WorldWideScience

Sample records for allosteric enzyme imidazole

  1. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  2. Rational Engineering of Enzyme Allosteric Regulation through Sequence Evolution Analysis

    OpenAIRE

    Jae-Seong Yang; Sang Woo Seo; Sungho Jang; Gyoo Yeol Jung; Sanguk Kim

    2012-01-01

    Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligan...

  3. Rational engineering of enzyme allosteric regulation through sequence evolution analysis.

    Directory of Open Access Journals (Sweden)

    Jae-Seong Yang

    Full Text Available Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase. Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.

  4. Study on the Model for Regulation of the Allosteric Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    LI,Qian-Zhong(李前忠); LUO,Liao-Fu(罗辽复); ZHANG,Li-Rong(张利绒)

    2002-01-01

    The effects of activator molecule and repressive molecule on binding process between allosteric enzyme and substrate are disused by considering the heterotropic effect of the regulating molecule that binds to allosteric enzyme. A model of allosteric enzyme with heterotropic effect is presented. The cooperativity and anticooperativity in the regulation process are studied.

  5. Designing Allosteric Control into Enzymes by Chemical Rescue of Structure

    Energy Technology Data Exchange (ETDEWEB)

    Deckert, Katelyn; Budiardjo, S. Jimmy; Brunner, Luke C.; Lovell, Scott; Karanicolas, John (Kansas)

    2012-08-07

    Ligand-dependent activity has been engineered into enzymes for purposes ranging from controlling cell morphology to reprogramming cellular signaling pathways. Where these successes have typically fused a naturally allosteric domain to the enzyme of interest, here we instead demonstrate an approach for designing a de novo allosteric effector site directly into the catalytic domain of an enzyme. This approach is distinct from traditional chemical rescue of enzymes in that it relies on disruption and restoration of structure, rather than active site chemistry, as a means to achieve modulate function. We present two examples, W33G in a {beta}-glycosidase enzyme ({beta}-gly) and W492G in a {beta}-glucuronidase enzyme ({beta}-gluc), in which we engineer indole-dependent activity into enzymes by removing a buried tryptophan side chain that serves as a buttress for the active site architecture. In both cases, we observe a loss of function, and in both cases we find that the subsequent addition of indole can be used to restore activity. Through a detailed analysis of {beta}-gly W33G kinetics, we demonstrate that this rescued enzyme is fully functionally equivalent to the corresponding wild-type enzyme. We then present the apo and indole-bound crystal structures of {beta}-gly W33G, which together establish the structural basis for enzyme inactivation and rescue. Finally, we use this designed switch to modulate {beta}-glycosidase activity in living cells using indole. Disruption and recovery of protein structure may represent a general technique for introducing allosteric control into enzymes, and thus may serve as a starting point for building a variety of bioswitches and sensors.

  6. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    Science.gov (United States)

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme β-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. β-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for β-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples. PMID:24123550

  7. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product

    OpenAIRE

    Shyp, Viktoriya; Tankov, Stoyan; Ermakov, Andrey; Kudrin, Pavel; English, Brian P.; Ehrenberg, Måns; Tenson, Tanel; Elf, Johan; Hauryliuk, Vasili

    2012-01-01

    This report identifies a new mechanism of enzyme activation—positive allosteric regulation by the product—in the context of the bacterial stringent response, which is essential for bacterial adaptation to environmental conditions.

  8. Fumarate analogs act as allosteric inhibitors of the human mitochondrial NAD(P+-dependent malic enzyme.

    Directory of Open Access Journals (Sweden)

    Ju-Yi Hsieh

    Full Text Available Human mitochondrial NAD(P+-dependent malic enzyme (m-NAD(P-ME is allosterically activated by the four-carbon trans dicarboxylic acid, fumarate. Previous studies have suggested that the dicarboxylic acid in a trans conformation around the carbon-carbon double bond is required for the allosteric activation of the enzyme. In this paper, the allosteric effects of fumarate analogs on m-NAD(P-ME are investigated. Two fumarate-insensitive mutants, m-NAD(P-ME_R67A/R91A and m-NAD(P-ME_K57S/E59N/K73E/D102S, as well as c-NADP-ME, were used as the negative controls. Among these analogs, mesaconate, trans-aconitate, monomethyl fumarate and monoethyl fumarate were allosteric activators of the enzyme, while oxaloacetate, diethyl oxalacetate, and dimethyl fumarate were found to be allosteric inhibitors of human m-NAD(P-ME. The IC50 value for diethyl oxalacetate was approximately 2.5 mM. This paper suggests that the allosteric inhibitors may impede the conformational change from open form to closed form and therefore inhibit m-NAD(P-ME enzyme activity.

  9. Molecular Synchronization Waves in Arrays of Allosterically Regulated Enzymes

    CERN Document Server

    Casagrande, Vanessa; Mikhailov, Alexander S

    2007-01-01

    Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave patterns of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.

  10. Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are “Selected” upon Allosteric Regulation

    DEFF Research Database (Denmark)

    Hatzakis, Nikos S.; Wei, Li; Jørgensen, Sune Klamer;

    2012-01-01

    Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying...... allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating...... its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate with the...

  11. Diffusive coupling can discriminate between similar reaction mechanisms in an allosteric enzyme system

    Directory of Open Access Journals (Sweden)

    Nicola Ernesto M

    2010-11-01

    Full Text Available Abstract Background A central question for the understanding of biological reaction networks is how a particular dynamic behavior, such as bistability or oscillations, is realized at the molecular level. So far this question has been mainly addressed in well-mixed reaction systems which are conveniently described by ordinary differential equations. However, much less is known about how molecular details of a reaction mechanism can affect the dynamics in diffusively coupled systems because the resulting partial differential equations are much more difficult to analyze. Results Motivated by recent experiments we compare two closely related mechanisms for the product activation of allosteric enzymes with respect to their ability to induce different types of reaction-diffusion waves and stationary Turing patterns. The analysis is facilitated by mapping each model to an associated complex Ginzburg-Landau equation. We show that a sequential activation mechanism, as implemented in the model of Monod, Wyman and Changeux (MWC, can generate inward rotating spiral waves which were recently observed as glycolytic activity waves in yeast extracts. In contrast, in the limiting case of a simple Hill activation, the formation of inward propagating waves is suppressed by a Turing instability. The occurrence of this unusual wave dynamics is not related to the magnitude of the enzyme cooperativity (as it is true for the occurrence of oscillations, but to the sensitivity with respect to changes of the activator concentration. Also, the MWC mechanism generates wave patterns that are more stable against long wave length perturbations. Conclusions This analysis demonstrates that amplitude equations, which describe the spatio-temporal dynamics near an instability, represent a valuable tool to investigate the molecular effects of reaction mechanisms on pattern formation in spatially extended systems. Using this approach we have shown that the occurrence of inward

  12. Mapping of the Allosteric Site in Cholesterol Hydroxylase CYP46A1 for Efavirenz, a Drug That Stimulates Enzyme Activity.

    Science.gov (United States)

    Anderson, Kyle W; Mast, Natalia; Hudgens, Jeffrey W; Lin, Joseph B; Turko, Illarion V; Pikuleva, Irina A

    2016-05-27

    Cytochrome P450 46A1 (CYP46A1) is a microsomal enzyme and cholesterol 24-hydroxylase that controls cholesterol elimination from the brain. This P450 is also a potential target for Alzheimer disease because it can be activated pharmacologically by some marketed drugs, as exemplified by efavirenz, the anti-HIV medication. Previously, we suggested that pharmaceuticals activate CYP46A1 allosterically through binding to a site on the cytosolic protein surface, which is different from the enzyme active site facing the membrane. Here we identified this allosteric site for efavirenz on CYP46A1 by using a combination of hydrogen-deuterium exchange coupled to MS, computational modeling, site-directed mutagenesis, and analysis of the CYP46A1 crystal structure. We also mapped the binding region for the CYP46A1 redox partner oxidoreductase and found that the allosteric and redox partner binding sites share a common border. On the basis of the data obtained, we propose the mechanism of CYP46A1 allostery and the pathway for the signal transmission from the P450 allosteric site to the active site. PMID:27056331

  13. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  14. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  15. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  16. The cyclic di-nucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function

    Science.gov (United States)

    Precit, Mimi; Delince, Matthieu; Pensinger, Daniel; Huynh, TuAnh Ngoc; Jurado, Ashley R.; Goo, Young Ah; Sadilek, Martin; Iavarone, Anthony T.; Sauer, John-Demian; Tong, Liang; Woodward, Joshua J.

    2014-01-01

    SUMMARY Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected enzyme catalysis of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic di-nucleotide. PMID:25215494

  17. Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive

    Science.gov (United States)

    Bagchi, Damayanti; Ghosh, Abhijit; Singh, Priya; Dutta, Shreyasi; Polley, Nabarun; Althagafi, Ismail. I.; Jassas, Rabab S.; Ahmed, Saleh A.; Pal, Samir Kumar

    2016-09-01

    The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

  18. Synthetic, enzyme kinetic, and protein crystallographic studies of C-β-d-glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase.

    Science.gov (United States)

    Kantsadi, Anastassia L; Bokor, Éva; Kun, Sándor; Stravodimos, George A; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Juhász-Tóth, Éva; Szakács, Andrea; Batta, Gyula; Docsa, Tibor; Gergely, Pál; Somsák, László

    2016-11-10

    C-β-d-Glucopyranosyl pyrrole derivatives were prepared in the reactions of pyrrole, 2-, and 3-aryl-pyrroles with O-peracetylated β-d-glucopyranosyl trichloroacetimidate, while 2-(β-d-glucopyranosyl) indole was obtained by a cross coupling of O-perbenzylated β-d-glucopyranosyl acetylene with N-tosyl-2-iodoaniline followed by spontaneous ring closure. An improved synthesis of O-perbenzoylated 2-(β-d-glucopyranosyl) imidazoles was achieved by reacting C-glucopyranosyl formimidates with α-aminoketones. The deprotected compounds were assayed with isoforms of glycogen phosphorylase (GP) to show no activity of the pyrroles against rabbit muscle GPb. The imidazoles proved to be the best known glucose derived inhibitors of not only the muscle enzymes (both a and b) but also of the pharmacologically relevant human liver GPa (Ki = 156 and 26 nM for the 4(5)-phenyl and -(2-naphthyl) derivatives, respectively). An X-ray crystallographic study of the rmGPb-imidazole complexes revealed structural features of the strong binding, and also allowed to explain the absence of inhibition for the pyrrole derivatives. PMID:27522507

  19. Intrinsic Enzyme Dynamics in the Unbound State and Relation to Allosteric Regulation

    OpenAIRE

    Bahar, Ivet; Chennubhotla, Chakra; Tobi, Dror

    2007-01-01

    In recent years, there has been a surge in the number of studies exploring the relationship between proteins’ equilibrium dynamics and structural changes involved in function. An emerging concept, supported by both theory and experiments, is that under native state conditions proteins have an intrinsic ability to sample conformations that meet functional requirements. A typical example is the ability of enzymes to sample open and closed forms, irrespective of substrate, succeeded by the stabi...

  20. Sequence analysis and molecular characterization of Clonorchis sinensis hexokinase, an unusual trimeric 50-kDa glucose-6-phosphate-sensitive allosteric enzyme.

    Directory of Open Access Journals (Sweden)

    Tingjin Chen

    Full Text Available Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis, is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK, the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small

  1. Allosteric modulation of caspases.

    Science.gov (United States)

    Häcker, Hans-Georg; Sisay, Mihiret Tekeste; Gütschow, Michael

    2011-11-01

    Caspases are proteolytic enzymes mainly involved in the induction and execution phases of apoptosis. This type of programmed cell death is an essential regulatory process required to maintain the integrity and homeostasis of multicellular organisms. Inappropriate apoptosis is attributed a key role in many human diseases, including neurodegenerative disorders, ischemic damage, autoimmune diseases and cancer. Allosteric modulation of the function of a protein occurs when the regulatory trigger, such as the binding of a small effector or inhibitor molecule, takes place some distance from the protein's active site. In recent years, several caspases have been identified that possess allosteric sites and binding of small molecule to these sites resulted in the modulation of enzyme activities. Regulation of caspase activity by small molecule allosteric modulators is believed to be of great therapeutic importance. In this review we give brief highlights on recent developments in identifying and characterizing natural and synthetic allosteric inhibitors as well as activators of caspases and discuss their potential in drug discovery and protein engineering. PMID:21807025

  2. Allosteric Regulation of Phenylalanine Hydroxylase

    OpenAIRE

    Fitzpatrick, Paul F.

    2011-01-01

    The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.

  3. Part I: RNA hydrolysis catalyzed by imidazole compounds. Part II. Hydrophobic acceleration of reactions and mimics of thiamin-dependent enzymes

    International Nuclear Information System (INIS)

    Catalysts modeled after the active site groups of the enzyme Ribonuclease A were synthesized and tested for catalysis of the hydrolysis of poly(rU), using a quantitative assay. The most effective of all the catalysts is N,N'-bis-imidazolylmethane, which gave a four-fold rate enhancement as compared to N-methyl-imidazole. The structure/activity relationships are discussed in light of the ribonuclease mechanism. Also examined were reactions catalyzed by the coenzyme thiamine. In an investigation of the effects of restricting conformational freedom, a thiazolium salt was attached in two positions to β-cyclodextrin. Since the catalyst gave about the same rate for tritium exchange from benzaldehyde as singly-attached catalysts, we surmise that any rate enhancement due to the restriction of bond rotations has been lost by forcing the structure into less productive conformations. The benzoin condensation catalyzed by cyanide was also investigated. The reaction was shown to be faster in water than in most organic solvents. Kinetic salt effects and the effects of added β- and γ-cyclodextrin were measured in water; salting-out ions and γ-cyclodextrin increase the rate, while salting-in ions and β-cyclodextrin decrease it. Negative salt effects were observed in formamide, ethylene glycol, and DMSO. All these media effects are discussed in relation to the compact, hydrophobic transition state for the reaction

  4. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit (INSRM-France); (UC); (IP-France)

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  5. Uracil phosphoribosyltransferase from the extreme thermoacidophilic archaebacterium Sulfolobus shibatae is an allosteric enzyme, activated by GTP and inhibited by CTP

    DEFF Research Database (Denmark)

    Linde, Lise; Jensen, Kaj Frank

    1996-01-01

    -fold without much effect on Km for the substrates. The concentration of GTP required for half-maximal activation was about 80 µM. CTP was a strong inhibitor and acted by raising the concentration of GTP needed for half-maximal activation of the enzyme. We conclude that uracil phosphoribosyltransferase......Uracil phosphoribosyltransferase, which catalyses the formation of UMP and pyrophosphate from uracil and 5-phosphoribosyl a-1-pyrophosphate (PRPP), was partly purified from the extreme thermophilic archaebacterium Sulfolobus shibatae. The enzyme required divalent metal ions for activity...... and it showed the highest activity at pH 6.4. The specific activity of the enzyme was 50-times higher at 95°C than at 37°C, but the functional half-life was short at 95°C. The activity of uracil phosphoribosyltransferase was strongly activated by GTP, which increased Vmax of the reaction by approximately 20...

  6. Allosteric regulation of monocyclic interconvertible enzyme cascade systems: use of Escherichia coli glutamine synthetase as an experimental model.

    Science.gov (United States)

    Rhee, S G; Park, R; Chock, P B; Stadtman, E R

    1978-07-01

    The interconversion of Escherichia coli glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] between its adenylylated and unadenylylated forms has been used to verify the prediction derived from a theoretical analysis of the steady-state functions of a model for a monocyclic interconvertible enzyme cascade system [Stadtman, E. R. & Chock, P. B. (1977) Proc. Natl. Acad. Sci. USA 74, 2761-2770]. Because glutamine and alpha-ketoglutarate are multifunctional effectors and because three active enzyme complexes are involved in both adenylylation and deadenylylation of glutamine synthetase, at least 28 constants are required to describe the glutamine synthetase monocyclic cascade. Of these, 22 constants were determined experimentally and 6 were estimated via computer curve fitting. Despite the complexity, when both adenylylation and deadenylylation reactions are functioning, the number of adenylyl groups bound per mole of enzyme, n, assumes a steady-state level as is predicted by the model. This n value is determined by the mole fraction of P(IIA)-given by ([P(IIA)]/([P(IIA)] + [P(IID)])-and the ratio of glutamine to alpha-ketoglutarate (P(IID) and P(IID) are the unmodified and the uridylylated forms of the P(II) regulatory protein). In the presence of 0.5 mM glutamine and 2 mM alpha-ketoglutarate, the value of n increases as a nearly hyperbolic function in response to increasing mole fractions of P(IIA). When the constant level of alpha-ketoglutarate is gradually increased to 40 muM, the hyperbolic function converts slowly to a parabolic function. When the P(IIA) mole fraction was maintained at 0.6 and alpha-ketoglutarate levels were varied from 1 mM to 4 muM, an 800-fold increase in signal amplification was observed with respect to glutamine activation. In addition, because glutamine activates the adenylylation and inhibits the deadenylylation reaction, a sensitivity index of 2.1 (corresponding to a Hill number of 1.5) was obtained for the

  7. Detecting Allosteric Networks Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Bowerman, S; Wereszczynski, J

    2016-01-01

    Allosteric networks allow enzymes to transmit information and regulate their catalytic activities over vast distances. In principle, molecular dynamics (MD) simulations can be used to reveal the mechanisms that underlie this phenomenon; in practice, it can be difficult to discern allosteric signals from MD trajectories. Here, we describe how MD simulations can be analyzed to reveal correlated motions and allosteric networks, and provide an example of their use on the coagulation enzyme thrombin. Methods are discussed for calculating residue-pair correlations from atomic fluctuations and mutual information, which can be combined with contact information to identify allosteric networks and to dynamically cluster a system into highly correlated communities. In the case of thrombin, these methods show that binding of the antagonist hirugen significantly alters the enzyme's correlation landscape through a series of pathways between Exosite I and the catalytic core. Results suggest that hirugen binding curtails dynamic diversity and enforces stricter venues of influence, thus reducing the accessibility of thrombin to other molecules. PMID:27497176

  8. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

    Science.gov (United States)

    Christopoulos, Arthur; Changeux, Jean-Pierre; Catterall, William A; Fabbro, Doriano; Burris, Thomas P; Cidlowski, John A; Olsen, Richard W; Peters, John A; Neubig, Richard R; Pin, Jean-Philippe; Sexton, Patrick M; Kenakin, Terry P; Ehlert, Frederick J; Spedding, Michael; Langmead, Christopher J

    2014-10-01

    Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.

  9. Calculated pKa Variations Expose Dynamic Allosteric Communication Networks.

    Science.gov (United States)

    Lang, Eric J M; Heyes, Logan C; Jameson, Geoffrey B; Parker, Emily J

    2016-02-17

    Allosteric regulation of protein function, the process by which binding of an effector molecule provokes a functional response from a distal site, is critical for metabolic pathways. Yet, the way the allosteric signal is communicated remains elusive, especially in dynamic, entropically driven regulation mechanisms for which no major conformational changes are observed. To identify these dynamic allosteric communication networks, we have developed an approach that monitors the pKa variations of ionizable residues over the course of molecular dynamics simulations performed in the presence and absence of an allosteric regulator. As the pKa of ionizable residues depends on their environment, it represents a simple metric to monitor changes in several complex factors induced by binding an allosteric effector. These factors include Coulombic interactions, hydrogen bonding, and solvation, as well as backbone motions and side chain fluctuations. The predictions that can be made with this method concerning the roles of ionizable residues for allosteric communication can then be easily tested experimentally by changing the working pH of the protein or performing single point mutations. To demonstrate the method's validity, we have applied this approach to the subtle dynamic regulation mechanism observed for Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first enzyme of aromatic biosynthesis. We were able to identify key communication pathways linking the allosteric binding site to the active site of the enzyme and to validate these findings experimentally by reestablishing the catalytic activity of allosterically inhibited enzyme via modulation of the working pH, without compromising the binding affinity of the allosteric regulator.

  10. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    Science.gov (United States)

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  11. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  12. Controlling allosteric networks in proteins

    Science.gov (United States)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  13. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  14. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    Science.gov (United States)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  15. Allosteric Mechanism of Pyruvate Kinase from Leishmania mexicana Uses a Rock and Lock Model*

    OpenAIRE

    Morgan, Hugh P.; McNae, Iain W.; Matthew W Nowicki; Hannaert, Véronique; Michels, Paul A M; Fothergill-Gilmore, Linda A.; Walkinshaw, Malcolm D.

    2010-01-01

    Allosteric regulation provides a rate management system for enzymes involved in many cellular processes. Ligand-controlled regulation is easily recognizable, but the underlying molecular mechanisms have remained elusive. We have obtained the first complete series of allosteric structures, in all possible ligated states, for the tetrameric enzyme, pyruvate kinase, from Leishmania mexicana. The transition between inactive T-state and active R-state is accompanied by a simple symmetrical 6° rigi...

  16. Allosteric Mechanisms in Chaperonin Machines.

    Science.gov (United States)

    Gruber, Ranit; Horovitz, Amnon

    2016-06-01

    Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions. PMID:26726755

  17. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.

    Science.gov (United States)

    Wales, M E; Madison, L L; Glaser, S S; Wild, J R

    1999-12-17

    The native Escherichia coli aspartate transcarbamoylase (ATCase, E.C. 2.1.3.2) provides a classic allosteric model for the feedback inhibition of a biosynthetic pathway by its end products. Both E. coli and Erwinia herbicola possess ATCase holoenzymes which are dodecameric (2(c3):3(r2)) with 311 amino acid residues per catalytic monomer and 153 and 154 amino acid residues per regulatory (r) monomer, respectively. While the quaternary structures of the two enzymes are identical, the primary amino acid sequences have diverged by 14 % in the catalytic polypeptide and 20 % in the regulatory polypeptide. The amino acids proposed to be directly involved in the active site and nucleotide binding site are strictly conserved between the two enzymes; nonetheless, the two enzymes differ in their catalytic and regulatory characteristics. The E. coli enzyme has sigmoidal substrate binding with activation by ATP, and inhibition by CTP, while the E. herbicola enzyme has apparent first order kinetics at low substrate concentrations in the absence of allosteric ligands, no ATP activation and only slight CTP inhibition. In an apparently important and highly conserved characteristic, CTP and UTP impose strong synergistic inhibition on both enzymes. The co-operative binding of aspartate in the E. coli enzyme is correlated with a T-to-R conformational transition which appears to be greatly reduced in the E. herbicola enzyme, although the addition of inhibitory heterotropic ligands (CTP or CTP+UTP) re-establishes co-operative saturation kinetics. Hybrid holoenzymes assembled in vivo with catalytic subunits from E. herbicola and regulatory subunits from E. coli mimick the allosteric response of the native E. coli holoenzyme and exhibit ATP activation. The reverse hybrid, regulatory subunits from E. herbicola and catalytic subunits from E. coli, exhibited no response to ATP. The conserved structure and diverged functional characteristics of the E. herbicola enzyme provides an opportunity

  18. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-, N

  19. Binding leverage as a molecular basis for allosteric regulation.

    Directory of Open Access Journals (Sweden)

    Simon Mitternacht

    2011-09-01

    Full Text Available Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design.

  20. The lattice dynamics of imidazole

    International Nuclear Information System (INIS)

    The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)

  1. The structure and allosteric regulation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2011-09-01

    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy.

  2. Molecular Docking Evaluation of Imidazole Analogues as Potent Candida albicans 14α-Demethylase Inhibitors.

    Science.gov (United States)

    Rani, Nidhi; Kumar, Praveen; Singh, Randhir; Sharma, Ajay

    2015-01-01

    Candida albicans is one of the most important causes of life-threating fungal infections. Lanosterol 14α-demethylase (Cytochrome P450DM) is the target enzyme of azole antifungal agents. The study involved selection and modeling of the target enzyme followed by refinement of the model using molecular dynamic simulation. The modeled structure of enzyme was validated using Ramachandran plot and Sequence determination technique. A series of chlorosubstituted imidazole analogues were evaluated for Cytochrome P450 inhibitory activity using molecular docking studies. The imidazole analogues were prepared using Chem sketch and molecular docking was performed using Molergo Virtual Docker program. The docking study indicated that all the imidazole analogues (AN1-AN45) and standard drugs i.e., Ketoconazole, Clotrimazole and Miconazole have interaction with protein residue of 14α-demethylase, Heme cofactor and the water molecules present in the active site. PMID:26081558

  3. Identification of the allosteric regulatory site of insulysin.

    Directory of Open Access Journals (Sweden)

    Nicholas Noinaj

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  4. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W.; Gerrard, Juliet Ann

    2011-06-24

    Background Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. Principal Findings The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Conclusions/Significance Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  5. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W. (U. Sao Paulo); (Kentucky)

    2012-05-25

    Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the A{beta} peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  6. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    -molecule allosteric inhibitor trametinib in 2013, the progress of more than 10 other allosteric inhibitors in clinical trials, and the emergence of a pipeline of highly selective and potent preclinical molecules, have been reported in the past decade. In this article, we present the current knowledge on allosteric...

  7. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  8. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  9. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  10. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation.

    Science.gov (United States)

    Cherkasov, Anton A; Overton, Robert A; Sokolov, Eugene P; Sokolova, Inna M

    2007-01-01

    Temperature and heavy metals such as cadmium (Cd) are important environmental stressors that can strongly affect mitochondrial function of marine poikilotherms. In this study, we investigated the combined effects of temperature (20 degrees C and 30 degrees C) and Cd stress on production of reactive oxygen species (ROS) and oxidative stress in a marine poikilotherm Crassostrea virginica (the eastern oyster) using mitochondrial aconitase as a sensitive biomarker of oxidative damage. We also assessed potential involvement of mitochondrial uncoupling proteins (UCPs) in antioxidant protection in oyster mitochondria using purine nucleotides (GDP, ATP and ADP) as specific inhibitors, and free fatty acids as stimulators, of UCPs. Our results show that exposure to Cd results in elevated ROS production and oxidative damage as indicated by aconitase inactivation which is particularly pronounced at elevated temperature. Unexpectedly, oyster mitochondrial aconitase was inhibited by physiologically relevant levels of ATP (IC(50)=1.93 and 3.04 mmol l(-1) at 20 degrees C and 30 degrees C, respectively), suggesting that allosteric regulation of aconitase by this nucleotide may be involved in regulation of the tricarboxylic acid flux in oysters. Aconitase was less sensitive to ATP inhibition at 30 degrees C than at 20 degrees C, consistent with the elevated metabolic flux at higher temperatures. ADP and GDP also inhibited mitochondrial aconitase but at the levels well above the physiological concentrations of these nucleotides (6-11 mmol l(-1)). Our study shows expression of at least three UCP isoforms in C. virginica gill tissues but provides no indication that UCPs protect mitochondrial aconitase from oxidative inactivation in oysters. Overall, the results of this study indicate that temperature stress exaggerates toxicity of Cd leading to elevated oxidative stress in mitochondria, which may have important implications for survival of poikilotherms in polluted environments during

  11. Allosteric transition: a comparison of two models

    DEFF Research Database (Denmark)

    Bindslev, Niels

    2013-01-01

    Introduction Two recent models are in use for analysis of allosteric drug action at receptor sites remote from orthosteric binding sites. One is an allosteric two-state mechanical model derived in 2000 by David Hall. The other is an extended operational model developed in 2007 by Arthur Christopo......Introduction Two recent models are in use for analysis of allosteric drug action at receptor sites remote from orthosteric binding sites. One is an allosteric two-state mechanical model derived in 2000 by David Hall. The other is an extended operational model developed in 2007 by Arthur...

  12. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    Directory of Open Access Journals (Sweden)

    Nadine Veith

    Full Text Available Pyruvate kinase (PYK is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric

  13. Multiple Transmembrane Binding Sites for p-Trifluoromethyldiazirinyl-etomidate, a Photoreactive Torpedo Nicotinic Acetylcholine Receptor Allosteric Inhibitor*

    OpenAIRE

    Hamouda, Ayman K.; Stewart, Deirdre S.; Husain, S. Shaukat; Cohen, Jonathan B.

    2011-01-01

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [3H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[3H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our unders...

  14. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act?

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2007-01-01

    Many small-molecule agonists also display allosteric properties. Such ago-allosteric modulators act as co-agonists, providing additive efficacy--instead of partial antagonism--and they can affect--and often improve--the potency of the endogenous agonist. Surprisingly, the apparent binding sites...... different binding modes. In another, dimeric, receptor scenario, the endogenous agonist binds to one protomer while the ago-allosteric modulator binds to the other, 'allosteric' protomer. It is suggested that testing for ago-allosteric properties should be an integral part of the agonist drug discovery...... process because a compound that acts with--rather than against--the endogenous agonist could be an optimal agonist drug....

  15. Unraveling structural mechanisms of allosteric drug action.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung

    2014-05-01

    Orthosteric drugs block the active site to obstruct function; allosteric drugs modify the population of the active state, to modulate function. Available data lead us to propose that allosteric drugs can constitute anchors and drivers. The anchor docks into an allosteric pocket. The conformation with which it interacts is unchanged during the transition between the inactive and active states. The anchor provides the foundation that allows the driver to exert a 'pull' and/or 'push' action that shifts the receptor population from the inactive to the active state. The presence or absence of driver atom in an allosteric drug can exert opposite agonism. We map a strategy for driver identification and expect the allosteric trigger concept to transform agonist/antagonist drug discovery.

  16. Bioinformatic scaling of allosteric interactions in biomedical isozymes

    Science.gov (United States)

    Phillips, J. C.

    2016-09-01

    Allosteric (long-range) interactions can be surprisingly strong in proteins of biomedical interest. Here we use bioinformatic scaling to connect prior results on nonsteroidal anti-inflammatory drugs to promising new drugs that inhibit cancer cell metabolism. Many parallel features are apparent, which explain how even one amino acid mutation, remote from active sites, can alter medical results. The enzyme twins involved are cyclooxygenase (aspirin) and isocitrate dehydrogenase (IDH). The IDH results are accurate to 1% and are overdetermined by adjusting a single bioinformatic scaling parameter. It appears that the final stage in optimizing protein functionality may involve leveling of the hydrophobic limits of the arms of conformational hydrophilic hinges.

  17. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  18. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  19. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Science.gov (United States)

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-01

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932

  20. VARIOUS APPROACHES FOR SYNTHESIS OF IMIDAZOLE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Bharti Ashish

    2011-04-01

    Full Text Available Imidazole, a five-membered heterocycle having three carbon atoms, two nitrogen atoms, and two double bonds, having efficient antimalarial, anti-inflammatory, antibacterial activity against Escherichia coil, Staphylococcus aureus and Pseudomonas aeruginosa, anti-cancer, mutagenic activity against Salmonella typhimurium, antifungal, antimicrobial, insecticidal, anti-allergic activity etc. The presence of heterocyclic structures exerts various physiologic effects on the body. In the present study we have reviewed several newer approches of synthesizing the substituted imidazole derivatives via catalytic reaction & by the application of various suitable reagents.

  1. Chemogenomics of allosteric binding sites in GPCRs

    DEFF Research Database (Denmark)

    Gloriam, David E.

    2013-01-01

    profiling. This review describes recent developments structured into ligand-, target- and combined chemogenomic techniques and applications to allosteric GPCR ligands. It also outlines relative strengths and limitations of these techniques and the impact of the increasing crystallographic data....

  2. Identification of the Allosteric Site for Phenylalanine in Rat Phenylalanine Hydroxylase.

    Science.gov (United States)

    Zhang, Shengnan; Fitzpatrick, Paul F

    2016-04-01

    Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that requires activation by phenylalanine for full activity. The location of the allosteric site for phenylalanine has not been established. NMR spectroscopy of the isolated regulatory domain (RDPheH(25-117) is the regulatory domain of PheH lacking residues 1-24) of the rat enzyme in the presence of phenylalanine is consistent with formation of a side-by-side ACT dimer. Six residues in RDPheH(25-117) were identified as being in the phenylalanine-binding site on the basis of intermolecular NOEs between unlabeled phenylalanine and isotopically labeled protein. The location of these residues is consistent with two allosteric sites per dimer, with each site containing residues from both monomers. Site-specific variants of five of the residues (E44Q, A47G, L48V, L62V, and H64N) decreased the affinity of RDPheH(25-117) for phenylalanine based on the ability to stabilize the dimer. Incorporation of the A47G, L48V, and H64N mutations into the intact protein increased the concentration of phenylalanine required for activation. The results identify the location of the allosteric site as the interface of the regulatory domain dimer formed in activated PheH.

  3. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases

    Science.gov (United States)

    Chio, Cynthia M.; Yu, Xiaoling; Bishop, Anthony C.

    2015-01-01

    Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are critical regulators of metazoan cell signaling and have emerged as potential drug targets for a range of human diseases. Strategies for chemically targeting the function of individual PTPs selectively could serve to elucidate the signaling roles of these enzymes and would potentially expedite validation of the therapeutic promise of PTP inhibitors. Here we report a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs; these sites, which can be introduced into target PTPs through protein engineering, serve to sensitize target PTPs to potent and selective inhibition by a biarsenical small molecule. Building on the recent discovery of a naturally occurring cryptic allosteric site in wild-type Src-homology-2 domain containing PTP (Shp2) that can be targeted by biarsenical compounds, we hypothesized that Shp2’s unusual sensitivity to biarsenicals could be strengthened through rational design and that the Shp2-specific site could serve as a blueprint for the introduction of non-natural inhibitor sensitivity in other PTPs. Indeed, we show here that the strategic introduction of a cysteine residue at a position removed from the Shp2 active site can serve to increase the potency and selectivity of the interaction between Shp2’s allosteric site and the biarsenical inhibitor. Moreover, we find that “Shp2-like” allosteric sites can be installed de novo in PTP enzymes that do not possess naturally occurring sensitivity to biarsenical compounds. Using primary-sequence alignments to guide our enzyme engineering, we have successfully introduced allosteric-inhibition sites in four classical PTPs—PTP1B, PTPH-1, FAP-1, and HePTP—from four different PTP subfamilies, suggesting that our sensitization approach can likely be applied widely across the classical PTP family to generate biarsenical-responsive PTPs. PMID:25828055

  4. Extreme Flexibility in a Zeolitic Imidazolate Framework

    DEFF Research Database (Denmark)

    Wharmby, M.T.; Henke, S.; Bennett, T.D.;

    2015-01-01

    Desolvated zeolitic imidazolate framework ZIF-4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23% contraction in unit cell volume. The structure of the non-porous, low temperature phase was determined from synchrotron X-ray powder diffraction data...

  5. 4-(Imidazol-1-yl)benzoic acid

    Science.gov (United States)

    Zheng, Zheng; Geng, Wen-Qian; Wu, Zhi-Chao; Zhou, Hong-Ping

    2011-01-01

    In the title mol­ecule, C10H8N2O2, the imidazole and benzene rings form a dihedral angle of 14.5 (1)°. In the crystal, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into chains extending in [01], which are further linked into sheets parallel to (102) through weak C—H⋯O inter­actions. PMID:21523173

  6. VARIOUS APPROACHES FOR SYNTHESIS OF IMIDAZOLE DERIVATIVES

    OpenAIRE

    Bharti Ashish; Pandeya S.N

    2011-01-01

    Imidazole, a five-membered heterocycle having three carbon atoms, two nitrogen atoms, and two double bonds, having efficient antimalarial, anti-inflammatory, antibacterial activity against Escherichia coil, Staphylococcus aureus and Pseudomonas aeruginosa, anti-cancer, mutagenic activity against Salmonella typhimurium, antifungal, antimicrobial, insecticidal, anti-allergic activity etc. The presence of heterocyclic structures exerts various physiologic effects on the body. In the present st...

  7. Coherent conformational degrees of freedom as a structural basis for allosteric communication.

    Directory of Open Access Journals (Sweden)

    Simon Mitternacht

    2011-12-01

    Full Text Available Conformational changes in allosteric regulation can to a large extent be described as motion along one or a few coherent degrees of freedom. The states involved are inherent to the protein, in the sense that they are visited by the protein also in the absence of effector ligands. Previously, we developed the measure binding leverage to find sites where ligand binding can shift the conformational equilibrium of a protein. Binding leverage is calculated for a set of motion vectors representing independent conformational degrees of freedom. In this paper, to analyze allosteric communication between binding sites, we introduce the concept of leverage coupling, based on the assumption that only pairs of sites that couple to the same conformational degrees of freedom can be allosterically connected. We demonstrate how leverage coupling can be used to analyze allosteric communication in a range of enzymes (regulated by both ligand binding and post-translational modifications and huge molecular machines such as chaperones. Leverage coupling can be calculated for any protein structure to analyze both biological and latent catalytic and regulatory sites.

  8. Imidazole and Triazole Coordination Chemistry for Antifouling Coatings

    OpenAIRE

    Markus Andersson Trojer; Alireza Movahedi; Hans Blanck; Magnus Nydén

    2013-01-01

    Fouling of marine organisms on the hulls of ships is a severe problem for the shipping industry. Many antifouling agents are based on five-membered nitrogen heterocyclic compounds, in particular imidazoles and triazoles. Moreover, imidazole and triazoles are strong ligands for Cu2+ and Cu+, which are both potent antifouling agents. In this review, we summarize a decade of work within our groups concerning imidazole and triazole coordination chemistry for antifouling applications with a partic...

  9. Computation of conformational coupling in allosteric proteins.

    Directory of Open Access Journals (Sweden)

    Brian A Kidd

    2009-08-01

    Full Text Available In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.

  10. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  11. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  12. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  13. Imidazole-Chloranil Charge Transfer Complex

    Institute of Scientific and Technical Information of China (English)

    Hai-long Wang; Tong-tong Lu; Tian-jing He; Dong-ming Chen

    2008-01-01

    UV-Vis absorption spectra of the molecular complex formed by imidazole (Im) and chloranil (CA) were measured in chloroform. The stoichiometry of the imidazole-chloranil (Im-CA) complex was determined as 1:1 by applying Benesi-Hildebrand's equation and Job's continuous variation method. Density function theory (DFT) and MP2 calculations were performed to study the structures and the binding energies of the Im-CA complex. The calculations located four conformations (denoted as S1-S4) for the Im-CA complex, two edge(lm)-to-face(CA) linked and two edgc(Im)-to-edge(CA) linked. It was found that the edgc-to-face conformers are more stable than the edge-to-edge ones. The bonding characteristics of these conformers were investigated with natural population analysis (NPA), topological analysis of electron density, and natural bond orbital (NBO) analysis. It was revealed that the edge-to-face conformers are charge-transfer (CT) complexes whereas the edge-to-edge conformers are the hydrogen bond complexes. For the most stable conformation of the Im-CA comp]ex (S1), the charge transfer interaction of the imidazole n(N15) lone pair orbital with the chloranil π*(C1=O7) orbital plays a crucial role in the Im-CA binding, and the binding is further strengthened by the 07… H20 hydrogen bond. The electronic excitation energies of the complex (S1) were calculated with time-dependent DFT (TDDFT), and the observed UV-Visiblc spectrum of the complex was analyzed based on the computed results.

  14. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G;

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have...... been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime...... example of intraprotein control of the electron-transfer rates by allosteric interactions....

  15. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    Energy Technology Data Exchange (ETDEWEB)

    Costarrosa, L. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Calvino-Casilda, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Ferrera-Escudero, S. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es

    2006-06-30

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N{sub 2} adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  16. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.

    Science.gov (United States)

    Mathieu, Valéry; Fastrez, Jacques; Soumillion, Patrice

    2010-09-01

    In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.

  17. Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Desbois, Sebastien; Dogovski, Con; Gorman, Michael A; Ketaren, Natalia E; Paxman, Jason J; Siddiqui, Tanzeela; Zammit, Leanne M; Abbott, Belinda M; Robins-Browne, Roy M; Parker, Michael W; Jameson, Geoffrey B; Hall, Nathan E; Panjikar, Santosh; Perugini, Matthew A

    2016-08-01

    Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS. PMID:27427481

  18. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  19. Design of an allosterically regulated retroaldolase

    Science.gov (United States)

    Raymond, Elizabeth A; Mack, Korrie L; Yoon, Jennifer H; Moroz, Olesia V; Moroz, Yurii S; Korendovych, Ivan V

    2015-01-01

    We employed a minimalist approach for design of an allosterically controlled retroaldolase. Introduction of a single lysine residue into the nonenzymatic protein calmodulin led to a 15,000-fold increase in the second order rate constant for retroaldol reaction with methodol as a substrate. The resulting catalyst AlleyCatR is active enough for subsequent directed evolution in crude cell bacterial lysates. AlleyCatR's activity is allosterically regulated by Ca2+ ions. No catalysis is observed in the absence of the metal ion. The increase in catalytic activity originates from the hydrophobic interaction of the substrate (∼2000-fold) and the change in the apparent pKa of the active lysine residue. PMID:25516403

  20. Interaction of Imidazole Containing Hydroxamic Acids with Fe(III: Hydroxamate Versus Imidazole Coordination of the Ligands

    Directory of Open Access Journals (Sweden)

    Nóra V. Nagy

    2007-12-01

    Full Text Available Solution equilibrium studies on Fe(III complexes formed with imidazole-4-carbohydroxamic acid (Im-4-Cha, N-Me-imidazole-4-carbohydroxamic acid (N-Me-Im-4-Cha, imidazole-4-acetohydroxamic acid (Im-4-Aha, and histidinehydroxamic acid (Hisha have been performed by using pH-potentiometry, UV-visible spectrophotometry, EPR, ESI-MS, and H1-NMR methods. All of the obtained results demonstrate that the imidazole moiety is able to play an important role very often in the interaction with Fe(III, even if this metal ion prefers the hydroxamate chelates very much. If the imidazole moiety is in α-position to the hydroxamic one (Im-4-Cha and N-Me-Im-4-Cha its coordination to the metal ion is indicated unambiguously by our results. Interestingly, parallel formation of (Nimidazole, Ohydroxamate, and (Ohydroxamate, Ohydroxamate type chelates seems probable with N-Me-Im-4-Cha. The imidazole is in β-position to the hydroxamic moiety in Im-4-Aha and an intermolecular noncovalent (mainly H-bonding interaction seems to organize the intermediate-protonated molecules in this system. Following the formation of mono- and bishydroxamato mononuclear complexes, only EPR silent species exists in the Fe(III-Hisha system above pH 4, what suggests the rather significant “assembler activity” of the imidazole (perhaps together with the ammonium moiety.

  1. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase.

    Science.gov (United States)

    Tiraidis, Costas; Alexacou, Kyra-Melinda; Zographos, Spyros E; Leonidas, Demetres D; Gimisis, Thanasis; Oikonomakos, Nikos G

    2007-08-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site. PMID:17600143

  2. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis.

    Directory of Open Access Journals (Sweden)

    Zoltan Palmai

    2014-01-01

    Full Text Available 3-Phosphogycerate kinase (PGK is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA, we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule.

  3. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis.

    Science.gov (United States)

    Palmai, Zoltan; Seifert, Christian; Gräter, Frauke; Balog, Erika

    2014-01-01

    3-Phosphogycerate kinase (PGK) is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA), we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule.

  4. Multiple transmembrane binding sites for p-trifluoromethyldiazirinyl-etomidate, a photoreactive Torpedo nicotinic acetylcholine receptor allosteric inhibitor.

    Science.gov (United States)

    Hamouda, Ayman K; Stewart, Deirdre S; Husain, S Shaukat; Cohen, Jonathan B

    2011-06-10

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [(3)H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[(3)H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our understanding of the locations of allosteric modulator binding sites in the nAChR, we now characterize the interactions of a second aryl diazirine etomidate derivative, TFD-etomidate (ethyl-1-(1-(4-(3-trifluoromethyl)-3H-diazirin-3-yl)phenylethyl)-1H-imidazole-5-carboxylate). TFD-etomidate inhibited acetylcholine-induced currents with an IC(50) = 4 μM, whereas it inhibited the binding of [(3)H]phencyclidine to the Torpedo nAChR ion channel in the resting and desensitized states with IC(50) values of 2.5 and 0.7 mm, respectively. Similar to [(3)H]TDBzl-etomidate, [(3)H]TFD-etomidate bound to a site at the γ-α subunit interface, photolabeling αM2-10 (αSer-252) and γMet-295 and γMet-299 within γM3, and to a site in the ion channel, photolabeling amino acids within each subunit M2 helix that line the lumen of the ion channel. In addition, [(3)H]TFD-etomidate photolabeled in an agonist-dependent manner amino acids within the δ subunit M2-M3 loop (δIle-288) and the δ subunit transmembrane helix bundle (δPhe-232 and δCys-236 within δM1). The fact that TFD-etomidate does not compete with ion channel blockers at concentrations that inhibit acetylcholine responses indicates that binding to sites at the γ-α subunit interface and/or within δ subunit helix bundle mediates the TFD-etomidate inhibitory effect. These results also suggest that the γ-α subunit interface is a binding site for Torpedo nAChR negative allosteric modulators (TFD-etomidate) and for positive

  5. Mechanism of Imidazole-Promoted Ligation of Peptide Phenyl Esters

    Institute of Scientific and Technical Information of China (English)

    王晨; 刘磊

    2012-01-01

    Imidazole-promoted ligation of peptide phenyl esters was recently found to be a complementary method for protein chemical synthesis. Theoretical calculations have been carried out to understand the detailed mechanism of this particular ligation process. It is found that both the reaction of the phenyl ester with imidazole and the reaction of the acyl imidazole intermediate with cysteine proceed through an addition-elimination mechanism. The cleavage of the C--O bond in the reaction between the phenyl ester and imidazole is the rate-limiting step of the overall liga- tion process. Interestingly, although the imidazole-promoted phenyl ester ligation has a higher free energy barrier than the conventional thiophenol-promoted native chemical ligation for a sterically less hindered C-terminal amino acid (e.g. gylcine), for a sterically hindered C-terminal amino acid (e.g. proline) the imidazole-promoted phenyl ester ligation is calculated to be more favorable than the conventional thiophenol-promoted native chemical ligation.

  6. Polypharmacology within CXCR4: Multiple binding sites and allosteric behavior

    Science.gov (United States)

    Planesas, Jesús M.; Pérez-Nueno, Violeta I.; Borrell, José I.; Teixidó, Jordi

    2014-10-01

    CXCR4 is a promiscuous receptor, which binds multiple diverse ligands. As usual in promiscuous proteins, CXCR4 has a large binding site, with multiple subsites, and high flexibility. Hence, it is not surprising that it is involved in the phenomenon of allosteric modulation. However, incomplete knowledge of allosteric ligand-binding sites has hampered an in-depth molecular understanding of how these inhibitors work. For example, it is known that lipidated fragments of intracellular GPCR loops, so called pepducins, such as pepducin ATI-2341, modulate CXCR4 activity using an agonist allosteric mechanism. Nevertheless, there are also examples of small organic molecules, such as AMD11070 and GSK812397, which may act as antagonist allosteric modulators. Here, we give new insights into this issue by proposing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose that CXCR4 has minimum two topographically different allosteric binding sites. One allosteric site would be in the intracellular loop 1 (ICL1) where pepducin ATI-2341 would bind to CXCR4, and the second one, in the extracellular side of CXCR4 in a subsite into the main orthosteric binding pocket, delimited by extracellular loops n° 1, 2, and the N-terminal end, where antagonists AMD11070 and GSK812397 would bind. Prediction of allosteric interactions between CXCR4 and pepducin ATI-2341 were studied first by rotational blind docking to determine the main binding region and a subsequent refinement of the best pose was performed using flexible docking methods and molecular dynamics. For the antagonists AMD11070 and GSK812397, the entire CXCR4 protein surface was explored by blind docking to define the binding region. A second docking analysis by subsites of the identified binding region was performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 (agonists and antagonists) allosteric

  7. The Nature of Allosteric Inhibition in Glutamate Racemase: discovery and characterization of a cryptic inhibitory pocket using atomistic MD simulations and pKa calculations

    OpenAIRE

    Whalen, Katie L.; Tussey, Kenneth B.; Blanke, Steven R.; Spies, M. Ashley

    2011-01-01

    Enzyme inhibition via allostery, in which the ligand binds remotely from the active site, is a poorly understood phenomenon, and represents a significant challenge to structure-based drug design. Dipicolinic acid (DPA), a major component of Bacillus spores, is shown to inhibit glutamate racemase from Bacillus anthracis, a monosubstrate/monoproduct enzyme, in a novel allosteric fashion. Glutamate racemase has long been considered an important drug target for its integral role in bacterial cell...

  8. Characterizing Metabolic Inhibition Using Electrochemical Enzyme-DNA Biosensors

    Science.gov (United States)

    Hull, Dominic O.; Bajrami, Besnik; Jansson, Ingela; Schenkman, John B.; Rusling, James F.

    2009-01-01

    Studies of metabolic enzyme inhibition are necessary in drug development and toxicity investigations as potential tools to limit or prevent appearance of deleterious metabolites formed, for example by cytochrome (cyt) P450 enzymes. In this paper, we evaluate the use of enzyme/DNA toxicity biosensors as tools to investigate enzyme inhibition. We have examined DNA damage due to cyt P450cam metabolism of styrene using DNA/enzyme films on pyrolytic graphite (PG) electro*des monitored via Ru(bpy)32+–mediated DNA oxidation. Styrene metabolism initiated by hydrogen peroxide was evaluated with and without the inhibitors, imidazole, imidazole-4-acetic acid and sulconazole (in micromolar range) to monitor DNA damage inhibition. The initial rates of DNA damage decreased with increased inhibitor concentrations. Linear and nonlinear fits of Michaelis-Menten inhibition models were used to determine apparent inhibition constants (KI*) for the inhibitors. Elucidation of the best fitting inhibition model was achieved by comparing correlation coefficients and the sum of the square of the errors (SSE) from each inhibition model. Results confirmed the utility of the enzyme/DNA biosensor for metabolic inhibition studies. A simple competitive inhibition model best approximated the data for imidazole, imidazole-4-acetic acid and sulconazole with KI* of 268.2, 142.3 and 204.2 µM, respectively. PMID:19099359

  9. An allosteric model for the functional plasticity of olfactory chemoreceptors

    Science.gov (United States)

    Colosimo, Alfredo

    2000-12-01

    A simple allosteric model may describe the relatively (a)specific behaviour of olfactory chemoreceptors (OCs) and their functional plasticity with a minimum number of parameters. Allosteric, heterotropic effectors are suggested as a possible cause of variable responses documented, in particular, in frog OCs. As an immediate spinoff of the continuously increasing amount of structural information available on natural OCs, development of appropriate allosteric models is foreseen to provide plausible molecular mechanisms for their complex functional performance. This may also have implications in the design of artificial olfaction systems.

  10. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.

    Directory of Open Access Journals (Sweden)

    Sergio Zonszein

    Full Text Available The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P deaminase from Escherichia coli (EcGNPDA as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P. We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the

  11. Allosteric Regulation by a Critical Membrane

    CERN Document Server

    Kimchi, Ofer; Machta, Benjamin B

    2016-01-01

    Many of the processes that underly neural computation are carried out by ion channels embedded in the plasma membrane, a two-dimensional liquid that surrounds all cells. Recent experiments have demonstrated that this membrane is poised close to a liquid-liquid critical point in the Ising universality class. Here we use both exact and stochastic techniques on the lattice Ising model to explore the ramifications of proximity to criticality for proteins that are allosterically coupled to Ising composition modes. Owing to diverging generalized susceptibilities, such a protein's activity becomes strongly influenced by perturbations that influence the two relevant parameters of the critical point, especially the critical temperature. In addition, the protein's kinetics acquire a range of time scales from its surrounding membrane, naturally leading to non-Markovian dynamics.

  12. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter;

    2011-01-01

    The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects. In resista......The paracrine signaling peptide endothelin-1 (ET1) is involved in cardiovascular diseases, cancer and chronic pain. It acts on class A G-protein-coupled receptors (GPCRs) but displays atypical pharmacology. It binds tightly to ET receptor type A (ET(A)) and causes long-lasting effects......(A) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  13. A unified framework and an alternative mechanism for allosteric regulation

    CERN Document Server

    Xing, J

    2007-01-01

    Allosteric regulation is an important property for many proteins. Several models have been proposed to explain the allosteric effect, such as the concerted MWC (Monod, Wyman, Changeux) model, the sequential KNF (Koshland, Nemethy, Filmer) model, and recent population shift models. Here we discuss a unified theoretical framework to describe allosteric effects. The existing models appear as special cases of the framework. The theoretical work also reveals an alternative mechanism currently overlooked. Theoretically it is possible that the reactivity of a protein is limited by some internal conformational change step (due to slow effective diffusion along rugged potential surfaces). Effector binding may modify the ruggedness and thus the protein dynamics and reactivity. Compared to conventional models, the new mechanism has less requirements on the mechanical properties of an allosteric protein to propagate mechanical signals over long distances. Thus some signal transduction proteins may adopt the new mechanism...

  14. Pathways of allosteric regulation in Hsp70 chaperones

    OpenAIRE

    Kityk, Roman; Vogel, Markus; Schlecht, Rainer; Bukau, Bernd; Mayer, Matthias P

    2015-01-01

    Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly ...

  15. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding

    Science.gov (United States)

    Beveridge, Rebecca; Migas, Lukasz G.; Payne, Karl A. P.; Scrutton, Nigel S.; Leys, David; Barran, Perdita E.

    2016-01-01

    Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1Ubix, the cofactor confers structural stability to the enzyme. IM–MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM–MS data. PMID:27418477

  16. Radical production from photosensitization of imidazoles

    Science.gov (United States)

    Corral Arroyo, P.; Gonzalez, L.; Steimer, S.; Aellig, R.; Volkamer, R. M.; George, C.; Bartels-Rausch, T.; Ammann, M.

    2015-12-01

    Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols containing light absorbing organic compounds (George et al., 2015). This work explores the radical reactions initiated by near-UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. Citric acid may act as H atom or electron donor in condensed phase radical cycles. IC may act as a photosensitizer. The loss of NO was measured by a chemiluminescence detector. The dependence of the NO loss on the NO concentration, the IC/CA ratio in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We also added halide salts to investigate the effect of a competing electron donor in the system and the output of halogens to the gas phase. We found a correlation between the loss of NO above the film and the molar ratio of IC/CA and the light intensity. The variation of the NO loss with oxygen corroborates a mechanism, in which the triplet excited state of IC is reduced by citric acid, to a reduced ketyl radical that transfers an electron to molecular oxygen, which in turn leads to production of HO2 radicals. Therefore, the NO loss in the gas phase is related to the production of HO2 radicals. Relative humidity had a strong impact on the HO2 output, which shows a maximum production rate at around 30%. The addition of halide ions (X- = Cl-, Br-, I-) increases the HO2 output at low concentration and decrease it at higher concentration when X2- radical ions likely scavenge HO2. We could preliminarily quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging and potentially a significant source of halogen compounds to the gas phase.

  17. Allosteric modulators of the hERG K(+) channel: radioligand binding assays reveal allosteric characteristics of dofetilide analogs.

    Science.gov (United States)

    Yu, Zhiyi; Klaasse, Elisabeth; Heitman, Laura H; Ijzerman, Adriaan P

    2014-01-01

    Drugs that block the cardiac K(+) channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K(+) channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [(3)H]astemizole and [(3)H]dofetilide to the hERG K(+) channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC50 values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC50 values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K(+) channel, which is discussed in the light of findings on other ion channels. PMID:24200993

  18. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbo xylate.

    OpenAIRE

    Oikonomakos, N. G.; Tsitsanou, K. E.; Zographos, S. E.; Skamnaki, V. T.; Goldmann, S.; Bischoff, H

    1999-01-01

    The effect of the potential antidiabetic drug (-)(S)-3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbox ylate (W1807) on the catalytic and structural properties of glycogen phosphorylase a has been studied. Glycogen phosphorylase (GP) is an allosteric enzyme whose activity is primarily controlled by reversible phosphorylation of Ser14 of the dephosphorylated enzyme (GPb, less active, predominantly T-state) to form the phosphorylated enzyme (GPa, more active, ...

  19. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  20. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation.

    Science.gov (United States)

    Wu, Zhuang; Li, Linlang; Zheng, Long-Tai; Xu, Zhihong; Guo, Lin; Zhen, Xuechu

    2015-09-01

    Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).

  1. Synthesis of organosoluble polyamides with bulky triaryl imidazole pendent group

    Institute of Scientific and Technical Information of China (English)

    Mousa Ghaemy; Hossein Behmadi; Raouf Alizadeh

    2009-01-01

    New unsymmetrical dialnine monomer containing triaryl imidazole pendent group, 4-[4-(4,5-diphenyl-1H-imidazol-2-yl)phe-noxy]-1,3-benzenediamine, was synthesized via aromatic substitution reaction of 1-chloro-2,4-dinitrobenzene with 4-(4,5-diphenyl-1H-imidazol-2-yl)phenol, followed by palladium-catalyzed hydrazine reduction. This new monomer was further confirmed by FT-IR, 1H NMR and 13C NMR. Novel polyamides having pendant triaryl imidazole group were prepared by the phosphorylation polycondensation of four commercially aromatic dicarboxylic acids with the prepared diamine. Inherent viscosities of polyamides were in the range 0.42-0.53 dL/g indicating formation of medium molecular weight polymers. Polyamides exhibited glass-transition temperature (Tg) in the range 236-265 ℃. These polymers are essentially amorphous and were soluble in polar aprotic solvents such as DMF, NMP, DMAc. The 10% weight loss temperatures in air atmosphere, measured by TGA were in the range 350-373 ℃ indicating their good thermal stabilities.

  2. Multifunctional switches based on bis-imidazole derivative

    Indian Academy of Sciences (India)

    Abdullah M A Asiri; Gameel A Baghaffar; Khadija O Badahdah; Abdullah G M Al-Sehemi; Salman A Khan; Abeer A Bukhari

    2009-11-01

    multifunctional bis-imidazole derived from piperonal was prepared and found to have photo, thermo, solvato and peiezochromism with colour changes from pale green to deep blue. The multifunctionality colour changes and stability of the coloured species make the derivative candidates for various applications such as optical data storage. The photochromic properties and performance were found to be affected remarkably upon changing the solvent.

  3. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity

    DEFF Research Database (Denmark)

    Willemoës, Martin; Mølgaard, Anne; Johansson, Eva;

    2005-01-01

    GTP is an allosteric activator of CTP synthase and acts to increase the k(cat) for the glutamine-dependent CTP synthesis reaction. GTP is suggested, in part, to optimally orient the oxy-anion hole for hydrolysis of glutamine that takes place in the glutamine amidotransferase class I (GATase) domain...... position depending on the presence or absence of glutamine in the glutamine binding site. Displacement or rearrangement of this loop may provide a means for the suggested role of allosteric activation by GTP to optimize the oxy-anion hole for glutamine hydrolysis. Arg359, Gly360 and Glu362 of the...... enzyme behaved like wild-type enzyme. Apart from the G360A enzyme, the results from kinetic analysis of the enzymes altered at position 359 and 360 showed a 10- to 50-fold decrease in GTP activation of glutamine dependent CTP synthesis and concomitant four- to 10-fold increases in K(A) for GTP. The R359M...

  4. Allosteric Inhibition of Human Immunodeficiency Virus Integrase

    Science.gov (United States)

    Gupta, Kushol; Brady, Troy; Dyer, Benjamin M.; Malani, Nirav; Hwang, Young; Male, Frances; Nolte, Robert T.; Wang, Liping; Velthuisen, Emile; Jeffrey, Jerry; Van Duyne, Gregory D.; Bushman, Frederic D.

    2014-01-01

    HIV-1 replication in the presence of antiviral agents results in evolution of drug-resistant variants, motivating the search for additional drug classes. Here we report studies of GSK1264, which was identified as a compound that disrupts the interaction between HIV-1 integrase (IN) and the cellular factor lens epithelium-derived growth factor (LEDGF)/p75. GSK1264 displayed potent antiviral activity and was found to bind at the site occupied by LEDGF/p75 on IN by x-ray crystallography. Assays of HIV replication in the presence of GSK1264 showed only modest inhibition of the early infection steps and little effect on integration targeting, which is guided by the LEDGF/p75·IN interaction. In contrast, inhibition of late replication steps was more potent. Particle production was normal, but particles showed reduced infectivity. GSK1264 promoted aggregation of IN and preformed LEDGF/p75·IN complexes, suggesting a mechanism of inhibition. LEDGF/p75 was not displaced from IN during aggregation, indicating trapping of LEDGF/p75 in aggregates. Aggregation assays with truncated IN variants revealed that a construct with catalytic and C-terminal domains of IN only formed an open polymer associated with efficient drug-induced aggregation. These data suggest that the allosteric inhibitors of IN are promising antiviral agents and provide new information on their mechanism of action. PMID:24904063

  5. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks.

    Science.gov (United States)

    Menniti, Frank S; Lindsley, Craig W; Conn, P Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved.

  6. Engineering and optimization of an allosteric biosensor protein for peroxisome proliferator-activated receptor γ ligands.

    Science.gov (United States)

    Li, Jingjing; Gierach, Izabela; Gillies, Alison R; Warden, Charles D; Wood, David W

    2011-11-15

    The peroxisome proliferator-activated receptor gamma (PPARγ or PPARG) belongs to the nuclear receptor superfamily, and is a potential drug target for a variety of diseases. In this work, we constructed a series of bacterial biosensors for the identification of functional PPARγ ligands. These sensors entail modified Escherichia coli cells carrying a four-domain fusion protein, comprised of the PPARγ ligand binding domain (LBD), an engineered mini-intein domain, the E. coli maltose binding protein (MBD), and a thymidylate synthase (TS) reporter enzyme. E. coli cells expressing this protein exhibit hormone ligand-dependent growth phenotypes. Unlike our published estrogen (ER) and thyroid receptor (TR) biosensors, the canonical PPARγ biosensor cells displayed pronounced growth in the absence of ligand. They were able to distinguish agonists and antagonists, however, even in the absence of agonist. To improve ligand sensitivity of this sensor, we attempted to engineer and optimize linker peptides flanking the PPARγ LBD insertion point. Truncation of the original linkers led to decreased basal growth and significantly enhanced ligand sensitivity of the PPARγ sensor, while substitution of the native linkers with optimized G(4)S (Gly-Gly-Gly-Gly-Ser) linkers further increased the sensitivity. Our studies demonstrate that the properties of linkers, especially the C-terminal linker, greatly influence the efficiency and fidelity of the allosteric signal induced by ligand binding. Our work also suggests an approach to increase allosteric behavior in this multidomain sensor protein, without modification of the functional LBD. PMID:21893405

  7. Allosteric properties of phosphate-activated glutaminase of human liver mitochondria.

    Science.gov (United States)

    Snodgrass, P J; Lund, P

    1984-03-22

    The kinetics of human liver phosphate-activated glutaminase were studied in mitochondria isolated from surgical biopsies. The pH profile and activation by phosphate closely resembled rat liver glutaminase and differed clearly from human or rat kidney mitochondrial glutaminases. The activity responses to glutamine or phosphate were allosteric, showing positive cooperativity, as in the rat liver enzyme. Exogenous 1 mM NH4Cl shifted the glutamine concentration at half-maximal velocity, [Gln]0.5, to lower values without changing Vmax or sigmoidicity. Hill plots showed a parallel shift to the left with NH4Cl and the apparent number of binding sites, nH, was 2-3. 25 mM KHCO3 gave the same effects as NH4Cl on [Gln]0.5, Vmax, sigmoidicity and nH. The combination of the two activators was less than additive. Glutamate did not inhibit. We postulate that liver glutaminase is allosteric in its kinetics because it plays a key role in urea synthesis by regulating provision of glutamate for synthesis of N-acetylglutamate, the obligatory co-factor of carbamoylphosphate synthetase. PMID:6704422

  8. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone.

    Science.gov (United States)

    Steinchen, Wieland; Schuhmacher, Jan S; Altegoer, Florian; Fage, Christopher D; Srinivasan, Vasundara; Linne, Uwe; Marahiel, Mohamed A; Bange, Gert

    2015-10-27

    Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named "(p)ppGpp"] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp-but not ppGpp-positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles.

  9. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.; (Danforth)

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  10. Masked imidazolyl-dipyrromethanes in the synthesis of imidazole-substituted porphyrins.

    Science.gov (United States)

    Bhaumik, Jayeeta; Yao, Zhen; Borbas, K Eszter; Taniguchi, Masahiko; Lindsey, Jonathan S

    2006-11-10

    Imidazole-substituted metalloporphyrins are valuable for studies of self-assembly and for applications where water solubility is required. Rational syntheses of porphyrins bearing one or two imidazol-2-yl or imidazol-4-yl groups at the meso positions have been developed. The syntheses employ dipyrromethanes, 1-acyldipyrromethanes, and 1,9-diacyldipyrromethanes bearing an imidazole group at the 5-position. The polar, reactive imidazole unit was successfully masked by use of (1) the 2-(trimethylsilyl)ethoxymethyl (SEM) group at the imidazole pyrrolic nitrogen, and (2) a dialkylboron motif bound to the pyrrole of the dipyrromethane and coordinated to the imidazole imino nitrogen. The nonpolar nature of such doubly masked imidazolyl-dipyrromethanes facilitated handling. Selected masked dipyrromethanes were characterized by 11B and 15N NMR spectroscopy. Five distinct methods were examined to obtain trans-A2B2-, trans-AB2C-, and trans-AB-porphyrins. Each porphyrin contained one or two SEM-protected imidazole units. The SEM group could be removed with TBAF or HCl. Two zinc(II) porphyrins and a palladium(II) porphyrin bearing a single imidazole moiety were prepared and subjected to alkylation (with ethyl iodide, 1,3-propane sultone, or 1,4-butane sultone) to give water-soluble imidazolium- porphyrins. This work establishes the foundation for the rational synthesis of a variety of porphyrins containing imidazole units. PMID:17081010

  11. Pathways of allosteric regulation in Hsp70 chaperones.

    Science.gov (United States)

    Kityk, Roman; Vogel, Markus; Schlecht, Rainer; Bukau, Bernd; Mayer, Matthias P

    2015-01-01

    Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly conserved hydrogen bond network, and define the signal transduction pathway that allows bound substrates to trigger ATP hydrolysis. We identify variants deficient in only one direction of allosteric control and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis. These findings provide evidence of an unexpected dichotomic allostery mechanism in Hsp70 chaperones and provide the basis for a comprehensive mechanical model of allostery in Hsp70s. PMID:26383706

  12. Lophine (2,4,5-triphenyl-1H-imidazole

    Directory of Open Access Journals (Sweden)

    Diana Yanover

    2009-04-01

    Full Text Available The title compound, C21H16N2, has been known since 1877. Although the crystal structure of 36 derivatives of lophine are known, the structure of parent compound has remained unknown until now. The three phenyl rings bonded to the imidazole core are not coplanar with the latter, with dihedral angles of 21.4 (3, 24.7 (3, and 39.0 (3°, respectively, between the phenyl ring planes in the 2-, 4- and 5-positions of the imidazole ring. The molecules are packed in layers running perpendicular to the b axis. Although there are acceptor and donor atoms for hydrogen bonds, no such interactions are detected in the crystal in contrast to other lophine derivatives.

  13. Allosteric Activation of Ubiquitin-Specific Proteases by β-Propeller Proteins UAF1 and WDR20.

    Science.gov (United States)

    Li, Heng; Lim, Kah Suan; Kim, Hyungjin; Hinds, Thomas R; Jo, Ukhyun; Mao, Haibin; Weller, Caroline E; Sun, Ji; Chatterjee, Champak; D'Andrea, Alan D; Zheng, Ning

    2016-07-21

    Ubiquitin-specific proteases (USPs) constitute the largest family of deubiquitinating enzymes, whose catalytic competency is often modulated by their binding partners through unknown mechanisms. Here we report on a series of crystallographic and biochemical analyses of an evolutionarily conserved deubiquitinase, USP12, which is activated by two β-propeller proteins, UAF1 and WDR20. Our structures reveal that UAF1 and WDR20 interact with USP12 at two distinct sites far from its catalytic center. Without increasing the substrate affinity of USP12, the two β-propeller proteins potentiate the enzyme through different allosteric mechanisms. UAF1 docks at the distal end of the USP12 Fingers domain and induces a cascade of structural changes that reach a critical ubiquitin-contacting loop adjacent to the catalytic cleft. By contrast, WDR20 anchors at the base of this loop and remotely modulates the catalytic center of the enzyme. Our results provide a mechanistic example for allosteric activation of USPs by their regulatory partners. PMID:27373336

  14. Alcohol and water adsorption in zeolitic imidazolate frameworks

    KAUST Repository

    Zhang, Ke

    2013-01-01

    Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity. © 2013 The Royal Society of Chemistry.

  15. Synthesis and Antibacterial Activities of New Metronidazole and Imidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Abdul Jabar Kh. Atia

    2009-07-01

    Full Text Available New imidazole ring derivatives comprising 1,3-oxazoline, Schiff's bases, thiadiazole, oxadiazole and 1,2,4-triazole moieties are reported. 3-Aminobiimidazol-4-one compounds 7a-c were synthesized by the reaction of compounds 6a-c with hydrazine hydrate. Biimidazole esters 9a-c were converted into biimidazole hydrazide esters 10a-c. Compounds 7a-c and 10a-c were converted into a variety of derivatives.

  16. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  17. Redox reactions of cytochrome c facilitated by silver-imidazole complex

    Institute of Scientific and Technical Information of China (English)

    FAN, Chun-Hai; LI, Gen-Xi; ZHU, De-Xu; ZHU, Jian-Qin

    2000-01-01

    An imidazole modified silver electrode is prepared by immersing the substrate silver electrode in a 2% imidazole solution of ethanol at 50℃ for 10 min. The modified electrode is then swept in a cytochrome c solution and the modified layer takes off because the modified electrode is very unstable. Although the amount of the silver-imidazole complex is very small compared with the amount of cytochrome c in the protein solution, it greatly facilitates redox reactions involving the biomacromolecules.

  18. Thermodynamic study of phase transitions of imidazoles and 1-methylimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana R.R.P., E-mail: ana.figueira@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Monte, Manuel J.S., E-mail: mjmonte@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2012-01-15

    Highlights: > Sublimation vapor pressures of imidazole, N-methylimidazole and four derivatives were measured. > Liquid vapor pressures were also measured for four of the compounds studied. > Vapor pressure results enabled determination of sublimation, vaporization, and fusion enthalpy. > From enthalpies of sublimation, enthalpies of intermolecular N-H...N bonds were estimated. - Abstract: The vapor pressures of imidazole, N-methylimidazole and of their dichloro and dicyano substituted compounds were measured at different temperatures, in the crystalline phase for two of them, and in crystalline and liquid phases for the other four. From these measurements, enthalpies and standard entropies of sublimation and vaporization were derived. The results allowed the determination of the triple points (p, T) coordinates of the four compounds studied in both condensed phases as well as the calculation of their enthalpy of fusion. Enthalpies and temperatures of fusion were also determined using d.s.c. The experimental results enabled the estimation of the enthalpy of the intermolecular N-H...N bonds in the imidazoles studied.

  19. Substrate modulation of enzyme activity in the herpesvirus protease family

    OpenAIRE

    Lazic, Ana; Goetz, David H.; Nomura, Anson M.; Marnett, Alan B.; Craik, Charles S.

    2007-01-01

    The herpesvirus proteases are an example in which allosteric regulation of an enzyme activity is achieved through the formation of quaternary structure. Here, we report a 1.7 Å resolution structure of Kaposi’s Sarcoma herpesvirus protease in complex with a hexapeptide transition state analogue that stabilizes the dimeric state of the enzyme. Extended substrate binding sites are induced upon peptide binding. In particular, 104 Å2 of surface are buried in the newly formed S4 pocket when tyrosin...

  20. Ago-allosteric modulation and other types of allostery in dimeric 7TM receptors

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2006-01-01

    Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own...... influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous......, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric...

  1. Ab Initio and DFT Studies on CO2 Interacting with Zn(q+) -Imidazole (q=0, 1, 2) Complexes: Prediction of Charge Transfer through σ- or π-Type Models.

    Science.gov (United States)

    Boulmene, Reda; Boussouf, Karim; Prakash, Muthuramalingam; Komiha, Najia; Al-Mogren, Muneerah M; Hochlaf, Majdi

    2016-04-01

    Using first-principles methodologies, the equilibrium structures and the relative stability of CO2 @[Zn(q+) Im] (where q=0, 1, 2; Im=imidazole) complexes are studied to understand the nature of the interactions between the CO2 and Zn(q+) -imidazole entities. These complexes are considered as prototype models mimicking the interactions of CO2 with these subunits of zeolitic imidazolate frameworks or Zn enzymes. These computations are performed using both ab initio calculations and density functional theory. Dispersion effects accounting for long-range interactions are considered. Solvent (water) effects were also considered using a polarizable continuum model approach. Natural bond orbital, charge, frontier orbital and vibrational analyses clearly reveal the occurrence of charge transfer through covalent and noncovalent interactions. Moreover, it is found that CO2 can adsorb through more favorable π-type stacking as well as σ-type hydrogen-bonding interactions. The inter-monomer interaction potentials show a significant anisotropy that might induce CO2 orientation and site-selectivity effects in porous materials and in active sites of Zn enzymes. Hence, this study provides valuable information about how CO2 adsorption takes place at the microscopic level within zeolitic imidazolate frameworks and biomolecules. These findings might help in understanding the role of such complexes in chemistry, biology and material science for further development of new materials and industrial applications. PMID:26790137

  2. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  3. Benzothiazole Derivative as a Novel Mycobacterium tuberculosis Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition.

    Science.gov (United States)

    Mehra, Rukmankesh; Rajput, Vikrant Singh; Gupta, Monika; Chib, Reena; Kumar, Amit; Wazir, Priya; Khan, Inshad Ali; Nargotra, Amit

    2016-05-23

    Mycobacterium tuberculosis shikimate kinase (Mtb-SK) is a key enzyme involved in the biosynthesis of aromatic amino acids through the shikimate pathway. Since it is proven to be essential for the survival of the microbe and is absent from mammals, it is a promising target for anti-TB drug discovery. In this study, a combined approach of in silico similarity search and pharmacophore building using already reported inhibitors was used to screen a procured library of 20,000 compounds of the commercially available ChemBridge database. From the in silico screening, 15 hits were identified, and these hits were evaluated in vitro for Mtb-SK enzyme inhibition. Two compounds presented significant enzyme inhibition with IC50 values of 10.69 ± 0.9 and 46.22 ± 1.2 μM. The best hit was then evaluated for the in vitro mode of inhibition where it came out to be an uncompetitive and noncompetitive inhibitor with respect to shikimate (SKM) and ATP, respectively, suggesting its binding at an allosteric site. Potential binding sites of Mtb-SK were identified which confirmed the presence of an allosteric binding pocket apart from the ATP and SKM binding sites. The docking simulations were performed at this pocket in order to find the mode of binding of the best hit in the presence of substrates and the products of the enzymatic reaction. Molecular dynamics (MD) simulations elucidated the probability of inhibitor binding at the allosteric site in the presence of ADP and shikimate-3-phosphate (S-3-P), that is, after the formation of products of the reaction. The inhibitor binding may prevent the release of the product from Mtb-SK, thereby inhibiting its activity. The binding stability and the key residue interactions of the inhibitor to this product complex were also revealed by the MD simulations. Residues ARG43, ILE45, and PHE57 were identified as crucial that were involved in interactions with the best hit. This is the first report of an allosteric binding site of Mtb-SK, which

  4. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    DEFF Research Database (Denmark)

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A;

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  5. Hydrogen/Deuterium Exchange Kinetics Demonstrate Long Range Allosteric Effects of Thumb Site 2 Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase.

    Science.gov (United States)

    Deredge, Daniel; Li, Jiawen; Johnson, Kenneth A; Wintrode, Patrick L

    2016-05-01

    New nonnucleoside analogs are being developed as part of a multi-drug regimen to treat hepatitis C viral infections. Particularly promising are inhibitors that bind to the surface of the thumb domain of the viral RNA-dependent RNA polymerase (NS5B). Numerous crystal structures have been solved showing small molecule non-nucleoside inhibitors bound to the hepatitis C viral polymerase, but these structures alone do not define the mechanism of inhibition. Our prior kinetic analysis showed that nonnucleoside inhibitors binding to thumb site-2 (NNI2) do not block initiation or elongation of RNA synthesis; rather, they block the transition from the initiation to elongation, which is thought to proceed with significant structural rearrangement of the enzyme-RNA complex. Here we have mapped the effect of three NNI2 inhibitors on the conformational dynamics of the enzyme using hydrogen/deuterium exchange kinetics. All three inhibitors rigidify an extensive allosteric network extending >40 Å from the binding site, thus providing a structural rationale for the observed disruption of the transition from distributive initiation to processive elongation. The two more potent inhibitors also suppress slow cooperative unfolding in the fingers extension-thumb interface and primer grip, which may contribute their stronger inhibition. These results establish that NNI2 inhibitors act through long range allosteric effects, reveal important conformational changes underlying normal polymerase function, and point the way to the design of more effective allosteric inhibitors that exploit this new information. PMID:27006396

  6. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail.

    Science.gov (United States)

    Mittelstädt, Gerd; Moggré, Gert-Jan; Panjikar, Santosh; Nazmi, Ali Reza; Parker, Emily J

    2016-08-01

    Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme. PMID:27191057

  7. PROGRESS IN PROCESS INTENSIFICATION: SYNTHESIS OF IMIDAZOLE DERIVATIVES USING A SPINNING TUBE-IN-TUBE REACTOR

    Science.gov (United States)

    The high purity, high throughput synthesis of a number of imidazole derivatives using a spinning tube-in-tube reactor (STT®, Kreido Laboratories, Camarillo California) has been carried out. The STT® reactor allows the high throughput production of high purity imidazole derivativ...

  8. Reaction of Imidazole Anions with Difluorodiiodomethane and Their Products Conversion in Sulfinatodehalogenation System

    Institute of Scientific and Technical Information of China (English)

    XIAO, Ji-Chang; CHEN, Qing-Yun

    2003-01-01

    Treatment of difluorodiiodomethane with N-sodium salts of imidazoles at -15 ℃ gave N-difluoroiodomethylated imidazoles (3) in good yields. The addition of 3 to alkyne or alkenes initiated by sodium dithionate at room temperature resulted in the corresponding adducts in high yields.

  9. Facile Syntheses of N-Substituted Imidazoles and Benzotriazoles from Baylis-Hillman Bromides

    Institute of Scientific and Technical Information of China (English)

    YE Dongyan; LI Jian; LI Chunju; JIA Xueshun

    2009-01-01

    A facile synthesis of N-substituted imidazole and benzotriazole derivatives from Baylis-Hiilman bromides with imidazole and benzotriazole at room temperature was reported. In view of the simple operation, mild reaction con-ditions, good to excellent yields, good regio- and stereoselectivity, the present method exhibited its superiority.

  10. (S-2-(1H-Imidazol-1-ylsuccinic acid

    Directory of Open Access Journals (Sweden)

    Jing-Mei Xiao

    2009-05-01

    Full Text Available The title compound, C7H8N2O4, is a zwitterion, [formal name = (S-3-carboxy-2-(imidazol-3-ium-1-ylpropanoate], in which the deprotonated negatively charged carboxylate end shows almost identical C—O bond distances [1.248 (4 and 1.251 (4 Å] due to resonance. The molecules are involved in intermolecular O—H...O and N—H...O hydrogen bonds, which define a tightly bound three-dimensional structure.

  11. Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells: an importance of the N-terminal domain for an allosteric regulatory property.

    Science.gov (United States)

    Sawitri, Widhi Dyah; Narita, Hirotaka; Ishizaka-Ikeda, Etsuko; Sugiharto, Bambang; Hase, Toshiharu; Nakagawa, Atsushi

    2016-06-01

    Sucrose phosphate synthase (SPS) catalyses the transfer of glycosyl group of uridine diphosphate glucose to fructose-6-phosphate to form sucrose-6-phosphate. Plant SPS plays a key role in photosynthetic carbon metabolisms, which activity is modulated by an allosteric activator glucose-6-phosphate (G6P). We produced recombinant sugarcane SPS using Escherichia coli and Sf9 insect cells to investigate its structure-function relationship. When expressed in E. coli, two forms of SPS with different sizes appeared; the larger was comparable in size with the authentic plant enzyme and the shorter was trimmed the N-terminal 20 kDa region off. In the insect cells, only enzyme with the authentic size was produced. We purified the trimmed SPS and the full size enzyme from insect cells and found their enzymatic properties differed significantly; the full size enzyme was activated allosterically by G6P, while the trimmed one showed a high activity even without G6P. We further introduced a series of N-terminal truncations up to 171 residue and found G6P-independent activity was enhanced by the truncation. These combined results indicated that the N-terminal region of sugarcane SPS is crucial for the allosteric regulation by G6P and may function like a suppressor domain for the enzyme activity. PMID:26826371

  12. Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    WU Gang; HUANG Cong-xin; TANG Yan-hong; JIANG Hong; WAN Jun; CHEN Hui; XIE Qiang; HUANG Zheng-rong

    2005-01-01

    Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice. Chronic atrial fibrillation (CAF) is associated with ionic remodeling. However, little is known about the activity of ATP-sensitive potassium current (IK,ATP) during CAF. So we studied the changes of IK,ATP density and allosteric modulation of ATP-sensitivity by intracellular pH during CAF.Methods Myocardium samples were obtained from the right auricular appendage of patients with rheumatic heart disease complicated with valvular disease in sinus rhythm (SR) or CAF. There were 14 patients in SR group and 9 patients in CAF group. Single atrial cells were isolated using an enzyme dispersion technique. IK,ATP was recorded using the whole-cell and inside-out configuration of voltage-clamp techniques. In whole-cell model, myocytes of SR and CAF groups were perfused with simulated ischemic solution to elicit IK,ATP. In inside-out configuration, the internal patch membranes were exposed to different ATP concentrations in pH 7.4 and 6.8.Results Under simulated ischemia, IK,ATP current density of CAF group was significantly higher than in SR group [(83.5±10.8) vs. (58.7±8.4) pA/pF, P<0.01]. IK,ATP of the two groups showed ATP concentration-dependent inhibition. The ATP concentration for 50% current inhibition (IC50) for the SR group was significantly different in pH 7.4 and pH 6.8 (24 vs. 74 μmol/L, P<0.01). The IC50 did not change significantly in CAF group when the pH decreased from 7.4 to 6.8.Conclusions During CAF, IK,ATP current density was increased and its allosteric modulation of ATP-sensitivity by intracellular pH was diminished.

  13. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    CERN Document Server

    Amor, Benjamin R C; Yaliraki, Sophia N; Barahona, Mauricio

    2016-01-01

    Allosteric regulation is central to many biochemical processes. Allosteric sites provide a target to fine-tune protein activity, yet we lack computational methods to predict them. Here, we present an efficient graph-theoretical approach for identifying allosteric sites and the mediating interactions that connect them to the active site. Using an atomistic graph with edges weighted by covalent and non-covalent bond energies, we obtain a bond-to-bond propensity that quantifies the effect of instantaneous bond fluctuations propagating through the protein. We use this propensity to detect the sites and communication pathways most strongly linked to the active site, assessing their significance through quantile regression and comparison against a reference set of 100 generic proteins. We exemplify our method in detail with three well-studied allosteric proteins: caspase-1, CheY, and h-Ras, correctly predicting the location of the allosteric site and identifying key allosteric interactions. Consistent prediction of...

  14. [Allosteric regulation of glucosamine synthetase activity by naphthoquinone derivatives and ethyl ester of di-(4-oxycumarinyl-3)-acetic acid].

    Science.gov (United States)

    Sharaev, P N; Bogdanov, N G; Sarycheva, I K; Zhukova, E E

    1981-02-01

    The effects of derivatives of naphthoquinone, e.g. 2-methyl-3-phytyl-1,4-naphthoquinone (vitamin K1), 2-methyl-1,4-naphthoquinone (vitamin K3), 3-dihydro-2-methyl-1,4-naphthoquinone-2-sodium sulfonate (vicasol), derivatives of naphthohydroxyquinone, e.g. 2-methyl-1,4-naphthohydroxyquinone 1-monoacetate, 2-methyl-1,4-naphthohydroxyquinone 1,4-diacetate and the oxycumarine derivative di-(4-oxycumarinyl-3)-acetate ethyl ester (pelentan) on the activity of purified glutamine synthetase (EC 5.3.1.19) from rat liver were studied. The enzyme activity was increased under effects of vitamins K1 and K3 and was inhibited by pelentan. The data obtained are indicative of the allosteric effect of these compounds on the enzyme. PMID:7195738

  15. An allosteric photoredox catalyst inspired by photosynthetic machinery.

    Science.gov (United States)

    Lifschitz, Alejo M; Young, Ryan M; Mendez-Arroyo, Jose; Stern, Charlotte L; McGuirk, C Michael; Wasielewski, Michael R; Mirkin, Chad A

    2015-03-30

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.

  16. The Allosteric Switching Mechanism in Bacteriophage MS2

    CERN Document Server

    Perkett, Matthew R

    2015-01-01

    In this article we use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopt different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We disc...

  17. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    Science.gov (United States)

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  18. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    Science.gov (United States)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  19. Light-activated DNA binding in a designed allosteric protein

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Devin; Moffat, Keith; Sosnick, Tobin R. (UC)

    2008-09-03

    An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an {alpha}-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical 'allosteric lever arm' is a general scheme for coupling the function of two proteins.

  20. Allosteric interactions and bifunctionality make the response of glutamine synthetase cascade system of Escherichia coli robust and ultrasensitive.

    Science.gov (United States)

    Mutalik, Vivek K; Shah, Parag; Venkatesh, K V

    2003-07-18

    Glutamine synthetase (GS) regulation in Escherichia coli by reversible covalent modification cycles is a prototype of signal transduction by enzyme cascades. Such enzyme cascades are known to exhibit ultrasensitive response to primary stimuli and act as signal integration systems. Here, we have quantified GS bicyclic cascade based on steady state analysis by evaluating Hill coefficient. We demonstrate that adenylylation of GS with glutamine as input is insensitive to total enzyme concentrations of GS, uridylyltransferase/uridylyl-removing enzyme, regulatory protein PII, and adenylyltransferase/adenylyl-removing enzyme. This robust response of GS adenylylation is also observed for change in system parameters. From numerical analyses, we show that the robust ultrasensitive response of bicyclic cascade is because of allosteric interactions of glutamine and 2-ketoglutarate, bifunctionality of converter enzymes, and closed loop bicyclic cascade structure. By system level quantification of the GS bicyclic cascade, we conclude that such a robust response may help the cell in adapting to different carbon and nitrogen status. PMID:12676964

  1. Allosteric process of human glucokinase conducive to fight against diabetes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ More than 200 million people worldwide have diabetes. In China alone, about 60 million people are suffering from the disease.Fortunately, scientists are pushing back its boundaries. For instance, a recent study by CAS researchers may shed new light on the treatment of the disease by making cutting-edge progress on studies of the allosteric process of human glucokinase, which has been published by the latest issue of the Proceedings of National Academy of Sciences.

  2. The structural basis of ATP as an allosteric modulator.

    OpenAIRE

    Shaoyong Lu; Wenkang Huang; Qi Wang; Qiancheng Shen; Shuai Li; Ruth Nussinov; Jian Zhang

    2014-01-01

    Adenosine-5'-triphosphate (ATP) is generally regarded as a substrate for energy currency and protein modification. Recent findings uncovered the allosteric function of ATP in cellular signal transduction but little is understood about this critical behavior of ATP. Through extensive analysis of ATP in solution and proteins, we found that the free ATP can exist in the compact and extended conformations in solution, and the two different conformational characteristics may be responsible for ATP...

  3. The Structural Basis of ATP as an Allosteric Modulator

    OpenAIRE

    Lu, Shaoyong; Huang, Wenkang; Wang, Qi; Shen, Qiancheng; Li, Shuai; Nussinov, Ruth; Zhang, Jian

    2014-01-01

    Adenosine-5’-triphosphate (ATP) is generally regarded as a substrate for energy currency and protein modification. Recent findings uncovered the allosteric function of ATP in cellular signal transduction but little is understood about this critical behavior of ATP. Through extensive analysis of ATP in solution and proteins, we found that the free ATP can exist in the compact and extended conformations in solution, and the two different conformational characteristics may be responsible for ATP...

  4. Thermochemistry of zeolitic imidazolate frameworks of varying porosity.

    Science.gov (United States)

    Hughes, James T; Bennett, Thomas D; Cheetham, Anthony K; Navrotsky, Alexandra

    2013-01-16

    The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFs-ZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8-along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a(m)ZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm(3)/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials. PMID:23270310

  5. Computational approaches to detect allosteric pathways in transmembrane molecular machines.

    Science.gov (United States)

    Stolzenberg, Sebastian; Michino, Mayako; LeVine, Michael V; Weinstein, Harel; Shi, Lei

    2016-07-01

    Many of the functions of transmembrane proteins involved in signal processing and transduction across the cell membrane are determined by allosteric couplings that propagate the functional effects well beyond the original site of activation. Data gathered from breakthroughs in biochemistry, crystallography, and single molecule fluorescence have established a rich basis of information for the study of molecular mechanisms in the allosteric couplings of such transmembrane proteins. The mechanistic details of these couplings, many of which have therapeutic implications, however, have only become accessible in synergy with molecular modeling and simulations. Here, we review some recent computational approaches that analyze allosteric coupling networks (ACNs) in transmembrane proteins, and in particular the recently developed Protein Interaction Analyzer (PIA) designed to study ACNs in the structural ensembles sampled by molecular dynamics simulations. The power of these computational approaches in interrogating the functional mechanisms of transmembrane proteins is illustrated with selected examples of recent experimental and computational studies pursued synergistically in the investigation of secondary active transporters and GPCRs. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26806157

  6. Conformationally selective RNA aptamers allosterically modulate the β2-adrenoceptor.

    Science.gov (United States)

    Kahsai, Alem W; Wisler, James W; Lee, Jungmin; Ahn, Seungkirl; Cahill Iii, Thomas J; Dennison, S Moses; Staus, Dean P; Thomsen, Alex R B; Anasti, Kara M; Pani, Biswaranjan; Wingler, Laura M; Desai, Hemant; Bompiani, Kristin M; Strachan, Ryan T; Qin, Xiaoxia; Alam, S Munir; Sullenger, Bruce A; Lefkowitz, Robert J

    2016-09-01

    G-protein-coupled receptor (GPCR) ligands function by stabilizing multiple, functionally distinct receptor conformations. This property underlies the ability of 'biased agonists' to activate specific subsets of a given receptor's signaling profile. However, stabilizing distinct active GPCR conformations to enable structural characterization of mechanisms underlying GPCR activation remains difficult. These challenges have accentuated the need for receptor tools that allosterically stabilize and regulate receptor function through unique, previously unappreciated mechanisms. Here, using a highly diverse RNA library combined with advanced selection strategies involving state-of-the-art next-generation sequencing and bioinformatics analyses, we identify RNA aptamers that bind a prototypical GPCR, the β2-adrenoceptor (β2AR). Using biochemical, pharmacological, and biophysical approaches, we demonstrate that these aptamers bind with nanomolar affinity at defined surfaces of the receptor, allosterically stabilizing active, inactive, and ligand-specific receptor conformations. The discovery of RNA aptamers as allosteric GPCR modulators significantly expands the diversity of ligands available to study the structural and functional regulation of GPCRs. PMID:27398998

  7. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  8. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    International Nuclear Information System (INIS)

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity. (perspective)

  9. Adsorption and corrosion inhibition behavior of imidazole on cobalt electrodes studied by SERS and electrochemical methods

    Institute of Scientific and Technical Information of China (English)

    GU Wei; LIU Guokun; REN Bin; WU Deyin; GU Renao; TIAN Zhongqun

    2005-01-01

    The interaction of imidazole with Co electrodes in an electrochemical system was studied by surface-enhanced Raman scattering (SERS) and electrochemical methods. The SER spectra of Co in an imidazole solution as a function of the applied potential were analyzed and the assignment of the Raman bands was made. It was found that there were three kinds of surface species on the Co surface in different potential regions and they were interchangeable depending on the potential. In a relatively negative potential region (-1.2 to -0.9 V), imidazole was adsorbed on the surface and its orientation might change from a vertical configuration via the N-end of the pyridine ring to a tilted configuration via the C2=N3 double bond. In a more positive potential region (-0.8 to -0.7 V), the SERS signal from the adsorbed imidazole weakened and finally disappeared, meanwhile the signal from the Co and imidazole complex strengthened gradually. At the open circuit potential (-0.6 V), we detected very strong bands from the Co oxides. By comparing the Tafel curves of the Co electrode in the solution without and with imidazole, we found that imidazole has a marked effect on the corrosion inhibition of the Co electrode. This result demonstrates that we may be able to reveal the complicated interaction of surface species with metal surface at the molecular level by combining the SERS and electrochemical methods.

  10. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    International Nuclear Information System (INIS)

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN)4] layers to form a solid of formula unit T(ImD)2[Ni(CN)4]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN)4] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. These intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives

  11. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    Energy Technology Data Exchange (ETDEWEB)

    González, M.; Lemus-Santana, A.A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico); Rodríguez-Hernández, J. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico); Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Havana (Cuba); Aguirre-Velez, C.I. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico); Knobel, M. [Institute of Physics “Gleb Wataghin”, UNICAMP, 13083-970 Campinas, SP (Brazil); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico)

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. These intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.

  12. Allosteric analysis of glucocorticoid receptor-DNA interface induced by cyclic Py-Im polyamide: a molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yaru Wang

    Full Text Available BACKGROUND: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. CONCLUSIONS/SIGNIFICANCE: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a >4 Å widening of the DNA minor groove and a compression of the major groove by more than 4 Å as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression of DNA major groove surface causes GRDBD to move away from the DNA major groove with the initial average distance of ∼4 Å to the final average distance of ∼10 Å during 40 ns simulation course. Therefore, this study straightforward explores how small molecule targeting specific sites in the DNA minor groove disrupts the transcription factor-DNA interface in DNA major groove, and consequently modulates gene expression.

  13. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen;

    2015-01-01

    % PA) ranges between 90 wt% and 452 wt% depending on the ratio of 4-aminopyridine and imidazole and the membranes show good proton conductivity of up to 65 mS cm-1 at 160 °C under non-humidified conditions. The applicability of these materials as a polymer electrolyte membrane was proven by single cell......Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt...

  14. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    Energy Technology Data Exchange (ETDEWEB)

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura (Pfizer)

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  15. A Submarine Journey: The Pyrrole-Imidazole Alkaloids

    Directory of Open Access Journals (Sweden)

    Alessandra Scolaro

    2009-11-01

    Full Text Available In his most celebrated tale “The Picture of Dorian Gray”, Oscar Wilde stated that “those who go beneath the surface do so at their peril”. This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity − from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products.

  16. A submarine journey: the pyrrole-imidazole alkaloids.

    Science.gov (United States)

    Forte, Barbara; Malgesini, Beatrice; Piutti, Claudia; Quartieri, Francesca; Scolaro, Alessandra; Papeo, Gianluca

    2009-11-27

    In his most celebrated tale "The Picture of Dorian Gray", Oscar Wilde stated that "those who go beneath the surface do so at their peril". This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity--from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products.

  17. A Submarine Journey: The Pyrrole-Imidazole Alkaloids †

    Science.gov (United States)

    Forte, Barbara; Malgesini, Beatrice; Piutti, Claudia; Quartieri, Francesca; Scolaro, Alessandra; Papeo, Gianluca

    2009-01-01

    In his most celebrated tale “The Picture of Dorian Gray”, Oscar Wilde stated that “those who go beneath the surface do so at their peril”. This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity – from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products. PMID:20098608

  18. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A Structural Perspective of Ligands and Mutants

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G;

    2015-01-01

    The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far ......Glu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs....

  19. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation.

    Science.gov (United States)

    Boulton, Stephen; Melacini, Giuseppe

    2016-06-01

    The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems. PMID:27111288

  20. Structure of N-acetyl-L-glutamate synthase/kinase from Maricaulis maris with the allosteric inhibitor L-arginine bound.

    Science.gov (United States)

    Zhao, Gengxiang; Haskins, Nantaporn; Jin, Zhongmin; M Allewell, Norma; Tuchman, Mendel; Shi, Dashuang

    2013-08-01

    Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism. PMID:23850694

  1. Sulfonyl Imidazoles as Reagents for the Preparation of Sulfonates and Sulfonamides

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Several new sulfonates and sulfonamides were synthesized with sulfonyl imidazoles as reagents. These compounds were characterized by 1H NMR. The melting points of all solids synthesized were obtained on Fisher-Johns Melting Point Apparatus.

  2. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Data.gov (United States)

    U.S. Environmental Protection Agency — A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology has been synthesized and its application as a recyclable...

  3. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Science.gov (United States)

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  4. Allosteric activation mechanism of the cys-loop receptors

    Institute of Scientific and Technical Information of China (English)

    Yong-chang CHANG; Wen WU; Jian-liang ZHANG; Yao HUANG

    2009-01-01

    Binding of a neurotransmitter to its ionotropic receptor opens a distantly located ion channel, a process termed allosteric activation. Here we review recent advances in the molecular mechanism by which the cys-loop receptors are activated with emphasis on the best studied nicotinic acetylcholine receptors (nAChRs). With a combination of affinity labeling, mutagenesis, electrophysiology, kinetic modeling, electron microscopy (EM), and crystal structure analysis, the allosteric activation mechanism is emerging. Specifically, the binding domain and gating domain are interconnected by an allosteric activation network. Agonist binding induces conformational changes, resulting in the rotation of a β sheet of amino-terminal domain and outward movement of loop 2, loop F, and cys-loop, which are coupled to the M2-M3 linker to pull the channel to open. However, there are still some controversies about the movement of the channel-lining domain M2. Nine angstrom resolution EM structure of a nAChR imaged in the open state suggests that channel opening is the result of rotation of the M2 domain. In contrast, recent crystal structures of bacterial homologues of the cys-loop receptor family in apparently open state have implied an M2 tilting model with pore dilation and quaternary twist of the whole pentameric receptor. An elegant study of the nAChR using protonation scanning of M2 domain supports a similar pore dilation activation mechanism with minimal rotation of M2. This remains to be validated with other approaches including high resolution structure determination of the mammalian cys-loop receptors in the open state.

  5. A trans influence study in propyl (aquo)cobaloxime by imidazoles and amino acids

    Indian Academy of Sciences (India)

    J V Madhuri; S Satyanarayana

    2005-07-01

    Substitution reactions of propyl cobaloxime with imidazole, substituted imidazoles, histidine, histamine, glycine and ethyl glycine ester are carried out as a function of pH. Trends in the formation constants are explained based on the steric hindrance, extent of -bonding and -donor capacity of the incoming ligand. Molecular mechanics is used to theoretically determine the bond length and bond strain values by MM2 parametrization and these are correlated with the experimental data.

  6. HPLC-ESI-MS/MS of Imidazole Alkaloids in Pilocarpus microphyllus

    OpenAIRE

    Sawaya, Alexandra; Abreu, Ilka Nacif; Andreazza, Nathalia Luiza; Marcos N Eberlin; Mazzafera, Paulo

    2008-01-01

    Pilocarpine, an important imidazole alkaloid, is extracted from the leaves of Pilocarpus microphyllus (Rutaceae), known in Brazil as jaborandi and used mainly for the treatment of glaucoma. Jaborandi leaves also contain other imidazole alkaloids, whose pharmacological and physiological properties are unknown, and whose biosynthetic pathways are under investigation. In the present study, a HPLC method coupled with ESI-MSn was developed for their qualitative and quantitative analysis. This meth...

  7. Imidazole-2-ylidenes as Ligands for Palladium Catalyzed Heck Cross Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing-Bo; LIU Jing-Ping; SHAO Zhi-Hui; LI Jie; ZHANG Hong-Bin

    2003-01-01

    @@ N-Heterocyclic carbenes have become universal ligands in coordination chemistry. [1] The design, synthesis, and application of imidazolium salts as precursors of imidazole-2-ylidenes are therefore of substantial interest. [2] The free carbenes with imidazole-2-ylidene structure of A (Scheme 1 ), so called "phosphine mimics", can form metal complexes with high thermal and hydrolytic durability, while N-substituted by different functional groups could produce, in principle, water-soluble; unsymmetrical; and immobilized catalysts. [3

  8. Allosteric modulators of the hERG K{sup +} channel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyi, E-mail: z.yu@lacdr.leidenuniv.nl; Klaasse, Elisabeth, E-mail: elisabethklaasse@hotmail.com; Heitman, Laura H., E-mail: l.h.heitman@lacdr.leidenuniv.nl; IJzerman, Adriaan P., E-mail: ijzerman@lacdr.leidenuniv.nl

    2014-01-01

    Drugs that block the cardiac K{sup +} channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K{sup +} channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [{sup 3}H]astemizole and [{sup 3}H]dofetilide to the hERG K{sup +} channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC{sub 50} values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC{sub 50} values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K{sup +} channel, which is discussed in the light of findings on other ion channels. - Highlights: • Allosteric modulators on the hERG K{sup +} channel were evaluated in binding assays. • LUF6200 was identified as a potent allosteric inhibitor. • Potassium ions were found to behave as allosteric enhancers. • Positive cooperativity and distinct allosteric sites for them were proposed.

  9. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site

    Energy Technology Data Exchange (ETDEWEB)

    Wielens, Jerome; Headey, Stephen J.; Jeevarajah, Dharshini; Rhodes, David I.; Deadman, John; Chalmers, David K.; Scanlon, Martin J.; Parker, Michael W. (SVIMR-A); (Avea); (Monash IPS)

    2010-04-19

    HIV integrase (IN) is an essential enzyme in HIV replication and an important target for drug design. IN has been shown to interact with a number of cellular and viral proteins during the integration process. Disruption of these important interactions could provide a mechanism for allosteric inhibition of IN. We present the highest resolution crystal structure of the IN core domain to date. We also present a crystal structure of the IN core domain in complex with sucrose which is bound at the dimer interface in a region that has previously been reported to bind integrase inhibitors.

  10. Crystal structures of the two salts 2-methyl-1H-imidazol-3-ium nitrate-2-methyl-1H-imidazole (1/1) and 2-methyl-1H-imidazol-3-ium nitrate.

    Science.gov (United States)

    Diop, Mouhamadou Birame; Diop, Libasse; Maris, Thierry

    2016-04-01

    The title salts, C4H7N2 (+)·NO3 (-)·C4H6N2, (I), and C4H7N2 (+)·NO3 (-), (II), were obtained from solutions containing 2-methyl-imidazole and nitric acid in different concentrations. In the crystal structure of salt (I), one of the -NH H atoms of the imidazole ring shows half-occupancy, hence only every second mol-ecule is in its cationic form. The nitrate anion in this structure lies on a twofold rotation axis. The neutral 2-methyl-imidazole mol-ecule and the 2-methyl-1H-imidazol-3-ium cation inter-act through N-H⋯N hydrogen bonds to form [(C4H6N2)⋯(C4H7N2)(+)] pairs. These pairs are linked with two nitrate anions on both sides through bifurcated N-H⋯(O,O) hydrogen bonds into chains running parallel to [001]. In the crystal structure of salt (II), the C4H7N2 (+) cation and the NO3 (-) anion are both located on a mirror plane, leading to a statistical disorder of the methyl H atoms. The cations and anions again inter-act through bifurcated N-H⋯(O,O) hydrogen bonds, giving rise to the formation of chains consisting of alternating anions and cations parallel to [100]. PMID:27375869

  11. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  12. The allosteric switching mechanism in bacteriophage MS2

    Science.gov (United States)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  13. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  14. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    Science.gov (United States)

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  15. Discovery and structural characterization of an allosteric inhibitor of bacterial cis-prenyltransferase.

    Science.gov (United States)

    Danley, Dennis E; Baima, Eric T; Mansour, Mahmoud; Fennell, Kimberly F; Chrunyk, Boris A; Mueller, John P; Liu, Shenping; Qiu, Xiayang

    2015-01-01

    Undecaprenyl pyrophosphate synthase (UPPs) is an essential enzyme in a key bacterial cell wall synthesis pathway. It catalyzes the consecutive condensations of isopentenyl pyrophosphate (IPP) groups on to a trans-farnesyl pyrophosphate (FPP) to produce a C55 isoprenoid, undecaprenyl pyrophosphate (UPP). Here we report the discovery and co-crystal structures of a drug-like UPPs inhibitor in complex with Streptococcus pneumoniae UPPs, with and without substrate FPP, at resolutions of 2.2 and 2.1 Å, respectively. The UPPs inhibitor has a low molecular weight (355 Da), but displays potent inhibition of UPP synthesis in vitro (IC50 50 nM) that translates into excellent whole cell antimicrobial activity against pathogenic strains of Streptococcal species (MIC90 0.4 µg mL(-1) ). Interestingly, the inhibitor does not compete with the substrates but rather binds at a site adjacent to the FPP binding site and interacts with the tail of the substrate. Based on the structures, an allosteric inhibition mechanism of UPPs is proposed for this inhibitor. This inhibition mechanism is supported by biochemical and biophysical experiments, and provides a basis for the development of novel antibiotics targeting Streptococcus pneumoniae. PMID:25287857

  16. Virus assembly and maturation: auto-regulation through allosteric molecular switches.

    Science.gov (United States)

    Domitrovic, Tatiana; Movahed, Navid; Bothner, Brian; Matsui, Tsutomu; Wang, Qiu; Doerschuk, Peter C; Johnson, John E

    2013-05-13

    We generalize the concept of allostery from the traditional non-active-site control of enzymes to virus maturation. Virtually, all animal viruses transition from a procapsid noninfectious state to a mature infectious state. The procapsid contains an encoded chemical program that is executed following an environmental cue. We developed an exceptionally accessible virus system for the study of the activators of maturation and the downstream consequences that result in particle stability and infectivity. Nudaurelia capensis omega virus (NωV) is a T=4 icosahedral virus that undergoes a dramatic maturation in which the 490-Å spherical procapsid condenses to a 400-Å icosahedral-shaped capsid with associated specific auto-proteolysis and stabilization. Employing X-ray crystallography, time-resolved electron cryo-microscopy and hydrogen/deuterium exchange as well as biochemistry, it was possible to define the mechanisms of allosteric communication among the four quasi-equivalent subunits in the icosahedral asymmetric unit. These gene products undergo proteolysis at different rates, dependent on quaternary structure environment, while particle stability is conferred globally following only a few local subunit transitions. We show that there is a close similarity between the concepts of tensegrity (associated with geodesic domes and mechanical engineering) and allostery (associated with biochemical control mechanisms). PMID:23485419

  17. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I.

    Science.gov (United States)

    McCudden, C R; Powers-Lee, S G

    1996-07-26

    Carbamoyl-phosphate synthetase I (CPSase I) catalyzes the entry and rate-limiting step in the urea cycle, the pathway by which mammals detoxify ammonia. One facet of CPSase I regulation is a requirement for N-acetylglutamate (AGA), which induces an active enzyme conformation and does not participate directly in the chemical reaction. We have utilized labeling with carbodiimide-activated [14C]AGA to identify peptides 120-127, 234-237, 625-630, and 1351-1356 as potentially being near the binding site for AGA. Identification of peptide 1351-1356 confirms the previous demonstration (Rodriquez-Aparicio, L. B., Guadalajara, A. M., and Rubio, V.(1989) Biochemistry 28, 3070-3074) that the C-terminal region is involved in binding AGA. Identification of peptides 120-127 and 234-237 constitutes the first evidence that the N-terminal region of the synthetase is involved in ligand binding. Since peptides 631-638 and 1327-1348 have been identified near the ATP site of CPSase I (Potter, M. D., and Powers-Lee, S. G.(1992) J. Biol. Chem. 267, 2023-2031), the present finding of involvement of peptides 625-630 and 1351-1356 at an "allosteric" activator site was unexpected. The idea that portions of the AGA effector site might be derived from an ancestral glutamine substrate site via a gene duplication and diversification event was considered. PMID:8663466

  18. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    Science.gov (United States)

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  19. Diabetes mellitus: novel insights, analysis and interpretation of pathophysiology and complications management with imidazole-containing peptidomimetic antioxidants.

    Science.gov (United States)

    Babizhayev, Mark A; Lankin, Vadim Z; Savel'Yeva, Ekaterina L; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-12-01

    peroxidase type of activity and protection of antioxidant enzymes from inactivation (such as in a case of superoxide dismutase). Carnosine biological mimetics react with methylglyoxal and they are described in this study as a glyoxalase mimetics. The imidazole-containing carnosine biological mimetics can react with a number of deleterious aldehydic products of lipid peroxidation and thereby suppress their toxicity. Carnosine and carcinine can also react with glycated proteins and inhibit advanced glycation end product formation. These studies indicate a therapeutic role for imidazole-containing antioxidants (non-hydrolized carnosine, carcinine, D-carnosine, ophthalmic prodrug N-acetylcarnosine, leucyl-histidylhidrazide and patented formulations thereof) in therapeutic management strategies for Type 2 Diabetes. PMID:24236935

  20. Chitosan impregnation with biologically active tryaryl imidazoles in supercritical carbon dioxide.

    Science.gov (United States)

    Cherkasova, Anastasia V; Glagolev, Nikolay N; Shienok, Andrey I; Demina, Tatiana S; Kotova, Svetlana L; Zaichenko, Natalia L; Akopova, Tatiana A; Timashev, Peter S; Bagratashvili, Victor N; Solovieva, Anna B

    2016-09-01

    The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less. PMID:27539011

  1. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola.

    Science.gov (United States)

    Cunin, R; Rani, C S; Van Vliet, F; Wild, J R; Wales, M

    1999-12-17

    The aspartate transcarbamylase (ATCase) from Erwinia herbicola differs from the other investigated enterobacterial ATCases by its absence of homotropic co-operativity toward the substrate aspartate and its lack of response to ATP which is an allosteric effector (activator) of this family of enzymes. Nevertheless, the E. herbicola ATCase has the same quaternary structure, two trimers of catalytic chains with three dimers of regulatory chains ((c3)2(r2)3), as other enterobacterial ATCases and shows extensive primary structure conservation. In (c3)2(r2)3 ATCases, the association of the catalytic subunits c3 with the regulatory subunits r2 is responsible for the establishment of positive co-operativity between catalytic sites for the binding of aspartate and it dictates the pattern of allosteric response toward nucleotide effectors. Alignment of the primary sequence of the regulatory polypeptides from the E. herbicola and from the paradigmatic Escherichia coli ATCases reveals major blocks of divergence, corresponding to discrete structural elements in the E. coli enzyme. Chimeric ATCases were constructed by exchanging these blocks of divergent sequence between these two ATCases. It was found that the amino acid composition of the outermost beta-strand of a five-stranded beta-sheet in the effector-binding domain of the regulatory polypeptide is responsible for the lack of co-operativity and response to ATP of the E. herbicola ATCase. A novel structural element involved in allosteric signal recognition and transmission in this family of ATCases was thus identified. PMID:10600394

  2. Allosteric activation and contrasting properties of L-serine dehydratase types 1 and 2.

    Science.gov (United States)

    Chen, Shawei; Xu, Xiao Lan; Grant, Gregory A

    2012-07-01

    Bacterial L-serine dehydratases differ from mammalian L- and D-serine dehydratases and bacterial D-serine dehydratases by the presence of an iron-sulfur center rather than a pyridoxyl phosphate prosthetic group. They exist in two forms, types 1 and 2, distinguished by their sequence and oligomeric configuration. Both types contain an ASB domain, and the type 1 enzymes also contain an ACT domain in a tandem arrangement with the ASB domain like that in type 1 D-3-phosphoglycerate dehydrogenases (PGDHs). This investigation reveals striking kinetic differences between L-serine dehydratases from Bacillus subtilis (bsLSD, type 1) and Legionella pneumophila (lpLSD, type 2). lpLSD is activated by monovalent cations and inhibited by monovalent anions. bsLSD is strongly activated by cations, particularly potassium, and shows a mixed response to anions. Flouride is a competitive inhibitor for lpLSD but an apparent activator for bsLSD at low concentrations and an inhibitor at high concentrations. The reaction products, pyruvate and ammonia, also act as activators but to different extents for each type. Pyruvate activation is competitive with L-serine, but activation of the enzyme is not compatible with it simply competing for binding at the active site and suggests the presence of a second, allosteric site. Because activation can be eliminated by higher levels of L-serine, it may be that this second site is actually a second serine binding site. This is consistent with type 1 PGDH in which the ASB domain functions as a second site for substrate binding and activation.

  3. Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8

    KAUST Repository

    Zhang, Chen

    2012-08-16

    We studied molecular sieving properties of zeolitic imidazolate framework-8 (ZIF-8) by estimating the thermodynamically corrected diffusivities of probe molecules at 35 °C. From helium (2.6 Å) to iso-C 4H 10 (5.0 Å), the corrected diffusivity drops 14 orders of magnitude. Our results further suggest that the effective aperture size of ZIF-8 for molecular sieving is in the range of 4.0 to 4.2 Å, which is significantly larger than the XRD-derived value (3.4 Å) and between the well-known aperture size of zeolite 4A (3.8 Å) and 5A (4.3 Å). Interestingly, because of aperture flexibility, the studied C 4 hydrocarbon molecules that are larger than this effective aperture size still adsorb in the micropores of ZIF-8 with kinetic selectivities for iso-C 4H 8/iso-C 4H 10 of 180 and n-C 4H 10/iso-C 4H 10 of 2.5 × 10 6. These unexpected molecular sieving properties open up new opportunities for ZIF materials for separations that cannot be economically achieved by traditional microporous adsorbents such as synthetic zeolites. © 2012 American Chemical Society.

  4. Benzimidazole and imidazole lithium salts for battery electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Scheers, Johan; Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Szczecinski, Przemyslaw; Wieczorek, Wladyslaw [Polymer Ionics Research Group, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00664 Warsaw (Poland); Armand, Michel [Laboratoire de Reactivite et de Chimie des Solides, Universite de Picardie Jules Verne, 33 rue St. Leu, 80089 Amiens (France)

    2010-09-15

    The intrinsic anion oxidation potential ({delta}E{sub v}) and lithium ion pair dissociation energy ({delta}E{sub d}) are two important properties for predicting the potential use of new lithium salts for battery electrolytes. In this work several cyano substituted fluoroalkylated benzimidazole and imidazole anions have been investigated computationally to obtain {delta}E{sub v} and {delta}E{sub d}. Varying the number and position of cyano substituents results in large effects on the electrochemical stability of the anion and on the possible lithium ion pair configurations. The lengthening of the fluoroalkyl group introduces several new stable ion pair configurations and a small increase in anion oxidation stability. The most promising fluoroalkylated anions in the present work are the 4,5,6,7-tetracyano-2-fluoroalkylated benzimidazolides (TTB and PTB), with oxidation potentials suitable for high voltage Li-ion battery applications (<4.2 V) and much improved {delta}E{sub d} compared to PF{sub 6}{sup -} - a benchmark for commercially available anions. Further improvements in {delta}E{sub d}, with maintained stability towards oxidation, are obtainable by replacing the fluoroalkyl group by an additional cyano group, but possibly demanding increased synthesis efforts. (author)

  5. Biological applications of zinc imidazole framework through protein encapsulation

    Science.gov (United States)

    Kumar, Pawan; Bansal, Vasudha; Paul, A. K.; Bharadwaj, Lalit M.; Deep, Akash; Kim, Ki-Hyun

    2015-12-01

    The robustness of biomolecules is always a significant challenge in the application of biostorage in biotechnology or pharmaceutical research. To learn more about biostorage in porous materials, we investigated the feasibility of using zeolite imidazolate framework (ZIF-8) with respect to protein encapsulation. Here, bovine serum albumin (BSA) was selected as a model protein for encapsulation with the synthesis of ZIF-8 using water as a media. ZIF-8 exhibited excellent protein adsorption capacity through successive adsorption of free BSA with the formation of hollow crystals. The loading of protein in ZIF-8 crystals is affected by the molecular weight due to diffusion-limited permeation inside the crystals and also by the affinity of the protein to the pendent group on the ZIF-8 surface. The polar nature of BSA not only supported adsorption on the solid surface, but also enhanced the affinity of crystal spheres through weak coordination interactions with the ZIF-8 framework. The novel approach tested in this study was therefore successful in achieving protein encapsulation with porous, biocompatible, and decomposable microcrystalline ZIF-8. The presence of both BSA and FITC-BSA in ZIF-8 was confirmed consistently by spectroscopy as well as optical and electron microscopy.

  6. Biological applications of zinc imidazole framework through protein encapsulation

    Science.gov (United States)

    Kumar, Pawan; Bansal, Vasudha; Paul, A. K.; Bharadwaj, Lalit M.; Deep, Akash; Kim, Ki-Hyun

    2016-10-01

    The robustness of biomolecules is always a significant challenge in the application of biostorage in biotechnology or pharmaceutical research. To learn more about biostorage in porous materials, we investigated the feasibility of using zeolite imidazolate framework (ZIF-8) with respect to protein encapsulation. Here, bovine serum albumin (BSA) was selected as a model protein for encapsulation with the synthesis of ZIF-8 using water as a media. ZIF-8 exhibited excellent protein adsorption capacity through successive adsorption of free BSA with the formation of hollow crystals. The loading of protein in ZIF-8 crystals is affected by the molecular weight due to diffusion-limited permeation inside the crystals and also by the affinity of the protein to the pendent group on the ZIF-8 surface. The polar nature of BSA not only supported adsorption on the solid surface, but also enhanced the affinity of crystal spheres through weak coordination interactions with the ZIF-8 framework. The novel approach tested in this study was therefore successful in achieving protein encapsulation with porous, biocompatible, and decomposable microcrystalline ZIF-8. The presence of both BSA and FITC-BSA in ZIF-8 was confirmed consistently by spectroscopy as well as optical and electron microscopy.

  7. Topoisomerase II poisoning by indazole and imidazole complexes of ruthenium

    Indian Academy of Sciences (India)

    Y N Vashisht Gopal; Anand K Kondapi

    2001-06-01

    Trans-imidazolium (bis imidazole) tetrachloro ruthenate (RuIm) and trans-indazolium (bis indazole) tetrachloro ruthenate (RuInd) are ruthenium coordination complexes, which were first synthesized and exploited for their anticancer activity. These molecules constitute two of the few most effective anticancer ruthenium compounds. The clinical use of these compounds however was hindered due to toxic side effects on the human body. Our present study on topoisomerase II poisoning by these compounds shows that they effectively poison the activity of topoisomerase II by forming a ternary cleavage complex of DNA, drug and topoisomerase II. The thymidine incorporation assays show that the inhibition of cancer cell proliferation correlates with topoisomerase II poisoning. The present study on topoisomerase II poisoning by these two compounds opens a new avenue for renewing further research on these compounds. This is because they could be effective lead candidates for the development of more potent and less toxic ruthenium containing topoisomerase II poisons. Specificity of action on this molecular target may reduce the toxic effects of these ruthenium-containing molecules and thus improve their therapeutic index.

  8. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative.

    Science.gov (United States)

    Olmo, Francisco; Gómez-Contreras, Fernando; Navarro, Pilar; Marín, Clotilde; Yunta, María J R; Cano, Carmen; Campayo, Lucrecia; Martín-Oliva, David; Rosales, María José; Sánchez-Moreno, Manuel

    2015-12-01

    A series of new phthalazine derivatives (1-4) containing imidazole rings and functionalized with nitro groups in the benzene ring of the phthalazine moiety were prepared and identified on the basis of their MS, elemental analyses and bidimensional (1)H and (13)C NMR data, and their trypanocidal activity was tested. The 8-nitrosubstituted compound (3) was more active in vitro against Trypanosoma cruzi and less toxic against Vero cells than the reference drug benznidazole, and showed a SI value that was 47-fold better than the reference drug in amastigote forms. It also remarkably reduced the infectivity rate in Vero cells and decreased the reactivation of parasitemia in immunodeficient mice. Ultrastructural alterations found in epimastigotes treated with 3 confirmed extensive cytoplasm destruction in the parasites, whereas histopathological analysis of the hearts of mice infected and treated with 3 resulted in a decrease in cardiac damage. Biochemical markers showed that livers, hearts, and kidneys of treated mice were substantially unaffected by the administration of 3, despite the presence of the potentially toxic nitro group. It was also found that this compound selectively inhibited the antioxidant parasite enzyme Fe-superoxide dismutase (Fe-SOD) in comparison with human CuZn-SOD, and molecular modeling suggested interaction with the H-bonding system of the iron-based moiety as a feasible mechanism of action against the enzyme.

  9. Imidazoles suppress rat testosterone secretion and testicular interstitial fluid formation In vivo.

    Science.gov (United States)

    Adams, M L; Meyer, E R; Cicero, T J

    1998-08-01

    The aim of these studies was to examine the effects of imidazoles on testosterone secretion and testicular interstitial fluid (TIF) formation through measurement of serum LH, serum testosterone, TIF testosterone, and TIF volumes. Imidazole, 1-methylimidazole, 4-methylimidazole (4-MI), and ketoconazole, an oral imidazole antifungal agent, caused dose-dependent decreases in testosterone secretion and TIF formation. Imidazole, 2-methylimidazole, and 4-MI decreased LH secretion. 4-MI decreased testosterone secretion 1-6 h after injection, increased testosterone at 8-16 h, decreased LH secretion at 4 h, decreased TIF volumes at 1-8 h, and slightly increased TIF volumes at 24 h. 4-MI blocked the stimulatory effects of hCG on testosterone secretion and prevented an expected increase in LH secretion after the 4-MI-induced decrease in testosterone secretion. 4-MI also reversed the effects of three other stimulants of testosterone secretion that presumably act through three different testicular regulatory systems: N-methyl-D,L-aspartate, an excitatory amino acid; NG-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor; and naltrexone, an opioid antagonist. These results support the hypothesis that imidazoles inhibit testicular function and male reproductive function through inhibition of testosterone secretion, TIF formation, and LH secretion regulatory systems. PMID:9687292

  10. Coarse-Grained Molecular Simulations of Allosteric Cooperativity

    CERN Document Server

    Nandigrami, Prithviraj

    2015-01-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two calcium ions to each domain of calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding is treated implicitly at the mean field level. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energy to the open and closed ensembles accurately describe...

  11. Architecture and Co-Evolution of Allosteric Materials

    CERN Document Server

    Yan, Le; Brito, Carolina; Wyart, Matthieu

    2016-01-01

    We introduce a numerical scheme to evolve functional materials that can accomplish a specified mechanical task. In this scheme, the number of solutions, their spatial architectures and the correlations among them can be computed. As an example, we consider an "allosteric" task, which requires the material to respond specifically to a stimulus at a distant active site. We find that functioning materials evolve a less-constrained trumpet-shaped region connecting the stimulus and active sites and that the amplitude of the elastic response varies non-monotonically along the trumpet. As previously shown for some proteins, we find that correlations appearing during evolution alone are sufficient to identify key aspects of this design. Finally, we show that the success of this architecture stems from the emergence of soft edge modes recently found to appear near the surface of marginally connected materials. Overall, our in silico evolution experiment offers a new window to study the relationship between structure, ...

  12. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Chun, Eugene; Thompson, Aaron A.; Chubukov, Pavel; Xu, Fei; Katritch, Vsevolod; Han, Gye Won; Roth, Christopher B.; Heitman, Laura H.; IJzerman, Adriaan P.; Cherezov, Vadim; Stevens, Raymond C. (Scripps); (Leiden/Amsterdam); (Receptos)

    2012-08-31

    Pharmacological responses of G protein-coupled receptors (GPCRs) can be fine-tuned by allosteric modulators. Structural studies of such effects have been limited due to the medium resolution of GPCR structures. We reengineered the human A{sub 2A} adenosine receptor by replacing its third intracellular loop with apocytochrome b{sub 562}RIL and solved the structure at 1.8 angstrom resolution. The high-resolution structure allowed us to identify 57 ordered water molecules inside the receptor comprising three major clusters. The central cluster harbors a putative sodium ion bound to the highly conserved aspartate residue Asp{sup 2.50}. Additionally, two cholesterols stabilize the conformation of helix VI, and one of 23 ordered lipids intercalates inside the ligand-binding pocket. These high-resolution details shed light on the potential role of structured water molecules, sodium ions, and lipids/cholesterol in GPCR stabilization and function.

  13. PEG-400 as an efficient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5-tetraaryl-1H-imidazoles

    Institute of Scientific and Technical Information of China (English)

    Xi Cun Wang; Hai Peng Gong; Zheng Jun Quan; Lei Li; He Lin Ye

    2009-01-01

    An efficient protocol for the one-pot multicomponent synthesis of various 2,4,5-triaryl- IH-imidazoles and 1,2,4,5-tetraaryl-1H-imidazoles using PEG-400 as reaction medium is described. This method has the advantages of good yields, less pollution and simple reaction conditions.

  14. Allosteric control in a metalloprotein dramatically alters function.

    Science.gov (United States)

    Baxter, Elizabeth Leigh; Zuris, John A; Wang, Charles; Vo, Phu Luong T; Axelrod, Herbert L; Cohen, Aina E; Paddock, Mark L; Nechushtai, Rachel; Onuchic, Jose N; Jennings, Patricia A

    2013-01-15

    Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs.

  15. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants

    Science.gov (United States)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G.; Weiss, Dahlia; Arsova, Angela; Marshall, Fiona H.; Bräuner-Osborne, Hans; Gloriam, David E.

    2015-01-01

    The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far this has not led to a marketed drug, largely because of the difficulties in achieving subtype-selective compounds with desired properties. Very recently the first crystal structures were published for the transmembrane domain of two metabotropic glutamate receptors in complex with negative allosteric modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different mGlu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs. PMID:26359761

  16. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

    DEFF Research Database (Denmark)

    Hindie, Valerie; Stroba, Adriana; Zhang, Hua;

    2009-01-01

    Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-d...

  17. Allosteric Optical Control of a Class B G-Protein-Coupled Receptor.

    Science.gov (United States)

    Broichhagen, Johannes; Johnston, Natalie R; von Ohlen, Yorrick; Meyer-Berg, Helena; Jones, Ben J; Bloom, Stephen R; Rutter, Guy A; Trauner, Dirk; Hodson, David J

    2016-05-01

    Allosteric regulation promises to open up new therapeutic avenues by increasing drug specificity at G-protein-coupled receptors (GPCRs). However, drug discovery efforts are at present hampered by an inability to precisely control the allosteric site. Herein, we describe the design, synthesis, and testing of PhotoETP, a light-activated positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR involved in the maintenance of glucose homeostasis in humans. PhotoETP potentiates Ca(2+) , cAMP, and insulin responses to glucagon-like peptide-1 and its metabolites following illumination of cells with blue light. PhotoETP thus provides a blueprint for the production of small-molecule class B GPCR allosteric photoswitches, and may represent a useful tool for understanding positive cooperativity at the GLP-1R. PMID:27059784

  18. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  19. N-H···N Hydrogen Bonds Involving Histidine Imidazole Nitrogen Atoms: A New Structural Role for Histidine Residues in Proteins.

    Science.gov (United States)

    Krishna Deepak, R N V; Sankararamakrishnan, Ramasubbu

    2016-07-12

    The amino acid histidine can play a significant role in the structure and function of proteins. Its various functions include enzyme catalysis, metal binding activity, and involvement in cation-π, π-π, salt-bridge, and other types of noncovalent interactions. Although histidine's imidazole nitrogens (Nδ and Nε) are known to participate in hydrogen bond (HB) interactions as an acceptor or a donor, a systematic study of N-H···N HBs with the Nδ/Nε atom as the acceptor has not been conducted. In this study, we have examined two data sets of ultra-high-resolution (data set I) and very high-resolution (data set II) protein structures and identified 28 and 4017 examples of HBs of the N-H···Nδ/Nε type from both data sets involving histidine imidazole nitrogen as the acceptor. In nearly 70% of them, the main-chain N-H bond is the HB donor, and a majority of the examples are from the N-H group separated by two residues (Ni+2-Hi+2) from histidine. Quantum chemical calculations using model compounds were performed with imidazole and N-methylacetamide, and they assumed conformations from 19 examples from data set I with N-H···Nδ/Nε HBs. Basis set superposition error-corrected interaction energies varied from -5.0 to -6.78 kcal/mol. We also found that the imidazole nitrogen of 9% of histidine residues forming N-H···Nδ/Nε interactions in data set II participate in bifurcated HBs. Natural bond orbital analyses of model compounds indicate that the strength of each HB is mutually influenced by the other. Histidine residues involved in Ni+2-Hi+2···Nδi/Nεi HBs are frequently observed in a specific N-terminal capping position giving rise to a novel helix-capping motif. Along with their predominant occurrence in loop segments, we propose a new structural role for histidines in protein structures. PMID:27305350

  20. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    OpenAIRE

    Stephen Verespy III; Mehta, Akul Y.; Daniel Afosah; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated...

  1. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication.

    Science.gov (United States)

    Guarnera, Enrico; Berezovsky, Igor N

    2016-03-01

    Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022

  2. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    Directory of Open Access Journals (Sweden)

    Cabrera-Luque Juan

    2008-09-01

    Full Text Available Abstract Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG, an essential allosteric activator of carbamylphosphate synthetase I (CPSI in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS, which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine

  3. Nanosecond photochromic molecular switching of a biphenyl-bridged imidazole dimer revealed by wide range transient absorption spectroscopy

    NARCIS (Netherlands)

    T. Yamaguchi; M.F. Hilbers; P.P. Reinders; Y. Kobayashi; A.M. Brouwer; J. Abe

    2015-01-01

    We demonstrate that a biphenyl-bridged imidazole dimer exhibits fast photochromism with a thermal recovery time constant of similar to 100 ns, which is the fastest thermal back reaction in all reported imidazole dimers. Sub-ps transient absorption spectroscopy reveals that the generation process of

  4. The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; FENG DaPeng; XU Bin; LIU XuQing; LIU WeiMin

    2009-01-01

    Several imidazole phosphate ionic liquids with varying carbon chain length have been synthesized at room temperature. Corrosion characteristics and tribological properties of these synthesized ionic liquids were studied using four-ball friction and wear testing machine. Its lubrication mechanism was also investigated by means of electron microscopy and X-ray photoelectron spectroscopy. The ex-perimental results showed that no corrosion was generated when the imidazole phosphate ionic liquid was applied to steel-steel pair. Meanwhile, the imidazole phosphate showed excellent anti-wear and lubricating performances, its frictional performance was related to the polarity of ionic liquids. It is suggested that the ionic liquids react with friction surface to form a protective film of iron phosphate and result in reduction in friction and wear.

  5. The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Several imidazole phosphate ionic liquids with varying carbon chain length have been synthesized at room temperature.Corrosion characteristics and tribological properties of these synthesized ionic liquids were studied using four-ball friction and wear testing machine.Its lubrication mechanism was also investigated by means of electron microscopy and X-ray photoelectron spectroscopy.The ex-perimental results showed that no corrosion was generated when the imidazole phosphate ionic liquid was applied to steel-steel pair.Meanwhile,the imidazole phosphate showed excellent anti-wear and lubricating performances,its frictional performance was related to the polarity of ionic liquids.It is suggested that the ionic liquids react with friction surface to form a protective film of iron phosphate and result in reduction in friction and wear.

  6. Synthesis and Structure-Activity Relationships of Imidazole-Coumarin Conjugates against Hepatitis C Virus.

    Science.gov (United States)

    Tsay, Shwu-Chen; Lin, Shu-Yu; Huang, Wen-Chieh; Hsu, Ming-Hua; Hwang, Kuo Chu; Lin, Chun-Cheng; Horng, Jia-Cherng; Chen, I-Chia; Hwu, Jih Ru; Shieh, Fa-Kuen; Leyssen, Pieter; Neyts, Johan

    2016-02-18

    A series of new conjugated compounds with a -SCH₂- linkage were synthesized by chemical methods from imidazole and coumarin derivatives. The experimental results indicate that of the twenty newly synthesized imidazole-coumarin conjugates, three of them exhibited appealing EC50 values (5.1-8.4 μM) and selective indices >20 against hepatitis C virus. Their potency and selectivity were increased substantially by modification of their structure with two factors: imidazole nucleus with a hydrogen atom at the N(1) position and coumarin nucleus with a substituent, such as Cl, F, Br, Me, and OMe. These guidelines provide valuable information for further development of conjugated compounds as anti-viral agents.

  7. Poly(arylene ether imidazole) surfacing films for flat and parabolic structures

    Science.gov (United States)

    Connell, John W. (Inventor); Towell, Timothy W. (Inventor); Tompkins, Stephen S. (Inventor)

    1996-01-01

    Films of thermoplastic poly(arylene ether imidazole)s (PAEI)s are used as surface modifiers for neat resin panels and composite resin panels. The PAEI polymer contains imidazole groups along the backbone which co-cure, i.e., react chemically, with epoxies or bismaleimides during processing and thereby provide excellent adhesion between the PAEI film and an epoxy or bismaleimide neat resin or composite resin facesheet. The film provides good adhesion and a smooth surface to the finished part and acts as a release agent from the mold. The as-processed integral structures have very smooth (specular) surfaces, and since the film releases readily from a glass mold, no release agent is necessary. The PAEI film is thermally stable, resistant to electron radiation, and adheres tenaciously to the facesheet. The film maintains good adhesion even after thermal cycling from room temperature to .about. -196.degree. C.

  8. Dissection of the conduit for allosteric control of carbamoyl phosphate synthetase by ornithine.

    Science.gov (United States)

    Pierrat, Olivier A; Javid-Majd, Farah; Raushel, Frank M

    2002-04-01

    Ornithine is an allosteric activator of carbamoyl phosphate synthetase (CPS) from Escherichia coli. Nine amino acids in the vicinity of the binding sites for ornithine and potassium were mutated to alanine, glutamine, or lysine. The residues E783, T1042, and T1043 were found to be primarily responsible for the binding of ornithine to CPS, while E783 and E892, located within the carbamate domain of the large subunit, were necessary for the transmission of the allosteric signals to the active site. In the K loop for the binding of the monovalent cation potassium, only E761 was crucial for the exhibition of the allosteric effects of ornithine, UMP, and IMP. The mutations H781K and S792K altered significantly the allosteric properties of ornithine, UMP, and IMP, possibly by modifying the conformation of the K-loop structure. Overall, these mutations affected the allosteric properties of ornithine and IMP more than those of UMP. The mutants S792K and D1041A altered the allosteric regulation by ornithine and IMP in a similar way, suggesting common features in the activation mechanism exhibited by these two effectors. PMID:11913967

  9. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  10. Imidazoles: Effective Catalysts for Baylis-Hillman Reaction in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    LUO San-Zhong; WANG Peng G.; CHENG Jin-Pei

    2003-01-01

    @@ β-Substituted enones have been considered less reactive in Baylis-Hillman reaction. The reaction of cyclic enones is sluggish or does not occur at all under traditional conditions. Various catalysts have been developed to pro mote the reaction of cyclic enones but with limited success. In previous study, we found that imidazole can catalyze the Baylis-Hillman reaction involving cyclic enones in aqueous THF solution.[1] In our continued efforts, we screened a variety of imidazoles to develop superior catalyst, and we found that the reaction could be greatly accelerated by adjusting the pH value of the water solution.

  11. 4-(4-Fluorophenyl-1-methoxymethyl-2-phenyl-1H-imidazole

    Directory of Open Access Journals (Sweden)

    Roland Selig

    2009-11-01

    Full Text Available In the crystal structure of the title compound, C17H15FN2O, the molecules form a three-dimensional network stabilized by π–π interactions between two imidazole rings related by a centre of symmetry. The distance between the centroids is 3.5488 (8 Å. The imidazole ring makes dihedral angles of 14.30 (7 and 33.39 (7° with the 4-fluorophenyl ring and the phenyl ring, respectively.

  12. Silica-supported Copper(Ⅱ) Catalyzed Coupling of Arylboronic Acids with Imidazoles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Yuan; WANG Lei

    2006-01-01

    Immobilized copper(Ⅱ) in organic-inorganic hybrid materials catalyzed Ar-N coupling of arylboronic acids with imidazoles has been developed. Arylboronic acids reacted with imidazoles smoothly in the presence of a 3-(2-aminoethylamino)propyl functionalized silica gel immobilized copper(Ⅱ) catalyst (10 mol%) in methanol without any additives and bases. The reactions generated the corresponding cross-coupling products in good yields.Furthermore, silica-supported copper can be recovered and recycled by a simple filtration procedure and used for five consecutive trials without decreases in activity.

  13. 4,5-Dimethyl-1,2-diphenyl-1H-imidazole monohydrate

    Directory of Open Access Journals (Sweden)

    P. Gayathri

    2010-09-01

    Full Text Available In the title compound, C17H16N2·H2O, the imidazole ring is essentially planar [maximum deviation = 0.0037 (7 Å]. The imidazole ring makes dihedral angles of 80.74 (7 and 41.62 (7° with the phenyl rings attached to the N and C atoms, respectively. The dihedral angle between the two phenyl rings is 75.83 (8°. Intermolecular O—H...N and O—H...O hydrogen bonds are found in the crystal structure.

  14. 2-[4-(4,5-Dihydro-1H-imidazol-2-ylphenyl]-4,5-dihydro-1H-imidazol-3-ium 4-aminobenzoate

    Directory of Open Access Journals (Sweden)

    Shao-Ming Shang

    2011-01-01

    Full Text Available In the cation of the title compound, C12H15N4+·C7H6NO2−, the benzene ring makes dihedral angles of 30.51 (9 and 25.64 (9° with the imidazole and imidazolinium rings, respectively. In the crystal, intermolecular N—H...O and N—H...N hydrogen-bonding interactions link the molecules into a three-dimensional network.

  15. Role of connecting loop I in catalysis and allosteric regulation of human glucokinase.

    Science.gov (United States)

    Martinez, Juliana A; Larion, Mioara; Conejo, Maria S; Porter, Carol M; Miller, Brian G

    2014-07-01

    Glucokinase (GCK, hexokinase IV) is a monomeric enzyme with a single glucose binding site that displays steady-state kinetic cooperativity, a functional characteristic that affords allosteric regulation of GCK activity. Structural evidence suggests that connecting loop I, comprised of residues 47-71, facilitates cooperativity by dictating the rate and scope of motions between the large and small domains of GCK. Here we investigate the impact of varying the length and amino acid sequence of connecting loop I upon GCK cooperativity. We find that sequential, single amino acid deletions from the C-terminus of connecting loop I cause systematic decreases in cooperativity. Deleting up to two loop residues leaves the kcat value unchanged; however, removing three or more residues reduces kcat by 1000-fold. In contrast, the glucose K0.5 and KD values are unaffected by shortening the connecting loop by up to six residues. Substituting alanine or glycine for proline-66, which adopts a cis conformation in some GCK crystal structures, does not alter cooperativity, indicating that cis/trans isomerization of this loop residue does not govern slow conformational reorganizations linked to hysteresis. Replacing connecting loop I with the corresponding loop sequence from the catalytic domain of the noncooperative isozyme human hexokinase I (HK-I) eliminates cooperativity without impacting the kcat and glucose K0.5 values. Our results indicate that catalytic turnover requires a minimal length of connecting loop I, whereas the loop has little impact upon the binding affinity of GCK for glucose. We propose a model in which the primary structure of connecting loop I affects cooperativity by influencing conformational dynamics, without altering the equilibrium distribution of GCK conformations. PMID:24723372

  16. The imidazole role in strontium beta-diketonate complexes formation.

    Science.gov (United States)

    Marchetti, Fabio; Pettinari, Claudio; Pettinari, Riccardo; Cingolani, Augusto; Gobetto, Roberto; Chierotti, Michele R; Drozdov, Andrei; Troyanov, Sergey I

    2006-04-01

    A selection of new strontium beta-diketonate derivatives (imH2)2[Sr2(beta-dike)6] [where imH = imidazole and beta-dike = tfac (tfacH = 1,1,1-trifluoro-2,4-pentanedione), tfbz (tfbzH = 1,1,1-trifluoro-4-phenyl-2,4-butanedione), or hfac (hfacH = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione)], [Sr2(tfac)4(Meim)2(H2O)2], (MeimH)2[Sr(beta-dike)4] (where Meim = 1-methylimidazole and beta-dike = tfbz or hfac), [Sr2(thd)4(imH)2(EtOH)], and [Sr2(thd)4(Meim)2(EtOH)] (where thdH = 2,2,6,6-tetramethyl-3,5-heptanedione) have been synthesized and fully characterized. (imH2)2[Sr2(beta-dike)6] and (MeimH)2[Sr(beta-dike)4] are di- and mononuclear Sr anionic complexes, respectively, while [Sr2(tfac)4(Meim)2(H2O)2], [Sr2(thd)4(imH)2(EtOH)], and [Sr2(thd)4(Meim)2(EtOH)] are neutral dinuclear molecular derivatives. The derivative (imH2)2[Sr2(hfac)6] slowly decomposes in solution under aerobic conditions, giving (imH2)2[Sr(H2O)2(tfa)3](tfa) (tfaH = trifluoroacetic acid), which is an ionic compound containing polynuclear anionic chains composed of Sr(H2O)2(tfa)3 units. When a deficiency of imH is employed, the thdH proligand forms not only the dinuclear derivative [Sr2(thd)4(imH)2(EtOH)] but also an additional product with the formula [Sr(thd)2(H2O)2(EtOH)], in which the Sr atom is seven-coordinated. A complete solid-state characterization has been accomplished by comparing X-ray and solid-state 13C NMR data. Elucidation of the H-bond interaction between the heterocyclic rings and metal complexes by cross-polarization magic-angle-spinning 15N NMR is also reported. PMID:16562964

  17. Poly[bis[μ-1,4-bis(imidazol-1-ylmethylbenzene]dichloridocadmium(II

    Directory of Open Access Journals (Sweden)

    Xinliang Hu

    2008-07-01

    Full Text Available The title compound, [CdCl2(C14H14N42]n, has a slightly distorted octahedral coordination geometry, formed by four N atoms from 1,4-bis(imidazol-1-ylmethylbenzene ligands and two Cl atoms, giving a two-dimensional network. The Cd atom lies on a centre of inversion.

  18. HPLC-ESI-MS/MS of Imidazole Alkaloids in Pilocarpus microphyllus

    Directory of Open Access Journals (Sweden)

    Paulo Mazzafera

    2008-07-01

    Full Text Available Pilocarpine, an important imidazole alkaloid, is extracted from the leaves of Pilocarpus microphyllus (Rutaceae, known in Brazil as jaborandi and used mainly for the treatment of glaucoma. Jaborandi leaves also contain other imidazole alkaloids, whose pharmacological and physiological properties are unknown, and whose biosynthetic pathways are under investigation. In the present study, a HPLC method coupled with ESI-MSn was developed for their qualitative and quantitative analysis. This method permits the chromatographic separation of the imidazole alkaloids found in extracts of jaborandi, as well as the MS/MS analysis of the individual compounds. Thus two samples: leaves of P. microphyllus and a paste that is left over after the industrial extraction of pilocarpine; were compared. The paste was found to contain significant amounts of pilocarpine and other imidazole alkaloids, but had a slightly different alkaloid profile than the leaf extract. The method is suitable for the routine analysis of samples containing these alkaloids, as well as for the separation and identification of known and novel alkaloids from this family, and may be applied to further studies of the biosynthetic pathway of pilocarpine in P. microphyllus.

  19. HPLC-ESI-MS/MS of imidazole alkaloids in Pilocarpus microphyllus.

    Science.gov (United States)

    Sawaya, Alexandra C H F; Abreu, Ilka Nacif; Andreazza, Nathalia Luiza; Eberlin, Marcos N; Mazzafera, Paulo

    2008-01-01

    Pilocarpine, an important imidazole alkaloid, is extracted from the leaves of Pilocarpus microphyllus (Rutaceae), known in Brazil as jaborandi and used mainly for the treatment of glaucoma. Jaborandi leaves also contain other imidazole alkaloids, whose pharmacological and physiological properties are unknown, and whose biosynthetic pathways are under investigation. In the present study, a HPLC method coupled with ESI-MS(n) was developed for their qualitative and quantitative analysis. This method permits the chromatographic separation of the imidazole alkaloids found in extracts of jaborandi, as well as the MS/MS analysis of the individual compounds. Thus two samples: leaves of P. microphyllus and a paste that is left over after the industrial extraction of pilocarpine; were compared. The paste was found to contain significant amounts of pilocarpine and other imidazole alkaloids, but had a slightly different alkaloid profile than the leaf extract. The method is suitable for the routine analysis of samples containing these alkaloids, as well as for the separation and identification of known and novel alkaloids from this family, and may be applied to further studies of the biosynthetic pathway of pilocarpine in P. microphyllus. PMID:18719522

  20. Studies on immobilized polymer-bound imidazole copper(II) complexes as catalysts

    NARCIS (Netherlands)

    Chen, Wei

    2006-01-01

    This thesis describes the immobilization of polymer-bound imidazole Cu(I1) complexes on non-porous silica spheres. The catalytic properties of these immobilized polymeric Cu(I1) complexes and their non-immobilized polymeric or low-molar-mass analogues were examined in oxidative coupling (polymerizat

  1. Tannic acid Catalyzed an Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole

    Directory of Open Access Journals (Sweden)

    Shitole Nana Vikram

    2013-05-01

    Full Text Available Tannic acid (C76H52O46 has been found to be an efficient catalyst for one-pot synthesis of 2,4,5-triaryl substituted imidazoles by the reaction of an arylaldehyde, benzyl/benzoin and an ammonium acetate. The short reaction time and excellent yields making this protocol practical and economically attractive.

  2. OXIDATIVE PHENOL COUPLING CATALYZED BY POLYMER-BOUND COPPER-IMIDAZOLE COMPLEXES

    NARCIS (Netherlands)

    CHALLA, G; REEDIJK, J

    1992-01-01

    Polymer-bound imidazole-copper(II) complexes were investigated and applied as catalysts for oxidative coupling (polymerization) of 2,6-dialkylphenols. These polymeric catalysts were also immobilized on silica particles through adsorption, quaternization and grafting. Especially, the grafted catalyst

  3. Synthesis and Crystal Structure of a New Imidazole Coordinated Octamolybdate Compound

    Institute of Scientific and Technical Information of China (English)

    康杰; 张全争; 吴传德; 杨文斌; 詹晓平; 余雅琴; 卢灿忠

    2003-01-01

    The title compound (Himi)4[Mo8O26(imi)2].4H2O (imi = imidazole) 1 was synthesized by the reaction of H2MoO4 and imidazole in aqueous solution. Single-crystal X-ray analysis reveals that compound 1 is crystallized in the triclinic system, space group P1 with a = 10.6219(8),b = 10.7260(8), c = 11.3220(9) A, α = 92.842(2), β =117.364(1), γ= 101.655(1)°, C18H36Mo8N12-O30, Mr = 1668.11, V= 1106.8(2) A3, Z= 1, Dc = 2.503 g/cm3, F(000) = 804, μ = 2.298 mm-1, the final R = 0.0714 and wR = 0.1651 for 3121 observed reflections with Ⅰ> 2σ(Ⅰ). The X-ray crystal structure analysis suggests that compound 1 is built up by two imidazole ligands coordinated by the centrosymmetric octamolybdate anions, protonated imidazole cations and crystallization water molecules.

  4. Synthesis of Imidazole Derivatives for Their Second-order Nonlinear Optics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The design and the synthesis of two conjugated donor-acceptor imidazole derivatives(1, 2) were carried out for second-order nonlinear optics. The thermal properties, the transparency and second-order nonlinear optical properties of the molecules were investigated. The experimental results indicate that a good nonlinearity-transparency-thermal stability trade-off is achieved for them.

  5. Interactions between oxovanadium (IV), glycylvaline and imidazoles: An aqueous potentiometric and spectroscopic study

    Indian Academy of Sciences (India)

    N Patel; V K Soni; K K Shukla; S Sharma; K B Pandeya

    2002-02-01

    Speciation has been determined in aqueous oxovanadium, glycylvaline and imidazoles at 25 ± 1° C and = 0.1M NaClO4 using a combination of potentiometry, and visible and EPR spectroscopy. Results of potentiometric and spectroscopic methods are consistent. Calculations of stability constants have been made using the SCOGS computer program.

  6. Spin crossover and LIESST effect of new iron(II) complexes with imidazole containing ligands

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Naohide; Sato, Tetsuya; Hashimoto, Shingo [Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555 (Japan); Kojima, Masaaki [Department of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530 (Japan); Iijima, Seiichiro, E-mail: naohide@aster.sci.kumamoto-u.ac.j [National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566 (Japan)

    2009-02-01

    Three spin crossover (SCO) iron(II) complexes with imidazole containing tridentate ligands has been prepared. It was found that the complexes have versatile network structures constructed by hydrogen-bonds and pi-pi stacking, a variety of SCO properties, and LIESST(light induced excited spin state trapping) effects. The structures and magnetic SCO properties of three complexes are reported.

  7. Are AMPA receptor positive allosteric modulators potential pharmacotherapeutics for addiction?

    Science.gov (United States)

    Watterson, Lucas R; Olive, M Foster

    2013-01-01

    Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. PMID:24380895

  8. Computational Investigation on the Allosteric Modulation of Androgen Receptor

    Institute of Scientific and Technical Information of China (English)

    OU Min-Rui; LI Jun-Qian

    2012-01-01

    Androgens have similar structures with different biological activities. To identify molecular determinants responsible for the activity difference, we have docked six steroidal androgens to the binding site or the surface of androgen receptor by using molecular docking with computational investigation. The energy was calculated respectively based on the QM (quantum mechanics) and MM (molecular mechanics) methods. The result shows that the allosteric modulation of androgen receptor plays an important role in the binding process between androgens and receptor. The open state receptor is less stable than the close state one, but the latter is more favorable for binding with androgens. It is worthy of note that when the androgen receptors binding or without binding with androgen are in close state, they are difficult to return to their open state. This phenomenon is an exception of the well known two-state model theory in which the two states are reversible. Whether the internal of close state androgen receptor has a combination of androgen or not, the androgen receptor surface can be combined with another androgen, and their surface binding energies could be very close. The result is consistent with the experimental observations, but this phenomenon of continuous combination from open state is also an exception of the two-state model theory.

  9. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    Science.gov (United States)

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules. PMID:26308901

  10. Adenine nucleotides as allosteric effectors of PEA seed glutamine synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, P.J.; Knight, T.J.

    1986-05-01

    The energy charge in the plant cell has been proposed as a regulator of glutamine synthetase (GS) activity. The authors have shown that 2.1 moles of ..gamma..(/sup 32/P)-ATP were bound/mole subunits of purified pea seed GS during complete inactivation with methionine sulfoximine. Since GS has one active site per subunit, the second binding site provides the potential for allosteric regulation of GS by adenine nucleotides. The authors have investigated the inhibition of the ATP-dependent synthetic activity by ADP and AMP. ADP and AMP cannot completely inhibit GS; but ATP does overcome the inhibition by ADP and AMP as shown by plots of % inhibition vs inhibitor concentration. This indicates that inhibition of GS by ADP or AMP is not completely due to competitive inhibition. In the absence of ADP or AMP, double reciprocal plots for ATP are linear below 10 mM; however, in the presence of either ADP or AMP these pots are curvilinear downwards. The ratio of Vm/asymptote is less than 1. The Hill number for ATP in the absence of ADP or AMP is 0.93 but decreases with increasing ADP or AMP to a value of 0.28 with 10 mM ADP. These data are consistent with negative cooperativity by ADP and AMP. Thus, as the ADP/ATP or AMP/ATP ratios are increased GS activity decreases. This is consistent with regulation of GS activity by energy charge in planta.

  11. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain.

    Science.gov (United States)

    Burgess, Selena G; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W; Vernos, Isabelle; Matthews, David; Bayliss, Richard

    2016-07-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors. PMID:27411893

  12. Allosteric inhibition of the NS2B-NS3 protease from dengue virus.

    Science.gov (United States)

    Yildiz, Muslum; Ghosh, Sumana; Bell, Jeffrey A; Sherman, Woody; Hardy, Jeanne A

    2013-12-20

    Dengue virus is the flavivirus that causes dengue fever, dengue hemorrhagic disease, and dengue shock syndrome, which are currently increasing in incidence worldwide. Dengue virus protease (NS2B-NS3pro) is essential for dengue virus infection and is thus a target of therapeutic interest. To date, attention has focused on developing active-site inhibitors of NS2B-NS3pro. The flat and charged nature of the NS2B-NS3pro active site may contribute to difficulties in developing inhibitors and suggests that a strategy of identifying allosteric sites may be useful. We report an approach that allowed us to scan the NS2B-NS3pro surface by cysteine mutagenesis and use cysteine reactive probes to identify regions of the protein that are susceptible to allosteric inhibition. This method identified a new allosteric site utilizing a circumscribed panel of just eight cysteine variants and only five cysteine reactive probes. The allosterically sensitive site is centered at Ala125, between the 120s loop and the 150s loop. The crystal structures of WT and modified NS2B-NS3pro demonstrate that the 120s loop is flexible. Our work suggests that binding at this site prevents a conformational rearrangement of the NS2B region of the protein, which is required for activation. Preventing this movement locks the protein into the open, inactive conformation, suggesting that this site may be useful in the future development of therapeutic allosteric inhibitors. PMID:24164286

  13. Characteristic features of kynurenine aminotransferase allosterically regulated by (alpha-ketoglutarate in cooperation with kynurenine.

    Directory of Open Access Journals (Sweden)

    Ken Okada

    Full Text Available Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT, which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN to kynurenic acid (KYNA. We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5'-phosphate (PLP, KYN and α-ketoglutaric acid (2OG or oxaloacetic acid (OXA. 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor.

  14. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    Science.gov (United States)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  15. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    Science.gov (United States)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  16. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    Science.gov (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  17. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli.

    Science.gov (United States)

    Chen, Lin; Chen, Zhen; Zheng, Ping; Sun, Jibin; Zeng, An-Ping

    2013-04-01

    Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.

  18. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention...... in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many theoretical advantages over their orthosteric counterparts, including more complex modes of action, improved...... safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge...

  19. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    Science.gov (United States)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  20. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ.

    Science.gov (United States)

    Aoto, Phillip C; Martin, Bryan T; Wright, Peter E

    2016-01-01

    The intramolecular network structure of a protein provides valuable insights into allosteric sites and communication pathways. However, a straightforward method to comprehensively map and characterize these pathways is not currently available. Here we present an approach to characterize intramolecular network structure using NMR chemical shift perturbations. We apply the method to the mitogen activated protein kinase (MAPK) p38γ. p38γ contains allosteric sites that are conserved among eukaryotic kinases as well as unique to the MAPK family. How these regulatory sites communicate with catalytic residues is not well understood. Using our method, we observe and characterize for the first time information flux between regulatory sites through a conserved kinase infrastructure. This network is accessed, reinforced, and broken in various states of p38γ, reflecting the functional state of the protein. We demonstrate that the approach detects critical junctions in the network corresponding to biologically significant allosteric sites and pathways. PMID:27353957

  1. Synthesis and biological evaluation of negative allosteric modulators of the Kv11.1(hERG) channel.

    Science.gov (United States)

    Yu, Zhiyi; van Veldhoven, Jacobus P D; 't Hart, Ingrid M E; Kopf, Adrian H; Heitman, Laura H; IJzerman, Adriaan P

    2015-12-01

    We synthesized and evaluated a series of compounds for their allosteric modulation at the Kv11.1 (hERG) channel. Most compounds were negative allosteric modulators of [(3)H]dofetilide binding to the channel, in particular 7f, 7h-j and 7p. Compounds 7f and 7p were the most potent negative allosteric modulators amongst all ligands, significantly increasing the dissociation rate of dofetilide in the radioligand kinetic binding assay, while remarkably reducing the affinities of dofetilide and astemizole in a competitive displacement assay. Additionally, both 7f and 7p displayed peculiar displacement characteristics with Hill coefficients significantly distinct from unity as shown by e.g., dofetilide, further indicative of their allosteric effects on dofetilide binding. Our findings in this investigation yielded several promising negative allosteric modulators for future functional and clinical research with respect to their antiarrhythmic propensities, either alone or in combination with known Kv11.1 blockers. PMID:26519929

  2. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    Science.gov (United States)

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  3. Hemoglobin and the origins of the concept of allosterism.

    Science.gov (United States)

    Edsall, J T

    1980-02-01

    heterotropic interactions. Brief final comments relate to the evolution of the concept of reversible conformational transitions as the basis for both homotropic and heterotropic interactions in allosteric proteins. PMID:6986293

  4. /sup 67/Zn and /sup 1/H NMR studies of Zn/sup 2 +/-imidazole and carboxylate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. (Chemical Research Inst. of Non-Aqueous Solutions, Katahira, Japan); Kudaka, M.; Hatano, M.

    1982-06-15

    /sup 67/Zn NMR studies of naturally abundant Zn/sup 2 +/-imidazole and carboxylate ligands. Complexes are shown. Thus, quadrupolar relaxation changes in /sup 67/Zn NMR caused by adding imidazole ligands are more remarkable than those by carboxylate ligands. The changes caused by adding less bulky imidazole ligands are more prominent than those caused by a bulky imidazole ligand. Changes in Zn/sup 2 +/ quadrupolar relaxation rate caused by adding a cyclic hexapeptide consisting of L-histidine, L-cystein(Acm) and D-leucine are larger than those by a corresponding linear hexapeptide. Those changes in the quadrupolar relaxation rate of /sup 67/Zn NMR among Zn/sup 2 +/ complexes can be reasonably interpreted in terms of the differences of equilibrium constants of those complexes to a first approximation.

  5. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.

    Science.gov (United States)

    Moreadith, R W; Lehninger, A L

    1984-05-25

    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria. PMID:6725250

  6. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119

    DEFF Research Database (Denmark)

    Hassing, Helle A; Fares, Suzan; Larsen, Olav;

    2016-01-01

    for 2h with the 2-MAG-lipase inhibitor JZL84 doubled the constitutive activity, indicating that endogenous lipids contribute to the apparent constitutive activity. Finally, besides being an agonist, AR231453 acted as a positive allosteric modulator of OEA and increased its potency by 54-fold at 100nM AR......231453. Our studies uncovering broad and biased signaling, masked constitutive activity by endogenous MAGs, and ago-allosteric properties of synthetic ligands may explain why many GPR119 drug-discovery programs have failed so far....

  7. Investigation of cobalt porphyrin doped polymer membrane films for the optical sensing of imidazole and its derivatives

    Directory of Open Access Journals (Sweden)

    Yueyang Tan

    2015-03-01

    Full Text Available A cobalt(II porphyrin was successfully incorporated into polymer membranes for the optical sensing of imidazole and its derivatives. This research has led to a better understanding of the behavior of Co(II porphyrin in solution and in polymeric membranes. In aprotic dichloromethane (DCM, the Co(II tetraphenylporphyrin (CoTPP and Co(II octaethylporphyrin (CoOEP show a sensitive response to imidazole due to the strong ligation of the N-3 on the imidazole ring to the Co(II center, which induces an absorbance change to the Soret band. However, when doped in polymeric films, only the CoTPP exhibits moderate sensitivity towards aqueous imidazole, histamine and histidine. This weakened coordination ability of CoTPP towards imidazole in the polymer films may be due to the coordination of the plasticizer, the impurities from the THF and polymer matrix at the Co(II center. The selectivity of the polymer films towards imidazole over common anions is high. Lifetime of the cobalt(II porphyrin incorporated polymer film was relatively short.

  8. Synthesis and Structure-Activity Relationships of Imidazole-Coumarin Conjugates against Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Shwu-Chen Tsay

    2016-02-01

    Full Text Available A series of new conjugated compounds with a –SCH2– linkage were synthesized by chemical methods from imidazole and coumarin derivatives. The experimental results indicate that of the twenty newly synthesized imidazole–coumarin conjugates, three of them exhibited appealing EC50 values (5.1–8.4 μM and selective indices >20 against hepatitis C virus. Their potency and selectivity were increased substantially by modification of their structure with two factors: imidazole nucleus with a hydrogen atom at the N(1 position and coumarin nucleus with a substituent, such as Cl, F, Br, Me, and OMe. These guidelines provide valuable information for further development of conjugated compounds as anti-viral agents.

  9. 5-[4-(1H-Imidazol-1-ylphenyl]-2H-tetrazole dihydrate

    Directory of Open Access Journals (Sweden)

    Yan-Hua Zhang

    2011-06-01

    Full Text Available In the title compound, C10H8N6·2H2O, the central aromatic ring makes dihedral angles of 23.59 (15 and 16.99 (16° with the terminal imidazole and tetrazole rings, respectively, which are themselves almost coplanar [dihedral angle = 6.61 (18°]. Two H atoms of the two water molecules are half occupied. In the crystal packing, weak intermolecular O—H...N, O—H...O and N—H...N hydrogen bonds and π–π stacking interactions [centroid–centroid distances of 3.73 (4 Å between benzene rings and 3.66 (3 Å between imidazole and tetrazole rings] are observed.

  10. Effect of transition metal binding on the tautomeric equilibrium of the carnosine imidazolic ring

    Science.gov (United States)

    Torreggiani, A.; Fini, G.; Bottura, G.

    2001-05-01

    A Raman study of carnosine (Carn) and its complexes with Cu(II), Zn(II) and Co(II) at different pH values was carried out. At pH 7 and 9, Carn exists in equilibrium between two tautomeric forms. Raman spectroscopy appears to be a useful tool for analysing the tautomeric equilibrium of the imidazole ring of Carn since the sites involved in metal chelation can be identified by some bands (e.g. νC4C5) that change in wavenumber depending on whether the imidazole ring takes the tautomeric form I or II. Form I (N π-H) is predominant in the free ligand, but the metal coordination can affect the tautomeric equilibrium. Although weak compared to those of aromatic residues, the Raman marker bands may be useful in analysing metal-histidine interaction in proteins.

  11. Imidazole-based deep eutectic solvents for starch dissolution and plasticization.

    Science.gov (United States)

    Zdanowicz, Magdalena; Spychaj, Tadeusz; Mąka, Honorata

    2016-04-20

    Potato starch and high-amylose starch were treated with imidazole-based deep eutectic solvents (DESs) as dissolution and plasticization media. Beside imidazole (IM) for two-component DESs preparation choline chloride (CC), glycerol (G) or carboxylic acids (citric or malic) were used. An influence of water content in starch (as well as an extra water in the starch/DES system) on polymer dissolution and plasticization processes was investigated. Dissolution and gelatinization of starch in DESs were followed via DSC and laser scanning microscopy. A rheometric characteristics revealed an influence of starch/DES system storage time on the plasticization process. The tendency to recrystallization of compression-molded-starch films was evaluated using XRD technique. High dissolution and plasticization effectiveness of CC/IM and G/IM and a low tendency to film retrogradation of thermoplasticized starch were noted. PMID:26876869

  12. Substituent Effect on Proton Affinity of Imidazole in Cu,Zn-Superoxide Dismutase

    Institute of Scientific and Technical Information of China (English)

    JI Hong-Fang; ZHANG Hong-Yu

    2006-01-01

    To investigate whether the proton-accepting ability of imidazole in Cu,Zn-superoxide dismutase (SOD) was possibly modulated by Zn(Ⅱ) or not, the proton affinity (Ap) of N3 in imidazole group was calculated by density functional theory (DFF) with B3LYP functional. It was found that Zn(Ⅱ) attenuates the Ap, because of its electron-withdrawing effect, while the three ligands connected with Zn(Ⅱ) (residues of two His and one Asp) exert an opposite effect, owing to their electron-donating ability. This finding suggested that the three ligands should play a role in the normal function of Cu,Zn-SOD and should be taken into consideration in the future study.

  13. New Palladium-Imidazole and Imidazoline Complexes:Structures and Reactivity in Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    Satoshi; Haneda; Kazuo; Eda; Masahiko; Hayashi

    2007-01-01

    1 Results We have recently reported the Mizoroki-Heck reaction catalyzed by PdCl2 and imidazole ligands[1]. During the course of our study of palladium imidazole complex,we disclosed the synthesis of trans-Pd(Ln)2Cl2 by the reaction of PdCl2 with Ln (where L1=2-phenylimidazole,L2=2-phenylimidazole) in a 1∶2 molar ratio.The single crystals of trans-Pd(L1)2Cl2·2DMF (1a) and trans-Pd(L2)2Cl2 (2a) were obtained by following slow evaporation of DMF as a solvent. The single crystal of trans-Pd(L2)2Cl2 (2b) w...

  14. QSAR analysis of N-Alkyl imidazole analogues as antibacterial agents

    Directory of Open Access Journals (Sweden)

    Khan Nazneen

    2006-01-01

    Full Text Available A quantitative structure activity relationship study on a series of N-alkyl imidazole analogues was made using combination of various thermodynamic electronic and spatial descriptors. Several statistical expressions were developed using stepwise multiple liner regression analysis. The best quantitative structure activity relationship models were further validated by leave-one-out method of cross-validation. The study revealed that the electronic property, i.e., dipole moment contributed positively, and spatial descriptor (principal moment of inertia at Y axis contributed negatively. The study suggested that substitution of group at R1 position on imidazole ring with hydrophobic nature and low bulkiness are favourable for the antibacterial activity in the concerned microbes. The quantitative structure activity relationship study provides important structural insights in designing of potent antibacterial agents.

  15. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4.

    Science.gov (United States)

    Denisov, Ilia G; Mak, Piotr J; Grinkova, Yelena V; Bastien, Dominic; Bérubé, Gervais; Sligar, Stephen G; Kincaid, James R

    2016-05-01

    Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4. PMID:26774838

  16. Allosteric Transitions Direct Protein Tagging by PafA, the Prokaryotic Ubiquitin-like Protein (Pup) Ligase*

    Science.gov (United States)

    Ofer, Naomi; Forer, Nadav; Korman, Maayan; Vishkautzan, Marina; Khalaila, Isam; Gur, Eyal

    2013-01-01

    Protein degradation via prokaryotic ubiquitin-like protein (Pup) tagging is conserved in bacteria belonging to the phyla Actinobacteria and Nitrospira. The physiological role of this novel proteolytic pathway is not yet clear, although in Mycobacterium tuberculosis, the world's most threatening bacterial pathogen, Pup tagging is important for virulence. PafA, the Pup ligase, couples ATP hydrolysis with Pup conjugation to lysine side chains of protein substrates. PafA is the sole Pup ligase in M. tuberculosis and apparently, in other bacteria. Thus, whereas PafA is a key player in the Pup tagging (i.e. pupylation) system, control of its activity and interactions with target protein substrates remain poorly understood. In this study, we examined the mechanism of protein pupylation by PafA in Mycobacterium smegmatis, a model mycobacterial organism. We report that PafA is an allosteric enzyme that binds its target substrates cooperatively and find that PafA allostery is controlled by the binding of target protein substrates, yet is unaffected by Pup binding. Analysis of PafA pupylation using engineered substrates differing in the number of pupylation sites points to PafA acting as a dimer. These findings suggest that protein pupylation can be regulated at the level of PafA allostery. PMID:23471967

  17. Allosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase.

    Science.gov (United States)

    Ofer, Naomi; Forer, Nadav; Korman, Maayan; Vishkautzan, Marina; Khalaila, Isam; Gur, Eyal

    2013-04-19

    Protein degradation via prokaryotic ubiquitin-like protein (Pup) tagging is conserved in bacteria belonging to the phyla Actinobacteria and Nitrospira. The physiological role of this novel proteolytic pathway is not yet clear, although in Mycobacterium tuberculosis, the world's most threatening bacterial pathogen, Pup tagging is important for virulence. PafA, the Pup ligase, couples ATP hydrolysis with Pup conjugation to lysine side chains of protein substrates. PafA is the sole Pup ligase in M. tuberculosis and apparently, in other bacteria. Thus, whereas PafA is a key player in the Pup tagging (i.e. pupylation) system, control of its activity and interactions with target protein substrates remain poorly understood. In this study, we examined the mechanism of protein pupylation by PafA in Mycobacterium smegmatis, a model mycobacterial organism. We report that PafA is an allosteric enzyme that binds its target substrates cooperatively and find that PafA allostery is controlled by the binding of target protein substrates, yet is unaffected by Pup binding. Analysis of PafA pupylation using engineered substrates differing in the number of pupylation sites points to PafA acting as a dimer. These findings suggest that protein pupylation can be regulated at the level of PafA allostery. PMID:23471967

  18. Mutations within the putative active site of heterodimeric deoxyguanosine kinase block the allosteric activation of the deoxyadenosine kinase subunit.

    Science.gov (United States)

    Park, Inshik; Ives, David H

    2002-03-31

    Replacement of the Asp-84 residue of the deoxyguanosine kinase subunit of the tandem deoxyadenosine kinase/ deoxyguanosine kinase (dAK/dGK) from Lactobacillus acidophilus R-26 by Ala, Asn, or Glu produced increased Km values for deoxyguanosine on dGK. However, it did not seem to affect the binding of Mg-ATP. The Asp-84 dGK replacements had no apparent effect on the binding of deoxyadenosine by dAK. However, the mutant dGKs were no longer inhibited by dGTP, normally a potent distal endproduct inhibitor of dGK. Moreover, the allosteric activation of dAK activity by dGTP or dGuo was lost in the modified heterodimeric dAK/dGK enzyme. Therefore, it seems very likely that Asp-84 participates in dGuo binding at the active site of the dGK subunit of dAK/dGK from Lactobacillus acidophilus R-26.

  19. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  20. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  1. Antibacterial activity of synthesized 2,4,5-trisubstituted imidazole derivatives

    Digital Repository Service at National Institute of Oceanography (India)

    Khan, M.S.; Siddiqui, S.A.; Siddiqui, M.S.R.A.; Goswami, U.; Srinivasan, K.V.; Khan, M.I.

    ornidazole, secnidazole and tinidazole are anti- bacterial and antiprotozoal drugs (20). Metronidazole is active only against anaerobic organisms. It is activated when reduced through electron donation from ferredoxin or flavodoxin (21). Activated MTZ... concentration The disk diffusion method (23) was used for the preliminary anti- bacterial evaluation of 2,4,5-trisubstitued imidazoles. The minimun inhibitory concentrations (MIC) (Table 1) of 2,4,5-trisubstitued imi- dazoles, showing inhibition...

  2. An imidazole functionalized pentameric thiophene displays different staining patterns in normal and malignant cells

    OpenAIRE

    Magnusson, Karin; Appelqvist, Hanna; Cieślar-Pobuda, Artur; Bäck, Marcus; Kågedal, Bertil; Jonasson, Jon A.; Los, Marek J.; Nilsson, K Peter R

    2015-01-01

    Molecular tools for fluorescent imaging of cells and their components are vital for understanding the function and activity of cells. Here, we report an imidazole functionalized pentameric oligothiophene, p-HTIm, that can be utilized for fluorescent imaging of cells. p-HTIm fluorescence in normal cells appeared in a peripheral punctate pattern partially co-localized with lysosomes, whereas a one-sided perinuclear Golgi associated localization of the dye was observed in malignant cells. The up...

  3. 2-(2-Methyl-5-nitro-1H-imidazol-1-ylethyl 2-bromobenzoate

    Directory of Open Access Journals (Sweden)

    Aurang Zeb

    2012-04-01

    Full Text Available In the title compound, C13H12BrN3O4, the dihedral angle between the benzene and imidazole rings is 30.6 (2°. In the crystal, molecules are linked into chains parallel to [001] by C—H...O hydrogen bonds. The crystal packing is further consolidated by π–π interactions [centroid–centroid distance = 3.482 (2 Å].

  4. Synthesis, single crystal structure and energy optimization of a multicomponent salt of imidazole and tetrabromoterepthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Singha, S.; Kumar, S., E-mail: skndey@gmail.com [Department of Physics, Jadavpur University, Kolkata-700032 (India); Dey, S. K., E-mail: skndey@gmail.com [Department of Physics, Jadavpur University, Kolkata-700032 (India); Department of Physics, NITMAS, 24 Paragana(S)-743368 (India)

    2015-06-24

    Single crystal of a multicomponent salt (IMTBTP) of imidazole with tetrabromoterepthalic acid has been synthesized by slow evaporation method at room temperature. The crystal structure of the salt has been determined by single crystal x-ray diffraction technique. The supramolecular structure analysis reveals that the multicomponent salt is formed by noncovalent hydrogen bonding interaction and Br···π interaction. The energy optimization and HOMO-LUMO energy gap calculation have been carried out by Density Functional Theory.

  5. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization

    OpenAIRE

    Chen, Jianjun; Li, Chien-Ming; Wang, Jin; Ahn, Sunjoo; Wang, Zhao; Lu, Yan; Dalton, James T.; Miller, Duane D.; Li, Wei

    2011-01-01

    We previously reported the discovery of 2-aryl-4-benzoyl-imidazoles (ABI-I) as potent antiproliferative agents for melanoma. To further understand the structural requirements for the potency of ABI analogs, gain insight in the structure-activity relationships (SAR), and investigate metabolic stability for these compounds, we report extensive SAR studies on the ABI-I scaffold. Compared with the previous set of ABI-I analogs, the newly synthesized ABI-II analogs have lower potency in general, b...

  6. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants

    KAUST Repository

    Pan, Yichang

    2011-01-01

    Herein we report a facile synthesis method using surfactant cetyltrimethylammonium bromide (CTAB) as a capping agent for controlling the crystal size and morphology of zeolitic imidazolate framework-8 (ZIF-8) crystals in aqueous systems. The particle sizes can be precisely adjusted from ca. 100 nm to 4 μm, and the morphology can be changed from truncated cubic to rhombic dodecahedron. This journal is © The Royal Society of Chemistry.

  7. Bis(1-tert-butyl-1H-imidazole-κN3)dichloridocobalt(II).

    Science.gov (United States)

    Herdtweck, Eberhardt; Zeller, Alexander; Strassner, Thomas

    2012-06-01

    In the crystal structure of the title compound, [CoCl(2)(C(7)H(12)N(2))(2)], molecular units are formed by coordination of the unsubstituted N atoms of two tert-butyl-substituted imidazole molecules and two chloride ligands, which distinguishes the complex from structures of imidazolium-based dications with tetrachloridocobaltate dianions. There are two crystallographically independent molecules in the asymmetric unit, related by a noncrystallographic inversion centre. PMID:22669189

  8. γ-Alumina Nanoparticle Catalyzed Efficient Synthesis of Highly Substituted Imidazoles

    Directory of Open Access Journals (Sweden)

    Bandapalli Palakshi Reddy

    2015-10-01

    Full Text Available γ-Alumina nano particle catalyzed multi component reaction of benzil, arylaldehyde and aryl amines afforded the highly substituted 1,2,4,5-tetraaryl imidazoles with good to excellent yield in less reaction time under the sonication as well as the conventional methods. Convenient operational simplicity, mild conditions and the reusability of catalyst were the other advantages of this developed protocol.

  9. Synthetic, spectral and solution studies on imidazolate-bridged copper(II)-copper(II) and copper(II)-zinc(II) complexes

    Indian Academy of Sciences (India)

    Subodh Kumar; R N Patel; P V Khadikar; K B Pandeya

    2001-02-01

    Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying H values suggest that the imidazolate-bridged complex is stable over the H-range 7 15-10 0.

  10. Study of Antibacterial Effect of Novel Thiazole, Imidazole and Tetrahydropyridine Derivatives against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Behzad Ghasemi

    2016-01-01

    Full Text Available > Introduction: Escherichia coli is one of the important pathogens in human with globalimportance. Because of the necessity for identification and the use of novel antibacterialcompounds against E. coli, in this present study we focused on the antibacterial effects ofsynthesized thiazole, imidazole and tetrahydropyridine derivatives on E. coli.Methods: For evaluation of antibacterial effect, the disk diffusion method was applied to measurethe growth inhibition zone diameter and broth micro-dilution was performed to determine theminimum inhibitory concentration (MIC.Results: Assessing the antibacterial effect showed that only 6d derivative of thiazole hadinhibitory effect on E. coli and the other thiazole, imidazole and tetrahydropyridine derivativeslacked any inhibitory result on this organism. The inhibitory effect of 6d derivative of thiazolewas MIC=125 and growth inhibition zone diameter of 16±0.1.Discussion: The antibacterial effect of thiazole, imidazole and tetrahydropyridine derivativesdiffers from each other and chemical linkages such as oxygen to thiazole ring in 6d derivative,could have reinforced this effect. The next step is determination of the toxicity and therapeuticeffects in the laboratory animals.

  11. Synthesis, Crystal Structure, and Spectral Properties of a Novel Co(Ⅱ) Complex Containing Imidazole Derivative

    Institute of Scientific and Technical Information of China (English)

    JIN Feng; HAO Fu-Ying; MA Ji-Long; WU Jie-Ying; TIAN Yu-Peng

    2006-01-01

    A novel imidazole derivative with functional group and π-conjugated system, 1- [trans-4-(4-diethylaminostyryl)phenyl]imidazole (abbreviated as L), and its CoII complex (CoCl2L4)2 (Co2C168H184N24Cl4, Mr = 2799.05 ) have been synthesized and the crystal structure of the latter was determined by X-ray diffraction. The crystal is of triclinic, space group P with a = 8.823(3), b = 18.799(7), c = 23.065(9) (A), α = 77.349(6), β = 83.128(7), γ = 80.942(3)°,V = 3671.5(12)(A)3, Z = 1, Dc = 1.266 g/cm3, μ = 0.361 mm-1, F(000) = 1482, the final R = 0.0587 and Wr = 0.1284 for 6562 observed reflections with Ⅰ > 2б(Ⅰ). In the molecular structure of (CoCl2L4)2, there are two crystallographically unique units. The CoII atoms are six-coordinated by four N atoms from four imidazole ligands (L) and two Cl atoms to form a distorted octahedral geometry. The optical properties of complex (CoCl2L4)2 have been experimentally studied.

  12. Extended charge accumulation in ruthenium-4H-imidazole-based black absorbers: a theoretical design concept.

    Science.gov (United States)

    Kupfer, Stephan

    2016-05-11

    A theoretical-guided design concept aiming to achieve highly efficient unidirectional charge transfer and multi-charge separation upon successive photoexcitation for light-harvesting dyes in the scope of supramolecular photocatalysts is presented. Four 4H-imidazole-ruthenium(ii) complexes incorporating a biimidazole-based electron-donating ligand sphere have been designed based on the well-known 4H-imidazole-ruthenium(ii) polypyridyl dyes. The quantum chemical evaluation, performed at the density functional and time-dependent density functional level of theory, revealed extraordinary unidirectional charge transfer bands from the near-infrared to the ultraviolet region of the absorption spectrum upon multi-photoexcitation. Spectro-electrochemical simulations modeling photoexcited intermediates determined the outstanding multi-electron storage capacity for this novel class of black dyes. These remarkable photochemical and photophysical properties are found to be preserved upon site-specific protonation rendering 4H-imidazole-ruthenium(ii) biimidazole dyes ideal for light-harvesting applications in the field of solar energy conversion. PMID:27121270

  13. Mixed-Metal Zeolitic Imidazolate Frameworks and their Selective Capture of Wet Carbon Dioxide over Methane.

    Science.gov (United States)

    Nguyen, Nhung T T; Lo, Tien N H; Kim, Jaheon; Nguyen, Huong T D; Le, Toan B; Cordova, Kyle E; Furukawa, Hiroyasu

    2016-06-20

    A presynthesized, square planar copper imidazole complex, [Cu(imidazole)4](NO3)2, was utilized as a precursor in the synthesis of a new series of zeolitic imidazolate frameworks, termed ZIF-202, -203, and -204. The structures of all three members were solved by single-crystal X-ray diffraction analysis, which revealed ZIF-203 and -204 having successfully integrated square planar units within the backbones of their respective frameworks. As a result of this unit, the structures of both ZIF-203 and -204 were found to adopt unprecedented three-dimensional nets, namely, ntn and thl, respectively. One member of this series, ZIF-204, was demonstrated to be highly porous, exhibit exceptional stability in water, and selectively capture CO2 over CH4 under both dry and wet conditions without any loss in performance over three cycles. Remarkably, the regeneration of ZIF-204 was performed under the mild conditions of flowing a pure N2 gas through the material at ambient temperature. PMID:27248714

  14. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    Science.gov (United States)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-08-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.

  15. Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway.

    Science.gov (United States)

    Alverez, Celeste; Bulfer, Stacie L; Chakrasali, Ramappa; Chimenti, Michael S; Deshaies, Raymond J; Green, Neal; Kelly, Mark; LaPorte, Matthew G; Lewis, Taber S; Liang, Mary; Moore, William J; Neitz, R Jeffrey; Peshkov, Vsevolod A; Walters, Michael A; Zhang, Feng; Arkin, Michelle R; Wipf, Peter; Huryn, Donna M

    2016-02-11

    A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts. PMID:26985295

  16. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines.

    Science.gov (United States)

    Mony, Laetitia; Zhu, Shujia; Carvalho, Stéphanie; Paoletti, Pierre

    2011-06-17

    NMDA receptors (NMDARs) form glutamate-gated ion channels that have central roles in neuronal communication and plasticity throughout the brain. Dysfunctions of NMDARs are involved in several central nervous system disorders, including stroke, chronic pain and schizophrenia. One hallmark of NMDARs is that their activity can be allosterically regulated by a variety of extracellular small ligands. While much has been learned recently regarding allosteric inhibition of NMDARs, the structural determinants underlying positive allosteric modulation of these receptors remain poorly defined. Here, we show that polyamines, naturally occurring polycations that selectively enhance NMDARs containing the GluN2B subunit, bind at a dimer interface between GluN1 and GluN2B subunit N-terminal domains (NTDs). Polyamines act by shielding negative charges present on GluN1 and GluN2B NTD lower lobes, allowing their close apposition, an effect that in turn prevents NTD clamshell closure. Our work reveals the mechanistic basis for positive allosteric modulation of NMDARs. It provides the first example of an intersubunit binding site in this class of receptors, a discovery that holds promise for future drug interventions.

  17. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes.

    Science.gov (United States)

    Nowosinski, Karol; von Krbek, Larissa K S; Traulsen, Nora L; Schalley, Christoph A

    2015-10-16

    A detailed thermodynamic analysis of the axle-wheel binding in di- and trivalent secondary ammonium/[24]crown-8 pseudorotaxanes is presented. Isothermal titration calorimetry (ITC) data and double mutant cycle analyses reveal an interesting interplay of positive as well as negative allosteric and positive chelate cooperativity thus providing profound insight into the effects governing multivalent binding in these pseudorotaxanes.

  18. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    Science.gov (United States)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-01-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites. PMID:27561351

  19. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites.

    Science.gov (United States)

    Brown, Jodian A; Espiritu, Marie V; Abraham, Joel; Thorpe, Ian F

    2016-08-15

    The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics. PMID:27262620

  20. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65.

    Science.gov (United States)

    Huang, Xi-Ping; Karpiak, Joel; Kroeze, Wesley K; Zhu, Hu; Chen, Xin; Moy, Sheryl S; Saddoris, Kara A; Nikolova, Viktoriya D; Farrell, Martilias S; Wang, Sheng; Mangano, Thomas J; Deshpande, Deepak A; Jiang, Alice; Penn, Raymond B; Jin, Jian; Koller, Beverly H; Kenakin, Terry; Shoichet, Brian K; Roth, Bryan L

    2015-11-26

    At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs. PMID:26550826

  1. Elastic network model of allosteric regulation in protein kinase PDK1

    Directory of Open Access Journals (Sweden)

    Williams Gareth

    2010-05-01

    Full Text Available Abstract Background Structural switches upon binding of phosphorylated moieties underpin many signalling networks. The ligand activation is a form of allosteric modulation of the protein, where the binding site is remote from the structural change in the protein. Recently this structural switch has been elegantly demonstrated with the crystallisation of the activated form of 3-phosphoinositide-dependent protein kinase-1 (PDK1. The purpose of the present work is to determine whether the allosteric coupling in PDK1 emerges at the level of a simple coarse grained model of protein dynamics. Results It is shown here that the allosteric effects of the agonist binding to the small lobe upon the activation loop in the large lobe of PDK1 are explainable within a simple 'ball and spring' elastic network model (ENM of protein dynamics. In particular, the model shows that the bound phospho peptide mimetic fluctuations have a high degree of correlation with the activation loop of PDK1. Conclusions The ENM approach to small molecule activation of proteins may offer a first pass predictive methodology where affinity is encoded in residues remote from the active site, and aid in the design of specific protein agonists that enhance the allosteric coupling and antagonist that repress it.

  2. Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

    NARCIS (Netherlands)

    Faulkner, Adele; van Leeuwen, Thomas; Feringa, Ben L; Wezenberg, Sander J

    2016-01-01

    The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e. zi

  3. An Allosteric Receptor by Simultaneous "Casting" and "Molding" in a Dynamic Combinatorial Library

    NARCIS (Netherlands)

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2015-01-01

    Allosteric synthetic receptors are difficult to access by design. Herein we report a dynamic combinatorial strategy towards such systems based on the simultaneous use of two different templates. Through a process of simultaneous casting (the assembly of a library member around a template) and moldin

  4. Aminocarbonylation of 4-iodo-1H-imidazoles with an amino acid amide nucleophile: synthesis of constrained H-Phe-Phe-NH2 analogues.

    Science.gov (United States)

    Skogh, Anna; Fransson, Rebecca; Sköld, Christian; Larhed, Mats; Sandström, Anja

    2013-12-01

    A simple and an expedient process to prepare 5-aryl-1-benzyl-1H-imidazole-4-carboxamides by the aminocarbonylation of 5-aryl-4-iodo-1H-imidazoles using ex situ generation of CO from Mo(CO)6 with an amino acid amide nucleophile is reported. Furthermore, a microwave-assisted protocol for the direct C-5 arylation of 1-benzyl-1H-imidazole and a regioselective C-4 iodination method to acquire starting material for our aminocarbonylation are presented. The method can be used to prepare imidazole based peptidomimetics, herein exemplified by the synthesis of constrained H-Phe-Phe-NH2 analogues. PMID:24171628

  5. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter

    DEFF Research Database (Denmark)

    Plenge, Per; Shi, Lei; Beuming, Thijs;

    2012-01-01

    be involved in the allosteric binding in the extracellular vestibule located above the central substrate binding (S1) site. Indeed, mutagenesis of selected residues in the vestibule reduces the allosteric potency of (S)-citalopram and clomipramine. The identified site is further supported by the inhibitory...... effects of Zn(2+) binding in an engineered site and the covalent attachment of benzocaine-methanethiosulfonate to a cysteine introduced in the extracellular vestibule. The data provide a mechanistic explanation for the allosteric action of antidepressants at SERT and suggest that the role of the vestibule...

  6. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  7. Engineering enzymes

    OpenAIRE

    Dutton, P. Leslie; Moser, Christopher C.

    2011-01-01

    Fundamental research into bioinorganic catalysis of the kind presented at this Faraday Discussion has the potential to turn inspiration drawn from impressive natural energy and chemical transformations into artificial catalyst constructions useful to mankind. Creating bio-inspired artificial constructions requires a level of understanding well beyond simple description of structures and mechanisms of natural enzymes. To be useful, such description must be augmented by a practical sense of str...

  8. Evolution of glycaemia in the blood of mice in the presence or absence of imidazole; Evolution de la glycemie sanguine chez la souris protegee ou non par l'imidazole

    Energy Technology Data Exchange (ETDEWEB)

    Polverelli, M.; Teoule, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    With respect to the radioprotective properties of the heterocyclic compound, imidazole, the authors followed the action of this product on blood sugar levels of mice X irradiated with a lethal dose. The main results of this work are: probably a hypo-glycemic action of the imidazole; an abolishment of the post-irradiation hyperglycemia by imidazole; an appreciably difference between male and female towards irradiation. (author) [French] Dans le cadre de l'etude des proprietes radioprotectrices de l'imidazole, nous nous sommes attaches a suivre l'action de ce produit sur le taux de glucose sanguin de souris irradiees a dose letale. Les principaux resultats de ce travail sont les suivants: l'action probablement hypoglycemiante de l'imidazole; en tant que radioprotecteur, cet heterocycle azote supprime l'hyperglycemie consecutive a l'irradiation; une difference assez sensible entre males et femelles vis-a-vis de l'irradiation. (auteur)

  9. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs.

    Science.gov (United States)

    Kumar, Rajnish; Nordberg, Agneta; Darreh-Shori, Taher

    2016-01-01

    Amyloid-β peptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-β. The amyloid-β hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-β oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer's disease; once more it is unclear how it increases the risk of Alzheimer's disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer's disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer's disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-β interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAβACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-β fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-β fibrillization for at least 65 h. We show that amyloid

  10. Novel Photoinitiated Synthesis,Characterization,Thermal Kinetics,and Mechanism of Complex of Potassium Hexacyanoferrate with Imidazole

    Institute of Scientific and Technical Information of China (English)

    MAJID Kowsar; AHMAD Siraj; MALIK Mukhtar Ahmad

    2009-01-01

    Photoinitiated substitution complex of [Fe(CN)6]4- with imidazole has been synthesized and characterized.On the basis of elemental analysis,the empirical molecular formula of the complex is K4[Fe(CN)s(C3H4N2)]·4H2O.The substitution of aquo ligand produced as a result of photoexcitation by imidazole has been confirmed by various spectroscopic thechniques like UV-Vis,FTIR,NMR,and SEM techniques.The characteristic FTIR and NMR absorption peaks for different entities present support the assigned formula.The presence of cyanide and imidazole ligands is shown by FTIR absorption peaks at 2046 cm-1 due to v(C≡N) and at 1447 and 1619 cm-1 due to v(C=N)and v(C=C) stretching vibration of the aromatic ring of imidazole,hence,confirming the assigned formula and photoinitiated substitution process.1H NMR also shows the peaks for aromatic hydrogen confirming again the presence of imidazole in the complex,further supporting the successful photoinitiated process.The water outside the coordination sphere has been confirmed from FTIR peaks and thermal analysis.Thermal kinetics and mechanistic studies have also been carried out by TG and DSC.Thermodynamics parameters such as activation energy(Ea),preexponential factor(A),and entropy of activation(ΔS#) have been calculated for each step via different methods like Doyle's,Coats,and Redfern and Arrehenius.

  11. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems.

    Science.gov (United States)

    Ghanakota, Phani; Carlson, Heather A

    2016-08-25

    Mixed-solvent molecular dynamics (MixMD) is a hotspot-mapping technique that relies on molecular dynamics simulations of proteins in binary solvent mixtures. Previous work on MixMD has established the technique's effectiveness in capturing binding sites of small organic compounds. In this work, we show that MixMD can identify both competitive and allosteric sites on proteins. The MixMD approach embraces full protein flexibility and allows competition between solvent probes and water. Sites preferentially mapped by probe molecules are more likely to be binding hotspots. There are two important requirements for the identification of ligand-binding hotspots: (1) hotspots must be mapped at very high signal-to-noise ratio and (2) the hotspots must be mapped by multiple probe types. We have developed our mapping protocol around acetonitrile, isopropanol, and pyrimidine as probe solvents because they allowed us to capture hydrophilic, hydrophobic, hydrogen-bonding, and aromatic interactions. Charged probes were needed for mapping one target, and we introduce them in this work. In order to demonstrate the robust nature and wide applicability of the technique, a combined total of 5 μs of MixMD was applied across several protein targets known to exhibit allosteric modulation. Most notably, all the protein crystal structures used to initiate our simulations had no allosteric ligands bound, so there was no preorganization of the sites to predispose the simulations to find the allosteric hotspots. The protein test cases were ABL Kinase, Androgen Receptor, CHK1 Kinase, Glucokinase, PDK1 Kinase, Farnesyl Pyrophosphate Synthase, and Protein-Tyrosine Phosphatase 1B. The success of the technique is demonstrated by the fact that the top-four sites solely map the competitive and allosteric sites. Lower-ranked sites consistently map other biologically relevant sites, multimerization interfaces, or crystal-packing interfaces. Lastly, we highlight the importance of including protein

  12. Ethyl 1-[3-(1H-imidazol-1-ylpropyl]-2-(4-chlorophenyl-1H-benzo[d]imidazole-5-carboxylate dihydrate

    Directory of Open Access Journals (Sweden)

    Yeong Keng Yoon

    2011-09-01

    Full Text Available In the title compound, C22H21ClN4O2·2H2O, the almost-planar benzimidazole ring system [maximum deviation 0.014 (1 Å] is inclined at angles of 36.32 (5 and 74.75 (7° with respect to the phenyl and imidazole rings, respectively. In the crystal structure, the water molecules are linked to the organic molecules to form a three-dimensional network via O—H...N and O—H...O hydrogen bonds. The packing is further consolidated by a pair of bifurcated C—H...O bonds, generating R12(6 loops. C—H...π interactions are also observed.

  13. Thermodynamics of organic mixtures containing amines. X. Phase equilibria for binary systems formed by imidazoles and hydrocarbons: Experimental data and modelling using DISQUAC

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula; Zawadzki, Maciej [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw (Poland); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.e [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071, Valladolid (Spain)

    2010-04-15

    (Solid + liquid) equilibrium (SLE) temperatures have been determined using a dynamic method for the systems (1H-imidazole, + benzene, + toluene, + hexane, or + cyclohexane; 1-methylimidazole + benzene, or + toluene, 2-methyl-1H-imidazole + benzene, + toluene, or + cyclohexane, and benzimidazole + benzene). In addition (liquid + liquid) equilibrium (LLE) temperatures have been obtained using a cloud point method for (1H-imidazole, + hexane, or + cyclohexane; 1-methylimidazole + toluene, and 2-methyl-1H-imidazole + cyclohexane). The measured systems show positive deviations from the Raoult's law, due to strong dipolar interactions between amine molecules related to the high dipole moment of imidazoles. On the other hand, DISQUAC interaction parameters for the contacts present in these solutions and for the amine/hydroxyl contacts in (1H-imidazole + 1-alkanol) mixtures have been determined. The model correctly represents the available data for the examined systems. Deviations between experimental and calculated SLE temperatures are similar to those obtained using the Wilson or NRTL equations, or the UNIQUAC association solution model. The quasichemical interaction parameters are the same for mixtures containing 1H-imidazole, 1-methylimidazole, or 2-methyl-1H-imidazole and hydrocarbons. This may be interpreted assuming that they are members of a homologous series. Benzimidazole behaves differently.

  14. Investigations on organic fungicides. IX. The antagonistic action of certain imidazole derivatives and of [alpha]-keto acids on the fungitoxicity of dimethyldithiocarbamates

    NARCIS (Netherlands)

    Kaars Sijpesteijn, A.; Kerk, G.J.M. van der

    1954-01-01

    1. 1. Apart from -histidine a variety of other imidazole derivatives is able to antagonize the inhibiting action of sodium dimethyl dithiocarbamate (NaDDC) on spore germination of moulds in the first zone of inhibition. 2. 2. - and -histidine, -histidinol and imidazole-4-carboxylic acid are of abou

  15. Synthesis and structure-activity relationships of 4-fluorophenyl-imidazole p38 alpha MAPK, CK1 delta and JAK2 kinase inhibitors

    NARCIS (Netherlands)

    Seerden, Jean-Paul G.; Leusink-Ionescu, Gabriela; Woudenberg - Vrenken, Titia; Dros, Bas; Molema, Grietje; Kamps, Jan A. A. M.; Kellogg, Richard M.

    2014-01-01

    The synthesis and structure-activity relationships of novel 4-(4 '-fluorophenyl)imidazoles as selective p38 alpha MAPK, CK1 delta and JAK2 inhibitors with improved water solubility are described. Microwave-assisted multicomponent reactions afforded 4-fluorophenyl-2,5-disubstituted imidazoles. Carbox

  16. Thumb Site 2 Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase Allosterically Block the Transition from Initiation to Elongation.

    Science.gov (United States)

    Li, Jiawen; Johnson, Kenneth A

    2016-05-01

    Replication of the hepatitis C viral genome is catalyzed by the NS5B (nonstructural protein 5B) RNA-dependent RNA polymerase, which is a major target of antiviral drugs currently in the clinic. Prior studies established that initiation of RNA replication could be facilitated by starting with a dinucleotide (pGG). Here we establish conditions for efficient initiation from GTP to form the dinucleotide and subsequent intermediates leading to highly processive elongation, and we examined the effects of four classes of nonnucleoside inhibitors on each step of the reaction. We show that palm site inhibitors block initiation starting from GTP but not when starting from pGG. In addition we show that nonnucleoside inhibitors binding to thumb site-2 (NNI2) lead to the accumulation of abortive intermediates three-five nucleotides in length. Our kinetic analysis shows that NNI2 do not significantly block initiation or elongation of RNA synthesis; rather, they block the transition from initiation to elongation, which is thought to proceed with significant structural rearrangement of the enzyme-RNA complex including displacement of the β-loop from the active site. Direct measurement in single turnover kinetic studies show that pyrophosphate release is faster than the chemistry step, which appears to be rate-limiting during processive synthesis. These results reveal important new details to define the steps involved in initiation and elongation during viral RNA replication, establish the allosteric mechanisms by which NNI2 inhibitors act, and point the way to the design of more effective allosteric inhibitors that exploit this new information. PMID:26851276

  17. Parallel Synthesis of a Library of Symmetrically- and Dissymmetrically-disubstituted Imidazole-4,5-dicarboxamides Bearing Amino Acid Esters

    Directory of Open Access Journals (Sweden)

    Rosanna Solinas

    2009-01-01

    Full Text Available The imidazole-4,5-dicarboxylic acid scaffold is readily derivatized with amino acid esters to afford symmetrically- and dissymmetrically-disubstituted imidazole-4,5-dicarboxamides with intramolecularly hydrogen bonded conformations that predispose the presentation of amino acid pharmacophores. In this work, a total of 45 imidazole-4,5-dicarboxamides bearing amino acid esters were prepared by parallel synthesis. The library members were purified by column chromatography on silica gel and the purified compounds characterized by LC-MS with LC detection at 214 nm. A selection of the final compounds was also analyzed by 1H-NMR spectroscopy. The analytically pure final products have been submitted to the Molecular Library Small Molecule Repository (MLSMR for screening in the Molecular Library Screening Center Network (MLSCN as part of the NIH Roadmap.

  18. Synthesis and characterization of novel polyamide-ethers based on bis-imidazole containing bulky aryl pendant groups

    Directory of Open Access Journals (Sweden)

    Seyed Mahdi Saadati

    2013-01-01

    Full Text Available A series of novel polyamide-ethers (PAEs based on bis-imidazole containing bulky aryl pendant groups was prepared by direct polycondensation of a diamine, 4-(1-(4-(4-(2-(4-aminophenyl-4,5-diphenyl-1H-imidazol-1-ylphenoxyphenyl-4,5-diphenyl-1H-imidazol-2-ylbenzenamine (DABI, and various dicarboxylic acids. All the resulting polyamide-ethers were amorphous with inherent viscosities ranged from 0.52 to 0.61 dL/g and were readily soluble in many organic solvents which could be solution-cast into transparent and tough films. The glass transition temperatures (Tg of these polymers were affected considerably by their chemical structure and ranged from 230 to 310 ºC. They had useful levels of thermal stability associated with relatively high temperatures of 10% weight loss (T10 in the range of 329-399 ºC in air atmosphere.

  19. 5-Bromo-1H-thieno[2,3-d]imidazole

    Directory of Open Access Journals (Sweden)

    Fen Wang

    2010-08-01

    Full Text Available The crystal structure of the title compound, C5H3BrN2S, shows that bromination of 1H-thieno[2,3-d]imidazole with N-bromosuccinimide in acetonitrile occurs at position 5 of the bicyclic system. The molecule is almost planar, with a mean deviation of 0.015 Å from the least-squares plane through all the non-H atoms. In the crystal, N—H...N hydrogen bonds link the molecules into infinite C(4 chains running along [101].

  20. ENDOR study of VO/sup 2 +/-imidazole complexes in frozen aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mulks, C.F.; Kirste, B.; van Willigen, H.

    1982-11-03

    Complexes formed between the oxovanadium(IV) cation and imidazole, carnosine, and histidine have been studied with ENDOR. It is shown that the technique gives information on proton and nitrogen hyperfine coupling components as well as /sup 14/N quadrupole splittings. The data provide insight into the geometric structure of the complexes. The results presented indicate that ENDOR studies of VO/sup 2 +/ binding to more complex systems of biological interest (such as proteins) can be used to identify binding to histidine moieties. Furthermore, such studies could be of help in establishing the binding site geometry.

  1. 1-[(1-Methyl-1H-imidazol-5-ylmethyl]-1H-indole-5-carbonitrile

    Directory of Open Access Journals (Sweden)

    Josephus Jacobus de Jager

    2012-12-01

    Full Text Available In the title compound, C14H12N4, the dihedral angle between the indole ring system (r.m.s. deviation = 0.010 Å and the imidazole ring is 77.70 (6°. In the crystal, molecules are linked by C—H...N hydrogen bonds. One set of hydrogen bonds forms an undulating chain running parallel to the b-axis direction, while the other undulating chain is parallel to the c-axis direction. In combination, (100 sheets result.

  2. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate.

    Science.gov (United States)

    Diop, Mouhamadou Birame; Diop, Libasse; Plasseraud, Laurent; Cattey, Hélène

    2016-08-01

    Single crystals of the title mol-ecular salt, C4H7N2 (+)·HC2O4 (-)·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N-H⋯(O,O) hydrogen bonds. The water mol-ecules of crystallization link the chains into (10-1) bilayers, with the methyl groups of the cations organized in an isotactic manner. PMID:27536393

  3. Allosteric Regulation of Unidirectional Spring-like Motion of Double-Stranded Helicates.

    Science.gov (United States)

    Suzuki, Yoshimasa; Nakamura, Taiki; Iida, Hiroki; Ousaka, Naoki; Yashima, Eiji

    2016-04-13

    We report the unprecedented allosteric regulation of the extension and contraction motions of double-stranded spiroborate helicates composed of 4,4'-linked 2,2'-bipyridine (bpy) and its N,N'-dioxide units in the middle of ortho-linked tetraphenol strands. NMR and circular dichroism measurements and an X-ray crystallographic analysis along with theoretical calculations revealed that enantiomeric helicates contract and extend upon the binding and release of protons and/or metal ions at the covalently linked two binding bpy or N,N'-dioxide moieties without racemization, respectively, regulated by a cooperative anti-syn conformational change of the two bpy or N,N'-dioxide moieties. These anti-syn conformational changes that occurred at the linkages are amplified into a large-scale molecular motion of the helicates leading to reversible spring-like motions coupled with twisting in one direction in a highly homotropic allosteric fashion. PMID:26910831

  4. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.

    Science.gov (United States)

    Joseph, Thomas T; Mincer, Joshua S

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  5. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase

    OpenAIRE

    Tiraidis, C.; Alexacou, K. M.; Zographos, Spyros E.; Leonidas, Demetres D.; Gimisis, T.; Oikonomakos, Nikos G.

    2007-01-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b–FR258900 complex and refined it to 2.2 Å resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where th...

  6. Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

    Directory of Open Access Journals (Sweden)

    Alessio Bocedi

    Full Text Available Human serum albumin (HSA, the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s. As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i of carbon monoxide (CO binding to ferrous human serum heme-albumin (HSA-heme-Fe(II by warfarin (WF, and (ii of WF binding to HSA-heme-Fe(II by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II, respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands. This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II. The HSA-heme-Fe(II populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i upon CO binding a conformational change of HSA-heme-Fe(II takes place (likely reflecting the displacement of an endogenous ligand by CO, and (ii CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II.

  7. Characterization of an allosteric citalopram-binding site at the serotonin transporter

    DEFF Research Database (Denmark)

    Chen, Fenghua; Breum Larsen, Mads; Neubauer, Henrik Amtoft;

    2005-01-01

    -citalopram, sertraline,       serotonin and paroxetine. EC50 values for S- and R-citalopram are 3.6 +/-       0.4 microm and 19.4 +/- 2.3 microm, respectively. Fluoxetine, venlafaxine       and duloxetine have no significant effect on the dissociation of       [3H]S-citalopram. Allosteric modulation of dissociation...

  8. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines

    Science.gov (United States)

    Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George

    2013-09-01

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  9. Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES

    OpenAIRE

    Chennubhotla, Chakra; Bahar, Ivet

    2006-01-01

    We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex ...

  10. Coupled Dynamics and Entropic Contribution to the Allosteric Mechanism of Pin1.

    Science.gov (United States)

    Barman, Arghya; Hamelberg, Donald

    2016-08-25

    Allosteric communication in proteins regulates a plethora of downstream processes in subcellular signaling pathways. Describing the effects of cooperative ligand binding on the atomic level is a key to understanding many regulatory processes involving biomolecules. Here, we use microsecond-long molecular dynamics simulations to investigate the allosteric mechanism of Pin1, a potential therapeutic target and a phosphorylated-Ser/Thr dependent peptidyl-prolyl cis-trans isomerase that regulates several subcellular processes and has been implicated in many diseases, including cancer and Alzheimer's. Experimental studies suggest that the catalytic domain and the noncatalytic WW domain are allosterically coupled; however, an atomic level description of the dynamics associated with the interdomain communication is lacking. We show that binding of the substrate to the WW domain is directly coupled to the dynamics of the catalytic domain, causing rearrangement of the residue-residue contact dynamics from the WW domain to the catalytic domain. The binding affinity of the substrate in the catalytic domain is also enhanced upon binding of the substrate to the WW domain. Modulation of the dynamics of the catalytic domain upon binding of the substrate to the WW domain leads to prepayment of the entropic cost of binding the substrate to the catalytic domain. This study shows that Ile 28 at the interfacial region between the catalytic and WW domains is certainly one of the residues responsible for bridging the communication between the two domains. The results complement previous experiments and provide valuable atomistic insights into the role of dynamics and possible entropic contribution to the allosteric mechanism of proteins. PMID:27077947

  11. TOWARD UNDERSTANDING ALLOSTERIC SIGNALING MECHANISMS IN THE ATPASE DOMAIN OF MOLECULAR CHAPERONES

    OpenAIRE

    Liu, Ying; Bahar, Ivet

    2010-01-01

    The ATPase cycle of the heat shock protein 70 (HSP70) is largely dependent on the ability of its nucleotide binding domain (NBD), also called ATPase domain, to undergo structural changes between its open and closed conformations. We present here a combined study of the Hsp70 NBD sequence, structure and dynamic features to identify the residues that play a crucial role in mediating the allosteric signaling properties of the ATPase domain. Specifically, we identify the residues involved in the ...

  12. Modulation in selectivity and allosteric properties of small-molecule ligands for CC-chemokine receptors

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Malmgaard-Clausen, Mikkel; Engel-Andreasen, Jens;

    2012-01-01

    Among 18 human chemokine receptors, CCR1, CCR4, CCR5, and CCR8 were activated by metal ion Zn(II) or Cu(II) in complex with 2,2'-bipyridine or 1,10-phenanthroline with similar potencies (EC(50) from 3.9 to 172 μM). Besides being agonists, they acted as selective allosteric enhancers of CCL3...... exploration of chemokine receptors as possible targets for therapeutic intervention....

  13. Molecular Mechanism of Allosteric Communication in Hsp70 Revealed by Molecular Dynamics Simulations

    OpenAIRE

    Chiappori, Federica; Merelli, Ivan; Colombo, Giorgio; Milanesi, Luciano; Morra, Giulia

    2012-01-01

    Author Summary Allostery, or the capability of proteins to respond to ligand binding events with a variation in structure or dynamics at a distant site, is a common feature for biomolecular function and regulation in a large number of proteins. Intra-protein connections and inter-residue coordinations underlie allosteric mechanisms and react to binding primarily through a finely tuned modulation of motions and structures at the microscopic scale. Hence, all-atom molecular dynamics simulations...

  14. Allosteric interactions of DNA and nucleotides with S. cerevisiae RSC.

    Science.gov (United States)

    Malik, Shuja Shafi; Rich, Evan; Viswanathan, Ramya; Cairns, Bradley R; Fischer, Christopher J

    2011-09-20

    RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ∼100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.

  15. An Imidazole based probe for relay recognition of Cu2+ and OH− ions leading to AND logic gate

    Indian Academy of Sciences (India)

    Navneet Kaur; Priya Alreja

    2015-07-01

    2-(2-methoxyphenyl)-4,5-diphenyl-1H-imidazole 1, an imidazole-based compound, was found to sense Cu2+ ions via fluorescence and absorption spectroscopy over a number of other metal ions. During Cu2+ sensing, the chemosensor 1 followed a “switch-off” mechanism. Job’s plot supported 1:1 stoichiometry of 1-Cu2+ complex. The 1-Cu2+ complex formed in situ underwent different absorption changes with OH− ions. These differential absorption changes observed with the addition of Cu2+ and OH− ions were used to mimic AND logic gate using A274nm as output.

  16. Dichloridobis[1-(2,4,6-trimethylphenyl-1H-imidazole-κN3]copper(II

    Directory of Open Access Journals (Sweden)

    Yantao Zhang

    2013-11-01

    Full Text Available In the title complex, [CuCl2(C12H14N22], the Cu2+ cation is situated on an inversion centre and is coordinated by two N atoms from symmetry-related 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. In the organic ligand, the dihedral angle between the benzene ring of the mesityl moiety and the imidazole ring is 76.99 (18°. Weak intramolecular C—H...Cl hydrogen-bonding interactions consolidate the molecular conformation.

  17. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbo xylate.

    Science.gov (United States)

    Oikonomakos, N G; Tsitsanou, K E; Zographos, S E; Skamnaki, V T; Goldmann, S; Bischoff, H

    1999-10-01

    The effect of the potential antidiabetic drug (-)(S)-3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbox ylate (W1807) on the catalytic and structural properties of glycogen phosphorylase a has been studied. Glycogen phosphorylase (GP) is an allosteric enzyme whose activity is primarily controlled by reversible phosphorylation of Ser14 of the dephosphorylated enzyme (GPb, less active, predominantly T-state) to form the phosphorylated enzyme (GPa, more active, predominantly R-state). Upon conversion of GPb to GPa, the N-terminal tail (residues 5-22), which carries the Ser14(P), changes its conformation into a distorted 3(10) helix and its contacts from intrasubunit to intersubunit. This alteration causes a series of tertiary and quaternary conformational changes that lead to activation of the enzyme through opening access to the catalytic site. As part of a screening process to identify compounds that might contribute to the regulation of glycogen metabolism in the noninsulin dependent diabetes diseased state, W1807 has been found as the most potent inhibitor of GPb (Ki = 1.6 nM) that binds at the allosteric site of T-state GPb and produces further conformational changes, characteristic of a T'-like state. Kinetics show W1807 is a potent competitive inhibitor of GPa (-AMP) (Ki = 10.8 nM) and of GPa (+1 mM AMP) (Ki = 19.4 microM) with respect to glucose 1-phosphate and acts in synergism with glucose. To elucidate the structural features that contribute to the binding, the structures of GPa in the T-state conformation in complex with glucose and in complex with both glucose and W1807 have been determined at 100 K to 2.0 A and 2.1 A resolution, and refined to crystallographic R-values of 0.179 (R(free) = 0.230) and 0.189 (R(free) = 0.263), respectively. W1807 binds tightly at the allosteric site and induces substantial conformational changes both in the vicinity of the allosteric site and the subunit interface. A disordering of the N

  18. Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand.

    Science.gov (United States)

    Wang, Ningkun; Lodge, Jean M; Fierke, Carol A; Mapp, Anna K

    2014-08-19

    Allosteric binding events play a critical role in the formation and stability of transcriptional activator-coactivator complexes, perhaps in part due to the often intrinsically disordered nature of one or more of the constituent partners. The kinase-inducible domain interacting (KIX) domain of the master coactivator CREB binding protein/p300 is a conformationally dynamic domain that complexes with transcriptional activators at two discrete binding sites in allosteric communication. The complexation of KIX with the transcriptional activation domain of mixed-lineage leukemia protein leads to an enhancement of binding by the activation domain of CREB (phosphorylated kinase-inducible domain of CREB) to the second site. A transient kinetic analysis of the ternary complex formation aided by small molecule ligands that induce positive or negative cooperative binding reveals that positive cooperativity is largely governed by stabilization of the bound complex as indicated by a decrease in koff. Thus, this suggests the increased binding affinity for the second ligand is not due to an allosteric creation of a more favorable binding interface by the first ligand. This is consistent with data from us and from others indicating that the on rates of conformationally dynamic proteins approach the limits of diffusion. In contrast, negative cooperativity is manifested by alterations in both kon and koff, suggesting stabilization of the binary complex.

  19. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes.

    Science.gov (United States)

    Das, Debasis; Krantz, Bryan A

    2016-08-23

    Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins-protective antigen (PA), lethal factor (LF), and edema factor-translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790

  20. The N-terminal domain allosterically regulates cleavage and activation of the epithelial sodium channel.

    Science.gov (United States)

    Kota, Pradeep; Buchner, Ginka; Chakraborty, Hirak; Dang, Yan L; He, Hong; Garcia, Guilherme J M; Kubelka, Jan; Gentzsch, Martina; Stutts, M Jackson; Dokholyan, Nikolay V

    2014-08-15

    The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.

  1. The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel*

    Science.gov (United States)

    Kota, Pradeep; Buchner, Ginka; Chakraborty, Hirak; Dang, Yan L.; He, Hong; Garcia, Guilherme J. M.; Kubelka, Jan; Gentzsch, Martina; Stutts, M. Jackson; Dokholyan, Nikolay V.

    2014-01-01

    The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation. PMID:24973914

  2. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes

    Science.gov (United States)

    Das, Debasis; Krantz, Bryan A.

    2016-01-01

    Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins—protective antigen (PA), lethal factor (LF), and edema factor—translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790

  3. Compact modeling of allosteric multisite proteins: application to a cell size checkpoint.

    Directory of Open Access Journals (Sweden)

    Germán Enciso

    2014-02-01

    Full Text Available We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously. As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a threshold indicating that sufficient growth has occurred.

  4. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  5. Structure-based substrate screening for an enzyme

    Directory of Open Access Journals (Sweden)

    Wei Dongzhi

    2009-08-01

    Full Text Available Abstract Background Nowadays, more and more novel enzymes can be easily found in the whole enzyme pool with the rapid development of genetic operation. However, experimental work for substrate screening of a new enzyme is laborious, time consuming and costly. On the other hand, many computational methods have been widely used in lead screening of drug design. Seeing that the ligand-target protein system in drug design and the substrate-enzyme system in enzyme applications share the similar molecular recognition mechanism, we aim to fulfill the goal of substrate screening by in silico means in the present study. Results A computer-aided substrate screening (CASS system which was based on the enzyme structure was designed and employed successfully to help screen substrates of Candida antarctica lipase B (CALB. In this system, restricted molecular docking which was derived from the mechanism of the enzyme was applied to predict the energetically favorable poses of substrate-enzyme complexes. Thereafter, substrate conformation, distance between the oxygen atom of the alcohol part of the ester (in some compounds, this oxygen atom was replaced by nitrogen atom of the amine part of acid amine or sulfur atom of the thioester and the hydrogen atom of imidazole of His224, distance between the carbon atom of the carbonyl group of the compound and the oxygen atom of hydroxyl group of Ser105 were used sequentially as the criteria to screen the binding poses. 223 out of 233 compounds were identified correctly for the enzyme by this screening system. Such high accuracy guaranteed the feasibility and reliability of the CASS system. Conclusion The idea of computer-aided substrate screening is a creative combination of computational skills and enzymology. Although the case studied in this paper is tentative, high accuracy of the CASS system sheds light on the field of computer-aided substrate screening.

  6. Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system.

    Science.gov (United States)

    Yuan, Yue; Dong, Xiuqin; Chen, Yifei; Zhang, Minhua

    2016-08-17

    Iodine capture is of great environmental significance due to the high toxicity and volatility of I2. Here we conduct a systematic computational investigation of iodine adsorption in zeolitic imidazolate frameworks (ZIFs) by adopting the grand canonical Monte Carlo (GCMC) simulation and the density functional theory (DFT) method. The results confirm the vital structural factors for iodine adsorption at 298 K and moderate pressures including metal sites, organic linkers, symmetry, and topology types. The uptake will be enhanced by active metal sites, the simple imidazolate linker and single asymmetric linkers with polar functional groups. The symmetry effect is stronger than the surface properties. Meanwhile low steric hindrance is more beneficial than polar functional groups to iodine adsorption. The specific topology types like mer bringing large surface areas and large diameter cages result in high iodine capacities. Iodine molecules tend to locate in cages with large diameters and aggregates along the sides of cages. In contrast, water prefers small diameter cages. In hydrophilic materials, water has a negative impact on iodine uptake due to its similar adsorption sites to iodine. The selectivity of iodine over water increases with increasing water content due to the large diameter cages of ZIFs. This work proves that ZIFs can be identified as efficient and economical adsorbents with high diversity for iodine in a water-containing system. Furthermore, it provides comprehensive insights into key structural factors for iodine uptake and separation in silver-free porous solids. PMID:27499079

  7. Non-conventional halide oxidation pathways : oxidation by imidazole triplet and surface specific oxidation by ozone

    Science.gov (United States)

    Ammann, Markus; Corral-Arroyo, Pablo; Aellig, Raphael; Orlando, Fabrizio; Lee, Ming-Tao; Artiglia, Luca

    2016-04-01

    Oxidation of halide ions (chloride, bromide, iodide) are the starting point of halogen release mechanisms out of sea water, marine aerosol or other halide containing continental aerosols. Slow oxidation of chloride and bromide by ozone in the bulk aqueous phase is of limited relevance. Faster surface specific oxidation has been suggested based on heterogeneous kinetics experiments. We provide first insight into very efficient bromide oxidation by ozone at the aqueous solution - air interface by surface sensitive X-ray photoelectron spectroscopy indicating significant build-up of an oxidized intermediate at the surface within millisecond time scales. The second source of oxidants in the condensed we have considered is the absorption of light by triplet forming photosensitizers at wavelengths longer than needed for direct photolysis and radical formation. We have performed coated wall flow tube experiments with mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) to represent secondary organic material rich marine aerosol. The halide ions bromide and iodide have been observed to act as efficient electron donors leading to their oxidation, HO2 formation and finally release of molecular halogen compounds. The photosensitization of imidazole-2-carboxaldehyde (IC) involves a well-known mechanism where the triplet excited state of IC is reduced by citric acid to a reduced ketyl radical that reacts with halide ions. A competition kinetics approach has been used to evaluate the rate limiting steps and to assess the significance of this source of halogens to the gas phase.

  8. Silylation of leached-vermiculites following reaction with imidazole and copper sorption behavior.

    Science.gov (United States)

    Santos, Saloana S G; Pereira, Mariana B B; Almeida, Ramon K S; Souza, Antônio G; Fonseca, Maria G; Jaber, M

    2016-04-01

    Organically modified vermiculites were synthesized by previous silylation of three leached vermiculites, V0.3Cl, V0.5Cl and V0.8Cl, under anhydrous conditions following reaction with imidazole (Im), which acted as chelating agent for copper retention. Elemental analysis, X-ray diffraction, infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, (29)Si and (13)C NMR and nitrogen adsorption/desorption measurements were used to characterize pristine, leached and organofunctionalized solids. X-ray photoelectron spectroscopy (XPS) was used to evaluate the surface after copper sorption. Parameters such as contact time, pH and initial cation concentration for the adsorption of Cu(II) ions were investigated. The adsorption equilibrium data were fitted using the Langmuir isotherm model and the monolayer adsorption capacities were 2.38, 2.52 and 2.69mmolg(-1) for V0.5Cl-Im, V0.3Cl-Im and V0.8Cl-Im, respectively, at pH 6.0 and 298K for a time reaction of 80min. The sorption rates were described by pseudo-second-order kinetics. The chloropropyl imidazole vermiculites are promising adsorbents for the rapid removal of Cu(II) ions from aqueous solution. PMID:26844783

  9. Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate.

    Science.gov (United States)

    Purushottamachar, Puranik; Kwegyir-Afful, Andrew K; Martin, Marlena S; Ramamurthy, Vidya P; Ramalingam, Senthilmurugan; Njar, Vincent C O

    2016-07-14

    Degradation of all forms of androgen receptors (ARs) is emerging as an advantageous therapeutic paradigm for the effective treatment of prostate cancer. In continuation of our program to identify and develop improved efficacious novel small-molecule agents designed to disrupt AR signaling through enhanced AR degradation, we have designed, synthesized, and evaluated novel C-3 modified analogues of our phase 3 clinical agent, galeterone (5). Concerns of potential in vivo stability of our recently discovered more efficacious galeterone 3β-imidazole carbamate (6) led to the design and synthesis of new steroidal compounds. Two of the 11 compounds, 3β-pyridyl ether (8) and 3β-imidazole (17) with antiproliferative GI50 values of 3.24 and 2.54 μM against CWR22Rv1 prostate cancer cell, are 2.75- and 3.5-fold superior to 5. In addition, compounds 8 and 17 possess improved (∼4-fold) AR-V7 degrading activities. Importantly, these two compounds are expected to be metabolically stable, making them suitable for further development as new therapeutics against all forms of prostate cancer. PMID:27437082

  10. Structure of eight molecular salts assembled from noncovalent bonding between carboxylic acids, imidazole, and benzimidazole

    Science.gov (United States)

    Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi

    2015-09-01

    Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.

  11. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity

    Directory of Open Access Journals (Sweden)

    N.C. Desai

    2014-12-01

    Full Text Available We have described the conventional and microwave method for the synthesis of N-(4-((2-chloroquinolin-3-ylmethylene-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl(arylamides 3a–l. It is observed that the solvent-free microwave thermolysis is a convenient, rapid, high-yielding, and environmental friendly protocol for the synthesis of quinoline based imidazole derivatives when compared with conventional reaction in a solution phase. Antimicrobial activity of the newly synthesized compounds is screened in vitro on the following microbial cultures: Escherichia coli (MTCC 443, Pseudomonas aeruginosa (MTCC 1688, Staphylococcus aureus (MTCC 96, Streptococcus pyogenes (MTCC 442, Candida albicans (MTCC 227, Aspergillus niger (MTCC 282, Aspergillus clavatus (MTCC 1323. All the synthesized bio-active molecules are tested for their in vitro antimicrobial activity by bioassay namely serial broth dilution. Among these compounds 3c, 3d, 3f, 3h and 3j show significant potency against different microbial strains. All the compounds have been characterized by IR, 1H NMR, 13C NMR and mass spectral data. On the basis of statistical analysis, it is observed that these compounds give significant co-relation.

  12. Adsorption and desorption characteristics of imidazole-modified silica for chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhike, E-mail: wzk@htu.cn; Ye, Cunling; Wang, Xueyuan; Li, Juan

    2013-12-15

    Imidazole-modified silica adsorbent with chloride as counter ion (SilprIm-Cl) was synthesized and characterized by scanning electron microscope, infrared spectra, thermogravimetric analysis, elemental analysis and BET analysis. The adsorption of chromium(VI) from aqueous solutions onto the SilprIm-Cl was investigated at varying pH, contact time, initial Cr(VI) concentration, adsorbent amount and temperature. The experimental results showed that the modification of silica with imidazole enhanced significantly the adsorption capacity for Cr(VI). The SilprIm-Cl was of primary anion-exchange adsorption nature, pH and excess Cl{sup −} ions in solutions affected significantly the adsorption of chromium(VI). The adsorption isotherms would be well defined with Langmuir model instead of Freundlich model. The adsorption process follows the pseudo-second-order kinetics. The maximum adsorption capacity of Cr(VI) of 47.79 mg g{sup −1} with an initial Cr(VI) concentration of 150 mg L{sup −1} was achieved at pH of 2.0. The adsorption–desorption experiments of the SilprIm-Cl exhibited that the adsorbent could be regenerated and reused eight times at least by simple washings with NaCl and water in turn.

  13. One-pot Synthesis of 2-Nitro-4,5-dicyano-1H-imidazole

    Institute of Scientific and Technical Information of China (English)

    XU Cheng; BIFu-qiang; FAN Xue-zhong; LI Ji-zhen; WANG Bo-zhou; GE Zhong-xue; LIU Qing; ZHANG Guo-fang

    2011-01-01

    In the last few decades,nitroimidazoles have been investigated mostly due to their properties as antibiotics,radiosensitizers and anti-protozoans[1 -3].Recently these nitroimidazoles,such as 2,4-dinitroimidazole,1-methyl-2,4,5-trinitroimidazole and their energetic salts, have attracted renewed attention for their favorable explosive performance as well as improved safety characteristics[4,5].Because of the activity of cyano group,2-nitro-4,5-dicyano-1 H-imidazole (NDCI) could be used as an intermediate in the synthesis of novel energetic materials containing nitroimidazole moiety.NDCI has been synthesized by the procedure given by Yixin Lu and coworkers[6],where the diazotization reaction and the Sandmeyer reaction were separately achieved.NDCI was obtained by adding a solution of sodium nitrite to 2-diazo4,5-dicyanoimidazole which was generated by diazotization of 2-amino-4,5-dicyano-1H-imidazole ( ADCI ) with sodium nitrite in water-hydrochloric acid and collected by filtration.Dry 2-diazo-4,5-dicyanoimidazole was so sensitive to shock that its separation may cause explosion[7].

  14. Proton-conducting Microcrystalline Cellulose Doped with Imidazole. Thermal and Electrical Properties

    International Nuclear Information System (INIS)

    Highlights: • A microcrystalline cellulose was doped with imidazole molecules • Thermal and electrical properties of newly synthesized material were determined • The doped cellulose exhibits four times higher conductivity than a pure cellulose • The highest proton conductivity of about 2 × 10−4 S/m was measured at 160 °C • The thermal stability was determined to be in the range from 110 to about 150 °C - ABSTRACT: A new biodegradable polymeric material (Cell-Im) consisting of microcrystalline cellulose (Cell) and imidazole (Im) dopant was successfully synthesized. The thermal properties and proton conductivity of Cell-Im were determined and compared with that of pure microcrystalline cellulose. It was found that the Cell-Im exhibits close to four orders of magnitude higher conductivity than a pure cellulose sample, up to approximately 2 × 10−4 S/m at 160 °C under anhydrous conditions. Thermal stability of Cell-Im was confirmed above water boiling point in a temperature range from 110 to about 150 °C. The Cell-Im is inexpensive to obtain, non-hazardous and environmentally friendly and can have potential for possible application as a solid electrolyte in electrochemical devices

  15. Pure Rotational Spectrum and Molecular Geometry of AN Isolated Complex of Imidazole and Urea

    Science.gov (United States)

    Blanco, Susana; Mullaney, John C.; Medcraft, Chris; Walker, Nick; Legon, Anthony

    2016-06-01

    The investigation of the dynamics of biomolecules is crucial to understand biological processes. For this purpose, the initial research investigations on the conformational behavior of isolated biomolecules should go one further step by investigating the structure and conformation of complexes formed in supersonic jets by different biomolecules to model the interactions which take place in biological media. In this work, the imidazole-urea complex formed in a supersonic expansion has been investigated by using microwave spectroscopy. In parallel, the conformational space of the complex has been explored with ab initio calculations. The broadband microwave spectrum (8-18GHz frequency interval) has been recorded using a Chirped Pulse Fourier Transform Microwave spectrometer (CP-FTMW). The solid sample was formed by mixing pure samples of imidazole and urea within a solid copper matrix, and was vaporized using the second harmonic of a pulsed Nd:YAG laser. The analysis of the experimental data in the light of the theoretical predictions has allowed the unambiguous identification of the observed conformers in the microwave spectrum.

  16. Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Gayen, Pallab [Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Sinha, Chittaranjan, E-mail: c_r_sinha@yahoo.com [Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032 (India)

    2012-09-15

    Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans{yields}cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of -O-H/-COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: Black-Right-Pointing-Pointer Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. Black-Right-Pointing-Pointer The process is sensitive to the environment of the photochrome and the solution. Black-Right-Pointing-Pointer The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. Black-Right-Pointing-Pointer The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. Black-Right-Pointing-Pointer The activation energy is less than these values when carried out in fresh solution only.

  17. PALLADIUM-CATALYZED ROUTE TO NOVEL FIVE- AND SIX-CYCLIC HETEROCYCLIC SYSTEMS CONTAINING THIAZOLE, IMIDAZOLE AND OXEPINE RINGS Palladium-katalysierten Weg zu neuen Fünf-und Sechs-CYCLIC HETEROCYCLISCHE Systemen mit Thiazol, Imidazol UND oxepin RINGS

    Directory of Open Access Journals (Sweden)

    Tatjana Beresneva, Sergey Belyakov, Edgars Abele

    2012-01-01

    Full Text Available Novel and simple two step catalytic method for the preparation of novel five- and sixcyclic heterocyclic systems containing thiazole, imidazole and oxepine rings from 3- chloromethylbenzo[4,5]imidazo[2,1-b]thiazole and o-bromobenzyl alcohols or 2-bromo-3- hydroxymethylpyridine was described.

  18. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation

    Indian Academy of Sciences (India)

    Javad Safari; Zohre Zarnegar

    2013-07-01

    Trisubstituted imidazoles have been synthesized in high yield in the presence of sulphamic acidfunctionalized magnetic Fe3O4 nanoparticles (SA-MNPs) as a novel solid acid catalyst under solvent-free classical heating conditions or using microwave irradiation. The heterogeneous catalyst could be recovered easily and reused many times without significant loss of catalytic activity.

  19. A Novel Asymmetric Synthesis of (-)-cis-1, 3-Dibenzylhexahydrofuro[3, 4-d]imidazole-2,4-dione

    Institute of Scientific and Technical Information of China (English)

    Wei Hua HAN; Hao Ran LI

    2005-01-01

    (-)-cis-1, 3-Dibenzyl-hexahydrofuro[3, 4-d]imidazole-2, 4-dione was prepared by a new synthesis method from meso dicarboxylic acid and dehydroabietylamine by asymmetric reduction in good yield with up to 91.6% e.e. value.

  20. An efficient synthesis of 3′-quinolinyl substituted imidazole-5-one derivatives catalyzed by zeolite and their antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Harshad G. Kathrotiya; Nilav A. Patel; Ranjan G. Patel; Manish P. Patel

    2012-01-01

    A series of some new quinoline based imidazole-5-one derivatives have been synthesized by the fusion of oxazol-5-ones,various p-substituted anilines and zeolite in pyridine.All the derivatives were subjected to an in vitro antimicrobial screening against a representative panel of bacteria and fungi and results worth further investigations.

  1. The anaerobic (Class III) ribonucleotide reductase from Lactococcus lactis : Catalytic properties and allosteric regulation of the pure enzyme system

    NARCIS (Netherlands)

    Torrents, Eduard; Buist, Girbe; Liu, Aimin; Eliasson, Rolf; Kok, Jan; Gibert, Isidre; Gräslund, Astrid; Reichard, Peter

    2000-01-01

    Lactococcus lactis contains an operon with the genes (nrdD and nrdG) for a class III ribonucleotide reductase, Strict anaerobic growth depends on the activity of these genes. Both were sequenced, cloned, and overproduced in Escherichia coli, The corresponding proteins, NrdD and NrdG, were purified c

  2. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations.

    Science.gov (United States)

    Wendt, Franziska; Näther, Christian; Tuczek, Felix

    2016-09-01

    Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-L-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed. PMID:27333775

  3. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    Science.gov (United States)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  4. Molecular Recognition of the Catalytic Zinc(II Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    Directory of Open Access Journals (Sweden)

    Thomas Fischer

    2016-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077: IC50 = 134 nM whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135: LLE = 2.91.

  5. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    Science.gov (United States)

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  6. Acid-base properties and copper(II) complexes of dipeptides containing histidine and additional chelating bis(imidazol-2-yl) residues.

    Science.gov (United States)

    Osz, Katalin; Várnagy, Katalin; Süli-Vargha, Helga; Csámpay, Antal; Sanna, Daniele; Micera, Giovanni; Sóvágó, Imre

    2004-01-01

    Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10. PMID:14659629

  7. Allosteric regulation of 6-phosphofructo-1-kinase activity of fat body and flight muscle from the bloodsucking bug Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Gutemberg G. Alves

    2007-03-01

    Full Text Available 6-phosphofructo-1-kinase (phosphofructokinase; PFK activity from Rhodnius prolixus, a haematophagous insect which is usually a poor flyer, was measured and compared in two metabolically active tissues - flight muscle and fat body. The activity of this important regulatory glycolytic enzyme was much more pronounced in muscle (15.1 ± 1.4 U/mg than in fat body extracts (3.6±0.4 U/mg, although the latter presented higher levels of enzyme per protein content, as measured by western-blotting. Muscle extracts are more responsible than fat body to ATP and fructose 6-phosphate, both substrates of PFK. Allosteric regulation exerted by different effectors such as ADP, AMP and fructose 2,6-phosphate presented a singular pattern for each tissue. Optimal pH (8.0-8.5 and sensitivity to pH variation was very similar, and citrate was unable to inhibit PFK activity in both extracts. Our results suggest the existence of a particular PFK activity for each tissue, with regulatory patterns that are consistent with their physiological roles.A atividade da fosfofrutocinase (PFK de Rodnius prolixus, um inseto hematófago, o qual vôa somente pequenas distâncias, foi medida e comparada em dois tecidos metabolicamente ativos - músculo de asa e corpo gorduroso. A atividade desta importante enzima glicolítica regulatória foi muito mais pronunciada em músculo de asa (15,1 ±1,4 U/mg do que em extrato de corpo gorduroso (3,6 ±0,4 U/mg embora este último tenha apresentado níveis mais altos da enzima por quantidade de proteína, como medido por western-blotting. Extratos de músculo foram mais responsivos do que corpo gorduroso para ATP e frutose-6-fosfato, ambos substratos da PFK. A regulação alostérica exercida por diferentes efetores tais como ADP, AMP, frutose-2,6-bisfosfato apresentou um padrão singular para cada tecido. O pH ótimo (8,0-8,5 e a sensibilidade a variações de pH, foram muito similares e o citrato foi incapaz de inibir a atividade da PFK em

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. Evaluation of anti-bacterial effects of some novel thiazole and imidazole derivatives against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Behzad Ghasemi

    2015-12-01

    Full Text Available Background and Objectives: Bacterial resistance to antibiotics has motivated the researchers to evaluate the novel anti-bac- terial compounds such as some thiazole and imidazole derivatives. Thereby, in this work, we investigated the anti-bacterial effects of one new thiazole and two new imidazole derivatives on Bacillus cereus, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, Proteus mirabilis and Shigella dysenteriae.Materials and Methods: The thiazole and imidazole derivatives were dissolved in DMSO. The disk diffusion method was utilized to measure the growth inhibition zone diameter values, and the broth micro-dilution method was applied to deter- mine the minimum inhibitory concentration (MIC values.Results: The synthesized imidazole derivatives lacked any inhibitory effect against the tested bacteria. On the other hand, although the synthesized thiazole derivative showed no inhibitory effect against Bacillus cereus, Salmonella typhimurium, and Escherichia coli, it inhibited the growth of Proteus mirabilis, Shigella dysenteriae, and Listeria monocytogenes with the MIC values of 1000, 125, and 1000 µg/ml, respectively, and the growth inhibition zone diameter values of 9.3 ± 0.1, 15.6 ± 0.2, and 8.1 ± 0.0 mm, respectively.Conclusion: The anti-bacterial effect of the synthesized thiazole derivative on Shigella dysenteriae, Proteus mirabilis and Listeria monocytogenes was proven. However, its inhibition effect against Shigella dysenteriae was more than that against the others. Many in-vitro and in-vivo experiments are required to evaluate the effects of this compound on the bacteria and the human body. Keywords: Anti-bacterial effects, Thiazole, Imidazole

  10. Inhibition of melanogenesis by the pyridinyl imidazole class of compounds: possible involvement of the Wnt/β-catenin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Barbara Bellei

    Full Text Available While investigating the role of p38 MAPK in regulating melanogenesis, we found that pyridinyl imidazole inhibitors class compounds as well as the analog compound SB202474, which does not inhibit p38 MAPK, suppressed both α-MSH-induced melanogenesis and spontaneous melanin synthesis. In this study, we demonstrated that the inhibitory activity of the pyridinyl imidazoles correlates with inhibition of the canonical Wnt/β-catenin pathway activity. Imidazole-treated cells showed a reduction in the level of Tcf/Lef target genes involved in the β-catenin signaling network, including ubiquitous genes such as Axin2, Lef1, and Wisp1 as well as cell lineage-restricted genes such as microphthalmia-associated transcription factor and dopachrome tautomerase. Although over-expression of the Wnt signaling pathway effector β-catenin slightly restored the melanogenic program, the lack of complete reversion suggested that the imidazoles interfered with β-catenin-dependent transcriptional activity rather than with β-catenin expression. Accordingly, we did not observe any significant change in β-catenin protein expression. The independence of p38 MAPK activity from the repression of Wnt/β-catenin signaling pathway was confirmed by small interfering RNA knockdown of p38 MAPK expression, which by contrast, stimulated β-catenin-driven gene expression. Our data demonstrate that the small molecule pyridinyl imidazoles possess two distinct and opposite mechanisms that modulate β-catenin dependent transcription: a p38 inhibition-dependent effect that stimulates the Wnt pathway by increasing β-catenin protein expression and an off-target mechanism that inhibits the pathway by repressing β-catenin protein functionality. The p38-independent effect seems to be dominant and, at least in B16-F0 cells, results in a strong block of the Wnt/β-catenin signaling pathway.

  11. New and rapid access to synthesis of novel polysubstituted imidazoles using antimony trichloride and stannous chloride dihydrate as effective and reusable catalysts

    Indian Academy of Sciences (India)

    Leyla Poorali; Bahador Karami; Khalil Eskandari; Mahboobeh Azizi

    2013-05-01

    In this work, new, efficient and environmentally adapted synthesis of polysubstituted imidazoles in one-pot is repoted. The multicomponent reaction of various aldehydes, benzil, aliphatic and aromatic primary amines and ammonium acetate under solvent-free condition is explained. The highly efficient role of antimony trichloride and stannous chloride dihydrate as catalyst in this synthesis was shown and their effects on the reaction process were studied. By this advantage, several polysubstituted imidazoles as pharmaceutical important molecules can be prepared in high yield and high purity. This method is a very easy and rapid for the synthesis of imidazole derivatives.

  12. Inhibition of lactoperoxidase-catalyzed oxidation by imidazole-based thiones and selones: a mechanistic study.

    Science.gov (United States)

    Roy, Gouriprasanna; Jayaram, P N; Mugesh, Govindasamy

    2013-08-01

    Herein, we describe the synthesis and biomimetic activity of a series of N,N-disubstituted thiones and selones that contain an imidazole pharmacophore. The N,N-disubstituted thiones do not show any inhibitory activity towards LPO-catalyzed oxidation reactions, but their corresponding N,N-disubstituted selones exhibit inhibitory activity towards LPO-catalyzed oxidation reactions. Substituents on the N atom of the imidazole ring appear to have a significant effect on the inhibition of LPO-catalyzed oxidation and iodination reactions. Selones 16, 17, and 19, which contain methyl, ethyl, and benzyl substituents, exhibit similar inhibition activities towards LPO-catalyzed oxidation reactions with IC50 values of 24.4, 22.5, and 22.5 μM, respectively. However, their activities are almost three-fold lower than that of the commonly used anti-thyroid drug methimazole (MMI). In contrast, selone 21, which contains a N-CH2CH2OH substituent, exhibits high inhibitory activity, with an IC50 value of 7.2 μM, which is similar to that of MMI. The inhibitory activity of these selones towards LPO-catalyzed oxidation/iodination reactions is due to their ability to decrease the concentrations of the co-substrates (H2O2 and I2), either by catalytically reducing H2O2 (anti-oxidant activity) or by forming stable charge-transfer complexes with oxidized iodide species. The inhibition of LPO-catalyzed oxidation/iodination reactions by N,N-disubstituted selones can be reversed by increasing the concentration of H2O2. Interestingly, all of the N,N-disubstituted selones exhibit high anti-oxidant activities and their glutathione peroxidase (GPx)-like activity is 4-12-fold higher than that of the well-known GPx-mimic ebselen. These experimental and theoretical studies suggest that the selones exist as zwitterions, in which the imidazole ring contains a positive charge and the selenium atom carries a large negative charge. Therefore, the selenium moieties of these selones possess highly

  13. Synthetic polyspermine imidazole-4, 5-amide as an efficient and cytotoxicity-free gene delivery system

    Directory of Open Access Journals (Sweden)

    Duan S

    2012-07-01

    Full Text Available Shi-Yue Duan, Xue-Mei Ge, Nan Lu, Fei Wu, Weien Yuan, Tuo JinSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of ChinaAbstract: A chemically dynamic spermine-based polymer: polyspermine imidazole-4, 5-amide (PSIA, Mw > 7 kDa was designed, synthesized, and evaluated in terms of its ability to deliver nucleic acids. This polymer was made from an endogenous monomer professionally condensing genes in sperms, spermine, and a known safety drug metabolite, imidazole-4, 5-dicarboxylic acid, through a bis-amide bond conjugated with the imidazole ring. This polymer can condense pDNA at a W/W ratio above 10 to form polyplexes (100–200 nm in diameter, which is consistent with the observation by transmission electron microscopy (TEM, and the zeta potential was in the range of 10–20 mV. The pDNA packaged polymer was stable in phosphate buffer solution (PBS at pH 7.4 (simulated body fluid while the polyplexes were releasing pDNA into the solution at pH 5.8 (simulated endo-lysosomes due to the degradation of the bis-amide linkages in response to changes in pH values. PSIA-polyplexes were able to achieve efficient cellular uptake and luciferase gene silencing by co-transfection of pDNA and siRNA in COS-7 cells and HepG2 cells with negligible cytotoxicity. Biodistribution of Rhodamine B-labeled PSIA-polyplexes after being systemically injected in BALB/c nude-mice showed that the polyplexes circulated throughout the body, accumulated mainly in the kidney at 4 hours of sample administration, and moved to the liver and spleen after 24 hours. All the results suggested that PSIA offered a promising example to balance the transfection efficiency and toxicity of a synthetic carrier system for the delivery of therapeutic nucleic acids.Keywords: gene delivery, polyspermine, cytotoxicity, transfection efficiency, biodistribution

  14. Caricain: A basis for enzyme therapy for coeliac disease

    Directory of Open Access Journals (Sweden)

    Hugh J. Cornell

    2011-09-01

    Full Text Available Gliadin, a glycoprotein present in wheat and other grass cereals, is a causative agent in coeliac disease. It is therefore important to find methods for the detoxification of gliadin. Lysosomal integrity is lost in patients with active coeliac disease but restored when gliadin is removed from the diet. We employed a rat liver lysosome assay to monitor the extent of detoxification of a gliadin digest by caricain, a protein enzyme found in papaya. Pre-incubating the gliadin digest for different durations with caricain allowed the kinetics of the detoxification process to be studied. A significant degree of protection (80% of the lysosomes was achieved with 1.7% w/w of caricain on substrate after incubation for 2 h at 37 °C. The detoxification followed first-order kinetics with a rate constant of 1.7 x 10-4/s. The enzyme was strongly inhibited by imidazole, but weakly by phenylmethyl sulphonyl fluoride, as was also a caricain-enriched fraction from ion-exchange chromatography of papaya oleo-resin. The value of caricain in the detoxification of gliadin was confirmed in the present studies and this enzyme shows promise for enzyme therapy in coeliac disease.

  15. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure. METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold. CONCLUSIONS/SIGNIFICANCE: These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  16. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2015-07-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  17. A negative allosteric modulator modulates GABAB-receptor signalling through GB2 subunits.

    Science.gov (United States)

    Sun, Bing; Chen, Linhai; Liu, Lei; Xia, Zhixiong; Pin, Jean-Philippe; Nan, Fajun; Liu, Jianfeng

    2016-03-15

    An γ-aminobutyric acid type B (GABAB)-receptor mediates slow and prolonged synaptic inhibition in the central nervous system, which represents an interesting target for the treatment of various diseases and disorders of the central nervous system. To date, only one activator of the GABAB-receptor, baclofen, is on the market for the treatment of spasticity. Inhibitors of the GABAB-receptor, such as antagonists, show anti-absence seizure activity and pro-cognitive properties. In a search for allosteric compounds of the GABAB-receptor, although several positive allosteric modulators have been developed, it is only recently that the first negative allosteric modulator (NAM), CLH304a (also named Compound 14), has been reported. In the present study, we provide further information on the mechanism of action of CLH304a, and also show the possibility of designing more NAMs, such as CLH391 and CLH393, based on the structure of CLH304a. First we show that CLH304a inhibits native GABAB-receptor activity in cultured cerebellar granular neurons. We then show that CLH304a has inverse agonist properties and non-competitively inhibits the effect of agonists, indicating that it binds at a different site to GABA. The GABAB-receptor is a mandatory heterodimer made of GB1 subunits, in which agonists bind, and GB2 subunits, which activate G-proteins. By using various combinations made up of wild-type and/or mutated GB1 and GB2 subunits, we show that CLH304a acts on the heptahelical domain of GB2 subunits. These data revealed the possibility of designing innovative NAMs acting in the heptahelical domain of the GB2 subunits, offering novel possibilities for therapeutic intervention based on GABAB-receptor inhibition. PMID:26772870

  18. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening.

    Science.gov (United States)

    Yilmaz, Oya Gursoy; Olmez, Elif Ozkirimli; Ulgen, Kutlu O

    2014-02-01

    Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.

  19. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion. PMID:27322216

  20. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation.

    Science.gov (United States)

    Wen, Si-Qi; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhang, Ling; Zhou, Cheng-He

    2016-06-15

    A series of novel berberine-based imidazole derivatives as new type of antimicrobial agents were developed and characterized. Most of them gave good antibacterial activity toward the Gram-positive and negative bacteria. Noticeably, imidazolyl berberine 3a exhibited low MIC value of 1μg/mL against Eberthella typhosa, which was even superior to reference drugs berberine, chloromycin and norfloxacin. The cell toxicity and ROS generation assay indicated that compound 3a showed low cell toxicity. The interactive investigation by UV-vis spectroscopic method revealed that compound 3a could effectively intercalate into calf thymus DNA to form 3a-DNA complex which might further block DNA replication to exert the powerful antimicrobial activities. The binding behavior of compound 3a to DNA topoisomerase IB revealed that hydrogen bonds and electrostatic interactions played important roles in the association of compound 3a with DNA topoisomerase IB. PMID:27156777

  1. Carbon dioxide selective adsorption within a highly stable mixed-ligand Zeolitic Imidazolate Framework

    KAUST Repository

    Huang, Lin

    2014-08-01

    A new mixed-ligand Zeolitic Imidazolate Framework Zn4(2-mbIm) 3(bIm)5·4H2O (named JUC-160, 2-mbIm = 2-methylbenzimidazole, bIm = benzimidazole and JUC = Jilin University China) was synthesized with a solvothermal reaction of Zn(NO3) 2·6H2O, bIm and 2-mbIm in DMF solution at 180 °C. Topological analysis indicated that JUC-160 has a zeolite GIS (gismondine) topology. Study of the gas adsorption and thermal and chemical stability of JUC-160 demonstrated its selective adsorption property for carbon dioxide, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvent for up to one week. © 2014 Elsevier B.V.

  2. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.

  3. High efficiency, blue emitting materials based on phenanthro[9,10-d]imidazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Jayabharathi, J., E-mail: jtchalam2005@yahoo.co.in; Sathishkumar, R.; Thanikachalam, V.; Jayamoorthy, K.

    2014-09-15

    The blue light emitting materials based on a fluoro phenanthro [9,10-d] imidazole derivatives prepared by a facial synthetic process exhibit good thermal stability, highly efficient fluorescence and balanced carrier injection. The multi-layered device based on fluoro phenanthroimidazole derivatives shows a higher luminance in a lower turn-on voltage. The device performance implies that the phenanthroimidazole unit is an excellent building block for tuning the carrier injection properties as well as blue emission. - Highlights: • Phenanthroimidazole exhibits high T{sub m} and T{sub d5} values, fluorescent efficiency, preparation cost and charge injection property. • The carrier injection and transport ability can be evidenced from the hole-only and electron-only devices. • These materials are used as building block for efficient blue light emitting materials. • Chemical structure modification improving the materials' properties.

  4. Tumor Repression of VCaP Xenografts by a Pyrrole-Imidazole Polyamide.

    Directory of Open Access Journals (Sweden)

    Amanda E Hargrove

    Full Text Available Pyrrole-imidazole (Py-Im polyamides are high affinity DNA-binding small molecules that can inhibit protein-DNA interactions. In VCaP cells, a human prostate cancer cell line overexpressing both AR and the TMPRSS2-ERG gene fusion, an androgen response element (ARE-targeted Py-Im polyamide significantly downregulates AR driven gene expression. Polyamide exposure to VCaP cells reduced proliferation without causing DNA damage. Py-Im polyamide treatment also reduced tumor growth in a VCaP mouse xenograft model. In addition to the effects on AR regulated transcription, RNA-seq analysis revealed inhibition of topoisomerase-DNA binding as a potential mechanism that contributes to the antitumor effects of polyamides in cell culture and in xenografts. These studies support the therapeutic potential of Py-Im polyamides to target multiple aspects of transcriptional regulation in prostate cancers without genotoxic stress.

  5. A Zeolite Imidazolate Framework ZIF-8 Catalyst for Friedel-Crafts Acylation

    Institute of Scientific and Technical Information of China (English)

    LienT.L.NGUYEN; Ky K.A.LE; Nam T.S.PHAN

    2012-01-01

    A zeolite imidazolate framework,ZIF-8,was synthesized and characterized by dynamic laser light scattering,X-ray powder diffraction,scanning electron microscopy,transmission electron microscopy,thermogravimetric analysis,Fourier transform infrared,atomic absorption spectrophotometry,and nitrogen adsorption measurements.The ZIF-8 was highly crystalline and porous with a surface area of over 1600 m2/g.Friedel-Crafts acylation of anisole and benzoyl chloride proceeded well in the presence of ZIF-8 (2-6 mol%) without the need for an inert atmosphere.The reaction afforded a selectivity of 93%-95% to the p-isomer.The solid catalyst can be separated from the reaction mixture by simple centrifugation and reused without significant degradation in catalytic activity.There was no leaching of active acid species into the reaction solution.

  6. Electric properties and fabrication of IMI-O LB films containing the imidazole group

    CERN Document Server

    Yoo, S Y; Kwon, Y S; Park, J C

    1999-01-01

    We fabricated an IMI-O polymer containing an imidazole group that could form a complex structure between the monolayer and the metal ions at the air-water interface. Also, the monolayer behavior at the air-water interface and the electrical properties of metal-complexed Langmuir-Blodgett (LB) films were investigated by using Brewster angle microscopy (BAM) and current-voltage(I-V) measurements. The difference in the BAM images between the pure water and the aqueous metal ions is attributed to the interactions of the copolymers with the metal ions at the interface and the consequent change of the monolayer organization. In the I-V characteristics, the current for LB films with different metal ion depended on the quantity of the metal-ion complexed with the LB film due to the interaction between the metal ion and the IMI-O polymer.

  7. Tailoring the Transport Properties of Zeolitic Imidazolate Frameworks by Post-Synthetic Thermal Modification.

    Science.gov (United States)

    Zhang, Chen; Koros, William J

    2015-10-28

    Understanding how to control transport properties of zeolitic imidazolate frameworks (ZIFs) is critical to extend ZIF-based membranes and adsorbents to a wide spectrum of gas and vapor separations. In this work, we report a facile post-synthetic thermal modification (PSTM) technique to tailor ZIFs' transport properties by balancing diffusivity and diffusion selectivity. With controllable dissociation of framework methyl groups from a precursor ZIF (ZIF-8), we have prepared thermally modified ZIFs showing substantially increased n-butane diffusivity and attractive n/iso-butane diffusion selectivity. Hybrid ZIF/polymer mixed-matrix membranes formed using these thermally modified ZIFs are expected to deliver attractive butane isomer separation performance. Membranes based on such materials can potentially be used to retrofit refinery alkylation units for producing premium gasoline blending stocks. PMID:26451850

  8. Changes in BQCA Allosteric Modulation of [(3)H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations.

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-05-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [(3)H]pirenzepine binding. Surprisingly, there was no change in [(3)H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [(3)H]pirenzepine and [(3)H]NMS binding to human cortex and showed total [(3)H]pirenzepine and [(3)H]NMS binding was reduced by Zn(2+), acetylcholine displacement of [(3)H]NMS binding was enhanced by Mg(2+) and Zn(2+), acetylcholine displacement of [(3)H]pirenzepine was reduced by Mg(2+) and enhanced by Zn(2+), whereas BQCA effects on [(3)H]NMS, but not [(3)H]pirenzepine, binding was enhanced by Mg(2+) and Zn(2+). These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia.

  9. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; Goldfeld, Dahlia Anne; Moo, Ee Von; Sexton, Patrick M; Christopoulos, Arthur; McCammon, J Andrew; Valant, Celine

    2016-09-20

    Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [(3)H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 μM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies. PMID:27601651

  10. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer.

    Science.gov (United States)

    Mouilleron, Stéphane; Badet-Denisot, Marie-Ange; Pecqueur, Ludovic; Madiona, Karine; Assrir, Nadine; Badet, Bernard; Golinelli-Pimpaneau, Béatrice

    2012-10-01

    The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.

  11. [Preparation and applications of 4-methyl imidazole magnetic surface molecularly imprinted polymers].

    Science.gov (United States)

    Qi, Yuxia; Zhao, Lijuan; Ma, Meihua; Wei, Chanling; Li, Ya; Li, Wenjing; Gong, Bolin

    2015-12-01

    The magnetic surface molecularly imprinted polymers (MIPs) with specific recognition of 4-methyl imidazole (4-MI) were prepared by using 4-MI as template molecule, methacrylic acid (MAA) as functional monomer and Fe3O4 as magnetic fluid. The polymers were characterized by of Fourier transform infrared spectrometer (FT-IR) analysis, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results demonstrated that an imprinted polymer layer was successfully coated onto the surface of modified Fe3O4 nanomaterials, resulting in a narrow diameter distribution and good magnetic responsibility. The ultraviolet (UV) spectrophotometry was used to demonstrate the interaction between 4-MI and MAA. It was found that one 4-MI molecule was entrapped by one MAA molecule, which was the main existing form of subject and object. By UV spectrophotometric method to study the adsorption performance of magnetic molecularly imprinted polymers, the specific adsorption equilibrium and selectivity were evaluated by batch rebinding studies. The Scatchard analysis showed that there were two kinds of binding sites in the Fe3O4 @ (4-MI-MIP). The corresponding maximum adsorption capacities of 4-MI onto Fe3O4 @ (4-MI-MIP) were 40.31 mg/g and 23.07 mg/g, and the dissociation constants were 64.85 mg/L and 30.41 mg/L, respectively. The kinetic experimental data were correlated with second-order kinetic model. The magnetic molecularly imprinted polymers were used for the adsorption of 4-methyl imidazole in environmental water samples, and good results were obtained. PMID:27097456

  12. Allosterically Regulated Phosphatase Activity from Peptide-PNA Conjugates Folded Through Hybridization.

    Science.gov (United States)

    Machida, Takuya; Dutt, Som; Winssinger, Nicolas

    2016-07-18

    The importance of spatial organization in short peptide catalysts is well recognized. We synthesized and screened a library of peptides flanked by peptide nucleic acids (PNAs) such that the peptide would be constrained in a hairpin loop upon hybridization. A screen for phosphatase activity led to the discovery of a catalyst with >25-fold rate acceleration over the linear peptide. We demonstrated that the hybridization-enforced folding of the peptide is necessary for activity, and designed a catalyst that is allosterically controlled using a complementary PNA sequence. PMID:27320214

  13. Dynamical Allosterism in the Mechanism of Action of DNA Mismatch Repair Protein MutS

    OpenAIRE

    Pieniazek, Susan N.; Hingorani, Manju M.; Beveridge, D.L.

    2011-01-01

    The multidomain protein Thermus aquaticus MutS and its prokaryotic and eukaryotic homologs recognize DNA replication errors and initiate mismatch repair. MutS actions are fueled by ATP binding and hydrolysis, which modulate its interactions with DNA and other proteins in the mismatch-repair pathway. The DNA binding and ATPase activities are allosterically coupled over a distance of ∼70 Å, and the molecular mechanism of coupling has not been clarified. To address this problem, all-atom molecul...

  14. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2013-05-01

    Full Text Available In order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay. These compounds also significantly inhibited virus (EV71 replication in HEK293 and RD cells. Several compounds showed potential as agents for the treatment of viral infective diseases, with the most potent compound 18 showing an IC50 value of 54.57 nM in the MEK1 binding assay.

  15. Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor

    DEFF Research Database (Denmark)

    Gloriam, David E.; Wellendorph, Petrine; Johansen, Lars Dan;

    2011-01-01

    and pharmacological character: (1) chemogenomic lead identification through the first, to our knowledge, ligand inference between two different GPCR families, Families A and C; and (2) the discovery of the most selective GPRC6A allosteric antagonists discovered to date. The unprecedented inference of...... pharmacological activity across GPCR families provides proof-of-concept for in silico approaches against Family C targets based on Family A templates, greatly expanding the prospects of successful drug design and discovery. The antagonists were tested against a panel of seven Family A and C G protein-coupled receptors...

  16. Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin.

    OpenAIRE

    Ascenzi, Paolo; di Masi, Alessandra; Coletta, Massimo; Ciaccio, Chiara; Fanali, Gabriella; Nicoletti, Francesco P; Smulevich, Giulietta; Fasano, Mauro

    2011-01-01

    Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO3− catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 °C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO2; the values of the second order catalytic rate constant (kon) are 4.1 × 10...

  17. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Klein-Seetharaman Judith

    2008-02-01

    Full Text Available Abstract Metabotropic glutamate receptors (mGluRs are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%, the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%, the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86% and 8/9 (89% for ArgusLab and 10/14 (71% and 7/9 (78% for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by

  18. Discovery of a novel allosteric modulator of 5-HT3 receptor

    DEFF Research Database (Denmark)

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B;

    2012-01-01

    The ligand-gated ion channels in the Cysloop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA and glycine. Cysloop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel...... receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)subunit and TM1 and TM2 in the (minus)subunit. The Ser248, Leu288, Ile290, Thr294 and Gly306 residues are identified as important...

  19. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping

    2012-12-06

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  20. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation

    International Nuclear Information System (INIS)

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO2 into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO2 into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min−1, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO2, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks

  1. Nano copper and cobalt ferrites as heterogeneous catalysts for the one-pot synthesis of 2,4,5-tri substituted imidazoles

    Indian Academy of Sciences (India)

    Paul Douglas Sanasi; D Santhipriya; Y Ramesh; M Ravi Kumar; B Swathi; K Jaya Rao

    2014-11-01

    A simple one-pot synthesis has been developed for the synthesis of 2,4,5-trisubstituted imidazoles using magnetic recyclable spinel nano copper and cobalt ferrites by the condensation of benzil, aromatic aldehyde and ammonium acetate in ethanol as solvent. The reaction, with these catalysts was carried out under mild reaction conditions with very good yields of substituted imidazoles. These catalysts can be recycled very easily and reused, which makes this methodology environmentally benign.

  2. One-pot synthesis of tri-and tetra-substituted imidazoles using sodium dihydrogen phosphate under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Zahed Karimi-Jaberi; Mohammad Barekat

    2010-01-01

    Sodium dihydrogen phosphate (NaH2PO4) efficiently catalyzes the condensation reaction of benzil,aldehydes,amines and ammonium acetate in a four-component reaction under solvent-free conditions.The reaction proceeds rapidly and affords the corresponding tetra-substituted imidazoles in high yields.Also an efficient route was developed for the synthesis of tri-substituted imidazoles from condensation of benzil,aldehydes and ammonium acetate using NaH2PO4.

  3. 2-aminopyrimidine-4,6-diol as an efficient ligand for solvent-free copper-catalyzed N-arylations of imidazoles with aryl and heteroaryl halides.

    Science.gov (United States)

    Xie, Ye-Xiang; Pi, Shao-Feng; Wang, Jian; Yin, Du-Lin; Li, Jin-Heng

    2006-10-13

    Efficient and solvent-free copper-catalyzed N-arylations of imidazoles with aryl and heteroaryl halides have been demonstrated. In the presence of CuBr, 2-aminopyrimidine-4,6-diol, and TBAF (n-Bu4NF), a variety of imidazoles underwent the N-arylation reaction with aryl and heteroaryl halides smoothly in moderate to excellent yields. Noteworthy is that the reaction is conducted under solvent-free conditions. PMID:17025338

  4. Synthesis and Crystal Structure of 2-(4-Chlorophenyl)-1,4,5-triphenyl-1H-imidazole%Synthesis and Crystal Structure of 2-(4-Chlorophenyl)-1,4,5-triphenyl-1H-imidazole

    Institute of Scientific and Technical Information of China (English)

    Ali Mohammad Amani; Kazem Barati

    2012-01-01

    The compound 2-(4-chlorophenyl)-1,4,5-triphenyl-1H-imidazole(1,C27H19ClN2) has been synthesized and its crystal structure was determined by single-crystal X-ray diffraction.The crystal of 1 belongs to the triclinic system,space group P with a = 10.3350(19),b = 10.238(2),c = 11.201(2) ,α = 85.957(16),β = 83.148(15),γ = 66.467(15)°,V = 1078.5(4) 3,Mr = 406.89,Z = 2,F(000) = 422,Dc = 1.257 g/cm3,μ = 0.193 mm-1,T = 298(2) K,S = 1.092,R = 0.0702 and wR = 0.1258.The imidazole ring system is planar and makes a dihedral angle of 40.3° with the chlorobenzene ring.

  5. A substrate-driven allosteric switch that enhances PDI catalytic activity

    Science.gov (United States)

    Bekendam, Roelof H.; Bendapudi, Pavan K.; Lin, Lin; Nag, Partha P.; Pu, Jun; Kennedy, Daniel R.; Feldenzer, Alexandra; Chiu, Joyce; Cook, Kristina M.; Furie, Bruce; Huang, Mingdong; Hogg, Philip J.; Flaumenhaft, Robert

    2016-01-01

    Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a–b–b′–x–a′, wherein the thioredoxin-like a and a′ domains mediate disulfide bond shuffling and b and b′ domains are substrate binding. The b′ and a′ domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b′. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a′ by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains. PMID:27573496

  6. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis.

    Science.gov (United States)

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H; Hickson, Gilles R; Archambault, Vincent

    2014-10-27

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.

  7. Allosteric role of the large-scale domain opening in biological catch-binding

    Science.gov (United States)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Sokurenko, Evgeni V.

    2009-05-01

    The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.

  8. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor.

    Science.gov (United States)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R; Shultz, Michael D; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L; Zhang, Ji-Hu; LaMarche, Matthew J

    2016-09-01

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor. PMID:27347692

  9. Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry.

    Science.gov (United States)

    Yamaura, Kei; Kiyonaka, Shigeki; Numata, Tomohiro; Inoue, Ryuji; Hamachi, Itaru

    2016-10-01

    The fast inhibitory actions of γ-aminobutyric acid (GABA) are mainly mediated by GABAA receptors (GABAARs) in the brain. The existence of multiple ligand-binding sites and a lack of structural information have hampered the efficient screening of drugs capable of acting on GABAARs. We have developed semisynthetic fluorescent biosensors for orthosteric and allosteric GABAAR ligands on live cells via coupling of affinity-based chemical labeling reagents to a bimolecular fluorescence quenching and recovery system. These biosensors were amenable to the high-throughput screening of a chemical library, leading to the discovery of new small molecules capable of interacting with GABAARs. Electrophysiological measurements revealed that one hit, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), was a novel negative allosteric modulator capable of strongly suppressing GABA-induced chloride currents. Thus, these semisynthetic biosensors represent versatile platforms for screening drugs to treat GABAAR-related neurological disorders, and this strategy can be extended to structurally complicated membrane proteins. PMID:27526031

  10. Mechanisms of allosteric gene regulation by NMR quantification of microsecond-millisecond protein dynamics.

    Science.gov (United States)

    Kleckner, Ian R; Gollnick, Paul; Foster, Mark P

    2012-01-13

    The trp RNA-binding attenuation protein (TRAP) is a paradigmatic allosteric protein that regulates the tryptophan biosynthetic genes associated with the trp operon in bacilli. The ring-shaped 11-mer TRAP is activated for recognition of a specific trp-mRNA target by binding up to 11 tryptophan molecules. To characterize the mechanisms of tryptophan-induced TRAP activation, we have performed methyl relaxation dispersion (MRD) nuclear magnetic resonance (NMR) experiments that probe the time-dependent structure of TRAP in the microsecond-to-millisecond "chemical exchange" time window. We find significant side chain flexibility localized to the RNA and tryptophan binding sites of the apo protein and that these dynamics are dramatically reduced upon ligand binding. Analysis of the MRD NMR data provides insights into the structural nature of transiently populated conformations sampled in solution by apo TRAP. The MRD data are inconsistent with global two-state exchange, indicating that conformational sampling in apo TRAP is asynchronous. These findings imply a temporally heterogeneous population of structures that are incompatible with RNA binding and substantiate the study of TRAP as a paradigm for probing and understanding essential dynamics in allosteric, regulatory proteins. PMID:22115774

  11. An external sodium ion binding site controls allosteric gating in TRPV1 channels.

    Science.gov (United States)

    Jara-Oseguera, Andres; Bae, Chanhyung; Swartz, Kenton J

    2016-01-01

    TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 activate in two steps to favor opening, and that the binding of sodium to an extracellular site exerts allosteric control over temperature-sensor activation and opening of the pore. The binding of a tarantula toxin to the external pore also exerts control over temperature-sensor activation, whereas binding of vanilloids influences temperature-sensitivity by largely affecting the open/closed equilibrium. Our results reveal a fundamental role of the external pore in the allosteric control of TRPV1 channel gating and provide essential constraints for understanding how these channels can be tuned by diverse stimuli. PMID:26882503

  12. Interplay between Structure and Charge as a Key to Allosteric Modulation of Human 20S Proteasome by the Basic Fragment of HIV-1 Tat Protein.

    Directory of Open Access Journals (Sweden)

    Przemysław Karpowicz

    Full Text Available The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.

  13. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm-2) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO2/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  14. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Miao [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lin Yuan [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: linyuan@iccas.ac.cn; Zhou Xiaowen; Xiao Xurui [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Yang Lei [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng Shujing; Li Xueping [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-01-15

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm{sup -2}) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO{sub 2}/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells.

  15. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yong Hong [Huaibei Normal Univ., Huaibei (China)

    2013-04-15

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH{sub 2}){sub n}, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures.

  16. 4-[Amino(3-methylphenylmethylidene]-2-(3-methylphenyl-1H-imidazol-5(4H-one ethanol hemisolvate

    Directory of Open Access Journals (Sweden)

    M. Prabhuswamy

    2013-02-01

    Full Text Available In the title compound, C18H17N3O·0.5C2H5OH, the dihedral angles between the central imidazole rings and the pendant benzene rings are 42.06 (15 and 2.01 (16° in one asymmetric molecule and 47.91 (15 and 7.31 (14° in the other. An intramolecular N—H...O hydrogen bond occurs in each imidazole molecule. In the crystal, the components are connected by O—H...N, N—H...O, C—H...O and N—H...N hydrogen bonds. Weak aromatic π–π interactions also occur [shortest centroid–centroid distance = 3.684 (3 Å].

  17. Application of DEPBT on the Synthesis of the Protected Dipeptides Containing Histidine with Unprotected Imidazole Group by Solution Method

    Institute of Scientific and Technical Information of China (English)

    沈鸿雁; 田桂玲; 朱文江; 哈莎; 叶蕴华

    2003-01-01

    3- (Diethoxyphosphoryloxy)- 1,2,3-benzotriazln-4 (3H)-one (DE-PBT) was an organophosphorus coupling reagent developed by our group. It was an effective coupling reagent for the synthesis of protected peptides containing Tyr, Ser and Thr with unprotected hydroxy group on their side chain. The further study of the synthesis of a series of protected dipeptides containing hisfidine with unprotected imidazole group using DEPBT is reported. During the synthetic procedure, the imidazole group of histidine did not need to be protected. When the carboxyl components were N-protected aromatic amino acids or basic amino acids, the yields were relatively high (63%--81%). However,when the carboxyl components were N-protected acidic amino acids, the yields were relatively low (47%--48%). The results expanded the application of DEPBT on the synthesis of bioactive peptides containing histidine.

  18. Diaquabis(4-carboxy-2-ethyl-1H-imidazole-5-carboxylato-κ2N3,O4cadmium dihydrate

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2011-07-01

    Full Text Available The asymmetric unit of the title compound, [Cd(C7H7N2O42(H2O2]·2H2O, consists of one CdII ion, one 4-carboxy-2-ethyl-1H-imidazole-5-carboxylate anion, one coordinated water molecule and one lattice water molecule. The CdII ion lies on a twofold axis, and is hexacoordinated by four O atoms from water molecules and carboxylate groups and two N atoms from two imidazole rings, in a distorted octahedral arrangement. An extensive framework of N—H...O and O—H...O hydrogen bonds with the participation of coordinated and free water molecules is found in the crystal structure, which contributes to the formation of a three-dimensional structure.

  19. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric;

    2014-01-01

    Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer's disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3...

  20. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  1. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP

    DEFF Research Database (Denmark)

    Mathiesen, Jesper Mosolff; Svendsen, Nannette; Bräuner-Osborne, Hans;

    2003-01-01

    We have identified 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) and 2-methyl-6-phenylethynyl pyridine hydrochloride (MPEP) as positive allosteric modulators for the hmGluR4. SIB-1893 and MPEP enhanced the potency and efficacy of L-2-amino-4-phophonobutyrate (L-AP4) in guanosine 5'-O-(3-[(35)S]...

  2. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Science.gov (United States)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  3. Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies

    DEFF Research Database (Denmark)

    Mansari, Mostafa El; Wiborg, Ove; Mnie-Filali, Ouissame;

    2006-01-01

    was directed at determining whether R-citalopram modifies the action of selective serotonin reuptake inhibitors (SSRIs) known to act on allosteric sites namely escitalopram, and to a lesser extent paroxetine, compared to fluoxetine, which has no affinity for these sites. In-vitro binding studies showed that R...

  4. A novel polymeric catalyst for the one-pot synthesis of 2,4,5-triaryl-1H-imidazoles

    Indian Academy of Sciences (India)

    Ali Mohammadi; Hossein Keshvari; Reza Sandaroos; Hamed Rouhi; Zeinalabedin Sepehr

    2012-05-01

    An efficient synthesis of 2,4,5-trisubstituted imidazoles is achieved by three component cyclocondensation of benzil or benzoin, aldehyde and ammonium acetate by using novel polymeric catalyst [poly(AMPS-co-AA)] under solvent-free conditions. The key advantages of this process are high yields, shorter reaction times, easy work-up, purification of products by non-chromatographic method and the reusability of the catalyst.

  5. Novel synthesis of 2-butyl-5chloro-3H-imidazole-4-carbaldehyde:A key intermediate of Losartan

    Institute of Scientific and Technical Information of China (English)

    Hai Bo Sun; Guo Jun Zheng; Ya Ping Wang; Xiang Jing Wang; Wen Sheng Xiang

    2009-01-01

    A novel method for synthesis of 2-butyl-5-chloro-3H-imidazole-4-carbaldehyde 2, a key intermediate of Losartan was reported. The compound 2 was synthesized from starting material dimethyl malonate 6 and n-valeronitrile 8 by six steps with an overall yield of 40%.The key step including the reaction of compound $ with POCI3/DMF followed by hydrolysis to give compound 2 with the yield of 68%.

  6. Potassium dihydrogen phosphate catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles

    Institute of Scientific and Technical Information of China (English)

    Ratnadeep; S.Joshi; Priyanka; G.Mandhane; Mohammad; U.Shaikh; Rajesh; P.Kale; Charansingh; H.Gill

    2010-01-01

    A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH_2PO_4) under mild reaction conditions to afford the corresponding trisubstituted imidazole in excellent yields.The method for synthesis of product,the reaction mixture was reflux in ethanol for 40-90 min.The present method is simple,efficient,and cost-effective.

  7. Zwitterionic 4-carboxy-2-(1-methylpyridin-1-ium-4-yl-1H-imidazole-5-carboxylate

    Directory of Open Access Journals (Sweden)

    Dao-Sen Liu

    2012-02-01

    Full Text Available In the title zwitterionic molecule, C11H9N3O4, the imidazole and pyridine rings form a dihedral angle of 2.60 (2°. An intramolecular O—H...O hydrogen bond occurs. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers. Weak intermolecular C—H...O interactions further consolidate the crystal packing.

  8. 3,3′-(2,2′-Bi-1H-imidazole-1,1′-diyldipropanamide

    Directory of Open Access Journals (Sweden)

    Y.-X. Zhi

    2009-08-01

    Full Text Available In the title compound, C12H16N6O2, the two imidazole rings are coplanar as a center of inversion exists midway along the C—C bond joining the two rings. In the crystal, intermolecular N—H...O, N—H...N and C—H...O hydrogen bonds link adjacent molecules into a two-dimensional layer structure parallel to (001.

  9. Discovery of New Imidazole Derivatives Containing the 2,4-Dienone Motif with Broad-Spectrum Antifungal and Antibacterial Activity

    OpenAIRE

    Chunli Liu; Ce Shi; Fei Mao; Yong Xu; Jinyan Liu; Bing Wei; Jin Zhu; Mingjie Xiang; Jian Li

    2014-01-01

    A compound containing an imidazole moiety and a 2,4-dienone motif with significant activity toward several fungi was discovered in a screen for new antifungal compounds. Then, a total of 26 derivatives of this compound were designed, synthesized and evaluated through in vitro and in vivo antifungal activity assays. Several compounds exhibited improved antifungal activities compared to the lead compound. Of the derivatives, compounds 31 and 42 exhibited strong, broad-spectrum inhibitory effect...

  10. Designing Novel Synthetic Enzyme-Like Structures with Inducible Dynamic Catalytic Properties

    Science.gov (United States)

    Cheung, Michelle Lillian

    Over the past three decades considerable efforts have been made to create synthetic versions of enzymes, sometimes called synzymes. Most have failed, and the few so-called successes are at best only marginal exhibiting properties that can barely be described as catalytic. While these synthetic nano-structures look similar to the enzyme active site, they do not have the unique mechanical or dynamic catalytic properties to transform a substrate molecule into the desired product molecule with turnover capability. In our study, a series of synzymes that mimics the active catalytic site of proteases which utilizes serine/hydroxyl, cysteine/sulfhydryl, histidine/imidazole and aspartate/carboxyl groups were designed and fabricated. The acetylation and the deacylation kinetics of the synzyme peptides were studied through molecular modeling and UV/Vis spectrophotometry. The intramolecular interactions of synzyme residues were measured with proton NMR. These synzymes were shown to be able to hydrolyze p-nitrophenyl acetate esters and acetic anhydride. Synzymes with phenylalanines between the cysteine and histidine yield a significantly higher deacylation rate, suggesting that the large bulky R-groups of phenylalanine bends the backbone of the synzyme, thus bringing the cysteine thiol group and the histidine imidazole group closer for acetyl exchange. When oscillating pulse electric field was applied to the synzymes, an increase in acetylation rate is observed, suggesting the possibility that PEF treatment aids the electroconformation change of the synzyme during the catalysis process, which in turn increased its deacylation ability and turnover rate.

  11. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure.

  12. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure. PMID:26593463

  13. Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity

    DEFF Research Database (Denmark)

    Sorensen, Anders B.; Madsen, Jesper Jonasson; Svensson, L. Anders;

    2016-01-01

    The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic...... properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x...

  14. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Science.gov (United States)

    Al-Horani, Rami A; Karuturi, Rajesh; Lee, Michael; Afosah, Daniel K; Desai, Umesh R

    2016-01-01

    Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants. PMID:27467511

  15. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Thomas L Rodgers

    2013-09-01

    Full Text Available Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein "design space" that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have

  16. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  17. Poly[tetradecaaquatetrakis(μ3-1H-imidazole-4,5-dicarboxylatotetra-μ3-sulfato-cobalt(IIhexagadolinium(III

    Directory of Open Access Journals (Sweden)

    Li-Cai Zhu

    2011-08-01

    Full Text Available The asymmetric unit of the title compound, [CoGd6(C5H2N2O44(SO46(H2O14]n, contains a CoII ion (site symmetry overline1, three GdIII ions, two imidazole-4,5-dicarboxylate ligands, three SO42− anions, and seven coordinated water molecules. The CoII ion is six-coordinated by two O atoms from water molecules, two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. The GdIII ions exhibit three types of coordination environments. One Gd ion is eight-coordinated in a bicapped trigonal–prismatic geometry by four O atoms from two imidazole-4,5-dicarboxylate ligands, two O atoms from two SO42− anions and two coordinated water molecules. The other Gd ions are nine-coordinated in a tricapped trigonal–prismatic geometry; one of these Gd ions is bonded to four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO42− anions and two water O atoms and the other Gd ion is coordinated by one O atom and one N atom from one imidazole-4, 5-dicarboxylate ligand, five O atoms from three SO42− anions as well as two coordinated water molecules. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate and sulfate ligands, generating a three-dimensional network. The crystal structure is further stabilized by N—H...O, O—H...O, and C—H...O hydrogen-bonding interactions between water molecules, SO42− anions, and imidazole-4,5-dicarboxylate ligands.

  18. Topical anti-inflammatory properties of flutrimazole, a new imidazole antifungal agent.

    Science.gov (United States)

    Merlos, M; Vericat, M L; García-Rafanell, J; Forn, J

    1996-01-01

    The topical anti-inflammatory properties of flutrimazole, a new imidazole antifungal, have been evaluated. Flutrimazole inhibited mouse ear oedema induced by arachidonic acid, tetradecanoylphorbol-acetate and dithranol, with IC50 values of 3.32, 0.55 and 2.42 mumols/ear, respectively. Ketoconazole showed similar potency in arachidonic acid and dithranol models (IC50 = 3.76 and 2.41 mumols/ear) whereas it was less active against tetradecanoylphorbol acetate (IC50 = 1.96 mumols/ear). The standard anti-inflammatory sodium diclofenac was overall slightly more potent than antifungals (IC50 = 2.23, 0.57 and 0.57 mumols/ear against arachidonic acid, tetradecanoylphorbol acetate and dithranol, respectively). Both 2% flutrimazole and 2% ketoconazole creams, applied topically, inhibited carrageenan-induced rat paw oedema by about 40%. Under the same conditions, 1% flutrimazole and diclofenac creams inhibited by 26 and 54%, respectively. Flutrimazole may work through the inhibition of 5-lipoxygenase, as it inhibited LTB4 production by human granulocytes with an IC50 value of 11 microM (IC50 value for ketoconazole was 17 microM), whereas ram seminal vesicle cyclooxygenase was only inhibited by 16% at a concentration of 25 microM. Drugs such as flutrimazole, with dual anti-inflammatory/antifungal activity, may be advantageous in the treatment of topical fungal infections with an inflammatory component.

  19. Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations

    Directory of Open Access Journals (Sweden)

    Javad Azizian

    2010-11-01

    Full Text Available Javad Azizian1, Hasan Tahermansouri1, Esmaeil Biazar2, Saeed Heidari3, Davood Chobfrosh Khoei11Department of Chemistry, Science and Research branch, Islamic Azad University, Ponak, Tehran, Iran; 2Young researchers club – Islamic Azad University, Tonekabon Branch, Iran; 3Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshty University of Medical Sciences,Tehran, IranAbstract: Imidazoles and their derivatives are compounds with chemotherapeutic applications. In this study, we investigated the chemical functionalization of carboxylated multiwalled carbon nanotubes (MWNT–COOH by 1,2-phenylendiamine. Multiwalled nanotube (MWNT–benzimidazole was obtained by an MWNT–amide reaction with POCl3 after 72 hours, which was confirmed by Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, and elemental analysis. These functionalizations were chosen due to -NH2 and NHCO active sites in MWNT–amide for future application. Toxicity assays with fibroblast cells and MTT test for measurement of viable cell numbers were also performed. Cellular results did not show any toxicity change in modified samples from that of the reference samples.Keywords: functionalization, 1,2-phenylendiamine, carboxylated multiwall nanotubes, toxicity

  20. Thermolysis of some N-arylbenzamidoximes: Mechanistic studies for formation of anilide, oxazole and imidazole derivatives

    Indian Academy of Sciences (India)

    ABDEL-AAL GABER; LAYLA TAIB

    2016-05-01

    The thermolysis of N-2-pyridylbenzamidoxime I under nitrogen atmosphere for 5 hours givesrise to 2-phenyl-1H-imidazo[4,5-b]pyridine and N-(pyridin-2-yl)benzamide as the major products (52.4and 18.11%, respectively), in addition to 2-hydroxy pyridine, benzonitrile, benzoic acid, 2-aminopyridine,2-phenyloxazolo[4,5-b]pyridine, 9H-pyrrolo[2,3-b:5,4-b']dipyridine and 2,4,6-triphenyl-1,3,5-triazine. Also,heating N-Α-naphthylbenzamidoxime II under the same conditions gave N-(Α-Naphthyl)benzamide, 2-Phenyl-3H-naphtho[2,1-d] imidazole as the major products besides benzonitrile, benzoic acid, Α-naphthylamine and2-phenylnaphtho[1,2-d]oxazole. In the presence of tetralin, I gave 1-hydroxytetralin, Α-tetralone and 1,1'-bitetrayl besides the previous products. The reaction and isolated products have been interpreted in terms of afree radical mechanism involving the homolysis of N-O and/or C-N bonds.

  1. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  2. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8 based polymer nanocomposite membranes

    Directory of Open Access Journals (Sweden)

    Nay Win Khun

    2014-12-01

    Full Text Available We combined zeolitic imidazolate framework nanoparticles (ZIF-8: ˜150 nm diameter with Matrimid® 5218 polymer to form permeable mixed matrix membranes, featuring different weight fractions of nanoparticles (up to 30 wt. % loading. We used ball-on-disc micro-tribological method to measure the frictional coefficient of the nanocomposite membranes, as a function of nanoparticle loading and annealing heat treatment. The tribological results reveal that the friction and wear of the unannealed samples rise steadily with greater nanoparticle loading because ZIF-8 is relatively harder than the matrix, thus promoting abrasive wear mechanism. After annealing, however, we discover that the nanocomposites display an appreciably lower friction and wear damage compared with the unannealed counterparts. Evidence shows that the major improvement in tribological performance is associated with the greater amounts of wear debris derived from the annealed nanocomposite membranes. We propose that detached Matrimid-encapsulated ZIF-8 nanoparticles could function as “spacers,” which are capable of not only reducing direct contact between two rubbing surfaces but also enhancing free-rolling under the action of lateral forces.

  3. Synthesis and Crystal Structure of a Co(II) Complex with Schiff Base and Imidazole Ligand

    Institute of Scientific and Technical Information of China (English)

    WU Lian-Bin; HU Zi-Qiang; LAI Guo-Qiao

    2006-01-01

    The title compound, [Co(C3H4N2)2(C22H18N2O4)]·5H2O (Mr = 659.56), has been prepared and its crystal structure was determined by X-ray diffraction method. The crystal be- longs to monoclinic, space group P21/n, a = 9.6808(2), b = 26.7204(5), c = 12.7993(3)(A), β = 100.9340(10)o, V = 3250.75(12) (A)3, Z = 4, Dc = 1.348 g/cm3, μ= 0.586 mm-1, F(000) = 1380, S = 1.131, R = 0.0689 and wR = 0.1883 for 4782 observed reflections (I > 2σ(I)). The title crystal consists of Co(II) complex and lattice water molecules. The Co(II) complex assumes a distorted octahedral coordination geometry, formed by one Schiff base dianion phenylenediamine-3-me- thoxysali-cylaldehyde and two imidazole ligands. The π-π stacking interaction occurs between nearly parallel benzene rings of the neighboring complexes.

  4. 3-(1H-Imidazol-1-ylpropanaminium 2-carboxy-4,6-dinitrophenolate

    Directory of Open Access Journals (Sweden)

    Thammarse S. Yamuna

    2014-03-01

    Full Text Available In the title salt, C6H12N3+·C7H3N2O7−, the imidazole ring is planar, with a maximum deviation of 0.0013 (14 Å for the N attached to the propanaminium group. In the anion, a single intramolecular O—H...O hydrogen bond is observed. The mean planes of the nitro groups in the anion are twisted from the benzene ring mean plane making dihedral angles of 24.7 (9 and 3.9 (6°. In the crystal, the ammonium H atoms form N—H...N and N—H...O hydrogen bonds, resulting in an infinite chain along [111]. In addition to the classical hydrogen bonds, weak C—H...O and π–π [centroid–centroid distance = 3.7124 (9 Å] interactions are also observed, which lead to the formation a three-dimensional supramolecular structure that links the chains into layers along the bc plane.

  5. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67.

    Science.gov (United States)

    Pan, Yong; Li, Zhi; Zhang, Zhe; Tong, Xiong-Shi; Li, Hai; Jia, Chong-Zhi; Liu, Bei; Sun, Chang-Yu; Yang, Lan-Ying; Chen, Guang-Jin; Ma, De-Yun

    2016-03-15

    ZIF-67(zinc-methylimidazolate framework-67), one of the zeolitic imidazolate frameworks (ZIFs), was used for the removal of phenol from aqueous solutions via adsorption and shows high adsorption capacity for phenol. The thermodynamic and kinetic adsorption behavior of ZIF-67 for phenol in water with concentration ranging from 50 to 300 ppm were investigated in a batch reactor and a ZIF-67 packed column, respectively. The effects of pH, contact time, zeta potential of the adsorbent and temperature on the adsorption behavior were evaluated, and the results demonstrated that the adsorption is primarily brought about by a specific favorable interaction (electrostatic interaction) between phenol and ZIF-67 surface. The suitability of the Langmuir adsorption model to the equilibrium data was investigated for each phenol-adsorbent system, which the results showed that the equilibrium data for all the phenol-sorbent systems fitted the Langmuir model. Thermodynamic parameters such as Gibbs free energy are calculated from the experimental data at different temperatures. The adsorbent could be perfectly regenerated at 120 °C with little loss in the adsorption ability.

  6. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus.

    Science.gov (United States)

    Silva, Valdelânia G; Silva, Renan O; Damasceno, Samara R B; Carvalho, Nathalia S; Prudêncio, Rafael S; Aragão, Karoline S; Guimarães, Maria A; Campos, Stefano A; Véras, Leiz M C; Godejohann, Markus; Leite, José Roberto S A; Barbosa, André L R; Medeiros, Jand-Venes R

    2013-06-28

    The aim of this study was to investigate the antinociceptive and anti-inflammatory activities of epiisopiloturine (1), an imidazole alkaloid found in the leaves of Pilocarpus microphyllus. The anti-inflammatory activity of 1 was evaluated using several agents that induce paw edema and peritonitis in Swiss mice. Paw tissue and peritoneal fluid samples were obtained to determine myeloperoxidase (MPO) activity or tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels. The antinociceptive activity was evaluated by acetic acid-induced writhing, the hot plate test, and pain induction using formalin. Compared to vehicle treatment, pretreatment with 1 (0.1, 0.3, and 1 mg/kg, ip) of mice significantly reduced carrageenan-induced paw edema (p < 0.05). Furthermore, compound 1 at a dose of 1 mg/kg effectively inhibited edema induced by dextran sulfate, serotonin, and bradykinin, but had no effect on histamine-induced edema. The administration of 1 (1 mg/kg) following carrageenan-induced peritonitis reduced total and differential peritoneal leukocyte counts and also carrageenan-induced paw MPO activity and TNF-α and IL-1β levels in the peritoneal cavity. Pretreatment with 1 also reduced acetic acid-induced writhing and inhibited the first and second phases of the formalin test, but did not alter response latency in the hot plate test. Pretreatment with naloxone reversed the antinociceptive effect of 1. PMID:23734744

  7. High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids.

    Science.gov (United States)

    Im, Junhyuck; Yim, Narae; Kim, Jaheon; Vogt, Thomas; Lee, Yongjae

    2016-09-14

    Pressure-dependent structural and chemical changes of the zeolitic imidazolate framework compound ZIF-8 have been investigated using different pressure transmitting media (PTM) up to 4 GPa. The unit cell of ZIF-8 expands and contracts under hydrostatic pressure depending on the solvent molecules used as PTM. When pressurized in water up to 2.2(1) GPa, the unit cell of ZIF-8 reveals a gradual contraction. In contrast, when alcohols are used as PTM, the ZIF-8 unit cell volume initially expands by 1.2% up to 0.3(1) GPa in methanol, and by 1.7% up to 0.6(1) GPa in ethanol. Further pressure increase then leads to a discontinuous second volume expansion by 1.9% at 1.4(1) GPa in methanol and by 0.3% at 2.3(1) GPa in ethanol. The continuous uptake of molecules under pressure, modeled by the residual electron density derived from Rietveld refinements of X-ray powder diffraction, reveals a saturation pressure near 2 GPa. In non-penetrating PTM (silicone oil), ZIF-8 becomes amorphous at 0.9(1) GPa. The structural changes observed in the ZIF-8-PTM system under pressure point to distinct molecular interactions within the pores. PMID:27575894

  8. Photochemical Conversion of Phenanthro[9,10-d]imidazoles into π-Expanded Heterocycles.

    Science.gov (United States)

    Skonieczny, Kamil; Gryko, Daniel T

    2015-06-01

    We discovered that phenanthro[9,10-d]imidazoles bearing a 2-halogenoaryl substituent at position 2 undergo swift photochemically driven direct arylation, leading to barely known phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridines. The reaction is high-yielding, and it does not require any sensitizer or base. The discovered process is tolerant of a variety of substituents present both at positions 1 and 2; i.e., strongly electron-donating and electron-withdrawing substituents are tolerated as well as various heterocyclic units. Steric hindrance does not affect this process. The evidence gathered here indicates that SRN1 mechanism is operating in this case with the formation of radical anion as a critical step, followed by heterolytic cleavage of a carbon-halogen bond. Also TfO groups were shown to undergo cyclization, which allows the use of salicylaldehydes in the construction of heterocyclic systems. Efficiency of this photochemically driven direct arylation has been demonstrated by the synthesis of two systems possessing 13 and 17 conjugated rings, respectively. Phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridines are blue-emitters, and they exhibit strong fluorescence in solution and in the solid state in direct contrast to their precursors. PMID:25938658

  9. Imidazole Alkaloids from the South China Sea Sponge Pericharax heteroraphis and Their Cytotoxic and Antiviral Activities

    Directory of Open Access Journals (Sweden)

    Kai-Kai Gong

    2016-01-01

    Full Text Available Marine sponges continue to serve as a rich source of alkaloids possessing interesting biological activities and often exhibiting unique structural frameworks. In the current study, chemical investigation on the marine sponge Pericharax heteroraphis collected from the South China Sea yielded one new imidazole alkaloid named naamidine J (1 along with four known ones (2–5. Their structures were established by extensive spectroscopic methods and comparison of their data with those of the related known compounds. All the isolates possessed a central 2-aminoimidazole ring, substituted by one or two functionalized benzyl groups in some combination of the C4 and C5 positions. The cytotoxicities against selected HL-60, HeLa, A549 and K562 tumor cell lines and anti-H1N1 (Influenza a virus (IAV activity for the isolates were evaluated. Compounds 1 and 2 exhibited cytotoxicities against the K562 cell line with IC50 values of 11.3 and 9.4 μM, respectively. Compound 5 exhibited weak anti-H1N1 (influenza a virus, IAV activity with an inhibition ratio of 33%.

  10. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation.

    Science.gov (United States)

    Janssen, Brian M G; van Ommeren, Sven P F I; Merkx, Maarten

    2015-06-04

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  11. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    Directory of Open Access Journals (Sweden)

    Brian M. G. Janssen

    2015-06-01

    Full Text Available The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR. Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  12. THERMODYNAMICS OF BINARY ALLOYS OF PHARMACEUTICAL ACTIVE IMIDAZOLE WITH O- PHENYLENEDIAMINE

    Directory of Open Access Journals (Sweden)

    Shekhar H.

    2012-04-01

    Full Text Available The present study describes the investigation of eutectic and non-eutectic alloys of imidazole (IM with o - Phenylenediamine (OPD. the solid-liquid equilibrium (SLE data determined by thaw melt method in the form of melting temperature with their corresponding composition construct the solid-liquid equilibrium phase diagram which suggests simple eutectic behaviour is followed by the binary system. The activity co-efficient model based on enthalpy of fusion was employed to calculate the excess partial and integral thermodynamic functions such as gE, hE and sE. These values help to predict the nature of molecular interaction, ordering and stability between the components. The spontaneity of mixing of eutectic and non eutectic alloys was discussed by the partial and integral mixing quantities ∆GM, ∆HM and ∆SM. Using Gibbs-Duhem equation the solution of partial molar heat of mixing, activity and activity coefficient of the component in the binary mix have been resolved.

  13. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    Science.gov (United States)

    González Palacios, Laura; Corral Arroyo, Pablo; Aregahegn, Kifle Z.; Steimer, Sarah S.; Bartels-Rausch, Thorsten; Nozière, Barbara; George, Christian; Ammann, Markus; Volkamer, Rainer

    2016-09-01

    The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA), including its light-absorbing product imidazole-2-carboxaldehyde (IC). IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake) via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT) experiments using films of IC and citric acid (CA), an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2) was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1) the [IC] × [CA] concentration product and (2) the photon actinic flux. Additionally, (3) a more complex function of relative humidity (25 % cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  14. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    Science.gov (United States)

    Lee, Min Wook; An, Seongpil; Song, Kyo Yong; Joshi, Bhavana N.; Jo, Hong Seok; Al-Deyab, Salem S.; Yoon, Sam S.; Yarin, Alexander L.

    2015-12-01

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.

  15. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Wook [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022 (United States); An, Seongpil; Song, Kyo Yong; Joshi, Bhavana N.; Jo, Hong Seok; Yoon, Sam S., E-mail: skyoon@korea.ac.kr, E-mail: ayarin@uic.edu [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Al-Deyab, Salem S. [Department of Chemistry, King Saud University, Riyadh 11451 (Saudi Arabia); Yarin, Alexander L., E-mail: skyoon@korea.ac.kr, E-mail: ayarin@uic.edu [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022 (United States); School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-12-28

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.

  16. Hydrothermal Synthesis of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Crystals with Controllable Size and Morphology

    KAUST Repository

    Lestari, Gabriella

    2012-05-01

    Zeolitic imidazolate frameworks (ZIFs) is a new class of metal-organic frameworks (MOFs) with zeolite-like properties such as permanent porosity, uniform pore size, and exceptional thermal and chemical stability. Until recently, ZIF materials have been mostly synthesized by solvothermal method. In this thesis, further analysis to tune the size and morphology of ZIF-8 is done upon our group’s recent success in preparing ZIF-8 crystals in pure aqueous solutions. Compositional parameters (molar ratio of 2-methylimidazole/Zn2+, type of zinc salt reagents, reagent concentrations, addition of surfactants) as well as process parameters (temperature and time) were systematically investigated. Upon characterizations of as-synthesized samples by X-ray powder diffraction, thermal gravimetric analysis, N2 adsorption, and field-emission scanning electron microscope, the results show that the particle size and morphology of ZIF-8 crystals are extremely sensitive to the compotional parameters of reagent concentration and addition of surfactants. The particle size and morphology of hydrothermally synthesized ZIF-8 crystals can be finely tuned; with the size ranging from 90 nm to 4 μm and the shape from truncated cubic to rhombic dodecahedron.

  17. Tunable CO 2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks

    KAUST Repository

    Thompson, Joshua A.

    2013-04-25

    The incorporation of accessible amine functionality in zeolitic imidazolate frameworks (ZIFs) is used to improve the adsorption selectivity for CO 2/CH4 gas separation applications. Two synthetic approaches are described in this work to introduce functionality into the ZIF: (i) mixed-linker ZIF synthesis with 2-aminobenzimidazole as a substitution linker and (ii) postsynthetic modification of a mixed-linker ZIF with ethylenediamine. Using 2-aminobenzimidazole, a linker with a primary amine functional group, substitution of the ZIF-8 linker during synthesis allows for control over the adsorption properties while maintaining the ZIF-8 structure with up to nearly 50% substitution in the mixed-linker ZIF framework, producing a material with tunable pore size and amine functionality. Alternatively, postsynthetic modification of a mixed-linker ZIF containing an aldehyde functional group produces a ZIF material with a primary amine without detrimental loss of micropore volume by controlling the amount of functional group sites for modification. Both approaches using mixed-linker ZIFs yield new materials that show improvement in adsorption selectivity for the CO 2/CH4 gas pair over ZIF-8 and commercially available adsorbents as well as an increase in the heat of adsorption for CO2 without significant changes to the crystal structure. These results indicate that tuning the surface properties of ZIFs by either mixed-linker synthesis and/or postsynthetic modification may generate new materials with improved gas separation properties, thereby providing a new method for tailoring metal-organic frameworks. © 2013 American Chemical Society.

  18. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis

    KAUST Repository

    Thompson, Joshua A.

    2012-05-22

    Zeolitic imidazolate frameworks (ZIFs) are a subclass of nanoporous metal-organic frameworks (MOFs) that exhibit zeolite-like structural topologies and have interesting molecular recognition properties, such as molecular sieving and gate-opening effects associated with their pore apertures. The synthesis and characterization of hybrid ZIFs with mixed linkers in the framework are described in this work, producing materials with properties distinctly different from the parent frameworks (ZIF-8, ZIF-90, and ZIF-7). NMR spectroscopy is used to assess the relative amounts of the different linkers included in the frameworks, whereas nitrogen physisorption shows the evolution of the effective pore size distribution in materials resulting from the framework hybridization. X-ray diffraction shows these hybrid materials to be crystalline. In the case of ZIF-8-90 hybrids, the cubic space group of the parent frameworks is continuously maintained, whereas in the case of the ZIF-7-8 hybrids there is a transition from a cubic to a rhombohedral space group. Nitrogen physisorption data reveal that the hybrid materials exhibit substantial changes in gate-opening phenomena, either occurring at continuously tunable partial pressures of nitrogen (ZIF-8-90 hybrids) or loss of gate-opening effects to yield more rigid frameworks (ZIF-7-8 hybrids). With this synthetic approach, significant alterations in MOF properties may be realized to suit a desired separation or catalytic process. © 2012 American Chemical Society.

  19. Allosteric Modulation of Beta1 Integrin Function Induces Lung Tissue Repair

    Directory of Open Access Journals (Sweden)

    Rehab AlJamal-Naylor

    2012-01-01

    Full Text Available The cellular cytoskeleton, adhesion receptors, extracellular matrix composition, and their spatial distribution are together fundamental in a cell's balanced mechanical sensing of its environment. We show that, in lung injury, extracellular matrix-integrin interactions are altered and this leads to signalling alteration and mechanical missensing. The missensing, secondary to matrix alteration and cell surface receptor alterations, leads to increased cellular stiffness, injury, and death. We have identified a monoclonal antibody against β1 integrin which caused matrix remodelling and enhancement of cell survival. The antibody acts as an allosteric dual agonist/antagonist modulator of β1 integrin. Intriguingly, this antibody reversed both functional and structural tissue injury in an animal model of degenerative disease in lung.

  20. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    Science.gov (United States)

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators.

  1. Allosteric inhibitors of plasma membrane Ca2+ pumps: Invention and applications of caloxins

    Institute of Scientific and Technical Information of China (English)

    Jyoti; Pande; M; Szewczyk; Ashok; K; Grover

    2011-01-01

    Plasma membrane Ca2+pumps(PMCA)play a major role in Ca2+homeostasis and signaling by extruding cellular Ca2+with high affinity.PMCA isoforms are encoded by four genes which are expressed differentially in various cell types in normal and disease states.Therefore, PMCA isoform selective inhibitors would aid in delineating their role in physiology and pathophysiology.We are testing the hypothesis that extracellular domains of PMCA can be used as allosteric targets to obtain a novel class of PMCA-specific inhibitors termed caloxins. This review presents the concepts behind the invention of caloxins and our progress in this area.A section is also devoted to the applications of caloxins in literature. We anticipate that isoform-selective caloxins will aid in understanding PMCA physiology in health and disease. With strategies to develop therapeutics from bioactive peptides,caloxins may become clinically useful in car diovascular diseases,neurological disorders,retinopathy,cancer and contraception.

  2. An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes.

    Directory of Open Access Journals (Sweden)

    Peng Lian

    Full Text Available Phospholamban functions as a regulator of Ca(2+ concentration of cardiac muscle cells by triggering the bioactivity of sarcoplasmic reticulum Ca(2+-ATPase. In order to understand its dynamic mechanism in the environment of bilayer surroundings, we performed long time-scale molecular dynamic simulations based on the high-resolution NMR structure of phospholamban pentamer. It was observed from the molecular dynamics trajectory analyses that the conformational transitions between the "bellflower" and "pinwheel" modes were detected for phospholamban. Particularly, the two modes became quite similar to each other after phospholamban was phosphorylated at Ser16. Based on these findings, an allosteric mechanism was proposed to elucidate the dynamic process of phospholamban interacting with Ca(2+-ATPase.

  3. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    Energy Technology Data Exchange (ETDEWEB)

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  4. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus;

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  5. Assessment of direct gating and allosteric modulatory effects of meprobamate in recombinant GABA(A) receptors.

    Science.gov (United States)

    Kumar, Manish; Dillon, Glenn H

    2016-03-15

    Meprobamate is a schedule IV anxiolytic and the primary metabolite of the muscle relaxant carisoprodol. Meprobamate modulates GABAA (γ-aminobutyric acid Type A) receptors, and has barbiturate-like activity. To gain insight into its actions, we have conducted a series of studies using recombinant GABAA receptors. In αxβzγ2 GABAA receptors (where x=1-6 and z=1-3), the ability to enhance GABA-mediated current was evident for all α subunit isoforms, with the largest effect observed in α5-expressing receptors. Direct gating was present with all α subunits, although attenuated in α3-expressing receptors. Allosteric and direct effects were comparable in α1β1γ2 and α1β2γ2 receptors, whereas allosteric effects were enhanced in α1β2 compared to α1β2γ2 receptors. In "extrasynaptic" (α1β3δ and α4β3δ) receptors, meprobamate enhanced EC20 and saturating GABA currents, and directly activated these receptors. The barbiturate antagonist bemegride attenuated direct effects of meprobamate. Whereas pentobarbital directly gated homomeric β3 receptors, meprobamate did not, and instead blocked the spontaneously open current present in these receptors. In wild type homomeric ρ1 receptors, pentobarbital and meprobamate were ineffective in direct gating; a mutation known to confer sensitivity to pentobarbital did not confer sensitivity to meprobamate. Our results provide insight into the actions of meprobamate and parent therapeutic agents such as carisoprodol. Whereas in general actions of meprobamate were comparable to those of carisoprodol, differential effects of meprobamate at some receptor subtypes suggest potential advantages of meprobamate may be exploited. A re-assessment of previously synthesized meprobamate-related carbamate molecules for myorelaxant and other therapeutic indications is warranted. PMID:26872987

  6. Dual-cavity basket promotes encapsulation in water in an allosteric fashion.

    Science.gov (United States)

    Chen, Shigui; Yamasaki, Makoto; Polen, Shane; Gallucci, Judith; Hadad, Christopher M; Badjić, Jovica D

    2015-09-30

    We prepared dual-cavity basket 1 to carry six (S)-alanine residues at the entrance of its two juxtaposed cavities (289 Å(3)). With the assistance of (1)H NMR spectroscopy and calorimetry, we found that 1 could trap a single molecule of 4 (K1 = 1.45 ± 0.40 × 10(4) M(-1), ITC), akin in size (241 Å(3)) and polar characteristics to nerve agent VX (289 Å(3)). The results of density functional theory calculations (DFT, M06-2X/6-31G*) and experiments ((1)H NMR spectroscopy) suggest that the negative homotropic allosterism arises from the guest forming C-H···π contacts with all three of the aromatic walls of the occupied basket's cavity. In response, the other cavity increases its size and turns rigid to prevent the formation of the ternary complex. A smaller guest 6 (180 Å(3)), akin in size and polar characteristics to soman (186 Å(3)), was also found to bind to dual-cavity 1, although giving both binary [1⊂6] and ternary [1⊂62] complexes (K1 = 7910 M(-1) and K2 = 2374 M(-1), (1)H NMR spectroscopy). In this case, the computational and experimental ((1)H NMR spectroscopy) results suggest that only two aromatic walls of the occupied basket's cavity form C-H···π contacts with the guest to render the singly occupied host flexible enough to undergo additional structural changes necessary for receiving another guest molecule. The structural adaptivity of dual-cavity baskets of type 1 is unique and important for designing multivalent hosts capable of effectively sequestering targeted guests in an allosteric manner to give stable supramolecular polymers. PMID:26348904

  7. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants.

    Science.gov (United States)

    Al-Horani, Rami A; Gailani, David; Desai, Umesh R

    2015-08-01

    Recent development of sulfated non-saccharide glycosaminoglycan mimetics, especially sulfated pentagalloyl glucopyranoside (SPGG), as potent inhibitors of factor XIa (FXIa) (J. Med. Chem. 2013; 56:867-878 and J. Med. Chem. 2014; 57:4805-4818) has led to a strong possibility of developing a new line of factor XIa-based anticoagulants. In fact, SPGG represents the first synthetic, small molecule inhibitor that appears to bind in site remote from the active site. Considering that allosteric inhibition of FXIa is a new mechanism for developing a distinct line of anticoagulants, we have studied SPGG's interaction with FXIa with a goal of evaluating its pre-clinical relevance. Comparative inhibition studies with several glycosaminoglycans revealed the importance of SPGG's non-saccharide backbone. SPGG did not affect the activity of plasma kallikrein, activated protein C and factor XIIIa suggesting that SPGG-based anticoagulation is unlikely to affect other pathways connected with coagulation factors. SPGG's effect on APTT of citrated human plasma was also not dependent on antithrombin or heparin cofactor II. Interestingly, SPGG's anticoagulant potential was diminished by serum albumin as well as factor XI, while it could be reversed by protamine or polybrene, which implies possible avenues for developing antidote strategy. Studies with FXIa mutants indicated that SPGG engages Lys529, Arg530 and Arg532, but not Arg250, Lys252, Lys253 and Lys255. Finally, SPGG competes with unfractionated heparin, but not with polyphosphates and/or glycoprotein Ibα, for binding to FXIa. These studies enhance understanding on the first allosteric inhibitor of FXIa and highlight its value as a promising anticoagulant. PMID:25935648

  8. Positive allosteric modulators to peptide GPCRs:a promising class of drugs

    Institute of Scientific and Technical Information of China (English)

    Tamas BARTFAI; Ming-wei WANG

    2013-01-01

    The task of finding selective and stable peptide receptor agonists with low molecular weight,desirable pharmacokinetic properties and penetrable to the blood-brain barrier has proven too difficult for many highly coveted drug targets,including receptors for endothelin,vasoactive intestinal peptide and galanin.These receptors and ligand-gated ion channels activated by structurally simple agonists such as glutamate,glycine and GABA present such a narrow chemical space that the design of subtype-selective molecules capable of distinguishing a dozen of glutamate and GABA receptor subtypes and possessing desirable pharmacokinetic properties has also been problematic.In contrast,the pharmaceutical industry demonstrates a remarkable success in developing 1,4-benzodiazepines,positive allosteric modulators (PMAs) of the GABAA receptor.They were synthesized over 50 years ago and discovered to have anxiolytic potential through an in vivo assay.As exemplified by Librium,Valium and Dormicum,these allosteric ligands of the receptor became the world's first blockbuster drugs.Through molecular manipulation over the past 2 decades,including mutations and knockouts of the endogenous ligands or their receptors,and by in-depth physiological and pharmacological studies,more peptide and glutamate receptors have become well-validated drug targets for which an agonist is sought.In such cases,the pursuit for PAMs has also intensified,and a working paradigm to identify drug candidates that are designed as PAMs has emerged.This review,which focuses on the general principles of finding PAMs of peptide receptors in the 21st century,describes the workflow and some of its resulting compounds such as PAMs of galanin receptor 2 that act as potent anticonvulsant agents.

  9. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    OpenAIRE

    Kjell Fuxe; Tarakanov, Alexander O.; Luigi F. Agnati; Alicia Rivera; Kathleen Van Craenenbroeck; Wilber Romero-Fernandez; Dasiel O. Borroto-Escuela

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on ...

  10. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    Science.gov (United States)

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  11. Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II and Cadmium(II Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-ylalkane Ligands

    Directory of Open Access Journals (Sweden)

    Marina Barsukova

    2016-10-01

    Full Text Available New metal-organic frameworks (MOFs based on zinc and cadmium ions, terephthalic acid, and flexible ligands 1,5-bis(imidazol-1-ylpentane or 1,6-bis(imidazol-1-ylhexane were prepared and characterized by X-ray diffraction, thermorgavimetric analysis and IR spectroscopy. The imidazolyl ligands were prepared by a new robust procedure involving the reaction between imidazole and 1,5-dibromopentane or 1,6-dibromohexane in a superbasic medium (KOH in DMSO. MOFs based on 1,5-bis(imidazol-1-ylpentane had diamond topology (dia and are triply interpenetrated. Ligands with longer spacer 1,6-bis(imidazol-1-ylhexane, terephthalate ions and zinc(II ions formed five-fold interpenetrated metal-organic framework also with dia topology, while cadmium(II ions with the same ligands formed eight-connected uninodal net with a very rare self-penetrated topological type ilc and a point symbol 424.5.63. The influence of the chemical composition of MOFs on their photoluminescent properties is investigated and discussed in detail.

  12. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  13. Bis[4,5-dimethyl-2-(2-pyridyl-1H-imidazole-κ2N2,N3](1H-imidazole-κN3copper(II bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Zhengping Chen

    2008-07-01

    Full Text Available In the title complex, [Cu(C3H4N2(C10H11N32](ClO42, the CuII cation has a distorted trigonal-bipyramidal geometry defined by a CuN2N′2N′′ donor set. The imidazole ligand is disordered over two orientations of equal occupancy. Two of the perchlorate ion sites are located on a twofold rotation axis, and one of is disordered over two sites of equal occupancy. In the crystal structure there is a two-dimensional infinite network of hydrogen-bonded molecules parallel to the ab plane.

  14. Allosteric-Activation Mechanism of Bovine Chymosin Revealed by Bias-Exchange Metadynamics and Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Ansari, Samiul M; Coletta, Andrea; Skeby, Katrine Kirkeby;

    2016-01-01

    -inhibited conformation in which the side chain of Tyr77 occludes the binding site. On the basis of kinetic, mutagenesis and crystallographic data, it has been widely reported that a HPHPH sequence in the P8-P4 residues of the natural substrate κ-casein acts as the allosteric activator, but the mechanism by which...... to vacate a pocket that may then be occupied by the side chain of Tyr77. The free energy surface for the self-inhibited to open transition is significantly altered by the presence of the HPHPH sequence of κ-casein....... and to compute the free energy surface for the process. The simulations reveal that allosteric activation is initiated by interactions between the HPHPH sequence of κ-casein and a small α-helical region of chymosin (residues 112-116). A small conformational change in the α-helix causes the side chain of Phe114...

  15. Identification of an allosteric pocket on human hsp70 reveals a mode of inhibition of this therapeutically important protein.

    Science.gov (United States)

    Rodina, Anna; Patel, Pallav D; Kang, Yanlong; Patel, Yogita; Baaklini, Imad; Wong, Michael J H; Taldone, Tony; Yan, Pengrong; Yang, Chenghua; Maharaj, Ronnie; Gozman, Alexander; Patel, Maulik R; Patel, Hardik J; Chirico, William; Erdjument-Bromage, Hediye; Talele, Tanaji T; Young, Jason C; Chiosis, Gabriela

    2013-12-19

    Hsp70s are important cancer chaperones that act upstream of Hsp90 and exhibit independent anti-apoptotic activities. To develop chemical tools for the study of human Hsp70, we developed a homology model that unveils a previously unknown allosteric site located in the nucleotide binding domain of Hsp70. Combining structure-based design and phenotypic testing, we discovered a previously unknown inhibitor of this site, YK5. In cancer cells, this compound is a potent and selective binder of the cytosolic but not the organellar human Hsp70s and has biological activity partly by interfering with the formation of active oncogenic Hsp70/Hsp90/client protein complexes. YK5 is a small molecule inhibitor rationally designed to interact with an allosteric pocket of Hsp70 and represents a previously unknown chemical tool to investigate cellular mechanisms associated with Hsp70. PMID:24239008

  16. Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations

    Energy Technology Data Exchange (ETDEWEB)

    Yaghi, Omar M

    2012-09-17

    Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) have been investigated for the realization as separation media with high selectivity. These structures are held together with strong bonds, making them architecturally, chemically, and thermally stable. Therefore, employing well designed building units, it is possible to discover promising materials for gas and vapor separation. This grant was focused on the study of MOFs and ZIFs with these specific objectives: (i) to develop a strategy for producing MOFs and ZIFs that combine high surface areas with active sites for their use in gas adsorption and separation of small organic compounds, (ii) to introduce active sites in the framework by a post-synthetic modification and metalation of MOFs and ZIFs, and (iii) to design and synthesize MOFs with extremely high surface areas and large pore volumes to accommodate large amounts of guest molecules. By the systematic study, this effort demonstrated how to introduce active functional groups in the frameworks, and this is also the origin of a new strategy, which is termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. One of the solutions to overcome this challenge is an isoreticular expansion of a MOF's structure. With triangular organic linker and square building units, we demonstrated that MOF-399 has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and it has the highest porosity (94%) and lowest density (0.126 g cm-3) of any MOF reported to date. MOFs are not just low density materials; the guest-free form of MOF-210 demonstrates an ultrahigh porosity, whose BET surface area was estimated to be 6240 m2 g-1 by N2 adsorption measurements.

  17. Impact of mechanical deformation on guest diffusion in zeolitic imidazolate frameworks.

    Science.gov (United States)

    Zheng, Bin; Wang, Lian Li; Hui, Jia Chen; Du, Lifei; Du, Huiling; Zhu, Ming

    2016-03-14

    The effect of the mechanical deformation of metal-organic frameworks on guest diffusion was investigated by employing molecular dynamics simulations. Two basic deformation modes, uniaxial tensile and shear deformation, were considered. The computed shear modulus of the zeolitic imidazolate framework-8 (ZIF-8) model system was much lower than the Young's modulus, which is in agreement with the experimental results. The diffusion rate in ZIF-8 was calculated for two types of guest molecules: the nonpolar H2 and the quadrupolar CO2. Under tensile strain, the diffusion of both H2 and CO2 was found to be enhanced, whereas the diffusion rates did not change significantly under shear loading. The evolution of the internal structure of ZIF-8 was studied to determine its effect on guest diffusion. The organic-inorganic connection was identified as the source of the framework's flexibility, and therefore we focused on the N-Zn bond and the N-Zn-N angle. Under stretching deformation, the N-Zn bond is elongated and the N-Zn-N angle remains constant. Thus, the length of the C2-C2 long bond, determining the size of the 6-membered ring (6MR) gate, increases and the gate is opened, allowing for faster guest diffusion. Under shear deformation, the N-Zn bond length changes very little and the N-Zn-N angle is distorted. This results in the occurrence of three peaks in the C2-C2 bond length distribution. Although the 6MR gate is distorted, the variation of its average size is small, resulting in a very small effect on the guest diffusivity. In addition, we found that the fluctuation of the ZIF-8 cell can enhance the impact of the mechanical deformation of the host on guest diffusion.

  18. Solution-reaction Calorimetric Study of Coordination Compounds of Rare Earth Perchlorates with Alanine and Imidazole

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Yan-Ru(赵艳茹); HOU, An-Xin(侯安新); DONG, Jia-Xin(董家新); ZHAO, Shun-Sheng(赵顺省); LIU, Yi(刘义); QU, Song-Sheng(屈松生)

    2004-01-01

    Two coordination compounds of rare earth perchlorates with alanine and imidazole, [RE(Ala)n(Im)(H2O)](ClO4)3(s) (RE=La, n=3; RE=Nd, n=2), have been prepared and characterized. The standard molar enthalpies of reaction for the following two reactions, LaCL·7H2O(s)+3Ala(s)+Im(s)+3NaClO4(s)=[La(Ala).(Im)(H2O)]-(ClO4)3(s)+3NaCl(s)+6H2O(I)(1)and NdCl3·6H2O(s)+2Ala(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Nd(Ala)2(Im)(H2O)]-(ClO4)3(s)+3NaCl(s)+5H2O(l) (2), were determined by solution-reaction calorimetry, at T=298.15 K, as 36.168 ±0.642kJ·mol-1 and 48.590±0.934kJ·mol-1 respectively. From the results and other auxiliary quantities, the standard molar enthalpies of formation of [La(Ala)3(Im)(H2O)](ClO4)3(s) and [Nd(Ala)2(Im)(H2O)] (ClO4)3(s) were derived,△fH(-)m{[La(Ala).(Im)(H2O)](ClO4)3,s}=(-2984.8±1.0)kJ·mol-1 and △fH(-)m{[Nd(Ala).(Im)(H2O)]-(ClO4)3,s}=(-2387.8±0.8)kJ·mol-1, respectively.

  19. Coenzyme B12 model studies: An HSAB approach to the equilibria and kinetics of axial ligation of alkyl(aquo)-cobaloximes by imidazole and cyanide

    Indian Academy of Sciences (India)

    Vaddeboina Sridhar; S Satyanarayana

    2000-12-01

    Kinetics and equilibria of the axial ligation of alkyl(aquo)cobaloximes by imidazole and cyanide have been measured spectrophotometrically in aqueous solutions of ionic strength 1.0 M at 25°C as a function of H. Comparison of IMD and CN- of CH3, C2H5 and BrCH2 cobaloximes indicates that their stability is in the order BrCH2 > CH3 > C2H5. As the electron-withdrawing capacity of the alkyl group trans to water increases, the electron density of the cobalt(III) decreases and thus it becomes a stronger Lewis acid and binds more strongly to imidazole and cyanide. The association and dissociation rate constants are better correlated to the relative softness of the ligand showing that cyanide binds 30 times faster than imidazole. These complexes are isolated and are characterized by IR and 1H NMR spectra.

  20. 7-[4-(4-Fluorophenyl-2-methylsulfanyl-1H-imidazol-5-yl]tetrazolo[1,5-a]pyridine

    Directory of Open Access Journals (Sweden)

    Roland Selig

    2010-02-01

    Full Text Available The crystal structure of the title compound, C15H11FN6S, forms a three-dimensional network stabilized by π–π interactions between the imidazole core and the tetrazole ring of the tetrazolopyridineunit; the centroid–centroid distance is 3.627 (1 Å. The crystal structure also displays bifurcated N—H...(N,N hydrogen bonding and C—H...F interactions. The former involve the NH H atom of the imidazole core and the tetrazolopyridine N atoms, while the latter involve a methyl H atom, of the methylsulfanyl group, and the 4-fluorophenyl F atom. In the molecule, the imidazole ring makes dihedral angles of 40.45 (9 and 17.09 (8°, respectively, with the 4-fluorophenyl ring and the tetrazolopyridine ring mean plane.

  1. Synthesis and spectroscopic characterization of Y-shaped fluorophores with an imidazole core containing crown ether moieties

    Energy Technology Data Exchange (ETDEWEB)

    Doğru, Ümit; Öztürk Ürüt, Gülsiye, E-mail: gulsiye.ozturk@deu.edu.tr; Bayramin, Dilek

    2015-07-15

    In this study three new Y-shaped fluorophores, 4,5-(2,2'-diphenyl)vinyl-{2-[(1,4,7,10-tetraoxa-13-azacyclopentadecyl) phenyl]}-1H-imidazole (1a), 4,5-{[2,2'-bis(4-methoxyphenyl)vinyl]-[2-(1,4,7,10-tetraoxa-13- azacyclopentadecyl)-phenyl]}-1H-imidazole (1b) and 4,5-(2,2'-diphenyl)vinyl-{2-(1,4,7,10,13-benzopentaoxacyclopentadecyl)} -1H-imidazole (1c) were synthesized. 1,6-Diphenylhexa-1,5-diene-3,4-dione (2a) and 1,6-bis(4-methoxyphenyl)hexa-1,5-diene-3,4-dione (2b) were synthesized as preliminary fluorophores and then reacted with 4-formylbenzo-aza-15-crown-5 (3a) and 4-formylbenzo-15-crown-5 (3b) to obtain the three Y-shaped fluorophores 1a, 1b and 1c. 4-formylbenzo-aza-15-crown-5 and 4-formylbenzo-15-crown-5 intermediates were synthesized with Vilsmeier–Haack reaction. The photophysical properties such as maximum absorption wavelengths, maximum emission wavelengths, Stokes' shifts, singlet energies, fluorescence quantum yields and photostabilities of the compounds were investigated by measuring absorption and emission spectra in a series of solvents of varying polarities of toluene (TOL), dichloromethane (DCM), tetrahydrofuran (THF), ethyl acetate (EA), acetonitrile (ACN), and N,N-dimethylformamide (DMF). The three compounds 1a, 1b and 1c exhibited emission maxima in the 412–677 nm range. All the derivatives synthesized exhibited excellent photostability in all the solvents tested. - Highlights: • Three new Y-shaped fluorophores were synthesized for the first time. • Their absorption and emission properties were investigated. • All the derivatives synthesized exhibited excellent photostability.

  2. Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known NMDA Receptor Allosteric Modulators

    OpenAIRE

    Irvine, Mark W.; Fang, Guangyu; Eaves, Richard; Mayo-Martin, Maria B.; Burnell, Erica S.; Costa, Blaise M.; Culley, Georgia R.; Volianskis, Arturas; Collingridge, Graham L; Monaghan, Daniel T.; Jane, David E.

    2015-01-01

    9-Substituted phenanthrene-3-carboxylic acids have been reported to have allosteric modulatory activity at the NMDA receptor. This receptor is activated by the excitatory neurotransmitter L-glutamate and has been implicated in a range of neurological disorders such as schizophrenia, epilepsy and chronic pain and neurodegenerative disorders such as Alzheimer’s disease. Herein, the convenient synthesis of a wide range of novel 3,9-disubstituted phenanthrene derivatives starting from a few commo...

  3. 5-(N, N-Hexamethylene) amiloride is a GABA-A ρ1 receptor positive allosteric modulator.

    Science.gov (United States)

    Snell, Heather D; Gonzales, Eric B

    2016-11-01

    Guanidine compounds act as ion channel modulators. In the case of Cys-loop receptors, the guanidine compound amiloride antagonized the heteromeric GABA-A, glycine, and nicotinic acetylcholine receptors. However, amiloride exhibits characteristics consistent with a positive allosteric modulator for the human GABA-A (hGABA-A) ρ1 receptor. Site-directed mutagenesis revealed that the positive allosteric modulation was influenced by the GABA-A ρ1 second transmembrane domain 15' position, a site implicated in ligand allosteric modulation of Cys-loop receptors. There are a variety of amiloride derivatives that provide opportunities to assess the significance of amiloride functional groups (e.g., the guanidine group, the pyrazine ring, etc.) in the modulation of the GABA-A ρ1 receptor activity. We utilized 3 amiloride derivatives (benzamil, phenamil, and 5-(N, N-Hexamethylene) amiloride) to assess the contribution of these groups toward the potentiation of the GABA-A ρ1 receptor. Benzamil and phenamil failed to potentiate on the wild type GABA-A ρ1 GABA-mediated current while HMA demonstrated efficacy only at the highest concentration studied. The hGABA-A ρ1 (I15'N) mutant receptor activity was potentiated by lower HMA concentrations compared to the wild type receptor. Our findings suggest that an exposed guanidine group on amiloride and amiloride derivatives is critical for modulating the GABA-A ρ1 receptor. The present study provides a conceptual framework for predicting which amiloride derivatives will demonstrate positive allosteric modulation of the GABA-A ρ1 receptor.

  4. The positive allosteric GABAB receptor modulator rac-BHFF enhances baclofen-mediated analgesia in neuropathic mice.

    Science.gov (United States)

    Zemoura, Khaled; Ralvenius, William T; Malherbe, Pari; Benke, Dietmar

    2016-09-01

    Neuropathic pain is associated with impaired inhibitory control of spinal dorsal horn neurons, which are involved in processing pain signals. The metabotropic GABAB receptor is an important component of the inhibitory system and is highly expressed in primary nociceptors and intrinsic dorsal horn neurons to control their excitability. Activation of GABAB receptors with the orthosteric agonist baclofen effectively reliefs neuropathic pain but is associated with severe side effects that prevent its widespread application. The recently developed positive allosteric GABAB receptor modulators lack most of these side effects and are therefore promising drugs for the treatment of pain. Here we tested the high affinity positive allosteric modulator rac-BHFF for its ability to relief neuropathic pain induced by chronic constriction of the sciatic nerve in mice. rac-BHFF significantly increased the paw withdrawal threshold to mechanical stimulation in healthy mice, indicating an endogenous GABABergic tone regulating the sensitivity to mechanical stimuli. Surprisingly, rac-BHFF displayed no analgesic activity in neuropathic mice although GABAB receptor expression was not affected in the dorsal horn as shown by quantitative receptor autoradiography. However, activation of spinal GABAB receptors by intrathecal injection of baclofen reduced hyperalgesia and its analgesic effect was considerably potentiated by co-application of rac-BHFF. These results indicate that under conditions of neuropathic pain the GABAergic tone is too low to provide a basis for allosteric modulation of GABAB receptors. However, allosteric modulators would be well suited as an add-on to reduce the dose of baclofen required to achieve analgesia. PMID:27108932

  5. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars;

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the ligand-binding domain and stabilize the agonist-bound conformation...... by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in development of drugs against cognitive disorders....

  6. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  7. 1-[(2S-1-Chloro-3-phenylpropan-2-yl]-2,4,5-triphenyl-1H-imidazole

    Directory of Open Access Journals (Sweden)

    Yongmei Xiao

    2012-04-01

    Full Text Available In the title compound, C30H25ClN2, the chiral center maintains the S configuration of the stating l-phenylalaninol. The two phenyl groups closest to the substituted N atom adopt an almost perpendicular orientation relative to the central imidazole ring, with dihedral angles of 88.9 (4 and 84.7 (3°. The third phenyl group is nearly coplanar with it, making a dihedral angle of 11.0 (5°.

  8. A time-resolved study of the multiphase chemistry of excited carbonyls: Imidazole-2-carboxaldehyde and halides

    OpenAIRE

    Tinel, Liselotte; Dumas, Stéphane; George, Christian

    2014-01-01

    CARE+LTI:SDU:CGO International audience Imidazole-2-carboxaldehyde (IC) reactivity in the presence of halide anions (Cl-, Br-, I-) has been studied by laser flash photolysis in aqueous solution at room temperature. The absorption spectrum of the triplet state of IC has been measured with a maximum absorption at 330 nm and a weaker absorption band around 650 nm. Iodide anions proved to be efficient quenchers of the triplet state IC, with a rate coefficient kg of (5.33 +/- 0.25) x 10(9) M...

  9. Synthesis, spectral characterization and redox properties of iron (II) complexes of 1-alkyl-2-(arylazo)imidazole

    Indian Academy of Sciences (India)

    U S Ray; D Banerjee; C Sinha

    2003-06-01

    Iron (II) complexes of 1-alkyl-2-(arylazo)imidazoles (-R-C6H4-N=N-C3H2NN-1-R', R = H (a), Me (b), Cl (c) and R' = Me (1/3), Et (2/4) have been synthesized and formulated as tris-chelates Fe(RaaiR')$^{2+}_{3}$. They are characterized by microanalytical, conductance, UV-Vis, IR, magnetic (polycrystalline state) data. The complexes are low spin in character, $t^{6}_{2g}$ (Fe(II)) configurations.

  10. Zeolitic polyoxometalates metal organic frameworks (Z-POMOF) with imidazole ligands and epsilon-Keggin ions as building blocks; computational evaluation of hypothetical polymorphs and a synthesis approach.

    Science.gov (United States)

    Rodriguez Albelo, L Marleny; Ruiz-Salvador, A Rabdel; Lewis, Dewi W; Gómez, Ariel; Mialane, Pierre; Marrot, Jérome; Dolbecq, Anne; Sampieri, Alvaro; Mellot-Draznieks, Caroline

    2010-08-14

    We investigate here a new family of zeolitic Metal Organic Frameworks (MOFs) based on imidazole (im) as the ligand and epsilon-type Keggin PolyOxoMetalates (POMs) as building units. The POM used in this study is the epsilon-{PMo(12)O(40)} Keggin isomer capped by four Zn(ii) ions (noted epsilon-Zn) in tetrahedral coordination. We describe here our methods to first construct and then evaluate the stability of hypothetical 3-D POMOFs possessing a tetrahedral network, typified by dense silica polymorphs and zeotypes and referred here to as Z-POMOFs. We use the analogy between the connectivity of silicon ion in dense minerals or zeolites and the epsilon-Zn, using imidazolate ligands to mimic the role of oxygen atoms in zeolites. Handling the epsilon-Keggin and imidazole as the constitutive building-blocks, a selection of 40 polymorphs were constructed and their relative stabilities computed. Among these Z-POMOFs, the cristobalite-like and zni-structure were identified as the most stable candidates. In parallel, we have attempted to synthesize Z-POMOF structures with epsilon-Zn POMs, synthesized in situ under hydrothermal conditions, and imidazole ligands. We present our first experimental result, the extended material [NBu(4)][PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)(im)(Him)], named epsilon(im)(2). The structure of the hybrid framework is built by the connection of dimerized epsilon-Zn POMs to imidazole ligands in two directions. The obtaining of the first POMOF based on imidazole ligand is an encouraging step towards the synthesis of a new family of POMOFs.

  11. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    Science.gov (United States)

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.

  12. An allosteric modulator of HIV-1 protease shows equipotent inhibition of wild-type and drug-resistant proteases.

    Science.gov (United States)

    Ung, Peter M-U; Dunbar, James B; Gestwicki, Jason E; Carlson, Heather A

    2014-08-14

    NMR and MD simulations have demonstrated that the flaps of HIV-1 protease (HIV-1p) adopt a range of conformations that are coupled with its enzymatic activity. Previously, a model was created for an allosteric site located between the flap and the core of HIV-1p, called the Eye site (Biopolymers 2008, 89, 643-652). Here, results from our first study were combined with a ligand-based, lead-hopping method to identify a novel compound (NIT). NIT inhibits HIV-1p, independent of the presence of an active-site inhibitor such as pepstatin A. Assays showed that NIT acts on an allosteric site other than the dimerization interface. MD simulations of the ligand-protein complex show that NIT stably binds in the Eye site and restricts the flaps. That bound state of NIT is consistent with a crystal structure of similar fragments bound in the Eye site (Chem. Biol. Drug Des. 2010, 75, 257-268). Most importantly, NIT is equally potent against wild-type and a multidrug-resistant mutant of HIV-1p, which highlights the promise of allosteric inhibitors circumventing existing clinical resistance. PMID:25062388

  13. Novel small-molecule AMP-activated protein kinase allosteric activator with beneficial effects in db/db mice.

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    Full Text Available AMP-activated protein kinase (AMPK is an energy sensor of metabolism that is an attractive therapeutic target for type 2 diabetes mellitus and metabolic syndrome. Using a homogeneous scintillation proximity assay (SPA, we identified a new small-molecule AMPK activator, ZLN024, which allosterically stimulated active AMPK heterotrimers and the inactive α1 subunit truncations α1 (1-394 and α1 (1-335 but not α1 (1-312. AMPK activation by ZLN024 requires the pre-phosphorylation of Thr-172 by at least one upstream kinase and protects AMPK Thr-172 against dephosphorylation by PP2Cα. ZLN024 activated AMPK in L6 myotubes and stimulated glucose uptake and fatty acid oxidation without increasing the ADP/ATP ratio. ZLN024 also activated AMPK in primary hepatocytes, decreased fatty acid synthesis and glucose output. Treatment of db/db mice with 15 mg/kg/day ZLN024 improved glucose tolerance; liver tissue weight, triacylglycerol and the total cholesterol content were decreased. The hepatic transcriptional level of G6Pase, FAS and mtGPAT were reduced. The transcription of genes involved in fatty acid oxidation and the mitochondrial biogenesis of muscle tissue were elevated. The ACC phosphorylation was increased in muscle and liver. This study provides a novel allosteric AMPK activator for functional study in vitro and in vivo and demonstrates that AMPK allosteric activators could be a promising therapeutic approach for type 2 diabetes mellitus and metabolic syndrome.

  14. Comparative Corrosion Inhibition Effect of Imidazole Compounds and of Trichodesma indicum (Linn R. Br. on C38 Steel in 1 M HCl Medium

    Directory of Open Access Journals (Sweden)

    S. Alarmal Mangai

    2013-01-01

    Full Text Available Corrosion inhibition effect of alkaloid extract part of the plant Trichodesma indicum (Linn R. Br. of Boraginaceae family was studied and compared with that of imidazole compounds (imidazole, benzimidazole on C38 steel in 1 M HCl solution by weight loss method at various temperatures. The study showed that the alkaloid part of the plant extract acts as a better inhibitor in comparison to the selected organic inhibitors. The maximum inhibition efficiency of the extract of Trichodesma indicum R. Br. was found to be 94.5% at a concentration of 75 mg/L at 30°C.

  15. Efficient, green and solvent-free synthesis of tetrasubstituted imidazoles using SbCl3/SiO2 as heterogeneous catalyst

    Indian Academy of Sciences (India)

    Javad Safari; Soheila Gandomi-Ravandi; Simin Naseh

    2013-07-01

    Antimony trichloride absorbed on silica gel (SbCl3/SiO2) efficiently catalyses the four-component cyclocondensation of 1,2-diketone, aldehyde, ammonium acetate, and primary amine under solvent-free conditions to afford the corresponding tetrasubstituted imidazoles in high yields. The main merit of this study is introducing a novel catalyst to successful synthesis of a wide range of 1,2,4,5-tetrasubstituted imidazoles for the first time. The proposed method involves features such as simplicity, generality, fairly good efficiency, and reusability of the catalyst.

  16. The energetics of allosteric regulation of ADP release from myosin heads.

    Science.gov (United States)

    Jackson, Del R; Baker, Josh E

    2009-06-28

    Myosin molecules are involved in a wide range of transport and contractile activities in cells. A single myosin head functions through its ATPase reaction as a force generator and as a mechanosensor, and when two or more myosin heads work together in moving along an actin filament, the interplay between these mechanisms contributes to collective myosin behaviors. For example, the interplay between force-generating and force-sensing mechanisms coordinates the two heads of a myosin V molecule in its hand-over-hand processive stepping along an actin filament. In muscle, it contributes to the Fenn effect and smooth muscle latch. In both examples, a key force-sensing mechanism is the regulation of ADP release via interhead forces that are generated upon actin-myosin binding. Here we present a model describing the mechanism of allosteric regulation of ADP release from myosin heads as a change, DeltaDeltaG(-D), in the standard free energy for ADP release that results from the work, Deltamicro(mech), performed by that myosin head upon ADP release, or DeltaDeltaG(-D) = Deltamicro(mech). We show that this model is consistent with previous measurements for strain-dependent kinetics of ADP release in both myosin V and muscle myosin II. The model makes explicit the energetic cost of accelerating ADP release, showing that acceleration of ADP release during myosin V processivity requires approximately 4 kT of energy whereas the energetic cost for accelerating ADP release in a myosin II-based actin motility assay is only approximately 0.4 kT. The model also predicts that the acceleration of ADP release involves a dissipation of interhead forces. To test this prediction, we use an in vitro motility assay to show that the acceleration of ADP release from both smooth and skeletal muscle myosin II correlates with a decrease in interhead force. Our analyses provide clear energetic constraints for models of the allosteric regulation of ADP release and provide novel, testable insights

  17. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins.

    Science.gov (United States)

    Giladi, Moshe; Tal, Inbal; Khananshvili, Daniel

    2016-01-01

    Na(+)/Ca(2+) exchanger (NCX) proteins extrude Ca(2+) from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na(+) and 1Ca(2+), which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca(2+)-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca(2+)-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca(2+). The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca(2+)-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca(2+) (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium (45)Ca(2+) binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca(2+) binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca(2+) binding to CBD1

  18. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism

    Directory of Open Access Journals (Sweden)

    Lebovitz Evan E

    2012-09-01

    Full Text Available Abstract Background The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. Results Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing

  19. Biochemical, Biomedical and Metabolic Aspects of Imidazole-Containing Dipeptides with the Inherent Complexity to Neurodegenerative Diseases and Various States of Mental Well-Being: A Challenging Correction and Neurotherapeutic Pharmaceutical Biotechnology for Treating Cognitive Deficits, Depression and Intellectual Disabilities.

    Science.gov (United States)

    Babizhayev, Mark A

    2014-01-01

    The activities of carnosine (β-alanyl-L-histidine), carnosine imidazole containing dipeptide based derivatives (N-acetylcarnosine, carcinine, homocarnosine) and a carnosine degrading enzyme (serum carnosinase (EC 3.4.13.20); [human tissue carnosinase (EC 3.4.13.3), CN2 (CNDP2)] ) activities have been discrepantly linked to neuropathophysiological processes. Approximately 82% of the U.S. population will experience normal age-related cognitive decline, as compared to the precipitous losses that are associated with dementing disorders. Interventions designed to promote health and function through everyday activity and specific pharmaco-nutritional therapeutic treatments may enhance brain plasticity in key regions that support executive function. Cognitive health is multidimensional cascade of functions. It encompasses an array of functions, including general intellectual ability, memory, language, allowing a person to interact effectively and appropriately with the environment. The risk factors for reduced physical and cognitive functions in elderly people, as identified in longitudinal studies, relate to comorbidities, critical care situations, physical and psychosocial health, environmental conditions, social circumstances, nutrition, and lifestyle. Depression and dementia are both common in older adults; cognitive functioning declines slightly with normal aging; depression itself can be associated with cognitive impairment and dementia. In this study the role of carnosine and related neuron specific naturally-occurring endogenous imidazole-containing dipeptide pharmacoperones (N-acetylcarnosine, carcinine) is revealed presently in a surprisingly large amounts in long-lived human tissues to correct conformational abnormalities leading to distinct neurodegeneration and age-related disease states, treating cognitive deficits, depression and intellectual disabilities. Carnosine serves as a physiological buffering agent and a metal ion (e.g., zinc and copper) chelator

  20. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery

    Directory of Open Access Journals (Sweden)

    Daura Xavier

    2010-03-01

    Full Text Available Abstract Background With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in the search for new types of targets and strategies to drug development. Given that allostery represents one of the most common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this direction is to identify and characterize putative effector sites that may be present in already available structural data. Results We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating publicly available information on protein sequences, structures and active sites for more than a thousand protein families. By identifying common pockets across different structures of the same protein family we developed a method to measure the pocket's structural conservation. The method was first parameterized using known active sites. We characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that pockets with putative functional and effector characteristics are widespread across

  1. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  2. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  3. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  4. Interactions between Bioactive Diperoxovanadate Complexes and Imidazole:Insights into Their Solution Structures by NMR and ESI-MS

    Institute of Scientific and Technical Information of China (English)

    于贤勇; 蔡淑惠; 陈忠

    2004-01-01

    The interactions between four high bioactive diperoxovanadate complexesKn[OV(O2)2L]·mH2O (n = 1 ~3, m = 1~5, L = oxalate (abbr. oxa), picolinate (abbr. pic), bipyridine (abbr. bipy) and 1,10-phenanthroline (abbr. phen); their corresponding complexes abbreviated as bpV(oxa), bpV(pic), bpV(bipy) and bpV(phen), respectively) and imidazole (abbr. imi) in solution were studied by several NMR techniques: multinuclear (1H, 13C and 51V) and variable temperature 51V NMR. Competitive coordination interactions were observed and the order of the interaction strength of the four complexes with imidazole is as follows: bpV(oxa) > bpV(pic) > bpV(bipy) >bpV(phen), which is deeply affected by the identity of the ligands and has the same order as their inhibition effect toward bovine heart phosphotyrosyl protein phosphatase. The species [OV(O2)2(imi)]- was formedin all cases. Both of the NMR data and equilibrium constants of the interaction systems were reported. The experimental results indicate that the species of bpV(oxa)and [OV(O2)2(imi)]- are six-coordinated, while bpV(pic), bpV(bipy) and bpV(phen) are sevencoordinated in solution. ESI-MS results support the conclusions obtained by NMR.

  5. Synthesis, cytotoxicity assessment, and interaction and docking of novel palladium(II) complexes of imidazole derivatives with human serum albumin.

    Science.gov (United States)

    Eslami Moghadam, Mahboube; Divsalar, Adeleh; Abolhosseini Shahrnoy, Abdolghafar; Saboury, Ali Akbar

    2016-08-01

    Imidazole analogs are the agents that attract both bioinorganic chemist and drug designer. Numerous methods have been proposed for synthesis of imidazole derivatives. In this study, a series of heterocyclic system with p-conjugated system such as 2-aryl-imidazo[4,5-f][1,10]phenanthroline analogs were synthesized. Then, three new palladium(II) complexes containing 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP) ligands were synthesized. The structures of the compounds, [Pd(Phen)(TIP)](NO3)2, [Pd(Phen)(FIP)](NO3)2, and [Pd(FIP)2]Cl were determined by spectroscopic methods and elemental analysis. Biological activity of the complexes synthesized was assessed against chronic myelogenous leukemia cell line, K562. Also, the interactions of human serum albumin with complexes were investigated using isothermal titration in the Tris buffer, pH 7.4. According to the results obtained, it was found that there is a set of six binding sites for these complexes on HSA with positive cooperativity in the binding process. Docking technique was also applied to confirm the experimental results. The results showed that smaller complexes have higher interaction affinity. PMID:26338667

  6. Synthesis and Crystal Structure of a New Cadmium(Ⅱ) Supramolecular Network Containing Chelating Imidazole-4-carboxylate Ligand

    Institute of Scientific and Technical Information of China (English)

    YIN Wei-Ping; LI Yan-Ge; MEI Xue-Lan; YAO Jing-Cai

    2009-01-01

    A new complex, [Cd(Himc)2(H2O)2] 1, obtained from imidazole-4-carboxylatic acid (H2imc) and Cd(ClO4)2·6H2O, has been synthesized. The crystal structure was determined by X-ray diffraction. The title compound crystallizes in the orthorhombic system, space group Pccn, with a = 7.4886(11), b = 11.9667(18), c = 13.550(2) A, V= 1214.3(3) A3, Z = 4, Mr= 370.60, Dc = 2.027 mg/m3, F(000) = 728,μ (MoKα) = 1.829 mm-1, the final R = 0.0243 and wR = 0.0591 for 1150 unique reflections with I > 2σ(I). The cadmium(Ⅱ) center in the title complex is coordinated with two oxygen and two nitrogen atoms from two bidentate chelated imidazole-4-carboxlate ligands together with two water molecules, giving a distorted octahedral coordination geometry. A one-dimensional hydrogen bonding chain is formed via intermolecular O--H…O hydrogen bonds, and such adjacent chains are further stacked through intermolecular π-π and hydrogen bonding interactions to form a 3D supramolecular framework. Complex 1 exhibits a fluorescent emission band at 290 nm (λex = 236 nm) in the solid state.

  7. Ultraviolet spectrophotometric characterization of copper(II) complexes with imidazole N-methyl derivatives of ?-histidine in aqueous solution

    Science.gov (United States)

    Prenesti, Enrico; Berto, Silvia; Daniele, Pier Giuseppe

    2003-01-01

    In this study we considered π-methyl- L-histidine (π-methis) and τ-methyl- L-histidine (τ-methis) as ligands for copper(II) ion, in order to clarify, by means of ultraviolet (UV) spectroscopy in aqueous solution ( T=25 °C, I=0.1 M), some aspects of the co-ordination mode with respect to other ligands of a previous study in which copper(II) complexes of L-histidine, N-acetyl- L-histidine, histamine, L-histidine methyl ester or carnosine were investigated. Particularly, UV spectra (300-400 nm) were recorded on solutions at various pH values, containing each binary system Cu-L; afterwards, an UV absorption spectrum for single complexes was calculated, taking into account the chemical model previously assessed, in order to fulfil a correct spectrum-structure correlation. The problem related to the eventual superimposition of the CT shoulder (≈330 nm) to copper(II) of OH - and imidazole pyridine nitrogen groups were now solved by means of a comparison of the UV spectra of dimer species formed by both π-methis or τ-methis. Finally, copper(II) complex formation with 2,2'-bipyridine was taken into account to compare the behaviour of pyridine (from 2,2'-bipyridine) and pyridine imidazole nitrogens (from π-methis or τ-methis) with respect to the UV charge transfer process to copper(II) ion.

  8. 1-(4-Methoxyphenyl-2-[4-(trifluoromethylphenyl]-1H-phenanthro[9,10-d]imidazole

    Directory of Open Access Journals (Sweden)

    P. Sakthivel

    2013-08-01

    Full Text Available In the title compound, C29H19F3N2O, a phenanthroline-fused imidazole tetracyclic system, the fused benzene rings deviate slightly from the central ring and make dihedral angles with this ring of 3.47 (8 and 3.05 (8°. The trifluoromethylphenyl ring is roughly coplanar with the phenanthroline-fused imidazole tetracyclic system [dihedral angle = 11.02 (6°], while the methoxyphenyl ring is almost perpendicular [dihedral angle = 87.65 (6°]. There are intramolecular C—H ...π interactions involving the methoxyphenyl ring and the central phenanthroline ring, as well as an intermolecular C—H...π interaction involving the phenanthroline ring. In addition, there is an intermolecular π–π interaction involving the central phenanthroline ring and the trifluoromethylphenyl ring [centroid–centroid distance = 3.685 (2 Å], as well as C—H...N interactions linking the molecules into dimers.

  9. Hydrothermal Synthesis and Structure of a Novel 1-D Mn(Ⅱ) Compound with Carboxlyto and Imidazole Ligands

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-De; WU Xing-Hui; ZENG Qing-Xin; YAO You-Wei

    2005-01-01

    A novel manganiferous polymeric complex [(imid)2(ta)Mn0.5]n (imid = imidazole, ta = terephthalato) was synthesized by the hydrothermal reaction of MnO2, terephthalic acid, imidazole, and H2O. Structure analysis indicates that the compound crystallizes in the triclinic system, space group P, with a = 8.1500(16), b = 8.5100(17), c = 9.0500(18) (A), α = 72.77(3), β = 65.50(3), γ = 77.22(3)°, V = 542.02(19) (A)3, Z = 2, Dc = 1.505 g/cm3, F(000) = 253, Mr = 245.69, μ(MoKα = 0.655 mm-1, R = 0.0733 and wR = 0.1703 for 1673 observed reflections (I > 2σ(I)). The compound is characteristic of a zigzag chain-like framework built up of ta bridge and (Imid)4Mn group. The 1-D frameworks are held together by H-bonds between the dangling N-H donors from imid and O acceptors from ta.

  10. Synthesis, characterization, and biological properties of nano-rare earth complexes with L-glutamic acid and imidazole

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meifeng; HE Qizhuang

    2008-01-01

    Four nano-rare earth ternary complexes of L-glutamic acid and imidazole RE(Glu)3ImCl3·3H2O (RE=Ce3+, Pr3+, Sm3+, Dy3+, Glu= L-glutamic acid , and Im=imidazole) were synthesized. Their composition was characterized with elemental analysis, IR, and molar conductance. The TEM image indicated that the complexes were regular shaped and the length was about 30~60 nm. The antibacterial activity test showed that all these complexes exhibited better antibacterial ability against Escherichia coli, Staphylociccus aureus, and Candida albican (MIC were about 180, 100, and 310 μg/ml, respectively) and could be considered as broad-spectral antimicrobial. Their antitumor activity in vitro against leukemia K562 cells was measured using the MTT method. The results indicate that the four complexes possess strong inhibition effect on leukemia K562 cells. An approximately linear relationship is discovered between the relative inhibition rate and concentration, with the correlation coefficients R>0.7 and P<0.05, which is considered statistically significant.

  11. Complexes of Imidazole with Poly(ethylene glycol) as a Corrosion Inhibitor for Carbon Steel in Sulphuric Acid

    Science.gov (United States)

    Salimi, Saeed; Nasr-Esfahani, Mojtaba; Umoren, Saviour A.; Saebnoori, Ehsan

    2015-12-01

    The inhibiting action of polyethylene glycol and imidazole (PEG/IMZ)) complexes prepared by a simple deprotonation procedure on carbon steel corrosion in 0.5 mol/L sulphuric acid was evaluated using the weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques complemented by surface analysis using scanning electron microscopy. The inhibiting effect of the PEG/IMZ complexes on carbon steel corrosion was compared with the non-complex forms. Results obtained show that PEG/IMZ complex is a very effective corrosion inhibitor of carbon steel in the acid environment. The inhibition efficiency increased with the increase in the temperature and also with increasing percentage of imidazole in the complex. Corrosion inhibition occurs by virtue of adsorption of PEG/IMZ complexes on the steel surface which was found to follow the Temkin adsorption isotherm model. The PEG/IMZ complexes function as a mixed-type inhibitor. Results from all the methods employed are in a reasonably good agreement.

  12. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...... as chemzymes that catalyze conjugate additions, cycloadditions, and self-replicating processes. The focus will be mainly on cyclodextrin-based chemzymes since they have shown to be good candidate structures to base an enzyme model skeleton on. In addition hereto, other molecules that encompass binding......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  13. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Rui [School of Chemistry and Chemical Engineering, Fuyang University, Fuyang 236041 (China); Chen, Shui-Sheng, E-mail: chenss@fync.edu.cn [School of Chemistry and Chemical Engineering, Fuyang University, Fuyang 236041 (China); Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong [School of Chemistry and Chemical Engineering, Fuyang University, Fuyang 236041 (China)

    2015-08-15

    Four metal–organic coordination polymers [Zn(HL)(H{sub 2}O)]·4H{sub 2}O (1), [Zn(HL)(L{sub 1})]·4H{sub 2}O (2), [Cu(HL)(H{sub 2}O)]·3H{sub 2}O (3) and [Cu(HL)(L{sub 1})]·5H{sub 2}O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H{sub 3}L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L{sub 1}). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L{sub 1} has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (10{sup 3}) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 6{sup 3}-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear Cu{sup II} subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of Zn{sup II}/ Cu{sup II} compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated.

  14. Developing synthesis techniques for zeolitic-imidazolate framework membranes for high resolution propylene/propane separation

    Science.gov (United States)

    Kwon, Hyuk Taek

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40

  15. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations

    CERN Document Server

    Nandigrami, Prithviraj

    2015-01-01

    Calmodulin (CaM) is a ubiquitous calcium binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest the mechanism for the domain's allosteric transitions between the open and closed conformations depend on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM. That is, we find that cCaM unfolds more readily along the transition route than nCaM. Furthermore, unfolding and refolding of the domain significantly slows the domain opening and closing rates of cCaM, a distinct scenario which can potentially influence the mechani...

  16. Comparison of crystal and solution hemoglobin binding of selected antigelling agents and allosteric modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Mehanna, A.S.; Abraham, D.J. (Virginia Commonwealth Univ., Richmond (USA))

    1990-04-24

    This paper details comprehensive binding studies (solution and X-ray) of human hemoglobin A with a group of halogenated carboxylic acids that were investigated as potential antisickling agents. It is, to our knowledge, the first study to compare solution and crystal binding for a series of compounds under similar high-salt conditions used for cocrystallization. The compounds include ((3,4-dichlorobenzyl)oxy)acetic acid, ((p-bromobenzyl)oxy)acetic acid, clofibric acid, and bezafibrate. The location and stereochemistry of binding sites have been established by X-ray crystallography, while the number of binding sites and affinity constants were measured by using equilibrium dialysis. The observed crystal structures are consistent with the binding observed in solution and that the number of binding sites is independent of salt concentration, while the binding constant increases with increasing salt concentration. The studies also reveal that relatively small changes in the chemical structure of a drug molecule can result in entirely different binding sites on the protein. Moreover, the X-ray studies provide a possible explanation for the multiplicity in function exhibited by these compounds as allosteric modulators and/or antisickling agents. Finally, the studies indicate that these compounds bind differently to the R and T states of hemoglobin, and observation of special significance to the original design of these agents.

  17. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor.

    Science.gov (United States)

    Ahn, Kwang H; Mahmoud, Mariam M; Samala, Sushma; Lu, Dai; Kendall, Debra A

    2013-03-01

    Allosteric modulation of G-protein coupled receptors (GPCRs) represents a novel approach for fine-tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole-2-carboxamides:5-chloro-3-ethyl-1-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-a) and 5-chloro-3-pentyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-b). Although both ICAM-a and ICAM-b enhanced CP55, 940 binding, ICAM-b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G-protein coupling to CB1, ICAM-b induced β-arrestin-mediated downstream activation of extracellular signal-regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.

  18. GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators

    Directory of Open Access Journals (Sweden)

    Roberta Agabio

    2015-04-01

    Full Text Available The present paper summarizes experimental and clinical data indicating the therapeutic potential of the GABAB receptor agonist, baclofen, in the treatment of alcohol use disorder (AUD and substance use disorder (SUD. Multiple preclinical studies have demonstrated the ability of baclofen to suppress alcohol drinking (including binge- and relapse-like drinking, oral alcohol self-administration, and intravenous self-administration of cocaine, nicotine, amphetamine, methamphetamine, morphine, and heroin in rodents. Some randomized, controlled trials (RCTs and case reports support the efficacy of baclofen in suppressing alcohol consumption, craving for alcohol, and alcohol withdrawal symptomatology in alcohol-dependent patients. Data from RCTs and open studies investigating baclofen efficacy on SUD are currently less conclusive. Interest in testing high doses of baclofen in AUD and SUD treatment has recently emerged. Preclinical research has extended the anti-addictive properties of baclofen to positive allosteric modulators of the GABAB receptor (GABAB PAMs. In light of their more favourable side effect profile (compared to baclofen, GABAB PAMs may represent a major step forward in a GABAB receptor-based pharmacotherapy of AUD and SUD.

  19. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Fairman, James Wesley; Wijerathna, Sanath Ranjan; Ahmad, Md Faiz; Xu, Hai; Nakano, Ryo; Jha, Shalini; Prendergast, Jay; Welin, R. Martin; Flodin, Susanne; Roos, Annette; Nordlund, Pär; Li, Zongli; Walz, Thomas; Dealwis, Chris Godfrey (Case Western); (Harvard-Med); (Karolinska); (Tennessee-K)

    2011-07-25

    Ribonucleotide reductase (RR) is an {alpha}{sub n}{beta}{sub n} (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the {alpha}{sub 6}-{beta}{beta}'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.

  20. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.

    Science.gov (United States)

    Chen, Ying-Nan P; LaMarche, Matthew J; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G; Dobson, Jason R; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J; Sellers, William R; Stams, Travis; Fortin, Pascal D

    2016-07-01

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers. PMID:27362227