modulate function. Available data lead us to propose that allosteric drugs can constitute anchors and drivers. The anchor docks into an allosteric pocket. The conformation with which it interacts is unchanged during the transition between the inactive and active states. The anchor provides the foundation that allows the driver to exert a 'pull' and/or 'push' action that shifts the receptor population from the inactive to the active state. The presence or absence of driver atom in an allosteric drug can exert opposite agonism. We map a strategy for driver identification and expect the allosteric trigger concept to transform agonist/antagonist drug discovery.

  11. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-10-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I and II α7 nAChR positive allosteric modulators (PAMs) on agonist-induced α7 nAChR up-regulation. We show that the type II PAMs, PNU-120596 (10 μM) or TQS (1 and 10 μM), inhibit up-regulation, as measured by protein levels, induced by the α7 nAChR agonist A-582941 (10 nM or 10 μM), in SH-EP1 cells stably expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596 inhibits up-regulation of the α7 nAChR induced by 10 mg/kg A-582941, as measured by [(125)I]-bungarotoxin autoradiography, whereas 1 mg/kg AVL-3288 does not. Given that type II PAMs decrease desensitization of the receptor, whereas type I PAMs do not, these results suggest that receptor desensitization is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine and A-582941 induce up-regulation through different mechanisms, and that this confers differential sensitivity to the effects of α7 nAChR PAMs. These results may have implications for the clinical development of α7 nAChR PAMs.

  12. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...... varying Pi at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing Pi concentrations. Results from ADP inhibition of Pi activation suggest that these effectors compete for binding to a common regulatory site....

  13. Using structure to inform carbohydrate binding module function

    NARCIS (Netherlands)

    Abbott, D. Wade; Lammerts van Bueren, Alicia

    2014-01-01

    Generally, non-catalytic carbohydrate binding module (CBM) specificity has been shown to parallel the catalytic activity of the carbohydrate active enzyme (CAZyme) module it is appended to. With the rapid expansion in metagenomic sequence space for the potential discovery of new CBMs in addition to

  14. LIBSA--a method for the determination of ligand-binding preference to allosteric sites on receptor ensembles.

    Science.gov (United States)

    Hocker, Harrison J; Rambahal, Nandini; Gorfe, Alemayehu A

    2014-02-24

    Incorporation of receptor flexibility into computational drug discovery through the relaxed complex scheme is well suited for screening against a single binding site. In the absence of a known pocket or if there are multiple potential binding sites, it may be necessary to do docking against the entire surface of the target (global docking). However no suitable and easy-to-use tool is currently available to rank global docking results based on the preference of a ligand for a given binding site. We have developed a protocol, termed LIBSA for LIgand Binding Specificity Analysis, that analyzes multiple docked poses against a single or ensemble of receptor conformations and returns a metric for the relative binding to a specific region of interest. By using novel filtering algorithms and the signal-to-noise ratio (SNR), the relative ligand-binding frequency at different pockets can be calculated and compared quantitatively. Ligands can then be triaged by their tendency to bind to a site instead of ranking by affinity alone. The method thus facilitates screening libraries of ligand cores against a large library of receptor conformations without prior knowledge of specific pockets, which is especially useful to search for hits that selectively target a particular site. We demonstrate the utility of LIBSA by showing that it correctly identifies known ligand binding sites and predicts the relative preference of a set of related ligands for different pockets on the same receptor.

  15. Coarse-grained molecular simulations of allosteric cooperativity

    Science.gov (United States)

    Nandigrami, Prithviraj; Portman, John J.

    2016-03-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca2+ ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca2+ with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop's structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.

  16. Study on the Model for Regulation of the Allosteric Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    LI,Qian-Zhong(李前忠); LUO,Liao-Fu(罗辽复); ZHANG,Li-Rong(张利绒)

    2002-01-01

    The effects of activator molecule and repressive molecule on binding process between allosteric enzyme and substrate are disused by considering the heterotropic effect of the regulating molecule that binds to allosteric enzyme. A model of allosteric enzyme with heterotropic effect is presented. The cooperativity and anticooperativity in the regulation process are studied.

  17. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter

    DEFF Research Database (Denmark)

    Plenge, Per; Shi, Lei; Beuming, Thijs;

    2012-01-01

    The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses...

  18. Analyzing radioligand binding data.

    Science.gov (United States)

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  19. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    Science.gov (United States)

    Ahn, Seungkirl; Kahsai, Alem W.; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L.; Strachan, Ryan T.; Staus, Dean P.; Wingler, Laura M.; Sun, Lillian D.; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T.; Hansen, Gwenn M.; Burnett, Michael B.; Lamerdin, Jane E.; Bassoni, Daniel L.; Gavino, Bryant J.; Husemoen, Gitte; Olsen, Eva K.; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J.

    2017-01-01

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein–coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects. PMID:28130548

  20. Elastic network model of allosteric regulation in protein kinase PDK1

    Directory of Open Access Journals (Sweden)

    Williams Gareth

    2010-05-01

    Full Text Available Abstract Background Structural switches upon binding of phosphorylated moieties underpin many signalling networks. The ligand activation is a form of allosteric modulation of the protein, where the binding site is remote from the structural change in the protein. Recently this structural switch has been elegantly demonstrated with the crystallisation of the activated form of 3-phosphoinositide-dependent protein kinase-1 (PDK1. The purpose of the present work is to determine whether the allosteric coupling in PDK1 emerges at the level of a simple coarse grained model of protein dynamics. Results It is shown here that the allosteric effects of the agonist binding to the small lobe upon the activation loop in the large lobe of PDK1 are explainable within a simple 'ball and spring' elastic network model (ENM of protein dynamics. In particular, the model shows that the bound phospho peptide mimetic fluctuations have a high degree of correlation with the activation loop of PDK1. Conclusions The ENM approach to small molecule activation of proteins may offer a first pass predictive methodology where affinity is encoded in residues remote from the active site, and aid in the design of specific protein agonists that enhance the allosteric coupling and antagonist that repress it.

  1. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor.

    Science.gov (United States)

    Pamplona, Fabricio A; Ferreira, Juliano; Menezes de Lima, Octávio; Duarte, Filipe Silveira; Bento, Allisson Freire; Forner, Stefânia; Villarinho, Jardel G; Bellocchio, Luigi; Bellochio, Luigi; Wotjak, Carsten T; Lerner, Raissa; Monory, Krisztina; Lutz, Beat; Canetti, Claudio; Matias, Isabelle; Calixto, João Batista; Marsicano, Giovanni; Guimarães, Marilia Z P; Takahashi, Reinaldo N

    2012-12-18

    Allosteric modulation of G-protein-coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A(4) is an endogenous allosteric enhancer of the CB(1) cannabinoid receptor. Lipoxin A(4) was detected in brain tissues, did not compete for the orthosteric binding site of the CB(1) receptor (vs. (3)H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating the effects of this endocannabinoid both in vitro and in vivo. In addition, lipoxin A(4) displayed a CB(1) receptor-dependent protective effect against β-amyloid (1-40)-induced spatial memory impairment in mice. The discovery of lipoxins as a class of endogenous allosteric modulators of CB(1) receptors may foster the therapeutic exploitation of the endocannabinoid system, in particular for the treatment of neurodegenerative disorders.

  2. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 1. Calorimetric study.

    Science.gov (United States)

    Herman, Petr; Lee, J Ching

    2009-10-13

    Rabbit muscle pyruvate kinase (RMPK) is an important allosteric enzyme of the glycolytic pathway catalyzing a transfer of the phosphate from phosphoenolpyruvate (PEP) to ADP. The energetic landscape of the allosteric regulatory mechanism of RMPK was characterized by isothermal titration calorimetry (ITC) in the temperature range from 4 to 45 degrees C. ITC data for RMPK binding to substrates PEP and ADP, for the allosteric inhibitor Phe, and for combination of ADP and Phe were globally analyzed. The thermodynamic parameters characterizing the linked-multiple-equilibrium system were extracted. Four novel insights were uncovered. (1) The binding preference of ADP for either the T or R state is temperature-dependent, namely, more favorable to the T and R states at high and low temperatures, respectively. This crossover of affinity toward R and T states implies that ADP plays a complex role in modulating the allosteric behavior of RMPK. Depending on the temperature, binding of ADP can regulate RMPK activity by favoring the enzyme to either the R or T state. (2) The binding of Phe is negatively coupled to that of ADP; i.e., Phe and ADP prefer not to bind to the same subunit of RMPK. (3) The release or absorption of protons linked to the various equilibria is specific to the particular reaction. As a consequence, pH will exert a complex effect on these linked equilibria, resulting in the proton being an allosteric regulatory ligand of RMPK. (4) The R T equilibrium is accompanied by a significant DeltaC(p), rendering RMPK most sensitive to temperature under physiological conditions. During muscle activity, both pH and temperature fluctuations are known to happen; thus, results of this study are physiologically relevant.

  3. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  4. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  5. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins.

    Science.gov (United States)

    Kirubakaran, Palani; Pfeiferová, Lucie; Boušová, Kristýna; Bednarova, Lucie; Obšilová, Veronika; Vondrášek, Jiří

    2016-10-01

    Artificial multidomain proteins with enhanced structural and functional properties can be utilized in a broad spectrum of applications. The design of chimeric fusion proteins utilizing protein domains or one-domain miniproteins as building blocks is an important advancement for the creation of new biomolecules for biotechnology and medical applications. However, computational studies to describe in detail the dynamics and geometry properties of two-domain constructs made from structurally and functionally different proteins are lacking. Here, we tested an in silico design strategy using all-atom explicit solvent molecular dynamics simulations. The well-characterized PDZ3 and SH3 domains of human zonula occludens (ZO-1) (3TSZ), along with 5 artificial domains and 2 types of molecular linkers, were selected to construct chimeric two-domain molecules. The influence of the artificial domains on the structure and dynamics of the PDZ3 and SH3 domains was determined using a range of analyses. We conclude that the artificial domains can function as allosteric modulators of the PDZ3 and SH3 domains. Proteins 2016; 84:1358-1374. © 2016 Wiley Periodicals, Inc.

  6. Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat.

    Science.gov (United States)

    Palazzo, Enza; Marabese, Ida; Luongo, Livio; Boccella, Serena; Bellini, Giulia; Giordano, Maria Elvira; Rossi, Francesca; Scafuro, Mariantonietta; Novellis, Vito de; Maione, Sabatino

    2013-09-03

    The metabotropic glutamate receptor 7 (mGluR7) negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), was locally microinjected into the ventrolateral periaqueductal gray (VL PAG) and the effect on pain responses in formalin and spare nerve injury (SNI) -induced neuropathic pain models was monitored in the rat. The activity of rostral ventromedial medulla (RVM) "pronociceptive" ON and "antinociceptive" OFF cells was also evaluated. Intra-VL PAG MMPIP blocked the first and second phase of nocifensive behaviour in the formalin pain model. MMPIP increased the tail flick latency and simultaneously increased the activity of the OFF cells while inhibiting that of ON cells in rats with SNI of the sciatic nerve. MMPIP failed to modify nociceptive responses and associated RVM ON and OFF cell activity in sham rats. An increase in mGluR7 gene, protein and staining, the latter being associated with vesicular glutamate transporter-positive profiles, has been found in the VL PAG in SNI rats. Blockade of mGluR7 within the VL PAG has an antinociceptive effect in formalin and neuropathic pain models. VL PAG mGluR7 blockade offers a target for dis-inhibiting the VL PAG-RVM pathway and silencing pain in inflammatory and neuropathic pain models.

  7. Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design.

    Science.gov (United States)

    Volgraf, Matthew; Sellers, Benjamin D; Jiang, Yu; Wu, Guosheng; Ly, Cuong Q; Villemure, Elisia; Pastor, Richard M; Yuen, Po-wai; Lu, Aijun; Luo, Xifeng; Liu, Mingcui; Zhang, Shun; Sun, Liang; Fu, Yuhong; Lupardus, Patrick J; Wallweber, Heidi J A; Liederer, Bianca M; Deshmukh, Gauri; Plise, Emile; Tay, Suzanne; Reynen, Paul; Herrington, James; Gustafson, Amy; Liu, Yichin; Dirksen, Akim; Dietz, Matthias G A; Liu, Yanzhou; Wang, Tzu-Ming; Hanson, Jesse E; Hackos, David; Scearce-Levie, Kimberly; Schwarz, Jacob B

    2016-03-24

    The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimer's disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.

  8. A type-II positive allosteric modulator of α7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Fen Sun

    Full Text Available In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II of α7 nicotinic acetylcholine receptors (nAChRs, as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min middle cerebral artery occlusion (MCAO. Animals were then subdivided into two groups and injected intravenously (i.v. 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group or vehicle only (untreated group. Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.

  9. Small-world networks of residue interactions in the Abl kinase complexes with cancer drugs: topology of allosteric communication pathways can determine drug resistance effects.

    Science.gov (United States)

    Tse, A; Verkhivker, G M

    2015-07-01

    The human protein kinases play a fundamental regulatory role in orchestrating functional processes in complex cellular networks. Understanding how conformational equilibrium between functional kinase states can be modulated by ligand binding or mutations is critical for quantifying molecular basis of allosteric regulation and drug resistance. In this work, molecular dynamics simulations of the Abl kinase complexes with cancer drugs (Imatinib and Dasatinib) were combined with structure-based network modeling to characterize dynamics of the residue interaction networks in these systems. The results have demonstrated that structural architecture of kinase complexes can produce a small-world topology of the interaction networks. Our data have indicated that specific Imatinib binding to a small number of highly connected residues could lead to network-bridging effects and allow for efficient allosteric communication, which is mediated by a dominant pathway sensitive to the unphosphorylated Abl state. In contrast, Dasatinib binding to the active kinase form may activate a broader ensemble of allosteric pathways that are less dependent on the phosphorylation status of Abl and provide a better balance between the efficiency and resilience of signaling routes. Our results have unveiled how differences in the residue interaction networks and allosteric communications of the Abl kinase complexes can be directly related to drug resistance effects. This study offers a plausible perspective on how efficiency and robustness of the residue interaction networks and allosteric pathways in kinase structures may be associated with protein responses to drug binding.

  10. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.

    Science.gov (United States)

    Mathieu, Valéry; Fastrez, Jacques; Soumillion, Patrice

    2010-09-01

    In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.

  11. Kinetic analysis of ligand binding to the Ehrlich cell nucleoside transporter: Pharmacological characterization of allosteric interactions with the sup 3 Hnitrobenzylthioinosine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.R. (Department of Pharmacology and Toxicology, University of Western Ontario, London (Canada))

    1991-06-01

    Kinetic analysis of the binding of {sup 3}Hnitrobenzylthioinosine ({sup 3}H NBMPR) to Ehrlich ascites tumor cell plasma membranes was conducted in the presence and absence of a variety of nucleoside transport inhibitors and substrates. The association of {sup 3}H NBMPR with Ehrlich cell membranes occurred in two distinct phases, possibly reflecting functional conformation changes in the {sup 3}HNBMPR binding site/nucleoside transporter complex. Inhibitors of the equilibrium binding of {sup 3}HNBMPR, tested at submaximal inhibitory concentrations, generally decreased the rate of association of {sup 3}HNBMPR, but the magnitude of this effect varied significantly with the agent tested. Adenosine and diazepam had relatively minor effects on the association rate, whereas dipyridamole and mioflazine slowed the rate dramatically. Inhibitors of nucleoside transport also decreased the rate of dissociation of {sup 3}HNBMPR, with an order of potency significantly different from their relative potencies as inhibitors of the equilibrium binding of {sup 3}HNBMPR. Dilazep, dipyridamole, and mioflazine were effective inhibitors of both {sup 3}HNBMPR dissociation and equilibrium binding. The lidoflazine analogue R75231, on the other hand, had no effect on the rate of dissociation of {sup 3}HNBMPR at concentrations below 300 microM, even though it was one of the most potent inhibitors of {sup 3}HNBMPR binding tested (Ki less than 100 nM). In contrast, a series of natural substrates for the nucleoside transport system enhanced the rate of dissociation of {sup 3}HNBMPR with an order of effectiveness that paralleled their relative affinities for the permeant site of the transporter. The most effective enhancers of {sup 3}HNBMPR dissociation, however, were the benzodiazepines diazepam, chlordiazepoxide, and triazolam.

  12. Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3-a]pyridine (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM).

    Science.gov (United States)

    Cid, Jose María; Tresadern, Gary; Vega, Juan Antonio; de Lucas, Ana Isabel; Del Cerro, Alcira; Matesanz, Encarnación; Linares, María Lourdes; García, Aránzazu; Iturrino, Laura; Pérez-Benito, Laura; Macdonald, Gregor J; Oehlrich, Daniel; Lavreysen, Hilde; Peeters, Luc; Ceusters, Marc; Ahnaou, Abdellah; Drinkenburg, Wilhelmus; Mackie, Claire; Somers, Marijke; Trabanco, Andrés A

    2016-09-22

    Positive allosteric modulators of the metabotropic glutamate 2 receptor have generated great interest in the past decade. There is mounting evidence of their potential as therapeutic agents in the treatment of multiple central nervous system disorders. We have previously reported substantial efforts leading to potent and selective mGlu2 PAMs. However, finding compounds with the optimal combination of in vitro potency and good druglike properties has remained elusive, in part because of the hydrophobic nature of the allosteric binding site. Herein, we report on the lead optimization process to overcome the poor solubility inherent to the advanced lead 6. Initial prototypes already showed significant improvements in solubility while retaining good functional activity but displayed new liabilities associated with metabolism and hERG inhibition. Subsequent subtle modifications efficiently addressed those issues leading to the identification of compound 27 (JNJ-46356479). This new lead represents a more balanced profile that offers a significant improvement on the druglike attributes compared to previously reported leads.

  13. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    Science.gov (United States)

    Fischer, Thomas; Riedl, Rainer

    2016-03-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91).

  14. MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice.

    Science.gov (United States)

    Palazzo, Enza; Romano, Rosaria; Luongo, Livio; Boccella, Serena; De Gregorio, Danilo; Giordano, Maria Elvira; Rossi, Francesca; Marabese, Ida; Scafuro, Maria Antonietta; de Novellis, Vito; Maione, Sabatino

    2015-06-01

    This study investigated the effects of a single administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridinyl-4-isoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), a negative allosteric modulator (NAM) of metabotropic glutamate receptor 7 (mGluR7), on pain and on affective and cognitive behavior in neuropathic mice. The activity of pyramidal neurons in the prelimbic cortex (PLC), which respond to stimulation of the basolateral amygdala (BLA) with either excitation or inhibition, was also investigated. The spared nerve injury (SNI) of the sciatic nerve induced, 14 days after surgery, thermal hyperalgesia and mechanical allodynia, reduced open-arm choice in the elevated plus-maze, increased time of immobility in the tail suspension, and increased digging and burying in the marble burying test. Cognitive performance was also significantly compromised in the SNI mice. Spared nerve injury induced phenotypic changes on pyramidal neurons of the PLC; excitatory responses increased, whereas inhibitory responses decreased after BLA stimulation. mGluR7 expression, mainly associated with vesicular glutamate transporter, increased in the hippocampus and decreased in the BLA, PLC, and dorsal raphe in SNI mice. MMPIP increased thermal and mechanical thresholds and open-arm choice. It reduced the immobility in the tail suspension test and the number of marbles buried and of digging events in the marble burying test. MMPIP also improved cognitive performance and restored the balance between excitatory and inhibitory responses of PLC neurons in SNI mice. 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one, XAP044, another selective mGluR7 NAM, reproduced the effects of MMPIP on thermal hyperalgesia, mechanical allodynia, tail suspension, and marble burying test. Altogether, these findings show that mGluR7 NAMs reduce pain responses and affective/cognitive impairments in neuropathic pain conditions.

  15. Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1 metabolite GLP-1 9-36 amide at the GLP-1 receptor.

    Directory of Open Access Journals (Sweden)

    Naichang Li

    Full Text Available Glucagon-like peptide-1 (GLP-1 released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R. GLP-1 7-36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9-36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently 'compound 2' has been described as both an agonist and positive allosteric modulator of GLP-1 7-36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9-39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa at the GLP-1R. Given that GLP-1 9-36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9-36 amide for key cellular responses including AMP generation, Ca(2+ signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.

  16. Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1) metabolite GLP-1 9-36 amide at the GLP-1 receptor.

    Science.gov (United States)

    Li, Naichang; Lu, Jing; Willars, Gary B

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7-36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9-36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently 'compound 2' has been described as both an agonist and positive allosteric modulator of GLP-1 7-36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9-39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9-36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9-36 amide for key cellular responses including AMP generation, Ca(2+) signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.

  17. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  18. Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling

    DEFF Research Database (Denmark)

    Holst, Birgitte; Brandt, Erik; Bach, Anders

    2005-01-01

    Two nonpeptide (L692,429 and MK-677) and two peptide [GH-releasing peptide (GHRP)-6 and ghrelin] agonists were compared in binding and in signal transduction assays: calcium mobilization, inositol phosphate turnover, cAMP-responsive element (CRE), and serum-responsive element (SRE) controlled...... agonist properties and in their ability to modulate ghrelin signaling. A receptor model is presented wherein ghrelin normally only activates one receptor subunit in a dimer and where the smaller nonendogenous agonists bind in the other subunit to act both as coagonists and as either neutral (MK-677...

  19. Modulation of RNase E activity by alternative RNA binding sites.

    Directory of Open Access Journals (Sweden)

    Daeyoung Kim

    Full Text Available Endoribonuclease E (RNase E affects the composition and balance of the RNA population in Escherichia coli via degradation and processing of RNAs. In this study, we investigated the regulatory effects of an RNA binding site between amino acid residues 25 and 36 (24LYDLDIESPGHEQK37 of RNase E. Tandem mass spectrometry analysis of the N-terminal catalytic domain of RNase E (N-Rne that was UV crosslinked with a 5'-32P-end-labeled, 13-nt oligoribonucleotide (p-BR13 containing the RNase E cleavage site of RNA I revealed that two amino acid residues, Y25 and Q36, were bound to the cytosine and adenine of BR13, respectively. Based on these results, the Y25A N-Rne mutant was constructed, and was found to be hypoactive in comparison to wild-type and hyperactive Q36R mutant proteins. Mass spectrometry analysis showed that Y25A and Q36R mutations abolished the RNA binding to the uncompetitive inhibition site of RNase E. The Y25A mutation increased the RNA binding to the multimer formation interface between amino acid residues 427 and 433 (427LIEEEALK433, whereas the Q36R mutation enhanced the RNA binding to the catalytic site of the enzyme (65HGFLPL*K71. Electrophoretic mobility shift assays showed that the stable RNA-protein complex formation was positively correlated with the extent of RNA binding to the catalytic site and ribonucleolytic activity of the N-Rne proteins. These mutations exerted similar effects on the ribonucleolytic activity of the full-length RNase E in vivo. Our findings indicate that RNase E has two alternative RNA binding sites for modulating RNA binding to the catalytic site and the formation of a functional catalytic unit.

  20. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Boesgaard, Michael W; Munk, Christian;

    2017-01-01

    . Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. RESULTS: We uncover one common site for both positive and negative modulators with different amino acid layouts that can......MOTIVATION: Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry...

  1. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    this concept being tested in humans. Prior to assessing the efficacy of GABA-A receptor PAMs in a human volunteer pain model we have compared compounds capable of variously modulating GABA-A receptor function in comparable rat models of capsaicin-induced acute nocifensive flinching behaviour and secondary...... mechanical hypersensitivity. The subtype-selective PAM NS11394 (0.3-10 mg/kg), and the non-selective PAM diazepam (1-5 mg/kg) variously reduced capsaicin-induced secondary mechanical hypersensitivity (180 min post-injection). However, the low efficacy subtype-selective PAM TPA023 (3-30 mg/kg) was completely......, albeit at doses previously shown to impair locomotor function. Our data indicate that GABA-A receptor PAMs with optimal selectivity and efficacy profiles reduce centrally-mediated mechanical hypersensitivity in capsaicin-injected rats, an observation that we expect can translate directly to human...

  2. Carbohydrate Binding Modules: Biochemical Properties and Novel Applications

    Science.gov (United States)

    Shoseyov, Oded; Shani, Ziv; Levy, Ilan

    2006-01-01

    Polysaccharide-degrading microorganisms express a repertoire of hydrolytic enzymes that act in synergy on plant cell wall and other natural polysaccharides to elicit the degradation of often-recalcitrant substrates. These enzymes, particularly those that hydrolyze cellulose and hemicellulose, have a complex molecular architecture comprising discrete modules which are normally joined by relatively unstructured linker sequences. This structure is typically comprised of a catalytic module and one or more carbohydrate binding modules (CBMs) that bind to the polysaccharide. CBMs, by bringing the biocatalyst into intimate and prolonged association with its substrate, allow and promote catalysis. Based on their properties, CBMs are grouped into 43 families that display substantial variation in substrate specificity, along with other properties that make them a gold mine for biotechnologists who seek natural molecular “Velcro” for diverse and unusual applications. In this article, we review recent progress in the field of CBMs and provide an up-to-date summary of the latest developments in CBM applications. PMID:16760304

  3. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine.

    Science.gov (United States)

    Clifton, Nicholas E; Morisot, Nadège; Girardon, Sylvie; Millan, Mark J; Loiseau, Florence

    2013-02-01

    Metabotropic glutamate-5 receptors (mGluR5), which physically and functionally interact with N-methyl-D-Aspartate (NMDA) receptors, likewise control cognitive processes and have been proposed as targets for novel classes of antipsychotic agent. Since social cognition is impaired in schizophrenia and disrupted by NMDA receptor antagonists like dizocilpine, we evaluated its potential modulation by mGluR5. Acute administration (0.63-40 mg/kg) of the mGluR5 positive allosteric modulators (PAMs), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and ADX47273, reversed a delay-induced impairment in social novelty discrimination (SND) in adult rats. The action of CDPPB was blocked by the mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (2.5-10 mg/kg), and was also expressed upon microinjection into frontal cortex (0.63-10 μg/side), but not striatum. Supporting an interrelationship between mGluR5 and NMDA receptors, enhancement of SND by CDPPB was blocked by dizocilpine (0.08 mg/kg) while, reciprocally, dizocilpine-induced impairment in SND was attenuated by CDPPB (10 mg/kg). The SND deficit elicited by post-natal administration of phencyclidine (10 mg/kg, days 7-11) was reversed by CDPPB or ADX47273 in adults at week 8. This phencyclidine-induced impairment in cognition emerged in adult rats from week 7 on, and chronic, pre-symptomatic treatment of adolescent rats with CDPPB over weeks 5-6 (10 mg/kg per day) prevented the appearance of SND deficits in adults until at least week 13. In conclusion, as evaluated by a SND procedure, mGluR5 PAMs promote social cognition via actions expressed in interaction with NMDA receptors and exerted in frontal cortex. MGluR5 PAMs not only reverse but also (when given during adolescence) prevent the emergence of cognitive impairment associated with a developmental model of schizophrenia.

  4. Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model.

    Science.gov (United States)

    Brown, Jordan W; Moeller, Achim; Schmidt, Martin; Turner, Sean C; Nimmrich, Volker; Ma, Junli; Rueter, Lynne E; van der Kam, Elizabeth; Zhang, Min

    2016-02-01

    The GABA(B) receptor has been indicated as a promising target for multiple CNS-related disorders. Baclofen, a prototypical orthosteric agonist, is used clinically for the treatment of spastic movement disorders, but is associated with unwanted side-effects, such as sedation and motor impairment. Positive allosteric modulators (PAM), which bind to a topographically-distinct site apart from the orthosteric binding pocket, may provide an improved side-effect profile while maintaining baclofen-like efficacy. GABA, the major inhibitory neurotransmitter in the CNS, plays an important role in the etiology and treatment of seizure disorders. Baclofen is known to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test (AGS), suggesting it may be a suitable assay for assessing pharmacodynamic effects. Little is known about the effects of GABA(B) PAMs, however. The studies presented here sought to investigate the AGS test as a pharmacodynamic (PD) screening model for GABA(B) PAMs by comparing the profile of structurally diverse PAMs to baclofen. GS39783, rac-BHFF, CMPPE, A-1295120 (N-(3-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide), and A-1474713 (N-(3-(4-(4-chlorobenzyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide) all produced robust, dose-dependent anticonvulsant effects; a similar profile was observed with baclofen. Pre-treatment with the GABA(B) antagonist SCH50911 completely blocked the anticonvulsant effects of baclofen and CMPPE in the AGS test, indicating such effects are likely mediated by the GABA(B) receptor. In addition to the standard anticonvulsant endpoint of the AGS test, video tracking software was employed to assess potential drug-induced motor side-effects during the acclimation period of the test. This analysis was sensitive to detecting drug-induced changes in total distance traveled, which was used to establish a therapeutic index (TI = hypoactivity

  5. Neuropharmacological modulation of the P3-like event-related potential in a rat two-tone auditory discrimination task with modafinil and NS9283, a positive allosteric modulator of α4β2 nAChRs.

    Science.gov (United States)

    Grupe, Morten; Grunnet, Morten; Laursen, Bettina; Bastlund, Jesper Frank

    2014-04-01

    The P300 (P3) event-related potential (ERP) is a neurophysiological signal believed to reflect cognitive processing of salient cues, and is thus used as a measure of attention and working memory. Additionally, P3 amplitude and latency is altered in neurological diseases and can be pharmacologically modulated. As P3-like ERPs can be recorded in rodents, it may serve as a potential translational biomarker of value for drug discovery. Here we investigated whether a positive allosteric modulator of α4β2 nicotinic acetylcholine receptors, NS9283, and the psychostimulant modafinil could modulate P3-like ERPs in healthy adult rats performing an auditory oddball discrimination task. ERPs were recorded with electroencephalography electrodes implanted into mediodorsal (MD) thalamus, medial prefrontal cortex, hippocampus and auditory cortex (AC). P3-like ERPs were detected in all brain regions, displaying larger amplitudes in target trials compared to non-target trials. Administration of modafinil (64 mg/kg) decreased P3-like ERP latency in MD thalamus and AC, whereas NS9283 augmented P3-like ERP amplitude in MD thalamus at 0.3 mg/kg and in AC at 3.0 mg/kg. Additionally, N1 pre-attention peak amplitude in MD thalamus was increased with 0.3 mg/kg NS9283. Neither of the compounds enhanced task performance. Rather, modafinil lowered correct rejections in non-target trials. In summary, our findings reveal pharmacological modulation of the rat P3-like ERP in cortical and subcortical regions by modafinil and NS9283. These findings encourage further exploration of the rat P3-like ERP in order to promote the understanding of its meaning within cognition, as well as its applicability as a translatable biomarker in drug development.

  6. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  7. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  8. Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure-like adverse events in rats involving a receptor agonism-dependent mechanism.

    Science.gov (United States)

    Bridges, Thomas M; Rook, Jerri M; Noetzel, Meredith J; Morrison, Ryan D; Zhou, Ya; Gogliotti, Rocco D; Vinson, Paige N; Xiang, Zixiu; Jones, Carrie K; Niswender, Colleen M; Lindsley, Craig W; Stauffer, Shaun R; Conn, P Jeffrey; Daniels, J Scott

    2013-09-01

    Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.

  9. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    Science.gov (United States)

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  10. Allosteric modulation of the HIV-1 gp120-gp41 association site by adjacent gp120 variable region 1 (V1 N-glycans linked to neutralization sensitivity.

    Directory of Open Access Journals (Sweden)

    Heidi E Drummer

    Full Text Available The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb. Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and C-terminal segments of gp120 and the disulfide-bonded region (DSR of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn¹³⁶ in V1 (T138N mutation in conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N¹³⁹INN sequence, which ablates the overlapping Asn¹⁴¹-Asn¹⁴²-Ser-Ser potential N-linked glycosylation sequons in V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu⁵⁹³, Trp⁵⁹⁶ and Lys⁶⁰¹. The 136 and/or 142 glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan

  11. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

    Science.gov (United States)

    Christopoulos, Arthur; Changeux, Jean-Pierre; Catterall, William A; Fabbro, Doriano; Burris, Thomas P; Cidlowski, John A; Olsen, Richard W; Peters, John A; Neubig, Richard R; Pin, Jean-Philippe; Sexton, Patrick M; Kenakin, Terry P; Ehlert, Frederick J; Spedding, Michael; Langmead, Christopher J

    2014-10-01

    Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.

  12. Salvinorin A: allosteric interactions at the mu-opioid receptor.

    Science.gov (United States)

    Rothman, Richard B; Murphy, Daniel L; Xu, Heng; Godin, Jonathan A; Dersch, Christina M; Partilla, John S; Tidgewell, Kevin; Schmidt, Matthew; Prisinzano, Thomas E

    2007-02-01

    Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.

  13. Advances in the research of tageting DFG-out allosteric binding site of inactive kinases%靶向非活性激酶DFG-out变构结合位点的研究进展

    Institute of Scientific and Technical Information of China (English)

    彭文; 张小猛; 张仓; 王芳; 尤启冬

    2012-01-01

    目前大多数激酶抑制剂是通过模拟ATP的结构,以识别激酶的活性构象来竞争性结合于ATP结合位点,从而抑制激酶的自磷酸化和下游的信号传导.然而,最近人们对已上市药物甲磺酸伊马替尼、尼罗替尼及对甲苯磺酸索拉非尼的晶体结构研究发现,在非活性激酶中ATP结合位点的相邻位置存在着第二个能与激酶抑制剂结合的位点——DFG-out变构结合位点.该位点的发现为以蛋白激酶为靶标的小分子激酶抑制剂的设计与开发指明了新的方向,成为抗肿瘤研究领域的新热点之一.因此,本文对非活性激酶的DFG-out变构结合位点的发现、非活性激酶与其抑制剂的结合方式及处于临床研究阶段的非活性激酶抑制剂进行了综述.%Up to nowadays, a majority of kinase inhibitors identify the activity conformation of protein ki-nase to integrate competitively with ATP binding site by simulating the structure of ATP. In this way, kinase inhibitors can inhibit kinase autophosphorylation and restrain signal transduction of downstream. However, the crystal structures of imatinib mesylate, nilotnib and sorafenib tosylate have revealed a secondary binding site adjacent to the ATP binding site, which is also bound by kinase inhibitors, known as the DFG-out allosteric binding site, in the inactive conformation of protein kinase. The discovery of the site has pointed out a new direction for the design and development of small molecule kinase inhibitors, which lakes protein kinase as a target. This becomes a new hotspot in antineoplastic research field. In this paper, we reviewed the discovery and inhibitors of the DFG-out allosteric binding site, and the binding mode between inactive kinases, as well as the inactive kinase inhibitors in clinical studies.

  14. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    DEFF Research Database (Denmark)

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona

    2016-01-01

    ) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates b2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located...... near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however...... cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions....

  15. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    Energy Technology Data Exchange (ETDEWEB)

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.

    2007-01-01

    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  16. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lummis, S.C.R.; Johnston, G.A.R. (Univ. of Sydney, New South Wales (Australia)); Nicoletti, G. (Royal Melbourne Inst. of Tech. (Australia)); Holan, G. (CSIRO, Melbourne (Australia))

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  17. Computation of conformational coupling in allosteric proteins.

    Directory of Open Access Journals (Sweden)

    Brian A Kidd

    2009-08-01

    Full Text Available In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.

  18. Effector-induced structural fluctuation regulates the ligand affinity of an allosteric protein: binding of inositol hexaphosphate has distinct dynamic consequences for the T and R states of hemoglobin.

    Science.gov (United States)

    Song, Xiang-jin; Simplaceanu, Virgil; Ho, Nancy T; Ho, Chien

    2008-04-29

    The present study reports distinct dynamic consequences for the T- and R-states of human normal adult hemoglobin (Hb A) due to the binding of a heterotropic allosteric effector, inositol hexaphosphate (IHP). A nuclear magnetic resonance (NMR) technique based on modified transverse relaxation optimized spectroscopy (TROSY) has been used to investigate the effect of conformational exchange of Hb A in both deoxy and CO forms, in the absence and presence of IHP, at 14.1 and 21.1 T, and at 37 degrees C. Our results show that the majority of the polypeptide backbone amino acid residues of deoxy- and carbonmonoxy-forms of Hb A in the absence of IHP is not mobile on the micros-ms time scale, with the exception of several amino acid residues, that is, beta109Val and beta132Lys in deoxy-Hb A, and alpha40Lys in HbCO A. The mobility of alpha40Lys in HbCO A can be explained by the crystallographic data showing that the H-bond between alpha40Lys and beta146His in deoxy-Hb A is absent in HbCO A. However, the conformational exchange of beta109Val, which is located in the intradimer (alpha 1beta 1 or alpha 2beta 2) interface, is not consistent with the crystallographic observations that show rigid packing at this site. IHP binding appears to rigidify alpha40Lys in HbCO A, but does not significantly affect the flexibility of beta109Val in deoxy-Hb A. In the presence of IHP, several amino acid residues, especially those at the interdimer (alpha 1beta 2 or alpha 2beta 1) interface of HbCO A, exhibit significant conformational exchange. The affected residues include the proximal beta92His in the beta-heme pocket, as well as some other residues located in the flexible joint (betaC helix-alphaFG corner) and switch (alphaC helix-betaFG corner) regions that play an important role in the dimer-dimer rotation of Hb during the oxygenation process. These findings suggest that, upon IHP binding, HbCO A undergoes a conformational fluctuation near the R-state but biased toward the T

  19. Copper at synapse: Release, binding and modulation of neurotransmission.

    Science.gov (United States)

    D'Ambrosi, Nadia; Rossi, Luisa

    2015-11-01

    Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.

  20. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation.

    Science.gov (United States)

    Staus, Dean P; Strachan, Ryan T; Manglik, Aashish; Pani, Biswaranjan; Kahsai, Alem W; Kim, Tae Hun; Wingler, Laura M; Ahn, Seungkirl; Chatterjee, Arnab; Masoudi, Ali; Kruse, Andrew C; Pardon, Els; Steyaert, Jan; Weis, William I; Prosser, R Scott; Kobilka, Brian K; Costa, Tommaso; Lefkowitz, Robert J

    2016-07-21

    G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and β-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses (‘efficacy’). Furthermore, increasing biophysical evidence, primarily using the β2-adrenergic receptor (β2AR) as a model system, supports the existence of multiple active and inactive conformational states. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct β2AR conformations using single domain camelid antibodies (nanobodies)—a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for β2AR in the presence of Nb80 compared to the affinity of isoprenaline for β2AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the β2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of

  1. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    , such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated...

  2. The allosteric regulation of pyruvate kinase.

    Science.gov (United States)

    Valentini, G; Chiarelli, L; Fortin, R; Speranza, M L; Galizzi, A; Mattevi, A

    2000-06-16

    Pyruvate kinase (PK) is critical for the regulation of the glycolytic pathway. The regulatory properties of Escherichia coli were investigated by mutating six charged residues involved in interdomain salt bridges (Arg(271), Arg(292), Asp(297), and Lys(413)) and in the binding of the allosteric activator (Lys(382) and Arg(431)). Arg(271) and Lys(413) are located at the interface between A and C domains within one subunit. The R271L and K413Q mutant enzymes exhibit altered kinetic properties. In K413Q, there is partial enzyme activation, whereas R271L is characterized by a bias toward the T-state in the allosteric equilibrium. In the T-state, Arg(292) and Asp(297) form an intersubunit salt bridge. The mutants R292D and D297R are totally inactive. The crystal structure of R292D reveals that the mutant enzyme retains the T-state quaternary structure. However, the mutation induces a reorganization of the interface with the creation of a network of interactions similar to that observed in the crystal structures of R-state yeast and M1 PK proteins. Furthermore, in the R292D structure, two loops that are part of the active site are disordered. The K382Q and R431E mutations were designed to probe the binding site for fructose 1, 6-bisphosphate, the allosteric activator. R431E exhibits only slight changes in the regulatory properties. Conversely, K382Q displays a highly altered responsiveness to the activator, suggesting that Lys(382) is involved in both activator binding and allosteric transition mechanism. Taken together, these results support the notion that domain interfaces are critical for the allosteric transition. They couple changes in the tertiary and quaternary structures to alterations in the geometry of the fructose 1, 6-bisphosphate and substrate binding sites. These site-directed mutagenesis data are discussed in the light of the molecular basis for the hereditary nonspherocytic hemolytic anemia, which is caused by mutations in human erythrocyte PK gene.

  3. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska;

    2016-01-01

    γ-Aminobutyric acid type A and glycine receptors are the major mediators of fast synaptic inhibition in the human central nervous system and are established drug targets. However, all drugs targeting these receptors bind to the extracellular ligand-binding domain of the receptors, which inherently...

  4. Transfer of noncovalent chiral information along an optically inactive helical peptide chain: allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site.

    Science.gov (United States)

    Ousaka, Naoki; Inai, Yoshihito

    2009-02-20

    This study aims at demonstrating end-to-end transfer of noncovalent chiral information along a peptide chain. The domino-type induction of helical sense is proven by using achiral peptides 1-m of bis-chromophoric sequence with different chain lengths: H-(Aib-Delta(Z)Phe)(m)-(Aib-Delta(Z)Bip)(2)-Aib-OCH(3) [m = 2, 4, and 6; Aib = alpha-aminoisobutyric acid; Delta(Z)Phe = (Z)-alpha,beta-didehydrophenylalanine; Delta(Z)Bip = (Z)-beta-(4,4'-biphenyl)-alpha,beta-didehydroalanine]. They all showed the tendency to adopt a 3(10)-helix. Whereas peptide 1-m originally shows no circular dichroism (CD) signals, marked CD signals were induced at around 270-320 nm based on both the beta-aryl didehydroresidues by chiral Boc-proline (Boc = tert-butoxycarbonyl). The observed CD spectra were interpreted on the basis of the exciton chirality method and theoretical CD simulation of several helical conformations that were energy-minimized. The experimental and theoretical CD analysis reveals that Boc-l-proline induces the preference for a right-handed helicity in the whole chain of 1-m. Such noncovalent chiral induction was not observed in the corresponding N-terminally protected 1-m. Obviously, helicity induction in 1-m originates from the binding of Boc-proline to the N-terminal site. In the 17-mer (1-6), the information of helix sense reaches the 16th residue from the N-terminus. We have monitored precise transfer of noncovalent chiral stimulus along a helical peptide chain. The present study also proposes a primitive allosteric model of a single protein-mimicking backbone. Here chiral molecule binding the N-terminal site of 1-6 controls the chiroptical signals and helical sense of the C-terminal site about 30 A away.

  5. Interplay between Structure and Charge as a Key to Allosteric Modulation of Human 20S Proteasome by the Basic Fragment of HIV-1 Tat Protein.

    Directory of Open Access Journals (Sweden)

    Przemysław Karpowicz

    Full Text Available The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.

  6. Virtual Screening for Potential Allosteric Inhibitors of Cyclin-Dependent Kinase 2 from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Fang Lu

    2016-09-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2, a member of Cyclin-dependent kinases (CDKs, plays an important role in cell division and DNA replication. It is regarded as a desired target to treat cancer and tumor by interrupting aberrant cell proliferation. Compared to lower subtype selectivity of CDK2 ATP-competitive inhibitors, CDK2 allosteric inhibitor with higher subtype selectivity has been used to treat CDK2-related diseases. Recently, the first crystal structure of CDK2 with allosteric inhibitor has been reported, which provides new opportunities to design pure allosteric inhibitors of CDK2. The binding site of the ATP-competition inhibitors and the allosteric inhibitors are partially overlapped in space position, so the same compound might interact with the two binding sites. Thus a novel screening strategy was essential for the discovery of pure CDK2 allosteric inhibitors. In this study, pharmacophore and molecular docking were used to screen potential CDK2 allosteric inhibitors and ATP-competition inhibitors from Traditional Chinese Medicine (TCM. In the docking result of the allosteric site, the compounds which can act with the CDK2 ATP site were discarded, and the remaining compounds were regarded as the potential pure allosteric inhibitors. Among the results, prostaglandin E1 and nordihydroguaiaretic acid (NDGA were available and their growth inhibitory effect on human HepG2 cell lines was determined by MTT assay. The two compounds could substantially inhibit the growth of HepG2 cell lines with an estimated IC50 of 41.223 μmol/L and 45.646 μmol/L. This study provides virtual screening strategy of allosteric compounds and a reliable method to discover potential pure CDK2 allosteric inhibitors from TCM. Prostaglandin E1 and NDGA could be regarded as promising candidates for CDK2 allosteric inhibitors.

  7. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency.

    Directory of Open Access Journals (Sweden)

    Lily Alvarez-Jaimes

    Full Text Available Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3 is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM, 3-[3,5-Bis(trifluoromethylphenyl]-1-(3,4-dichlorobenzyl-1-[2-(5-methoxy-1H-indol-3-ylethyl]urea (135PAM1. Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2 and R3/I5(NH2 with pEC50 values of 6.54 (6.46 to 6.64 and 6.07 (5.94 to 6.20, respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27 in the presence of a probe (10 nM concentration of relaxin-3(NH2. 135PAM1 does not compete for binding with the orthosteric radioligand, [(125I] R3I5 (amide, in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe

  8. Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-Binding Module on Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, M. R.; Beckham, G. T.; Matthews, J. F.; Bu, L.; Himmel, M. E.; Crowley, M. F.

    2012-06-08

    Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 {mu}s of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.

  9. Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence.

    Science.gov (United States)

    Dhanya, Raveendra-Panickar; Sheffler, Douglas J; Dahl, Russell; Davis, Melinda; Lee, Pooi San; Yang, Li; Nickols, Hilary Highfield; Cho, Hyekyung P; Smith, Layton H; D'Souza, Manoranjan S; Conn, P Jeffrey; Der-Avakian, Andre; Markou, Athina; Cosford, Nicholas D P

    2014-05-22

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure-activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4-8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology.

  10. Computational Investigation of Glycosylation Effects on a Family 1 Carbohydrate-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. B.; Talib, M. F.; McCabe, C.; Bu, L.; Adney, W. S.; Himmel, M. E.; Crowley, M. F.; Beckham, G. T.

    2012-01-27

    Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3-6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function.

  11. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    Science.gov (United States)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  12. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.

    Directory of Open Access Journals (Sweden)

    Kevin A James

    Full Text Available The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced "superacceptor" activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD motif in the catalytic loop and the Asp-Phe-Gly (DFG motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not

  13. Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor*

    OpenAIRE

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J.; Madjidi, Azadeh; Jacob E Corn; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M.; Allan, Bernard B.

    2013-01-01

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the ext...

  14. Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands.

    Science.gov (United States)

    Feldman, Hannah C; Tong, Michael; Wang, Likun; Meza-Acevedo, Rosa; Gobillot, Theodore A; Lebedev, Ivan; Gliedt, Micah J; Hari, Sanjay B; Mitra, Arinjay K; Backes, Bradley J; Papa, Feroz R; Seeliger, Markus A; Maly, Dustin J

    2016-08-19

    The accumulation of unfolded proteins under endoplasmic reticulum (ER) stress leads to the activation of the multidomain protein sensor IRE1α as part of the unfolded protein response (UPR). Clustering of IRE1α lumenal domains in the presence of unfolded proteins promotes kinase trans-autophosphorylation in the cytosol and subsequent RNase domain activation. Interestingly, there is an allosteric relationship between the kinase and RNase domains of IRE1α, which allows ATP-competitive inhibitors to modulate the activity of the RNase domain. Here, we use kinase inhibitors to study how ATP-binding site conformation affects the activity of the RNase domain of IRE1α. We find that diverse ATP-competitive inhibitors of IRE1α promote dimerization and activation of RNase activity despite blocking kinase autophosphorylation. In contrast, a subset of ATP-competitive ligands, which we call KIRAs, allosterically inactivate the RNase domain through the kinase domain by stabilizing monomeric IRE1α. Further insight into how ATP-competitive inhibitors are able to divergently modulate the RNase domain through the kinase domain was gained by obtaining the first structure of apo human IRE1α in the RNase active back-to-back dimer conformation. Comparison of this structure with other existing structures of IRE1α and integration of our extensive structure activity relationship (SAR) data has led us to formulate a model to rationalize how ATP-binding site ligands are able to control the IRE1α oligomeric state and subsequent RNase domain activity.

  15. Two DNA-binding and Nick Recognition Modules in Human DNA Ligase III*

    OpenAIRE

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Tomkinson, Alan E.; Ellenberger, Tom

    2008-01-01

    Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bin...

  16. The Allosteric Switching Mechanism in Bacteriophage MS2

    CERN Document Server

    Perkett, Matthew R

    2015-01-01

    In this article we use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopt different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We disc...

  17. Allosteric regulation of G protein-coupled receptor activity by phospholipids.

    Science.gov (United States)

    Dawaliby, Rosie; Trubbia, Cataldo; Delporte, Cédric; Masureel, Matthieu; Van Antwerpen, Pierre; Kobilka, Brian K; Govaerts, Cédric

    2016-01-01

    Lipids are emerging as key regulators of membrane protein structure and activity. These effects can be attributed either to the modification of bilayer properties (thickness, curvature and surface tension) or to the binding of specific lipids to the protein surface. For G protein-coupled receptors (GPCRs), the effects of phospholipids on receptor structure and activity remain poorly understood. Here we reconstituted purified β2-adrenergic receptor (β2R) in high-density lipoparticles to systematically characterize the effect of biologically relevant phospholipids on receptor activity. We observed that the lipid headgroup type affected ligand binding (agonist and antagonist) and receptor activation. Specifically, phosphatidylgycerol markedly favored agonist binding and facilitated receptor activation, whereas phosphatidylethanolamine favored antagonist binding and stabilized the inactive state of the receptor. We then showed that these effects could be recapitulated with detergent-solubilized lipids, demonstrating that the functional modulation occurred in the absence of a bilayer. Our data suggest that phospholipids act as direct allosteric modulators of GPCR activity.

  18. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    Science.gov (United States)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  19. A CESA from Griffithsia monilis (Rhodophyta, Florideophyceae) has a family 48 carbohydrate-binding module.

    Science.gov (United States)

    Matthews, Peter R; Schindler, Michael; Howles, Paul; Arioli, Tony; Williamson, Richard E

    2010-10-01

    Cellulose synthases form rosette terminal complexes in the plasma membranes of Streptophyta and various linear terminal complexes in other taxa. The sequence of a putative CESA from Griffithsia monilis (Rhodophyta, Floridiophyceae) was deduced using a cloning strategy involving degenerate primers, a cDNA library screen, and 5' and 3' rapid amplification of cDNA ends (RACE). RACE identified two alternative transcriptional starts and four alternative polyadenylation sites. The first translation start codon provided an open reading frame of 2610 bp encoding 870 amino acids and was PCR amplified without introns from genomic DNA. Southern hybridization indicated one strongly hybridizing gene with possible weakly related genes or pseudogenes. Amino acid sequence analysis identified a family 48 carbohydrate-binding module (CBM) upstream of the protein's first predicted transmembrane domain. There are broad similarities in predicted 3D structures of the family 48 modules from CESA, from several glycogen- and starch-binding enzymes, and from protein kinases, but there are substitutions at some residues thought to be involved in ligand binding. The module in G. monilis CESA will be on the cytoplasmic face of the plasma membrane so that it could potentially bind either low molecular weight ligands or starch which is cytosolic rather than inside membrane-bound plastids in red algae. Possible reasons why red algal CESAs have evolved family 48 modules perhaps as part of a system to regulate cellulose synthase activity in relation to cellular carbohydrate status are briefly discussed.

  20. A novel dualistic profile of an allosteric AMPA receptor modulator identified through studies on recombinant receptors, mouse hippocampal synapses and crystal structures

    DEFF Research Database (Denmark)

    Bundgaard Christiansen, Gitte; Harbak, Barbara; E. Hede, Susanne;

    2015-01-01

    -mediated neurotransmission. The aim of this study was to investigate functional and structural aspects of a novel analog of the AMPA receptor PAM cyclothiazide (CTZ) on recombinant and native glutamate receptors. We expressed rat GluA4flip and flop in Xenopus oocytes and characterized NS1376 and CTZ under two...... information through X-ray structures, docking and molecular dynamics, which revealed that NS1376 interacts at the dimer interface of the ligand-binding domain in a manner overall similar to CTZ. NS1376 reveals that minor structural changes in CTZ can result in an altered modulatory profile, both enhancing...

  1. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP.

    Science.gov (United States)

    De Vos, Dirk; Xu, Ying; Aerts, Tony; Van Petegem, Filip; Van Beeumen, Jozef J

    2008-07-18

    Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.

  2. A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins.

    Science.gov (United States)

    Chen, Ava S-Y; Westwood, Nicholas J; Brear, Paul; Rogers, Graeme W; Mavridis, Lazaros; Mitchell, John B O

    2016-04-01

    We created a computational method to identify allosteric sites using a machine learning method trained and tested on protein structures containing bound ligand molecules. The Random Forest machine learning approach was adopted to build our three-way predictive model. Based on descriptors collated for each ligand and binding site, the classification model allows us to assign protein cavities as allosteric, regular or orthosteric, and hence to identify allosteric sites. 43 structural descriptors per complex were derived and were used to characterize individual protein-ligand binding sites belonging to the three classes, allosteric, regular and orthosteric. We carried out a separate validation on a further unseen set of protein structures containing the ligand 2-(N-cyclohexylamino) ethane sulfonic acid (CHES).

  3. ASBench: benchmarking sets for allosteric discovery.

    Science.gov (United States)

    Huang, Wenkang; Wang, Guanqiao; Shen, Qiancheng; Liu, Xinyi; Lu, Shaoyong; Geng, Lv; Huang, Zhimin; Zhang, Jian

    2015-08-01

    Allostery allows for the fine-tuning of protein function. Targeting allosteric sites is gaining increasing recognition as a novel strategy in drug design. The key challenge in the discovery of allosteric sites has strongly motivated the development of computational methods and thus high-quality, publicly accessible standard data have become indispensable. Here, we report benchmarking data for experimentally determined allosteric sites through a complex process, including a 'Core set' with 235 unique allosteric sites and a 'Core-Diversity set' with 147 structurally diverse allosteric sites. These benchmarking sets can be exploited to develop efficient computational methods to predict unknown allosteric sites in proteins and reveal unique allosteric ligand-protein interactions to guide allosteric drug design.

  4. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    OpenAIRE

    Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many th...

  5. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain.

    Science.gov (United States)

    Burgess, Selena G; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W; Vernos, Isabelle; Matthews, David; Bayliss, Richard

    2016-07-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.

  6. Sulindac-derived RXRα modulators inhibit cancer cell growth by binding to a novel site.

    Science.gov (United States)

    Chen, Liqun; Wang, Zhi-Gang; Aleshin, Alexander E; Chen, Fan; Chen, Jiebo; Jiang, Fuquan; Alitongbieke, Gulimiran; Zeng, Zhiping; Ma, Yue; Huang, Mingfeng; Zhou, Hu; Cadwell, Gregory; Zheng, Jian-Feng; Huang, Pei-Qiang; Liddington, Robert C; Zhang, Xiao-kun; Su, Ying

    2014-05-22

    Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.

  7. Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules

    Directory of Open Access Journals (Sweden)

    Cicortas Gunnarsson Lavinia

    2009-10-01

    Full Text Available Abstract Background Molecular evolution of carbohydrate binding modules (CBM is a new approach for the generation of glycan-specific molecular probes. To date, the possibility of performing affinity maturation on CBM has not been investigated. In this study we show that binding characteristics such as affinity can be improved for CBM generated from the CBM4-2 scaffold by using random mutagenesis in combination with phage display technology. Results Two modified proteins with greatly improved affinity for xyloglucan, a key polysaccharide abundant in the plant kingdom crucial for providing plant support, were generated. Both improved modules differ from other existing xyloglucan probes by binding to galactose-decorated subunits of xyloglucan. The usefulness of the evolved binders was verified by staining of plant sections, where they performed better than the xyloglucan-binding module from which they had been derived. They discriminated non-fucosylated from fucosylated xyloglucan as shown by their ability to stain only the endosperm, rich in non-fucosylated xyloglucan, but not the integument rich in fucosylated xyloglucan, on tamarind seed sections. Conclusion We conclude that affinity maturation of CBM selected from molecular libraries based on the CBM4-2 scaffold is possible and has the potential to generate new analytical tools for detection of plant carbohydrates.

  8. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription.

    Science.gov (United States)

    Schroeder, Friedhelm; Petrescu, Anca D; Huang, Huan; Atshaves, Barbara P; McIntosh, Avery L; Martin, Gregory G; Hostetler, Heather A; Vespa, Aude; Landrock, Danilo; Landrock, Kerstin K; Payne, H Ross; Kier, Ann B

    2008-01-01

    Abnormal energy regulation may significantly contribute to the pathogenesis of obesity, diabetes mellitus, cardiovascular disease, and cancer. For rapid control of energy homeostasis, allosteric and posttranslational events activate or alter activity of key metabolic enzymes. For longer impact, transcriptional regulation is more effective, especially in response to nutrients such as long chain fatty acids (LCFA). Recent advances provide insights into how poorly water-soluble lipid nutrients [LCFA; retinoic acid (RA)] and their metabolites (long chain fatty acyl Coenzyme A, LCFA-CoA) reach nuclei, bind their cognate ligand-activated receptors, and regulate transcription for signaling lipid and glucose catabolism or storage: (i) while serum and cytoplasmic LCFA levels are in the 200 mircroM-mM range, real-time imaging recently revealed that LCFA and LCFA-CoA are also located within nuclei (nM range); (ii) sensitive fluorescence binding assays show that LCFA-activated nuclear receptors [peroxisome proliferator-activated receptor-alpha (PPARalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha)] exhibit high affinity (low nM KdS) for LCFA (PPARalpha) and/or LCFA-CoA (PPARalpha, HNF4alpha)-in the same range as nuclear levels of these ligands; (iii) live and fixed cell immunolabeling and imaging revealed that some cytoplasmic lipid binding proteins [liver fatty acid binding protein (L-FABP), acyl CoA binding protein (ACBP), cellular retinoic acid binding protein-2 (CRABP-2)] enter nuclei, bind nuclear receptors (PPARalpha, HNF4alpha, CRABP-2), and activate transcription of genes in fatty acid and glucose metabolism; and (iv) studies with gene ablated mice provided physiological relevance of LCFA and LCFA-CoA binding proteins in nuclear signaling. This led to the hypothesis that cytoplasmic lipid binding proteins transfer and channel lipidic ligands into nuclei for initiating nuclear receptor transcriptional activity to provide new lipid nutrient signaling pathways that

  9. Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7.

    Science.gov (United States)

    Kaiser, M; Sobottka, H; Fischer, W; Schaefer, M; Nörenberg, W

    2014-09-01

    Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was included in some assays. Fluorometric and electrophysiologic assays were used to characterize effects of TIIAS and TIIA on recombinantly expressed human, rat, and mouse P2X7. Results were confirmed in human monocyte-derived macrophages expressing native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists. TIIAS, but not TIIA, reduces Ca(2+) influx via human P2X7 (hP2X7) with an IC50 of 4.3 µM. TIIAS was less potent at mouse P2X7 and poorly inhibited rat P2X7. Monitoring of YO-PRO-1 uptake confirmed these findings, indicating that formation of the hP2X7 pore is also suppressed by TIIAS. Electrophysiologic experiments revealed a noncompetitive mode of action. TIIAS time-dependently inhibits hP2X7 gating, possibly by binding to the intracellular domain of the receptor. Inhibition of native P2X7 in macrophages by TIIAS was confirmed by monitoring Ca(2+) influx, YO-PRO-1 uptake, and release of the proinflammatory cytokine interleukin-1β. Fluorometric experiments involving recombinantly expressed rat P2X2 and human P2X4 were conducted and verified the compound's selectivity. Our data suggest that hP2X7 is a molecular target of TIIAS, but not of TIIA, a compound with different pharmacologic properties.

  10. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  11. The C-terminal region of laminin beta chains modulates the integrin binding affinities of laminins.

    Science.gov (United States)

    Taniguchi, Yukimasa; Ido, Hiroyuki; Sanzen, Noriko; Hayashi, Maria; Sato-Nishiuchi, Ryoko; Futaki, Sugiko; Sekiguchi, Kiyotoshi

    2009-03-20

    Laminins are major cell-adhesive proteins in basement membranes that are capable of binding to integrins. Laminins consist of three chains (alpha, beta, and gamma), in which three laminin globular modules in the alpha chain and the Glu residue in the C-terminal tail of the gamma chain have been shown to be prerequisites for binding to integrins. However, it remains unknown whether any part of the beta chain is involved in laminin-integrin interactions. We compared the binding affinities of pairs of laminin isoforms containing the beta1 or beta2 chain toward a panel of laminin-binding integrins, and we found that beta2 chain-containing laminins (beta2-laminins) bound more avidly to alpha3beta1 and alpha7X2beta1 integrins than beta1 chain-containing laminins (beta1-laminins), whereas alpha6beta1, alpha6beta4, and alpha7X1beta1 integrins did not show any preference toward beta2-laminins. Because alpha3beta1 contains the "X2-type" variable region in the alpha3 subunit and alpha6beta1 and alpha6beta4 contain the "X1-type" region in the alpha6 subunit, we hypothesized that only integrins containing the X2-type region were capable of discriminating between beta1-laminins and beta2-laminins. In support of this possibility, a putative X2-type variant of alpha6beta1 was produced and found to bind preferentially to beta2-laminins. Production of a series of swap mutants between the beta1 and beta2 chains revealed that the C-terminal 20 amino acids in the coiled-coil domain were responsible for the enhanced integrin binding by beta2-laminins. Taken together, the results provide evidence that the C-terminal region of beta chains is involved in laminin recognition by integrins and modulates the binding affinities of laminins toward X2-type integrins.

  12. Allosteric regulation of phenylalanine hydroxylase.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2012-03-15

    The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.

  13. Allosteric Regulation of Phenylalanine Hydroxylase

    OpenAIRE

    Fitzpatrick, Paul F.

    2011-01-01

    The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.

  14. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands.

    Science.gov (United States)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone's active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  15. Calcium modulates promoter occupancy by the Entamoeba histolytica Ca2+-binding transcription factor URE3-BP.

    Science.gov (United States)

    Gilchrist, Carol A; Leo, Megan; Line, C Genghis; Mann, Barbara J; Petri, William A

    2003-02-14

    The Entamoeba histolytica upstream regulatory element 3-binding protein (URE3-BP) binds to the URE3 sequence of the Gal/GalNAc-inhibitable lectin hgl5 and ferredoxin 1 (fdx) gene promoters. This binding can be inhibited in vitro by addition of calcium. Two EF-hand motifs, which are associated with the ability to bind calcium, are present in the amino acid sequence of URE3-BP. Mutation of the second EF-hand motif in URE3-BP resulted in the loss of calcium inhibition of DNA binding as monitored by electrophoretic mobility shift assay. Chromatin immunoprecipitation assays revealed that URE3-BP was physically bound to the hgl5 and fdx promoters in vivo. Parasite intracellular calcium concentrations were altered by changes in extracellular calcium. Promoter occupancy was lost when intracellular calcium levels were increased by coordinate increases in extracellular calcium. Increased intracellular calcium also resulted in decreased levels of URE3-BP mRNA. Together these results demonstrate that changes in extracellular calcium result in changes in URE3-BP mRNA and in the ability of URE3-BP to bind to URE3-containing promoters. Modulation of URE3-BP by calcium may represent an important mechanism of control of gene expression in E. histolytica.

  16. Disabled-2 modulates homotypic and heterotypic platelet interactions by binding to sulfatides.

    Science.gov (United States)

    Welsh, John D; Charonko, John J; Salmanzadeh, Alireza; Drahos, Karen E; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V; Capelluto, Daniel G S; Vlachos, Pavlos P; Finkielstein, Carla V

    2011-07-01

    Disabled-2 (Dab2) inhibits platelet aggregation by competing with fibrinogen for binding to the α(IIb) β(3) integrin receptor, an interaction that is modulated by Dab2 binding to sulfatides at the outer leaflet of the platelet plasma membrane. The disaggregatory function of Dab2 has been mapped to its N-terminus phosphotyrosine-binding (N-PTB) domain. Our data show that the surface levels of P-selectin, a platelet transmembrane protein known to bind sulfatides and promote cell-cell interactions, are reduced by Dab2 N-PTB, an event that is reversed in the presence of a mutant form of the protein that is deficient in sulfatide but not in integrin binding. Importantly, Dab2 N-PTB, but not its sulfatide binding-deficient form, was able to prevent sulfatide-induced platelet aggregation when tested under haemodynamic conditions in microfluidic devices at flow rates with shear stress levels corresponding to those found in vein microcirculation. Moreover, the regulatory role of Dab2 N-PTB extends to platelet-leucocyte adhesion and aggregation events, suggesting a multi-target role for Dab2 in haemostasis.

  17. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes.

    Science.gov (United States)

    Nowosinski, Karol; von Krbek, Larissa K S; Traulsen, Nora L; Schalley, Christoph A

    2015-10-16

    A detailed thermodynamic analysis of the axle-wheel binding in di- and trivalent secondary ammonium/[24]crown-8 pseudorotaxanes is presented. Isothermal titration calorimetry (ITC) data and double mutant cycle analyses reveal an interesting interplay of positive as well as negative allosteric and positive chelate cooperativity thus providing profound insight into the effects governing multivalent binding in these pseudorotaxanes.

  18. IQGAP1 Binds to Yes-associated Protein (YAP) and Modulates Its Transcriptional Activity.

    Science.gov (United States)

    Sayedyahossein, Samar; Li, Zhigang; Hedman, Andrew C; Morgan, Chase J; Sacks, David B

    2016-09-09

    During development, the Hippo signaling pathway regulates key physiological processes, such as control of organ size, regeneration, and stem cell biology. Yes-associated protein (YAP) is a major transcriptional co-activator of the Hippo pathway. The scaffold protein IQGAP1 interacts with more than 100 binding partners to integrate diverse signaling pathways. In this study, we report that IQGAP1 binds to YAP and modulates its activity. IQGAP1 and YAP co-immunoprecipitated from cells. In vitro analysis with pure proteins demonstrated a direct interaction between IQGAP1 and YAP. Analysis with multiple fragments of each protein showed that the interaction occurs via the IQ domain of IQGAP1 and the TEAD-binding domain of YAP. The interaction between IQGAP1 and YAP has functional effects. Knock-out of endogenous IQGAP1 significantly increased the formation of nuclear YAP-TEAD complexes. Transcription assays were performed with IQGAP1-null mouse embryonic fibroblasts and HEK293 cells with IQGAP1 knockdown by CRISPR/Cas9. Quantification demonstrated that YAP-TEAD-mediated transcription in cells lacking IQGAP1 was significantly greater than in control cells. These data reveal that IQGAP1 binds to YAP and modulates its co-transcriptional function, suggesting that IQGAP1 participates in Hippo signaling.

  19. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  20. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.

    Directory of Open Access Journals (Sweden)

    Michael V LeVine

    2014-05-01

    Full Text Available Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i-channels for long-distance information sharing between functional sites, and (ii-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.

  1. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.

    Science.gov (United States)

    LeVine, Michael V; Weinstein, Harel

    2014-05-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.

  2. NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT

    Science.gov (United States)

    LeVine, Michael V.; Weinstein, Harel

    2014-01-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems. PMID:24785005

  3. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  4. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  5. Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine and cocaine binding

    Directory of Open Access Journals (Sweden)

    Mary Hongying Cheng

    2015-06-01

    Full Text Available Human dopamine transporter (hDAT regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of dopamine (DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing and inward-facing states of DAT. hDAT is a target for addictive drugs such as cocaine, amphetamine (AMPH and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH, an anticholinergic agent and anti-PD drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT-drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH and cocaine, and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition towards a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the outward-facing open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine.

  6. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  7. The allosteric switching mechanism in bacteriophage MS2

    Science.gov (United States)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  8. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    Science.gov (United States)

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme β-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. β-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for β-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples.

  9. Indole-based allosteric inhibitors of HIV-1 integrase.

    Science.gov (United States)

    Patel, Pratiq A; Kvaratskhelia, Nina; Mansour, Yara; Antwi, Janet; Feng, Lei; Koneru, Pratibha; Kobe, Mathew J; Jena, Nivedita; Shi, Guqin; Mohamed, Mosaad S; Li, Chenglong; Kessl, Jacques J; Fuchs, James R

    2016-10-01

    Employing a scaffold hopping approach, a series of allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) have been synthesized based on an indole scaffold. These compounds incorporate the key elements utilized in quinoline-based ALLINIs for binding to the IN dimer interface at the principal LEDGF/p75 binding pocket. The most potent of these compounds displayed good activity in the LEDGF/p75 dependent integration assay (IC50=4.5μM) and, as predicted based on the geometry of the five- versus six-membered ring, retained activity against the A128T IN mutant that confers resistance to many quinoline-based ALLINIs.

  10. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  11. Pharmacological characterization and modeling of the binding sites of novel 1,3-bis(pyridinylethynyl)benzenes as metabotropic glutamate receptor 5-selective negative allosteric modulators

    DEFF Research Database (Denmark)

    Mølck, Christina; Harpsøe, Kasper; Gloriam, David E;

    2012-01-01

    -ylethynyl)-benzene, nitrogen atoms in ortho positions], with an IC(50) value in the nanomolar range, is significantly more potent than the 3- and 4-pyridyl analogs. Mutational analysis, directed by a previously published mGluR5 homology model, was used to determine key residues for the ligand...... that the higher potency of 2-BisPEB is due to hydrogen bonding to Ser809 because the S809A mutation made 2-BisPEB equipotent to 3- and 4-BisPEB (IC(50), 1-2.5 µM). The potency of MPEP was also greatly affected by S809A (52-fold), suggesting that a Ser809-mediated hydrogen bond is also a key interaction between...

  12. Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators

    DEFF Research Database (Denmark)

    Pøhlsgaard, Jacob; Frydenvang, Karla Andrea; Madsen, Ulf;

    2011-01-01

    Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. These receptors play an important role for the development and function of the nervous system, and are essential...... in learning and memory. However, iGluRs are also implicated in or have causal roles for several brain disorders, e.g. epilepsy, Alzheimer's disease, Parkinson's disease and schizophrenia. Their involvement in neurological diseases has stimulated widespread interest in their structure and function. Since...

  13. Allosteric activation of the 5-HT3AB receptor by mCPBG.

    Science.gov (United States)

    Miles, Timothy F; Lester, Henry A; Dougherty, Dennis A

    2015-04-01

    The 5-HT3AB receptor contains three A and two B subunits in an A-A-B-A-B order. However, serotonin function at the 5-HT3AB receptor has been shown to depend solely on the A-A interface present in the homomeric receptor. Using mutations at sites on both the primary (E122) and complementary (Y146) faces of the B subunit, we demonstrate that meta-chlorophenyl biguanide (mCPBG), a 5-HT3 selective agonist, is capable of binding to and activating the 5-HT3AB receptor at all five subunit interfaces of the heteromer. Further, mCPBG is capable of allosterically modulating the activity of serotonin from these sites. While these five binding sites are similar enough that they conform to a monophasic dose - response relationship, we uncover subtle differences in the heteromeric binding sites. We also find that the A-A interface appears to contribute disproportionately to the efficacy of 5-HT3AB receptor activation.

  14. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  15. The carbohydrate-binding module family 20-diversity, structure, and function

    DEFF Research Database (Denmark)

    Christiansen, Camilla; Abou Hachem, Maher; Janecek, S.

    2009-01-01

    Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High...... diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases......, laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily...

  16. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    Science.gov (United States)

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  17. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  18. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins*

    Science.gov (United States)

    Yao, Xin-Qiu; Malik, Rabia U.; Griggs, Nicholas W.; Skjærven, Lars; Traynor, John R.; Sivaramakrishnan, Sivaraj; Grant, Barry J.

    2016-01-01

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. PMID:26703464

  19. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    Science.gov (United States)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  20. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2011-10-01

    Full Text Available The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level.

  1. It's not my fault: postdictive modulation of intentional binding by monetary gains and losses.

    Directory of Open Access Journals (Sweden)

    Keisuke Takahata

    Full Text Available Sense of agency refers to the feeling that one's voluntary actions caused external events. Past studies have shown that compression of the subjective temporal interval between actions and external events, called intentional binding, is closely linked to the experience of agency. Current theories postulate that the experience of agency is constructed via predictive and postdictive pathways. One remaining problem is the source of human causality bias; people often make misjudgments on the causality of voluntary actions and external events depending on their rewarding or punishing outcomes. Although human causality bias implies that sense of agency can be modified by post-action information, convincing empirical findings for this issue are lacking. Here, we hypothesized that sense of agency would be modified by affective valences of action outcomes. To examine this issue, we investigated how rewarding and punishing outcomes following voluntary action modulate behavioral measures of agency using intentional binding paradigm and classical conditioning procedures. In the acquisition phase, auditory stimuli were paired with positive, neutral or negative monetary outcomes. Tone-reward associations were evaluated using reaction times and preference ratings. In the experimental session, participants performed a variant of intentional binding task, where participants made timing judgments for onsets of actions and sensory outcomes while playing simple slot games. Our results showed that temporal binding was modified by affective valences of action outcomes. Specifically, intentional binding was attenuated when negative outcome occurred, consistent with self-serving bias. Our study not only provides evidence for postdictive modification of agency, but also proposes a possible mechanism of human causality bias.

  2. Rational Design of a Novel AMPA Receptor Modulator through a Hybridization Approach

    Science.gov (United States)

    2015-01-01

    The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a family of glutamate ion channels of considerable interest in excitatory neurotransmission and associated disease processes. Here, we demonstrate how exploitation of the available X-ray crystal structure of the receptor ligand binding domain enabled the development of a new class of AMPA receptor positive allosteric modulators (7) through hybridization of known ligands (5 and 6), leading to a novel chemotype with promising pharmacological properties. PMID:25893038

  3. Modulation of oncogenic DBL activity by phosphoinositol phosphate binding to pleckstrin homology domain.

    Science.gov (United States)

    Russo, C; Gao, Y; Mancini, P; Vanni, C; Porotto, M; Falasca, M; Torrisi, M R; Zheng, Y; Eva, A

    2001-06-01

    The Dbl family guanine nucleotide exchange factors (GEFs) contain a region of sequence similarity consisting of a catalytic Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. PH domains are involved in the regulated targeting of signaling molecules to plasma membranes by protein-protein and/or protein-lipid interactions. Here we show that Dbl PH domain binding to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate results in the inhibition of Dbl GEF activity on Rho family GTPase Cdc42. Phosphatidylinositol 4,5-bisphosphate binding to the PH domain significantly inhibits the Cdc42 interactive activity of the DH domain suggesting that the DH domain is subjected to the PH domain modulation under the influence of phosphoinositides (PIPs). We generated Dbl mutants unable to interact with PIPs. These mutants retained GEF activity on Cdc42 in the presence of PIPs and showed a markedly enhanced activating potential for both Cdc42 and RhoA in vivo while displaying decreased cellular transforming activity. Immunofluorescence analysis of NIH3T3 transfectants revealed that whereas the PH domain localizes to actin stress fibers and plasma membrane, the PH mutants are no longer detectable on the plasma membrane. These results suggest that modulation of PIPs in both the GEF catalytic activity and the targeting to plasma membrane determines the outcome of the biologic activity of Dbl.

  4. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  5. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  6. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    Science.gov (United States)

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites. PMID:28194014

  7. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    Science.gov (United States)

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-02-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host-guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g-1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ...c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.

  8. Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280).

    Science.gov (United States)

    Li, M; Bermak, J C; Wang, Z W; Zhou, Q Y

    2000-03-01

    Proteins that bind to G protein-coupled receptors have recently been identified as regulators of receptor anchoring and signaling. In this study, actin-binding protein 280 (ABP-280), a widely expressed cytoskeleton-associated protein that plays an important role in regulating cell morphology and motility, was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. The specificity of this interaction was originally identified in a yeast two-hybrid screen and confirmed by protein binding. The functional significance of the D(2) receptor-ABP-280 association was evaluated in human melanoma cells lacking ABP-280. D(2) receptor agonists were less potent in inhibiting forskolin-stimulated cAMP production in these cells. Maximal inhibitory responses of D(2) receptor activation were also reduced. Further yeast two-hybrid experiments showed that ABP-280 association is critically dependent on the carboxyl domain of the D(2) receptor third cytoplasmic loop, where there is a potential serine phosphorylation site (S358). Serine 358 was replaced with aspartic acid to mimic the effects of receptor phosphorylation. This mutant (D(2)S358D) displayed compromised binding to ABP-280 and coupling to adenylate cyclase. PKC activation also generated D(2) receptor signaling attenuation, but only in ABP-containing cells, suggesting a PKC regulatory role in D(2)-ABP association. A mechanism for these results may be derived from a role of ABP-280 in the clustering of D(2) receptors, as determined by immunocytochemical analysis in ABP-deficient and replete cells. Our results suggest a new molecular mechanism of modulating D(2) receptor signaling by cytoskeletal protein interaction.

  9. Allosteric activation mechanism of the cys-loop receptors

    Institute of Scientific and Technical Information of China (English)

    Yong-chang CHANG; Wen WU; Jian-liang ZHANG; Yao HUANG

    2009-01-01

    Binding of a neurotransmitter to its ionotropic receptor opens a distantly located ion channel, a process termed allosteric activation. Here we review recent advances in the molecular mechanism by which the cys-loop receptors are activated with emphasis on the best studied nicotinic acetylcholine receptors (nAChRs). With a combination of affinity labeling, mutagenesis, electrophysiology, kinetic modeling, electron microscopy (EM), and crystal structure analysis, the allosteric activation mechanism is emerging. Specifically, the binding domain and gating domain are interconnected by an allosteric activation network. Agonist binding induces conformational changes, resulting in the rotation of a β sheet of amino-terminal domain and outward movement of loop 2, loop F, and cys-loop, which are coupled to the M2-M3 linker to pull the channel to open. However, there are still some controversies about the movement of the channel-lining domain M2. Nine angstrom resolution EM structure of a nAChR imaged in the open state suggests that channel opening is the result of rotation of the M2 domain. In contrast, recent crystal structures of bacterial homologues of the cys-loop receptor family in apparently open state have implied an M2 tilting model with pore dilation and quaternary twist of the whole pentameric receptor. An elegant study of the nAChR using protonation scanning of M2 domain supports a similar pore dilation activation mechanism with minimal rotation of M2. This remains to be validated with other approaches including high resolution structure determination of the mammalian cys-loop receptors in the open state.

  10. Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

    NARCIS (Netherlands)

    Faulkner, Adele; van Leeuwen, Thomas; Feringa, Ben L; Wezenberg, Sander J

    2016-01-01

    The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e. zi

  11. A novel function for the cellulose binding module of cellobiohydrolase I

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A homogeneous cellulose-binding module(CBM)of cellobiohydrolase I(CBHI)from Trichoderma pseudokoningii S-38 was obtained by the limited proteolysis with papain and a series of chromatographs filtration.Analysis of FT-IR spectra demonstrated that the structural changes result from a weakening and splitting of the hydrogen bond network in cellulose by the action of CBMCBHI at 40℃for 24 h.The results of molecular dynamic simulations are consistent with the experimental conclusions, and provide a nanoscopic view of the mechanism that strong and medium H-bonds decreased dramatically when CBM was bound to the cellulose surface.The function of CBMCBHI is not only limited to locating intact CBHI in close proximity with cellulose fibrils,but also is involved in the structural disruption at the fibre surface.The present studies provided considerable evidence for the model of the intramolecular synergy between the catalytic domain and their CBMs.

  12. Allosteric regulation of deubiquitylase activity through ubiquitination

    Directory of Open Access Journals (Sweden)

    Serena eFaggiano

    2015-02-01

    Full Text Available Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

  13. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    Science.gov (United States)

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  14. Ryanodine receptors: allosteric ion channel giants.

    Science.gov (United States)

    Van Petegem, Filip

    2015-01-16

    The endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR) form major intracellular Ca(2+) stores. Ryanodine receptors (RyRs) are large tetrameric ion channels in the SR and ER membranes that can release Ca(2+) upon triggering. With molecular masses exceeding 2.2MDa, they represent the pinnacle of ion channel complexity. RyRs have adopted long-range allosteric mechanisms, with pore opening resulting in conformational changes over 200Å away. Together with tens of protein and small molecule modulators, RyRs have adopted rich and complex regulatory mechanisms. Structurally related to inositol-1,4,5-trisphosphate receptors (IP3Rs), RyRs have been studied extensively using cryo-electron microscopy (cryo-EM). Along with more recent X-ray crystallographic analyses of individual domains, these have resulted in pseudo-atomic models. Over 500 mutations in RyRs have been linked to severe genetic disorders, which underscore their role in the contraction of cardiac and skeletal muscles. Most of these have been linked to gain-of-function phenotypes, resulting in premature or prolonged leak of Ca(2+) in the cytosol. This review outlines our current knowledge on the structure of RyRs at high and low resolutions, their relationship to IP3Rs, an overview of the most commonly studied regulatory mechanisms, and models that relate disease-causing mutations to altered channel function.

  15. Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells1

    Science.gov (United States)

    Shpigel, Etai; Roiz, Levava; Goren, Raphael; Shoseyov, Oded

    1998-01-01

    Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control. PMID:9701575

  16. Binding of β-VLDL to heparan sulfate proteoglycans requires lipoprotein lipase, whereas apoE only modulates binding affinity

    NARCIS (Netherlands)

    Beer, F. de; Hendriks, W.L.; Vark, L.C. van; Kamerling, S.W.A.; Dijk, K.W. van; Hofker, M.H.; Smelt, A.H.M.; Havekes, L.M.

    1999-01-01

    The binding of β-VLDL to heparan sulfate proteoglycans (HSPG) has been reported to be stimulated by both apoE and lipoprotein lipase (LPL). In the present study we investigated the effect of the isoform and the amount of apoE per particle, as well as the role of LPL on the binding of β-VLDL to HSPG.

  17. Engineering and Comparative Characteristics of Double Carbohydrate Binding Modules as a Strength Additive for Papermaking Applications

    Directory of Open Access Journals (Sweden)

    Xiaoran Shi

    2014-04-01

    Full Text Available In this study, four engineered proteins containing two family 1 and/or family 3 carbohydrate binding modules (CBMs were constructed and expressed as soluble forms in Escherichia coli. Their binding performances and effect on paper’s mechanical properties were comprehensively studied with the aim to design suitably engineered CBMs as novel biomaterials for use in the production of new cellulose materials. The recombinant engineered double CBMs exhibited obvious differences in their adsorption to different cellulosic substrates. The CBM3-GS-CBM3 was the most effective in enhancing paper mechanical properties in terms of folding endurance (27.4% and tensile strength (15.5% among the four engineered double CBMs, but it gave rise to only a slight increase in bursting strength (3.1%. On the other hand, CBM1-NL-CBM1 achieved a significant simultaneous increase in tensile strength (12.6% and burst strength (8.8%, as well as folding endurance (16.7%. Unexpectedly, CBM3-GS-CBM1 and CBM3-NL-CBM1 had the lowest effective paper property improvement. The differences in types of CBMs and linker peptides in engineered double CBMs may contribute to the considerable differences in their cellulose binding and paper property modification. Our data suggested that CBM1-NL-CBM1 may provide a better upgrade of the secondary pulp, which makes it very suitable for fiber recycling. Meanwhile, CBM3-GS-CBM3 may have particular potential for paper manufacture requiring high folding endurance.

  18. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119

    DEFF Research Database (Denmark)

    Hassing, Helle A; Fares, Suzan; Larsen, Olav;

    2016-01-01

    for 2h with the 2-MAG-lipase inhibitor JZL84 doubled the constitutive activity, indicating that endogenous lipids contribute to the apparent constitutive activity. Finally, besides being an agonist, AR231453 acted as a positive allosteric modulator of OEA and increased its potency by 54-fold at 100nM AR......231453. Our studies uncovering broad and biased signaling, masked constitutive activity by endogenous MAGs, and ago-allosteric properties of synthetic ligands may explain why many GPR119 drug-discovery programs have failed so far....

  19. Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand.

    Science.gov (United States)

    Wang, Ningkun; Lodge, Jean M; Fierke, Carol A; Mapp, Anna K

    2014-08-19

    Allosteric binding events play a critical role in the formation and stability of transcriptional activator-coactivator complexes, perhaps in part due to the often intrinsically disordered nature of one or more of the constituent partners. The kinase-inducible domain interacting (KIX) domain of the master coactivator CREB binding protein/p300 is a conformationally dynamic domain that complexes with transcriptional activators at two discrete binding sites in allosteric communication. The complexation of KIX with the transcriptional activation domain of mixed-lineage leukemia protein leads to an enhancement of binding by the activation domain of CREB (phosphorylated kinase-inducible domain of CREB) to the second site. A transient kinetic analysis of the ternary complex formation aided by small molecule ligands that induce positive or negative cooperative binding reveals that positive cooperativity is largely governed by stabilization of the bound complex as indicated by a decrease in koff. Thus, this suggests the increased binding affinity for the second ligand is not due to an allosteric creation of a more favorable binding interface by the first ligand. This is consistent with data from us and from others indicating that the on rates of conformationally dynamic proteins approach the limits of diffusion. In contrast, negative cooperativity is manifested by alterations in both kon and koff, suggesting stabilization of the binary complex.

  20. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention...... in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many theoretical advantages over their orthosteric counterparts, including more complex modes of action, improved...... safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge...

  1. Theoretical Study on the Allosteric Regulation of an Oligomeric Protease from Pyrococcus horikoshii by Cl− Ion

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2014-02-01

    Full Text Available The thermophilic intracellular protease (PH1704 from Pyrococcus horikoshii that functions as an oligomer (hexamer or higher forms has proteolytic activity and remarkable stability. PH1704 is classified as a member of the C56 family of peptidases. This study is the first to observe that the use of Cl− as an allosteric inhibitor causes appreciable changes in the catalytic activity of the protease. Theoretical methods were used for further study. Quantum mechanical calculations indicated the binding mode of Cl− with Arg113. A molecular dynamics simulation explained how Cl− stabilized distinct contact species and how it controls the enzyme activity. The new structural insights obtained from this study are expected to stimulate further biochemical studies on the structures and mechanisms of allosteric proteases. It is clear that the discovery of new allosteric sites of the C56 family of peptidases may generate opportunities for pharmaceutical development and increases our understanding of the basic biological processes of this peptidase family.

  2. Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model.

    Science.gov (United States)

    Morgan, Hugh P; McNae, Iain W; Nowicki, Matthew W; Hannaert, Véronique; Michels, Paul A M; Fothergill-Gilmore, Linda A; Walkinshaw, Malcolm D

    2010-04-23

    Allosteric regulation provides a rate management system for enzymes involved in many cellular processes. Ligand-controlled regulation is easily recognizable, but the underlying molecular mechanisms have remained elusive. We have obtained the first complete series of allosteric structures, in all possible ligated states, for the tetrameric enzyme, pyruvate kinase, from Leishmania mexicana. The transition between inactive T-state and active R-state is accompanied by a simple symmetrical 6 degrees rigid body rocking motion of the A- and C-domain cores in each of the four subunits. However, formation of the R-state in this way is only part of the mechanism; eight essential salt bridge locks that form across the C-C interface provide tetramer rigidity with a coupled 7-fold increase in rate. The results presented here illustrate how conformational changes coupled with effector binding correlate with loss of flexibility and increase in thermal stability providing a general mechanism for allosteric control.

  3. The C-terminal Region of Laminin β Chains Modulates the Integrin Binding Affinities of Laminins*S⃞

    OpenAIRE

    Taniguchi, Yukimasa; Ido, Hiroyuki; Sanzen, Noriko; Hayashi, Maria; Sato-Nishiuchi, Ryoko; Futaki, Sugiko; Sekiguchi, Kiyotoshi

    2009-01-01

    Laminins are major cell-adhesive proteins in basement membranes that are capable of binding to integrins. Laminins consist of three chains (α, β, and γ), in which three laminin globular modules in the α chain and the Glu residue in the C-terminal tail of the γ chain have been shown to be prerequisites for binding to integrins. However, it remains unknown whether any part of the β chain is involved in laminin-integrin interactions. We compared the binding affinities of ...

  4. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    Science.gov (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  5. Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas.

    Science.gov (United States)

    Roskoski, Robert

    2017-03-01

    The Ras-Raf-MEK-ERK (Map kinase) cellular pathway is a highly conserved eukaryotic signaling module that transduces extracellular signals from growth factors and cytokines into intracellular regulatory events that are involved in cell growth and proliferation or the contrary pathway of cell differentiation. Dysregulation of this pathway occurs in more than one-third of all malignancies, a process that has fostered the development of targeted Map kinase pathway inhibitors. Cutaneous melanomas, which arise from skin melanocytes, are the most aggressive form of skin cancer. Mutations that activate the Map kinase pathway occur in more than 90% of these melanomas. This has led to the development of the combination of dabrafenib and trametinib or vemurafenib and cobimetanib for the treatment of BRAF V600E mutant melanomas. Dabrafenib and vemurafenib target V600E/K BRAF mutants while trametinib and cobimetanib target MEK1/2. The latter two agents bind to MEK1/2 at a site that is adjacent to, but separate from, the ATP-binding site and are therefore classified as type III allosteric protein kinase inhibitors. These agents form a hydrogen bond with a conserved β3-lysine and they make numerous hydrophobic contacts with residues within the αC-helix, the β5 strand, and within the activation segment, regions of the protein kinase domain that exhibit greater diversity than those found within the ATP-binding site. One advantage of such allosteric inhibitors is that they do not have to compete with millimolar concentrations of cellular ATP, which most FDA-approved small molecule competitive inhibitors such as imatinib must do. Owing to the wide spread activation of this pathway in numerous neoplasms, trametinib and cobimetinib are being studied in combination with other targeted and cytotoxic drugs in a variety of clinical situations. Except for BRAF and NRAS mutations, there are no other biomarkers correlated with treatment responses following MEK1/2 inhibition and the

  6. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  7. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    Directory of Open Access Journals (Sweden)

    Nadine Veith

    Full Text Available Pyruvate kinase (PYK is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric

  8. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase

    Science.gov (United States)

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase catalyzes the decarboxylation of isocitrate (ICT) into α-ketoglutarate in the Krebs cycle. It exists as the α2βγ heterotetramer composed of the αβ and αγ heterodimers. Previously, we have demonstrated biochemically that the α2βγ heterotetramer and αγ heterodimer can be allosterically activated by citrate (CIT) and ADP. In this work, we report the crystal structures of the αγ heterodimer with the γ subunit bound without or with different activators. Structural analyses show that CIT, ADP and Mg2+ bind adjacent to each other at the allosteric site. The CIT binding induces conformational changes at the allosteric site, which are transmitted to the active site through the heterodimer interface, leading to stabilization of the ICT binding at the active site and thus activation of the enzyme. The ADP binding induces no further conformational changes but enhances the CIT binding through Mg2+-mediated interactions, yielding a synergistic activation effect. ICT can also bind to the CIT-binding subsite, which induces similar conformational changes but exhibits a weaker activation effect. The functional roles of the key residues are verified by mutagenesis, kinetic and structural studies. Our structural and functional data together reveal the molecular mechanism of the allosteric regulation of the αγ heterodimer. PMID:28098230

  9. Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma (MPM)

    Institute of Scientific and Technical Information of China (English)

    Ying SUN; Lin WANG; Lei LIU

    2008-01-01

    Activating transcription factor 2 (ATF2) is a member of the ATF/cyclic AMP-responsive element bind-ing protein family of transcription factors. However, the information concerning ATF2 ion-mediated DNA binding module and function of ATF2 in malignant pleural mesothelioma (MPM) has never been addressed. In this study, by using GRNInfer and GVedit based on linear pro-gramming and a decomposition procedure, with integrated analysis of the function cluster using Kappa statistics and fuzzy heuristic clustering in MPM, we identified one ATF2 ion-mediated DNA binding module involved in invasive function including ATF2 inhibition to target genes FALZ, C20orf31, NME2, PLOD2, RNF10, and RNASEH1, upstream RNF10 and PLOD2 activation to ATF2, upstream RNASEH1 and FALZ inhibition to ATF2 from 40 MPM tumors and 5 normal pleural tissues. Remarkably, our results showed that the predominant effect of ATF2 occupancy is to suppress the activation of target genes on MPM. Importantly, the ATF2 ion-mediated DNA binding module reflects 'mutual' positive and negative feedback regulation mechanism of ATF2 with up-and down-stream genes. It may be useful for developing novel prognostic markers and therapeutic targets in MPM.

  10. A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding

    Science.gov (United States)

    Porter Moore, C.; Zhang, J. Z.; Hamilton, S. L.

    1999-01-01

    Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.

  11. A novel fibronectin binding motif in MSCRAMMs targets F3 modules.

    Directory of Open Access Journals (Sweden)

    Sabitha Prabhakaran

    Full Text Available BACKGROUND: BBK32 is a surface expressed lipoprotein and fibronectin (Fn-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein. METHODOLOGY/PRINCIPAL FINDINGS: Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence. CONCLUSIONS/SIGNIFICANCE: We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.

  12. ATP-Binding Cassette Transporters Modulate Both Coelenterazine- and D-Luciferin-Based Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Ruimin Huang

    2011-05-01

    Full Text Available Bioluminescence imaging (BLI of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC transporters on BLI readout, we generated click beetle (cLuc, firefly (fLuc, Renilla (rLuc, and Gaussia (gLuc luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2. In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type–independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.

  13. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    Science.gov (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  14. Macromolecular depletion modulates the binding of red blood cells to activated endothelial cells.

    Science.gov (United States)

    Yang, Yang; Koo, Stephanie; Lin, Cheryl Shuyi; Neu, Björn

    2010-09-01

    Adhesion of red blood cells (RBCs) to endothelial cells (ECs) is usually insignificant but an enhanced adhesion has been observed in various diseases associated with vascular complications. This abnormal adhesion under pathological conditions such as sickle cell disease has been correlated with increased levels of various plasma proteins but the detailed underlying mechanism(s) remains unclear. Usually it is assumed that the proadhesive effects of plasma proteins originate from ligand interactions cross-linking receptors on adjacent cells, but explicit results detailing binding sites or receptors for some proteins (e.g., fibrinogen) on either RBC or EC surfaces that would support this model are missing. In this study, the authors tested whether there is an alternative mechanism. Their results demonstrate that dextran 2 MDa promotes the adhesion of normal RBCs to thrombin-activated ECs and that this effect becomes more pronounced with increasing thrombin concentration or with prolonged thrombin incubation time. It is concluded that depletion interaction originating from nonadsorbing macromolecules (i.e., dextran) can modulate the adhesion of red blood cells to thrombin-activated EC. This study thereby suggests macromolecular depletion as an alternative mechanism for the adhesion-promoting effects of nonadsorbing plasma proteins. These findings should not only aid in getting a better understanding of diseases associated with vascular complications but should also have many potential applications in biomedical or biotechnological areas that require the control of cell-cell or cell surface interactions.

  15. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins

    Science.gov (United States)

    Kitange, Gaspar J.; Mladek, Ann C.; Schroeder, Mark A.; Pokorny, Jenny C.; Carlson, Brett L.; Zhang, Yuji; Nair, Asha A.; Lee, Jeong-Heon; Yan, Huihuang; Decker, Paul A.; Zhang, Zhiguo; Sarkaria, Jann N.

    2016-01-01

    Summary Here we provide evidence that RBBP4 modulates temozolomide (TMZ) sensitivity through coordinate regulation of 2 key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT) and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51 and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac) and increased H3K9 tri-methylation (H3K9me3). Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin modifying complex that binds within the promoter of MGMT, RAD51 and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. RBBP4/CBP/p300 complex may provide an interesting target for developing therapy sensitizing strategies for GBM and other tumors. PMID:26972001

  16. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins

    Directory of Open Access Journals (Sweden)

    Gaspar J. Kitange

    2016-03-01

    Full Text Available Here we provide evidence that RBBP4 modulates temozolomide (TMZ sensitivity through coordinate regulation of two key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition, and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51, and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac and increased H3K9 tri-methylation (H3K9me3. Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin-modifying complex that binds within the promoter of MGMT, RAD51, and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. The RBBP4/CBP/p300 complex may provide an interesting target for developing therapy-sensitizing strategies for GBM and other tumors.

  17. RETENTION AND PAPER-STRENGTH CHARACTERISTICS OF ANIONIC POLYACRYLAMIDES CONJUGATED WITH CARBOHYDRATE-BINDING MODULES

    Directory of Open Access Journals (Sweden)

    Shingo Yokota

    2009-02-01

    Full Text Available The retention behavior of polymers having the specific affinities of glyco-hydrolases for pulp fibers was investigated with regard to paper-strength enhancement in contaminated papermaking systems. Carbohydrate-binding modules (CBMs of cellulases derived from Trichoderma viride and T. reesei, and of xylanase from Thermomyces lanuginosus, were obtained by site-directed digestion with papain, then introduced into anionic polyacrylamide (A-PAM via a peptide condensation reaction. Three types of CBM-conjugated A-PAMs (CBM-A-PAMs displayed different retention behavior, depending on the kind of pulp substrates, i.e. hardwood and softwood fibers. The CBM-A-PAM from T. viride demonstrated good additive retention for hardwood pulp fibers, resulting in high tensile strength of paper sheets, even under contaminated conditions in the presence of Ca2+ ions and ligninsulfonate. The CBM-A-PAM from T. reesei showed better performance for softwood than for hardwood sheets. The xylanase CBM-A-PAM was preferentially retained on hardwood fibers in which hemicelluloses might be present. Such an additive retention system, with inherent affinities of enzymes for pulp fibers, is expected to expand the application range of CBM-polymers in practical wet-end processes.

  18. Identification of a negative allosteric site on human α4β2 and α3β4 neuronal nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Ryan E Pavlovicz

    Full Text Available Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs. These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological

  19. Antiarrhythmic Effect of Either Negative Modulation or Blockade of Small Conductance Ca2+-activated K+ Channels on Ventricular Fibrillation in Guinea Pig Langendorff-perfused Heart

    DEFF Research Database (Denmark)

    Diness, Jonas G.; Kirchhoff, Jeppe E.; Sheykhzade, Majid;

    2015-01-01

    channels are predominantly coming into play during arrhythmogenic events where intracellular concentration of Ca is increased. During ventricular fibrillation a surge of [Ca]i has the potential to bind to and open SK channels. To obtain mechanistic insight into possible roles of SK channels during...... ventricular fibrillation we conducted experiments with a SK channel pore blocker (ICA) and a negatively allosteric modulator (NS8395) in a Langendorff perfused heart model. Both compounds increased the action potential duration (APD), effective refractory period (ERP) and Wenckebach cycle length (WCL......) to comparable extents. Despite these similarities, the SK channel modulator was found to revert and prevent ventricular fibrillation (VF) more efficiently than the SK channel pore blocker. In conclusion, either negative allosteric modulation of the SK channel with NS8593 is more favorable than pure channel...

  20. Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7.

    Science.gov (United States)

    Mamo, Gashaw; Hatti-Kaul, Rajni; Mattiasson, Bo

    2007-01-01

    Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)(6) tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.

  1. Studies on the binding of modest modulators of the human enzyme, Sirtuin 6, using STD-NMR.

    Science.gov (United States)

    Bolívar, Beatriz E; Welch, John T

    2017-02-21

    Pyrazinamide (PZA), an essential constituent of short course tuberculosis chemotherapy, binds weakly but selectively to Sirtuin 6 (SIRT6). Despite structural similarities between nicotinamide (NAM), PZA, and pyrazinoic acid (POA), these inhibitors modulate SIRT6 via different mechanisms and binding sites, as suggested by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR). Available experimental evidence, such as that derived from crystal structures and kinetic experiments, is of only limited utility in the elucidation of the mechanistic details of sirtuin inhibition by NAM or other inhibitors. For example, crystallographic structural analysis of sirtuin binding sites does not illuminate differences in binding affinities among sirtuins or capture details of the dynamic process. STD NMR led to findings that not only agreed with the binding kinetics experiments, but also yielded insights into the binding process. The data also illustrate the geometry of the ligand binding epitopes in solution for both the apo- and holoenzyme. Recognition that SIRT6 is affected selectively by PZA, an established clinical agent, suggests that the rational development of more potent and selective NAM surrogates may be possible. These derivatives may be accessible by employing the malleability of this scaffold to assist in the identification by STD-NMR of the motifs that interact with the holo- and apo-enzymes in solution.

  2. Semisynthetic analogues of toxiferine I and their pharmacological properties at α7 nAChRs, muscle-type nAChRs, and the allosteric binding site of muscarinic M2 receptors

    DEFF Research Database (Denmark)

    Zlotos, D.P.; Tränkle, C; Holzgrabe, U;

    2014-01-01

    , saturation of the exocyclic double bonds, and various N-substituents (methyl, allyl, 4-nitrobenzyl). At the muscle-type nAChRs, most ligands showed similar binding to the muscle relaxant alcuronium, indicating neuromuscular blocking activity, with the nonhydroxylated analogues 3b (Ki = 75 nM) and 3c (Ki = 82...

  3. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    Science.gov (United States)

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

  4. High throughput techniques for discovering new glycine receptor modulators and their binding sites

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    2009-10-01

    Full Text Available The inhibitory glycine receptor (GlyR is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific compounds. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384 well plate using nanogram quantities of cDNA.

  5. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  6. Nanomechanical mapping of first binding steps of a virus to animal cells

    Science.gov (United States)

    Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.

    2016-10-01

    Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

  7. Module structure of interphotoreceptor retinoid-binding protein (IRBP may provide bases for its complex role in the visual cycle – structure/function study of Xenopus IRBP

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2007-08-01

    Full Text Available Abstract Background Interphotoreceptor retinoid-binding protein's (IRBP remarkable module structure may be critical to its role in mediating the transport of all-trans and 11-cis retinol, and 11-cis retinal between rods, cones, RPE and Müller cells during the visual cycle. We isolated cDNAs for Xenopus IRBP, and expressed and purified its individual modules, module combinations, and the full-length polypeptide. Binding of all-trans retinol, 11-cis retinal and 9-(9-anthroyloxy stearic acid were characterized by fluorescence spectroscopy monitoring ligand-fluorescence enhancement, quenching of endogenous protein fluorescence, and energy transfer. Finally, the X-ray crystal structure of module-2 was used to predict the location of the ligand-binding sites, and compare their structures among modules using homology modeling. Results The full-length Xenopus IRBP cDNA codes for a polypeptide of 1,197 amino acid residues beginning with a signal peptide followed by four homologous modules each ~300 amino acid residues in length. Modules 1 and 3 are more closely related to each other than either is to modules 2 and 4. Modules 1 and 4 are most similar to the N- and C-terminal modules of the two module IRBP of teleosts. Our data are consistent with the model that vertebrate IRBPs arose through two genetic duplication events, but that the middle two modules were lost during the evolution of the ray finned fish. The sequence of the expressed full-length IRBP was confirmed by liquid chromatography-tandem mass spectrometry. The recombinant full-length Xenopus IRBP bound all-trans retinol and 11-cis retinaldehyde at 3 to 4 sites with Kd's of 0.2 to 0.3 μM, and was active in protecting all-trans retinol from degradation. Module 2 showed selectivity for all-trans retinol over 11-cis retinaldehyde. The binding data are correlated to the results of docking of all-trans-retinol to the crystal structure of Xenopus module 2 suggesting two ligand-binding sites

  8. Fluorescence Resonance Energy Transfer Imaging Reveals that Chemokine-Binding Modulates Heterodimers of CXCR4 and CCR5 Receptors

    OpenAIRE

    2008-01-01

    BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET) imaging ...

  9. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    Science.gov (United States)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-08-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.

  10. Identification of the Allosteric Site for Phenylalanine in Rat Phenylalanine Hydroxylase.

    Science.gov (United States)

    Zhang, Shengnan; Fitzpatrick, Paul F

    2016-04-01

    Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that requires activation by phenylalanine for full activity. The location of the allosteric site for phenylalanine has not been established. NMR spectroscopy of the isolated regulatory domain (RDPheH(25-117) is the regulatory domain of PheH lacking residues 1-24) of the rat enzyme in the presence of phenylalanine is consistent with formation of a side-by-side ACT dimer. Six residues in RDPheH(25-117) were identified as being in the phenylalanine-binding site on the basis of intermolecular NOEs between unlabeled phenylalanine and isotopically labeled protein. The location of these residues is consistent with two allosteric sites per dimer, with each site containing residues from both monomers. Site-specific variants of five of the residues (E44Q, A47G, L48V, L62V, and H64N) decreased the affinity of RDPheH(25-117) for phenylalanine based on the ability to stabilize the dimer. Incorporation of the A47G, L48V, and H64N mutations into the intact protein increased the concentration of phenylalanine required for activation. The results identify the location of the allosteric site as the interface of the regulatory domain dimer formed in activated PheH.

  11. Allosteric Inhibition via R-state Destabilization in ATP Sulfurylase from Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    MacRae, I. J.

    2002-01-01

    The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 {angstrom} resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 {angstrom} movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.

  12. Allosteric analysis of glucocorticoid receptor-DNA interface induced by cyclic Py-Im polyamide: a molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yaru Wang

    Full Text Available BACKGROUND: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. CONCLUSIONS/SIGNIFICANCE: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a >4 Å widening of the DNA minor groove and a compression of the major groove by more than 4 Å as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression of DNA major groove surface causes GRDBD to move away from the DNA major groove with the initial average distance of ∼4 Å to the final average distance of ∼10 Å during 40 ns simulation course. Therefore, this study straightforward explores how small molecule targeting specific sites in the DNA minor groove disrupts the transcription factor-DNA interface in DNA major groove, and consequently modulates gene expression.

  13. SB-205384 Is a Positive Allosteric Modulator of Recombinant GABAA Receptors Containing Rat α3, α5, or α6 Subunit Subtypes Coexpressed with β3 and γ2 Subunits

    OpenAIRE

    Heidelberg, Laura S.; Warren, James W.; Fisher, Janet L.

    2013-01-01

    Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete popu...

  14. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    Science.gov (United States)

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  15. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  16. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones.

    Science.gov (United States)

    Rousaki, Aikaterini; Miyata, Yoshinari; Jinwal, Umesh K; Dickey, Chad A; Gestwicki, Jason E; Zuiderweg, Erik R P

    2011-08-19

    Hsp70 (heat shock protein 70 kDa) chaperones are key to cellular protein homeostasis. However, they also have the ability to inhibit tumor apoptosis and contribute to aberrant accumulation of hyperphosphorylated tau in neuronal cells affected by tauopathies, including Alzheimer's disease. Hence, Hsp70 chaperones are increasingly becoming identified as targets for therapeutic intervention in these widely abundant diseases. Hsp70 proteins are allosteric machines and offer, besides classical active-site targets, also opportunities to target the mechanism of allostery. In this work, it is demonstrated that the action of the potent anticancer compound MKT-077 (1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride) occurs through a differential interaction with Hsp70 allosteric states. MKT-077 is therefore an "allosteric drug." Using NMR spectroscopy, we identify the compound's binding site on human HSPA8 (Hsc70). The binding pose is obtained from NMR-restrained docking calculations, subsequently scored by molecular-dynamics-based energy and solvation computations. Suggestions for the improvement of the compound's properties are made on the basis of the binding location and pose.

  17. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  18. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    Science.gov (United States)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  19. Allosteric control in a metalloprotein dramatically alters function.

    Science.gov (United States)

    Baxter, Elizabeth Leigh; Zuris, John A; Wang, Charles; Vo, Phu Luong T; Axelrod, Herbert L; Cohen, Aina E; Paddock, Mark L; Nechushtai, Rachel; Onuchic, Jose N; Jennings, Patricia A

    2013-01-15

    Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs.

  20. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  1. Cerebrospinal fluid levels of diazepam-binding inhibitor in neurodegenerative disorders with dementia.

    Science.gov (United States)

    Ferrarese, C; Appollonio, I; Frigo, M; Meregalli, S; Piolti, R; Tamma, F; Frattola, L

    1990-04-01

    We investigated CSF levels of diazepam-binding inhibitor (DBI), a recently discovered neuropeptide that allosterically modulates GABAergic transmission, in various neurodegenerative disorders with dementia (28 patients with Parkinson's disease, 10 with Alzheimer's disease, 7 with Huntington's chorea). We applied a battery of neuropsychological tests to determine the degree of dementia and to exclude the presence of mood alterations. CSF DBI levels were elevated in parkinsonian subjects with dementia and in patients with Alzheimer's disease, but decreased in Huntington's chorea patients. We hypothesize that modifications of CSF DBI levels may be related to a functional or structural alteration of the GABAergic system.

  2. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  3. Mapping of the Allosteric Site in Cholesterol Hydroxylase CYP46A1 for Efavirenz, a Drug That Stimulates Enzyme Activity.

    Science.gov (United States)

    Anderson, Kyle W; Mast, Natalia; Hudgens, Jeffrey W; Lin, Joseph B; Turko, Illarion V; Pikuleva, Irina A

    2016-05-27

    Cytochrome P450 46A1 (CYP46A1) is a microsomal enzyme and cholesterol 24-hydroxylase that controls cholesterol elimination from the brain. This P450 is also a potential target for Alzheimer disease because it can be activated pharmacologically by some marketed drugs, as exemplified by efavirenz, the anti-HIV medication. Previously, we suggested that pharmaceuticals activate CYP46A1 allosterically through binding to a site on the cytosolic protein surface, which is different from the enzyme active site facing the membrane. Here we identified this allosteric site for efavirenz on CYP46A1 by using a combination of hydrogen-deuterium exchange coupled to MS, computational modeling, site-directed mutagenesis, and analysis of the CYP46A1 crystal structure. We also mapped the binding region for the CYP46A1 redox partner oxidoreductase and found that the allosteric and redox partner binding sites share a common border. On the basis of the data obtained, we propose the mechanism of CYP46A1 allostery and the pathway for the signal transmission from the P450 allosteric site to the active site.

  4. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2016-01-01

    Full Text Available P2Y1 receptor (P2Y1R, which belongs to G protein-coupled receptors (GPCRs, is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM. And the hits were filtered by Lipinski’s rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM.

  5. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    Science.gov (United States)

    Lu, Fang; Jiang, Lu-di; Qiao, Lian-sheng; Xiang, Yu-hong

    2016-01-01

    P2Y1 receptor (P2Y1R), which belongs to G protein-coupled receptors (GPCRs), is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM). And the hits were filtered by Lipinski's rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM. PMID:27635149

  6. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  7. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  8. Membrane Binding and Modulation of the PDZ Domain of PICK1

    DEFF Research Database (Denmark)

    Erlendsson, Simon; Madsen, Kenneth Lindegaard

    2015-01-01

    Scaffolding proteins serve to assemble protein complexes in dynamic processes by means of specific protein-protein and protein-lipid binding domains. Many of these domains bind either proteins or lipids exclusively; however, it has become increasingly evident that certain domains are capable of b...... lipids. Moreover, we review how these PDZ-membrane interactions are regulated in the case of the synaptic scaffolding protein PICK1 and how this might affect cellular localization and function....

  9. Guanine Nucleotides Modulate Cell Surface cAMP-Binding Sites in Membranes from Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1984-01-01

    D. discoideum contains kinetically distinguishable cell surface cAMP binding sites. One class, S, is slowly dissociating and has high affinity for cAMP (Kd = 15 nM, t½ = 15 s). A second class is fast dissociating (t½ about 1 s) and is composed of high affinity binding sites H (Kd ≈ 60 nM), and low a

  10. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.

    Science.gov (United States)

    Ross, Wilma; Vrentas, Catherine E; Sanchez-Vazquez, Patricia; Gaal, Tamas; Gourse, Richard L

    2013-05-01

    The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a binding site for ppGpp on E. coli RNAP, identified by crosslinking, protease mapping, and analysis of mutant RNAPs that fail to respond to ppGpp. A strain with a mutant ppGpp binding site displays properties characteristic of cells defective for ppGpp synthesis. The binding site is at an interface of two RNAP subunits, ω and β', and its position suggests an allosteric mechanism of action involving restriction of motion between two mobile RNAP modules. Identification of the binding site allows prediction of bacterial species in which ppGpp exerts its effects by targeting RNAP.

  11. Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters

    NARCIS (Netherlands)

    Roohparvar, R.; Huser, A.; Zwiers, L.H.; Waard, de M.A.

    2007-01-01

    Medical drugs known to modulate the activity of human ATP-binding cassette (ABC) transporter proteins (modulators) were tested for the ability to potentiate the activity of the azole fungicide cyproconazole against in vitro growth of Mycosphaerella graminicola and to control disease development due

  12. The First Residue of the PWWP Motif Modulates HATH Domain Binding, Stability, and Protein-Protein Interaction.

    Science.gov (United States)

    Hung, Yi-Lin; Lee, Hsia-Ju; Jiang, Ingjye; Lin, Shang-Chi; Lo, Wei-Cheng; Lin, Yi-Jan; Sue, Shih-Che

    2015-07-01

    Hepatoma-derived growth factor (hHDGF) and HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic structural motif, namely the PWWP motif. The HATH domain has attracted attention because of its ability to bind with heparin/heparan sulfate, DNA, and methylated histone peptide. Depending on the sequence of the PWWP motif, HRP HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro) forms. A-type HATH is highly unstable and tends to precipitate in solution. We replaced the Pro residue in P-type HATHHDGF with Ala and evaluated the influence on structure, dynamics, and ligand binding. Nuclear magnetic resonance (NMR) hydrogen/deuterium exchange and circular dichroism (CD) measurements revealed reduced stability. Analysis of NMR backbone (15)N relaxations (R1, R2, and nuclear Overhauser effect) revealed additional backbone dynamics in the interface between the β-barrel and the C-terminal helix bundle. The β1-β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction through the loop. A-type HATH, therefore, shows a stronger tendency to aggregate when binding with heparin and DNA oligomers. This study defines the role of the first residue of the PWWP motif in modulating HATH domain stability and oligomer formation in binding.

  13. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  14. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Science.gov (United States)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  15. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2015-07-07

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  16. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    Science.gov (United States)

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  17. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Doktor, Thomas K; Borch-Jensen, Jonas;

    2016-01-01

    for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing...... regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP......-identified hnRNP A1 binding site immediately downstream of the 5' splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site...

  18. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis.

    Directory of Open Access Journals (Sweden)

    Zoltan Palmai

    2014-01-01

    Full Text Available 3-Phosphogycerate kinase (PGK is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA, we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule.

  19. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis.

    Science.gov (United States)

    Palmai, Zoltan; Seifert, Christian; Gräter, Frauke; Balog, Erika

    2014-01-01

    3-Phosphogycerate kinase (PGK) is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA), we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule.

  20. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  1. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding.

    Science.gov (United States)

    Reichart, Timothy M; Baksh, Michael M; Rhee, Jin-Kyu; Fiedler, Jason D; Sligar, Stephen G; Finn, M G; Zwick, Michael B; Dawson, Philip E

    2016-02-18

    The membrane-proximal external region (MPER) of HIV gp41 is an established target of antibodies that neutralize a broad range of HIV isolates. To evaluate the role of the transmembrane (TM) domain, synthetic MPER-derived peptides were incorporated into lipid nanoparticles using natural and designed TM domains, and antibody affinity was measured using immobilized and solution-based techniques. Peptides incorporating the native HIV TM domain exhibit significantly stronger interactions with neutralizing antibodies than peptides with a monomeric TM domain. Furthermore, a peptide with a trimeric, three-helix bundle TM domain recapitulates the binding profile of the native sequence. These studies suggest that neutralizing antibodies can bind the MPER when the TM domain is a three-helix bundle and this presentation could influence the binding of neutralizing antibodies to the virus. Lipid-bilayer presentation of viral antigens in Nanodiscs is a new platform for evaluating neutralizing antibodies.

  2. Ligand binding modulates the structural dynamics and compactness of the major birch pollen allergen.

    Science.gov (United States)

    Grutsch, Sarina; Fuchs, Julian E; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R; Tollinger, Martin

    2014-12-16

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens.

  3. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques

    Indian Academy of Sciences (India)

    2017-01-01

    Allostery is a mechanism by which the activity of a large numberof proteins is regulated. It is manifested as a change inthe activity, either ligand binding or catalysis of one site of aprotein due to a ligand binding to another distinct site of theprotein. The allosteric effect is transduced by a change in thestructural properties of the protein. It has been traditionallyunderstood using either the concerted MWC (Monod,Wyman and Changeux) model, or the sequential KNF (Koshland,Nemethy and Filmer) model of structural changes. However,allostery is fundamentally a thermodynamic process andrequires an alteration in the enthalpy or entropy associatedwith the process.

  4. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2013-05-01

    Full Text Available In order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay. These compounds also significantly inhibited virus (EV71 replication in HEK293 and RD cells. Several compounds showed potential as agents for the treatment of viral infective diseases, with the most potent compound 18 showing an IC50 value of 54.57 nM in the MEK1 binding assay.

  5. Conformational Analysis of the Streptococcus pneumoniae Hyaluronate Lyase and Characterization of Its Hyaluronan-specific Carbohydrate-binding Module*

    Science.gov (United States)

    Suits, Michael D. L.; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S.; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B.

    2014-01-01

    For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. PMID:25100731

  6. Specific binding of Clostridium perfringens enterotoxin fragment to Claudin-b and modulation of zebrafish epidermal barrier.

    Science.gov (United States)

    Zhang, Jingjing; Ni, Chen; Yang, Zhenguo; Piontek, Anna; Chen, Huapu; Wang, Sijie; Fan, Yiming; Qin, Zhihai; Piontek, Joerg

    2015-08-01

    Claudins (Cldn) are the major components of tight junctions (TJs) sealing the paracellular cleft in tissue barriers of various organs. Zebrafish Cldnb, the homolog of mammalian Cldn4, is expressed at epithelial cell-cell contacts and is important for regulating epidermal permeability. The bacterial toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to a subset of mammalian Cldns. In this study, we used the Cldn-binding C-terminal domain of CPE (194-319 amino acids, cCPE 194-319 ) to investigate its functional role in modulating zebrafish larval epidermal barriers. In vitro analyses show that cCPE 194-319 removed Cldn4 from epithelial cells and disrupted the monolayer tightness, which could be rescued by the removal of cCPE 194-319. Incubation of zebrafish larvae with cCPE 194-319 removed Cldnb specifically from the epidermal cell membrane. Dye diffusion analysis with 4-kDa fluorescent dextran indicated that the permeability of the epidermal barrier increased due to cCPE 194-319 incubation. Electron microscopic investigation revealed reversible loss of TJ integrity by Cldnb removal. Collectively, these results suggest that cCPE 194-319 could be used as a Cldnb modulator to transiently open the epidermal barrier in zebrafish. In addition, zebrafish might be used as an in vivo system to investigate the capability of cCPE to enhance drug delivery across tissue barriers.

  7. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 2. Fluorescence study.

    Science.gov (United States)

    Herman, Petr; Lee, J Ching

    2009-10-13

    The energetic landscape of the allosteric regulatory mechanism of rabbit muscle pyruvate kinase (RMPK) was characterized by isothermal titration calorimetry (ITC). Four novel insights were uncovered. (1) ADP exhibits a dual property. Depending on the temperature, ADP can regulate RMPK activity by switching the enzyme to either the R or T state. (2) The assumption that ligand binding to RMPK is state-dependent is only correct for PEP but not Phe and ADP. (3) The effect of pH on the regulatory behavior of RMPK is partly due to the complex pattern of proton release or absorption linked to the multiple linked equilibria which govern the activity of the enzyme. (4) The R T equilibrium is accompanied by a significant DeltaC(p), rendering RMPK most sensitive to temperature under physiological conditions. To rigorously test the validity of conclusions derived from the ITC data, in this study a fluorescence approach, albeit indirect, that tracks continuous structural perturbations was employed. Intrinsic Trp fluorescence of RMPK in the absence and presence of substrates phosphoenolpyruvate (PEP) and ADP, and the allosteric inhibitor Phe, was measured in the temperature range between 4 and 45 degrees C. For data analysis, the fluorescence data were complemented by ITC experiments to yield an extended data set allowing more complete characterization of the RMPK regulatory mechanism. Twenty-one thermodynamic parameters were derived to define the network of linked interactions involved in regulating the allosteric behavior of RMPK through global analysis of the ITC and fluorescent data sets. In this study, 27 independent curves with more than 1600 experimental points were globally analyzed. Consequently, the consensus results substantiate not only the conclusions derived from the ITC data but also structural information characterizing the transition between the active and inactive states of RMPK and the antagonism between ADP and Phe binding. The latter observation reveals a

  8. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Nemčovičová, Ivana [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States); Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava (Slovakia); Zajonc, Dirk M., E-mail: dzajonc@liai.org [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States)

    2014-03-01

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host

  9. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  10. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib.

    Science.gov (United States)

    Zhang, Guan-Nan; Zhang, Yun-Kai; Wang, Yi-Jun; Barbuti, Anna Maria; Zhu, Xi-Jun; Yu, Xin-Yue; Wen, Ai-Wen; Wurpel, John N D; Chen, Zhe-Sheng

    2017-01-25

    Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5μM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.

  11. Fluorescence resonance energy transfer imaging reveals that chemokine-binding modulates heterodimers of CXCR4 and CCR5 receptors.

    Directory of Open Access Journals (Sweden)

    Nilgun Isik

    Full Text Available BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET imaging method, we investigated the formation of CCR5 and CXCR4 heterodimers on the plasma membrane of live cells. We found that CCR5 and CXCR4 exist as constitutive heterodimers and ligands of CCR5 and CXCR4 promote different conformational changes within these preexisting heterodimers. Ligands of CCR5, in contrast to a ligand of CXCR4, induced a clear increase in FRET efficiency, indicating that selective ligands promote and stabilize a distinct conformation of the heterodimers. We also found that mutations at C-terminus of CCR5 reduced its ability to form heterodimers with CXCR4. In addition, ligands induce different conformational transitions of heterodimers of CXCR4 and CCR5 or CCR5(STA and CCR5(Delta4. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest a model in which CXCR4 and CCR5 spontaneously form heterodimers and ligand-binding to CXCR4 or CCR5 causes different conformational changes affecting heterodimerization, indicating the complexity of regulation of dimerization/function of these chemokine receptors by ligand binding.

  12. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H;

    2010-01-01

    -induced phosphorylation of Erk2 in the prefrontal cortex occurs following acute, but not repeated administration. Our results demonstrate that repeated agonist administration increases the number of alpha7 nAChRs in the brain, and leads to coupling versus uncoupling of specific intracellular signaling....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n......-120596 and NS1738 do not increase [(125)I]-BTX binding. Furthermore, A-582941-induced increase in Arc and c-fos mRNA expression in the prefrontal cortex is enhanced and unaltered, respectively, after repeated administration, demonstrating that the alpha7 nAChRs remain responsive. Contrarily, A-582941...

  13. Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA.

    Science.gov (United States)

    Grossoehme, Nicholas E; Giedroc, David P

    2009-12-16

    The linked equilibria of an allosterically regulated protein are defined by the structures, residue-specific dynamics and global energetics of interconversion among all relevant allosteric states. Here, we use isothermal titration calorimetry (ITC) to probe the global thermodynamics of allosteric negative regulation of the binding of the paradigm ArsR-family zinc sensing repressor Staphylococcus aureus CzrA to the czr DNA operator (CzrO) by Zn(2+). Zn(2+) binds to the two identical binding sites on the free CzrA homodimer in two discernible steps. A larger entropic driving force Delta(-TDeltaS) of -4.7 kcal mol(-1) and a more negative DeltaC(p) characterize the binding of the first Zn(2+) relative to the second. These features suggest a modest structural transition in forming the Zn(1) state followed by a quenching of the internal dynamics on filling the second zinc site, which collectively drive homotropic negative cooperativity of Zn(2+) binding (Delta(DeltaG) = 1.8 kcal mol(-1)). Negative homotropic cooperativity also characterizes Zn(2+) binding to the CzrA*CzrO complex (Delta(DeltaG) = 1.3 kcal mol(-1)), although the underlying energetics are vastly different, with homotropic Delta(DeltaH) and Delta(-TDeltaS) values both small and slightly positive. In short, Zn(2+) binding to the complex fails to induce a large structural or dynamical change in the CzrA bound to the operator. The strong heterotropic negative linkage in this system (DeltaG(c)(t) = 6.3 kcal mol(-1)) therefore derives from the vastly different structures of the apo-CzrA and CzrA*CzrO reference states (DeltaH(c)(t) = 9.4 kcal mol(-1)) in a way that is reinforced by a global rigidification of the allosterically inhibited Zn(2) state off the DNA (TDeltaS(c)(t) = -3.1 kcal mol(-1), i.e., DeltaS(c)(t) > 0). The implications of these findings for other metalloregulatory proteins are discussed.

  14. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  15. Specific tracking of xylan using fluorescent-tagged carbohydrate-binding module 15 as molecular probe

    OpenAIRE

    Khatri, Vinay; Hébert-Ouellet, Yannick; Meddeb-Mouelhi, Fatma; Beauregard,Marc

    2016-01-01

    Background Xylan has been identified as a physical barrier which limits cellulose accessibility by covering the outer surface of fibers and interfibrillar space. Therefore, tracking xylan is a prerequisite for understanding and optimizing lignocellulosic biomass processes. Results In this study, we developed a novel xylan tracking approach using a two-domain probe called OC15 which consists of a fusion of Cellvibrio japonicus carbohydrate-binding domain 15 with the fluorescent protein mOrange...

  16. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  17. Ligand Binding Modulates the Structural Dynamics and Compactness of the Major Birch Pollen Allergen

    Science.gov (United States)

    Grutsch, Sarina; Fuchs, Julian E.; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R.; Tollinger, Martin

    2014-01-01

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens. PMID:25517162

  18. Mn(II) binding to human serum albumin: a ¹H-NMR relaxometric study.

    Science.gov (United States)

    Fanali, Gabriella; Cao, Yu; Ascenzi, Paolo; Fasano, Mauro

    2012-12-01

    Human serum albumin (HSA) displays several metal binding sites, participating to essential and toxic metal ions disposal and transport. The major Zn(II) binding site, called Site A, is located at the I/II domain interface, with residues His67, Asn99, His247, and Asp249 contributing with five donor atoms to the metal ion coordination. Additionally, one water molecule takes part of the octahedral coordination geometry. The occurrence of the metal-coordinated water molecule allows the investigation of the metal complex geometry by water (1)H-NMR relaxation, provided that the diamagnetic Zn(II) is replaced by the paramagnetic Mn(II). Here, the (1)H-NMR relaxometric study of Mn(II) binding to HSA is reported. Mn(II) binding to HSA is modulated by Zn(II), pH, and myristate through competitive inhibition and allosteric mechanisms. The body of results indicates that the primary binding site of Zn(II) corresponds to the secondary binding site of Mn(II), i.e. the multimetal binding site A. Excess Zn(II) completely displaces Mn(II) from its primary site suggesting that the primary Mn(II) site corresponds to the secondary Zn(II) site. This uncharacterized site is functionally-linked to FA1; moreover, metal ion binding is modulated by myristate and pH. Noteworthy, water (1)H-NMR relaxometry allowed a detailed analysis of thermodynamic properties of HSA-metal ion complexes.

  19. Convergent transmission of RNAi guide-target mismatch information across Argonaute internal allosteric network.

    Directory of Open Access Journals (Sweden)

    Thomas T Joseph

    Full Text Available In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the

  20. Convergent Transmission of RNAi Guide-Target Mismatch Information across Argonaute Internal Allosteric Network

    Science.gov (United States)

    Joseph, Thomas T.; Osman, Roman

    2012-01-01

    In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand “seed region” have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative

  1. CX717 as a positive allosteric modulator of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor: research advances%AMPA受体正向变构调节剂CX717研究进展

    Institute of Scientific and Technical Information of China (English)

    贺艺超; 肖典; 齐倩倩; 赵国明; 周辛波

    2013-01-01

    α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(AMPA)受体是离子型谷氨酸受体的一种亚型,分布于中枢神经系统的突触后膜,介导大多数快速兴奋性神经传递.CX717是由美国Cortex制药公司研制的苯甲酰胺类AMPA受体正向调节剂,能够降低AMPA受体失活或降敏的速度从而提高突触的活性,与阿尔茨海默病、帕金森病、抑郁症和注意力缺陷多动症等疾病的治疗密切相关.本文主要综述CX717在化学结构、药代动力学、毒理学和药效学方面的研究进展.%α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptor,a subtype of ionotropic glutamate receptors in the postsynaptic membrane of the central nervous system (CNS),mediates most of the fast excitatory neurotransmission.CX717 developed by Cortex Pharmaceuticals Company of the USA belongs to the benzamide series of AMPA receptor positive modulators.It can reduce the speed of AMPA receptor inactivation or desensitization,thereby enhancing synaptic activity,and is closely related to the treatment of Alzheimer's disease,Parkinson's disease,depression and attention deficit hyperactivity disorder(ADHD).This article reviews the latest research of CX717 regarding its structure,pharmacokinetics,toxicology and pharmacodynamics.

  2. Cell Surface Binding and Internalization of Aβ Modulated by Degree of Aggregation

    Directory of Open Access Journals (Sweden)

    David A. Bateman

    2011-01-01

    Full Text Available The amyloid peptides, Aβ40 and Aβ42, are generated through endoproteolytic cleavage of the amyloid precursor protein. Here we have developed a model to investigate the interaction of living cells with various forms of aggregated Aβ40/42. After incubation at endosomal pH 6, we observed a variety of Aβ conformations after 3 (Aβ3, 24 (Aβ24, and 90 hours (Aβ90. Both Aβ4224 and Aβ4024 were observed to rapidly bind and internalize into differentiated PC12 cells, leading to accumulation in the lysosome. In contrast, Aβ40/4290 were both found to only weakly associate with cells, but were observed as the most aggregated using dynamic light scattering and thioflavin-T. Internalization of Aβ40/4224 was inhibited with treatment of monodansylcadaverine, an endocytosis inhibitor. These studies indicate that the ability of Aβ40/42 to bind and internalize into living cells increases with degree of aggregation until it reaches a maximum beyond which its ability to interact with cells diminishes drastically.

  3. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein at 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.

  4. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason R Gerstner

    Full Text Available Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7 on sleep and long-term memory (LTM formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation "window" that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.

  5. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    Directory of Open Access Journals (Sweden)

    Katarzyna Bednarska

    2014-01-01

    Full Text Available Cholesterol oxidase (ChoD is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb, but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level, to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2 and complement receptor 3 (CR3 on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.

  6. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  7. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase.

    Science.gov (United States)

    Taylor, Alexander B; Hu, Gang; Hart, P John; McAlister-Henn, Lee

    2008-04-18

    Mitochondrial NAD(+)-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD(+)-specific IDH from yeast in three forms: 1) without ligands, 2) with bound analog citrate, and 3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the "on-off" regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.

  8. Allosteric Motions in Structures of Yeast NAD+-Specific Isocitrate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,A.; Hu, G.; Hart, P.; McAlister-Henn, L.

    2008-01-01

    Mitochondrial NAD+-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD+-specific IDH from yeast in three forms: (1) without ligands, (2) with bound analog citrate, and (3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the 'on-off' regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.

  9. Identification of novel allosteric regulators of human-erythrocyte pyruvate kinase.

    Science.gov (United States)

    Kharalkar, Shilpa S; Joshi, Gajanan S; Musayev, Faik N; Fornabaio, Micaela; Abraham, Donald J; Safo, Martin K

    2007-11-01

    Erythrocyte pyruvate kinase (PK) is an important glycolytic enzyme, and manipulation of its regulatory behavior by allosteric modifiers is of interest for medicinal purposes. Human-erythrocyte PK was expressed in Rosetta cells and purified on an Ni-NTA column. A search of the small-molecules database of the National Cancer Institute (NCI), using the UNITY software, led to the identification of several compounds with similar pharmacophores as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the human kinases. The compounds were subsequently docked into the FBP binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates, compounds 1-7, were obtained from the NCI, and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK). The allosteric effectors discovered in this study could prove to be lead compounds for developing medications for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction.

  10. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity.

    Directory of Open Access Journals (Sweden)

    Jörg Lucas

    Full Text Available The C-module-binding factor (CbfA is a multidomain protein that belongs to the family of jumonji-type (JmjC transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD. An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.

  11. NITRIC OXIDE BINDS TO AND MODULATES THE ACTIVITY OF A POLLEN SPECIFIC ARABIDOPSIS DIACYLGLYCEROL KINASE

    KAUST Repository

    Wong, Aloysius Tze

    2014-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  12. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin [Discovery Research, Ligand Pharmaceuticals Inc., 10275 Science Center Drive, San Diego, California 92121 (United States); Jiang, Tao, E-mail: x-ray@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2006-11-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents.

  13. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.

    Directory of Open Access Journals (Sweden)

    Bin Z He

    2011-04-01

    Full Text Available Transcription factor binding site(s (TFBS gain and loss (i.e., turnover is a well-documented feature of cis-regulatory module (CRM evolution, yet little attention has been paid to the evolutionary force(s driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.

  14. Trichomonas vaginalis Lipophosphoglycan Exploits Binding to Galectin-1 and -3 to Modulate Epithelial Immunity.

    Science.gov (United States)

    Fichorova, Raina N; Yamamoto, Hidemi S; Fashemi, Titilayo; Foley, Evan; Ryan, Stanthia; Beatty, Noah; Dawood, Hassan; Hayes, Gary R; St-Pierre, Guillaume; Sato, Sachiko; Singh, Bibhuti N

    2016-01-08

    Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.

  15. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    Science.gov (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  16. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.

    Science.gov (United States)

    Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu

    2015-03-01

    Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites.

  17. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism.

    Science.gov (United States)

    Davis, Warren

    2014-01-01

    The ATP-binding cassette transporters are a large family (~48 genes divided into seven families A-G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC "A" subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.

  18. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif.

    Directory of Open Access Journals (Sweden)

    Shigeki Suzuki

    Full Text Available Phosphophoryn (PP is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP. Gene duplications in the ancestor dentin matrix protein-1 (DMP-1 genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs. Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH. This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  19. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening.

    Science.gov (United States)

    Yilmaz, Oya Gursoy; Olmez, Elif Ozkirimli; Ulgen, Kutlu O

    2014-02-01

    Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.

  20. Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites.

    Science.gov (United States)

    Merulla, Davide; van der Meer, Jan Roelof

    2016-01-15

    Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.

  1. The quaternary structure of the recombinant bovine odorant-binding protein is modulated by chemical denaturants.

    Directory of Open Access Journals (Sweden)

    Olga V Stepanenko

    Full Text Available A large group of odorant-binding proteins (OBPs has attracted great scientific interest as promising building blocks in constructing optical biosensors for dangerous substances, such as toxic and explosive molecules. Native tissue-extracted bovine OBP (bOBP has a unique dimer folding pattern that involves crossing the α-helical domain in each monomer over the other monomer's β-barrel. In contrast, recombinant bOBP maintaining the high level of stability inherent to native tissue bOBP is produced in a stable native-like state with a decreased tendency for dimerization and is a mixture of monomers and dimers in a buffered solution. This work is focused on the study of the quaternary structure and the folding-unfolding processes of the recombinant bOBP in the absence and in the presence of guanidine hydrochloride (GdnHCl. Our results show that the recombinant bOBP native dimer is only formed at elevated GdnHCl concentrations (1.5 M. This process requires re-organizing the protein structure by progressing through the formation of an intermediate state. The bOBP dimerization process appears to be irreversible and it occurs before the protein unfolds. Though the observed structural changes for recombinant bOBP at pre-denaturing GdnHCl concentrations show a local character and the overall protein structure is maintained, such changes should be considered where the protein is used as a sensitive element in a biosensor system.

  2. Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity

    DEFF Research Database (Denmark)

    Sorensen, Anders B.; Madsen, Jesper Jonasson; Svensson, L. Anders;

    2016-01-01

    The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic propert...

  3. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol

    2008-01-01

    with a characteristic subsite binding energy profile around the catalytic site. Furthermore, several amylolytic enzymes that facilitate attack on the natural substrate, i.e. the endosperm starch granules, have secondary sugar binding sites either situated on the surface of the protein domain or structural unit...... that contains the catalytic site or belonging to a separate starch binding domain. The role of surface sites in the function of barley alpha-amylase 1 has been investigated by using mutational analysis in conjunction with carbohydrate binding analyses and crystallography. The ability to bind starch depends...

  4. Glutathione selectively modulates the binding of platinum drugs to human copper chaperone Cox17.

    Science.gov (United States)

    Zhao, Linhong; Wang, Zhen; Wu, Han; Xi, Zhaoyong; Liu, Yangzhong

    2015-12-01

    The copper chaperone Cox17 (cytochrome c oxidase copper chaperone) has been shown to facilitate the delivery of cisplatin to mitochondria, which contributes to the overall cytotoxicity of the drug [Zhao et al. (2014) Chem. Commun. 50: , 2667-2669]. Kinetic data indicate that Cox17 has reactivity similar to glutathione (GSH), the most abundant thiol-rich molecule in the cytoplasm. In the present study, we found that GSH significantly modulates the reaction of platinum complexes with Cox17. GSH enhances the reactivity of three anti-cancer drugs (cisplatin, carboplatin and oxaliplatin) to Cox17, but suppresses the reaction of transplatin. Surprisingly, the pre-formed cisplatin-GSH adducts are highly reactive to Cox17; over 90% platinum transfers from GSH to Cox17. On the other hand, transplatin-GSH adducts are inert to Cox17. These different effects are consistent with the drug activity of these platinum complexes. In addition, GSH attenuates the protein aggregation of Cox17 induced by platination. These results indicate that the platinum-protein interactions could be substantially influenced by the cellular environment.

  5. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence

    Science.gov (United States)

    Mazor, Yariv; Sachsenmeier, Kris F.; Yang, Chunning; Hansen, Anna; Filderman, Jessica; Mulgrew, Kathy; Wu, Herren; Dall’Acqua, William F.

    2017-01-01

    Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected. PMID:28067257

  6. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    Science.gov (United States)

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  7. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  8. Expression of the C-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium themocellum in tobacco plant

    NARCIS (Netherlands)

    Olawole, O.

    2009-01-01

    Carbohydrate-binding modules have been shown to alter plant cell wall structural architecture. Hence, they have the potential application of being used to engineer the plant to produce tailor-made natural fibers in the cell wall. The Clostridium thermocellum xylanase, Xyn10B, contains two CBMs that

  9. Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core.

    Science.gov (United States)

    Kim, Elizabeth D; Buckley, Rebecca; Learman, Sarah; Richard, Jessica; Parke, Courtney; Worthylake, David K; Wojcik, Edward J; Walker, Richard A; Kim, Sunyoung

    2010-06-11

    Essential in mitosis, the human Kinesin-5 protein is a target for >80 classes of allosteric compounds that bind to a surface-exposed site formed by the L5 loop. Not established is why there are differing efficacies in drug inhibition. Here we compare the ligand-bound states of two L5-directed inhibitors against 15 Kinesin-5 mutants by ATPase assays and IR spectroscopy. Biochemical kinetics uncovers functional differences between individual residues at the N or C termini of the L5 loop. Infrared evaluation of solution structures and multivariate analysis of the vibrational spectra reveal that mutation and/or ligand binding not only can remodel the allosteric binding surface but also can transmit long range effects. Changes in L5-localized 3(10) helix and disordered content, regardless of substitution or drug potency, are experimentally detected. Principal component analysis couples these local structural events to two types of rearrangements in beta-sheet hydrogen bonding. These transformations in beta-sheet contacts are correlated with inhibitory drug response and are corroborated by wild type Kinesin-5 crystal structures. Despite considerable evolutionary divergence, our data directly support a theorized conserved element for long distance mechanochemical coupling in kinesin, myosin, and F(1)-ATPase. These findings also suggest that these relatively rapid IR approaches can provide structural biomarkers for clinical determination of drug sensitivity and drug efficacy in nucleotide triphosphatases.

  10. Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Murdoch, Hannah

    2014-01-01

    this series resulted in compounds completely lacking activity, acting as FFA3 PAMs, or appearing to act as FFA3-negative allosteric modulators. However, the pharmacology of this series was further complicated in that certain analogs displaying overall antagonism of FFA3 function actually appeared to generate......, considerable care must be taken to define the pharmacological characteristics of specific compounds before useful predictions of their activity and their use in defining specific roles of FFA3 in either in vitro and in vivo settings can be made....

  11. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  12. Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    Science.gov (United States)

    2010-08-01

    molecular pathways through allosteric regulation of various proteins including proteases [39,40], the cannabinoid receptor 1 (CB1) [41], the a7 nicotinic...41. Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, et al. (2005) Allosteric modulation of the cannabinoid CB1 receptor . Mol Pharmacol 68...Insect Repellents: Modulators of Mosquito Odorant Receptor Activity Jonathan D. Bohbot, Joseph C. Dickens* Invasive Insect Biocontrol and Behavior

  13. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module.

    Science.gov (United States)

    Hebbeln, Peter; Rodionov, Dmitry A; Alfandega, Anja; Eitinger, Thomas

    2007-02-20

    BioMNY proteins are considered to constitute tripartite biotin transporters in prokaryotes. Recent comparative genomic and experimental analyses pointed to the similarity of BioMN to homologous modules of prokaryotic transporters mediating uptake of metals, amino acids, and vitamins. These systems resemble ATP-binding cassette-containing transporters and include typical ATPases (e.g., BioM). Absence of extracytoplasmic solute-binding proteins among the members of this group, however, is a distinctive feature. Genome context analyses uncovered that only one-third of the widespread bioY genes are linked to bioMN. Many bioY genes are located at loci encoding biotin biosynthesis, and others are unlinked to biotin metabolic or transport genes. Heterologous expression of the bioMNY operon and of the single bioY of the alpha-proteobacterium Rhodobacter capsulatus conferred biotin-transport activity on recombinant Escherichia coli cells. Kinetic analyses identified BioY as a high-capacity transporter that was converted into a high-affinity system in the presence of BioMN. BioMNY-mediated biotin uptake was severely impaired by replacement of the Walker A lysine residue in BioM, demonstrating dependency of high-affinity transport on a functional ATPase. Biochemical assays revealed that BioM, BioN, and BioY proteins form stable complexes in membranes of the heterologous host. Expression of truncated bio transport operons, each with one gene deleted, resulted in stable BioMN complexes but revealed only low amounts of BioMY and BioNY aggregates in the absence of the respective third partner. The results substantiate our earlier suggestion of a mechanistically novel group of membrane transporters.

  14. Allosteric modulation of G-protein coupled receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, Tracy A

    2004-01-01

    The superfamily of G-protein coupled receptors (GPCRs) has more than 1000 members and is the largest family of proteins in the body. GPCRs mediate signalling of stimuli as diverse as light, ions, small molecules, peptides and proteins and are the targets for many pharmaceuticals. Most GPCR ligands...

  15. The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity.

    Science.gov (United States)

    Rigden, D J; Phillips, S E; Michels, P A; Fothergill-Gilmore, L A

    1999-08-20

    Glycolysis occupies a central role in cellular metabolism, and is of particular importance for the catabolic production of ATP in protozoan parasites such as Leishmania and Trypanosoma. In these organisms pyruvate kinase plays a key regulatory role, and is unique in responding to fructose 2,6-bisphosphate as allosteric activator. The determination of the first eukaryotic pyruvate kinase crystal structure in the T-state is reported. A comparison of the leishmania and yeast R-state enzymes reveals fewer differences than the previous comparison of Escherichia coli T-state and rabbit muscle non-allosteric enzymes. Structural changes related to the allosteric transition can therefore be distinguished from those that are a consequence of the inherent wide structural divergence between bacterial and mammalian proteins. The allosteric transition involves significant changes in a tightly packed array of eight alpha helices at the interface near the catalytic site. At the other interface the allosteric transition appears to be accompanied by the bending of a ten-stranded intersubunit beta sheet adjacent to the effector site. Helix Calpha1 makes contacts to the N-terminal helical domain and bridges both interfaces. A comparison of the effector sites of the leishmania and yeast enzymes reveals the structural basis for the different effector specificity. Two loops comprising residues 443-453 and 480-489 adopt very different conformations in the two enzymes, and Lys453 and His480 that are a feature of trypanosomatid enzymes provide probable ligands for the 2-phospho group of the effector molecule. These differences offer an opportunity for the design of drugs that would bind to the trypanosomatid enzymes but not to those of the mammalian host.

  16. Allosteric Regulation by a Critical Membrane

    CERN Document Server

    Kimchi, Ofer; Machta, Benjamin B

    2016-01-01

    Many of the processes that underly neural computation are carried out by ion channels embedded in the plasma membrane, a two-dimensional liquid that surrounds all cells. Recent experiments have demonstrated that this membrane is poised close to a liquid-liquid critical point in the Ising universality class. Here we use both exact and stochastic techniques on the lattice Ising model to explore the ramifications of proximity to criticality for proteins that are allosterically coupled to Ising composition modes. Owing to diverging generalized susceptibilities, such a protein's activity becomes strongly influenced by perturbations that influence the two relevant parameters of the critical point, especially the critical temperature. In addition, the protein's kinetics acquire a range of time scales from its surrounding membrane, naturally leading to non-Markovian dynamics.

  17. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  18. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  19. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, Hayley K.; Webster, Julie; Kruger, Sarah; Simpson, Fiona; Richards, Ayanthi A. [Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102 (Australia); Whitehead, Jonathan P., E-mail: j.whitehead1@uq.edu.au [Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102 (Australia)

    2010-02-05

    The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2{beta}, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.

  20. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    Indian Academy of Sciences (India)

    A Nair; V A Vaidya

    2006-09-01

    Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.

  1. Thyroid hormone receptors bind to the promoter of the mouse histone H10 gene and modulate its transcription.

    Science.gov (United States)

    Bauer-Hofmann, R; Alonso, A

    1995-01-01

    It has been shown that the mouse histone H10 promoter contains a DNA element, composed of a direct repeat of the sequence GGTGACC separated by 7 nt, which is able to bind retinoic acid receptors and to modulate transcription of reporter genes following treatment with retinoic acid. We have now investigated whether this DNA motif is also responsive to thyroid hormone. We co-transfected CV-1 monkey kidney cells with chloramphenicol acetyltransferase (CAT) expression plasmids containing either 740 bp of the H10 wild-type promoter or five copies of the repeat element cloned in front of the thymidine kinase promoter and expression vectors for human thyroid hormone receptors (TRs) alpha or beta and retinoid X receptor alpha (RXR alpha). Treatment of transfected cells with triiodothyronine led to a dose-dependent increase in CAT activity. Transfection experiments with increasing amounts of expression vectors for either TR alpha or RXR alpha resulted in up to 6-fold enhancement of CAT transcription. Furthermore, point mutations within the half-sites of the response element of the H10 promoter, as well as deletions within the interspace region, lowered CAT activity to 60-80% of that of the wild-type control. Electrophoretic mobility shift assays showed that the repeat element was able to form retarded complexes with TR alpha homodimers, as well as with TR alpha-RXR alpha heterodimers. Our results suggest that thyroid hormone receptors are involved in the regulation of mouse histone H10 expression. Images PMID:8559662

  2. Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch

    Science.gov (United States)

    Wang, Wei; Jiang, Cheng; Zhang, Jinmai; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-01-01

    Riboswitches are a class of metabolism control elements mostly found in bacteria. Due to their fundamental importance in bacteria gene regulation, riboswitches have been proposed as antibacterial drug targets. Prequeuosine (preQ1) is the last free precursor in the biosynthetic pathway of queuosine that is crucial for translation efficiency and fidelity. However, the regulation mechanism for the preQ1 riboswitch remains unclear. Here we constructed fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in the bound riboswitch is distinctly different from that in the apo riboswitch. The community network indicates that the information freely transfers from the binding site of preQ1 to the expression platform of the P3 helix in the bound riboswitch and the P3 helix is a bottleneck in the apo riboswitch. Thus, a hypothesis of “preQ1-binding induced allosteric switching” is proposed to link riboswitch and translation regulation. The community networks of mutants support this hypothesis. Finally, a possible allosteric pathway of A50-A51-A52-U10-A11-G12-G56 was also identified based on the shortest path algorithm and confirmed by mutations and network perturbation. The novel fluctuation network analysis method can be used as a general strategy in studies of riboswitch structure-function relationship. PMID:27484311

  3. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.; (Danforth)

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  4. A Molecular Dynamics Study of Allosteric Transitions in Leishmania mexicana Pyruvate Kinase.

    Science.gov (United States)

    Naithani, Ankita; Taylor, Paul; Erman, Burak; Walkinshaw, Malcolm D

    2015-09-15

    A comparative molecular dynamics analysis of the pyruvate kinase from Leishmania mexicana is presented in the absence and presence of the allosteric effector fructose 2,6-bisphosphate. Comparisons of the simulations of the large 240 kDa apo and holo tetramers show that binding of fructose 2,6-bisphosphate cools the enzyme and reduces dynamic movement, particularly of the B-domain. The reduced dynamic movement of the holo form traps the pyruvate kinase tetramer in its enzymatically active state with the B-domain acting as a lid to cover the active site. The simulations are also consistent with a transition of the mobile active-site α6' helix, which would adopt a helical conformation in the active R-state and a less structured coil conformation in the inactive T-state. Analysis of the rigid body motions over the trajectory highlights the concerted anticorrelated rigid body rocking motion of the four protomers, which drives the T to R transition. The transitions predicted by these simulations are largely consistent with the Monod-Wyman-Changeux model for allosteric activation but also suggest that rigidification or cooling of the overall structure upon effector binding plays an additional role in enzyme activation.

  5. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.

    Science.gov (United States)

    Doshi, Urmi; Holliday, Michael J; Eisenmesser, Elan Z; Hamelberg, Donald

    2016-04-26

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general.

  6. Multiple allosteric effectors control the affinity of DasR for its target sites.

    Science.gov (United States)

    Tenconi, Elodie; Urem, Mia; Świątek-Połatyńska, Magdalena A; Titgemeyer, Fritz; Muller, Yves A; van Wezel, Gilles P; Rigali, Sébastien

    2015-08-14

    The global transcriptional regulator DasR connects N-acetylglucosamine (GlcNAc) utilization to the onset of morphological and chemical differentiation in the model actinomycete Streptomyces coelicolor. Previous work revealed that glucosamine-6-phosphate (GlcN-6P) acts as an allosteric effector which disables binding by DasR to its operator sites (called dre, for DasR responsive element) and allows derepression of DasR-controlled/GlcNAc-dependent genes. To unveil the mechanism by which DasR controls S. coelicolor development, we performed a series of electromobility shift assays with histidine-tagged DasR protein, which suggested that N-acetylglucosamine-6-phosphate (GlcNAc-6P) could also inhibit the formation of DasR-dre complexes and perhaps even more efficiently than GlcN-6P. The possibility that GlcNAc-6P is indeed an efficient allosteric effector of DasR was further confirmed by the high and constitutive activity of the DasR-repressed nagKA promoter in the nagA mutant, which lacks GlcNAc-6P deaminase activity and therefore accumulates GlcNAc-6P. In addition, we also observed that high concentrations of organic or inorganic phosphate enhanced binding of DasR to its recognition site, suggesting that the metabolic status of the cell could determine the selectivity of DasR in vivo, and hence its effect on the expression of its regulon.

  7. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  8. PilN Binding Modulates the Structure and Binding Partners of the Pseudomonas aeruginosa Type IVa Pilus Protein PilM.

    Science.gov (United States)

    McCallum, Matthew; Tammam, Stephanie; Little, Dustin J; Robinson, Howard; Koo, Jason; Shah, Megha; Calmettes, Charles; Moraes, Trevor F; Burrows, Lori L; Howell, P Lynne

    2016-05-20

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that expresses type IVa pili. The pilus assembly system, which promotes surface-associated twitching motility and virulence, is composed of inner and outer membrane subcomplexes, connected by an alignment subcomplex composed of PilMNOP. PilM binds to the N terminus of PilN, and we hypothesize that this interaction causes functionally significant structural changes in PilM. To characterize this interaction, we determined the crystal structures of PilM and a PilM chimera where PilM was fused to the first 12 residues of PilN (PilM·PilN(1-12)). Structural analysis, multiangle light scattering coupled with size exclusion chromatography, and bacterial two-hybrid data revealed that PilM forms dimers mediated by the binding of a novel conserved motif in the N terminus of PilM, and binding PilN abrogates this binding interface, resulting in PilM monomerization. Structural comparison of PilM with PilM·PilN(1-12) revealed that upon PilN binding, there is a large domain closure in PilM that alters its ATP binding site. Using biolayer interferometry, we found that the association rate of PilN with PilM is higher in the presence of ATP compared with ADP. Bacterial two-hybrid data suggested the connectivity of the cytoplasmic and inner membrane components of the type IVa pilus machinery in P. aeruginosa, with PilM binding to PilB, PilT, and PilC in addition to PilN. Pull-down experiments demonstrated direct interactions of PilM with PilB and PilT. We propose a working model in which dynamic binding of PilN facilitates functionally relevant structural changes in PilM.

  9. A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch.

    Science.gov (United States)

    Peng, Hui; Zheng, Yunyun; Chen, Maojiao; Wang, Ying; Xiao, Yazhong; Gao, Yi

    2014-04-02

    A novel starch-binding domain (SBD) that represents a new carbohydrate-binding module family (CBM69) was identified in the α-amylase (AmyP) of the recently established alpha-amylase subfamily GH13_37. The SBD and its homologues come mostly from marine bacteria, and phylogenetic analysis indicates that they are closely related to the CBM20 and CBM48 families. The SBD exhibited a binding preference toward raw rice starch, but the truncated mutant (AmyPΔSBD) still retained similar substrate preference. Kinetic analyses revealed that the SBD plays an important role in soluble starch hydrolysis because different catalytic efficiencies have been observed in AmyP and the AmyPΔSBD.

  10. Identification of an Allosteric Pocket on Human Hsp70 Reveals a Mode of Inhibition of This Therapeutically Important Protein

    Science.gov (United States)

    Rodina, Anna; Patel, Pallav D.; Kang, Yanlong; Patel, Yogita; Baaklini, Imad; Wong, Michael J.H.; Taldone, Tony; Yan, Pengrong; Yang, Chenghua; Maharaj, Ronnie; Gozman, Alexander; Patel, Maulik R.; Patel, Hardik J.; Chirico, William; Erdjument-Bromage, Hediye; Talele, Tanaji T.; Young, Jason C.; Chiosis, Gabriela

    2014-01-01

    SUMMARY Hsp70s are important cancer chaperones that act upstream of Hsp90 and exhibit independent anti-apoptotic activities. To develop chemical tools for the study of human Hsp70, we developed a homology model that unveils a previously unknown allosteric site located in the nucleotide binding domain of Hsp70. Combining structure-based design and phenotypic testing, we discovered a previously unknown inhibitor of this site, YK5. In cancer cells, this compound is a potent and selective binder of the cytosolic but not the organellar human Hsp70s and has biological activity partly by interfering with the formation of active oncogenic Hsp70/Hsp90/client protein complexes. YK5 is a small molecule inhibitor rationally designed to interact with an allosteric pocket of Hsp70 and represents a previously unknown chemical tool to investigate cellular mechanisms associated with Hsp70. PMID:24239008

  11. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin.

    Directory of Open Access Journals (Sweden)

    Guido C Faas

    2007-11-01

    Full Text Available Cooperativity is one of the most important properties of molecular interactions in biological systems. It is the ability to influence ligand binding at one site of a macromolecule by previous ligand binding at another site of the same molecule. As a consequence, the affinity of the macromolecule for the ligand is either decreased (negative cooperativity or increased (positive cooperativity. Over the last 100 years, O2 binding to hemoglobin has served as the paradigm for cooperative ligand binding and allosteric modulation, and four practical models were developed to quantitatively describe the mechanism: the Hill, the Adair-Klotz, the Monod-Wyman-Changeux, and the Koshland-Némethy-Filmer models. The predictions of these models apply under static conditions when the binding reactions are at equilibrium. However, in a physiological setting, e.g., inside a cell, the timing and dynamics of the binding events are essential. Hence, it is necessary to determine the dynamic properties of cooperative binding to fully understand the physiological implications of cooperativity. To date, the Monod-Wyman-Changeux model was applied to determine the kinetics of cooperative binding to biologically active molecules. In this model, cooperativity is established by postulating two allosteric isoforms with different binding properties. However, these studies were limited to special cases, where transition rates between allosteric isoforms are much slower than the binding rates or where binding and unbinding rates could be measured independently. For all other cases, the complex mathematical description precludes straightforward interpretations. Here, we report on calculating for the first time the fast dynamics of a cooperative binding process, the binding of Ca2+ to calretinin. Calretinin is a Ca2+-binding protein with four cooperative binding sites and one independent binding site. The Ca2+ binding to calretinin was assessed by measuring the decay of free Ca2

  12. Characterization of Palytoxin Binding to HaCaT Cells Using a Monoclonal Anti-Palytoxin Antibody

    Directory of Open Access Journals (Sweden)

    Chiara Florio

    2013-02-01

    Full Text Available Palytoxin (PLTX is the reference compound for a group of potent marine biotoxins, for which the molecular target is Na+/K+-ATPase. Indeed, ouabain (OUA, a potent blocker of the pump, is used to inhibit some PLTX effects in vitro. However, in an effort to explain incomplete inhibition of PLTX cytotoxicity, some studies suggest the possibility of two different binding sites on Na+/K+-ATPase. Hence, this study was performed to characterize PLTX binding to intact HaCaT keratinocytes and to investigate the ability of OUA to compete for this binding. PLTX binding to HaCaT cells was demonstrated by immunocytochemical analysis after 10 min exposure. An anti-PLTX monoclonal antibody-based ELISA showed that the binding was saturable and reversible, with a Kd of 3 × 10−10 M. However, kinetic experiments revealed that PLTX binding dissociation was incomplete, suggesting an additional, OUA-insensitive, PLTX binding site. Competitive experiments suggested that OUA acts as a negative allosteric modulator against high PLTX concentrations (0.3–1.0 × 10−7 M and possibly as a non-competitive antagonist against low PLTX concentrations (0.1–3.0 × 10−9 M. Antagonism was supported by PLTX cytotoxicity inhibition at OUA concentrations that displaced PLTX binding (1 × 10−5 M. However, this inhibition was incomplete, supporting the existence of both OUA-sensitive and -insensitive PLTX binding sites.

  13. Differential modulation in binding of ketoprofen to bovine serum albumin in the presence and absence of surfactants: spectroscopic and calorimetric insights.

    Science.gov (United States)

    Misra, Pinaki P; Kishore, Nand

    2013-07-01

    Surfactants have long been implicated in the unique static and dynamic effect on the structure and function of serum albumins. However, there is very little information on the mode of interactions of drugs to serum albumins in presence of surfactants. The importance of such studies lay in the fact that apart from binding to serum albumins, surfactants are known to radically influence the solvents' micro environment and protein structure. Thus, we have studied the binding of the racemic form of ketoprofen with bovine serum albumin at pH 7.4 in the presence and absence of hexadecyl trimethyl ammonium bromide, sodium dodecyl sulfate, Triton X-100, and NaCl. The structural studies of ketoprofen with bovine serum albumin as investigated by circular dichroism spectroscopy revealed a significant stabilization of bovine serum albumin. However, the combined presence of the surfactants, NaCl and ketoprofen, demonstrated an extremely erratic behavior in terms of stabilization. Further the values of Stern-Volmer and dynamic quenching constant suggested the binding site of ketoprofen to be scattered in the region of domain I B and II A, close to Trp 134. The results of differential scanning calorimetry revealed that the binding of ketoprofen to bovine serum albumin leads to its temperature-dependent separation into two units. The binding parameters of bovine serum albumin obtained from isothermal titration calorimetry in the combined presence of ketoprofen and surfactants/NaCl correlate well with the differential scanning calorimetry studies further confirming the localization of ketoprofen in domain I B and II A. In the combined presence of surfactants, NaCl and ketoprofen, the binding of ketoprofen to bovine serum albumin exhibited altered binding parameters far different from the binding of ketoprofen alone. Overall, the experimental findings strongly indicated positive as well as negative modulation in the binding of ketoprofen to bovine serum albumin in the presence of

  14. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Binti Jamek, Shariza; Nyffenegger, Christian; Muschiol, Jan

    2017-01-01

    /α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type...... A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools...

  15. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity.

    Directory of Open Access Journals (Sweden)

    Paulo M F Cunha

    2010-07-01

    Full Text Available Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2 or the zinc-finger transcription factor lame duck (lmd lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.

  16. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity.

    Science.gov (United States)

    Cunha, Paulo M F; Sandmann, Thomas; Gustafson, E Hilary; Ciglar, Lucia; Eichenlaub, Michael P; Furlong, Eileen E M

    2010-07-01

    Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2) or the zinc-finger transcription factor lame duck (lmd) lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.

  17. KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif.

    Directory of Open Access Journals (Sweden)

    Arnaud D Colantonio

    2011-03-01

    Full Text Available Molecular interactions between killer immunoglobulin-like receptors (KIRs and their MHC class I ligands play a central role in the regulation of natural killer (NK cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02, a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05(+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets.

  18. α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein.

    Science.gov (United States)

    Davis, Sterenn; Davis, Benjamin M; Richens, Joanna L; Vere, Kelly-Ann; Petrov, Peter G; Winlove, C Peter; O'Shea, Paul

    2015-08-01

    α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent membrane probe, 1-(3-sulfonatopropyl)-4-[β[2-(di-n-octylamino)-6-naphthyl]vinyl] pyridinium betaine, to investigate whether these effects are connected via influences on the membrane dipole potential (MDP), an intrinsic property of biological membranes previously demonstrated to modulate P-gp activity. α-Tocopherol and its non-free radical-scavenging succinate analog induced similar decreases in the MDP of phosphatidylcholine vesicles. α-Tocopherol succinate also reduced the MDP of T-lymphocytes, subsequently decreasing the binding affinity of saquinavir for P-gp. Additionally, α-tocopherol succinate demonstrated a preference for cholesterol-treated (membrane microdomain enriched) cells over membrane cholesterol-depleted cells. Microdomain disruption via cholesterol depletion decreased saquinavir's affinity for P-gp, potentially implicating these structures in the influence of α-tocopherol succinate on P-gp. This study provides evidence of a microdomain dipole potential-dependent mechanism by which α-tocopherol analogs influence P-gp activity. These findings have implications for the use of α-tocopherol derivatives for drug delivery across biological barriers.

  19. IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly.

    Directory of Open Access Journals (Sweden)

    Lisa M Maurer

    Full Text Available Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K of fibronectin (FN stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD motifs in four of the nine FN type 1 (FNI modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3FNI and (5FNI; (7FNI and (9FNI; or (3FNI, (5FNI, (7FNI, and (9FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.

  20. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    Energy Technology Data Exchange (ETDEWEB)

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  1. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    Science.gov (United States)

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  2. Designing Modulators of Monoamine Transporters using Virtual Screening Techniques

    Directory of Open Access Journals (Sweden)

    Ole Valente Mortensen

    2015-09-01

    Full Text Available The plasma-membrane monoamine transporters (MATs, including the serotonin (SERT, norepinephrine (NET and dopamine (DAT transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homologue of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and noncompetitive inhibitors have been determined. In addition, several structures of the drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques.

  3. Designing modulators of monoamine transporters using virtual screening techniques

    Science.gov (United States)

    Mortensen, Ole V.; Kortagere, Sandhya

    2015-01-01

    The plasma-membrane monoamine transporters (MATs), including the serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homolog of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and non-competitive inhibitors have been determined. In addition, several structures of the Drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques. PMID:26483692

  4. The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module.

    Directory of Open Access Journals (Sweden)

    Luke J Alderwick

    2011-02-01

    Full Text Available The D-arabinan-containing polymers arabinogalactan (AG and lipoarabinomannan (LAM are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM. Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985 at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.

  5. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    OpenAIRE

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturati...

  6. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L. (IIT); (UW-MED)

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  7. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    Science.gov (United States)

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  8. A reduced mechanical model for cAMP-modulated gating in HCN channels

    Science.gov (United States)

    Weißgraeber, Stephanie; Saponaro, Andrea; Thiel, Gerhard; Hamacher, Kay

    2017-01-01

    We developed an in silico mechanical model to analyze the process of cAMP-induced conformational modulations in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which conduct cations across the membrane of mammalian heart and brain cells. The structural analysis reveals