WorldWideScience

Sample records for allometry

  1. Are allometry and macroevolution related?

    Science.gov (United States)

    West, Bruce J.; West, Damien

    2011-05-01

    The allometric relationship between the basal metabolic rate B and total body mass M is B = aM, where the allometry coefficient a and the allometry exponent b have been fit to various data sets for over 150 years. The best fit of the allometry exponent to 391 mammalian species is given by Heusner [7] to be midway between the leading theoretical values of 2/3 and 3/4. Most theoretical investigations have focused on determining the proper value of b entailed by an appropriate biological model and with some notable exceptions ignored the allometry coefficient a altogether. Herein, we shift the focus and use the above data to settle on an empirical value of b that gives rise to an allometry coefficient with random variability described by a Pareto distribution. This new perspective suggests an interesting biological interpretation of the statistical fluctuations of the allometry coefficient. The time distribution of the intermittent fluctuations in a are determined to be of the same statistical form as those of speciation found in the punctuated equilibrium theory of macroevolution (Eldredge and Gould [3], Sneppen et al. [5] and Rikvold and Zia [17]).

  2. Entropic origin of allometry relations

    Science.gov (United States)

    West, Bruce J.; West, Damien

    2015-03-01

    The theoretical allometry relation (AR) between the size of a network Y and a property of the network X is of the form X = aYb and has been known for nearly two centuries. The allometry coefficient a and allometry exponent b have been fit by various data sets over that time. The ubiquity of ARs in biology, sociology, ecology and indeed in virtually all the other science disciplines entreats science to find the origin of ARs. Data analysis indicates that the empirical AR is obtained with the replacements X → and Y → and the brackets denote an average over an ensemble of realizations of the network. It has been shown that the empirical AR cannot usually be derived from the theoretical one by simple averaging due to the fractal statistics of the fluctuations. Consequently we hypothesize that a possible origin of AR is the Principle of Minimum Entropy Generation (PMEG). We establish in support of this hypothesis that if the fluctuations in the allometry variables have fractal statistics then the PMEG entails the AR between a complex host network and a subnetwork strongly coupled to it.

  3. The allometry of prey preferences.

    Directory of Open Access Journals (Sweden)

    Gregor Kalinkat

    Full Text Available The distribution of weak and strong non-linear feeding interactions (i.e., functional responses across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems.

  4. Allometry in damselfly ornamental and genital traits: solving some pitfalls of allometry and sexual selection.

    Science.gov (United States)

    Córdoba-Aguilar, A; López-Valenzuela, A; Brunel, O

    2010-12-01

    Static allometry of sexually selected traits has been the subject of intense research recently. However, some pitfalls for this kind of research are: (a) the functions of sexual traits are largely unknown; (b) more than one body size indicator must be measured; and, (c) allometry must be examined under different environmental circumstances to see whether allometric values change. Using Hetaerina americana damselflies, we investigated the type of allometry exhibited by a wing red spot and aedeagal width. These traits are positively selected during pre-copulatory male-male contests and post-copulatory female stimulation, respectively. As body size indicators, we used wing length and head width. It has been documented that expression of both sexual traits varies throughout the year. Thus, allometry was examined in different times of the year. We also investigated the allometry of aedeagal width and vaginal width at the zone where female stimulation takes place. We found no clear pattern of any allometric relationship for male and female traits and for both body size indicators at all times sampled. Our results contrast with patterns of negative allometry exhibited by genital traits in other animals. PMID:20938802

  5. Multiplicative by nature: Logarithmic transformation in allometry.

    Science.gov (United States)

    Packard, Gary C

    2014-06-01

    The traditional allometric method, which is at the heart of research paradigms used by comparative biologists around the world, entails fitting a straight line to logarithmic transformations of the original bivariate data and then back-transforming the resulting equation to form a two-parameter power function in the arithmetic scale. The method has the dual advantages of enabling investigators to fit statistical models that describe multiplicative growth while simultaneously addressing the multiplicative nature of residual variation in response variables (heteroscedasticity). However, important assumptions of the traditional method seldom are assessed in contemporary practice. When the assumptions are not met, mean functions may fail to capture the dominant pattern in the original data and incorrect form for error may be imposed upon the fitted model. A worked example from metabolic allometry in doves and pigeons illustrates both the power of newer statistical procedures and limitations of the traditional allometric method.

  6. Natural Selection and Developmental Constraints in the Evolution of Allometries

    OpenAIRE

    Frankino, W. Anthony; Zwaan, Bas J.; Stern, David L.; Brakefield, Paul M.

    2005-01-01

    In animals, scaling relationships between appendages and body size exhibit high interspecific variation but low intraspecific variation. This pattern could result from natural selection for specific allometries or from developmental constraints on patterns of differential growth. We performed artificial selection on the allometry between forewing area and body size in a butterfly to test for developmental constraints, and then used the resultant increased range of phenotypic variation to quan...

  7. Three-dimensional geometric analysis of felid limb bone allometry.

    Directory of Open Access Journals (Sweden)

    Michael Doube

    Full Text Available BACKGROUND: Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry. METHOD/PRINCIPAL FINDINGS: Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. CONCLUSIONS/SIGNIFICANCE: Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  8. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob;

    2011-01-01

    mycorrhizal levels were obtained by applying benomyl (low AMF) or not (high AMF). Experiment 1 investigated the effects of AMF on plant growth in the absence of competition. Experiment 2 was a factorial design with two mycorrhizal levels and two plant densities (6000 and 17 500 seeds m-2). Shoot biomass, root......Background and Aims Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal...... fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out to test whether AMF affect plant allometry and the self-thinning trajectory. Methods Two experiments were conducted on Medicago sativa L., a leguminous species known to be highly dependent on mycorrhiza. Two...

  9. Prenatal Brain-Body Allometry in Mammals.

    Science.gov (United States)

    Halley, Andrew C

    2016-01-01

    Variation in relative brain size among adult mammals is produced by different patterns of brain and body growth across ontogeny. Fetal development plays a central role in generating this diversity, and aspects of prenatal physiology such as maternal relative metabolic rate, altriciality, and placental morphology have been proposed to explain allometric differences in neonates and adults. Primates are also uniquely encephalized across fetal development, but it remains unclear when this pattern emerges during development and whether it is common to all primate radiations. To reexamine these questions across a wider range of mammalian radiations, data on the primarily fetal rapid growth phase (RGP) of ontogenetic brain-body allometry was compiled for diverse primate (np = 12) and nonprimate (nnp = 16) mammalian species, and was complemented by later ontogenetic data in 16 additional species (np = 9; nnp = 7) as well as neonatal proportions in a much larger sample (np = 38; nnp = 83). Relative BMR, litter size, altriciality, and placental morphology fail to predict RGP slopes as would be expected if physiological and life history variables constrained fetal brain growth, but are associated with differences in birth timing along allometric trajectories. Prenatal encephalization is shared by all primate radiations, is unique to the primate Order, and is characterized by: (1) a robust change in early embryonic brain/body proportions, and (2) higher average RGP allometric slopes due to slower fetal body growth. While high slopes are observed in several nonprimate species, primates alone exhibit an intercept shift at 1 g body size. This suggests that primate prenatal encephalization is a consequence of early changes to embryonic neural and somatic tissue growth in primates that remain poorly understood. PMID:27561684

  10. Relating urban scaling, fundamental allometry, and density scaling

    CERN Document Server

    Rybski, Diego

    2016-01-01

    We study the connection between urban scaling, fundamental allometry (between city population and city area), and per capita vs.\\ population density scaling. From simple analytical derivations we obtain the relation between the 3 involved exponents. We discuss particular cases and ranges of the exponents which we illustrate in a "phase diagram". As we show, the results are consistent with previous work.

  11. Ecological allometries and niche use dynamics across Komodo dragon ontogeny

    Science.gov (United States)

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  12. Geographical variation in allometry in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Egset, C K; Bolstad, G H; Rosenqvist, G; Endler, J A; Pélabon, C

    2011-12-01

    Variation in static allometry, the power relationship between character size and body size among individuals at similar developmental stages, remains poorly understood. We tested whether predation or other ecological factors could affect static allometry by comparing the allometry between the caudal fin length and the body length in adult male guppies (Poecilia reticulata) among populations from different geographical areas, exposed to different predation pressures. Neither the allometric slopes nor the allometric elevations (intercept at constant slope) changed with predation pressure. However, populations from the Northern Range in Trinidad showed allometry with similar slopes but lower intercepts than populations from the Caroni and the Oropouche drainages. Because most of these populations are exposed to predation by the prawn Macrobrachium crenulatum, we speculated that the specific selection pressures exerted by this predator generated this change in relative caudal fin size, although effects of other environmental factors could not be ruled out. This study further suggests that the allometric elevation is more variable than the allometric slope.

  13. Height-diameter allometry of tropical forest trees

    NARCIS (Netherlands)

    Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.M.M.; Berry, N.J.; Bird, M.; Brondizio, E.S.; Camargo, de P.; Chave, J.; Djagbletey, G.; Domingues, T.F.; Drescher, M.; Fearnside, P.M.; Franca, M.B.; Fyllas, N.M.; Lopez-Gonzalez, G.; Hladik, A.; Higuchi, N.; Hunter, M.O.; Iida, Y.; Salim, K.A.; Kassim, A.R.; Keller, M.; Kemp, J.; King, D.A.; Lovett, J.C.; Marimon, B.S.; Marimon-Junior, B.H.; Lenza, E.; Marshall, A.R.; Metcalfe, D.J.; Mitchard, E.T.A.; Moran, E.F.; Nelson, B.W.; Nilus, R.; Nogueira, E.M.; Palace, M.; Patino, S.; Peh, K.S.H.; Raventos, M.T.; Reitsma, J.M.; Saiz, G.; Schrodt, F.; Sonké, B.; Taedoumg, H.E.; Tan, S.; White, L.; Wöll, H.; Lloyd, J.

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurr

  14. Height-diameter allometry of tropical forest trees

    NARCIS (Netherlands)

    Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.M.M.; Berry, N.J.; Bird, M.; Brondizio, E.S.; Camargo, de P.; Chave, J.; Djagbletey, G.; Domingues, T.F.; Drescher, M.; Fearnside, P.M.; Franca, M.B.; Fyllas, N.M.; Lopez-Gonzalez, G.; Hladik, A.; Higuchi, N.; Hunter, M.O.; Iida, Y.; Salim, K.A.; Kassim, A.R.; Keller, M.; Kemp, J.; King, D.A.; Lovett, J.C.; Marimon, B.S.; Marimon-Junior, B.H.; Lenza, E.; Marshall, A.R.; Metcalfe, D.J.; Mitchard, E.T.A.; Moran, E.F.; Nelson, B.W.; Nilus, R.; Nogueira, E.M.; Palace, M.; Patino, S.; Peh, K.S.H.; Raventos, M.T.; Reitsma, J.M.; Saiz, G.; Schrodt, F.; Sonké, B.; Taedoumg, H.E.; Tan, S.; White, L.; Wöll, H.; Lloyd, J.

    2010-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurr

  15. Competition and allometry in annual halophytes plants: an experience from Crimea

    Directory of Open Access Journals (Sweden)

    Svetlana Zhaldak

    2012-03-01

    Full Text Available Competitive interactions were established in populations of Salicornia perennans, Suaeda acuminata, Halimione pedunculata, Petrosimonia oppositifolia. The competition changed allometry of plants.

  16. ROOT ALLOMETRY OF TWO SUBTROPICAL PLANT COMMUNITIES OF NORTHEASTERN MEXICO

    OpenAIRE

    Eduardo de los Ríos-Carrasco; José de Jesús Návar-Cháidez

    2010-01-01

    This research work aimed at the study of the root allometry in sub-tropical Tamaulipan thornscrub and pine forest communities of Nuevo Leon, Mexico. By excavating each individual root of each of 20 trees per plant community, we developed root allometric equations for biomass, volume, total length and diameter. Covariance analysis, ancova, was employed to determine the statistical difference of these variables between plant communities. Results indicate that pine plant trees have larger root v...

  17. The allometry of number of feathers in birds changes seasonally

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Møller

    2015-01-01

    Background:Feathers are a defining feature of birds with multiple functions such as flight, insulation, protection against predation and signaling. Feathers are lost during the annual molt while the rate of such loss at other times of the year and its fitness consequences remain poorly known. Methods:I used information on the number and the mass of feathers for 160 individuals belonging to 85 species of birds in general linear mixed models to analyze allometry of feathers and to investigate possible factors explaining variation in the number of feathers. A phylogenetic effect was assessed by quantifying the random effect of genus. Results:The total mass of feathers increased isometrically with body mass, while the total number of feathers and the mean mass of feathers showed negative allometry. Negative allometry implied that small-sized species had relatively many small feathers. There was a negative association between the number of feathers and migration distance. The total number of feathers initially increased during fall and winter, consistent with individuals growing more feathers later during the year or with individuals with fewer feathers selectively disappearing from the population. In contrast, the number of feathers decreased from winter through spring and summer. Conclusions:These findings suggest that thermoregulation has affected the evolution of the number and the size of feathers, there is selection against feather loss, and that the number of feathers varies across seasons.

  18. The allometry of number of feathers in birds changes seasonally

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; Mller

    2015-01-01

    Background: Feathers are a defining feature of birds with multiple functions such as flight, insulation, protection against predation and signaling. Feathers are lost during the annual molt while the rate of such loss at other times of the year and its fitness consequences remain poorly known.Methods: I used information on the number and the mass of feathers for 160 individuals belonging to 85 species of birds in general linear mixed models to analyze allometry of feathers and to investigate possible factors explaining variation in the number of feathers. A phylogenetic effect was assessed by quantifying the random effect of genus.Results: The total mass of feathers increased isometrically with body mass, while the total number of feathers and the mean mass of feathers showed negative allometry. Negative allometry implied that small-sized species had relatively many small feathers. There was a negative association between the number of feathers and migration distance. The total number of feathers initially increased during fall and winter, consistent with individuals growing more feathers later during the year or with individuals with fewer feathers selectively disappearing from the population. In contrast, the number of feathers decreased from winter through spring and summer.Conclusions: These findings suggest that thermoregulation has affected the evolution of the number and the size of feathers, there is selection against feather loss, and that the number of feathers varies across seasons.

  19. Evolution of brain-body allometry in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2016-07-01

    Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. PMID:27241216

  20. Primate facial allometry and interpretations of australopithecine variation.

    Science.gov (United States)

    Corruccini, R S; Ciochon, R L

    1979-09-01

    Pilbeam and Gould have discussed African Plio-Pleistocene hominid evolution in the context of allometry (size-dependent morphological change). These authors demonstrate that some general aspects of australopithecine morphology (tooth, brain and body size) support the hypothesis that certain early African hominids were merely scaled variations of each other at different sizes. They also speculate that the methods applied to these very broad anatomical categories can be extended to more specific and detailed traits, especially in the face and cranium. Such traits underlie most taxonomic and phylogenetic discussions of the early African Hominidae, so it is useful to follow Pilbeam and Gould's lead, as we do here, and investigate the structural differences in the australopithecine face and cranimum in a quantificiable fashion. PMID:121762

  1. Male mate choice scales female ornament allometry in a cichlid fish

    Directory of Open Access Journals (Sweden)

    Kullmann Harald

    2010-10-01

    Full Text Available Abstract Background Studies addressing the adaptive significance of female ornamentation have gained ground recently. However, the expression of female ornaments in relation to body size, known as trait allometry, still remains unexplored. Here, we investigated the allometry of a conspicuous female ornament in Pelvicachromis taeniatus, a biparental cichlid that shows mutual mate choice and ornamentation. Females feature an eye-catching pelvic fin greatly differing from that of males. Results We show that allometry of the female pelvic fin is scaled more positively in comparison to other fins. The pelvic fin exhibits isometry, whereas the other fins (except the caudal fin show negative allometry. The size of the pelvic fin might be exaggerated by male choice because males prefer female stimuli that show a larger extension of the trait. Female pelvic fin size is correlated with individual condition, suggesting that males can assess direct and indirect benefits. Conclusions The absence of positive ornament allometry might be a result of sexual selection constricted by natural selection: fins are related to locomotion and thus may be subject to viability selection. Our study provides evidence that male mate choice might scale the expression of a female sexual ornament, and therefore has implications for the understanding of the relationship of female sexual traits with body size in species with conventional sex-roles.

  2. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  3. Allometry of sexual size dimorphism in domestic dog.

    Directory of Open Access Journals (Sweden)

    Daniel Frynta

    Full Text Available BACKGROUND: The tendency for male-larger sexual size dimorphism (SSD to scale with body size - a pattern termed Rensch's rule - has been empirically supported in many animal lineages. Nevertheless, its theoretical elucidation is a subject of debate. Here, we exploited the extreme morphological variability of domestic dog (Canis familiaris to gain insights into evolutionary causes of this rule. METHODOLOGY/PRINCIPAL FINDINGS: We studied SSD and its allometry among 74 breeds ranging in height from less than 19 cm in Chihuahua to about 84 cm in Irish wolfhound. In total, the dataset included 6,221 individuals. We demonstrate that most dog breeds are male-larger, and SSD in large breeds is comparable to SSD of their wolf ancestor. Among breeds, SSD becomes smaller with decreasing body size. The smallest breeds are nearly monomorphic. CONCLUSIONS/SIGNIFICANCE: SSD among dog breeds follows the pattern consistent with Rensch's rule. The variability of body size and corresponding changes in SSD among breeds of a domestic animal shaped by artificial selection can help to better understand processes leading to emergence of Rensch's rule.

  4. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  5. Allometry and size control: what can studies of body size regulation teach us about the evolution of morphological scaling relationships?

    Science.gov (United States)

    Mirth, Christen K; Anthony Frankino, W; Shingleton, Alexander W

    2016-02-01

    The relationship between organ and body size, known as morphological allometry, has fascinated biologists for over a century because changes in allometry generate the vast diversity of organism shapes. Nevertheless, progress has been limited in understanding the genetic mechanisms that regulate allometries and how these mechanisms evolve. This is perhaps because allometry is measured at the population level, however adult organ and body size depends on genetic background and the developmental environment of individuals. Recent findings have enhanced our understanding of how insects regulate their organ and body sizes in response to environmental conditions, particularly nutritional availability. We argue that merging these developmental insights with a population genetics approach will provide a powerful system for understanding the evolution of allometry. PMID:27436558

  6. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2011-05-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

    1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

    2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

    3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in

  7. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2010-10-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

      1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

      2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

      3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere.

    The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within a median –2.7 to 0.9% of the true value. Some of the plot

  8. Evaluating the Importance of Local Environment on Tree Structural Allometries

    Science.gov (United States)

    Duncanson, L.; Cook, B. D.; Rourke, O.; Hurtt, G. C.; Dubayah, R.

    2013-12-01

    Allometric relationships relating various forest structural properties such as DBH, tree height and aboveground biomass have been developed through detailed field data collection both in the United States, and globally. However, there has been limited attention to explaining observed variability in these relationships. Often, a single relationship is developed for a single species, and is applied irrespective of environment. In this research, we attempt to explain allometry as a function of environment by focusing on the relationship between DBH, crown radius and tree height. Two primary datasets are used to conduct this research. First, the Forest Inventory Analysis (FIA) dataset, including tree DBH and height information for the United States, are used to investigate variability in the relationship between DBH and tree height. Second, high-resolution airborne lidar datasets were collected from areas across the US, Canada and Costa Rica and are applied to investigate variability in the relationship between crown radius and height. The lidar datasets are run through a generalized canopy delineation algorithm to produce multilayered estimates of individual tree location, height, and crown radius. Power law functions are fit to the relationships between DBH and tree height, and crown radius and tree height. The mean and standard deviation of the power law exponents are compared to environmental attributes including precipitation, temperature, topography, and age since disturbance. This research demonstrates that although universal tendencies are observed in average power law exponents, considerable local variability exists that can be partially attributed to local environment. Therefore local environment, as well as tree species, should be accounted for in the development and application of allometric equations for forest studies.

  9. BAAD: a Biomass And Allometry Database for woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Falster, Daniel; Duursma, Remko; Ishihara, Masae; Barneche, Diego; Fitzjohn, Richard; Varhammar, Angelica; Aiba, Masahiro; Ando, M.; Anten, Niels; Aspinwall, Michael J.; Baltzer, Jennifer; Baraloto, Christopher; Battaglia, Michael; Battles, John; Bond-Lamberty, Benjamin; van Breugel, Michiel; Camac, James; Claveau, Yves; Coll Mir, Llus; Dannoura, Dannoura; Delagrange, Sylvain; Domec, Jean-Cristophe; Fatemi, Farrah; Feng, Wang; Gargaglione, Veronica; Goto, Yoshiaki; Hagihara, Akio; Hall, Jefferson S.; Hamilton, Steve; Harja, Degi; Hiura, Tsutom; Holdaway, Robert; Hutley, L. B.; Ichie, Tomoaki; Jokela, Eric; Kantola, Anu; Kelly, Jeffery W.; Kenzo, Tanaka; King, David A.; Kloeppel, Brian; Kohyama, Takashi; Komiyama, Akira; Laclau, Jean-Paul; Lusk, Christopher; Maguire, Doug; le Maire, Guerric; Makela, Annikki; Markesteijn, Lars; Marshall, John; McCulloh, Kate; Miyata, Itsuo; Mokany, Karen; Mori, Shigeta; Myster, Randall; Nagano, Masahiro; Naidu, Shawna; Nouvellon, Yann; O' Grady, Anthony; O' Hara, Kevin; Ohtsuka, Toshiyuki; Osada, Noriyuki; Osunkoya, Olusegun O.; Luis Peri, Pablo; Petritan, Mary; Poorter, Lourens; Portsmuth, Angelika; Potvin, Catherine; Ransijn, Johannes; Reid, Douglas; Ribeiro, Sabina C.; Roberts, Scott; Rodriguez, Rolando; Saldana-Acosta, Angela; Santa-Regina, Ignacio; Sasa, Kaichiro; Gailia Selaya, Nadezhda; Sillett, Stephen; Sterck, Frank; Takagi, Kentaro; Tange, Takeshi; Tanouchi, Hiroyuki; Tissue, David; Umehara, Tohru; Utsugi, Hajime; Vadeboncoeur, Matthew; Valladares, Fernando; Vanninen, Petteri; Wang, Jian; Wenk, Elizabeth; Williams, Dick; Ximenes, Fabiano de Aquino; Yamaba, Atsushi; Yamada, Toshihiro; Yamakura, Takuo; Yanai, Ruth; York, Robert

    2015-05-07

    Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only been made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174

  10. Ontogenetic allometry, heterochrony, and interspecific differences in the skull of African apes, using tridimensional Procrustes analysis.

    Science.gov (United States)

    Berge, Christine; Penin, Xavier

    2004-06-01

    Ontogenetic studies of African ape skulls lead to an analysis of morphological differences in terms of allometry, heterochrony, and sexual dimorphism. The use of geometric morphometrics allows us 1) to define size and shape variations as independent factors (an essential but seldom respected condition for heterochrony), and 2) to calculate in percentage of shape changes and to graphically represent the parts of shape variation which are related to various biological phenomena: common allometry, intraspecific allometry, and allometric and nonallometric shape discrimination. Three tridimensional Procrustes analyses and the calculation of multivariate allometries, discriminant functions, and statistical tests are used to compare the skulls of 50 Pan troglodytes, and 50 Gorilla gorilla of different dental stages. The results both complement and modify classical results obtained from similar material but with different methods. Size and Scaling in Primate Morphology, New York: Plenum, p. 175-205). As previously described by Shea, the common growth allometric pattern is very important (64% of total shape variation). It corresponds to a larger increase of facial volume than of neurocranial volume, a more obliquely oriented foramen magnum, and a noticeable reshaping of the nuchal region (higher inion). However, the heterochronic interpretation based on common allometry is rather different from Shea. Gorillas differ from chimpanzees not only with a larger magnitude of allometric change (rate peramorphosis), as is classically said, but also grow more in size than in shape (size acceleration). In other words, for a similar stage of growth, gorillas have the size and shape corresponding to older chimpanzees, and for a similar shape, gorillas have a larger size than chimpanzees. In contrast, sexual dimorphism actually corresponds to allometric changes only, as classically demonstrated (time hypermorphosis). Sexual dimorphism is here significant in adult gorillas alone, and

  11. Tooth scaling and evolutionary dwarfism: an investigation of allometry in human pygmies.

    Science.gov (United States)

    Shea, B T; Gomez, A M

    1988-09-01

    Gould has predicted that in rapidly dwarfed lineages the postcanine teeth exhibit a different scaling pattern than is the normal interspecific trend. His prediction of strong negative allometry has not been frequently tested in quantitative detail. Here we present results of scaling analyses of the molar teeth in African pygmies compared with other Africans of larger size and in Philippine pygmies compared with Filipinos of larger size. We find a pattern of strong negative allometry of tooth size to skull and body size in both these comparisons. This scaling pattern is explained by recourse to the developmental bases (known or inferred) of dwarfing in these populations. Body size decrease is related to low levels of the growth control substance insulin-like growth factor I (IGF-I), which does not appear to affect the size of the dentition. The implications of such developmental information for our understanding of allometric patterns in general, and dwarfing events in particular, are discussed.

  12. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

    CERN Document Server

    Alves, Luiz G A; Lenzi, Ervin K; Mendes, Renio S

    2014-01-01

    We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labour, illiteracy, income, sanitation and unemployment). Our analysis reveal that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residua...

  13. Degrees of freedom in interspecific allometry: an adjustment for the effects of phylogenetic constraint.

    Science.gov (United States)

    Smith, R J

    1994-01-01

    The data used in studies of bivariate interspecific allometry usually violate the assumption of statistical independence. Although the traits of each species are commonly treated as independent, the expression of a trait among species within a genus may covary because of shared common ancestry. The same effect exists for genera within a family and so on up the phylogenetic hierarchy. Determining sample size by counting data points overestimates the effective sample size, which then leads to overestimating the degrees of freedom that should be used in calculating probabilities and confidence intervals. This results in an inflated Type 1 error rate. Although some workers (e.g., Felsenstein [1985] Am. Nat. 125:1-15) have suggested that this issue may invalidate interspecific allometry as a comparative method, a correction for the problem can be approximated with variance components from a nested analysis of variance. Variance components partition the total variation in the data set among the levels of the nested hierarchy. If the variance component for each nested level is weighted by the number of groups at that level, the sum of these values is an estimate of an effective sample size for the data set which reflects the effects of phylogenetic constraint. Analysis of two data sets, using taxonomy to define levels of the nested hierarchy, suggests that it has been common for published studies of interspecific allometry to severely overestimate the number of degrees of freedom. Interspecific allometry remains an important comparative method for evaluating questions concerning individual species that are not similarly addressed by the format of most of the newer comparative methods. With the correction proposed here for estimating degrees of freedom, the major statistical weakness of the procedure is substantially reduced. PMID:8141245

  14. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

    Science.gov (United States)

    Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.

    2014-09-01

    We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.

  15. Unusual allometry for sexual size dimorphism in a cichlid where males are extremely larger than females

    Indian Academy of Sciences (India)

    Kazutaka Ota; Masanori Kohda; Tetsu Sato

    2010-06-01

    When males are the larger sex, a positive allometric relationship between male and female sizes is often found across populations of a single species (i.e. Rensch’s rule). This pattern is typically explained by a sexual selection pressure on males. Here, we report that the allometric relationship was negative across populations of a shell-brooding cichlid fish Lamprologus callipterus, although males are extremely larger than females. Male L. callipterus collect and defend empty snail shells in each of which a female breeds. We found that, across six populations, male and female sizes are positively correlated with not only sexual and fecundity selection indices, but also with shell sizes. Given their different reproductive behaviours, these correlations mean that males are required to be more powerful, and thus larger, to transport larger shells, while female bodies are reduced to the shell size to enable them to enter the shells. Among the three size selections (sexual selection, fecundity selection and shell size), shell size explained the allometry, suggesting that females are more strongly subject to size selection associated with shell size availability than males. However, the allometry was violated when considering an additional population where size-selection regimes of males differed from that of other populations. Therefore, sexual size allometry will be violated by body size divergence induced by multiple selection regimes.

  16. Examining the Efficiency of Models Using Tangent Coordinates or Principal Component Scores in Allometry Studies.

    Science.gov (United States)

    Sigirli, Deniz; Ercan, Ilker

    2015-09-01

    Most of the studies in medical and biological sciences are related to the examination of geometrical properties of an organ or organism. Growth and allometry studies are important in the way of investigating the effects of diseases and the environmental factors effects on the structure of the organ or organism. Thus, statistical shape analysis has recently become more important in the medical and biological sciences. Shape is all geometrical information that remains when location, scale and rotational effects are removed from an object. Allometry, which is a relationship between size and shape, plays an important role in the development of statistical shape analysis. The aim of the present study was to compare two different models for allometry which includes tangent coordinates and principal component scores of tangent coordinates as dependent variables in multivariate regression analysis. The results of the simulation study showed that the model constructed by taking tangent coordinates as dependent variables is more appropriate than the model constructed by taking principal component scores of tangent coordinates as dependent variables, for all sample sizes.

  17. The allometry of parrot BMR: seasonal data for the Greater Vasa Parrot, Coracopsis vasa, from Madagascar.

    Science.gov (United States)

    Lovegrove, Barry G; Perrin, Mike R; Brown, Mark

    2011-12-01

    In this study we examined the allometry of basal metabolic rate (BMR) of 31 parrot species. Unlike previous reports, we show that parrots per se do not display BMRs that are any different to other captive-raised birds of their body size. An ordinary least squares regression fitted the data best and body mass explained 95% of the variation in BMR. There was no phylogenetic signal in the BMR data. We also provide new data for the Greater Vasa Parrot (Coracopsis vasa) of Madagascar. We tested the hypotheses that C. vasa may, because of its insular existence, display conservative energetic traits (low BMR, use of adaptive heterothermy) similar to those observed in several Malagasy mammals. However, this was not the case. C. vasa had a higher BMR than other parrots, especially during summer, when BMR was up-regulated by 50.5% and was 95.7% higher than predicted from an ordinary least squares (OLS) allometry of parrots (BMR = 0.042M (b) (0.649) , BMR in Watts, M (b) in grammes). Compared with BMR data for 94 captive-raised bird species, the winter and summer BMRs were, respectively, 45.5 and 117.8% higher than predicted by a phylogenetic generalised least squares (PGLS) allometry (BMR = 0.030M (b) (0.687) , BMR in Watts, M (b) in grammes). The summer up-regulation of BMR is the highest recorded for a bird of any size to date. We suggest that the costs of a high summer BMR may be met by the unusual cooperative breeding system of C. vasa in which groups of males feed the female and share paternity. The potential breeding benefits of a high summer BMR are unknown.

  18. Caudal fin allometry in the white shark Carcharodon carcharias: implications for locomotory performance and ecology

    Science.gov (United States)

    Lingham-Soliar, Theagarten

    2005-05-01

    Allometric scaling analysis was employed to investigate the consequences of size evolution on hydrodynamic performance and ecology in the white shark Carcharodon carcharias. Discriminant analysis using the power equation y=axb was negative for caudal fin span (S) versus fork length (FL) in C. carcharias. In contrast in two delphinid species, Delphinus capensis and Tursiops aduncus, the span of the flukes versus fork length rises in positive allometric fashion, and strong positive allometry of S versus √A (area) was also recorded. The latter reflects a high lift/drag ratio. S versus √A in C. carcharias displays negative allometry and consequently a lower lift/drag ratio. A lower aspect ratio (AR) caudal fin in C. carcharias compared to that of the delphinids (mean 3.33 and 4.1, respectively) and other thunniform swimmers provides the potential for better maneuverability and acceleration. The liver in sharks is frequently associated with a buoyancy function and was found to be positively allometric in C. carcharias. The overall findings suggest that the negatively allometric caudal fin morphometrics in C. carcharias are unlikely to have deleterious evolutionary fitness consequences for predation. On the contrary, when considered in the context of positive liver allometry in C. carcharias it is hereby suggested that buoyancy may play a dominant role in larger white sharks in permitting slow swimming while minimizing energy demands needed to prevent sinking. In contrast hydrodynamic lift is considered more important in smaller white sharks. Larger caudal fin spans and higher lift/drag ratio in smaller C. carcharias indicate greater potential for prolonged, intermediate swimming speeds and for feeding predominantly on fast-moving fish, in contrast to slow-swimming search patterns of larger individuals for predominantly large mammalian prey. Such data may provide some answers to the lifestyle and widespread habitat capabilities of this still largely mysterious animal.

  19. Allometry and adaptation of body proportions and stature in African pygmies.

    Science.gov (United States)

    Shea, B T; Bailey, R C

    1996-07-01

    We have analyzed the growth allometry of external body proportions in Efe pygmies from Zaire and combined these data with values from the literature for comparable dimensions in adult pygmies and nonpygmies. We sequentially tested the hypotheses that adult proportion differences between 1) male vs. female Efe, and 2) pygmies vs. nonpygmies result from ontogenetic scaling, or the differential extension of common patterns of growth allometry. Results indicate an almost complete concordance of allometric trajectories for male and female Efe. These preliminary analyses also strongly suggest that adult nonpygmy Africans generally differ from pygmies in their terminal size and correlated allometric consequences, rather than in more fundamental alterations of underlying patterns of growth. Biacromial diameter emerges as the measurement most likely to depart from this general pattern. These results provide further evidence that shifts in systemic growth hormones yielding differences in terminal overall body size may be accompanied by global and coordinated allometric transformations. Certain proportion differences previously interpreted by some as specific evidence of primitive retention in pygmies in fact reflect simple growth allometric correlates of the derive rapid size decrease in these groups. Selected divergent body proportions characterizing adult pygmies, previously interpreted by some as independent evidence of climatic adaptation, also reflect such allometric correlates of ontogenetic scaling. We critically assess arguments that the small overall body size of pygmies was specifically selected for reasons of thermoregulatory efficiency, and consider an alternative or complementary scenario, based on selection for small size in order to reduce caloric requirements.

  20. Quantifying the Variability of Internode Allometry within and between Trees for Pinus tabulaeformis Carr. Using a Multilevel Nonlinear Mixed-Effect Model

    OpenAIRE

    Jun Diao; Xiangdong Lei; Jingcai Wang; Jun Lu; Hong Guo; Liyong Fu; Chenchen Shen; Wu Ma; Jianbo Shen

    2014-01-01

    Allometric models of internodes are an important component of Functional-Structural Plant Models (FSPMs), which represent the shape of internodes in tree architecture and help our understanding of resource allocation in organisms. Constant allometry is always assumed in these models. In this paper, multilevel nonlinear mixed-effect models were used to characterize the variability of internode allometry, describing the relationship between the last internode length and biomass of Pinus tabu...

  1. Allometry of animal–microbe interactions and global census of animal-associated microbes

    Science.gov (United States)

    Kieft, Thomas L.; Simmons, Karen A.

    2015-01-01

    Animals live in close association with microorganisms, mostly prokaryotes, living in or on them as commensals, mutualists or parasites, and profoundly affecting host fitness. Most animal–microbe studies focus on microbial community structure; for this project, allometry (scaling of animal attributes with animal size) was applied to animal–microbe relationships across a range of species spanning 12 orders of magnitude in animal mass, from nematodes to whales. Microbial abundances per individual animal were gleaned from published literature and also microscopically counted in three species. Abundance of prokaryotes/individual versus animal mass scales as a nearly linear power function (exponent = 1.07, R2 = 0.94). Combining this power function with allometry of animal abundance indicates that macrofauna have an outsized share of animal-associated microorganisms. The total number of animal-associated prokaryotes in Earth's land animals was calculated to be 1.3–1.4 × 1025 cells and the total of marine animal-associated microbes was calculated to be 8.6–9.0 × 1024 cells. Animal-associated microbes thus total 2.1–2.3 × 1025 of the approximately 1030 prokaryotes on the Earth. Microbes associated with humans comprise 3.3–3.5% of Earth's animal-associated microbes, and domestic animals harbour 14–20% of all animal-associated microbes, adding a new dimension to the scale of human impact on the biosphere. This novel allometric power function may reflect underlying mechanisms involving the transfer of energy and materials between microorganisms and their animal hosts. Microbial diversity indices of animal gut communities and gut microbial species richness for 60 mammals did not indicate significant scaling relationships with animal body mass; however, further research in this area is warranted. PMID:26108631

  2. Allometry of animal-microbe interactions and global census of animal-associated microbes.

    Science.gov (United States)

    Kieft, Thomas L; Simmons, Karen A

    2015-07-01

    Animals live in close association with microorganisms, mostly prokaryotes, living in or on them as commensals, mutualists or parasites, and profoundly affecting host fitness. Most animal-microbe studies focus on microbial community structure; for this project, allometry (scaling of animal attributes with animal size) was applied to animal-microbe relationships across a range of species spanning 12 orders of magnitude in animal mass, from nematodes to whales. Microbial abundances per individual animal were gleaned from published literature and also microscopically counted in three species. Abundance of prokaryotes/individual versus animal mass scales as a nearly linear power function (exponent = 1.07, R(2) = 0.94). Combining this power function with allometry of animal abundance indicates that macrofauna have an outsized share of animal-associated microorganisms. The total number of animal-associated prokaryotes in Earth's land animals was calculated to be 1.3-1.4 × 10(25) cells and the total of marine animal-associated microbes was calculated to be 8.6-9.0 × 10(24) cells. Animal-associated microbes thus total 2.1-2.3 × 10(25) of the approximately 10(30) prokaryotes on the Earth. Microbes associated with humans comprise 3.3-3.5% of Earth's animal-associated microbes, and domestic animals harbour 14-20% of all animal-associated microbes, adding a new dimension to the scale of human impact on the biosphere. This novel allometric power function may reflect underlying mechanisms involving the transfer of energy and materials between microorganisms and their animal hosts. Microbial diversity indices of animal gut communities and gut microbial species richness for 60 mammals did not indicate significant scaling relationships with animal body mass; however, further research in this area is warranted. PMID:26108631

  3. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing.

    Science.gov (United States)

    Labonte, David; Clemente, Christofer J; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J; Irschick, Duncan J; Federle, Walter

    2016-02-01

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives. PMID:26787862

  4. Allometry, sexual dimorphism, and phylogeny: a cladistic analysis of extant African papionins using craniodental data.

    Science.gov (United States)

    Gilbert, Christopher C; Frost, Stephen R; Strait, David S

    2009-09-01

    This study conducts a phylogenetic analysis of extant African papionin craniodental morphology, including both quantitative and qualitative characters. We use two different methods to control for allometry: the previously described narrow allometric coding method, and the general allometric coding method, introduced herein. The results of this study strongly suggest that African papionin phylogeny based on molecular systematics, and that based on morphology, are congruent and support a Cercocebus/Mandrillus clade as well as a Papio/Lophocebus/Theropithecus clade. In contrast to previous claims regarding papionin and, more broadly, primate craniodental data, this study finds that such data are a source of valuable phylogenetic information and removes the basis for considering hard tissue anatomy "unreliable" in phylogeny reconstruction. Among highly sexually dimorphic primates such as papionins, male morphologies appear to be particularly good sources of phylogenetic information. In addition, we argue that the male and female morphotypes should be analyzed separately and then added together in a concatenated matrix in future studies of sexually dimorphic taxa. Character transformation analyses identify a series of synapomorphies uniting the various papionin clades that, given a sufficient sample size, should potentially be useful in future morphological analyses, especially those involving fossil taxa.

  5. Allometry of facial mobility in anthropoid primates: implications for the evolution of facial expression.

    Science.gov (United States)

    Dobson, Seth D

    2009-01-01

    Body size may be an important factor influencing the evolution of facial expression in anthropoid primates due to allometric constraints on the perception of facial movements. Given this hypothesis, I tested the prediction that observed facial mobility is positively correlated with body size in a comparative sample of nonhuman anthropoids. Facial mobility, or the variety of facial movements a species can produce, was estimated using a novel application of the Facial Action Coding System (FACS). I used FACS to estimate facial mobility in 12 nonhuman anthropoid species, based on video recordings of facial activity in zoo animals. Body mass data were taken from the literature. I used phylogenetic generalized least squares (PGLS) to perform a multiple regression analysis with facial mobility as the dependent variable and two independent variables: log body mass and dummy-coded infraorder. Together, body mass and infraorder explain 92% of the variance in facial mobility. However, the partial effect of body mass is much stronger than for infraorder. The results of my study suggest that allometry is an important constraint on the evolution of facial mobility, which may limit the complexity of facial expression in smaller species. More work is needed to clarify the perceptual bases of this allometric pattern.

  6. Inter-site variation in allometry and wood density of Goupia glabra Aubl. in Amazonia.

    Science.gov (United States)

    Siliprandi, N C; Nogueira, E M; Toledo, J J; Fearnside, P M; Nascimento, H E M

    2016-02-01

    The present study aims to compare the allometry and wood density of Goupia glabra Aubl. (Goupiaceae) in two different terra-firme sites in Amazonian forest. A total of 65 trees ≥ 10 cm DBH was sampled in both sites, with 39 trees in Nova Olinda do Norte (NOlinda, near the Amazon River) and 29 trees in Apuí (near the southern edge of the Amazon forest). Except for the relationship between DBH (diameter at breast height) and Ht (total height), allometric relationships for G.glabra differed significantly between sites. Apuí had lower intercept and greater slope for log10 (DBH) versus log10 (Hs - stem height), and, conversely, greater intercept and lower slope for log10 (DBH) versus log10 (Ch - crown height). The slope differed significantly between the sites for DBH versus Cd (crown diameter), with greater slope found for NOlinda. Mean basic wood density in Apuí was 8.8% lower than in NOlinda. Our findings highlight the variation in adaptive strategy of G. glabra due to environmental differences between sites. This is probably because of different canopy-understory light gradients, which result in differentiation of resource allocation between vertical and horizontal growth, which, in turn, affects mechanical support related to wood density. We also hypothesize that differences in soil fertility and disturbance regimes between sites may act concomitantly with light. PMID:26909641

  7. Allometry of a neotropical palm, Euterpe edulis Mart. Alometria de uma palmeira Neotropical, Euterpe edulis Mart

    Directory of Open Access Journals (Sweden)

    Luciana F. Alves

    2004-06-01

    Full Text Available The stem allometry (stem diameter vs. tree height of a Neotropical palm (Euterpe edulis found in rain and seasonal forest of Southeastern Brazil was examined. Observed height-diameter relationships along the stem (diameter at ground level, (dgl, and diameter at breast height (dbh were compared to three theoretical stability mechanical models: elastic similarity, stress similarity and geometric similarity. Slopes of log-transformed height-diameter relationships did not lie near those predicted by any stability mechanical models. Significant differences in stem allometry were found when comparing dgl to dbh, suggesting greater increase in dbh with height. The relationship between stability safety factor (SSF and palm height showed that both dgl and dbh were found to be above McMahon's theoretical buckling limit for dicotyledonous trees, but some individuals approached this limit in relation to dbh. Despite displaying a similar decreasing pattern of SSF with height, differences found in SSF along the stem - greater SSF for dgl when compared to dbh - indicate that the risk of mechanism failure in palms depends upon the size and varies along the stem. Distinct allometric relationships along the stem obtained for Euterpe edulis may be reflecting possible differences in stem design and growth strategies.Neste trabalho foram analisadas as relações entre o diâmetro e a altura de uma palmeira Neotropical (Euterpe edulis comum na Floresta Atlântica do SE do Brasil. As relações observadas entre a altura e o diâmetro ao longo do estipe (diâmetro ao nível do solo (DAS, e diâmetro ao nível do peito (DAP foram comparadas a três modelos teóricos de estabilidade mecânica: similaridade elástica, similaridade de estresse e similaridade geométrica. As inclinações das regressões altura-diâmetro não se ajustaram a nenhum dos modelos de estabilidade mecânica. Diferenças significativas na alometria do estipe foram encontradas comparando-se as rela

  8. Long-Bone Allometry of Terrestrial Mammals and the Geometric-Shape and Elastic-Force Constraints of Bone Evolution

    CERN Document Server

    Kokshenev, V B; García, G J M

    2003-01-01

    A natural similarity in body dimensions of terrestrial animals noticed by ancient philosophers remains the main key to the problem of mammalian skeletal evolution with body mass explored in theoretical and experimental biology and tested by comparative zoologists. We discuss the long-standing problem of mammalian bone allometry commonly studied in terms of the so-called ''geometric'', ''elastic'', and ''static stress'' similarities by McMahon (1973, 1975a, 1975b). We revise the fundamental assumptions underlying these similarities and give new physical insights into geometric-shape and elastic-force constraints imposed on spatial evolution of mammalian long bones.

  9. Diversity in olfactory bulb size in birds reflects allometry, ecology and phylogeny

    Directory of Open Access Journals (Sweden)

    Jeremy Richard Corfield

    2015-07-01

    Full Text Available The relative size of olfactory bulbs is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of olfactory bulbs are correlated with some behaviors, however, the factors that have led to the high level of diversity seen in olfactory bulb sizes across birds are still not well understood. In this study, we use the relative size of olfactory bulbs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of olfactory bulbs with brain size across avian orders, determined likely ancestral states and test for correlations between OB sizes and habitat, ecology and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large olfactory bulbs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi aquatic environment was the strongest variable driving the evolution of large olfactory bulbs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is a critically important sensory modality for all avian species.

  10. Vision in semi-aquatic snakes: Intraocular morphology, accommodation, and eye: Body allometry

    Science.gov (United States)

    Plylar, Helen Bond

    Vision in vertebrates generally relies on the refractive power of the cornea and crystalline lens to facilitate vision. Light from the environment enters the eye and is refracted by the cornea and lens onto the retina for production of an image. When an animal with a system designed for air submerges underwater, the refractive power of the cornea is lost. Semi-aquatic animals (e.g., water snakes, turtles, aquatic mammals) must overcome this loss of corneal refractive power through visual accommodation. Accommodation relies on change of the position or shape of the lens to change the focal length of the optical system. Intraocular muscles and fibers facilitate lenticular displacement and deformation. Snakes, in general, are largely unstudied in terms of visual acuity and intraocular morphology. I used light microscopy and scanning electron microscopy to examine differences in eye anatomy between five sympatric colubrid snake species (Nerodia cyclopion, N. fasciata, N. rhombifer, Pantherophis obsoletus, and Thamnophis proximus) from Southeast Louisiana. I discovered previously undescribed structures associated with the lens in semi-aquatic species. Photorefractive methods were used to assess refractive error. While all species overcame the expected hyperopia imposed by submergence, there was interspecific variation in refractive error. To assess scaling of eye size with body size, I measure of eye size, head size, and body size in Nerodia cyclopion and N. fasciata from the SLU Vertebrate Museum. In both species, body size increases at a significantly faster rate than head size and eye size (negative allometry). Small snakes have large eyes relative to body size, and large snakes have relatively small eyes. There were interspecific differences in scaling of eye size with body size, where N. fasciata had larger eye diameter, but N. cyclopion had longer eyes (axial length).

  11. Influence of shade tolerance and development stage on the allometry of ten temperate tree species.

    Science.gov (United States)

    Franceschini, Tony; Schneider, Robert

    2014-11-01

    Allometry studies the change in scale between two dimensions of an organism. The metabolic theory of ecology predicts invariant allometric scaling exponents, while empirical studies evidenced inter- and intra-specific variations. This work aimed at identifying the sources of variations of the allometric exponents at both inter- and intra-specific levels using stem analysis from 9,363 trees for ten Eastern Canada species with a large shade-tolerance gradient. Specifically, the yearly allometric exponents, α(v,DBH) [volume (v) and diameter at breast height (DBH)], β(v,h) [v and height (h)], and γ(h,DBH) (h and DBH) were modelled as a function of tree age for each species. α(v,DBH), and γ(h,DBH) increased with tree age and then reached a plateau ranging from 2.45 to 3.12 for α(v,DBH), and 0.874-1.48 for γ(h,DBH). Pine species presented a local maximum. No effect of tree age on β(v,h) was found for conifers, while it increased until a plateau ranging from 3.71 to 5.16 for broadleaves. The influence of shade tolerance on the growth trajectories was then explored. In the juvenile stage, α(v,DBH), and γ(h,DBH) increased with shade tolerance while β(v,h) was shade-tolerance independent. In the mature stage, β(v,h) increased with shade tolerance, whereas γ(h,DBH) decreased and α(v,DBH) was shade-tolerance independent. The interaction between development stage and shade tolerance for allometric exponents demonstrates the importance of the changing functional requirements of trees for resource allocation at both the inter- and intra-specific level. These results indicate the need to also integrate specific functional traits, growth strategies and allocation, in allometric theoretical frameworks. PMID:25168006

  12. Honest signaling in domestic piglets (Sus scrofa domesticus): vocal allometry and the information content of grunt calls.

    Science.gov (United States)

    Garcia, Maxime; Wondrak, Marianne; Huber, Ludwig; Fitch, W Tecumseh

    2016-06-15

    The information conveyed in acoustic signals is a central topic in mammal vocal communication research. Body size is one form of information that can be encoded in calls. Acoustic allometry aims to identify the specific acoustic correlates of body size within the vocalizations of a given species, and formants are often a useful acoustic cue in this context. We conducted a longitudinal investigation of acoustic allometry in domestic piglets (Sus scrofa domesticus), asking whether formants of grunt vocalizations provide information concerning the caller's body size over time. On four occasions, we recorded grunts from 20 kunekune piglets, measured their vocal tract length by means of radiographs (X-rays) and weighed them. Controlling for effects of age and sex, we found that body weight strongly predicts vocal tract length, which in turn determines formant frequencies. We conclude that grunt formant frequencies could allow domestic pigs to assess a signaler's body size as it grows. Further research using playback experiments is needed to determine the perceptual role of formants in domestic pig communication. PMID:27059064

  13. Ontogenetic allometry constrains cranial shape of the head-first burrowing worm lizard Cynisca leucura (Squamata: Amphisbaenidae).

    Science.gov (United States)

    Hipsley, Christy A; Rentinck, Marc-Nicolas; Rödel, Mark-Oliver; Müller, Johannes

    2016-09-01

    Amphisbaenians are fossorial, predominantly limbless squamate reptiles with distinct cranial shapes corresponding to specific burrowing behaviors. Due to their cryptic lifestyles and the scarcity of museum specimens, little is known of their intraspecific variation, particularly regarding cranial osteology. This represents a critical lack of information, because the majority of morphological investigations of squamate relationships are based on cranial characters. We investigated cranial variation in the West African Coast Worm Lizard Cynisca leucura, a round-headed member of the Amphisbaenidae. Using geometric morphometric analyses of three-dimensional computed tomographic scans, we found that cranial osteology of C. leucura is highly conserved, with the majority of shape changes occurring during growth as the cranium becomes more slender and elongate, accompanied by increasing interdigitation among the dermal roofing bones. Elements of the ventral portion of the cranium remain loosely connected in adults, possibly as a protective mechanism against repeated compression and torsion during burrow excavation. Intraspecific variation was strongly correlated with size change from juveniles to adults, indicating a dominant role of ontogenetic allometry in determining cranial shape. We found no evidence of sexual dimorphism, either during growth or among adults. Given the fossorial habits of C. leucura, we hypothesize that cranial allometry is under strong stabilizing selection to maintain adequate proportions for head-first digging, thereby constraining the ability of individuals to respond to differing selection pressures, including sexual selection and variation in diet or microhabitat. For species in which digging imposes less mechanical stress (e.g., in softer sand), allometric associations during growth may be weakened, allowing changes to the ontogenetic trajectory and subsequent morphological traits. Such developmental dissociation between size and shape, known

  14. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    Science.gov (United States)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  15. Shoot allometry and biomass productivity in poplar and willow varieties grown as short rotation coppice. Summary of results 1995-2000

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R.; Henshall, P.; Tubby, I.

    2003-07-01

    This report summarises the results of a 4 year study assessing shoot diameters and lengths using non-destructive measurements in order to establish allometric relationships between biomass and non-destructive measurements and also to provide estimates of increments for the development of a model of short rotation cultivation growth and yield. Details are given of the basic methodology and measurement conventions; the data preparation, quality assurance classification and storage; and shoot diameter and length assessments and allometry analyses.

  16. Intersexual allometry differences and ontogenetic shifts of coloration patterns in two aquatic turtles, Graptemys oculifera and Graptemys flavimaculata.

    Science.gov (United States)

    Ennen, Joshua R; Lindeman, Peter V; Lovich, Jeffrey E

    2015-06-01

    Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves. PMID:26078863

  17. The Influence of Age, Location and Soil Conditions on the Allometry of Young Norway Spruce (Picea abies L. Karst. Trees

    Directory of Open Access Journals (Sweden)

    Ioan DUTCA

    2014-12-01

    Full Text Available In this study the influence of tree’s age, location (i.e. latitude and altitude and soil conditions (i.e. pH, humus content, carbon to nitrogen ratio, cation exchange capacity and percent base saturation on tree allometry was investigated. The data was collected from 22 Norway spruce (Picea abies L. Karst plantations located in Eastern Carpathians of Romania, aged between 4 and 15. From each plantation a soil sample and 10 trees were collected for soil chemical properties and biomass measurements, respectively. Root collar diameter (RCD and height (H based allometric equations were developed for total tree and vegetative organs of the tree (i.e. stem, branches, needles and roots. Furthermore, the interaction between the standardised residuals of these models and the tested factors was analysed. In order to account for the random effect of the clustered data, the mixed-effect modelling procedure was used. The results have shown no influence of these factors (age, location and soil conditions on RCD based models, except for branches biomass model which was linked to soil carbon/nitrogen ratio. The H based models, however, were significantly influenced by latitude and soil cation exchange capacity as a consequence of H/RCD ratio change with these factors. The trees were more likely to allocate more to height growth when growing in higher latitudes or on soils with higher values of cation exchange capacity.

  18. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented

  19. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass for extant phylogenetic brackets (birds, crocodiles and tortoises of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods or to the masses of reptiles (all other taxa. Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN. Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs. Our results provide new (testable hypotheses, especially for reproductive traits that are insufficiently

  20. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented

  1. Use of simple body measurements and allometry to predict the chemical growth and feed intake in pigs

    Directory of Open Access Journals (Sweden)

    Andrea Piva

    2010-01-01

    Full Text Available The paper provides a practical procedure to estimate the chemical composition of pigs, their compositional growth and the expected feed intake from measurements of body weight (BW and backfat thickness (P2 serially performed in vivo. A farm data set provided information on 920 individuals including BW, measured at 71 ± 4 (t1, 126 ± 5 (t2 and 184 ± 5 (t3 days of age, of P2 at t2 and t3, and of voluntary daily feed intake (FI, recorded over the period from t2 to t3 by automated IVOG feeders. Body lipid mass was estimated as L= (9.17 + 0.70*P2 *BW/100 and the other chemical constituents were predicted from fat free empty body mass using Gompertz growth functions and allometry. Using individual changes of body composition from age t2 to t3, energy requirements for maintenance and growth and the corresponding predicted feed intakes (PFI were estimated. Measured FI were analysed for the effects of month, batch (within month, BWt2, P2t2, average metabolic weight, average daily gain and variation of P2 from t2 to t3. The same model was run again replacing the direct simple body measurements (BW and P2 with the estimated values of PFI as source of variation. Results. The Gompertz estimates of mature protein mass (Pm, relative growth rate parameter (B and lipid to protein ratio at maturity were 43.5 ± 5.8 kg, 0.0116 ± 0.0011 d-1 and 1.81 ± 0.30, respectively. The current protein mass averaged 18.5 + 1.6 kg and the daily retentions of protein and lipid were 177 ± 21 and 239 ± 62 g/d, respectively. FI and PFI averaged 2.824 ± 0.448 and 2.814 ± 0.393 kg/d, respectively. In the ANOVA of the FI data, the replacement of direct body measurements by PFI did not change the proportion of variance explained (83% and the RSD (0.199 g/d. The two sets of residual feed intake values obtained from the two ANOVA were highly correlated (RSD = 0.043 kg/d; R2= 0.961. Agreement between predicted and determined feed intakes provided a reasonable guarantee to the

  2. Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry

    OpenAIRE

    Cohen, Joel E.; Xu, Meng; Schuster, William S. F.

    2012-01-01

    Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor’s law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density–mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict th...

  3. Quantifying the Variability of Internode Allometry within and between Trees for Pinus tabulaeformis Carr. Using a Multilevel Nonlinear Mixed-Effect Model

    Directory of Open Access Journals (Sweden)

    Jun Diao

    2014-11-01

    Full Text Available Allometric models of internodes are an important component of Functional-Structural Plant Models (FSPMs, which represent the shape of internodes in tree architecture and help our understanding of resource allocation in organisms. Constant allometry is always assumed in these models. In this paper, multilevel nonlinear mixed-effect models were used to characterize the variability of internode allometry, describing the relationship between the last internode length and biomass of Pinus tabulaeformis Carr. trees within the GreenLab framework. We demonstrated that there is significant variability in allometric relationships at the tree and different-order branch levels, and the variability decreases among levels from trees to first-order branches and, subsequently, to second-order branches. The variability was partially explained by the random effects of site characteristics, stand age, density, and topological position of the internode. Tree- and branch-level-specific allometric models are recommended because they produce unbiased and accurate internode length estimates. The model and method developed in this study are useful for understanding and describing the structure and functioning of trees.

  4. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry

    Science.gov (United States)

    Rendall, Drew; Kollias, Sophie; Ney, Christina; Lloyd, Peter

    2005-02-01

    Key voice features-fundamental frequency (F0) and formant frequencies-can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length. .

  5. Ontogenetic Tooth Reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria): Negative Allometry, Changes in Growth Rate, and Early Senescence of the Dental Lamina

    Science.gov (United States)

    Dick, Daniel G.; Maxwell, Erin E.

    2015-01-01

    We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction. PMID:26579712

  6. Ontogenetic Tooth Reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria: Negative Allometry, Changes in Growth Rate, and Early Senescence of the Dental Lamina.

    Directory of Open Access Journals (Sweden)

    Daniel G Dick

    Full Text Available We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria. We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction.

  7. Ontogenetic Tooth Reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria): Negative Allometry, Changes in Growth Rate, and Early Senescence of the Dental Lamina.

    Science.gov (United States)

    Dick, Daniel G; Maxwell, Erin E

    2015-01-01

    We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction. PMID:26579712

  8. The relationship between circulating ecdysteroids and chela allometry in male tanner crabs: Evidence for a terminal molt in the genus Chionoecetes

    Science.gov (United States)

    Tamone, S.L.; Taggart, S.J.; Andrews, A.G.; Mondragon, J.; Nielsen, J.K.

    2007-01-01

    Whether male Tanner crabs, Chionoecetes bairdi, undergo a terminal molt associated with a change in claw allometry has long been debated. We measured molting hormone levels in captured male C. bairdi to assess the potential for molting. We plotted a frequency histogram of chela height to carapace width ratios and found a bimodal distribution of crabs with a ratio of approximately 0.18 separating the two modes. Male crabs with a ratio less than 0.18 were classified as "small-clawed" (SC) while crabs with a ratio greater than 0.18 were classified as "large-clawed" (LC). Circulating molting hormones between SC and LC crabs were compared. Significantly lower ecdysteroid levels were found in LC crabs, indicating that this morphotype had negligible potential for molting. Circulating ecdysteroids were measured in SC males of different shell conditions (soft, new, old, and very old) and no significant differences were found. This research suggests that the molt to LC morphology is a terminal molt. The results from this study have important implications for fisheries management because sub-legal LC males will not recruit into the fishery and removal of larger males may have long term effects on population size structure.

  9. Woody Biomass Estimation in a Southwestern U.S. Juniper Savanna Using LiDAR-Derived Clumped Tree Segmentation and Existing Allometries

    Directory of Open Access Journals (Sweden)

    Dan J. Krofcheck

    2016-05-01

    Full Text Available The rapid and accurate assessment of above ground biomass (AGB of woody vegetation is a critical component of climate mitigation strategies, land management practices and process-based models of ecosystem function. This is especially true of semi-arid ecosystems, where the high variability in precipitation and disturbance regimes can have dramatic impacts on the global carbon budget by rapidly transitioning AGB between live and dead pools. Measuring regional AGB requires scaling ground-based measurements using remote sensing, an inherently challenging task in the sparsely-vegetated, spatially-heterogeneous landscapes characteristic of semi-arid regions. Here, we test the ability of canopy segmentation and statistic generation based on aerial LiDAR (light detection and ranging-derived 3D point clouds to derive AGB in clumps of vegetation in a juniper savanna in central New Mexico. We show that single crown segmentation, often an error-prone and challenging task, is not required to produce accurate estimates of AGB. We leveraged the relationship between the volume of the segmented vegetation clumps and the equivalent stem diameter of the corresponding trees (R2 = 0.83, p < 0.001 to drive the allometry for J. monosperma on a per segment basis. Further, we showed that making use of the full 3D point cloud from LiDAR for the generation of canopy object statistics improved that relationship by including canopy segment point density as a covariate (R2 = 0.91. This work suggests the potential for LiDAR-derived estimates of AGB in spatially-heterogeneous and highly-clumped ecosystems.

  10. On the geometry and allometry of big-buttressed trees - a challenge for forest monitoring: new insights from 3D-modeling with terrestrial laser scanning

    Directory of Open Access Journals (Sweden)

    Nölke N

    2015-10-01

    Full Text Available In many old-growth natural and close-to-natural forest types, notably in humid tropical forests, a relatively small number of very tall trees contribute considerably to stand basal area and biomass. Such trees often show distinct buttress roots with irregular non-convex shapes. Buttresses are complex structures in the lowest stem section, where most tree biomass is located. The methods used to assess the diameter of buttressed trees have a large impact on the determination of volume and biomass, as well as on the resulting estimates of the aboveground carbon stock in tropical forests. As the measurement of diameter at breast height (DBH at 1.3 m is not feasible in such conditions, the diameter above buttress (DAB, where the cylindrical bole of the tree begins, is usually measured and included as an independent variable in biomass models. We conducted a methodological study aimed at determining the volume and biomass of individual buttressed trees belonging to several tropical species by the application of terrestrial laser scanning (TLS. The geometry and allometry of the buttresses, as well as the change with height along the stem in buttress volume and cross-sectional area were analyzed. Our results suggest that the relationship between cross-sectional areas at DAB height (ADAB and the actual tree basal area measured at 1.3 m height is relatively strong (R² = 0.87 across a range of different species, buttress morphologies and tree dimensions. Furthermore, the change in stem cross-sectional area with tree height was surprisingly similar and smooth. Despite the small number of trees sampled, the methodological approach used in this study provided new insights on the very irregular geometry of buttressed trees. Our results may help improving the volume and biomass models for buttressed trees, that are crucial contributors to carbon stocks in tropical forests.

  11. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  12. Allometry in dinosaurs and mammals

    Science.gov (United States)

    Lee, Scott

    2015-03-01

    The proportions of the leg bones change as the size of an animal becomes larger since the mass of the animal increases at a faster rate than the cross-sectional area of its leg bones. For the case of elastic similarity (in which the longitudinal stress in the legs remains constant in animals of all sizes), the diameter d and length L of the femur should be related as d = A L3/2. For geometric similarity (in which all dimensions are scaled by the same factor), d = A L. For animals with femora longer than 20 cm, we find the power law relationship to be d = A Lb with b = 1.13 +/- 0.06 for extant mammals (the largest mammal being Loxodonta africana with a 1.00-m-long femur) and b = 1.18 +/- 0.02 for dinosaurs (the largest dinosaur being Brachiosaurus brancai with a 2.03-m-long femur). These data show that extinct dinosaurs and extant animals scale in the same basic manner. The large sauropods (with femora twice as long as found in elephants) scale in a manner consistent with extrapolation of the scaling shown by extant mammals. These results argue that extinct dinosaurs moved in a manner very similar to extant mammals.

  13. Multivariate allometry and myocardium abnormalities during experimental systemic nitric oxide blockage Alometria multivariada e anormalidades do miocárdio durante bloqueio sistêmico da síntese de óxido nítrico

    Directory of Open Access Journals (Sweden)

    Ricardo Xavier-Vidal

    2004-06-01

    Full Text Available Using allometry to evaluate numerical data from normal and experimental hypertensive rats' myocardium, thirteen normotensive Wistar male young rats were examined. Hearts were processed using histological routine methods. For myocardial quantification we utilized an M-42 Test-System. Fifteen fields were randomly considered. Parameters utilized: volumetric density (Vv %; volume (V µm³ and cardiac weight. The chi2 proposed by Anderson and the F proposed by Jolicoeur were utilized to test the isometric hypothesis in multivariate allometry. Results in the first analysis show eigenvalues at first principal component with proportions of 70.11%. Results concerning coefficients show V nuclei with a coefficient greater than the isometric point. In the second analysis, eigenvalues of first principal component show a proportion of 75.68%, using three variables. Results of the second analysis show Vv matrix with a coefficient greater than the isometric point. In the third analysis, eigenvalues of first principal component show a proportion of 70.18%, using three variables. Results of the third analysis show V nuclei with a coefficient greater than the isometric point. This suggests that the nuclei of the myocytes have the major variance between the variables utilized. Using chi2 and F tests we rejected isometric hypothesis. Then we can clearly identify the growth center advocated by Huxley as the myocyte nuclei. In conclusion, the data show that under this experimental hypertension, myocytes undergo intense nuclear changes probably involving great metabolic activities. In other words, these data also suggested that, to researchers interested in L-Name models on the 21st day of submission, it is important to emphasize cardiomyocyte nuclei and occurrences linked to them.Utilizamos alometria para avaliar dados numéricos experimentais oriundos do miocárdio de ratos machos jovens normais e induzidos à hipertensão. Os corações foram processados com uso de

  14. Características da carcaça e alometria dos tecidos de cabritos F1 Boer × Saanen Carcass traits and tissue allometry in Boer × Saanen kids

    Directory of Open Access Journals (Sweden)

    José Morais Pereira Filho

    2008-05-01

    Full Text Available Com o objetivo de avaliar as características de carcaça e a alometria dos cortes comerciais e dos tecidos de cabritos F1 Boer × Saanen, 35 animais foram abatidos ao atingirem 5, 10, 15, 20 e 25 kg de peso vivo (PV. A dieta dos animais foi composta de leite de vaca nos primeiros 49 dias e ração à vontade do sétimo dia até o abate. Os cortes foram obtidos após o resfriamento da carcaça e a perna foi dissecada em músculo, osso e gordura. O PV teve efeito linear decrescente no rendimento de carcaça fria e na área de olho-de-lombo por kg de carcaça. Os pesos de perna, paleta e pescoço em relação à carcaça fria decresceram linearmente, mas houve efeito quadrático sobre o rendimento de costelas e lombo. O crescimento de paleta, pescoço e perna foi isométrico (b=1 ao do corpo, enquanto o das costelas e do lombo foi mais lento (b¹ 1. Os músculos da perna cresceram igualmente, a gordura mais lenta e os ossos mais rapidamente que a perna, enquanto o desenvolvimento da gordura subcutânea foi mais tardio que o da intermuscular. Para obtenção de carcaça de 8 a 11 kg com rendimento superior a 44%, boa proporção de músculo e gordura com menor perda durante o resfriamento, recomenda-se abater os animais com PV entre 20 e 25 kg, mas, se o objetivo for carcaça de menor peso, o abate dos animais deve ser feito ao final do aleitamento com aproximadamente 10 kg de peso corporal.Thirty-five male kids Boer × Saanen kids were shaughtered at 5, 10, 15, 20 e 25 kg BW to evaluate the carcass traits and commercial cuts and tissues allometry. The diet fed to the animas was composed by cow milk in the first 49 days and ad libitum ration from the seventh day until slaughter. The cuts were obtained after cooling of the carcass and the leg dissected in muscle, bone and fat. The body weight showed a negative linear effect on cold carcass dressing and the loin-eye area/kg of carcass. The weights of leg, shoulder and neck in relation to cold carcass

  15. Watershed hydrology, network allometry and ecosystem structure

    Science.gov (United States)

    Rinaldo, A.

    2003-04-01

    The lecture covers recent advances relevant to watershed hydrology, in particular derived from the realm of data now available, covering a wide range of scales and objectively collected and analyzed. It is intended to summarize results that are, in the lecturer's opinion, crucial to our current understanding of a variety of issues. Key among them, landscape evolution models, models of the hydrologic response and, indeed a scientific challenge, ecosystem structure. In particular, a new allometric scaling law for loopless networks, confirmed through studies on rivers, exact network results and computer simulations, offers unique insight on a variety of phenomena, ranging from the ubiquity of the 'quarter-power' law in biology to the origin of scaling size spectra in marine microbial ecosystems, to the proper geomorphological description of a river basin and its hydrological implications. In a sense, networks are a byproduct of the hydrologic dynamics, and indeed can be shown to be related to ecosystem structure. Si parva licet, I will provide evidence suggesting that ensemble averaging of the allometric property (where individual realizations are different networks) leads to results in excellent accord with the known limit scaling of efficient and compact networks with remarkably little scatter with implications of somewhat general character. Such results complement recent work suggesting that scaling features are quite robust to geometrical fluctuations of network properties. Finally, I shall gather from the morphological analysis on river networks the potential for predicting the main characters of the hydrologic response in ungauged basins - a task of practical nature with many social implications, possibly relevant to the Session's aims.

  16. Growth and Allometry in Modern Morphometrics: Review

    OpenAIRE

    Deniz SIĞIRLI; Ercan, İlker

    2013-01-01

    In traditional shape analysis, linear distance, angles and ratios of measurements are used in multivariate statistical analyses. The challenge in any analysis of growth is to extend quantitative description and to explore aspects of the biology of a given organism, such as the genetic basis of morphogenesis, the phylogenetic underpinnings of developmental patterns, or the role of hormones, teratogens, dietary elements, and other environmental variables on the growth process. It is important t...

  17. Allometry, temperature, and the stability of food webs

    OpenAIRE

    Rall, Björn Christian

    2010-01-01

    Understanding the mechanisms driving stability in natural ecosystems is of crucial importance, especially in the current context of global change. A classic paradigm in ecology was that complex food webs (the “who eats whom” of natural ecosystems) should be unstable. This paradigm, however, was based on simple mathematical models. Throughout the last decades, scientists proposed solutions to the contradictions between the predictions of simple models and the observation of the complexity of n...

  18. Brain Allometry and Neural Plasticity in the Bumblebee Bombus occidentalis

    OpenAIRE

    Riveros, Andre J.; Gronenberg, Wulfila

    2010-01-01

    Brain plasticity is a common phenomenon across animals and in many cases it is associated with behavioral transitions. In social insects, such as bees, wasps and ants, plasticity in a particular brain compartment involved in multisensory integration (the mushroom body) has been associated with transitions between tasks differing in cognitive demands. However, in most of these cases, transitions between tasks are age-related, requiring the experimental manipulation of the age structure in the ...

  19. Reproductive allometry in Pedicularis species changes with elevation

    DEFF Research Database (Denmark)

    Guo, Hui; Weiner, Jacob; Mazer, Susan J.;

    2012-01-01

    at smaller sizes and less at larger sizes than plants growing at lower elevations. 5. Synthesis. The allometric slope (exponent) of the R–V relationship decreases with increasing elevation among Pedicularis populations and species, reflecting fundamental changes in the costs and benefits of increased...... reproductive allocation at smaller sizes and a smaller investment in reproduction per additional unit of biomass accumulated. 3. We investigated variation in the allometric relationship between R and V among 44 naturally occurring populations representing 24 species of Pedicularis in the Tibetan Plateau......, to test the hypothesis that the slope of the relationship declines with increasing elevation. 4. There was a significant negative relationship between the slope of the log R vs. log V relationship and elevation among populations, although the relationship among populations within species varied. We...

  20. Flight mode affects allometry of migration range in birds.

    Science.gov (United States)

    Watanabe, Yuuki Y

    2016-08-01

    Billions of birds migrate to exploit seasonally available resources. The ranges of migration vary greatly among species, but the underlying mechanisms are poorly understood. I hypothesise that flight mode (flapping or soaring) and body mass affect migration range through their influence on flight energetics. Here, I compiled the tracks of migratory birds (196 species, weighing 12-10 350 g) recorded by electronic tags in the last few decades. In flapping birds, migration ranges decreased with body mass, as predicted from rapidly increasing flight cost with increasing body mass. The species with higher aspect ratio and lower wing loading had larger migration ranges. In soaring birds, migration ranges were mass-independent and larger than those of flapping birds, reflecting their low flight costs irrespective of body mass. This study demonstrates that many animal-tracking studies are now available to explore the general patterns and the underlying mechanisms of animal migration.

  1. Allometria da palmeira babaçu em um agroecossistema de derruba-e-queima na periferia este da Amazônia Allometry of the babassu palm growing on a slash-and-burn agroecosystem of the eastern periphery of Amazonia

    Directory of Open Access Journals (Sweden)

    Christoph Gehring

    2011-03-01

    .Babassu (Attalea speciosa C.Martius, Arecaceae is a palm with extraordinary socioeconomic and ecologic importance in large areas of tropical Brazil, especially in frequently burned and degraded landscapes. Nevertheless, surprisingly little is known about this keystone species. This paper investigates the allometry of babassu, in order to improve understanding on palm architecture and to provide researchers with an efficient tool for aboveground biomass estimation of juvenile and adult palms. Juvenile leaf biomass can be accurately predicted with the easily measurable minimum diameter of rachis at 30 cm extension. Adult palm biomass can be estimated based on woody stem height, a variable fairly easily measurable on-field. Leaf biomass of adult palms was highly variable, averaged 31.7% of aboveground biomass and can be estimated only indirectly through the relationships between wood:leaf-ratio and total aboveground biomass. Carbon contents varied little in the babassu palm, without size- or growth-stage related differences, suggesting the general applicability of values (42.5% C for stems, 39.8% C for leaves. As a consequence of the limited secondary diameter growth inherent to palms, stem diameter of adult palms is unrelated to palm height and biomass. Stem tapering decreases with increasing palm height. This is partially compensated by increasing wood density in near cylindrical stems. Nevertheless, maximum babassu palm height of about 30 meters appears to be dictated by mechanical stability constraints. All allometric relationships of babassu described in this study are not affected by vegetation stand age, indicating the general applicability of these relationships.

  2. Closing a gap in tropical forest biomass estimation: accounting for crown mass variation in pantropical allometries

    Directory of Open Access Journals (Sweden)

    P. Ploton

    2015-12-01

    Full Text Available Accurately monitoring tropical forest carbon stocks is an outstanding challenge. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference in the coming years. However, this reference model shows a systematic bias for the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass dataset on 673 trees measured in five tropical countries (101 trees > 100 cm in diameter and an original dataset of 130 forest plots (1 ha from central Africa to quantify the error of biomass allometric models at the individual and plot levels when explicitly accounting or not accounting for crown mass variations. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees 1 Mg and reduced the range of plot-level error from −23–16 to 0–10 %. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far-from-negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by accounting for a crown mass proxy for the largest trees in a stand, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost.

  3. The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean

    Science.gov (United States)

    García, Francisca C; García-Martín, Enma Elena; Taboada, Fernando González; Sal, Sofía; Serret, Pablo; López-Urrutia, Ángel

    2016-01-01

    Prokaryotic planktonic organisms are small in size but largely relevant in marine biogeochemical cycles. Due to their reduced size range (0.2 to 1 μm in diameter), the effects of cell size on their metabolism have been hardly considered and are usually not examined in field studies. Here, we show the results of size-fractionated experiments of marine microbial respiration rate along a latitudinal transect in the Atlantic Ocean. The scaling exponents obtained from the power relationship between respiration rate and size were significantly higher than one. This superlinearity was ubiquitous across the latitudinal transect but its value was not universal revealing a strong albeit heterogeneous effect of cell size on microbial metabolism. Our results suggest that the latitudinal differences observed are the combined result of changes in cell size and composition between functional groups within prokaryotes. Communities where the largest size fraction was dominated by prokaryotic cyanobacteria, especially Prochlorococcus, have lower allometric exponents. We hypothesize that these larger, more complex prokaryotes fall close to the evolutionary transition between prokaryotes and protists, in a range where surface area starts to constrain metabolism and, hence, are expected to follow a scaling closer to linearity. PMID:26636550

  4. Allometries for Widely Spaced Populus ssp. and Betula ssp. in Nurse Crop Systems

    Directory of Open Access Journals (Sweden)

    Hendrik Stark

    2013-11-01

    Full Text Available Nurse crops of widely spaced pioneer trees are a silvicultural approach to protect the regeneration of frost sensitive target tree species. If overstorey nurse crops are harvested, they can provide additional short-term benefits through increased biomass production, e.g., for bioenergy. However, the intensification of biomass exports from forests might impact negatively on ecosystem nutrient pools. Thus, precise allometric biomass equations are required to quantify biomass and nutrient removals. Since an analysis of published allometric equations developed for typical, dense aspen or birch forests showed that the tree height-to-diameter ratio correlated positively and the proportion of branch biomass negatively with stand density, we developed new allometric biomass equations for widely spaced aspen and birch growing at 4 x 4 m spacing. These equations yielded a root mean squared error of 13% when predicting total aboveground woody biomass for our sample trees. In contrast, the corresponding root mean squared error produced by allometric biomass equations from the literature ranged between 17% to 106% of actual dry biomass. Our results show that specific allometric biomass equations are needed for widely spaced pioneer trees both for accurate estimates of biomass and the nutrients contained within.

  5. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient

    DEFF Research Database (Denmark)

    Marshall, A.R.; Willcock, S.; Platts, P.J.;

    2012-01-01

    of disturbance, topography, climate, soil and methods for stem measurement, on the estimation of AGC, or the costs of improving AGC estimates by altering sample regimes. We established 18 one hectare plots containing 7201 stems, stratified along forested elevation gradients in Tanzania. We recorded a broad set......-elevation (1000–1250 m), on south-facing slopes, and without past logging. High AGC was strongly associated with shallow slopes, followed by intermediate elevation, elephant absence, low potential evapotranspiration and low soil pH. Further regression models to investigate the structural habitat features......:benefit of different measurements and recommend a tiered approach to AGC monitoring, depending on available resources. AGC assessments in African forests could exclude small stems, but should aim to record disturbance, topography and species. Stem height is vital for AGC estimation and valuation; when excluding height...

  6. Mandible shape and dwarfism in squirrels (Mammalia, Rodentia): interaction of allometry and adaptation

    Science.gov (United States)

    Hautier, Lionel; Fabre, Pierre-Henri; Michaux, Jacques

    2009-06-01

    Squirrels include several independent lineages of dwarf forms distributed into two ecological groups: the dwarf tree and flying squirrels. The mandible of dwarf tree squirrels share a highly reduced coronoid process and a condylar process drawn backwards. Dwarf flying squirrels on the other hand, have an elongated coronoid process and a well-differentiated condylar process. To interpret such a difference, Elliptic Fourier Transform was used to evaluate how mandible shape varies with dwarfism in sciurids. The results obtained show that this clear-cut difference cannot be explained by a simple allometric relationship in relation with size decrease. We concluded that the retention of anteriorly positioned eye sockets, in relation with distance estimation, allowed the conservation of a well-differentiated coronoid process in all flying species, despite the trend towards its reduction observed among sciurids as their size decreases.

  7. Uncertainty of Forest Biomass Estimates in North Temperate Forests Due to Allometry: Implications for Remote Sensing

    Directory of Open Access Journals (Sweden)

    Razi Ahmed

    2013-06-01

    Full Text Available Estimates of above ground biomass density in forests are crucial for refining global climate models and understanding climate change. Although data from field studies can be aggregated to estimate carbon stocks on global scales, the sparsity of such field data, temporal heterogeneity and methodological variations introduce large errors. Remote sensing measurements from spaceborne sensors are a realistic alternative for global carbon accounting; however, the uncertainty of such measurements is not well known and remains an active area of research. This article describes an effort to collect field data at the Harvard and Howland Forest sites, set in the temperate forests of the Northeastern United States in an attempt to establish ground truth forest biomass for calibration of remote sensing measurements. We present an assessment of the quality of ground truth biomass estimates derived from three different sets of diameter-based allometric equations over the Harvard and Howland Forests to establish the contribution of errors in ground truth data to the error in biomass estimates from remote sensing measurements.

  8. Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms

    KAUST Repository

    Molina-Ramírez, Axayacatl

    2015-05-19

    We have supplemented available, concurrent measurements of fresh weight (W, g) and body carbon (C, g) (46 individuals, 14 species) and nitrogen (N, g) (11 individuals, 9 species) of marine gelatinous animals with data obtained during the global ocean MALASPINA 2010 Expedition (totalling 267 individuals and 33 species for the W versus C data; totalling 232 individuals and 31 species for the N versus C data). We then used those data to test the allometric properties of the W versus C and N versus C relationships. Overall, gelatinous organisms contain 1.13 ± 1.57% of C (by weight, mean ± SD) in their bodies and show a C:N of 4.56 ± 2.46, respectively, although estimations can be improved by using separate conversion coefficients for the carnivores and the filter feeders. Reduced major axis regression indicates that W increases isometrically with C in the carnivores (cnidarians and ctenophores), implying that their water content can be described by a single conversion coefficient of 173.78 gW(g C)-1, or a C content of 1.17 ± 1.90% by weight, although there is much variability due to the existence of carbon-dense species. In contrast, W increases more rapidly than C in the filter feeders (salps and doliolids), according to a power relationship W = 446.68C1.54. This exponent is not significantly different from 1.2, which is consistent with the idea that the watery bodies of gelatinous animals represent an evolutionary response towards increasing food capture surfaces, i.e. a bottom-up rather than a top-down mechanism. Thus, the available evidence negates a bottom-up mechanism in the carnivores, but supports it in the filter feeders. Last, N increases isometrically with C in both carnivores and filter feeders with C:N ratios of 3.89 ± 1.34 and 4.38 ± 1.21, respectively. These values are similar to those of compact, non-gelatinous organisms and reflect a predominantly herbivorous diet in the filter feeders, which is confirmed by a difference of one trophic level between filter feeders and carnivores, according to stable N isotope enrichment data. © 2015 The Author.

  9. The Allometry of Bee Proboscis Length and Its Uses in Ecology.

    Science.gov (United States)

    Cariveau, Daniel P; Nayak, Geetha K; Bartomeus, Ignasi; Zientek, Joseph; Ascher, John S; Gibbs, Jason; Winfree, Rachael

    2016-01-01

    Allometric relationships among morphological traits underlie important patterns in ecology. These relationships are often phylogenetically shared; thus quantifying allometric relationships may allow for estimating difficult-to-measure traits across species. One such trait, proboscis length in bees, is assumed to be important in structuring bee communities and plant-pollinator networks. However, it is difficult to measure and thus rarely included in ecological analyses. We measured intertegular distance (as a measure of body size) and proboscis length (glossa and prementum, both individually and combined) of 786 individual bees of 100 species across 5 of the 7 extant bee families (Hymenoptera: Apoidea: Anthophila). Using linear models and model selection, we determined which parameters provided the best estimate of proboscis length. We then used coefficients to estimate the relationship between intertegular distance and proboscis length, while also considering family. Using allometric equations with an estimation for a scaling coefficient between intertegular distance and proboscis length and coefficients for each family, we explain 91% of the variance in species-level means for bee proboscis length among bee species. However, within species, individual-level intertegular distance was a poor predictor of individual proboscis length. To make our findings easy to use, we created an R package that allows estimation of proboscis length for individual bee species by inputting only family and intertegular distance. The R package also calculates foraging distance and body mass based on previously published equations. Thus by considering both taxonomy and intertegular distance we enable accurate estimation of an ecologically and evolutionarily important trait.

  10. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    Science.gov (United States)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  11. Closing a gap in tropical forest biomass estimation: accounting for crown mass variation in pantropical allometries

    Science.gov (United States)

    Ploton, P.; Barbier, N.; Momo, S. T.; Réjou-Méchain, M.; Boyemba Bosela, F.; Chuyong, G.; Dauby, G.; Droissart, V.; Fayolle, A.; Goodman, R. C.; Henry, M.; Kamdem, N. G.; Katembo Mukirania, J.; Kenfack, D.; Libalah, M.; Ngomanda, A.; Rossi, V.; Sonké, B.; Texier, N.; Thomas, D.; Zebaze, D.; Couteron, P.; Berger, U.; Pélissier, R.

    2015-12-01

    Accurately monitoring tropical forest carbon stocks is an outstanding challenge. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference in the coming years. However, this reference model shows a systematic bias for the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass dataset on 673 trees measured in five tropical countries (101 trees > 100 cm in diameter) and an original dataset of 130 forest plots (1 ha) from central Africa to quantify the error of biomass allometric models at the individual and plot levels when explicitly accounting or not accounting for crown mass variations. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees Accounting for a crown mass proxy in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot-level error from -23-16 to 0-10 %. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far-from-negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by accounting for a crown mass proxy for the largest trees in a stand, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost.

  12. Describing urban evolution with the fractal parameters based on area-perimeter allometry

    CERN Document Server

    Chen, Yanguang

    2015-01-01

    The area-perimeter allometric scaling is a basic and important approach for researching fractal cities and has been studied for a long time. However, the boundary dimension of a city is always numerically overestimated by the traditional formula. An adjusting formula has been derived to revise the overestimated boundary dimension and estimate the form dimension, but the association between the global and local fractal parameters is not clear. This paper is devoted to describing the urban evolution by using the improved fractal parameters based on the area-perimeter measure relation. A system of 68 cities and towns in Yangtze River Delta, China, is taken as an example to make a case study. A discovery is that the average values of the local fractal parameters are approximately equal to the corresponding global fractal parameters of cities. This suggests that the local parameters are the decomposition of the global parameters. The novelty of this empirical study is as follows: first, the form dimension and boun...

  13. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach

    OpenAIRE

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-01-01

    Background: Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower...

  14. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution

    Science.gov (United States)

    Okie, Jordan G.; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Evans, Alistair R.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Saarinen, Juha J.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica; Uhen, Mark D.; Sibly, Richard M.

    2013-01-01

    Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity. PMID:23760865

  15. Energy efficiency and allometry of movement of swimming and flying animals.

    Science.gov (United States)

    Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patankar, Neelesh A

    2014-05-27

    Which animals use their energy better during movement? One metric to answer this question is the energy cost per unit distance per unit weight. Prior data show that this metric decreases with mass, which is considered to imply that massive animals are more efficient. Although useful, this metric also implies that two dynamically equivalent animals of different sizes will not be considered equally efficient. We resolve this longstanding issue by first determining the scaling of energy cost per unit distance traveled. The scale is found to be M(2/3) or M(1/2), where M is the animal mass. Second, we introduce an energy-consumption coefficient (CE) defined as energy per unit distance traveled divided by this scale. CE is a measure of efficiency of swimming and flying, analogous to how drag coefficient quantifies aerodynamic drag on vehicles. Derivation of the energy-cost scale reveals that the assumption that undulatory swimmers spend energy to overcome drag in the direction of swimming is inappropriate. We derive allometric scalings that capture trends in data of swimming and flying animals over 10-20 orders of magnitude by mass. The energy-consumption coefficient reveals that swimmers beyond a critical mass, and most fliers are almost equally efficient as if they are dynamically equivalent; increasingly massive animals are not more efficient according to the proposed metric. Distinct allometric scalings are discovered for large and small swimmers. Flying animals are found to require relatively more energy compared with swimmers.

  16. A general model for the structure and allometry of plant vascular systems

    Science.gov (United States)

    West, Geoffrey B.; Brown, James H.; Enquist, Brian J.

    1999-08-01

    Vascular plants vary in size by about twelve orders of magnitude, and a single individual sequoia spans nearly this entire range as it grows from a seedling to a mature tree. Size influences nearly all of the structural, functional and ecological characteristics of organisms,. Here we present an integrated model for the hydrodynamics, biomechanics and branching geometry of plants, based on the application of a general theory of resource distribution through hierarchical branching networks to the case of vascular plants. The model successfully predicts a fractal-like architecture and many known scaling laws, both between and within individual plants, including allometric exponents which are simple multiples of 1/4. We show that conducting tubes must taper and, consequently, that the resistance and fluid flow per tube are independent of the total path length and plant size. This resolves the problem of resistance increasing with length, thereby allowing plants to evolve vertical architectures and explaining why the maximum height of trees is about 100m. It also explains why the energy use of plants in ecosystems is size independent.

  17. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution.

    Science.gov (United States)

    Okie, Jordan G; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Evans, Alistair R; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Saarinen, Juha J; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica; Uhen, Mark D; Sibly, Richard M

    2013-08-01

    Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow-fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow-fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

  18. Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands

    NARCIS (Netherlands)

    Oliveras Menor, I.; Eynden, van der M.; Malhi, Y.; Cahuana, N.; Menor, C.; Zamora, F.; Haugaasen, T.

    2014-01-01

    The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above-ground biomass and developed species specific and multispecies power-law allometric equations for four tussock grass speci

  19. Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries

    Science.gov (United States)

    Ploton, Pierre; Barbier, Nicolas; Takoudjou Momo, Stéphane; Réjou-Méchain, Maxime; Boyemba Bosela, Faustin; Chuyong, Georges; Dauby, Gilles; Droissart, Vincent; Fayolle, Adeline; Calisto Goodman, Rosa; Henry, Matieu; Kamdem, Narcisse Guy; Katembo Mukirania, John; Kenfack, David; Libalah, Moses; Ngomanda, Alfred; Rossi, Vivien; Sonké, Bonaventure; Texier, Nicolas; Thomas, Duncan; Zebaze, Donatien; Couteron, Pierre; Berger, Uta; Pélissier, Raphaël

    2016-03-01

    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees 1 Mg) and reduced the range of plot-level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far-from-negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost.

  20. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Science.gov (United States)

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  1. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Directory of Open Access Journals (Sweden)

    Marcus Clauss

    Full Text Available Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  2. Rain, prey and predators: climatically driven shifts in frog abundance modify reproductive allometry in a tropical snake.

    Science.gov (United States)

    Brown, Gregory P; Shine, Richard

    2007-11-01

    To predict the impacts of climate change on animal populations, we need long-term data sets on the effects of annual climatic variation on the demographic traits (growth, survival, reproductive output) that determine population viability. One frequent complication is that fecundity also depends upon maternal body size, a trait that often spans a wide range within a single population. During an eight-year field study, we measured annual variation in weather conditions, frog abundance and snake reproduction on a floodplain in the Australian wet-dry tropics. Frog numbers varied considerably from year to year, and were highest in years with hotter wetter conditions during the monsoonal season ("wet season"). Mean maternal body sizes, egg sizes and post-partum maternal body conditions of frog-eating snakes (keelback, Tropidonophis mairii, Colubridae) showed no significant annual variation over this period, but mean clutch sizes were higher in years with higher prey abundance. Larger females were more sensitive to frog abundance in this respect than were smaller conspecifics, so that the rate at which fecundity increased with body size varied among years, and was highest when prey availability was greatest. Thus, the link between female body size and reproductive output varied among years, with climatic factors modifying the relative reproductive rates of larger (older) versus smaller (younger) animals within the keelback population. PMID:17724615

  3. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories.

    Science.gov (United States)

    Niklas, Karl J

    2006-01-01

    Biomass-partitioning patterns influence the functioning of aquatic and terrestrial vegetation at all levels, ranging from individual growth and reproduction to the flow of mass and energy through entire communities. For this reason, leaf, stem and root dry biomass-partitioning patterns across taxonomically and ecologically diverse seed plants (spermatophytes) have been intensively investigated, both empirically and theoretically. By contrast, phyletically disparate plants (e.g. green and brown algal macrophytes, mosses and pteridophytes) have not been examined to determine whether the partitioning of their body parts into 'leaf', 'stem' and 'root' analogs accords with that of spermatophytes. In this review, the biomass-partitioning patterns of siphonous and brown algal macrophytes, mosses and pteridophytes were compared allometrically with those of spermatophytes and were shown to be largely in statistical accordance (thus lending support to the hypothesis that a single scaling relationship exists across eukaryotic photoautotrophs). This concordance is argued to support the hypothesis of functional equivalence across analogous, but developmentally different, body parts, a feature that permits the use of simpler biological model systems with which to derive analytical explanations for the biomass-partitioning patterns reported for more complex seed plants.

  4. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes

    International Nuclear Information System (INIS)

    Farmers in developing countries are one of the world's largest and most efficient producers of sequestered carbon. However, measuring, monitoring and verifying how much carbon trees in smallholder farms are removing from the atmosphere has remained a great challenge in developing nations. Devising a reliable way for measuring carbon associated with trees in agricultural landscapes is essential for helping smallholder farmers benefit from emerging carbon markets. This study aimed to develop biomass equations specific to dominant eucalyptus species found in agricultural landscapes in Western Kenya. Allometric relationships were developed by regressing diameter at breast height (DBH) alone or DBH in combination with height, wood density or crown area against the biomass of 48 trees destructively sampled from a 100 km2 site. DBH alone was a significant predictor variable and estimated aboveground biomass (AGB) with over 95% accuracy. The stems, branches and leaves formed up to 74, 22 and 4% of AGB, respectively, while belowground biomass (BGB) of the harvested trees accounted for 21% of the total tree biomass, yielding an overall root-to-shoot ratio (RS) of 0.27, which varied across tree size. Total tree biomass held in live Eucalyptus trees was estimated to be 24.4 ± 0.01 Mg ha−1, equivalent to 11.7 ± 0.01 Mg of carbon per hectare. The equations presented provide useful tools for estimating tree carbon stocks of Eucalyptus in agricultural landscapes for bio-energy and carbon accounting. These equations can be applied to Eucalyptus in most agricultural systems with similar agro-ecological settings where tree growth parameters would fall within ranges comparable to the sampled population. -- Highlights: ► Equation with DBH alone estimated aboveground biomass with about 95% accuracy. ► Local generic equations overestimated above- and below-ground biomass by 10 and 48%. ► Height, wood density and crown area data did not improve model accuracy. ► Stems, roots, branches and leaves formed 58, 21, 18 and 3% of total tree biomass

  5. Interspecific allometry of the brain and brain regions in parrots (psittaciformes): comparisons with other birds and primates.

    Science.gov (United States)

    Iwaniuk, Andrew N; Dean, Karen M; Nelson, John E

    2005-01-01

    Despite significant progress in understanding the evolution of the mammalian brain, relatively little is known of the patterns of evolutionary change in the avian brain. In particular, statements regarding which avian taxa have relatively larger brains and brain regions are based on small sample sizes and statistical analyses are generally lacking. We tested whether psittaciforms (parrots, cockatoos and lorikeets) have larger brains and forebrains than other birds using both conventional and phylogenetically based methods. In addition, we compared the psittaciforms to primates to determine if cognitive similarities between the two groups were reflected by similarities in brain and telencephalic volumes. Overall, psittaciforms have relatively larger brains and telencephala than most other non-passerine orders. No significant difference in relative brain or telencephalic volume was detected between psittaciforms and passerines. Comparisons of other brain region sizes between psittaciforms and other birds, however, exhibited conflicting results depending upon whether body mass or a brain volume remainder (total brain volume - brain region volume) was used as a scaling variable. When compared to primates, psittaciforms possessed similar relative brain and telencephalic volumes. The only exception to this was that in some analyses psittaciforms had significantly larger telencephala than primates of similar brain volume. The results therefore provide empirical evidence for previous claims that psittaciforms possess relatively large brains and telencephala. Despite the variability in the results, it is clear that psittaciforms tend to possess large brains and telencephala relative to non-passerines and are similar to primates in this regard. Although it could be suggested that this reflects the advanced cognitive abilities of psittaciforms, similar studies performed in corvids and other avian taxa will be required before this claim can be made with any certainty.

  6. Tree growth, biomass, allometry and nutrient distribution in Gmelina arborea stands grown in red lateritic soils of Central India

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.L.; Kushwaha, S.K.; Puri, S. [Indira Gandhi Agricultural Univ., Raipur (India). Dept. of Forestry

    2004-04-01

    A chronosequence of Gmelina arborea Roxb. stands ranging from 1 to 6 years old was measured to document changes in growth, biomass and nutrient (N, P and K) contents for three red lateritic sites in Chhattisgarh, India. The stand's density, survival and growth parameters (DBH, total height, crown diameter and number of branches) varied significantly with age and site. The number of stems was highest (789 trees/ha) in a 1-year-old plantation at site 3 (Kusumi) and lowest (724 trees/ha) in a 6-year-old stand at site 2 (Anandgoan). Allometric equations for stem wood, branches, leaves and roots to tree diameter at breast height were developed to estimate above ground and below ground tree biomass. The total biomass ranged from 3.9 Mg ha{sup -1} in 1-year-old to 53.7 Mg ha{sup -1} in 6-year-old stand. The stem wood contributed from 55.3% (site 3) to 56.3% (site 1), branch wood from 18.3% (site 2) to 19.8% (site 3), roots from 17.9% (site 3) to 18.5% (site 2) and foliage from 6.6% (site 2) to 7.0% (site 3) of the total biomass. The growth and biomass production were poor from establishment to 3 years age and it increased by 1.5-2 times as the plantation aged from 4-6 years. Nutrient accumulation in tree biomass increased with stand age, following the pattern of biomass accumulation. The total nitrogen accumulation in 6-year-old stands at three sites ranged from 212.9 to 279.5 kg ha{sup -1} with a mean annual storage of 238.4 kg ha{sup -1} and total K ranged from 170.8 to 220.5 kg ha{sup -1} with a mean annual storage of 189.9 kg ha{sup -1} Phosphorous storage was lowest which ranged from 15.0 to 19.6 kg ha{sup -1} with a mean storage of 16.8 kg ha{sup -1} The organic matter and nutrients in the soils improved significantly after 6 years of planting. Available N enhanced by 14.9%, 12.0% and 11.3%, K by 10.0%, 9.1% and 10.6%, whereas phosphorous declined by 2.6%, 23.0% and 20.0%, respectively, at soil depths of 0-20, 21-40 and 41-60 cm. The paper discusses the implications of whole tree harvest at 6 years age for fire/pulpwood. (author)

  7. Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries

    Science.gov (United States)

    Ploton, Pierre; Barbier, Nicolas; Takoudjou Momo, Stéphane; Réjou-Méchain, Maxime; Boyemba Bosela, Faustin; Chuyong, Georges; Dauby, Gilles; Droissart, Vincent; Fayolle, Adeline; Calisto Goodman, Rosa; Henry, Matieu; Kamdem, Narcisse Guy; Katembo Mukirania, John; Kenfack, David; Libalah, Moses; Ngomanda, Alfred; Rossi, Vivien; Sonké, Bonaventure; Texier, Nicolas; Thomas, Duncan; Zebaze, Donatien; Couteron, Pierre; Berger, Uta; Pélissier, Raphaël

    2016-03-01

    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot-level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far-from-negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost.

  8. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).

  9. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Science.gov (United States)

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM. PMID:24204552

  10. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures). PMID:26683241

  11. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  12. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs.

  13. Clutch and egg allometry of the turtle Mauremys leprosa (Chelonia: Geoemydidae) from a polluted peri-urban river in west-central Morocco

    Science.gov (United States)

    Naimi, Mohamed; Znari, Mohammed; Lovich, Jeffrey E.; Feddadi, Youssef; Baamrane, Moulay Abdeljalil Ait

    2012-01-01

    We examined the relationships of clutch size (CS) and egg size to female body size (straight-line carapace length, CL) in a population of the turtle Mauremys leprosa from a polluted segment of oued (river) Tensift in arid west-central Morocco. Twenty-eight adult females were collected in May–July, 2009 and all were gravid. Each was weighed, measured, humanely euthanized and then dissected. Oviductal shelled eggs were removed, weighed (egg mass, EM) and measured for length (EL) and width (EW). Clutch mass (CM) was the sum of EM for a clutch. Pelvic aperture width (PAW) was measured at the widest point between the ilia bones through which eggs must pass at oviposition. The smallest gravid female had a CL of 124.0 mm. Mean CS was relatively large (9.7±2.0 eggs, range: 3–13) and may reflect high productivity associated with polluted (eutrophic) waters. Regression analyses were conducted using log-transformed data. CM increased isometrically with maternal body size. CS, EW and EM were all significantly hypoallometric in their relationship with CL. EL did not change significantly with increases in CL. EW increased at a hypoallometric rate with increasing CL but was unconstrained by PAW since the widest egg was smaller than the narrowest PAW measurement when excluding the three smallest females. Smaller females may have EW constrained by PAW. As females increase in size they increase both clutch size and egg width in contradiction to predictions of optimal egg size theory.

  14. Ontogenetic Tooth Reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria): Negative Allometry, Changes in Growth Rate, and Early Senescence of the Dental Lamina

    OpenAIRE

    Dick, Daniel G.; Maxwell, Erin E.

    2015-01-01

    We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was p...

  15. 海草形态、生长的种间差异及其相关生长关系%Interspecific differences of seagrass morphology and growth patterns and their allometry

    Institute of Scientific and Technical Information of China (English)

    郑凤英; 韩晓弟; 金艳梅; 张伟; 赵宏

    2012-01-01

    Seagrass is a kind of marine submersed higher plants, and belongs to typical rhizoma-tous-clonar plants. Rhizome diameter and ramet weight are the first and the second useful descriptors of seagrass size, respectively, while body size is a key identification feature for see-grasses. In this paper, a comprehensive analysis was made on the 6 module indices and 18 growth indices of seagrass. The results indicated that fruit size, leaf size, and shoot weight were species-specific. Shoot plastochrone, branching rate of horizontal rhizome, leaf production per year, shoot longevity, and branching rate of vertical rhizome were the most species-specific dynamic properties, suggesting that the difference in seagrasses growth dynamics was mainly reflected in the clonal growth capacity and ramet life cycle length. Large seagrasses displayed a phalanx clonal architecture, while small seagrasses except Cymodocea nodosa displayed a guerrilla growth strategy. The horizontal spreading rate of large seagrasses genets was slower than that of small ones. There existed allometric relationships between segrasses size and their architectural properties and dynamic properties. With increasing seagrass size, the plastochrone interval and longevity of leaf, ramet, and node extended in modular growth level, and the horizontal internod-al length and elongation rate of horizontal rhizome, ramet production rate, branching rate, and ' branching angle decreased while spacer increased in clonal growth level. The physiological integration among clonal fragments enhanced with the increasing size. For the seagrass populations,the biomass increased while the density decreased when the seagrass size increased. Therefore, seagrass size strongly affected the architecture module, growth type, clonal architecture, population density, and productivity of seagrasses. The differences in form, growth dynamics, and module component showed the differences of seagrasses in their life strategy and ecological functions, which could be the useful information in exploring the restoration theory of seagrass bed.%海草是海洋沉水高等植物,属典型的根茎克隆植物.根状茎直径和分株重分别是其个体大小的第一、二表征指标,个体大小是海草重要的种间识别特征.对海草6个形态构件指标和18个生长指标的综合分析表明:果实大小、单株叶面积、分株重具有显著的种特异性;分株发出的时间差、水平根状茎分枝率、叶年产量、分株寿命和垂直茎分枝率是海草种特异性最强的5个生长动态指标,海草生长动态的差异主要体现在克隆生长能力强弱和分株生活史长短上;大海草趋于游击型克隆构型,而小海草则趋于密集型,但小海草Cymodocea nodosa例外;大海草基株水平扩展能力较小海草差.海草个体大小与生长特征的相关生长关系表明:随个体的增大,海草在有机构件生长上表现出两相邻叶、相邻分株、相邻节发出的时间差延长,分株、叶、茎寿命延长的特点;在克隆生长水平上表现出根状茎节间长变短、延伸速率降低,分枝率和根状茎上年产分株数降低,分枝角度变小和间隔子增大的趋势;在克隆片段水平上表现为生理整合性增强;在种群层面则表现出生物量增大和种群密度降低的特点.因此,海草个体大小对其形态、生长特征、克隆构型、种群密度和生产力起到了决定作用.大小海草不同的形态、生长动态和克隆构型特征导致它们的生存策略及生态功能也不同,这一点可能对海草场修复基础理论研究具有一定的指示作用.

  16. Effects of enhanced UV-B radiation on morphology, physiology and allometry of Amaranthus retroflexus%增强紫外-B对反枝苋的形态、生理及异速生长的影响

    Institute of Scientific and Technical Information of China (English)

    薛慧君; 王勋陵; 岳明

    2003-01-01

    在田间条件下,模拟西安地区21.6%的臭氧层减薄,研究增强紫外-B辐射(280~320 nm,3.18 kJ*m-2*d-1)对双子叶阔叶杂草反枝苋(Amaranthus retroflexus)生理、形态及异速生长的影响.结果表明:(1)与对照相比,处理组的叶绿素、类胡萝卜素含量降低,但叶片紫外吸收物质的含量增加;(2)处理组的株高、叶数及单株重有明显降低;(3)株高与单株重的线性关系有较大的偏离,表现在同等株高下处理组的生物量低于对照.这些表明在补充的紫外-B条件下,反枝苋的形态有较大的可塑性,并进一步会影响该植物在群落中的竞争能力.

  17. Taylor's law and body size in exploited marine ecosystems.

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  18. Preliminary study of Isometry in pikeperch (Sander lucioperca) from Ivars and Vila-sana lake, Spain

    OpenAIRE

    Parés Casanova, Pere-Miquel; Cano, Lídia

    2014-01-01

    The present analysis of sexual allometry is based on the study of 26 adult specimens (12 females and 14 males) of pikeperch (Sander lucioperca) from the same lake. On their left lateral aspect, 19 homologous landmarks were obtained which were studied according to geometric morphometric methods. The utilization of geometric morphometric techniques in assessing allometry in the present study showed that size only accounted for a 4.4% of the shape and that it did not appear allometric relationsh...

  19. Crescimento relativo do camarão canela Macrobrachium amazonicum (Heller (Crustacea, Decapoda, Palaemonidae em viveiros Relative growth of Amazon river prawn Macrobrachium amazonicum (Heller (Crustacea, Decapoda, Palaemonidae in earthen ponds

    Directory of Open Access Journals (Sweden)

    Patrícia M.C. Moraes-Riodades

    2002-12-01

    Full Text Available Some morphometric relationships in Macrobrachium amazonicum (Heller, 1862 reared in earthen ponds were studied. A total of 239 individuals were collected, sexed and sorted to juvenile or adult. Total length (Lt, post-orbital length (Lpo, carapace length (Lcp and queliped length (Lql were measured. The relationships Lt/Lpo, Lpo/Lcp and Lt/Lcp are the same for juveniles, males and females, indicating unchanged growth pattern during post-larval ontogenetic development. While Lt/Lpo showed isometric growth, Lpo/Lcp and Lt/Lcp showed negative allometry. On the other hand, for the Lql/Lcp relationship, juveniles showed isometric growth, females slight positive allometry and males a strong positive allometry. It suggests that the importance of chelipeds may be different in these groups. Quelipeds play important role on food capture and on agonistic, social and reproductive behavior. Therefore, inter and intraspecific interactions may change during prawn growth, even after morphological

  20. The three-quarter power scaling of extinction risk in Late Pleistocene mammals, and a new theory of the size selectivity of extinction

    NARCIS (Netherlands)

    Polishchuk, L.

    2010-01-01

    Questions: What is the pattern of body mass versus extinction risk in the Late Pleistocene extinctions of mammals, both qualitatively and quantitatively? Are there patterns that relate extinction risk to the well-known allometries of body mass with population density or population growth rate? Theor

  1. Canine evolution in sabretoothed carnivores: natural selection or sexual selection?

    Science.gov (United States)

    Randau, Marcela; Carbone, Chris; Turvey, Samuel T

    2013-01-01

    The remarkable elongated upper canines of extinct sabretoothed carnivorous mammals have been the subject of considerable speculation on their adaptive function, but the absence of living analogues prevents any direct inference about their evolution. We analysed scaling relationships of the upper canines of 20 sabretoothed feliform carnivores (Nimravidae, Barbourofelidae, Machairodontinae), representing both dirk-toothed and scimitar-toothed sabretooth ecomorphs, and 33 non-sabretoothed felids in relation to body size in order to characterize and identify the evolutionary processes driving their development, using the scaling relationships of carnassial teeth in both groups as a control. Carnassials display isometric allometry in both sabretooths and non-sabretooths, supporting their close relationship with meat-slicing, whereas the upper canines of both groups display positive allometry with body size. Whereas there is no statistical difference in allometry of upper canine height between dirk-toothed and scimitar-toothed sabretooth ecomorphs, the significantly stronger positive allometry of upper canine height shown by sabretooths as a whole compared to non-sabretooths reveals that different processes drove canine evolution in these groups. Although sabretoothed canines must still have been effective for prey capture and processing by hypercarnivorous predators, canine morphology in these extinct carnivores was likely to have been driven to a greater extent by sexual selection than in non-sabretooths. Scaling relationships therefore indicate the probable importance of sexual selection in the evolution of the hypertrophied sabretooth anterior dentition. PMID:23951334

  2. Canine evolution in sabretoothed carnivores: natural selection or sexual selection?

    Directory of Open Access Journals (Sweden)

    Marcela Randau

    Full Text Available The remarkable elongated upper canines of extinct sabretoothed carnivorous mammals have been the subject of considerable speculation on their adaptive function, but the absence of living analogues prevents any direct inference about their evolution. We analysed scaling relationships of the upper canines of 20 sabretoothed feliform carnivores (Nimravidae, Barbourofelidae, Machairodontinae, representing both dirk-toothed and scimitar-toothed sabretooth ecomorphs, and 33 non-sabretoothed felids in relation to body size in order to characterize and identify the evolutionary processes driving their development, using the scaling relationships of carnassial teeth in both groups as a control. Carnassials display isometric allometry in both sabretooths and non-sabretooths, supporting their close relationship with meat-slicing, whereas the upper canines of both groups display positive allometry with body size. Whereas there is no statistical difference in allometry of upper canine height between dirk-toothed and scimitar-toothed sabretooth ecomorphs, the significantly stronger positive allometry of upper canine height shown by sabretooths as a whole compared to non-sabretooths reveals that different processes drove canine evolution in these groups. Although sabretoothed canines must still have been effective for prey capture and processing by hypercarnivorous predators, canine morphology in these extinct carnivores was likely to have been driven to a greater extent by sexual selection than in non-sabretooths. Scaling relationships therefore indicate the probable importance of sexual selection in the evolution of the hypertrophied sabretooth anterior dentition.

  3. Shrinkage of body size of small insects: A possible link to global warming?

    Energy Technology Data Exchange (ETDEWEB)

    He Jihuan [College of Science, Donghua University, 1882 Yan' an Xilu Road, Shanghai 200051 (China)]. E-mail: jhhe@dhu.edu.cn

    2007-11-15

    The increase of global mean surface temperature leads to the increase of metabolic rate. This might lead to an unexpected threat from the small insect world. Global warming shrinks cell size, shorten lifespan, and accelerate evolution. The present note speculates on possible connections between allometry and E-infinity theory.

  4. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    Science.gov (United States)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  5. Logistic Growth and Ergodic Properties of Urban Forms

    CERN Document Server

    Masucci, A Paolo; Wang, Jiaqiu; Hatna, Erez; Stanilov, Kiril; Batty, Michael

    2015-01-01

    Urban morphology has presented significant intellectual challenges to mathematicians and physicists ever since the eighteenth century, when Euler first explored the famous Konigsberg bridges problem. Many important regularities and allometries have been observed in urban studies, including Zipf's law and Gibrat's law, rendering cities attractive systems for analysis within statistical physics. Nevertheless, a broad consensus on how cities and their boundaries are defined is still lacking. Applying percolation theory to the street intersection space, we show that growth curves for the maximum cluster size of the largest cities in the UK and in California collapse to a single curve, namely the logistic. Subsequently, by introducing the concept of the condensation threshold, we show that natural boundaries of cities can be well defined in a universal way. This allows us to study and discuss systematically some of the allometries that are present in cities, thus casting light on the concept of ergodicity as relat...

  6. An allometric scaling relation based on logistic growth of cities

    CERN Document Server

    Chen, Yanguang

    2013-01-01

    The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The prop...

  7. Initial density affects biomass – density and allometric relationships in self-thinning populations of Fagopyrum esculentum

    DEFF Research Database (Denmark)

    Li, Lei; Weiner, Jacob; Zhou, Daowei;

    2013-01-01

    with the predictions of Metabolic Scaling Theory. If the independent variable initial density is included as a factor, the estimated slope of the log B–log N relationship is much steeper and consistent with the classical ‘Self-thinning Rule’. * The position of the self-thinning trajectory is determined in part...... in initial density can be analysed together. As plant allometry is a determinant of the self-thinning trajectory, and competition alters plants' allometric growth, initial density may have consequences for the self-thinning trajectory. * To ask whether initial density can influence allometric relationships......–density relationships in plant populations and communities. Interactions among plants and allometry are more important than internal physiological scaling mechanisms in determining the self-thinning trajectory of crowded stands....

  8. Fitness consequences of artificial selection on relative male genital size.

    Science.gov (United States)

    Booksmythe, Isobel; Head, Megan L; Keogh, J Scott; Jennions, Michael D

    2016-01-01

    Male genitalia often show remarkable differences among related species in size, shape and complexity. Across poeciliid fishes, the elongated fin (gonopodium) that males use to inseminate females ranges from 18 to 53% of body length. Relative genital size therefore varies greatly among species. In contrast, there is often tight within-species allometric scaling, which suggests strong selection against genital-body size combinations that deviate from a species' natural line of allometry. We tested this constraint by artificially selecting on the allometric intercept, creating lines of males with relatively longer or shorter gonopodia than occur naturally for a given body size in mosquitofish, Gambusia holbrooki. We show that relative genital length is heritable and diverged 7.6-8.9% between our up-selected and down-selected lines, with correlated changes in body shape. However, deviation from the natural line of allometry does not affect male success in assays of attractiveness, swimming performance and, crucially, reproductive success (paternity). PMID:27188478

  9. Sexual differences in size and shape of the Mosor rock lizard [Dinarolacerta mosorensis (Kolombatović, 1886] (squamata: lacertidae: A case study of the Lovćen mountain population (Montenegro

    Directory of Open Access Journals (Sweden)

    Ljubisavljević Katarina

    2008-01-01

    Full Text Available Sexual differences in size and shape of the Mosor rock lizard, Dinarolacerta mosorensis (Kolombatović, 1886, from Lovćen Mountain (Montenegro were examined on the basis of the intersex variation pattern of nine morphometric, eight pholidotic, and four qualitative traits. Sexual dimorphism was apparent for all morphometric characters except snout-vent length, while scalation and dorsal pattern exhibited small differences between sexes. The value of the sexual size difference (SSD index based on snout-vent length was 1.028. The sex-specific allometric slopes for head dimensions and interlimb distance significantly diverged. Head dimensions, especially head height, showed strong positive allometry in males, while interlimb distance was the only character which showed positive allometry in females. Generally, males had significantly greater body size than females. This was true of all body measurements except interlimb distance. The influence of sexual and natural selection on the examined traits is discussed.

  10. Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen-worker dimorphism.

    Science.gov (United States)

    Linksvayer, T A; Kaftanoglu, O; Akyol, E; Blatch, S; Amdam, G V; Page, R E

    2011-09-01

    Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental programme includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary timescales. Our results indicate that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary size allometry may disrupt queen development and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.

  11. Modelling Size Structured Food Webs Using a Modified Niche Model with Two Predator Traits

    OpenAIRE

    Klecka, Jan

    2014-01-01

    The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predato...

  12. Influence of planting methods on root development, crop productivity and water use efficiency in maize hybrids Influencia de métodos de siembra sobre el desarrollo radical, productividad y eficiencia del uso del agua en híbridos de maíz

    OpenAIRE

    Muhammad B. Khan; Farhan Yousaf; Mubshar Hussain; Muhammad W. Haq; Dong-J Lee; Muhammad Farooq

    2012-01-01

    Optimum planting methods better ensure water and nutrient supply through improved root development resulting in better crop growth and productivity. This study was conducted to evaluate the effects of planting methods on root development, crop allometry, water use efficiency (WUE), productivity and economic returns of different maize (Zea mays L.) hybrids. Maize hybrids NK-6621, Pioneer-30Y87, and Pioneer-30Y58 were sown on beds, ridges, and flat surface. Ridge sowing was better followed by b...

  13. Sexually dimorphic proportions of the harbour porpoise (Phocoena phocoena) skeleton

    DEFF Research Database (Denmark)

    Galatius, Anders

    2005-01-01

    allometry. Throughout the range of individual sizes, females have significantly larger skulls and shorter vertebral columns than males for similarly sized individuals. In fully grown specimens, the condylobasal length of females makes up a smaller proportion of total length, and the vertebrae make up...... to females is also found in the vertebral epiphyses that mature later in males than females, although the males finish growth at a younger age....

  14. A Sceptics View: “Kleiber’s Law” or the “3/4 Rule” is neither a Law nor a Rule but Rather an Empirical Approximation

    OpenAIRE

    Hulbert, A.J.

    2014-01-01

    Early studies showed the metabolic rate (MR) of different-sized animals was not directly related to body mass. The initial explanation of this difference, the “surface law”, was replaced by the suggestion that MR be expressed relative to massn, where the scaling exponent “n” be empirically determined. Basal metabolic rate (BMR) conditions were developed and BMR became important clinically, especially concerning thyroid diseases. Allometry, the technique previously used to empirically analyse ...

  15. Radar backscatter modelling of forests using a macroecological approach

    OpenAIRE

    Brolly, Matthew

    2012-01-01

    This thesis provides a new explanation for the behaviour of radar backscatter of forests using vegetation structure models from the field of macroecology. The forests modelled in this work are produced using allometry-based ecological models with backscatter derived from the parameterisation of a radiative transfer model. This work is produced as a series of papers, each portraying the importance of macroecology in defining the forest radar response. Each contribution does so b...

  16. Relationships between host species and morphometric patterns in Fasciola hepatica adults and eggs from the northern Bolivian Altiplano hyperendemic region.

    Science.gov (United States)

    Valero, M A; Darce, N A; Panova, M; Mas-Coma, S

    2001-12-01

    The highest prevalences and intensities of human fasciolosis by Fasciola hepatica are found in the northern Bolivian Altiplano, where sheep and cattle are the main reservoir host species and pigs and donkeys the secondary ones. Morphometric comparisons of many linear measurements, areas and ratios of F. hepatica adults (from sheep, cattle and pigs) and eggs (from sheep, cattle, pigs and donkeys) in natural liver fluke populations of the Bolivian Altiplano, as well as of F. hepatica adults and eggs experimentally obtained in Wistar rats infected with Altiplanic sheep, cattle and pig isolates, were made using computer image analysis and an allometric model. Although morphometric values of adult flukes from natural populations of sheep, cattle, and pigs showed great overlap, there were clear differences in allometric growth. The allometries analyzed were: body area (BA) versus body length (BL), BA versus body width (BW), BA versus perimeter (Pe), BA versus distance between posterior end of body and ventral sucker (P-VS), BL versus BW, BL versus Pe, and BL versus P-VS. These allometries show a good fit in the seven pairs of variables in all the populations examined. Comparative statistical analysis of the allometries shows that fluke adult populations from sheep, cattle and pigs significantly differ in BL versus BW and BL versus P-VS functions. Statistical analysis of F. hepatica egg size shows characteristic morphometric traits in each definitive host species. In experimentally infected rats, fluke adult allometry and egg morphometry do not vary depending on the Altiplanic definitive host species isolate. Our study reveals that the definitive host species decisively influences the size of F. hepatica adults and eggs, and these influences do not persist in a rodent definitive host model.

  17. The Roles of Sex, Mass and Individual Specialisation in Partitioning Foraging-Depth Niches of a Pursuit-Diving Predator

    OpenAIRE

    Norman Ratcliffe; Akinori Takahashi; Claire O'Sullivan; Stacey Adlard; Philip N Trathan; Michael P Harris; Sarah Wanless

    2013-01-01

    Intra-specific foraging niche partitioning can arise due to gender differences or individual specialisation in behaviour or prey selection. These may in turn be related to sexual size dimorphism or individual variation in body size through allometry. These variables are often inter-related and challenging to separate statistically. We present a case study in which the effects of sex, body mass and individual specialisation on the dive depths of the South Georgia shag on Bird Island, South Geo...

  18. Comparação do peso dos quelípodos e crescimento em duas espécies de "sirís" do gênero Callinectes (Brachyura, Portunidae

    Directory of Open Access Journals (Sweden)

    Cecilia Margarita Guerrero-Ocampo

    1998-08-01

    Full Text Available Neste trabalho, as espécies C. danae e C. ornatus foram comparadas quanto ao peso dos quelípodos. Os siris foram coletados com 2 redes de arrasto do tipo "otter trawl" na Enseada de Ubatuba (23° 26' S e 45° 02' W. As constantes alométricas obtidas foram analisadas por meio da função potência (Y = aXb . As espécies apresentaram diferentes graus alométricos para cada sexo. A relação PQ X PC apresentou alometria positiva em ambas espécies, porém os machos apresentam maior alometria positiva do que as fêmeas. C. danae apresenta maior alometria positiva para os quelípodos do que C. ornatus. O fato de C. danae atingir maior porte e possuir quelípodos maiores indica que esta espécie tem potencial para o cultivo.A comparison of the cheliped's weight in two species of the genus Callinectes was accomplished. The species C. danae e C. ornatus were collected by two otter trawl in Ubatuba bay (23º 26' S and 45º 02' W. The allometric constants obtained from the regression adjusted to a power function (Y = aXb were analyzed. These species presented different allometry degrees for each sex considered. The relation PQ x PC presented positive allometry for sex of both species, but male presented higher positive allometry than female. C. danae presented higher positive allometry for chelipeds than C. ornatus. We suggest here that C. danae could be indicated to be submitted to grow out in ponds since it reaches higher size and bigger chelipeds.

  19. Scaling indicator and planning plane: an indicator and a visual tool for exploring the relationship between urban form, energy efficiency and carbon emissions

    OpenAIRE

    Khan, Fouad; Pinter, Laszlo

    2016-01-01

    Ecosystems and other naturally resilient systems exhibit allometric scaling in the distribution of sizes of their elements. In this paper we define an allometry inspired scaling indicator for cities that is a first step towards quantifying the resilience borne of a complex systems' hierarchical structural composition. The scaling indicator is calculated using large census datasets and is analogous to fractal dimension in spatial analysis. Lack of numerical rigor and the resulting variation in...

  20. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Pallardy, Stephen G

    2013-04-19

    by June 14, 2004, the MOFLUX site was fully instrumented and data streams started to flow. A primary accomplished deliverable for the project period was the data streams of CO{sub 2} and water vapor fluxes and numerous meteorological variables (from which prepared datasets have been submitted to the AmeriFlux data archive for 2004-2006, Additionally, measurements of leaf biochemistry and physiology, biomass inventory, tree allometry, successional trends other variables were obtained.

  1. Emergence, Development, and Maturity of the Gonad of Two Species of Chitons “Sea Cockroach” (Mollusca: Polyplacophora) through the Early Life Stages

    OpenAIRE

    Omar Hernando Avila-Poveda; Quetzalli Yasú Abadia-Chanona

    2013-01-01

    This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or "early life stages" were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equati...

  2. Does encephalization correlate with life history or metabolic rate in Carnivora?

    OpenAIRE

    Finarelli, John A.

    2009-01-01

    A recent analysis of brain size evolution reconstructed the plesiomorphic brain–body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal...

  3. Musculoskeletal determinants of pelvic sucker function in Hawaiian stream gobiid fishes: interspecific comparisons and allometric scaling.

    Science.gov (United States)

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2013-07-01

    Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall-climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall-climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross-sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. PMID:23450656

  4. Simulated effects of site salinity and inundation on long-term growth trajectory and carbon sequestration in monospecific $Rhizophora\\; mucronata$ plantation in the Philippines

    OpenAIRE

    Juanico, Drandreb Earl; Salmo III, Severino

    2014-01-01

    A mathematical model of coastal forest growth is proposed to describe and test the effects of salinity and inundation in the long-term growth performance and carbon sequestration of monospecific mangrove ($Rhizophora\\; mucronata$) plantation in the Philippines. We used allometry in expressing the mangrove growth equation, and stochasticity in scheduling population-level events that drive the development of the mangrove forest. Analysis of the model unveils an index, $\\xi$, that could be used ...

  5. Relative femoral head size in early hominids.

    Science.gov (United States)

    Corruccini, R S; McHenry, H M

    1978-07-01

    Relative growth of the human femur head is studied by a logarithmic principal components method. Growth rates differ according to the population sampled and the other body dimensions being compared, and especially according to sex. The results do not support biomechanical assumptions of strongly positive allometry of the femur head, which have been used to argue that the australopithecine hip joint was not relatively small. PMID:98052

  6. A morphometric analysis of prognathism and evaluation of the gnathic index in modern humans.

    Science.gov (United States)

    Lesciotto, K M; Cabo, L L; Garvin, H M

    2016-08-01

    Subnasal prognathism is a morphological feature often described in studies of paleoanthropology, bioarchaeology, and forensic anthropology. This trait is commonly quantified using the gnathic index, which compares basion-prosthion and basion-nasion lengths. This study used geometric morphometrics to assess whether the gnathic index is a reliable indicator of subnasal prognathism and to explore the effects of sex, population, and allometry on this trait. Nineteen craniofacial landmarks were collected from three-dimensional cranial surface scans of 192 individuals across five population groups. Generalized Procrustes analysis and principal components analysis were employed to identify shape components related to changes in subnasal prognathism, comparing component scores to gnathic index values. M/ANOVAs were used to determine the effects of sex and population on prognathism, and linear regression served to assess static allometry. The gnathic index was significantly correlated with PCs 1 and 3, which appeared to capture prognathic shape change, but also with PCs 2 and 6, which reflected other craniofacial shape changes. Population differences in levels of prognathism were identified, but no significant effects of sex or allometry were found. The results show that, although the gnathic index correlates with prognathic shape variation, it is also influenced by other variables, such as the relative position of basion. In this sense, the gnathic index serves to illustrate the shortcomings of linear measurement analysis as compared to landmark configurations. Further, the results demonstrate that subnasal prognathism is a complex feature in need of redefinition.

  7. A morphometric analysis of prognathism and evaluation of the gnathic index in modern humans.

    Science.gov (United States)

    Lesciotto, K M; Cabo, L L; Garvin, H M

    2016-08-01

    Subnasal prognathism is a morphological feature often described in studies of paleoanthropology, bioarchaeology, and forensic anthropology. This trait is commonly quantified using the gnathic index, which compares basion-prosthion and basion-nasion lengths. This study used geometric morphometrics to assess whether the gnathic index is a reliable indicator of subnasal prognathism and to explore the effects of sex, population, and allometry on this trait. Nineteen craniofacial landmarks were collected from three-dimensional cranial surface scans of 192 individuals across five population groups. Generalized Procrustes analysis and principal components analysis were employed to identify shape components related to changes in subnasal prognathism, comparing component scores to gnathic index values. M/ANOVAs were used to determine the effects of sex and population on prognathism, and linear regression served to assess static allometry. The gnathic index was significantly correlated with PCs 1 and 3, which appeared to capture prognathic shape change, but also with PCs 2 and 6, which reflected other craniofacial shape changes. Population differences in levels of prognathism were identified, but no significant effects of sex or allometry were found. The results show that, although the gnathic index correlates with prognathic shape variation, it is also influenced by other variables, such as the relative position of basion. In this sense, the gnathic index serves to illustrate the shortcomings of linear measurement analysis as compared to landmark configurations. Further, the results demonstrate that subnasal prognathism is a complex feature in need of redefinition. PMID:27132876

  8. Scaling and Accommodation of Jaw Adductor Muscles in Canidae.

    Science.gov (United States)

    Penrose, Fay; Kemp, Graham J; Jeffery, Nathan

    2016-07-01

    The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951-966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346

  9. Relative growth of the limbs and trunk in the African apes.

    Science.gov (United States)

    Shea, B T

    1981-10-01

    Examination of relative growth and allometry is important for our understanding of the African apes, as they represent a closely related group of species of increasing body size. This study presents a comparison of ontogenetic relative growth patterns of some postcranial dimensions in Pan paniscus, Pan troglodytes, and Gorilla gorilla. Interspecific proportion differences among the three species are also analyzed. It is stressed that reliable ontogenetic information can only be obtained if subadults are examined-growth data cannot be inferred from static adult scaling. Results indicate that some postcranial relative growth patterns are very similar in the three species, suggesting differential extrapolation of a common growth pattern, whereas for other proportion comparisons the growth trends differ markedly among the species, producing distinct shape differences in the adults. Interspecific shape changes among the three species are characterized by positive allometry of chest girth and negative allometry of body height and leg length. It is suggested that relative decrease of leg length with increasing body size among the African pongids might be expected on biomechanical grounds, in quadrupedal terrestrialism. Relative to body weight or trunk length, the limbs of the bonobo (Pan paniscus) are longer than in the common chimpanzee or the gorilla, with a lower intermembral index. This may most closely resemble the primitive condition for the African apes. PMID:7325219

  10. Maintenance cost, toppling risk and size of trees in a self-thinning stand.

    Science.gov (United States)

    Larjavaara, Markku

    2010-07-01

    Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the drag force per unit land can also be assumed to be independent of stand density, with only canopy height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can then be computed by further assuming that the risk of toppling over and stem maintenance per unit land area are independent of stand density, and that stem maintenance cost is a linear function of stem surface area and sapwood volume. These assumptions provide a novel way to understand tree allometry and lead to a self-thinning line relating tree biomass and stand density with a power between -3/2 and -2/3 depending on the ratio of maintenance of sapwood and stem surface.

  11. Interspecies allometric scaling. Part I: prediction of clearance in large animals.

    Science.gov (United States)

    Mahmood, I; Martinez, M; Hunter, R P

    2006-10-01

    Interspecies scaling is a useful tool for the prediction of pharmacokinetic parameters from animals to humans, and it is often used for estimating a first-time in human dose. The knowledge of pharmacokinetics in veterinary species is important for dosage selection, particularly in the treatment of large zoo animal species, such as elephants, giant cats and camels, for which pharmacokinetic data are scant. Therefore, the accuracy in clearance predictions in large animal species, with and without the use of correction factors (rule of exponents), and the impact of species selection in the prediction of clearance in large animal species was examined. Based upon this analysis, it was determined that there is a much larger risk of inaccuracies in the clearance estimates in large animal species when compared with that observed for humans. Unlike in humans, for large animal species, correction factors could not be applied because there was no trend between the exponents of simple allometry and the appropriate correction factor for improving our predictions. Nevertheless, we did see an indication that the exponents of simple allometry may alert us as to when the predicted clearance in the large animal may be underestimated or overpredicted. For example, if a large animal is included in the scaling, the predicted clearance in a large animal should be considered overestimated if the exponent of simple allometry is >1.3. Despite the potential for extrapolation error, the reality is that allometric scaling is needed across many veterinary practice situations, and therefore will be used. For this reason, it is important to consider mechanisms for reducing the risk of extrapolation errors that can seriously affect target animal safety, therapeutic response, or the accuracy of withdrawal time predictions. PMID:16958787

  12. Scaling of feeding biomechanics in the horn shark Heterodontus francisci: ontogenetic constraints on durophagy.

    Science.gov (United States)

    Kolmann, Matthew A; Huber, Daniel R

    2009-01-01

    Organismal performance changes over ontogeny as the musculoskeletal systems underlying animal behavior grow in relative size and shape. As performance is a determinant of feeding ecology, ontogenetic changes in the former can influence the latter. The horn shark Heterodontus francisci consumes hard-shelled benthic invertebrates, which may be problematic for younger animals with lower performance capacities. Scaling of feeding biomechanics was investigated in H. francisci (n=16, 19-59cm standard length (SL)) to determine the biomechanical basis of allometric changes in feeding performance and whether this performance capacity constrains hard-prey consumption over ontogeny. Positive allometry of anterior (8-163N) and posterior (15-382N) theoretical bite force was attributed to positive allometry of cross-sectional area in two jaw adducting muscles and mechanical advantage at the posterior bite point (0.79-1.26). Mechanical advantage for anterior biting scaled isometrically (0.52). Fracture forces for purple sea urchins Strongylocentrotus purpuratus consumed by H. francisci ranged from 24 to 430N. Comparison of these fracture forces to the bite force of H. francisci suggests that H. francisci is unable to consume hard prey early in its life history, but can consume the majority of S. purpuratus by the time it reaches maximum size. Despite this constraint, positive allometry of biting performance appears to facilitate an earlier entry into the durophagous niche than would an isometric ontogenetic trajectory. The posterior gape of H. francisci is significantly smaller than the urchins capable of being crushed by its posterior bite force. Thus, the high posterior bite forces of H. francisci cannot be fully utilized while consuming prey of similar toughness and size to S. purpuratus, and its potential trophic niche is primarily determined by anterior biting capacity. PMID:19428230

  13. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae

    Directory of Open Access Journals (Sweden)

    Luis P. Lamas

    2014-12-01

    Full Text Available Emus (Dromaius novaehollandiae are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths and calculated muscle physiological cross sectional area (PCSA and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg. The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus also exhibited positive allometry for length, and two others (femur and first phalanx of digit III had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus.

  14. Embryos of an early Jurassic prosauropod dinosaur and their evolutionary significance.

    Science.gov (United States)

    Reisz, Robert R; Scott, Diane; Sues, Hans-Dieter; Evans, David C; Raath, Michael A

    2005-07-29

    Articulated embryos from the Lower Jurassic Elliot Formation of South Africa are referable to the prosauropod Massospondylus carinatus and, together with other material, provide substantial insights into the ontogenetic development in this early dinosaur. The large forelimbs and head and the horizontally held neck indicate that the hatchlings were obligate quadrupeds. In contrast, adult Massospondylus were at least facultatively bipedal. This suggests that the quadrupedal gait of giant sauropods may have evolved by retardation of postnatal negative allometry of the forelimbs. Embryonic body proportions and an absence of well-developed teeth suggest that hatchlings of this dinosaur may have required parental care.

  15. BIOMETRIC AND MORPHOMETRIC STUDIES OF Perna v iridis AND Pe rna i ndica ALONG THE SOUTHWEST COAST OF INDIA: A STATISTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Jayalakshmy KV

    2013-09-01

    Full Text Available The growth indices of the Mussels, Perna viridis and Perna indica collected from the south west coast of India were examined using statistical methods. The Principal Component Analysis (PCA and Exploratory Factor Analysis (EFA sepa rated 2 morphometric gradient groups (spat and adult, indicating the different phenotypic plasticity between them. The factor scores classified P. indica as a unimodal, positively skewed leptokurtic population and P. viridis as a unimodal, negatively skewed leptokurtic population. The allometry was not static, but simple and ontogenetic since their population was continuously varying. The present study shows that factor analysis is better than principal component analysis for delineating the morphometric characteristics of living organisms

  16. Observation of Mammalian Similarity Through Allometric Scaling Laws

    OpenAIRE

    Kokshenev, Valery B.

    2002-01-01

    We discuss the problem of observation of natural similarity in skeletal evolution of terrestrial mammals. Analysis is given by means of testing of the power scaling laws established in long bone allometry, which describe development of bones (of length $L$ and diameter $D$) with body mass in terms of the growth exponents, \\QTR{it}{e.g.} $\\lambda =d\\log L/d\\log D$. The bone-size evolution scenario given three decades ago by McMahon was quiet explicit on the geometrical-shape and mechanical-for...

  17. Body mass and body weight: a dual reference system in biology Masa y peso corporales: un sistema dual de referencia en biología

    OpenAIRE

    BRUNO GÜNTHER; ENRIQUE MORGADO

    2003-01-01

    ABSTRACT The aim of the present study was to compare two different biological similarity criteria, one was based on body mass (M) as a theoretical reference system in accordance with the MLT-system of physics, while the other utilized the body weight (W) for the same purpose. The mass-dependent allometry should be applied during space flights as well as during fetal and newborn conditions of life, whereas the weight-dependence should prevail in earth-bound physiology. The above mentioned dist...

  18. Stochastic ontogenetic growth model

    Science.gov (United States)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  19. Applying GreenLab Model to Adult Chinese Pine Trees with Topology Simplification

    CERN Document Server

    Guo, Hong; Lei, Xiangdong; Lu, Yuanchang; De Reffye, P

    2010-01-01

    This paper applied the functional structural model GreenLab to adult Chinese pine trees (pinus tabulaeformis Carr.). Basic hypotheses of the model were validated such as constant allometry rules, relative sink relationships and topology simplification. To overcome the limitations raised by the complexity of tree structure for collecting experimental data, a simplified pattern of tree description was introduced and compared with the complete pattern for the computational time and the parameter accuracy. The results showed that this simplified pattern was well adapted to fit adult trees with GreenLab.

  20. A stand-alone demography and landscape structure module for Earth system models

    Science.gov (United States)

    Nieradzik, L. P.; Haverd, V.; Smith, B.; Cook, G. D.; Briggs, P.; Roxburgh, S.; Liedloff, A.; Meyer, C.; Canadell, J.

    2013-12-01

    We propose and demonstrate a new approach for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any earth system model (Haverd et al., 2013). The approach is encoded in a model called Populations-Order-Physiology (POP). We demonstrate the behaviour and performance of POP coupled to the Community Atmosphere Biosphere Land Exchange model (CABLE) for two contrasting applications: (i) to the Northern Australian Tropical Transect, featuring gradients in savanna vegetation cover, rainfall and fire disturbance and (ii) to a set of globally distributed forest locations coinciding with observations of forest biomass allometry. Along the Northern Australian Tropical Transect, CABLE-POP is able to simultaneously reproduce observation-based estimates of key functional and structural variables, namely gross primary production, tree foliage projective cover, basal area and maximum tree height. This application particularly demonstrates the ability of POP to quantify the contributions of drought and fire to tree mortality. Drought is manifested as an increase in mortality due to a decline in growth efficiency, while fires are treated as partial disturbance events, with tree mortality depending on tree size and fire intensity. In the application to global forests, POP is integrated with global forest data by calibrating it against paired observations of stem biomass and number density. The calibrated POP model is then coupled with CABLE and the coupled model is evaluated against leaf-stem allometry observations from forest stands ranging in age from 20 to 400 years. Results indicate that, in contrast to simulations from many global land surface models (Wolf et al., 2011), simulated biomass pools conform well with observed allometry. We conclude that POP, which can readily be coupled to the terrestrial carbon cycle

  1. Shape and size variations of Aegla uruguayana (Anomura, Aeglidae under laboratory conditions: A geometric morphometric approach to the growth

    Directory of Open Access Journals (Sweden)

    Valeria P. Diawol

    2015-03-01

    Full Text Available Crustacean growth studies typically use modal analysis rather than focusing on the growth of individuals. In the present work, we use geometric morphometrics to determine how organism shape and size varies during the life of the freshwater crab, Aegla uruguayana Schmitt, 1942. A total of 66 individuals from diverse life cycle stages were examined daily and each exuvia was recorded. Digital images of the dorsal region of the cephalothorax were obtained for each exuvia and were subsequently used to record landmark configurations. Moult increment and intermoult period were estimated for each crab. Differences in shape between crabs of different sizes (allometry and sexes (sexual dimorphism; SD were observed. Allometry was registered among specimens; however, SD was not statistically significant between crabs of a given size. The intermoult period increased as size increased, but the moult frequency was similar between the sexes. Regarding ontogeny, juveniles had short and blunt rostrum, robust forehead region, and narrow cephalothorax. Unlike juveniles crabs, adults presented a well-defined anterior and posterior cephalothorax region. The rostrum was long and stylised and the forehead narrow. Geometric morphometric methods were highly effective for the analysis of aeglid-individual- growth and avoided excessive handling of individuals through exuvia analysis.

  2. Decapod crustacean chelipeds: an overview

    Indian Academy of Sciences (India)

    Pitchaimuthu Mariappan; Chellam Balasundaram; Barbara Schmitz

    2000-09-01

    The structure, growth, differentiation and function of crustacean chelipeds are reviewed. In many decapod crustaceans growth of chelae is isometric with allometry level reaching unity till the puberty moult. Afterwards the same trend continues in females, while in males there is a marked spurt in the level of allometry accompanied by a sudden increase in the relative size of chelae. Subsequently they are differentiated morphologically into crusher and cutter making them heterochelous and sexually dimorphic. Of the two, the major chela is used during agonistic encounters while the minor is used for prey capture and grooming. Various biotic and abiotic factors exert a negative effect on cheliped growth. The dimorphic growth pattern of chelae can be adversely affected by factors such as parasitic infection and substrate conditions. Display patterns of chelipeds have an important role in agonistic and aggressive interactions. Of the five pairs of pereiopods, the chelae are versatile organs of offence and defence which also make them the most vulnerable for autotomy. Regeneration of the autotomized chelipeds imposes an additional energy demand called “regeneration load” on the incumbent, altering energy allocation for somatic and/or reproductive processes. Partial withdrawal of chelae leading to incomplete exuviation is reported for the first time in the laboratory and field in Macrobrachium species.

  3. A Sceptics View: “Kleiber’s Law” or the “3/4 Rule” is neither a Law nor a Rule but Rather an Empirical Approximation

    Directory of Open Access Journals (Sweden)

    A. J. Hulbert

    2014-04-01

    Full Text Available Early studies showed the metabolic rate (MR of different-sized animals was not directly related to body mass. The initial explanation of this difference, the “surface law”, was replaced by the suggestion that MR be expressed relative to massn, where the scaling exponent “n” be empirically determined. Basal metabolic rate (BMR conditions were developed and BMR became important clinically, especially concerning thyroid diseases. Allometry, the technique previously used to empirically analyse relative growth, showed BMR of endotherms varied with 0.73–0.74 power of body mass. Kleiber suggested that mass3/4 be used, partly because of its easy calculation with a slide rule. Later studies have produced a range of BMR scaling exponents, depending on species measured. Measurement of maximal metabolism produced scaling exponents ranging from 0.80 to 0.97, while scaling of mammalian MR during growth display multi-phasic allometric relationships with scaling exponents >3/4 initially, followed by scaling exponents <3/4. There is no universal metabolic scaling exponent. The fact that “allometry” is an empirical technique to analyse relative change and not a biological law is discussed. Relative tissue size is an important determinant of MR. There is also a need to avoid simplistic assumptions regarding the allometry of surface area.

  4. Colony-Level Differences in the Scaling Rules Governing Wood Ant Compound Eye Structure.

    Science.gov (United States)

    Perl, Craig D; Niven, Jeremy E

    2016-01-01

    Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population. PMID:27068571

  5. Comparison of the morphology of the limbs of juvenile and adult horses (Equus caballus) and their implications on the locomotor biomechanics.

    Science.gov (United States)

    Grossi, Bruno; Canals, Mauricio

    2010-06-01

    We analyzed the morphology and the walk-trot and trot-gallop transition velocities of nine juvenile horses and compared them with their mothers. We also compared the relative stride length and the duty factor of the juveniles with respect to adults at three equivalent trotting speeds (Froude numbers 0.5, 0.75, and 1.0), to determine dynamic similarity. Juveniles had a negative allometry in their leg bones, mainly because of little size changes of the distal portions. The negative allometry of extremities allows juveniles to increase stride length without increasing step frequency, which can be biomechanically advantageous. The Froude number during the walk-trot velocity transition of juveniles was similar to that of adult horses, but walk-trot transition velocity in juveniles was greater than expected for their mass. However, during the change trot-gallop, the trot-gallop velocity transition was conserved, but the Froude number was lower. Thus, juvenile horses did not move in a manner that was dynamically similar to the adult horses. At low speed (walk-trot), the gait approaches the behavior predicted by the inverted pendulum model, but at high speed (trot-gallop) dominates the inertial forces. The trot-gallop gait change would be conducted at speeds that would minimize energy costs of transport owing to collisions and changes in the trajectory of the center of mass. PMID:20213826

  6. Comparative morphology of the avian cerebellum: I. Degree of foliation.

    Science.gov (United States)

    Iwaniuk, Andrew N; Hurd, Peter L; Wylie, Douglas R W

    2006-01-01

    Despite the conservative circuitry of the cerebellum, there is considerable variation in the shape of the cerebellum among vertebrates. One aspect of cerebellar morphology that is of particular interest is the degree of folding, or foliation, of the cerebellum and its functional significance. Here, we present the first comprehensive analysis of variation in cerebellar foliation in birds with the aim of determining the effects that allometry, phylogeny and development have on species differences in the degree of cerebellar foliation. Using both conventional and phylogenetically based statistics, we assess the effects of these variables on cerebellar foliation among 91 species of birds. Overall, our results indicate that allometry exerts the strongest effect and accounts for more than half of the interspecific variation in cerebellar foliation. In addition, we detected a significant phylogenetic effect. A comparison among orders revealed that several groups, corvids, parrots and seabirds, have significantly more foliated cerebella than other groups, after accounting for allometric effects. Lastly, developmental mode was weakly correlated with relative cerebellar foliation, but incubation period and fledging age were not. From our analyses, we conclude that allometric and phylogenetic effects exert the strongest effects and developmental mode a weak effect on avian cerebellar foliation. The phylogenetic distribution of highly foliated cerebella also suggests that cognitive and/or behavioral differences play a role in the evolution of the cerebellum. PMID:16717442

  7. Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities

    CERN Document Server

    Alves, Luiz G A; Lenzi, Ervin K; Ribeiro, Haroldo V

    2015-01-01

    More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al., we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metri...

  8. Fitness consequences of artificial selection on relative male genital size

    Science.gov (United States)

    Booksmythe, Isobel; Head, Megan L.; Keogh, J. Scott; Jennions, Michael D.

    2016-01-01

    Male genitalia often show remarkable differences among related species in size, shape and complexity. Across poeciliid fishes, the elongated fin (gonopodium) that males use to inseminate females ranges from 18 to 53% of body length. Relative genital size therefore varies greatly among species. In contrast, there is often tight within-species allometric scaling, which suggests strong selection against genital–body size combinations that deviate from a species' natural line of allometry. We tested this constraint by artificially selecting on the allometric intercept, creating lines of males with relatively longer or shorter gonopodia than occur naturally for a given body size in mosquitofish, Gambusia holbrooki. We show that relative genital length is heritable and diverged 7.6–8.9% between our up-selected and down-selected lines, with correlated changes in body shape. However, deviation from the natural line of allometry does not affect male success in assays of attractiveness, swimming performance and, crucially, reproductive success (paternity). PMID:27188478

  9. Studying avian encephalization with geometric morphometrics.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Watanabe, Akinobu; Kawabe, Soichiro

    2016-08-01

    Encephalization is a core concept in comparative neurobiology, aiming to quantify the neurological capacity of organisms. For measuring encephalization, many studies have employed relative brain sizes corrected for expected allometric scaling to body size. Here we highlight the utility of a multivariate geometric morphometric (GM) approach for visualizing and analyzing neuroanatomical shape variation associated with encephalization. GM readily allows the statistical evaluation of covariates, such as size, and many software tools exist for visualizing their effects on shape. Thus far, however, studies using GM have not attempted to translate the meaning of encephalization to shape data. As such, we tested the statistical relationship between size and encephalization quotients (EQs) to brain shape utilizing a broad interspecific sample of avian endocranial data. Although statistically significant, the analyses indicate that allometry accounts for <10% of total neuroanatomical shape variation. Notably, we find that EQs, despite being corrected for allometric scaling based on size, contain size-related neuroanatomical shape changes. In addition, much of what is traditionally considered encephalization comprises clade-specific trends in relative forebrain expansion, particularly driven by landbirds. EQs, therefore, fail to capture 90% of the total neuroanatomical variation after correcting for allometry and shared phylogenetic history. Moving forward, GM techniques provide crucial tools for investigating key drivers of this vast, largely unexplored aspect of avian brain morphology. PMID:27112986

  10. Sexual dimorphism of Colorado beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae in the west and northwest of Iran by geometric morphometric method

    Directory of Open Access Journals (Sweden)

    Rahim Abdolahi Mesbah

    2014-12-01

    Full Text Available The males and females of Colorado beetles do not reveal clear dimorphism and therefore they have high resemblance so that recognition of the sexes by simple eye is too difficult. In order to study sexual dimorphism in Colorado beetle, three geographical populations were collected from potato fields in Ardabil, Bahar and Hamedan regions by manual method and direct observation in the summer of 2012. Fore and hind wings were separated and 7 and 8 landmarks were orderly selected for the fore and hind wings at the end and angle of veins. Geometric coordinate of landmarks were converted to shape and size variables as comparison factors between the sexes. Wings relative variations were determined separately in male and female and it revealed variations of wing shape in evolutionary process. Multivariate analysis based on the results of regression of shape variables showed fore wing had allometry and hind wing had not allometry. Two way MANOVA analysis was conducted for observation of shape differences (base on average of shape variables and size differences. The analysis showed that there were significant differences in shape of fore wing between the sexes.

  11. Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint.

    Science.gov (United States)

    Chen, Jing; Liu, Jian

    2016-09-01

    Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution. PMID:27602734

  12. Primate molar crown formation times and life history evolution revisited.

    Science.gov (United States)

    Macho, G A

    2001-12-01

    Comparative studies have convincingly demonstrated that the pattern and timing of tooth emergence are highly correlated with life-history variables and brain size. Conversely, a firm relationship between molar formation time and life-history variables has not yet been established. It seems counterintuitive that one aspect of dental development should be correlated with life-history variables, whereas the other should not. In order to shed light on this apparent discrepancy this study analyzed all data on primate molar crown formations available in the published literature in relation to life-history variables, brain size, and female body mass. Crown formation times were found to be particularly highly correlated with both female body mass and brain size. Species that depart from the overall brain/body allometry by being relatively large-bodied, e.g., Gorilla gorilla and later Theropithecus oswaldi, also have shorter molar crown formation times than expected. The reverse is not found for species that depart from the overall brain/body allometry due to their larger brains, i.e., Homo sapiens. This finding is interpreted within an evolutionary and ecological framework. Specifically, by focusing on ecological commonalities, a scenario is proposed which may allow predictions to be made about the evolutionary history of other extinct primates also. If confirmed in future studies, crown formation time may again become a powerful tool in evolutionary enquiry. PMID:11748692

  13. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  14. Human-caused habitat fragmentation can drive rapid divergence of male genitalia.

    Science.gov (United States)

    Heinen-Kay, Justa L; Noel, Holly G; Layman, Craig A; Langerhans, R Brian

    2014-12-01

    The aim of this study rests on three premises: (i) humans are altering ecosystems worldwide, (ii) environmental variation often influences the strength and nature of sexual selection, and (iii) sexual selection is largely responsible for rapid and divergent evolution of male genitalia. While each of these assertions has strong empirical support, no study has yet investigated their logical conclusion that human impacts on the environment might commonly drive rapid diversification of male genital morphology. We tested whether anthropogenic habitat fragmentation has resulted in rapid changes in the size, allometry, shape, and meristics of male genitalia in three native species of livebearing fishes (genus: Gambusia) inhabiting tidal creeks across six Bahamian islands. We found that genital shape and allometry consistently and repeatedly diverged in fragmented systems across all species and islands. Using a model selection framework, we identified three ecological consequences of fragmentation that apparently underlie observed morphological patterns: decreased predatory fish density, increased conspecific density, and reduced salinity. Our results demonstrate that human modifications to the environment can drive rapid and predictable divergence in male genitalia. Given the ubiquity of anthropogenic impacts on the environment, future research should evaluate the generality of our findings and potential consequences for reproductive isolation.

  15. Convergent acoustic field of view in echolocating bats

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-01

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on wavel......Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed...... on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate...... into more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid...

  16. The growth patterns of three hindlimb muscles in the chicken.

    Science.gov (United States)

    Helmi, C; Cracraft, J

    1977-07-01

    This study was designed to investigate the growth patterns of three hindlimb muscles of the chicken relative to the functional-biomechanical demands of increasing body size. The biceps femoris, a bipennate non-postural muscle, grew relatively faster in terms of wet and dry weight than did the parallel-fibred adductor superficialis or the unipennate adductor profundus, both postural muscles. All three muscles exhibited positive allometry (relative to body weight) in muscle length but only biceps femoris and adductor profundus showed positive allometry in cross sectional area adductor superficialis having isometric growth in this parameter. In biceps femoris and adductor superficialis the lengths of the longest and shortest fasciculi grew at equal rates, whereas in adductor profundus the shortest fasciculi grew faster than the longest. We conclude that muscle weight alone is an insufficient indicator of changing function in growing muscle. Hence, growth studies should include other functionally relevant parameters such as cross sectional area, which is proportional to the force-producing capabilities of the muscle, or fibre (fasciculus) length, which is indicative of the absolute amount of stretching or shortening that is possible and of the contraction velocity.

  17. Geographic variation in resource allocation to the abdomen in geometrid moths

    Science.gov (United States)

    Kivelä, Sami M.; Välimäki, Panu; Carrasco, David; Mäenpää, Maarit I.; Mänttäri, Satu

    2012-08-01

    A resource allocation trade-off is expected when resources from a common pool are allocated to two or more traits. In holometabolous insects, resource allocation to different functions during metamorphosis relies completely on larval-derived resources. At adult eclosion, resource allocation to the abdomen at the expense of other body parts can be seen as a rough estimate of resource allocation to reproduction. Theory suggests geographic variation in resource allocation to the abdomen, but there are currently no empirical data on it. We measured resource allocation to the abdomen at adult eclosion in four geometrid moths along a latitudinal gradient. Resource (total dry material, carbon, nitrogen) allocation to the abdomen showed positive allometry with body size. We found geographic variation in resource allocation to the abdomen in each species, and this variation was independent of allometry in three species. Geographic variation in resource allocation to the abdomen was complex. Resource allocation to the abdomen was relatively high in partially bivoltine populations in two species, which fits theoretical predictions, but the overall support for theory is weak. This study indicates that the geographic variation in resource allocation to the abdomen is not an allometric consequence of geographic variation in resource acquisition (i.e., body size). Thus, there is a component of resource allocation that can evolve independently of resource acquisition. Our results also suggest that there may be intraspecific variation in the degree of capital versus income breeding.

  18. Observation of Mammalian Similarity Through Allometric Scaling Laws

    CERN Document Server

    Kokshenev, V B

    2002-01-01

    We discuss the problem of observation of natural similarity in skeletal evolution of terrestrial mammals. Analysis is given by means of testing of the power scaling laws established in long bone allometry, which describe development of bones (of length $L$ and diameter $D$) with body mass in terms of the growth exponents, \\QTR{it}{e.g.} $\\lambda =d\\log L/d\\log D$ . The bone-size evolution scenario given three decades ago by McMahon was quiet explicit on the geometrical-shape and mechanical-force constraints that predicted $\\lambda =2/3$. This remains too far from the mammalian allometric exponent $\\lambda ^{(\\exp)}=0.80\\pm 0.2$, recently revised by Christiansen, that is a chief puzzle in long bone allometry. We give therefore new insights into McMagon's constraints and report on the first observation of the critical-elastic-force, bending-deformation, muscle-induced mechanism found with $\\lambda =0.80\\pm 0.3$. This mechanism governs the bone-size evolution with avoiding skeletal fracture caused by muscle-indu...

  19. Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes

    Directory of Open Access Journals (Sweden)

    Kolm Niclas

    2009-09-01

    Full Text Available Abstract Background The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating the cognitive abilities which are being favored. On the other hand, the 'concerted evolution hypothesis' argues that developmental constraints limit such mosaic evolution and instead the size of the entire brain varies in response to selection on any of its constituent parts. To date, analyses of these hypotheses of brain evolution have been limited to mammals and birds; excluding Actinopterygii, the basal and most diverse class of vertebrates. Using a combination of recently developed phylogenetic multivariate allometry analyses and comparative methods that can identify distinct rates of evolution, even in highly correlated traits, we studied brain structure evolution in a highly variable clade of ray-finned fishes; the Tanganyikan cichlids. Results Total brain size explained 86% of the variance in brain structure volume in cichlids, a lower proportion than what has previously been reported for mammals. Brain structures showed variation in pair-wise allometry suggesting some degree of independence in evolutionary changes in size. This result is supported by variation among structures on the strength of their loadings on the principal size axis of the allometric analysis. The rate of evolution analyses generally supported the results of the multivariate allometry analyses, showing variation among several structures in their evolutionary patterns. The olfactory bulbs and hypothalamus were found to evolve faster than other structures while the dorsal medulla presented the slowest evolutionary rate. Conclusion Our results favor a mosaic model of brain evolution, as certain

  20. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    Science.gov (United States)

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  1. The scaling of postcranial muscles in cats (Felidae) II: hindlimb and lumbosacral muscles.

    Science.gov (United States)

    Cuff, Andrew R; Sparkes, Emily L; Randau, Marcela; Pierce, Stephanie E; Kitchener, Andrew C; Goswami, Anjali; Hutchinson, John R

    2016-07-01

    In quadrupeds the musculature of the hindlimbs is expected to be responsible for generating most of the propulsive locomotory forces, as well as contributing to body support by generating vertical forces. In supporting the body, postural changes from crouched to upright limbs are often associated with an increase of body mass in terrestrial tetrapods. However, felids do not change their crouched limb posture despite undergoing a 300-fold size increase between the smallest and largest extant species. Here, we test how changes in the muscle architecture (masses and lengths of components of the muscle-tendon units) of the hindlimbs and lumbosacral region are related to body mass, to assess whether there are muscular compensations for the maintenance of a crouched limb posture at larger body sizes. We use regression and principal component analyses to detect allometries in muscle architecture, with and without phylogenetic correction. Of the muscle lengths that scale allometrically, all scale with negative allometry (i.e. relative shortening with increasing body mass), whereas all tendon lengths scale isometrically. Only two muscles' belly masses and two tendons' masses scale with positive allometry (i.e. relatively more massive with increasing body mass). Of the muscles that scale allometrically for physiological cross-sectional area, all scale positively (i.e. relatively greater area with increasing body mass). These muscles are mostly linked to control of hip and thigh movements. When the architecture data are phylogenetically corrected, there are few significant results, and only the strongest signals remain. None of the vertebral muscles scaled significantly differently from isometry. Principal component analysis and manovas showed that neither body size nor locomotor mode separate the felid species in morphospace. Our results support the inference that, despite some positively allometric trends in muscle areas related to thigh movement, larger cats have

  2. Is the reproduction of Donax trunculus affected by their sites of origin contrasted by their level of contamination?

    Science.gov (United States)

    Tlili, Sofiène; Métais, Isabelle; Ayache, Nadia; Boussetta, Hamadi; Mouneyrac, Catherine

    2011-09-01

    The reproductive cycle of bivalves is regulated by several natural environmental factors but exposure to chemical pollutants can also interfere and may result in advanced or delayed spawning season. To our knowledge, the gametogenic cycle of the suspension-feeder bivalve Donax trunculus has not yet been used as biomonitoring tool in ecotoxicological surveys. The aim of this study was to examine over a year physiological reproductive endpoints (sex-ratio, gametogenic and energy reserve cycles) and biological indices (condition index, allometry) in D. trunculus originating from two sites differing by their level of contamination. Specimens were collected bimonthly from November 2008 to October 2009 from a polluted site (Radès Méliane) and a comparatively reference site (Sidi Jehmi) in the Gulf of Tunis (Tunisia). Five stages were depicted by histological examination of gonads: undifferentiated, developing, mature, spawn and spent. Differences in the gametogenic cycle according to the site of origin of bivalves were observed. The spawning period began in March and was maximum in May in bivalves from both sites, but the percentage of spawning animals was higher in the polluted site vs the reference site. The spawning period was shorter in animals from the polluted site comparatively to the reference site. Energy reserves (glycogen, lipids) were higher in March and May comparatively to the other studied periods in bivalves from both sites. Lower energy reserves levels were usually observed in animals from the polluted site compared to the reference site. Seasonal variations of the condition index were associated to the reproductive and nutritive status of bivalves. Differences in allometry were depicted between bivalves from both studied sites. If we try to link allometry, energy reserves and reproduction, it can be hypothesized that for bivalves from the reference site, energy reserves are allocated to gametogenesis and length growth. For bivalves from the polluted

  3. Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hirst, Andrew G.

    2014-01-01

    The metabolic rate of organisms may be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law, or it may be considered a property of the organism that emerges as a result of the adaptation to the...... life-form-dependent allometries that have similar scaling but different intercepts, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law.We argue that the...... environment, with consequently fewer universal mass scaling properties. Here, we examine the mass scaling of respiration and maximum feeding (clearance and ingestion rates) and growth rates of heterotrophic pelagic organisms over an ~1015 range in body mass. We show that clearance and respiration rates have...

  4. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  5. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes.

    Science.gov (United States)

    Hatton, Ian A; McCann, Kevin S; Fryxell, John M; Davies, T Jonathan; Smerlak, Matteo; Sinclair, Anthony R E; Loreau, Michel

    2015-09-01

    Ecosystems exhibit surprising regularities in structure and function across terrestrial and aquatic biomes worldwide. We assembled a global data set for 2260 communities of large mammals, invertebrates, plants, and plankton. We find that predator and prey biomass follow a general scaling law with exponents consistently near ¾. This pervasive pattern implies that the structure of the biomass pyramid becomes increasingly bottom-heavy at higher biomass. Similar exponents are obtained for community production-biomass relations, suggesting conserved links between ecosystem structure and function. These exponents are similar to many body mass allometries, and yet ecosystem scaling emerges independently from individual-level scaling, which is not fully understood. These patterns suggest a greater degree of ecosystem-level organization than previously recognized and a more predictive approach to ecological theory.

  6. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2016-01-01

    This 4th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Lea...

  7. Sexual selection and the rodent baculum: an intraspecific study in the house mouse (Mus musculus domesticus).

    Science.gov (United States)

    Ramm, Steven A; Khoo, Lin; Stockley, Paula

    2010-01-01

    The rapid divergence of genitalia is a pervasive trend in animal evolution, thought to be due to the action of sexual selection. To test predictions from the sexual selection hypothesis, we here report data on the allometry, variation, plasticity and condition dependence of baculum morphology in the house mouse (Mus musculus domesticus). We find that that baculum size: (a) exhibits no consistent pattern of allometric scaling (baculum size being in most cases unrelated to body size), (b) exhibits low to moderate levels of phenotypic variation, (c) does not exhibit phenotypic plasticity in response to differences in perceived levels of sexual competition and (d) exhibits limited evidence of condition dependence. These patterns provide only limited evidence in support of the sexual selection hypothesis, and no consistent support for any particular sexual selection mechanism; however, more direct measures of how genital morphology influences male fertilization success are required.

  8. Variant Scaling Relationship for Mass-Density Across Tree-Dominated Communities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The past few decades have seen a resurgence of interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 invariant scaling relationship between mass and density that is universally valid for tree-dominated communities, regardless of their phyletic affiliation or habitat. In the present study, we test this scaling relationship using a comprehensive forest biomass database, including 1 266 plots of six biomes and 17 forest types across China. The present study shows that the scaling exponent of the massdensity relationship varies across different tree-dominated communities and habitats. This great variability in the scaling exponent makes any generalization unwarranted. Although inappropriate regression methods can lead to flawed estimation of the scaling exponent, inconsistency of theoretical framework and empirical patterns may have undermined the validity of previous work.

  9. Spatial Allometric Scaling of Cities Based on Variable Urban Boundaries

    CERN Document Server

    Chen, Yanguang; Li, Xijing

    2015-01-01

    It has been demonstrated that urban growth and hierarchies of cities follow the allometric scaling law. However, there is no study on the allometric relations of the internal spatial structure within a city. This paper is devoted to explore the allometric scaling of intraurban patterns by means of variable boundaries of cities. Based on a digital map, an urban boundary can be determined by given searching radius. Changing the searching radius, we have different urban boundaries for the same city. A set of urban boundaries based on different searching radius is similar to a set of isograms. Three typical measurements can be obtained, including urban area, total length of streets, and number of street nodes. These measurements represent three basic spatial elements of geographical systems, i.e., area, lines, and points. A finding is that the numerical relationships between urban area, street length, and node number follow allometric scaling laws. In practice, the spatial allometry can be used to estimate the fr...

  10. Sheldon Spectrum and the Plankton Paradox: Two Sides of the Same Coin. A trait-based plankton size-spectrum model

    CERN Document Server

    Cuesta, José A; Law, Richard

    2016-01-01

    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is ...

  11. Vector field embryogeny.

    Directory of Open Access Journals (Sweden)

    Till Steiner

    Full Text Available We present a novel approach toward evolving artificial embryogenies, which omits the graph representation of gene regulatory networks and directly shapes the dynamics of a system, i.e., its phase space. We show the feasibility of the approach by evolving cellular differentiation, a basic feature of both biological and artificial development. We demonstrate how a spatial hierarchy formulation can be integrated into the framework and investigate the evolution of a hierarchical system. Finally, we show how the framework allows the investigation of allometry, a biological phenomenon, and its role for evolution. We find that direct evolution of allometric change, i.e., the evolutionary adaptation of the speed of system states on transient trajectories in phase space, is advantageous for a cellular differentiation task.

  12. Ornament Complexity Is Correlated with Sexual Selection: (A Comment on Raia et al., "Cope's Rule and the Universal Scaling Law of Ornament Complexity").

    Science.gov (United States)

    Holman, Luke; Bro-Jørgensen, Jakob

    2016-08-01

    Raia et al. propose that the evolution of the shape and complexity of animal ornaments (e.g., deer antlers) can be explained by interspecific variation in body size and is not influenced by sexual selection. They claim to show that ornament complexity is related to body size by an 0.25-power law and argue that this finding precludes a role for sexual selection in the evolution of ornament complexity. However, their study does not test alternative hypotheses and mismeasures antler shape allometry by omitting much of the published data. We show that an index of sexual selection (sexual size dimorphism) is positively correlated with size-corrected antler complexity and that the allometric slope of complexity is substantially greater than 0.25, contra Raia et al. We conclude that sexual selection and physical constraints both affect the evolution of antler shape. PMID:27420791

  13. Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Nielsen, Anders Tærø

    2015-01-01

    Adequate allometric equations are needed for estimating carbon pools of fast growing tree species in relation to international reporting of CO2 emissions and for assessing their possible contribution to increasing forest biomass resources. We developed models for predicting biomass, stem basic...... density and expansion factors of stem to above-ground biomass for five fast growing conifers. Data included destructive measurements of 236 trees from 14 sites, covering a wide range of growth conditions. To ensure model efficiency, models for predicting stem, crown and total above-ground biomass...... and reflected differences in the allometry between tree species. Stem density differed among species but generally declined with increasing site index and dbh. The overall model for predicting stem basic density included dbh, H100 and site index and explained 66% of the total variation. Expansion factors...

  14. Salient features in locomotor evolutionary adaptations of proboscideans revealed via the differential scaling of limb long bones

    CERN Document Server

    Kokshenev, Valery B

    2009-01-01

    The standard differential scaling of proportions in limb long bones (length against circumference) is applied to a phylogenetically wide sample of the Proboscidea, Elephantidae and the Asian (Elephas maximus) and African elephant (Loxodonta africana). In order to investigate allometric patterns in proboscideans and terrestrial mammals with parasagittal limb kinematics, the computed slopes (slenderness exponents) are compared with published values for mammals and studied within a framework of theoretical models of long bone scaling under gravity and muscle forces. Limb bone allometry in E. maximus and the Elephantidae are congruent with adaptation to bending and/or torsion induced by muscular forces during fast locomotion, as in other mammals, whereas limb bones in L. africana appear adapted for coping with the compressive forces of gravity. Consequently, hindlimb bones are expected to be more compliant than forelimb bones in accordance with in vivo studies on elephant locomotory kinetics and kinematics, and t...

  15. Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers

    Science.gov (United States)

    Bonomini, M. P.; Ingallina, F.; Barone, V.; Valentinuzzi, M. E.; Arini, P. D.

    2011-12-01

    Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG = δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specifity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.

  16. L\\'evy flights in ecology

    CERN Document Server

    Jourdain, Benjamin; Woyczynski, Wojbor

    2011-01-01

    We are interested in modeling Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by each individual's trait values, and interactions between individuals. An offspring usually inherits the trait values of her progenitor, except when a random mutation causes the offspring to take an instantaneous mutation step at birth to new trait values. In the case we are interested in, the probability distribution of mutations has a heavy tail and belongs to the domain of attraction of a stable law. We investigate the large-population limit with allometric demographies: larger populations made up of smaller individuals which reproduce and die faster, as is typical for micro-organisms. We show that depending on the allometry coefficient the limit behavior of the population proce...

  17. Soil fertility controls the size-specific distribution of eukaryotes.

    Science.gov (United States)

    Mulder, Christian

    2010-05-01

    The large range of body-mass values of soil organisms provides a tool to assess the organization of soil ecological communities. Relationships between log-transformed body mass M and log-transformed numerical abundance N of all eukaryotes occurring under organic pastures, mature grasslands, and seminatural heathlands in the Netherlands were investigated. The observed allometry of (M,N) assemblages of below-ground communities strongly reflects the availability of primary macronutrients and essential micronutrients. This log-linear model describes the continuous variation in the allometric slope of animals and fungi along an increasing soil fertility gradient. The aggregate contribution of small invertebrates (M ground primary production of ecosystems. PMID:20586775

  18. Allometric and temporal scaling of movement characteristics in Galapagos tortoises.

    Science.gov (United States)

    Bastille-Rousseau, Guillaume; Yackulic, Charles B; Frair, Jacqueline L; Cabrera, Freddy; Blake, Stephen

    2016-09-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs. We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour - giant Galapagos tortoises (Chelonoidis spp.) - to test how movement metrics estimated on a monthly basis scaled with body size. We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex. Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates. Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one

  19. Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny.

    Science.gov (United States)

    Habegger, Maria L; Motta, Philip J; Huber, Daniel R; Dean, Mason N

    2012-12-01

    Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73-285cm total length). Theoretical bite force ranged from 36 to 2128N at the most anterior bite point, and 170 to 5914N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible

  20. The process-based stand growth model Formix 3-Q applied in a GIS environment for growth and yield analysis in a tropical rain forest.

    Science.gov (United States)

    Ditzer, T.; Glauner, R.; Förster, M.; Köhler, P.; Huth, A.

    2000-03-01

    Managing tropical rain forests is difficult because few long-term field data on forest growth and the impact of harvesting disturbance are available. Growth models may provide a valuable tool for managers of tropical forests, particularly if applied to the extended forest areas of up to 100,000 ha that typically constitute the so-called forest management units (FMUs). We used a stand growth model in a geographic information system (GIS) environment to simulate tropical rain forest growth at the FMU level. We applied the process-based rain forest growth model Formix 3-Q to the 55,000 ha Deramakot Forest Reserve (DFR) in Sabah, Malaysia. The FMU was considered to be composed of single and independent small-scale stands differing in site conditions and forest structure. Field data, which were analyzed with a GIS, comprised a terrestrial forest inventory, site and soil analyses (water, nutrients, slope), the interpretation of aerial photographs of the present vegetation and topographic maps. Different stand types were determined based on a classification of site quality (three classes), slopes (four classes), and present forest structure (four strata). The effects of site quality on tree allometry (height-diameter curve, biomass allometry, leaf area) and growth (increment size) are incorporated into Formix 3-Q. We derived allometric relations and growth factors for different site conditions from the field data. Climax forest structure at the stand level was shown to depend strongly on site conditions. Simulated successional pattern and climax structure were compared with field observations. Based on the current management plan for the DFR, harvesting scenarios were simulated for stands on different sites. The effects of harvesting guidelines on forest structure and the implications for sustainable forest management at Deramakot were analyzed. Based on the stand types and GIS analysis, we also simulated undisturbed regeneration of the logged-over forest in the DFR at

  1. Cladistic analysis of extant and fossil African papionins using craniodental data.

    Science.gov (United States)

    Gilbert, Christopher C

    2013-05-01

    This study examines African papionin phylogenetic history through a comprehensive cladistic analysis of extant and fossil craniodental morphology using both quantitative and qualitative characters. To account for the well-documented influence of allometry on the papionin skull, the general allometric coding method was applied to characters determined to be significantly affected by allometry. Results of the analyses suggest that Parapapio, Pliopapio, and Papio izodi are stem African papionin taxa. Crown Plio-Pleistocene African papionin taxa include Gorgopithecus, Lophocebus cf. albigena, Procercocebus, Soromandrillus (new genus defined herein) quadratirostris, and, most likely, Dinopithecus. Furthermore, S. quadratirostris is a member of a clade also containing Mandrillus, Cercocebus, and Procercocebus; ?Theropithecus baringensis is strongly supported as a primitive member of the genus Theropithecus; Gorgopithecus is closely related to Papio and Lophocebus; and Theropithecus is possibly the most primitive crown African papionin taxon. Finally, character transformation analyses identify a series of morphological transformations during the course of papionin evolution. The origin of crown African papionins is diagnosed, at least in part, by the appearance of definitive and well-developed male maxillary ridges and maxillary fossae. Among crown African papionins, Papio, Lophocebus, and Gorgopithecus are further united by the most extensive development of the maxillary fossae. The Soromandrillus/Mandrillus/Cercocebus/Procercocebus clade is diagnosed by upturned nuchal crests (especially in males), widely divergent temporal lines (especially in males), medially oriented maxillary ridges in males, medially oriented inferior petrous processes, and a tendency to enlarge the premolars as an adaptation for hard-object food processing. The adaptive origins of the genus Theropithecus appear associated with a diet requiring an increase in size of the temporalis, the optimal

  2. Impact of soil cadmium on land snails: a two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure.

    Directory of Open Access Journals (Sweden)

    Dragos V Nica

    Full Text Available Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.

  3. Impact of soil cadmium on land snails: a two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure.

    Science.gov (United States)

    Nica, Dragos V; Filimon, Marioara Nicoleta; Bordean, Despina-Maria; Harmanescu, Monica; Draghici, George Andrei; Dragan, Simona; Gergen, Iosif I

    2015-01-01

    Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.

  4. Internal dosimetry for [4-{sup 14}C]-cholesterol in humans; Dosimetria interna para o [4-{sup 14}C]-colesterol em humanos

    Energy Technology Data Exchange (ETDEWEB)

    Marcato, Larissa Andreto

    2012-07-01

    The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose due to intake of [4-{sup 14}C]-cholesterol. The model was validated comparing the values of fecal excretion and absorption described in literature with that predicted by the model. The proposed model achieved good concordance between the results (p = 0.416 for excretion and p = 0.423 for absorption). The coefficients of effective dose (SvBq{sup -1}), equivalent dose (SvBq{sup -1}) and absorbed dose (GyBq{sup -1}) in human organs and tissues were calculated using the MIRD methodology and the compartmental analysis software ANACOMP. The coefficients were estimated for four phantoms: adult with a body mass of 73.3 kg, 15 years old adolescent (56.9 kg), 10 years old child (33.2 kg) and five years old child (19.8 kg). The organ that received the highest absorbed dose for all phantoms was the lower large intestine (LLI). The allometry theory was used to interpolate the coefficient of absorbed dose in the lower large intestine (DLLI) for unknown body mass (m): DLLI (GyBq{sup -1})=161.26 m (kg){sup -1.025}. For the same administered activity, the effective dose coefficient (E) decreases as the body mass increases. On other words, for the same intake activity, individuals with low body mass are exposed to higher doses. The allometry theory was used to interpolate the coefficient effective dose (E) for unknown body mass (m): E(SvB{sup -1})= 171.1 m(kg){sup -1,021}. (author)

  5. The effects of experimentally induced adelphophagy in gastropod embryos.

    Directory of Open Access Journals (Sweden)

    Olaf Thomsen

    Full Text Available Adelphophagy, development where embryos grow large by consuming morphologically distinct nutritive embryos or their own normal siblings is widespread but uncommon among animal phyla. Among invertebrates it is particularly common in some families of marine gastropods and segmented worms, but rare or unknown in other closely related families. In calyptraeid gastropods phylogenetic analysis indicates that adelphophagy has arisen at least 9 times from species with planktotrophic larval development. This pattern of frequent parallel evolution of adelphophagy suggests that the embryos of planktotrophic species might be predisposed to evolve adelphophagy. Here we used embryos of three species of planktotrophic calyptraeids, one from each of three major genera in the family (Bostrycapulus, Crucibulum, and Crepidula, to answer the following 3 questions: (1 Can embryos of species with planktotrophic development benefit, in terms of pre-hatching growth, from the ingestion of yolk and tissue from experimentally damaged siblings? (2 Does ingestion of this material from damaged siblings increase variation in pre-hatching size? and (3 Does this experimentally induced adelphophagy alter the allometry between the velum and the shell, increasing morphological similarity to embryos of normally adelphophagic species? We found an overall increase in shell length and velum diameter when embryos feed on damaged siblings within their capsules. There was no detectable increase in variation in shell length or velum diameter, or changes in allometry. The overall effect of our treatment was small compared to the embryonic growth observed in naturally adelphophagic development. However each embryo in our experiment probably consumed less than one sibling on average, whereas natural adelphophages often each consume 10-30 or more siblings. These results suggest that the ability to consume, assimilate, and benefit from yolk and tissue of their siblings is widespread across

  6. The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator.

    Science.gov (United States)

    Ratcliffe, Norman; Takahashi, Akinori; O'Sullivan, Claire; Adlard, Stacey; Trathan, Philip N; Harris, Michael P; Wanless, Sarah

    2013-01-01

    Intra-specific foraging niche partitioning can arise due to gender differences or individual specialisation in behaviour or prey selection. These may in turn be related to sexual size dimorphism or individual variation in body size through allometry. These variables are often inter-related and challenging to separate statistically. We present a case study in which the effects of sex, body mass and individual specialisation on the dive depths of the South Georgia shag on Bird Island, South Georgia are investigated simultaneously using a linear mixed model. The nested random effects of trip within individual explained a highly significant amount of the variance. The effects of sex and body mass were both significant independently but could not be separated statistically owing to them being strongly interrelated. Variance components analysis revealed that 45.5% of the variation occurred among individuals, 22.6% among trips and 31.8% among Dives, while R(2) approximations showed gender explained 31.4% and body mass 55.9% of the variation among individuals. Male dive depths were more variable than those of females at the levels of individual, trip and dive. The effect of body mass on individual dive depths was only marginally significant within sexes. The percentage of individual variation in dive depths explained by mass was trivial in males (0.8%) but substantial in females (24.1%), suggesting that differences in dive depths among males was largely due to them adopting different behavioural strategies whereas in females allometry played an additional role. Niche partitioning in the study population therefore appears to be achieved through the interactive effects of individual specialisation and gender upon vertical foraging patch selection, and has the potential to interact in complex ways with other axes of the niche hypervolume such as foraging locations, timing of foraging and diet. PMID:24205368

  7. The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator.

    Directory of Open Access Journals (Sweden)

    Norman Ratcliffe

    Full Text Available Intra-specific foraging niche partitioning can arise due to gender differences or individual specialisation in behaviour or prey selection. These may in turn be related to sexual size dimorphism or individual variation in body size through allometry. These variables are often inter-related and challenging to separate statistically. We present a case study in which the effects of sex, body mass and individual specialisation on the dive depths of the South Georgia shag on Bird Island, South Georgia are investigated simultaneously using a linear mixed model. The nested random effects of trip within individual explained a highly significant amount of the variance. The effects of sex and body mass were both significant independently but could not be separated statistically owing to them being strongly interrelated. Variance components analysis revealed that 45.5% of the variation occurred among individuals, 22.6% among trips and 31.8% among Dives, while R(2 approximations showed gender explained 31.4% and body mass 55.9% of the variation among individuals. Male dive depths were more variable than those of females at the levels of individual, trip and dive. The effect of body mass on individual dive depths was only marginally significant within sexes. The percentage of individual variation in dive depths explained by mass was trivial in males (0.8% but substantial in females (24.1%, suggesting that differences in dive depths among males was largely due to them adopting different behavioural strategies whereas in females allometry played an additional role. Niche partitioning in the study population therefore appears to be achieved through the interactive effects of individual specialisation and gender upon vertical foraging patch selection, and has the potential to interact in complex ways with other axes of the niche hypervolume such as foraging locations, timing of foraging and diet.

  8. Facial heights: evolutionary relevance of postnatal ontogeny for facial orientation and skull morphology in humans and chimpanzees.

    Science.gov (United States)

    Bastir, Markus; Rosas, Antonio

    2004-11-01

    Facial heights, i.e. the vertical distances between the superior and inferior limits of facial compartments, contribute to the orientation of the viscerocranium in the primate skull. In humans, vertical facial variation is among the main sources of diversity and frequently associated with an integrated suite of other cranio-mandibular traits. Facial heights and kyphosis are also important factors in interspecific variation and models of hominoid evolution. The ontogenetic determination of adult facial orientation and its relation to phylogenetic variation are unclear, but crucial in all previously mentioned respects. We addressed these issues in a sample of 175 humans and chimpanzees with Procrustes based geometric morphometrics, testing hypotheses of interspecific similarity in postnatal ontogenetic trajectories, early versus later ontogenetic facial pattern determination, and a developmental model of morphological integration. We analyzed the contribution of postnatal morphogenesis to adult vertical facial variation by partitioning morphological variation into a portion of pure growth allometry and a non-allometric fraction. A statistically significant difference of growth-allometries revealed that in both species growth established the adult skull proportions by vertical facial expansion, but while in chimpanzees the complete viscerocranium showed reorientation, in humans only the lower face was modified. In both species the results support a hypothesis of early facial pattern determination. A coincident emergence of morphological traits favors a hypothesis of developmental integration of the face, excluding traits of the basi- and neurocranium. Interspecific differences in integration may have implications for evolutionary studies. The present findings indicate that growth establishes the adult skull proportions and integrates principal facial orientation patterns, already there in early postnatal ontogeny. PMID:15530353

  9. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2014-02-01

    Full Text Available Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM. In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP, for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs with simple large-area parameterisations of woody biomass (typically used in current ESMs and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model, but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  10. Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site.

    Science.gov (United States)

    Rosas, Antonio; Bastir, Markus

    2004-06-01

    Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. PMID:15164343

  11. Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions.

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp. and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti. Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM, all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average

  12. Allometric and temporal scaling of movement characteristics in Galapagos tortoises

    Science.gov (United States)

    Bastille-Rousseau, Guillaume; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Freddy; Blake, Stephen

    2016-01-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs.We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour – giant Galapagos tortoises (Chelonoidis spp.) – to test how movement metrics estimated on a monthly basis scaled with body size.We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex.Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates.Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one

  13. Internal dosimetry for [4-14C]-cholesterol in humans

    International Nuclear Information System (INIS)

    The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose due to intake of [4-14C]-cholesterol. The model was validated comparing the values of fecal excretion and absorption described in literature with that predicted by the model. The proposed model achieved good concordance between the results (p = 0.416 for excretion and p = 0.423 for absorption). The coefficients of effective dose (SvBq-1), equivalent dose (SvBq-1) and absorbed dose (GyBq-1) in human organs and tissues were calculated using the MIRD methodology and the compartmental analysis software ANACOMP. The coefficients were estimated for four phantoms: adult with a body mass of 73.3 kg, 15 years old adolescent (56.9 kg), 10 years old child (33.2 kg) and five years old child (19.8 kg). The organ that received the highest absorbed dose for all phantoms was the lower large intestine (LLI). The allometry theory was used to interpolate the coefficient of absorbed dose in the lower large intestine (DLLI) for unknown body mass (m): DLLI (GyBq-1)=161.26 m (kg)-1.025. For the same administered activity, the effective dose coefficient (E) decreases as the body mass increases. On other words, for the same intake activity, individuals with low body mass are exposed to higher doses. The allometry theory was used to interpolate the coefficient effective dose (E) for unknown body mass (m): E(SvB-1)= 171.1 m(kg)-1,021. (author)

  14. Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities.

    Science.gov (United States)

    Alves, Luiz G A; Mendes, Renio S; Lenzi, Ervin K; Ribeiro, Haroldo V

    2015-01-01

    More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al. [PLoS ONE 5 (2010) e13541], we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%-97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators. PMID:26356081

  15. Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities.

    Directory of Open Access Journals (Sweden)

    Luiz G A Alves

    Full Text Available More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al. [PLoS ONE 5 (2010 e13541], we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%-97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators.

  16. Relative cheek-tooth size in Australopithecus.

    Science.gov (United States)

    McHenry, H M

    1984-07-01

    Until the discovery of Australopithecus afarensis, cheek-tooth megadontia was unequivocally one of the defining characteristics of the australopithecine grade in human evolution along with bipedalism and small brains. This species, however, has an average postcanine area of 757 mm2, which is more like Homo habilis (759 mm2) than A. africanus (856 mm2). But what is its relative cheek-tooth size in comparison to body size? One approach to this question is to compare postcanine tooth area to estimated body weight. By this method all Australopithecus species are megadont: they have cheek teeth 1.7 to 2.3 times larger than modern hominoids of similar body size. The series from A. afarensis to A. africanus to A. robustus to A. boisei shows strong positive allometry indicating increasing megadontia through time. The series from H. habilis to H. erectus to H. sapiens shows strong negative allometry which implies a sharp reduction in the relative size of the posterior teeth. Postcanine megadontia in Australopithecus species can also be demonstrated by comparing tooth size and body size in associated skeletons: A. afarensis (represented by A.L. 288-1) has a cheek-tooth size 2.8 times larger than expected from modern hominoids; A. africanus (Sts 7) and A. robustus (TM 1517) are over twice the expected size. The evolutionary transition from the megadont condition of Australopithecus to the trend of decreasing megadontia seen in the Homo lineage may have occurred between 3.0 and 2.5 m.y. from A. afarensis to H.habilis but other evidence indicates that it is more likely to have occurred between 2.5 to 2.0 m.y. from an A. africanus-like form to H. habilis. PMID:6433716

  17. Crescimento alométrico de osso, músculo e gordura em cortes da carcaça de cordeiros Texel segundo os métodos de alimentação e peso de abate Muscle, fat and bone allometric growth in Texel lambs carcasses cuts in relation to the feeding methods and slaughter weight

    Directory of Open Access Journals (Sweden)

    Gilberto Teixeira da Rosa

    2005-08-01

    sexo com coeficientes de alometria variando de 1,80 a 2,12.The experiment aimed at studying the allometric growth of the different tissues of neck, rib, shoulder blade and leg in relation to the cutting weight of male and female lambs. Twenty-two intact Texel males and 23 Texel females were used. Seven of them were slaughtered at the beginning of the experiment and the others at the weight of 25 or 33kg. Sheep and lambs were distributed into three methods of feeding: M1 - Corn silage and concentrate, only to lambs until weaning at 60 days old; M2 - Corn silage and concentrate, only to lambs until weaning at 45 days old and M3 - Corn silage and concentrate to ewe and lamb until weaning at 60 days old. After weaning, lambs were fed with silage plus concentrate. A completely randomized design outlined in a factorial arrangement 3 x 2 x 2 (3 methods, 2 sexes and 2 slaughter weights was used. Determination of growth was obtained through the equation log y = log.a + b log.x, by using the logarithm of bone, muscle and fat weight in function of cutting weight logarithm. It was observed that neck and rib bone was precocious (b1, regardless of sex and feeding method with allometry coefficients varying from 1.78 to 2.15 (neck and 1.51 to 1.65 (rib. In shoulder blade, bone was precocious in both sexes, with allometry coefficients varying from 0.76 to 0.79 and 0.54 to 0.58 for males and females, respectively. Muscle presented isometric growth (b = 1, regardless of sex and slaughter weight. Fat was late (b>1, regardless of slaughter weight and sex, with allometry coefficients varying from 1.80 to 2.12. In leg, bone growth was precocious in females and isometric in males, with allometry coefficients varying from 0.57 to 0.63 and 0.78 to 0.80, respectively, for both sexes. Muscle presented isometric growth (b = 1, regardless of sex and slaughter weight. Fat was late (b>1, regardless of slaughter weight and sex, with allometry coefficients varying from 1.80 to 2.12.

  18. Relative growth and morphological sexual maturity of Chasmagnathus granulatus (Crustacea, Varunidae from a mangrove area in southeastern Brazilian coast Crescimento relativo e maturidade sexual morfológica de Chasmagnathus granulatus (Crustacea, Varunidae de uma área de manguezal no sudeste do Brasil

    Directory of Open Access Journals (Sweden)

    Rafael Augusto Gregati

    Full Text Available The relative growth and morphological sexual maturity of Chasmagnathus granulatus Dana, 1851 are presented for the first time to a mangrove population. The crabs were obtained during low tide periods, in the mangrove of Jabaquara Beach, Paraty, Rio de Janeiro, Brazil. All crabs in intermolt stage were sexed and had their body parts measured as follows: body height (BH, carapace length (CL and width (CW, major cheliped propodus height (PH and length (PL for each sex, gonopod length (GL and abdomen width (AW for males and females, respectively. The relative growth was described using the allometric equation y=ax b and the size at onset sexual maturity was achieved using the software Mature I. The size of specimens ranged from 4.1 mm to 39.5 mm CW. The growth pattern was different between sexes in the cheliped relationships; the relationships BH vs. CW evidenced positive allometry for juveniles; PL vs. CW and PH vs. CW positive allometry for most crabs except juvenile females; AW vs. CW and GL vs. CW evidenced positive allometry for juveniles and isometry for adults. The relationships that best indicated the change from the juvenile to the adult phase were PH vs. CW for males and AW vs. CW for females. The size in which 50% of males from this population are mature is at 19.7 mm of CW (F=144.14; pO crescimento relativo e a maturidade sexual morfológica de Chasmagnathus granulatus Dana, 1851 são apresentados pela primeira vez para uma população de manguezal. Os caranguejos foram obtidos durante os períodos de maré baixa, no manguezal da praia do Jabaquara, Paraty, Rio de Janeiro, Brasil. Todos os caranguejos em estágio de intermuda foram classificados quanto ao sexo e as seguintes medidas lineares foram tomadas: altura do corpo (AC, altura do própodo do quelípodo maior (APQ, comprimento da carapaça (CC, comprimento do própodo do quelípodo maior (CPQ, largura da carapaça (LC, comprimento do gonopódio (CG e largura do abdome (LA para

  19. Scaling of convex hull volume to body mass in modern primates, non-primate mammals and birds.

    Directory of Open Access Journals (Sweden)

    Charlotte A Brassey

    Full Text Available The volumetric method of 'convex hulling' has recently been put forward as a mass prediction technique for fossil vertebrates. Convex hulling involves the calculation of minimum convex hull volumes (vol(CH from the complete mounted skeletons of modern museum specimens, which are subsequently regressed against body mass (Mb to derive predictive equations for extinct species. The convex hulling technique has recently been applied to estimate body mass in giant sauropods and fossil ratites, however the biomechanical signal contained within vol(CH has remained unclear. Specifically, when vol(CH scaling departs from isometry in a group of vertebrates, how might this be interpreted? Here we derive predictive equations for primates, non-primate mammals and birds and compare the scaling behaviour of Mb to volCH between groups. We find predictive equations to be characterised by extremely high correlation coefficients (r(2 = 0.97-0.99 and low mean percentage prediction error (11-20%. Results suggest non-primate mammals scale body mass to volCH isometrically (b = 0.92, 95%CI = 0.85-1.00, p = 0.08. Birds scale body mass to volCH with negative allometry (b = 0.81, 95%CI = 0.70-0.91, p = 0.011 and apparent density (volCH/Mb therefore decreases with mass (r(2 = 0.36, p<0.05. In contrast, primates scale body mass to vol(CH with positive allometry (b = 1.07, 95%CI = 1.01-1.12, p = 0.05 and apparent density therefore increases with size (r(2 = 0.46, p = 0.025. We interpret such departures from isometry in the context of the 'missing mass' of soft tissues that are excluded from the convex hulling process. We conclude that the convex hulling technique can be justifiably applied to the fossil record when a large proportion of the skeleton is preserved. However we emphasise the need for future studies to quantify interspecific variation in the distribution of soft tissues such as muscle, integument and body fat.

  20. Predicting biomass of hyperdiverse and structurally complex Central Amazon forests - a virtual approach using extensive field data

    Science.gov (United States)

    Magnabosco Marra, D.; Higuchi, N.; Trumbore, S. E.; Ribeiro, G. H. P. M.; dos Santos, J.; Carneiro, V. M. C.; Lima, A. J. N.; Chambers, J. Q.; Negrón-Juárez, R. I.; Holzwarth, F.; Reu, B.; Wirth, C.

    2015-09-01

    Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90 % of the total AGB above-ground biomass in tropical forests and AGB estimation models are crucial for forest management and conservation. In the Central Amazon, predicting AGB at large spatial-scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this dataset we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape-level across successional gradients. We found that good individual tree model fits do not necessarily translate into good predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different models and an available pantropical model, we observed systematic biases ranging from -31 % (pantropical) to +39 %, with RMSE root-mean-square error values of up to 130 Mg ha-1 (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha-1) when applied over scenarios. Predicting biomass correctly at the landscape-level in complex tropical forests, especially allowing good performance at the margins of data availability for model parametrization, requires the inclusion of predictors related to species architecture. The model of interest should comprise the floristic composition and size

  1. Trophic divergence despite morphological convergence in a continental radiation of snakes.

    Science.gov (United States)

    Grundler, Michael C; Rabosky, Daniel L

    2014-07-22

    Ecological and phenotypic convergence is a potential outcome of adaptive radiation in response to ecological opportunity. However, a number of factors may limit convergence during evolutionary radiations, including interregional differences in biogeographic history and clade-specific constraints on form and function. Here, we demonstrate that a single clade of terrestrial snakes from Australia--the oxyuranine elapids--exhibits widespread morphological convergence with a phylogenetically diverse and distantly related assemblage of snakes from North America. Australian elapids have evolved nearly the full spectrum of phenotypic modalities that occurs among North American snakes. Much of the convergence appears to involve the recurrent evolution of stereotyped morphologies associated with foraging mode, locomotion and habitat use. By contrast, analysis of snake diets indicates striking divergence in feeding ecology between these faunas, partially reflecting regional differences in ecological allometry between Australia and North America. Widespread phenotypic convergence with the North American snake fauna coupled with divergence in feeding ecology are clear examples of how independent continental radiations may converge along some ecological axes yet differ profoundly along others.

  2. Diversity among African pygmies.

    Science.gov (United States)

    Ramírez Rozzi, Fernando V; Sardi, Marina L

    2010-01-01

    Although dissimilarities in cranial and post-cranial morphology among African pygmies groups have been recognized, comparative studies on skull morphology usually pull all pygmies together assuming that morphological characters are similar among them and different with respect to other populations. The main aim of this study is to compare cranial morphology between African pygmies and non-pygmies populations from Equatorial Africa derived from both the Eastern and the Western regions in order to test if the greatest morphological difference is obtained in the comparison between pygmies and non-pygmies. Thirty three-dimensional (3D) landmarks registered with Microscribe in four cranial samples (Western and Eastern pygmies and non-pygmies) were obtained. Multivariate analysis (generalized Procrustes analysis, Mahalanobis distances, multivariate regression) and complementary dimensions of size were evaluated with ANOVA and post hoc LSD. Results suggest that important cranial shape differentiation does occur between pygmies and non-pygmies but also between Eastern and Western populations and that size changes and allometries do not affect similarly Eastern and Western pygmies. Therefore, our findings raise serious doubt about the fact to consider African pygmies as a homogenous group in studies on skull morphology. Differences in cranial morphology among pygmies would suggest differentiation after divergence. Although not directly related to skull differentiation, the diversity among pygmies would probably suggest that the process responsible for reduced stature occurred after the split of the ancestors of modern Eastern and Western pygmies.

  3. An Allometric Algorithm for Fractal-Based Cobb-Douglas Function of Geographical Systems

    Directory of Open Access Journals (Sweden)

    Hongyu Luo

    2014-01-01

    Full Text Available The generalized Cobb-Douglas production function has been derived from a general input-output relation based on fractality assumptions. It was proved to be a useful self-affine model for geographical analysis. However, the ordinary least square calculation is always an ineffectual method for the Cobb-Douglas modeling because of the multicollinearity in the logarithmic linear regression. In this paper, a novel approach is proposed to build the geographical Cobb-Douglas models. Combining the concept of allometric scaling with the linear regression technique, we obtain a simple algorithm that can be employed to estimate the parameters of the Cobb-Douglas function. As a case, the algorithm and models are applied to the public transportation of China’s cities, and the results validate the allometric algorithm. A conclusion can be drawn that the allometric analysis is an effective way of modeling geographical systems with the general Cobb-Douglas function. This study is significant for integrating the notions of allometry, fractals, and scaling into a new framework to form a quantitative methodology of spatial analysis.

  4. Theophylline Population Pharmacokinetics and Dosing in Children Following Congenital Heart Surgery With Cardiopulmonary Bypass.

    Science.gov (United States)

    Frymoyer, Adam; Su, Felice; Grimm, Paul C; Sutherland, Scott M; Axelrod, David M

    2016-09-01

    Children undergoing cardiac surgery requiring cardiopulmonary bypass (CPB) frequently develop acute kidney injury due to renal ischemia. Theophylline, which improves renal perfusion via adenosine receptor inhibition, is a potential targeted therapy. However, children undergoing cardiac surgery and CPB commonly have alterations in drug pharmacokinetics. To help understand optimal aminophylline (salt formulation of theophylline) dosing strategies in this population, a population-based pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM) from 71 children (median age 5 months; 90% range 1 week to 10 years) who underwent cardiac surgery requiring CPB and received aminophylline as part of a previous randomized controlled trial. A 1-compartment model with linear elimination adequately described the pharmacokinetics of theophylline. Weight scaled via allometry was a significant predictor of clearance and volume. In addition, allometric scaled clearance increased with age implemented as a power maturation function. Compared to prior reports in noncardiac children, theophylline clearance was markedly reduced across age. In the final population pharmacokinetic model, optimized empiric dosing regimens were developed via Monte Carlo simulations. Doses 50% to 75% lower than those recommended in noncardiac children were needed to achieve target serum concentrations of 5 to 10 mg/L. PMID:26712558

  5. Tree Species and Their Space Requirements in Six Urban Environments Worldwide

    Directory of Open Access Journals (Sweden)

    Jens Dahlhausen

    2016-05-01

    Full Text Available Urban trees have gained in importance during recent decades, but little is known about the temporal dynamic of tree growth in urban areas. The present study investigated the allometric relationships of stem diameter, tree height, and crown radius for six different tree species in six metropolises worldwide. Increment cores of the trees were used for identifying the relationship of basal area and basal area increment and for extrapolating the temporal dynamics for each species in relation to the allometric parameters and growth extensions. Space limitation and its direct influence on growth were quantified, as well as the aboveground woody biomass and the carbon storage capacity. The results show that, among the investigated species, Quercus nigra and Khaya senegalensis have the highest growth rates for stem diameter and crown radius, whereas Tilia cordata and Aesculus hippocastanum remain on a lower level. A significant reduction of tree growth due to restricted non-paved area was found for Aesculus hippocastanum and Khaya senegalensis. Estimations of aboveground biomass were highest for Quercus nigra and lowest for Tilia cordata. These results show the species-specific allometries of urban trees over a projected time period. Thus, the data set is highly relevant for planners and urban green managers.

  6. Scaling of avian primary feather length.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather (f(prim contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus. The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: f(prim is proportional to ta(0.78-0.82. The scaling exponent was not significantly different from that predicted (0.86 by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M(1/3 because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics.

  7. Nitrogen in insects: implications for trophic complexity and species diversification.

    Science.gov (United States)

    Fagan, William F; Siemann, Evan; Mitter, Charles; Denno, Robert F; Huberty, Andrea F; Woods, H Arthur; Elser, James J

    2002-12-01

    Disparities in nutrient content (nitrogen and phosphorus) between herbivores and their plant resources have lately proven to have major consequences for herbivore success, consumer-driven nutrient cycling, and the fate of primary production in ecosystems. Here we extend these findings by examining patterns of nutrient content between animals at higher trophic levels, specifically between insect herbivores and predators. Using a recently compiled database on insect nutrient content, we found that predators exhibit on average 15% greater nitrogen content than herbivores. This difference persists after accounting for variation from phylogeny and allometry. Among herbivorous insects, we also found evidence that recently derived lineages (e.g., herbivorous Diptera and Lepidoptera) have, on a relative basis, 15%-25% less body nitrogen than more ancient herbivore lineages (e.g., herbivorous Orthoptera and Hemiptera). We elaborate several testable hypotheses for the origin of differences in nitrogen content between trophic levels and among phylogenetic lineages. For example, interspecific variation in insect nitrogen content may be directly traceable to differences in dietary nitrogen (including dilution by gut contents), selected for directly in response to the differential scarcity of dietary nitrogen, or an indirect consequence of adaptation to different feeding habits. From some functional perspectives, the magnitude rather than the source of the interspecific differences in nitrogen content may be most critical. We conclude by discussing the implications of the observed patterns for both the trophic complexity of food webs and the evolutionary radiation of herbivorous insects. PMID:18707465

  8. Diversity among African pygmies.

    Directory of Open Access Journals (Sweden)

    Fernando V Ramírez Rozzi

    Full Text Available Although dissimilarities in cranial and post-cranial morphology among African pygmies groups have been recognized, comparative studies on skull morphology usually pull all pygmies together assuming that morphological characters are similar among them and different with respect to other populations. The main aim of this study is to compare cranial morphology between African pygmies and non-pygmies populations from Equatorial Africa derived from both the Eastern and the Western regions in order to test if the greatest morphological difference is obtained in the comparison between pygmies and non-pygmies. Thirty three-dimensional (3D landmarks registered with Microscribe in four cranial samples (Western and Eastern pygmies and non-pygmies were obtained. Multivariate analysis (generalized Procrustes analysis, Mahalanobis distances, multivariate regression and complementary dimensions of size were evaluated with ANOVA and post hoc LSD. Results suggest that important cranial shape differentiation does occur between pygmies and non-pygmies but also between Eastern and Western populations and that size changes and allometries do not affect similarly Eastern and Western pygmies. Therefore, our findings raise serious doubt about the fact to consider African pygmies as a homogenous group in studies on skull morphology. Differences in cranial morphology among pygmies would suggest differentiation after divergence. Although not directly related to skull differentiation, the diversity among pygmies would probably suggest that the process responsible for reduced stature occurred after the split of the ancestors of modern Eastern and Western pygmies.

  9. Leaf morphology correlates with water and light availability:What consequences for simple and compound leaves?

    Institute of Scientific and Technical Information of China (English)

    Fei Xu; Weihua Guo; Weihong Xu; Yinghua Wei; Renqing Wang

    2009-01-01

    Leaves are organs sensitive to environmental changes in the process of evolution and may exhibit phenotypic plasticity as a response to abiotic stress.However,affirmation of leaf morphological plasticity and its regulations in different environments are still unclear.We performed a simulated experiment to study the variations of leaf morphology in different gradients of water and light availability.Considering different types of leaves and venation,we chose pinnate-veined simple leaves of Quercus acutissima and compound leaves of Robinia pseudoacacia as the study objects.The morphological parameters we investigated include leaf size,shape and venation pattern which can be easily measured in the field.Significant variations occurred in many parameters due to the effects of the environment and/or allometry.There were broadly consistent trends for leaf morphological variations along the gradients.The leaf size became smaller with a short supply of resources.Leaf elongation and fractions of the lamina area altered to enhance resources acquisition and conservation.Trade-offs between investments in support and functional structures optimized the venation pattern of major and minor veins.Leaflets partially played a role such as leaf teeth,for they are not only individual units,but also a part of the compound leaf.We suggest that more or less the same trends in morphological variations may be an important explanation for coexisting species to adapt to similar habitats and form the niche differentiation.

  10. Integrating mixed-effect models into an architectural plant model to simulate inter- and intra-progeny variability: a case study on oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Perez, Raphaël P A; Pallas, Benoît; Le Moguédec, Gilles; Rey, Hervé; Griffon, Sébastien; Caliman, Jean-Pierre; Costes, Evelyne; Dauzat, Jean

    2016-08-01

    Three-dimensional (3D) reconstruction of plants is time-consuming and involves considerable levels of data acquisition. This is possibly one reason why the integration of genetic variability into 3D architectural models has so far been largely overlooked. In this study, an allometry-based approach was developed to account for architectural variability in 3D architectural models of oil palm (Elaeis guineensis Jacq.) as a case study. Allometric relationships were used to model architectural traits from individual leaflets to the entire crown while accounting for ontogenetic and morphogenetic gradients. Inter- and intra-progeny variabilities were evaluated for each trait and mixed-effect models were used to estimate the mean and variance parameters required for complete 3D virtual plants. Significant differences in leaf geometry (petiole length, density of leaflets, and rachis curvature) and leaflet morphology (gradients of leaflet length and width) were detected between and within progenies and were modelled in order to generate populations of plants that were consistent with the observed populations. The application of mixed-effect models on allometric relationships highlighted an interesting trade-off between model accuracy and ease of defining parameters for the 3D reconstruction of plants while at the same time integrating their observed variability. Future research will be dedicated to sensitivity analyses coupling the structural model presented here with a radiative balance model in order to identify the key architectural traits involved in light interception efficiency. PMID:27302128

  11. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert.

    Science.gov (United States)

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-07-20

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants' competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change.

  12. Seasonality of Tropical Dry Forests and its Sensitivity to Climate Change

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.

    2013-12-01

    Tropical dry forests (TDFs) are characterized by an annual dry season of 3-6 months duration. Although TDFs account for nearly 42% by area of total tropical vegetation, their representation in current dynamic vegetation models has rarely been challenged by ground-based observations. In this study, we assimilate several unique field datasets and MODIS-derived Leaf Area Index (LAI) into the Ecosystem Demography Model version 2 (ED2). The field measurements were taken at 18 forested stands in Costa Rica including annual tree-level censuses, species-level leaf trait, monthly measurements of stand litterfall and soil properties since 2008. These measurements were used to develop plant functional types (PFTs) suitable for modeling TDFs, especially in terms of their allometry, phenology, and growth rates. The model was then forced with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections for Central America to quantify the response and sensitivity of vegetation dynamics to different radiative forcing scenarios. We expect that this study will improve our knowledge of TDFs, including their phenology and sensitivity future climate change, and also has implications for TDF carbon dynamics, energy budgets and hydrological cycling.

  13. On the Relationships of Postcanine Tooth Size with Dietary Quality and Brain Volume in Primates: Implications for Hominin Evolution

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jiménez-Arenas

    2014-01-01

    Full Text Available Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.

  14. Geographic variation in Puget Sound tidal channel planform geometry

    Science.gov (United States)

    Hood, W. Gregory

    2015-02-01

    Tidal channels are central elements of salt marsh hydrodynamics, sediment dynamics, and habitat. To develop allometric models predicting the number and size of tidal channels that could develop following salt marsh restoration, channels were digitized from aerial photographs of Puget Sound river delta marshes. Salt marsh area was the independent variable for all dependent channel planform metrics. Tidal channel allometry showed similar scaling exponents for channel planform metrics throughout Puget Sound, simplifying comparisons between locations. Y-intercepts of allometric relationships showed geographic variation, which multiple-regression indicated was associated with tidal range and storm significant wave height. Channel size and complexity were positively related to tidal range and negatively related to wave height. Four case studies, each with paired regions of similar tidal range and contrasting wave environments, further indicated wave environment affected channel geometry. Wave-mediated sediment delivery may be the mechanism involved, with wave-sheltered areas experiencing relative sediment deficits, such that some salt marshes in Puget Sound are already suffering sea-level rise impacts that are reflected in their channel network geometry.

  15. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang

    2016-02-02

    Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  16. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes’ Hearing Evolution

    Science.gov (United States)

    Braga, J.; Loubes, J-M.; Descouens, D.; Dumoncel, J.; Thackeray, J. F.; Kahn, J-L.; de Beer, F.; Riberon, A.; Hoffman, K.; Balaresque, P.; Gilissen, E.

    2015-01-01

    Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species’ sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the “hypertrophied” cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record. PMID:26083484

  17. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes' Hearing Evolution.

    Science.gov (United States)

    Braga, J; Loubes, J-M; Descouens, D; Dumoncel, J; Thackeray, J F; Kahn, J-L; de Beer, F; Riberon, A; Hoffman, K; Balaresque, P; Gilissen, E

    2015-01-01

    Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species' sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the "hypertrophied" cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record. PMID:26083484

  18. Length-weight relationship and metric-meristic characteristics of two scorpion fishes (Scorpaena notata and Scorpaena porcus in İzmir Bay

    Directory of Open Access Journals (Sweden)

    Sencer Akalın

    2011-10-01

    Full Text Available In this study, 2 species (Scorpaena notata, Scorpaena porcus belong to Scorpaena genus were caught monthly by trawl surveys carried out between January 2005-July 2007 in İzmir Bay, in order to determine of morfometric and meristic characteristics and length-weigth relationships parameters. During the research period, 658 Scorpaena notata and 221 Scorpaena porcus indi¬viduals were investigated. The lenght-weight relationship of fishes were estimated as W=0.0164*L3.074 (r2=0.960 and W=0.0209*L2.987 (r=0.993 for Scorpaena notata and Scorpa¬ena porcus, respectively. As a result of student t-test (p<0.05, it was determined that the growth characteristics of S. notata and S. porcus are positive allometry and isometry respecti¬vely in the bay. In addition, 19 morphometric measurements taken and 7 meristic characteristic were counted for 23 S. notata and 29 S.porcus individuals.

  19. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    Science.gov (United States)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  20. The structure of tropical forests and sphere packings.

    Science.gov (United States)

    Taubert, Franziska; Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas

    2015-12-01

    The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.

  1. Interspecies allometric scaling: prediction of clearance in large animal species: part II: mathematical considerations.

    Science.gov (United States)

    Martinez, M; Mahmood, I; Hunter, R P

    2006-10-01

    Interspecies scaling is a useful tool for the prediction of pharmacokinetic parameters from animals to humans, and it is often used for estimating a first-time in human dose. However, it is important to appreciate the mathematical underpinnings of this scaling procedure when using it to predict pharmacokinetic parameter values across animal species. When cautiously applied, allometry can be a tool for estimating clearance in veterinary species for the purpose of dosage selection. It is particularly valuable during the selection of dosages in large zoo animal species, such as elephants, large cats and camels, for which pharmacokinetic data are scant. In Part I, allometric predictions of clearance in large animal species were found to pose substantially greater risks of inaccuracies when compared with that observed for humans. In this report, we examine the factors influencing the accuracy of our clearance estimates from the perspective of the relationship between prediction error and such variables as the distribution of body weight values used in the regression analysis, the influence of a particular observation on the clearance estimate, and the 'goodness of fit' (R(2)) of the regression line. Ultimately, these considerations are used to generate recommendations regarding the data to be included in the allometric prediction of clearance in large animal species. PMID:16958788

  2. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  3. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees.

    Science.gov (United States)

    Ichihashi, Ryuji; Tateno, Masaki

    2015-08-01

    The host-dependent support habit of lianas is generally interpreted as a strategy designed to reduce resource investment in mechanical tissues; this allows preferential allocation to leaf and stem extension, thereby enhancing productivity and competitive abilities. However, this hypothesis has not been rigorously tested. We examined the aboveground allometries regarding biomass allocation (leaf mass and current-year stem mass (approximated as biomass allocated to extension growth) vs total aboveground mass) and long-term apparent growth patterns (height and aboveground mass vs age, i.e. numbers of growth rings) for nine deciduous liana species in Japan. Lianas had, on average, three- and five-fold greater leaf and current-year stem mass, respectively, than trees for a given aboveground mass, whereas the time course to reach the forest canopy was comparable and biomass accumulation during that period was only one-tenth that of co-occurring canopy trees. The balance between the lengths of yearly stem extension and existing older stems indicated that lianas lost c. 75% of stem length during growth to the canopy, which is probably a consequence of the host-dependent growth. Our observations suggest that, although lianas rely on hosts mechanically, allowing for short-term vigorous growth, this habit requires a large cost and could limit plant growth over protracted periods.

  4. Brain volume of the newly-discovered species Rhynchocyon udzungwensis (Mammalia: Afrotheria: Macroscelidea: implications for encephalization in sengis.

    Directory of Open Access Journals (Sweden)

    Jason A Kaufman

    Full Text Available The Gray-faced Sengi (Rhynchocyon udzungwensis is a newly-discovered species of sengi (elephant-shrew and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.

  5. Brain volume of the newly-discovered species Rhynchocyon udzungwensis (Mammalia: Afrotheria: Macroscelidea): implications for encephalization in sengis.

    Science.gov (United States)

    Kaufman, Jason A; Turner, Gregory H; Holroyd, Patricia A; Rovero, Francesco; Grossman, Ari

    2013-01-01

    The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI) scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.

  6. The metabolic theory of ecology: prospects and challenges for plant biology.

    Science.gov (United States)

    Price, Charles A; Gilooly, James F; Allen, Andrew P; Weitz, Joshua S; Niklas, Karl J

    2010-11-01

    The metabolic theory of ecology (MTE) as applied to the plant sciences aims to provide a general synthesis for the structure and functioning of plants from organelles to ecosystems. MTE builds from simple assumptions of individual metabolism to make predictions about phenomena across a wide range of scales, from individual plant structure and function to community dynamics and global nutrient cycles. The scope of its predictions include morphological allometry, biomass partitioning, vascular network design, and life history phenomena at the individual level; size-frequency distributions, population growth rates, and energetic equivalence at the community level; and the flux, turnover and storage of nutrients at the ecosystem level. Here, we provide an overview of MTE, by considering its assumptions and predictions at these different levels of organization and explaining how the model integrates phenomena among all of these scales. We highlight the model's many successes in predicting novel patterns and draw attention to areas in which gaps remain between observations and MTE's assumptions and predictions. Considering the theory as a whole, we argue that MTE has made a significant contribution in furthering our understanding of those unifying aspects of the structure and function of plants, populations, communities, and ecosystems.

  7. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes.

    Science.gov (United States)

    Watanabe, Yuuki Y; Goldman, Kenneth J; Caselle, Jennifer E; Chapman, Demian D; Papastamatiou, Yannis P

    2015-05-12

    Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources. PMID:25902489

  8. Integrating mixed-effect models into an architectural plant model to simulate inter- and intra-progeny variability: a case study on oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Perez, Raphaël P A; Pallas, Benoît; Le Moguédec, Gilles; Rey, Hervé; Griffon, Sébastien; Caliman, Jean-Pierre; Costes, Evelyne; Dauzat, Jean

    2016-08-01

    Three-dimensional (3D) reconstruction of plants is time-consuming and involves considerable levels of data acquisition. This is possibly one reason why the integration of genetic variability into 3D architectural models has so far been largely overlooked. In this study, an allometry-based approach was developed to account for architectural variability in 3D architectural models of oil palm (Elaeis guineensis Jacq.) as a case study. Allometric relationships were used to model architectural traits from individual leaflets to the entire crown while accounting for ontogenetic and morphogenetic gradients. Inter- and intra-progeny variabilities were evaluated for each trait and mixed-effect models were used to estimate the mean and variance parameters required for complete 3D virtual plants. Significant differences in leaf geometry (petiole length, density of leaflets, and rachis curvature) and leaflet morphology (gradients of leaflet length and width) were detected between and within progenies and were modelled in order to generate populations of plants that were consistent with the observed populations. The application of mixed-effect models on allometric relationships highlighted an interesting trade-off between model accuracy and ease of defining parameters for the 3D reconstruction of plants while at the same time integrating their observed variability. Future research will be dedicated to sensitivity analyses coupling the structural model presented here with a radiative balance model in order to identify the key architectural traits involved in light interception efficiency.

  9. Shell shape variation in the Nassariid Buccinanops globulosus in northern Patagonia

    Science.gov (United States)

    Avaca, María Soledad; Narvarte, Maite; Martín, Pablo; van der Molen, Silvina

    2013-09-01

    Morphological variation among natural populations is a phenomenon commonly observed in marine invertebrates and well studied, particularly, in shelled gastropods. The nassariid Buccinanops globulosus is interesting to study shell shape variation because it exhibits strong interpopulation differences in life history features, including maximum size, fecundity and growth rate. In this study, we examined the pattern of variation in size and shell shape among populations and between sexes of B. globulosus (Bahía San Antonio 40°29'S 63°01'W, Playa Villarino 40°45'S 64°40'W and Bahía Nueva 42°46'S 65°02'W). In particular, we used geometric morphometric techniques to test: (1) whether the two components of shell morphology (size and shape) are independent and (2) whether shape differences between sexes are consistently found among populations, regardless of their body sizes. Our results show shell shape variation between the populations of B. globulosus of northern Patagonia. Intra-specific shell shape variation is affected by body size, indicating allometry. Regardless of the size differences, individuals from Playa Villarino have high-spired shells, and shorter apertures and wider columellar area than individuals from the other populations. Also, sex-related shape differences were consistently found at each population, thus suggesting a common sexual dimorphism in shell morphology for this species. The functional significance of the variability found is discussed in terms of the flexibility of developmental programmes for morphology as well as the evolution of phenotypic plasticity.

  10. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches.

    Directory of Open Access Journals (Sweden)

    Daniela A Schmieder

    Full Text Available External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

  11. Nonhuman Primate Ocular Biometry

    Science.gov (United States)

    Augusteyn, Robert C.; Maceo Heilman, Bianca; Ho, Arthur; Parel, Jean-Marie

    2016-01-01

    Purpose To examine ocular growth in nonhuman primates (NHPs) from measurements on ex vivo eyes. Methods We obtained NHP eyes from animals that had been killed as part of other studies or because of health-related issues. Digital calipers were used to measure the horizontal, vertical, and anteroposterior globe diameters as well as corneal horizontal and vertical diameters of excised globes from 98 hamadryas baboons, 551 cynomolgus monkeys, and 112 rhesus monkeys, at ages ranging from 23 to 360 months. Isolated lens sagittal thickness and equatorial diameter were measured by shadowphotogrammetry. Wet and fixed dry weights were obtained for lenses. Results Nonhuman primate globe growth continues throughout life, slowing toward an asymptotic maximum. The final globe size scales with negative allometry to adult body size. Corneal growth ceases at around 20 months. Lens diameter increases but thickness decreases with increasing age. Nonhuman primate lens wet and dry weight accumulation is monophasic, continuing throughout life toward asymptotic maxima. The dry/wet weight ratio reaches a maximum of 0.33. Conclusions Nonhuman primate ocular globe and lens growth differ in several respects from those in humans. Although age-related losses of lens power and accommodative amplitude are similar, lens growth and properties are different indicating care should be taken in extrapolating NHP observations to the study of human accommodation. PMID:26780314

  12. Differential Performance between Two Timber Species in Forest Logging Gaps and in Plantations in Central Africa

    Directory of Open Access Journals (Sweden)

    Adeline Fayolle

    2015-02-01

    Full Text Available To develop silvicultural guidelines for high-value timber species of Central African moist forests, we assessed the performance of the pioneer Milicia excelsa (iroko, Moraceae, and of the non-pioneer light demander Pericopsis elata (assamela, Fabaceae in logging gaps and in plantations in highly degraded areas in south-eastern Cameroon. The survival and size of each seedling was regularly monitored in the silvicultural experiments. Differences in performance and allometry were tested between species in logging gaps and in plantations. The two species performance in logging gaps was significantly different from plantations and concurred with the expectations of the performance trade-off hypothesis but not with the expectations of species light requirements. The pioneer M. excelsa survived significantly better in logging gaps while the non-pioneer P. elata grew significantly faster in plantations. The high mortality and slow growth of M. excelsa in plantations is surprising for a pioneer species but could be explained by herbivory (attacks from a gall-making psyllid. Identifying high-value native timber species (i with good performance in plantations such as P. elata is of importance to restore degraded areas; and (ii with good performance in logging gaps such as M. excelsa is of importance to maintain timber resources and biodiversity in production forests.

  13. Predation intensity does not cause microevolutionary change in maximum speed or aerobic capacity in trinidadian guppies (Poecilia reticulata Peters).

    Science.gov (United States)

    Chappell, Mark; Odell, Jason

    2004-01-01

    We measured maximal oxygen consumption (VO(2max)) and burst speed in populations of Trinidadian guppies (Poecilia reticulata) from contrasting high- and low-predation habitats but reared in "common garden" conditions. We tested two hypothesis: first, that predation, which causes rapid life-history evolution in guppies, also impacts locomotor physiology, and second, that trade-offs would occur between burst and aerobic performance. VO(2max) was higher than predicted from allometry, and resting VO(2) was lower than predicted. There were small interdrainage differences in male VO(2max), but predation did not affect VO(2max) in either sex. Maximum burst speed was correlated with size; absolute burst speed was higher in females, but size-adjusted speed was greater in males. For both sexes, burst speed conformed to allometric predictions. There were differences in burst speed between drainages in females, but predation regime did not affect burst speed in either sex. We did not find a significant correlation between burst speed and VO(2max), suggesting no trade-off between these traits. These results indicate that predation-mediated evolution of guppy life history does not produce concomitant evolution in aerobic capacity and maximum burst speed. However, other aspects of swimming performance (response latencies or acceleration) might show adaptive divergence in contrasting predation regimes.

  14. Go big or go fish: morphological specializations in carnivorous bats.

    Science.gov (United States)

    Santana, Sharlene E; Cheung, Elena

    2016-05-11

    Specialized carnivory is relatively uncommon across mammals, and bats constitute one of the few groups in which this diet has evolved multiple times. While size and morphological adaptations for carnivory have been identified in other taxa, it is unclear what phenotypic traits characterize the relatively recent evolution of carnivory in bats. To address this gap, we apply geometric morphometric and phylogenetic comparative analyses to elucidate which characters are associated with ecological divergence of carnivorous bats from insectivorous ancestors, and if there is morphological convergence among independent origins of carnivory within bats, and with other carnivorous mammals. We find that carnivorous bats are larger and converged to occupy a subset of the insectivorous morphospace, characterized by skull shapes that enhance bite force at relatively wide gapes. Piscivorous bats are morphologically distinct, with cranial shapes that enable high bite force at narrow gapes, which is necessary for processing fish prey. All animal-eating species exhibit positive allometry in rostrum elongation with respect to skull size, which could allow larger bats to take relatively larger prey. The skull shapes of carnivorous bats share similarities with generalized carnivorans, but tend to be more suited for increased bite force production at the expense of gape, when compared with specialized carnivorans. PMID:27170718

  15. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes

    Science.gov (United States)

    Watanabe, Yuuki Y.; Goldman, Kenneth J.; Caselle, Jennifer E.; Chapman, Demian D.; Papastamatiou, Yannis P.

    2015-01-01

    Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2–3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources. PMID:25902489

  16. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    Science.gov (United States)

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group.

  17. Patriline Differences Reveal Genetic Influence on Forewing Size and Shape in a Yellowjacket Wasp (Hymenoptera: Vespidae: Vespula flavopilosa Jacobson, 1978.

    Directory of Open Access Journals (Sweden)

    Adrien Perrard

    Full Text Available The wing venation is frequently used as a morphological marker to distinguish biological groups among insects. With geometric morphometrics, minute shape differences can be detected between closely related species or populations, making this technique useful for taxonomy. However, the direct influence of genetic differences on wing morphology has not been explored within colonies of social insects. Here, we show that the father's genotype has a direct effect on wing morphology in colonies of social wasps. Using geometric morphometrics on the venation pattern, we found significant differences in wing size and shape between patrilines of yellowjackets, taking allometry and measurement error into account. The genetic influence on wing size accounted for a small part of the overall size variation, but venation shape was highly structured by the differences between patrilines. Overall, our results showed a strong genetic influence on wing morphology likely acting at multiple levels of venation pattern development. This confirmed the pertinence of this marker for taxonomic purposes and suggests this phenotype as a potentially useful marker for phylogenies. This also raises doubts about the strength of selective pressures on this phenotype, which highlights the need to understand better the role of wing venation shape in insect flight.

  18. Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula.

    Science.gov (United States)

    Gao, Peng; Loeffler, Theresa Sofi; Honsel, Anne; Kruse, Jörg; Krol, Elzbieta; Scherzer, Sönke; Kreuzer, Ines; Bemm, Felix; Buegger, Franz; Burzlaff, Tim; Hedrich, Rainer; Rennenberg, Heinz

    2015-02-01

    Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH₄(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH₄(+) was mediated by 2.5-fold higher expression of the NH₄(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH₄(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots. PMID:25345872

  19. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    Science.gov (United States)

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  20. Traditional and Modern Morphometrics: Review

    Directory of Open Access Journals (Sweden)

    Gökhan OCAKOĞLU

    2013-01-01

    Full Text Available Morphometrics, a branch of morphology, is the study of the size and shape components of biological forms and their variation in the population. In biological and medical sciences, there is a long history of attempts to quantitatively express the diversity of the size and shape of biological forms. On the basis of historical developments in morphometry, we address several questions related to the shape of organs or organisms that are considered in biological and medical studies. In the field of morphometrics, multivariate statistical analysis is used to rigorously address such questions. Historically, these methods have involved the analysis of collections of distances or angles, but recent theoretical, computational, and other advances have shifted the focus of morphometric procedures to the Cartesian coordinates of anatomical points. In recent years, in biology and medicine, the traditional morphometric studies that aim to analyze shape variation have been replaced by modern morphometric studies. In the biological and medical sciences, morphometric methods are frequently preferred for examining the morphologic structures of organs or organisms with regard to diseases or environmental factors. These methods are also preferred for evaluating and classifying the variation of organs or organisms with respect to growth or allometry time dependently. Geometric morphometric methods are more valid than traditional morphometric methods in protecting more morphological information and in permitting analysis of this information.

  1. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes' Hearing Evolution.

    Science.gov (United States)

    Braga, J; Loubes, J-M; Descouens, D; Dumoncel, J; Thackeray, J F; Kahn, J-L; de Beer, F; Riberon, A; Hoffman, K; Balaresque, P; Gilissen, E

    2015-01-01

    Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species' sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the "hypertrophied" cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record.

  2. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes' Hearing Evolution.

    Directory of Open Access Journals (Sweden)

    J Braga

    Full Text Available Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species' sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo,Gorilla and (Pan,Homo most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection of its hearing organ. Premodern (Homo erectus and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the "hypertrophied" cochlea in the genus Homo (as opposed to the australopiths and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record.

  3. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    Science.gov (United States)

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group. PMID:26095445

  4. Scaling of suction-induced flows in bluegill: morphological and kinematic predictors for the ontogeny of feeding performance.

    Science.gov (United States)

    Holzman, Roi; Collar, David C; Day, Steven W; Bishop, Kristin L; Wainwright, Peter C

    2008-08-01

    During ontogeny, animals undergo changes in size and shape that result in shifts in performance, behavior and resource use. These ontogenetic changes provide an opportunity to test hypotheses about how the growth of structures affects biological functions. In the present study, we ask how ontogenetic changes in skull biomechanics affect the ability of bluegill sunfish, a high-performance suction feeder, to produce flow speeds and accelerations during suction feeding. The flow of water in front of the mouth was measured directly for fish ranging from young-of-year to large adults, using digital particle imaging velocimetry (DPIV). As bluegill size increased, the magnitude of peak flow speed they produced increased, and the effective suction distance increased because of increasing mouth size. However, throughout the size range, the timing of peak fluid speed remained unchanged, and flow was constrained to approximately one gape distance from the mouth. The observed scaling relationships between standard length and peak flow speed conformed to expectations derived from two biomechanical models, one based on morphological potential to produce suction pressure (the Suction Index model) and the other derived from a combination of morphological and kinematic variables (the Expanding Cone model). The success of these models in qualitatively predicting the observed allometry of induced flow speed reveals that the scaling of cranial morphology underlies the scaling of suction performance in bluegill. PMID:18689419

  5. Carica papaya (Caricaceae): a case study into the effects of domestication on plant vegetative growth and reproduction.

    Science.gov (United States)

    Niklas, Karl J; Marler, Thomas E

    2007-06-01

    Few studies have quantitatively evaluated the gender specific effects of cultivation on plant growth and reproduction. The availability of cultivated and wild populations of different genders of Carica papaya L. (Caricaceae) on Guam provided an opportunity to study these effects quantitatively. We compared the gender specific allometry of height vs. basal stem diameter (H vs. D), stem slenderness ratio (H/D), and the height at first flowering (H(fl)) of carpellate and staminate plants growing under natural conditions (N = 150 each) with those of carpellate and hermaphroditic plants (N = 250 each) from two cultivars (Sunrise and Tainung 2). These comparisons indicated that (1) wild carpellate and staminate plants are significantly taller than either gender of the two cultivars with equivalent D; (2) the scaling exponent governing the H vs. D relationship of both genders of wild plants is significantly higher than that of either cultivated gender; (3) cultivar type does not affect the H vs. D exponent, but gender expression does; (4) gender expression (but not cultivar-type) also affects H(fl) (cultivation substantially reduces carpellate plant H(fl)); and (5) the onset of sexual maturity is associated with a dramatic reversal in H/D ontogeny. Cultivation therefore has "condensed" patterns of vegetative growth in a gender specific manner, whereas gender expression alters both vegetative and reproductive growth significantly more so than does cultivar-type. PMID:21636469

  6. Demography of the endangered tree species Ocotea porosa (Lauraceae along a gradient of forest disturbance in southern Brazil

    Directory of Open Access Journals (Sweden)

    Cibele Amato Munhoz

    2014-12-01

    Full Text Available Ocotea porosa (Ness Barroso (Lauraceae, a typical tree of the southern Atlantic Forest in Brazil, was heavily exploited for timber in the last century. With the aim of examining the status of the remaining populations, we surveyed five forest fragments in the state of Paraná, in southern Brazil, and evaluated whether disturbances caused by selective logging and fragmentation were related to population structure of O. porosa. We assessed demographic aspects related to tree density, size hierarchy and individual allometry, correlating those parameters with fragment structure variables (fragment size, isolation and logging level. We found that, although all populations occurred in low densities (60-440 individuals ha−¹, the number of adults was significantly lower in the smaller and most disturbed fragments (13 and 35 individuals ha−¹, respectively. We did not detect changes in allometric relationships among individuals in the five populations studied. However, we found that populations in more heavily disturbed areas presented lower size hierarchy (i.e., less dominance of larger trees than did those in undisturbed areas, suggesting that selective logging affects the population structure of O. porosa, possibly affecting the rates of reproduction and fecundity, which may ultimately increase the probability of local extinction.

  7. 14C and tritium dynamics in wild mammals: a metabolic model

    International Nuclear Information System (INIS)

    The protection of biota from ionising radiations needs reliable predictions of radionuclide dynamics in wild animals. Data specific for many wild animals radionuclide combinations is lacking and a number of approaches including allometry have been proposed to address this. However, for 14C and tritium, which are integral components of animals tissues and their diets, a different approach is needed in the absence of experimental data. Here we propose a metabolically based model which can be parameterized predominantly on the basis of published metabolic data. We begin with a metabolic definition of the 14C and OBT loss rate (assumed to be the same) from the whole body and also specific organs, using available information on field metabolic rate and body composition. The mammalian body is conceptually partitioned into compartments (body water, viscera, adipose, muscle, blood and remainder) and a simple model defined using net maintenance and growth needs of mammals. Intake and excretion, and transfer to body water are modelled using basic metabolic knowledge and published relationships. The model is tested with data from studies using rats and sheep. It provides a reliable prediction for whole body and muscle activity concentrations without the requirement for any calibration specific to 3H and 14C. Predictions from the model for representative wild mammals (as selected to be reference organisms within international programmes) are presented. Potential developments of a metabolic model for birds and the application of our work to human food chain modelling are also discussed. (author)

  8. How sexual selection can drive the evolution of costly sperm ornamentation

    Science.gov (United States)

    Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott

    2016-05-01

    Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male–male competition and female choice as discrete processes.

  9. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world

    Science.gov (United States)

    Peng, Yunfeng; Yang, Yuanhe

    2016-01-01

    Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes. PMID:27349584

  10. Morphological analysis of the flippers in the Franciscana dolphin, Pontoporia blainvillei, applying X-ray technique.

    Science.gov (United States)

    Del Castillo, Daniela Laura; Panebianco, María Victoria; Negri, María Fernanda; Cappozzo, Humberto Luis

    2014-07-01

    Pectoral flippers of cetaceans function to provide stability and maneuverability during locomotion. Directional asymmetry (DA) is a common feature among odontocete cetaceans, as well as sexual dimorphism (SD). For the first time DA, allometry, physical maturity, and SD of the flipper skeleton--by X-ray technique--of Pontoporia blainvillei were analyzed. The number of carpals, metacarpals, phalanges, and morphometric characters from the humerus, radius, ulna, and digit two were studied in franciscana dolphins from Buenos Aires, Argentina. The number of visible epiphyses and their degree of fusion at the proximal and distal ends of the humerus, radius, and ulna were also analyzed. The flipper skeleton was symmetrical, showing a negative allometric trend, with similar growth patterns in both sexes with the exception of the width of the radius (P ≤ 0.01). SD was found on the number of phalanges of digit two (P ≤ 0.01), ulna and digit two lengths. Females showed a higher relative ulna length and shorter relative digit two length, and the opposite occurred in males (P ≤ 0.01). Epiphyseal fusion pattern proved to be a tool to determine dolphin's age; franciscana dolphins with a mature flipper were, at least, four years old. This study indicates that the flippers of franciscana dolphins are symmetrical; both sexes show a negative allometric trend; SD is observed in radius, ulna, and digit two; and flipper skeleton allows determine the age class of the dolphins. PMID:24700648

  11. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea).

    Science.gov (United States)

    de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895

  12. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture.

    Science.gov (United States)

    Carrer, Marco; von Arx, Georg; Castagneri, Daniele; Petit, Giai

    2015-01-01

    Trees are among the best natural archives of past environmental information. Xylem anatomy preserves information related to tree allometry and ecophysiological performance, which is not available from the more customary ring-width or wood-density proxy parameters. Recent technological advances make tree-ring anatomy very attractive because time frames of many centuries can now be covered. This calls for the proper treatment of time series of xylem anatomical attributes. In this article, we synthesize current knowledge on the biophysical and physiological mechanisms influencing the short- to long-term variation in the most widely used wood-anatomical feature, namely conduit size. We also clarify the strong mechanistic link between conduit-lumen size, tree hydraulic architecture and height growth. Among the key consequences of these biophysical constraints is the pervasive, increasing trend of conduit size during ontogeny. Such knowledge is required to process time series of anatomical parameters correctly in order to obtain the information of interest. An appropriate standardization procedure is fundamental when analysing long tree-ring-related chronologies. When dealing with wood-anatomical parameters, this is even more critical. Only an interdisciplinary approach involving ecophysiology, wood anatomy and dendrochronology will help to distill the valuable information about tree height growth and past environmental variability correctly.

  13. Functional morphology of the Neandertal scapular glenoid fossa.

    Science.gov (United States)

    Macias, Marisa E; Churchill, Steven E

    2015-01-01

    Neandertals and Homo sapiens are known to differ in scapular glenoid fossa morphology. Functional explanations may be appropriate for certain aspects of glenoid fossa morphology; however, other factors--e.g., allometry, evolutionary development--must be addressed before functional morphology is considered. Using three-dimensional geometric morphometrics, shape of the scapular glenoid fossa was compared among Neandertals, early and recent modern humans, chimpanzees, orangutans, Australopithecus afarensis, and Au. sediba. Permutation analysis revealed that side, sex, and lifestyle did not correlate with shape. Of the features we found to differ between groups, anterior glenoid rim morphology and fossa curvature did not correlate with the aforementioned shape variables; thus, a functional explanation is appropriate for these components of glenoid fossa shape. Shared morphology among recent humans and chimpanzees (to the exclusion of Neandertals and orangutans) suggests independent forces contributing to these morphological configurations. Potential explanations include adaptations to habitual behavior and locomotor adaptations in the scapulae of recent humans and chimpanzees; these explanations are supported by clinical and experimental literature. The absence of these morphological features in Neandertals may support the lack of these selective forces on their scapular glenoid fossa morphology.

  14. Understanding height-structured competition in forests: is there an R* for light?

    Science.gov (United States)

    Adams, Thomas P; Purves, Drew W; Pacala, Stephen W

    2007-12-01

    Tree species differ from one another in, and display trade-offs among, a wide range of attributes, including canopy and understorey growth and mortality rates, fecundity, height and crown allometry, and crown transmissivity. But how does this variation affect the outcome of interspecific competition and hence community structure? We derive criteria for the outcome of competition among tree species competing for light, given their allometric and life-history parameters. These criteria are defined in terms of a new simple whole life-cycle measure of performance, which provides a simple way to organize and understand the many ways in which species differ. The general case, in which all parameters can differ between species, can produce coexistence, founder control or competitive exclusion: thus, competition for light need not be hierarchical as implied by R* theory. The special case in which species differ only in crown transmissivity produces neutral dynamics. The special case in which species differ in all parameters except crown transmissivity gives hierarchical competition, where the equivalent of R* is Z*, the height at which trees enter the canopy in an equilibrium monoculture.

  15. Scaling of flow distance in random self-similar channel networks

    Science.gov (United States)

    Troutman, B.M.

    2005-01-01

    Natural river channel networks have been shown in empirical studies to exhibit power-law scaling behavior characteristic of self-similar and self-affine structures. Of particular interest is to describe how the distribution of distance to the outlet changes as a function of network size. In this paper, networks are modeled as random self-similar rooted tree graphs and scaling of distance to the root is studied using methods in stochastic branching theory. In particular, the asymptotic expectation of the width function (number of nodes as a function of distance to the outlet) is derived under conditions on the replacement generators. It is demonstrated further that the branching number describing rate of growth of node distance to the outlet is identical to the length ratio under a Horton-Strahler ordering scheme as order gets large, again under certain restrictions on the generators. These results are discussed in relation to drainage basin allometry and an application to an actual drainage network is presented. ?? World Scientific Publishing Company.

  16. Correlates of average daily metabolism of field-active zebra-tailed lizards (Callisaurus draconoides).

    Science.gov (United States)

    Karasov, W H; Anderson, R A

    1998-01-01

    The extent of variation in reptile field metabolism, and its causal bases, are poorly understood. We studied the energetics of the insectivorous lizard Callisaurus draconoides at a site in the California Desert (Desert Center) and at a site at the southern tip of the Baja Peninsula (Cabo San Lucas; hereafter, Cabo). Reproducing Callisaurus were smaller at Cabo than at Desert Center. The allometry of metabolism with body mass can account for most differences in whole-animal metabolism. There was no significant effect of sex or source population on mass-adjusted metabolic rate in the laboratory (resting metabolism, measured by closed-system respirometry) or in the field (field metabolism, measured with doubly labeled water). The mass-adjusted resting metabolism and field metabolism of gravid females and the field metabolism of juvenile lizards were not significantly different from those of nonreproductive adults. Temperature had a significant effect on resting metabolism (Q10 = 2.7); fed lizards had resting metabolism that was 22% higher than that of fasted lizards; field metabolism was positively correlated with growth rate in juveniles; and field metabolism of adults increased from spring to late summer at Desert Center by 25%, probably because of longer activity period length and slightly higher activity period body temperature. We calculated from water influx and field metabolism that juveniles allocated 18% of their metabolizable energy intake to growth and that most energy deposited into eggs was transferred from energy stores rather than ingested in the weeks prior to laying. PMID:9472817

  17. Ontogenetic modulation of branch size, shape, and biomechanics produces diversity across habitats in the Bursera simaruba clade of tropical trees.

    Science.gov (United States)

    Rosell, Julieta A; Olson, Mark E; Aguirre-Hernández, Rebeca; Sánchez-Sesma, Francisco J

    2012-01-01

    Organismal size and shape inseparably interact with tissue biomechanical properties. It is therefore essential to understand how size, shape, and biomechanics interact in ontogeny to produce morphological diversity. We estimated within species branch length-diameter allometries and reconstructed the rates of ontogenetic change along the stem in mechanical properties across the simaruba clade in the tropical tree genus Bursera, measuring 376 segments from 97 branches in nine species in neotropical dry to rain forest. In general, species with stiffer materials had longer, thinner branches, which became stiffer more quickly in ontogeny than their counterparts with more flexible materials. We found a trend from short stature and flexible tissues to tall statures and stiff tissues across an environmental gradient of increasing water availability, likely reflecting a water storage-mechanical support tradeoff. Ontogenetic variation in size, shape, and mechanics results in diversity of habits, for example, rapid length extension, sluggish diameter expansion, and flexible tissues results in a liana, as in Bursera instabilis. Even species of similar habit exhibited notable changes in tissue mechanical properties with increasing size, illustrating the inseparable relationship between organismal proportions and their tissue mechanics in the ontogeny and evolution of morphological diversity.

  18. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands

    Directory of Open Access Journals (Sweden)

    Norman W.H. Mason

    2014-02-01

    Full Text Available Many studies have quantified uncertainty in forest carbon (C storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1 allometric biomass equations; (2 measurement errors of shrubs harvested for the allometry; and (3 measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage. Mean C sequestration (1.73 Mg C ha–1 year–1 exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.

  19. Allometric scaling relationship between frequency of intestinal contraction and body size in rodents and rabbits

    Indian Academy of Sciences (India)

    Hossein-Ali Arab; Samad Muhammadnejad; Saeideh Naeimi; Attieh Arab

    2013-06-01

    This study aimed to establish an allometric scaling relationship between the frequency of intestinal contractions and body mass of different mammalian species. The frequency of intestinal contractions of rabbit, guinea pig, rat and mouse were measured using an isolated organ system. The isolated rings were prepared from proximal segments of jejunums and the frequency of contractions was recorded by an isometric force procedure. The coefficients of the obtained allometric equation were ascertained by computation of least squares after logarithmic transformation of both body mass and frequency. Significant differences ( <0.001) were shown in the frequency of contractions between different species. The highest frequency that corresponded to the mice was 57.7 min−1 and the 95% confidence interval (CI) ranged from 45.4 to 70, while rabbits showed the lowest frequency (12.71 min−1, CI: 8.6–16.8). Logarithms of frequency were statistically proportional to logarithms of body mass (r=0.99; < 0.001). The data fitted an equation = 18:51 -0.31 and the 95% confidence interval of the exponent ranged from −0.30 to −0.32. The results of this study suggest that it is probably possible to extrapolate the intestinal contraction frequency of other mammalian species by the means of allometry scaling.

  20. Multivariate analysis of the sexual dimorphism of the hip bone in a modern human population and in early hominids.

    Science.gov (United States)

    Arsuaga, J L; Carretero, J M

    1994-02-01

    A large sample of hip bones of known sex coming from one modern population is studied morphologically and by multivariate analysis to investigate sexual dimorphism patterns. A principal component analysis of raw data shows that a large amount of the hip bone sexual dimorphism is accounted for by size differences, but that sex-linked shape variation is also very conspicuous and cannot be considered an allometric consequence of differences in body size between the sexes. The PCA of transformed ("shape") variables indicates that the female hip bones are different in those traits associated with a relatively larger pelvic inlet (longer pubic bones, a greater degree of curvature of the iliopectineal line, and more posterior position of the auricular surface), as well as a broader sciatic notch. The analysis of nonmetric traits also shows marked sexual dimorphism in the position of the sacroiliac joint in the iliac bone, in the shape of the sciatic notch, in pubic morphology, and in the presence of the pre-auricular sulcus in females. When the australopithecine AL 288-1 and Sts 14 hip bones are included in the multivariate analysis, they appear as "ultra-females." In particular these early hominids exhibit extraordinarily long pubic bones and iliopectineal lines, which cannot be explained by allometry. PMID:8147439

  1. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. PMID:26991124

  2. Mammalian development does not recapitulate suspected key transformations in the evolutionary detachment of the mammalian middle ear.

    Science.gov (United States)

    Ramírez-Chaves, Héctor E; Wroe, Stephen W; Selwood, Lynne; Hinds, Lyn A; Leigh, Chris; Koyabu, Daisuke; Kardjilov, Nikolay; Weisbecker, Vera

    2016-01-13

    The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected--but similarly unquantified--key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a 'partial mammalian middle ear' as found in many mammaliaforms--probably with a cartilaginous Meckel's cartilage--represents the only developmentally plausible evolutionary DMME precursor.

  3. POPULATION BIOLOGY OF SEABOB-SHRIMP Xiphopenaeus kroyeri (Heller, 1862 CAPTURED ON THE SOUTH COAST OF PERNAMBUCO STATE, NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Danilo Francisco Corrêa Lopes

    2014-12-01

    Full Text Available This paper aims to describe the population dynamics and to evaluate the stock of the seabob-shrimp Xiphopenaeus kroyeri on the coast of Pernambuco. Sampling was carried out between August/2011 and July/2012 in Sirinhaém, southern coast of Pernambuco. A total of 1201 individuals were analyzed, 673 females and 528 males. Total length (Lt of females varied from 4.5 to 13.5 cm while the Lt of males ranged between 4.0 and 11.0 cm. The relationship between the Lt and carapace length and Lt and total weight showed negative allometry (males, females and pooled sexes. The slope of the curve "b" was statistically different between males and females for both relationships. Females mature with 8.90 cm. Asymptotic length L∞ was lower for males than for females (12.26 to 14.79 and 10.72 to 11.5 cm, respectively, K was similar between sexes (1.00-2.04 and 1.00-2.63 cm/year-1 respectively as well as the longevity and size at 1st capture (1.50 to 1.97 years and 7.9 to 8.9 cm for males and females, respectively. The results indicate that X. kroyeri in the region is not overexploited for males, however considering females and pooled sexes the stock is near to being fully exploited.

  4. Allometric Growth Relationships between Urban Area and Population in Shanxi Province%陕西省城市人口与城市用地异速生长关系研究

    Institute of Scientific and Technical Information of China (English)

    郑银龙; 南灵

    2013-01-01

    The relationship between urban population growth and urban land expansion in Shanxi province was dis -cussed by constructing the model of allometric growth .The results showed that the relationship between urban popula -tion and urban land is negative allometric growth during 2001 to 2010, and the expansion of urban land is in an unrea -sonable level.The urban land expansion speeds of Xi ’an, Baoji and Xianyang in Guanzhong Land are fastest ,and their allometry coefficients are far more than the critical value ,so the pertinence control should be strengthened in the later urban planning.%  通过构建异速生长模型,探讨陕西省城市人口增长与城市用地扩张相互之间的关系。结果表明,从2001年到2010年,陕西省城市人地关系呈负异速生长关系,城市用地扩张整体上处于不合理的水平,其中西安、宝鸡和咸阳等关中地区城市用地扩张速度最快,其异速生长系数远远超过了临界值,在以后的城市规划中应加强针对性的调控。

  5. Allometric scaling relationship between frequency of intestinal contraction and body size in rodents and rabbits.

    Science.gov (United States)

    Arab, Hossein-Ali; Muhammadnejad, Samad; Naeimi, Saeideh; Arab, Attieh

    2013-06-01

    This study aimed to establish an allometric scaling relationship between the frequency of intestinal contractions and body mass of different mammalian species. The frequency of intestinal contractions of rabbit, guinea pig, rat and mouse were measured using an isolated organ system. The isolated rings were prepared from proximal segments of jejunums and the frequency of contractions was recorded by an isometric force procedure. The coefficients of the obtained allometric equation were ascertained by computation of least squares after logarithmic transformation of both body mass and frequency. Significant differences (p less than 0.001) were shown in the frequency of contractions between different species. The highest frequency that corresponded to the mice was 57.7 min-1 and the 95 percent confidence interval (CI) ranged from 45.4 to 70, while rabbits showed the lowest frequency (12.71 min-1, CI: 8.6-16.8). Logarithms of frequency were statistically proportional to logarithms of body mass (r00.99; p less than 0.001). The data fitted an equation F 1/4 18:51B 0:31 and the 95 percent confidence interval of the exponent ranged from -0.30 to -0.32. The results of this study suggest that it is probably possible to extrapolate the intestinal contraction frequency of other mammalian species by the means of allometry scaling. PMID:23660674

  6. An online database for informing ecological network models: http://kelpforest.ucsc.edu

    Science.gov (United States)

    Beas-Luna, Rodrigo; Tinker, M. Tim; Novak, Mark; Carr, Mark H.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison C.

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/data​baseui).

  7. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world

    Science.gov (United States)

    Peng, Yunfeng; Yang, Yuanhe

    2016-06-01

    Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes.

  8. Influence of planting methods on root development, crop productivity and water use efficiency in maize hybrids Influencia de métodos de siembra sobre el desarrollo radical, productividad y eficiencia del uso del agua en híbridos de maíz

    Directory of Open Access Journals (Sweden)

    Muhammad B. Khan

    2012-12-01

    Full Text Available Optimum planting methods better ensure water and nutrient supply through improved root development resulting in better crop growth and productivity. This study was conducted to evaluate the effects of planting methods on root development, crop allometry, water use efficiency (WUE, productivity and economic returns of different maize (Zea mays L. hybrids. Maize hybrids NK-6621, Pioneer-30Y87, and Pioneer-30Y58 were sown on beds, ridges, and flat surface. Ridge sowing was better followed by bed sowing; while amongst the hybrids, 'Pioneer-30Y87' performed the best. Well-developed root system, with longer primary root, more number of lateral roots and higher root growth rate, was observed in 'Pioneer-30Y87' planted on ridges, which led to higher WUE, grain yield and its related traits. The same hybrid exhibited higher leaf area index and crop growth rate, and maximum net return and benefit:cost ratio sowed on ridges. Overall, the ridge sowing improved root development resulting in better allometry, productivity (5.45 t ha-1, and WUE (1.345 kg m-3, in all the maize hybrids. Although maize hybrids exhibited different response to different planting methods; maximum grain yield (5.63 t ha-1, WUE (1.41 kg m-3, and net economic returns were observed from hybrid Pioneer-30Y87.Métodos óptimos de siembra aseguran mejor suministro de agua y nutrientes a través del mejorado desarrollo de raíces que resulta en mejor crecimiento y productividad de los cultivos. Este estudio se realizó para evaluar los efectos de los métodos de siembra en el desarrollo de las raíces, alometría de cultivos, uso eficiente del agua (WUE, productividad y rentabilidad económica de diferentes híbridos de maíz (Zea mays L.. Híbridos de maíz NK-6621, Pioneer 30Y87, y 30Y58-Pioneer se sembraron en camas, surcos, y superficie plana. La siembra en surco fue mejor, seguida por siembra en cama, mientras entre los híbridos, 'Pioneer 30Y87' tuvo los mejores resultados. Se observ

  9. RELATIVE GROWTH AND ALLOMETRIC COEFFICIENTS OF BODY COMPONENTS OF STRAINS OF NILE TILAPIA(Oreochromis niloticus CRESCIMENTO RELATIVO E COEFICIENTES ALOMÉTRICOS DE COMPONENTES DO CORPO DE LINHAGENS DE TILÁPIAS-DO-NILO (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Rilke Tadeu Fonseca de Freitas

    2006-12-01

    Full Text Available This experiment was carried out in the fish production facilities of the Federal University of Lavras, MG – Brazil, to study relative growth and allometric coefficients of body components on body weight of Nile tilapia. Fishes, weighing between 150 and 790g, were randomly sampled during every period of growing, have been 93 of the Chitralada strain and 78 of the Supreme. After 24 hours of fasting, the fishes were insensibilized (thermal shock, slaughtered (anoxia, weighed and dissected to obtain body components weights. The allometric equation y = axb of Huxley (1932 and the statistic t (á = 0,01 were used for hypothesis test of b=1 and than the growth of the body components parts were classified in: isogonic (b=1, later (b>1 and early (b<1. The scale and fins, head and viscera didn’t show significant difference between the strains and obtained, respectively, allometry coefficient b=1, b>1 and b<1. Chitralada strain showed early growth for carcass and filleting remnants, late for skin andisogonic for fillet. On the other hand, Supreme showed isogonic growth for carcass, skin and filleting remnants and late growth for fillet, that is desirable for meat production. KEY WORDS: Allometry, fillet, fish, Supreme, Thai. Este trabalho foi desenvolvido no setor de piscicultura da Universidade Federal de Lavras, MG, com o objetivo de estudar o crescimento relativo e coeficientes alométricos de componentes do corpo em relação ao peso corporal de tilápias-do-nilo. Amostraram-se, aleatoriamente, peixes pesando entre 150 e 790g durante todo o período de crescimento, sendo 93 da linhagem Chitralada e 78 da Supreme. Após jejum de 24 horas, foram insensibilizados por choque térmico, abatidos (por anóxia, pesados e dissecados para se obter o peso das partes componentes do corpo. Utilizou-se a equação alométrica de Huxley (1932, y = axb e a estatística t (á = 0,01 para testar a hipótese b=1 e classificar o crescimento das partes componentes do

  10. Ratios as a size adjustment in morphometrics.

    Science.gov (United States)

    Albrecht, G H; Gelvin, B R; Hartman, S E

    1993-08-01

    Simple ratios in which a measurement variable is divided by a size variable are commonly used but known to be inadequate for eliminating size correlations from morphometric data. Deficiencies in the simple ratio can be alleviated by incorporating regression coefficients describing the bivariate relationship between the measurement and size variables. Recommendations have included: 1) subtracting the regression intercept to force the bivariate relationship through the origin (intercept-adjusted ratios); 2) exponentiating either the measurement or the size variable using an allometry coefficient to achieve linearity (allometrically adjusted ratios); or 3) both subtracting the intercept and exponentiating (fully adjusted ratios). These three strategies for deriving size-adjusted ratios imply different data models for describing the bivariate relationship between the measurement and size variables (i.e., the linear, simple allometric, and full allometric models, respectively). Algebraic rearrangement of the equation associated with each data model leads to a correctly formulated adjusted ratio whose expected value is constant (i.e., size correlation is eliminated). Alternatively, simple algebra can be used to derive an expected value function for assessing whether any proposed ratio formula is effective in eliminating size correlations. Some published ratio adjustments were incorrectly formulated as indicated by expected values that remain a function of size after ratio transformation. Regression coefficients incorporated into adjusted ratios must be estimated using least-squares regression of the measurement variable on the size variable. Use of parameters estimated by any other regression technique (e.g., major axis or reduced major axis) results in residual correlations between size and the adjusted measurement variable. Correctly formulated adjusted ratios, whose parameters are estimated by least-squares methods, do control for size correlations. The size

  11. The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles.

    Science.gov (United States)

    Cuff, Andrew R; Sparkes, Emily L; Randau, Marcela; Pierce, Stephanie E; Kitchener, Andrew C; Goswami, Anjali; Hutchinson, John R

    2016-07-01

    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300-fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle-tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross-sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength

  12. The importance of crown dimensions to improve tropical tree biomass estimates.

    Science.gov (United States)

    Goodman, Rosa C; Phillips, Oliver L; Baker, Timothy R

    2014-06-01

    Tropical forests play a vital role in the global carbon cycle, but the amount of carbon they contain and its spatial distribution remain uncertain. Recent studies suggest that once tree height is accounted for in biomass calculations, in addition to diameter and wood density, carbon stock estimates are reduced in many areas. However, it is possible that larger crown sizes might offset the reduction in biomass estimates in some forests where tree heights are lower because even comparatively short trees develop large, well-lit crowns in or above the forest canopy. While current allometric models and theory focus on diameter, wood density, and height, the influence of crown size and structure has not been well studied. To test the extent to which accounting for crown parameters can improve biomass estimates, we harvested and weighed 51 trees (11-169 cm diameter) in southwestern Amazonia where no direct biomass measurements have been made. The trees in our study had nearly half of total aboveground biomass in the branches (44% +/- 2% [mean +/- SE]), demonstrating the importance of accounting for tree crowns. Consistent with our predictions, key pantropical equations that include height, but do not account for crown dimensions, underestimated the sum total biomass of all 51 trees by 11% to 14%, primarily due to substantial underestimates of many of the largest trees. In our models, including crown radius greatly improves performance and reduces error, especially for the largest trees. In addition, over the full data set, crown radius explained more variation in aboveground biomass (10.5%) than height (6.0%). Crown form is also important: Trees with a monopodial architectural type are estimated to have 21-44% less mass than trees with other growth patterns. Our analysis suggests that accounting for crown allometry would substantially improve the accuracy of tropical estimates of tree biomass and its distribution in primary and degraded forests.

  13. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  14. Intraspecific scaling in frog calls: the interplay of temperature, body size and metabolic condition.

    Science.gov (United States)

    Ziegler, Lucia; Arim, Matías; Bozinovic, Francisco

    2016-07-01

    Understanding physiological and environmental determinants of strategies of reproductive allocation is a pivotal aim in biology. Because of their high metabolic cost, properties of sexual acoustic signals may correlate with body size, temperature, and an individual's energetic state. A quantitative theory of acoustic communication, based on the metabolic scaling with temperature and mass, was recently proposed, adding to the well-reported empirical patterns. It provides quantitative predictions for frequencies, call rate, and durations. Here, we analysed the mass, temperature, and body condition scaling of spectral and temporal attributes of the advertisement call of the treefrog Hypsiboas pulchellus. Mass dependence of call frequency followed metabolic expectations (f~M (-0.25), where f is frequency and M is mass) although non-metabolic allometry could also account for the observed pattern. Temporal variables scaled inversely with mass contradicting metabolic expectations (d~M (0.25), where d is duration), supporting instead empirical patterns reported to date. Temperature was positively associated with call rate and negatively with temporal variables, which is congruent with metabolic predictions. We found no significant association between temperature and frequencies, adding to the bulk of empirical evidence. Finally, a result of particular relevance was that body condition consistently determined call characteristics, in interaction with temperature or mass. Our intraspecific study highlights that even if proximate determinants of call variability are rather well understood, the mechanisms through which they operate are proving to be more complex than previously thought. The determinants of call characteristics emerge as a key topic of research in behavioural and physiological biology, with several clear points under debate which need to be analysed on theoretical and empirical grounds. PMID:26552381

  15. Osmo and hydro priming improvement germination characteristics and enzyme activity of Mountain Rye (Secale montanum seeds under drought stress

    Directory of Open Access Journals (Sweden)

    Ansari O.

    2012-11-01

    Full Text Available Impacts of various concentrations of polyetylenglycol 6000 (PEG 6000(0, -9, -11, -13 and -15 bar and hydro priming on Mountain Rye (secale montanum germination characteristic and enzyme activity were evaluated under drought stress in the seed laboratory of Natural Resources Faculty, University of Tehran, Karaj, Iran. Analyze of variance for hydro priming showed that temperature × time of priming interaction was significantly for germination percentage (GP, normal seedling percentage (NSP, coefficient of velocity of germination (CVG, seedling vigor index (SVI, coefficient of allometry (AC and seedling length (SL under drought stress and for osmo priming showed that Concentration of PEG × Temperature × Time of priming interaction was significantly for all traits under drought stress. Results of interaction effects for hydro priming showed that the highest GP (53% and NSP (23.5% were attained from hydro priming for 16h at 15 ◦C and the highest CVG (0.21 and AC (0.49 were attained from hydro priming for 8h at 10 ◦C, also hydro priming for 8h at 15 ◦C increased SL (3.15 as compared to the unprimed.Osmo priming with concentration of -15 bar PEG for 24h at 15 ◦C increased GP (80.5 %, GI (17.9, NSP (45 %, SVI (257.85 and SL (5.73 cm and decreased MTG as compared to the unprimed and other treatments of osmo priming. The highest CVG was attained from concentration of -9 bar PEG for 24h at 10 ◦C. the highest AC was attained from concentration of -9 bar PEG for 12h at 15 ◦C. Also osmo and hydro priming increased catalase (CAT and ascorbate peroxidase (APX as compared to the unprimed.

  16. The soil water balance in a mosaic of clumped vegetation

    Science.gov (United States)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006

  17. Diet Switching by Mammalian Herbivores in Response to Exotic Grass Invasion.

    Science.gov (United States)

    Bremm, Carolina; Carvalho, Paulo C F; Fonseca, Lidiane; Amaral, Glaucia A; Mezzalira, Jean C; Perez, Naylor B; Nabinger, Carlos; Laca, Emilio A

    2016-01-01

    Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers) and Ovis aries (ewes) grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.

  18. Exploring metameric variation in human molars: a morphological study using morphometric mapping.

    Science.gov (United States)

    Morita, Wataru; Morimoto, Naoki; Ohshima, Hayato

    2016-09-01

    Human molars exhibit a type of metameric variation, which is the difference in serially repeated morphology within an organism. Various theories have been proposed to explain how this variation is brought about in the molars. Actualistic data that support the theories, however, are still relatively scarce because of methodological limitations. Here we propose new methods to analyse detailed tooth crown morphologies. We applied morphometric mapping to the enamel-dentine junction of human maxillary molars and examined whether odontogenetic models were adaptable to human maxillary molars. Our results showed that the upper first molar is phenotypically distinct among the maxillary molars. The average shape of the upper first molar is characterized by four well-defined cusps and precipitous surface relief of the occlusal table. On the other hand, upper third molar is characterized by smooth surface relief of the occlusal table and shows greater shape variation and distinct distribution patterns in morphospace. The upper second molar represents an intermediate state between first and third molar. Size-related shape variation was investigated by the allometric vector analysis, and it appeared that human maxillary molars tend to converge toward the shape of the upper first molar as the size increases. Differences between the upper first molar and the upper second and third molar can thus be largely explained as an effect of allometry. Collectively, these results indicate that the observed pattern of metameric variation in human molars is consistent with odontogenetic models of molar row structure (inhibitory cascade model) and molar crown morphology (patterning cascade model). This study shows that morphometric mapping is a useful tool to visualize and quantify the morphological features of teeth, which can provide the basis for a better understanding of tooth evolution linking morphology and development. PMID:27098351

  19. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  20. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae

    Directory of Open Access Journals (Sweden)

    Vandewalle Pierre

    2011-03-01

    Full Text Available Abstract Background Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the

  1. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

    Science.gov (United States)

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2016-04-01

    As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage

  2. Catch Rate, Distribution, Trophic and Reproductive Biology of the African Carp Labeo coubie in the Agbokim Waterfalls, Nigeria

    Directory of Open Access Journals (Sweden)

    GU Ikpi

    2012-01-01

    Full Text Available The catch rate, diet, size, and reproduction of 565 specimen of Labeo coubie were studied over 24 months (January 2005–January 2007 in three reaches [upstream, midstream (waterfalls region and downstream] along the 6817.7 m length of Agbokim waterfalls during wet and dry seasons. Data were processed using fecundity (F, allometric coefficient (b, Fultons condition factor, and diet breadth. Fecundity values were 10411.0 ± 121, 15102.0 ± 303.5 and 24143.3 ± 662 eggs for fish from upstream, midstream, and downstream, respectively, with overall mean value of 19811.3 ± 223 eggs. The relationships of fecundity with total weight, ovary weight, ovary length, body breadth were positively linear. Mean allometric coefficient (b of the length–weight relationship of fish in the three reaches were 2.662 ± 0.291 (upstream, 2.592 ± 0.368 (midstream, and 2.622 ± 0.315 (downstream and all showed significant departure from cubic value (negative allometry. Detritus, phytoplanktons and plant materials were the dominant food items in the diet, contributing 36.8%, 32.1%, and 17.2% of stomach content, respectively. Food Richness of 7 and Gut Repletion Index, 100% were recorded. The low mean diet breadth exhibited by fish from the three sampling sites showed that the species has low trophic flexibility and cannot easily change feeding habit. Mean condition factor varied from 0.442 ± 0.127 upstream to 0.648 ± 0.146 downstream. Downstream therefore provided better spawning conditions for Labeo coubie in the tropical waterfalls ecosystems.

  3. Spatial heterogeneity of light and tree sapling responses in the understory of disturbed montane forests

    Directory of Open Access Journals (Sweden)

    Méndez-Dewar G

    2015-08-01

    Full Text Available Attributes and frequency of forest gaps are usually described in reference to a one-dimensional gradient of light, which may relate to their disturbance dynamics. Similarly, species are customarily classified by their light response. We propose that a bi-dimensional light framework facilitates the understanding and comparison of forest systems and the understanding of plant responses to the complex light environment. This light plane is based on two spatially related components: 1 light received directly on a particular point (Focal; and 2 a statistical summary of the immediate environment representing the light conditions surrounding that point (Context. The contrast between these two values is null when Focal = Context and positive when Focal > Context or otherwise negative. Light was assessed using hemispherical photographs using a spatial arrangement of pictures spaced ~3 metres (m in-between. Eight forest plots were surveyed, each with a central gap of different size. Sapling performance of Alnus acuminata, Cornus excelsa, Liquidambar styraciflua, Persea americana and Quercus laurina was also assessed within these plots. Measurements of stem height, basal diameter, and slenderness allometry were taken over a period of more than two years. We found in the light plane that plots were distributed in a pattern congruent with their estimated degree of disturbance (gap size, which spanned wide areas in the plane. Liquidambar styraciflua. and Quercus laurina were found to be sensitive to Focal light, irrespective of Context light. All species responded to Focal light under negative Contrast. Cornus and Persea grew taller and more slender as Focal light increased, particularly under null contrast. There is evidence suggesting that plant growth is dependent on the contrast measured. Thus, it would be relevant to devise a functional classification of tree species that considers their response to both direct light and luminosity of the immediate

  4. Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata).

    Science.gov (United States)

    Roda, Amy L; Oldham, Neil J; Svatos, Ales; Baldwin, Ian T

    2003-02-01

    Trichomes excrete secondary metabolites that may alter the chemical composition of the leaf surface, reducing damage caused by herbivores, pathogens and abiotic stresses. We examined the surface exudates produced by Nicotiana attenuata Torr. Ex Wats., a plant known to contain and secrete a number of secondary metabolites that are toxic or a deterrent to herbivorous insects. Extractions specific to the leaf surface, the trichomes, and the laminar components demonstrated the localization of particular compounds. Diterpene glycosides occurred exclusively in leaf mesophyll, whereas nicotine was found in both the trichomes and mesophyll. Neither rutin nor nicotine was found on the leaf surface. Quercetin and 7 methylated derivatives were found in the glandular trichomes and appeared to be excreted onto the leaf surface. We examined the elicitation of these flavonols on the leaf surface with a surface-area allometric analysis, which measures changes in metabolites independent of the effects of leaf expansion. The flavonols responded differently to wounding, methyl jasmonate (MeJA), herbivore attack and UV-C radiation, and the response patterns corresponded to their compound-specific allometries. Finding greater amounts of quercetin on younger leaves and reduced amounts after herbivore feeding and MeJA treatment, we hypothesized that quercetin may function as an attractant, helping the insects locate a preferred feeding site. Consistent with this hypothesis, mirids (Tupiocoris notatus) were found more often on mature leaves sprayed with quercetin at a concentration typical of young leaves than on unsupplemented mature leaves. The composition of metabolites on the leaf surface of N. attenuata changes throughout leaf development and in response to herbivore attack or environmental stress, and these changes are mediated in part by responses of the glandular trichomes.

  5. Benthic biomass size spectra in shelf and deep-sea sediments

    Directory of Open Access Journals (Sweden)

    B. A. Kelly-Gerreyn

    2014-01-01

    Full Text Available The biomass distributions of marine benthic organisms (meio- to macro-fauna, 1 μg–32 mg wet weight across three contrasting sites were investigated to test the hypothesis that allometry can consistently explain observed trends in biomass spectra. Biomass (and abundance size spectra were determined from observations made at the Faroe–Shetland Channel in the north-east Atlantic (water depth 1600 m, the Fladen Ground in the North Sea (150 m, and the hypoxic Oman Margin (500 m in the Arabian Sea. Observed biomass increased with body size as a power law at FG (scaling exponent, b = 0.16 and FSC (b = 0.32, but less convincingly at OM (b = 0.12 but not significantly different from 0. A simple model was constructed to represent the same 16 metazoan size classes used for the observed spectra, all reliant on a common detrital food pool, and allowing the three key processes of ingestion, respiration and mortality to scale with body size. A micro-genetic algorithm was used to fit the model to observations at the sites. The model accurately reproduces the observed scaling without recourse to including the effects of local influences such as hypoxia. Our results suggest that the size-scaling of mortality and ingestion are dominant factors determining the distribution of biomass across the meio- to macrofaunal size range in contrasting marine sediment communities. Both the observations and the model results are broadly in agreement with the "Metabolic Theory of Ecology" in predicting a quarter power scaling of biomass across geometric body size classes.

  6. Allometric Scaling Across Environmental Gradients

    Science.gov (United States)

    Duncanson, L.; Dubayah, R.

    2014-12-01

    Developing a better understanding of the controls on biomass allocation in forested systems and the consequences for carbon stocks and fluxes is required for improved ecosystem and climate modeling. A simple model, based largely on resource distribution networks, was presented by West, Brown and Enquist (1999). Their model predicts that the exponents of allometric relationships between many forest structural and functional properties will be constants, irrespective of environment or species. In this research we assess the validity of model predictions across the United States and examine their independence with respect to environment. We focus on two relationships with particular importance to biomass: Ht ∝ DBH2/3 nDBH ∝ DBH-2 where Ht is height, DBH is Diameter at Breast Height, and nDBH is the number of trees in a given DBH size class. We obtained DBH and height data from the U.S. Forest Inventory Analysis (FIA) dataset, and fit an exponent to each relationship for every FIA plot across the US. We extracted environmental data from the FIA plots (forest maximum height, species type, age, topography) and the North American Regional Reassessment dataset (precipitation, temperature, PAR) and performed random forest regression to estimate observed exponents as a function of environment. We found that forest height, age, and forest type were the most important drivers of allometry, explaining about 40% of observed variability. We found that for both relationships, as forest height and age increase, exponents constrain to the theoretical predictions presented by WBE. This suggests that WBE predictions are valid and may be useful constraints in biomass mapping and ecosystem flux models. However, they deviate from predictions in younger, shorter stands where forests have not had time to develop a complex size structure. Additionally, there is a significant difference in both relationships between conifer and deciduous-dominated stands, suggesting that species type

  7. Biological parameters and feeding behaviour of invasive whelk Rapana venosa Valenciennes, 1846 in the south-eastern Black Sea of Turkey

    Institute of Scientific and Technical Information of China (English)

    Hacer Saglam; Ertug Düzgünes

    2014-01-01

    Objective:To determine length-weight relationships, growth type and feeding behavior of the benthic predator Rapa whelk at the coast of Camburnu, south-eastern Black Sea. Methods:Rapa whelk was monthly collected by dredge sampling on the south-eastern Black Sea at 20 m depth. The relationships between morphometric parameters of Rapa whelk were described by linear and exponential models. The allometric growth of each variable relative to shell length (SL) was calculated from the function Y=aSLb or logY=loga+blogSL. The functional regression b values were tested by t-test at the 0.05 significance level if it was significantly different from isometric growth. The total time spent on feeding either on mussel tissue or live mussels was recorded for each individual under controlled conditions in laboratory. Results:The length-weight relationships showed positive allometric growth and no inter-sex variability. Body size in the male population was significantly higher than in the individuals of the female. All characters in males and females showed a trend towards allometry rather than isometry. While the total time spent feeding increased with increasing prey size the total time that Rapana venosa spent feeding decreased with increasing Rapa whelk size. The total average feeding time needed by Rapa whelks was 160 min. But they took 310 min on live mussels in 27-28 °C in the laboratory conditions. Conclusions: Length and weight relationships, growth type, total time spent feeding of this species were explained in details for this region. It would be useful to sustainable management in the south-eastern Black Sea of Turkey. The results about the feeding behaviour of this species will contribute to the understanding of the role of this species within the ecosystem.

  8. Retrieving Vegetation Parameters and Soil Reflection Coefficients with P-band SAR Polarimetry

    Science.gov (United States)

    Alemohammad, S. H.; Konings, A. G.; Jagdhuber, T.; Entekhabi, D.

    2015-12-01

    Photosynthetic activity of plants is highly dependent on the water available to the plant through its roots. Therefore, measuring the root-zone-soil-moisture across large spatial scales is of great importance for crop monitoring and yield estimation as well as hydrological and ecological modeling. Unlike L-band instruments, which are sensitive to only a few centimeters of the top soil layer, P-band Synthetic Aperture Radar (SAR) instruments have a penetration depth that can be used to retrieve soil moisture profiles in depths of several tens of centimeters (depending on soil texture and moisture content). NASA's Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission is designed to study the application of P-band SAR measurements for monitoring root-zone-soil-moisture. In this study, we introduce a new framework to retrieve vegetation parameters and smooth-surface soil reflection coefficients using SAR polarimetry and the fully polarimetric covariance matrix of the backscattering signal from AirMOSS observations. The retrieved soil reflectivities (both horizontally and vertically -polarized) can then be used to estimate the soil moisture profile. The retrieval model takes into account contributions from surface, dihedral and volume scattering coming from the vegetation and soil components, and does not require prior vegetation parameters. This approach reduces the dependency of the retrieval on allometry-based vegetation models with large numbers of uncertain parameters. The performance of this method will be validated using observations from AirMOSS field campaigns in July 2013 over Harvard Forest in Massachusetts, USA. This will enable a quality assessment of the polarimetry-based retrieval of the soil reflectivities and the estimated root-zone-soil-moisture profiles.

  9. Scaling effect on the mid-diaphysis properties of long bones—the case of the Cervidae (deer)

    Science.gov (United States)

    Amson, Eli; Kolb, Christian

    2016-08-01

    How skeletal elements scale to size is a fundamental question in biology. While the external shape of long bones was intensively studied, an important component of their organization is also found in their less accessible inner structure. Here, we studied mid-diaphyseal properties of limb long bones, characterizing notably the thickness of their cortices (bone walls), in order to test whether body size directly influences bone inner organization. Previous examinations of scaling in long bones used broad samplings to encompass a wide range of body sizes. To account for the effect of confounding factors related to different lifestyles, we focused our comprehensive sampling on a mammalian clade that comprises various body sizes but a relatively uniform lifestyle, the Cervidae. Positive allometry was found in femoral cross-sectional shape, indicating greater directional bending rigidity in large-sized taxa. None of the compactness parameters scaled allometrically in any of their bones. The cortices of sampled zeugopodial bones (tibia and radius) were found as significantly thicker than those of stylopodial bones (femur and humerus). Furthermore, while the mean relative cortical thickness values for both stylopodial and zeugopodial bones are close to mass-saving optima, the variance for the stylopodial bones is significantly lower. This suggests that mass saving is less intensively selected in zeugopodial bones. Finally, the long-legged Elk ( Alces) and the short-legged dwarf Cretan deer ( Candiacervus) featured rather thin and thick cortices, respectively, suggesting that the acquisition of a different limb proportion is accompanied by a modification of the relative mid-diaphyseal cortical thickness.

  10. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia

    Directory of Open Access Journals (Sweden)

    Lobna Zribi

    2016-07-01

    Full Text Available Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado and an aged cork oak forest (undisturbed forest as well as its distribution among the different pools (tree, litter and soil. Area of study. The north west of Tunisia Material and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables. Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest. Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1 was estimated to be113.61(27.08% and 194.08 (29.49% in trees, 3.55 (0.85% and 5.73 (0.87% in litter and 302.30 (72.07% and 458.27 (69.64% in soil in the young and aged forests, respectively. Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential. Keywords: Tree biomass; disturbance; allometry; cork oak forests; soil organic carbon stock.

  11. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.

    Science.gov (United States)

    Crall, James D; Ravi, Sridhar; Mountcastle, Andrew M; Combes, Stacey A

    2015-09-01

    Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment. Non-steady flight performance is often predicted to decrease with body size, as a result of a presumed reduction in acceleration capacity, but few empirical tests of this hypothesis have been performed in flying animals. We found that increased body size is associated with impaired flight performance (specifically transit time) in cluttered environments, but not with decreased peak accelerations. In addition, previous studies have shown that flying insects can produce higher accelerations along the lateral body axis, suggesting that if maneuvering is constrained by acceleration capacity, insects should perform better when maneuvering around objects laterally rather than vertically. Our data show that bumblebees do generate higher accelerations in the lateral direction, but we found no difference in their ability to pass through obstacle courses requiring lateral versus vertical maneuvering. In sum, our results suggest that acceleration capacity is not a primary determinant of flight performance in clutter, as is often assumed. Rather than being driven by the scaling of acceleration, we show that the reduced flight performance of larger bees in cluttered environments is driven by the allometry of both path sinuosity and mean flight speed. Specifically, differences in collision-avoidance behavior underlie much of the variation in flight performance across body size, with larger bees

  12. Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh

    Directory of Open Access Journals (Sweden)

    Khan MNI

    2010-11-01

    Full Text Available Allometric relationships for estimating stem volumes of Dalbergia sissoo Roxb. (Sissoo trees were investigated in monoculture plantations in Bangladesh. The various allometric relationships between stem volume and different dimensions were tested and the coefficient of determination R2 values were used to compare the strength of the relationships. Although the allometric equations were highly significant (P<0.01 there was considerable variation among them as indicated by the R2 values. Our results suggested that tree volume is more correlated with basal area than with simple D (stem diameter at 1.3 m height above the ground. The allometric relationships of stem volume to the tree diameter at 10% of tree height (D0.1 did not improve the allometric strength in comparison with simple D as reported in case of some other tree species. The multiplication of tree height H with D in the allometric equation gives a little improvement in the degree of fitness of the allometric equations. However, for the Sissoo plantations studied the stem dbh alone showed a very strong accuracy of estimation (R2 = 0.997 especially when used as D2. It is concluded that the use of tree height in the allometric equation can be neglected for the species, as far as the present study area is concerned. Therefore, for estimating the stem volume of Sissoo, the use of D2 as an independent variable in the allometric equation with a linear or quadratic equation is recommended. The paper describes details of tree volume allometry, which is important in silviculture and forest management.

  13. Characterization of vegetation properties: Canopy modeling of pinyon-juniper and ponderosa pine woodlands; Final report. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX model

    Energy Technology Data Exchange (ETDEWEB)

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1994-12-31

    This report is comprised of two studies. The first study focuses on plant canopies in pinyon-juniper woodland, ponderosa pine woodland, and waste sites at Los Alamos National Laboratory which involved five basic areas of research: (1) application of hemispherical photography and other gap fraction techniques to study solar radiation regimes and canopy architecture, coupled with application of time-domain reflectometry to study soil moisture; (2) detailed characterization of canopy architecture using stand mapping and allometry; (3) development of an integrated geographical information system (GIS) database for relating canopy architecture with ecological, hydrological, and system modeling approaches; (4) development of geometric models that simulate complex sky obstruction, incoming solar radiation for complex topographic surfaces, and the coupling of incoming solar radiation with energy and water balance, with simulations of incoming solar radiation for selected native vegetation and experimental waste cover design sites; and (5) evaluation of the strengths and limitations of the various field sampling techniques. The second study describes an approach to develop software that takes advantage of new generation computers to model insolation on complex topographic surfaces. SOLARFLUX is a GIS-based (ARC/INFO, GRID) computer program that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modelling insolation on complex surfaces, the theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modelling.

  14. Pharmacokinetics and interspecies allometric scaling of ST-246, an oral antiviral therapeutic for treatment of orthopoxvirus infection.

    Directory of Open Access Journals (Sweden)

    Adams Amantana

    Full Text Available Plasma pharmacokinetics of ST-246, smallpox therapeutic, was evaluated in mice, rabbits, monkeys and dogs following repeat oral administrations by gavage. The dog showed the lowest Tmax of 0.83 h and the monkey, the highest value of 3.25 h. A 2- to 4-fold greater dose-normalized Cmax was observed for the dog compared to the other species. The mouse showed the highest dose-normalized AUC, which was 2-fold greater than that for the rabbit and monkey both of which by approximation, recorded the lowest value. The Cl/F increased across species from 0.05 L/h for mouse to 42.52 L/h for dog. The mouse showed the lowest VD/F of 0.41 L and the monkey, the highest VD/F of 392.95 L. The calculated extraction ratios were 0.104, 0.363, 0.231 and 0.591 for mouse, rabbit, monkey and dog, respectively. The dog showed the lowest terminal half-life of 3.10 h and the monkey, the highest value of 9.94 h. The simple allometric human VD/F and MLP-corrected Cl/F were 2311.51 L and 51.35 L/h, respectively, with calculated human extraction ratio of 0.153 and terminal half-life of 31.20 h. Overall, a species-specific difference was observed for Cl/F with this parameter increasing across species from mouse to dog. The human MLP-corrected Cl/F, terminal half-life, extraction ratios were in close proximity to the observed estimates. In addition, the first-in-humans (FIH dose of 485 mg, determined from the MLP-corrected allometry Cl/F, was well within the dose range of 400 mg and 600 mg administered in healthy adult human volunteers.

  15. The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar

    Science.gov (United States)

    Dubayah, R.

    2015-12-01

    Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications

  16. Scaling effect on the mid-diaphysis properties of long bones-the case of the Cervidae (deer).

    Science.gov (United States)

    Amson, Eli; Kolb, Christian

    2016-08-01

    How skeletal elements scale to size is a fundamental question in biology. While the external shape of long bones was intensively studied, an important component of their organization is also found in their less accessible inner structure. Here, we studied mid-diaphyseal properties of limb long bones, characterizing notably the thickness of their cortices (bone walls), in order to test whether body size directly influences bone inner organization. Previous examinations of scaling in long bones used broad samplings to encompass a wide range of body sizes. To account for the effect of confounding factors related to different lifestyles, we focused our comprehensive sampling on a mammalian clade that comprises various body sizes but a relatively uniform lifestyle, the Cervidae. Positive allometry was found in femoral cross-sectional shape, indicating greater directional bending rigidity in large-sized taxa. None of the compactness parameters scaled allometrically in any of their bones. The cortices of sampled zeugopodial bones (tibia and radius) were found as significantly thicker than those of stylopodial bones (femur and humerus). Furthermore, while the mean relative cortical thickness values for both stylopodial and zeugopodial bones are close to mass-saving optima, the variance for the stylopodial bones is significantly lower. This suggests that mass saving is less intensively selected in zeugopodial bones. Finally, the long-legged Elk (Alces) and the short-legged dwarf Cretan deer (Candiacervus) featured rather thin and thick cortices, respectively, suggesting that the acquisition of a different limb proportion is accompanied by a modification of the relative mid-diaphyseal cortical thickness. PMID:27350329

  17. Using empirical measurements of tree branching architecture to scale whole-tree metabolism along a 4000 m elevation transect in the Peruvian Andes and Amazon

    Science.gov (United States)

    Bentley, L. P.; Shenkin, A.; Enquist, B.; Malhi, Y.

    2014-12-01

    Plant scaling models use measurements of architecture (i.e., length, width, and order of branch or xylem segments) to ultimately predict whole-plant metabolism via mass and water-use allometries. The application of plant scaling models is broad, and holds potential to simplify forest modelling efforts. However little is known regarding the influence of the environment (e.g., temperature, light, etc) on variation in branching architecture traits and how this variation affects scaling. Furthermore, scaling model assumptions of a self-similar and symmetric branching network have not been extensively tested, especially in tropical forests. As such, it is still unclear to what extent tree communities can be approximated by simple geometrical models, and where important functional divergences from theory exist. Here we analyse novel tree architecture data from diverse species along a 4000m elevational gradient spanning the Andes to the Amazon in Peru. Specifically, we calculate and compare inter- and intra-specific scaling exponents related to branch segment length and width within a hierarchical Bayesian framework. Preliminary results indicate that branching architecture significantly varies among and within species especially with respect to light environments. As such, we explore the role of light in driving tree geometry by also analysing differences in light environment and crown shape. Then, we attempt to link branch architecture and crown shape. Using 6 branch-level and whole-tree traits (path length fraction, crown depth, crown width, crown volume, crown depth/width and crown width/depth) we are able to cluster 68 species of trees into 6 unique groups related to architecture and explain ~60% variability in these data. In the future, it will be important to relate these architectural groups to variation in leaf-level traits and physiology. Lastly, we discuss the implications of using these results to understand tropical forest responses to environmental change.

  18. Cortical bone distribution in the femoral neck of strepsirhine primates.

    Science.gov (United States)

    Demes, B; Jungers, W L; Walker, C

    2000-10-01

    The thickness of the inferior and superior cortices of the femoral neck was measured on X-rays of 181 strepsirhine primate femora representing 24 species. Neck length, neck depth and neck-shaft angle were also measured. The strength of the femoral neck in frontal bending was estimated by modeling the neck as a hollow cylinder, with neck depth as the outer diameter and cortical thickness representing the superior and inferior shell dimensions. Results indicate that the inferior cortex is always thicker than the superior cortex. The ratio of superior to inferior cortical thickness is highly variable but distinguishes two of the three locomotor groups in the sample. Vertical clingers and leapers have higher ratios (i.e., a more even distribution of cortical bone) than quadrupeds. The slow climbers tend to have the lowest ratios, although they do not differ significantly from the leapers and quadrupeds. These results do not confirm prior theoretical expectations and reported data for anthropoid primates that link greater asymmetry of the cortical shell to more stereotypical hip excursions. The ratio of superior to inferior cortical thickness is unrelated to body mass, femoral neck length, and neck-shaft angle, calling into question whether the short neck of strepsirhine primates acts as a cantilever beam in bending. On the other hand, the estimated section moduli are highly correlated with body mass and neck length, a correlation that is driven primarily by body mass. In conclusion, we believe that an alternative interpretation to the cantilever beam model is needed to explain the asymmetry in bone distribution in the femoral neck, at least in strepsirhine primates (e.g., a thicker inferior cortex is required to reinforce the strongly curved inferior surface). As in prior studies of cross-sectional geometry of long bones, we found slightly positive allometry of cortical dimensions with body mass. PMID:11006046

  19. Variety, sex and ontogenetic differences in the pelvic limb muscle architectural properties of leghorn chickens (Gallus gallus domesticus) and their links with locomotor performance.

    Science.gov (United States)

    Rose, Kayleigh A; Nudds, Robert L; Codd, Jonathan R

    2016-06-01

    Leghorn (layer) chickens (Gallus gallus domesticus) differ in locomotor morphology and performance due to artificial selection for standard (large) and bantam (small) varieties, sexual dimorphisms and ontogenetic stage. Here, the hind limb skeletal muscle architectural properties of mature and juvenile standard breeds and mature bantams are compared and linked to measures of locomotor performance. Mature males possessed greater relative muscle physiological cross-sectional areas (PCSAs) than their conspecific females, indicative of greater force-generating capacity, and in line with their greater maximum sustainable speeds compared with females. Furthermore, some of the relative fascicle lengths of the pennate muscles were greater in mature males than in mature females, which may permit greater muscle contractibility. Immature standard leghorns, however, did not share the same dimorphisms as their mature forms. The differences in architectural properties between immature and mature standard males indicate that with the onset of male sexual maturity, concomitant with increasing muscle mass in males, the relative fascicle lengths of pennate muscles and the relative PCSAs of the parallel-fibred muscles also increase. The age-related differences in standard breed male muscle architecture are linked to the presence and absence of sex differences in maximum aerobic speeds. Males of bantam and standard varieties shared similar muscle proportions (% body mass), but exhibited intrinsic muscle differences with a tendency for greater force-generating capabilities in bantams and greater contractile capabilities in standards. The metabolic costs associated with the longer fascicle lengths, together with more crouched limbs in standard than in bantam males may explain the lack of allometry in the minimum metabolic cost of transport between these birds of different size. PMID:26969917

  20. The bony labyrinth of the middle Pleistocene Sima de los Huesos hominins (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Quam, Rolf; Lorenzo, Carlos; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis

    2016-01-01

    We performed 3D virtual reconstructions based on CT scans to study the bony labyrinth morphology in 14 individuals from the large middle Pleistocene hominin sample from the site of the Sima de los Huesos (SH) in the Sierra de Atapuerca in northern Spain. The Atapuerca (SH) hominins represent early members of the Neandertal clade and provide an opportunity to compare the data with the later in time Neandertals, as well as Pleistocene and recent humans more broadly. The Atapuerca (SH) hominins do not differ from the Neandertals in any of the variables related to the absolute and relative sizes and shape of the semicircular canals. Indeed, the entire Neandertal clade seems to be characterized by a derived pattern of canal proportions, including a relatively small posterior canal and a relatively large lateral canal. In contrast, one of the most distinctive features observed in Neandertals, the low placement of the posterior canal (i.e., high sagittal labyrinthine index), is generally not present in the Atapuerca (SH) hominins. This low placement is considered a derived feature in Neandertals and is correlated with a more vertical orientation of the ampullar line (LSCm pyramid (LSCm > PPp), and third part of the facial canal (LSCm base, and an archaic pattern of brain allometry. This more general explanation would not necessarily follow taxonomic lines, even though this morphology of the bony labyrinth occurs at high frequencies among Neandertals. While a functional interpretation of the relatively small vertical canals in the Neandertal clade remains elusive, the relative proportions of the semicircular canals is one of several derived Neandertal features in the Atapuerca (SH) crania. Examination of additional European middle Pleistocene specimens suggests that the full suite of Neandertal features in the bony labyrinth did not emerge in Europe until perhaps <200 kya. PMID:26767955

  1. The influence of vegetation pattern on the productivity, diversity and stability of vegetation: The case of 'brousse tigrée' in the Sahel

    Science.gov (United States)

    Hiernaux, Pierre; Gérard, Bruno

    1999-05-01

    Sample sites of `brousse tigrée' and related vegetation types are described for Mali and Niger. Species composition and physical structure of the herbaceous layer as well as woody plant population were recorded at all sites together with data on soils and natural resource management. Herbage yield was measured whereas foliage yield and wood mass were calculated using allometry equation calibrated for each species. `Brousse tigrée' is characterized by the regularly alternating bare-soil stripes with dense linear thickets arranged perpendicularly to the slope. There was no clear superiority in total plant production of `brousse tigrée' when compared to neighbouring site with diffuse vegetation. However, the pattern of `brousse tigrée' tended to favour woody plant yield to the detriment of herbage yield. The number of herbaceous species recorded per site (22-26) was slightly above Sahelian vegetation average despite low number of species per 1-m 2 quadrat (6-9), bare soil excluded. This species richness reflects the diversity in edaphic niches resulting from the redistribution and local concentration of water resources and shade. The high spatial heterogeneity and species richness of the herbaceous layer in `brousse tigrée' did not attenuate the interannual variation in herbage yield despite low yields. Except for the herb layer, little evidence was found of grazing influence on the vegetation structure and yield a few hundred metres away from livestock concentration points. On the other hand, the clearing of thickets for cropping led to severe soil erosion which threaten the resilience of `brousse tigrée'. These observations and the well-defined climatic, soiland topographic situations under which the `brousse tigrée' occurs invalidate the hypothesis of an anthropic origin of that vegetationpattern.

  2. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  3. A universal airborne LiDAR approach for tropical forest carbon mapping.

    Science.gov (United States)

    Asner, Gregory P; Mascaro, Joseph; Muller-Landau, Helene C; Vieilledent, Ghislain; Vaudry, Romuald; Rasamoelina, Maminiaina; Hall, Jefferson S; van Breugel, Michiel

    2012-04-01

    Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height-diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r ( 2 ) = 0.80, RMSE = 27.6 Mg C ha(-1)). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy. PMID:22033763

  4. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico.

    Directory of Open Access Journals (Sweden)

    Marín Pompa-García

    Full Text Available Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass was estimated from a specific allometric equation for this species based on: (i variation of intra-annual wood density and (ii diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.

  5. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico.

    Science.gov (United States)

    Pompa-García, Marín; Venegas-González, Alejandro

    2016-01-01

    Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.

  6. Improved allometric models to estimate the aboveground biomass of tropical trees.

    Science.gov (United States)

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  7. Improvement of boreal vegetation modelling and climate interactions through the introduction of new bryophyte and artic-shrub plant functional types in a land surface model.

    Science.gov (United States)

    Druel, Arsène; Krinner, Gerhard; Peylin, Philippe; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna

    2016-04-01

    Boreal and tundra vegetation, which represents 22% of the global land area, has had a significant impact on climate through changes of albedo, snow cover, soil thermal dynamics, etc. However, it is frequently poorly represented in earth system models used for climate predictions. We improved the description of high-latitude vegetation and its interactions with the environment in the ORCHIDEE land surface model by creating new plant functional types with specific biogeochemical and biophysical properties: boreal shrubs, bryophytes (mosses and lichens) and boreal C3 grasses. The introduction of shrub specificities allows for an intermediate stratum between trees and grasses, with a new carbon allometry within the plant, inducing new interactions between wooden species and their environment, especially the complex snow-shrubs interaction. Similarly, the introduction of non-vascular plants (i.e. bryophytes) involves numerous changes both in physical and biological processes, such as the response of photosynthesis to surface humidity, the decomposition of carbon and the soil thermal conductivity. These changes in turn lead to new processes and interactions between vegetation and moisture (soil and air), carbon cycle, energy balance, etc. For the boreal C3 grasses we did not include new processes compared to the generic C3 grass PFT, but improved the realism of the carbon and water budgets with new boreal adjusted parameters. We assess the performance of the modified ORCHIDEE land surface model and in particular its ability to represent the new plant types (their phenology etc.), and evaluate the effects of these new PFTs on the simulated energy, water and carbon balances of boreal ecosystems. The potential impact of these refinements on future climate simulations will be discussed.

  8. Evolutionary morphology of the rabbit skull

    Science.gov (United States)

    Sherratt, Emma

    2016-01-01

    The skull of leporids (rabbits and hares) is highly transformed, typified by pronounced arching of the dorsal skull and ventral flexion of the facial region (i.e., facial tilt). Previous studies show that locomotor behavior influences aspects of cranial shape in leporids, and here we use an extensive 3D geometric morphometrics dataset to further explore what influences leporid cranial diversity. Facial tilt angle, a trait that strongly correlates with locomotor mode, significantly predicts the cranial shape variation captured by the primary axis of cranial shape space, and describes a small proportion (13.2%) of overall cranial shape variation in the clade. However, locomotor mode does not correlate with overall cranial shape variation in the clade, because there are two district morphologies of generalist species, and saltators and cursorial species have similar morphologies. Cranial shape changes due to phyletic size change (evolutionary allometry) also describes a small proportion (12.5%) of cranial shape variation in the clade, but this is largely driven by the smallest living leporid, the pygmy rabbit (Brachylagus idahoensis). By integrating phylogenetic history with our geometric morphometric data, we show that the leporid cranium exhibits weak phylogenetic signal and substantial homoplasy. Though these results make it difficult to reconstruct what the ‘ancestral’ leporid skull looked like, the fossil records suggest that dorsal arching and facial tilt could have occurred before the origin of the crown group. Lastly, our study highlights the diversity of cranial variation in crown leporids, and highlights a need for additional phylogenetic work that includes stem (fossil) leporids and includes morphological data that captures the transformed morphology of rabbits and hares.

  9. Spatial and Temporal Evolution of Urban Systems in China during Rapid Urbanization

    Directory of Open Access Journals (Sweden)

    Huan Li

    2016-07-01

    Full Text Available The structure of urban hierarchy and the role of cities of different sizes have drawn considerable scholarly interests and societal concerns. This paper analyzes the evolution and underlying mechanisms of urban hierarchy in China during the recent period of rapid urbanization. By comparing scale changes of seven types of cities (megacity, large city, Type I big city, Type II big city, medium-sized city, type I small city and type II small city, we find that allometry is the main characteristic of urban hierarchical evolution in China. We also test the validity of Zipf’s law and Gibrat’s law, which broaden the scope of existing studies by including county-level cities. We find that urban hierarchical distribution is lognormal, rather than Pareto. The result also shows that city size growth rates are constant across cities of different types. For better understanding of the mechanisms of urban hierarchical formation, we measure the optimal city size and resource allocation by the Pareto optimality criterion and non-parametric frontier method. The main findings are as follows: (1 scale efficiency is still at a relatively low level among the seven types of cities; (2 the economic efficiency of megacities and large cities is overestimated when compared to economic-environmental efficiency. Hence, this paper has two policy implications: (1 to correct factor market (land, labor and infrastructure investment distortions among different types of cities for the improvement of efficiency; (2 to strengthen rural property rights to improve social equity, as well as land use intensity.

  10. Allometric and metameric shape variation in Pan mandibular molars: a digital morphometric analysis.

    Science.gov (United States)

    Singleton, Michelle; Rosenberger, Alfred L; Robinson, Chris; O'neill, Rob

    2011-02-01

    The predominance of molar teeth in fossil hominin assemblages makes the patterning of molar shape variation a topic of bioanthropological interest. Extant models are the principal basis for understanding dental variation in the fossil record. As the sister taxon to the hominin clade, Pan is one such model and the only widely accepted extant hominid model for both interspecific and intraspecific variation. To explore the contributions of allometric scaling and meristic variation to molar variation in Pan, we applied geometric shape analysis to 3D landmarks collected from virtual replicas of chimpanzee and bonobo mandibular molars. Multivariate statistical analysis and 3D visualization of metameric and allometric shape vectors were used to characterize shape differences and test the hypothesis that species of Pan share patterns of metameric variation and molar shape allometry. Procrustes-based shape variables were found to effectively characterize crown shape, sorting molars into species and tooth-row positions with ≥ 95% accuracy. Chimpanzees and bonobos share a common pattern of M(1) -M(2) metameric variation, which is defined by differences in the relative position of the metaconid, size of the hypoconulid, curvature of the buccal wall, and proportions of the basins and foveae. Allometric scaling of molar shape is homogeneous for M(1) and M(2) within species, but bonobo and chimpanzee allometric vectors are significantly different. Nevertheless, the common allometric shape trend explains most molar-shape differences between P. paniscus and P. troglodytes. When allometric effects are factored out, chimpanzee and bonobo molars are not morphometrically distinguishable. Implications for hominid taxonomy and dietary reconstruction are discussed. PMID:21235007

  11. A macroecological analysis of SERA derived forest heights and implications for forest volume remote sensing.

    Directory of Open Access Journals (Sweden)

    Matthew Brolly

    Full Text Available Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to

  12. Blue Carbon distribution in mangrove forests of the Americas

    Science.gov (United States)

    Simard, M.; Rivera-Monroy, V.; Fatoyinbo, T. E.; Roy Chowdhury, R.

    2013-12-01

    Globally, coastal ecosystems are critical to maintaining human livelihood and biodiversity. These ecosystems including mangroves, salt marshes, and sea grasses provide essential ecosystem services, such as supporting fisheries by providing important spawning grounds, filtering pollutants and contaminants from coastal waters, and protecting coastal development and communities against storms, floods and erosion. Additionally, recent research indicates that these vegetated coastal ecosystems are highly efficient carbon sinks (i.e. 'Blue Carbon') and can potentially play a significant role in ameliorating the effect of increasing global climate change by capturing significant amounts of carbon into sediments and plant biomass. The term blue carbon indicates the carbon stored in coastal vegetated wetlands (i.e., mangroves, intertidal marshes, and seagrass meadows). As a result of rapid global changes in coastal regions, it is crucial that we improve our understanding of the current and future state of the remaining coastal ecosystems and associated ecosystem services and their vulnerability to global climate change. In this study, we present a continental scale study of mangrove distribution and assess patterns of forest structural development associated to latitude and geomorphological setting. We produced a baseline map of mangrove canopy height and biomass for all mangrove forests of the Americas using data from the Shuttle Radar Topography Mission (SRTM) and publicly available land cover maps (Figure 1). The resulting canopy height map was calibrated using ICEsat/Geoscience Laser Altimeter system (GLAS). Biomass was derived from field data and allometry. The maps were validated with field data and results in accuracies that vary spatially around 2 to 3m in height and 20% in biomass. Figure 1: Global distribution of mangrove forests (green) and SRTM elevation data. These data were used to produce large scale maps of mangrove canopy height and biomass.

  13. Variety, sex and ontogenetic differences in the pelvic limb muscle architectural properties of leghorn chickens (Gallus gallus domesticus) and their links with locomotor performance.

    Science.gov (United States)

    Rose, Kayleigh A; Nudds, Robert L; Codd, Jonathan R

    2016-06-01

    Leghorn (layer) chickens (Gallus gallus domesticus) differ in locomotor morphology and performance due to artificial selection for standard (large) and bantam (small) varieties, sexual dimorphisms and ontogenetic stage. Here, the hind limb skeletal muscle architectural properties of mature and juvenile standard breeds and mature bantams are compared and linked to measures of locomotor performance. Mature males possessed greater relative muscle physiological cross-sectional areas (PCSAs) than their conspecific females, indicative of greater force-generating capacity, and in line with their greater maximum sustainable speeds compared with females. Furthermore, some of the relative fascicle lengths of the pennate muscles were greater in mature males than in mature females, which may permit greater muscle contractibility. Immature standard leghorns, however, did not share the same dimorphisms as their mature forms. The differences in architectural properties between immature and mature standard males indicate that with the onset of male sexual maturity, concomitant with increasing muscle mass in males, the relative fascicle lengths of pennate muscles and the relative PCSAs of the parallel-fibred muscles also increase. The age-related differences in standard breed male muscle architecture are linked to the presence and absence of sex differences in maximum aerobic speeds. Males of bantam and standard varieties shared similar muscle proportions (% body mass), but exhibited intrinsic muscle differences with a tendency for greater force-generating capabilities in bantams and greater contractile capabilities in standards. The metabolic costs associated with the longer fascicle lengths, together with more crouched limbs in standard than in bantam males may explain the lack of allometry in the minimum metabolic cost of transport between these birds of different size.

  14. Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study.

    Science.gov (United States)

    Dumont, Maitena; Laurin, Michel; Jacques, Florian; Pellé, Eric; Dabin, Willy; de Buffrénil, Vivian

    2013-05-01

    Inner vertebral architecture is poorly known, except in human and laboratory animals. In order to document this topic at a broad comparative level, a 2D-histomorphometric study of vertebral centra was conducted in a sample of 98 therian mammal species, spanning most of the size range and representing the main locomotor adaptations known in therian taxa. Eleven variables relative to the development and geometry of trabecular networks were extracted from CT scan mid-sagittal sections. Phylogeny-informed statistical tests were used to reveal the respective influences of phylogeny, size, and locomotion adaptations on mammalian vertebral structure. The use of random taxon reshuffling and squared change parsimony reveals that 9 of the 11 characteristics (the two exceptions are total sectional area and structural polarization) contain a phylogenetic signal. Linear discriminant analyses suggest that the sampled taxa can be arranged into three categories with respect to locomotion mode: a) terrestrial + flying + digging + amphibious forms, b) coastal oscillatory aquatic taxa, and c) pelagic oscillatory aquatic forms represented by oceanic cetaceans. Pairwise comparison tests and linear regressions show that, when specific size increases, the length of trabecular network (Tt.Tb.Le), as well as trabecular proliferation in total sections (Pr.Tb.Tt), increase with positive allometry. This process occurs in all locomotion categories but is particularly pronounced in pelagic oscillators. Conversely, mean trabecular width has a lesser increase with size in pelagic oscillators. Trabecular orientation is not influenced by size. All tests were corrected for multiple testing. By using six structural variables or indices, locomotion mode can be predicted with a 97.4% success rate for terrestrial forms, 66.7% for coastal oscillatory, and 81.3% for pelagic oscillatory. The possible functional meaning of these results and their potential use for paleobiological inference of locomotion in

  15. Body size and body volume distribution in two sauropods from the Upper Jurassic of Tendaguru (Tanzania

    Directory of Open Access Journals (Sweden)

    H.-C. Gunga

    1999-01-01

    Full Text Available Allometric equations are often based on the body mass of an animal because body mass determines many physiological functions. This should also hold for Brachiosaurus brancai and Dicraeosaurus hansemanni, two sauropods from the Upper Jurassic of Tendaguru/Tanzania (East Africa. Widely divergent estimates of body mass for the same specimen can be found in the literature for these two sauropods. Therefore, in order to determine the exact body mass and volume distribution in these sauropods, classical three-dimensional stereophotogrammetry as well as a newly developed laser scanner technique were applied to the mounted skeletons of Brachiosaurus brancai and Dicraeosaurus hansemanni in the Museum für Naturkunde (Berlin, Germany. Thereafter, scaling equations were used to estimate the size of organ systems. In a second step it was tested whether the given data from photogrammetry could be brought in line with the results derived from the allometric equations. These findings are applied to possible ecological problems in the Upper Jurassic of Tendaguru/Tanzania. Der Körpermasse eines Organismus werden oft allometrische Funktionen zugrunde gelegt, da von ihr viele physiologische Funktionen entscheidend abhängen. Dies sollte auch für ausgestorbene Organismen wie Brachiosaurus brancai und Dicraeosaurus hansemanni, zwei Sauropoden aus dem oberen Jura von Tendaguru/Tanzania in Ostafrika gelten. Da zu beiden Sauropoden nur sehr unterschiedliche Massenabschätzungen vorliegen, wurden die Körpermassen und Volumina von Brachiosaurus brancai und Dicraeosaurus hansemanni mit Hilfe der klassischen Photogrammetrie sowie einem neuentwickelten Laserscannerverfahren neu bestimmt. Basierend auf den so gemessenen Körpermassendaten wurden anschließend einige wichtige funktionell-morphologische Größen für eine paläophysiologische Rekonstruktion dieser Sauropoden mit Hilfe der Allometrie berechnet. Die gewonnenen Ergebnisse sind u. a. wichtig für die

  16. Sex differences in gait utilization and energy metabolism during terrestrial locomotion in two varieties of chicken (Gallus gallus domesticus selected for different body size

    Directory of Open Access Journals (Sweden)

    Kayleigh A. Rose

    2015-10-01

    Full Text Available In leghorn chickens (Gallus gallus domesticus of standard breed (large and bantam (small varieties, artificial selection has led to females being permanently gravid and sexual selection has led to male-biased size dimorphism. Using respirometry, videography and morphological measurements, sex and variety differences in metabolic cost of locomotion, gait utilisation and maximum sustainable speed (Umax were investigated during treadmill locomotion. Males were capable of greater Umax than females and used a grounded running gait at high speeds, which was only observed in a few bantam females and no standard breed females. Body mass accounted for variation in the incremental increase in metabolic power with speed between the varieties, but not the sexes. For the first time in an avian species, a greater mass-specific incremental cost of locomotion, and minimum measured cost of transport (CoTmin were found in males than in females. Furthermore, in both varieties, the female CoTmin was lower than predicted from interspecific allometry. Even when compared at equivalent speeds (using Froude number, CoT decreased more rapidly in females than in males. These trends were common to both varieties despite a more upright limb in females than in males in the standard breed, and a lack of dimorphism in posture in the bantam variety. Females may possess compensatory adaptations for metabolic efficiency during gravidity (e.g. in muscle specialization/posture/kinematics. Furthermore, the elevated power at faster speeds in males may be linked to their muscle properties being suited to inter-male aggressive combat.

  17. Aboveground and belowground biomass allocation in native Prosopis caldenia Burkart secondaries woodlands in the semi-arid Argentinean pampas

    International Nuclear Information System (INIS)

    The woodlands in the south-west of the Argentinean pampas are dominated by Prosopis Caldenia Burkart (calden). The current deforestation rate of this woodlands is 0.82% per year. Different compensation initiatives have begun that recognize the role of forests as environmental service providers. The financial incentives they offer make it necessary to quantify the amount of carbon stored in the forest biomass. A model for estimating calden biomass was developed. Thirty-eight trees were selected, felled and divided into sections. An equation system was fitted using joint generalized regression to ensure the additivity property. A weighted regression was used to avoid heteroscedasticity. In these woodlands fire is the main disturbance and it can modify tree allometry, due this all models included the area of the base of the stem and tree height as independent variables since it indirectly collects this variability. Total biomass and the stem fraction had the highest R2Adj. values (0.75), while branches with a diameter less than 7 cm had the lowest (0.58). Tree biomass was also analyzed by partitioning into the basic fractions of stem, crown, roots, and the root/shoot ratio. Biomass allocation was greatest in the crown fraction and the mean root/shoot ratio was 0.58. The carbon stock of the caldenales considering only calden tree biomass is 20.2 Mg ha−1. While the overall carbon balance of the region is negative (deforestation and biomass burning, the remnant forested area has increased their calden density and in an indirect way his carbon sequestration capacity could also be increased. - Highlights: • A model for estimating aboveground and belowground Prosopis caldenia biomass was developed. • Biomass allocation into the tree and the root/shoot ratio were analyzed. • The equation systems presented had made it possible to more accurately estimate the biomass stored in calden woodlands

  18. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    Science.gov (United States)

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges. PMID:22539635

  19. Size Scaling in Western North Atlantic Loggerhead Turtles Permits Extrapolation between Regions, but Not Life Stages.

    Directory of Open Access Journals (Sweden)

    Nina Marn

    Full Text Available Sea turtles face threats globally and are protected by national and international laws. Allometry and scaling models greatly aid sea turtle conservation and research, and help to better understand the biology of sea turtles. Scaling, however, may differ between regions and/or life stages. We analyze differences between (i two different regional subsets and (ii three different life stage subsets of the western North Atlantic loggerhead turtles by comparing the relative growth of body width and depth in relation to body length, and discuss the implications.Results suggest that the differences between scaling relationships of different regional subsets are negligible, and models fitted on data from one region of the western North Atlantic can safely be used on data for the same life stage from another North Atlantic region. On the other hand, using models fitted on data for one life stage to describe other life stages is not recommended if accuracy is of paramount importance. In particular, young loggerhead turtles that have not recruited to neritic habitats should be studied and modeled separately whenever practical, while neritic juveniles and adults can be modeled together as one group. Even though morphometric scaling varies among life stages, a common model for all life stages can be used as a general description of scaling, and assuming isometric growth as a simplification is justified. In addition to linear models traditionally used for scaling on log-log axes, we test the performance of a saturating (curvilinear model. The saturating model is statistically preferred in some cases, but the accuracy gained by the saturating model is marginal.

  20. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    Directory of Open Access Journals (Sweden)

    Darby Harris

    Full Text Available Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR. Relative crystallinity index (RCI is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.

  1. Lidar Estimation of Aboveground Biomass in a Tropical Coastal Forest of Gabon

    Science.gov (United States)

    Meyer, V.; Saatchi, S. S.; Poulsen, J.; Clark, C.; Lewis, S.; White, L.

    2012-12-01

    Estimation of tropical forest carbon stocks is a critical yet challenging problem from both ground surveys and remote sensing measurements. However, with its increasing importance in global climate mitigation and carbon cycle assessment, there is a need to develop new techniques to measure forest carbon stocks at landscape scales. Progresses have been made in terms of above ground biomass (AGB) monitoring techniques using ground measurements, with the development of tree allometry techniques. Besides, studies have shown that new remote sensing technologies such as Lidar can give accurate information on tree height and forest structure at a landscape level and can be very useful to estimate AGB. This study examines the ability of small footprint Lidar to estimate above ground biomass in Mondah forest, Gabon. Mondah forest is a coastal tropical forest that is partially flooded and includes areas of mangrove. Its mean annual temperature is 18.8C and mean annual precipitation is 2631mm/yr. Its proximity to the capital of Gabon, Libreville, makes it particularly subject to environmental pressure. The analysis is based on small footprint Lidar waveform information and relative height (RH) metrics that correspond to the percentiles of energy of the signal (25%, 50%, 75% and 100%). AGB estimation is calibrated with ground measurements. Ground-estimated AGB is calculated using allometric equations based on tree diameter, wood density and tree height. Lidar-derived AGB is calculated using a linear regression model between the four Lidar RH metrics and ground-estimated AGB and using available models developed in other tropical regions that use one height metric, average wood density, and tree stocking number. We present uncertainty of different approaches and discuss the universality of lidar biomass estimation models in tropical forests.

  2. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  3. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico

    Science.gov (United States)

    Pompa-García, Marín; Venegas-González, Alejandro

    2016-01-01

    Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries. PMID:27272519

  4. Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species.

    Directory of Open Access Journals (Sweden)

    Drew W Purves

    Full Text Available BACKGROUND: Canopy structure, which can be defined as the sum of the sizes, shapes and relative placements of the tree crowns in a forest stand, is central to all aspects of forest ecology. But there is no accepted method for deriving canopy structure from the sizes, species and biomechanical properties of the individual trees in a stand. Any such method must capture the fact that trees are highly plastic in their growth, forming tessellating crown shapes that fill all or most of the canopy space. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a new, simple and rapidly-implemented model--the Ideal Tree Distribution, ITD--with tree form (height allometry and crown shape, growth plasticity, and space-filling, at its core. The ITD predicts the canopy status (in or out of canopy, crown depth, and total and exposed crown area of the trees in a stand, given their species, sizes and potential crown shapes. We use maximum likelihood methods, in conjunction with data from over 100,000 trees taken from forests across the coterminous US, to estimate ITD model parameters for 250 North American tree species. With only two free parameters per species--one aggregate parameter to describe crown shape, and one parameter to set the so-called depth bias--the model captures between-species patterns in average canopy status, crown radius, and crown depth, and within-species means of these metrics vs stem diameter. The model also predicts much of the variation in these metrics for a tree of a given species and size, resulting solely from deterministic responses to variation in stand structure. CONCLUSIONS/SIGNIFICANCE: This new model, with parameters for US tree species, opens up new possibilities for understanding and modeling forest dynamics at local and regional scales, and may provide a new way to interpret remote sensing data of forest canopies, including LIDAR and aerial photography.

  5. Macroevolutionary patterns of sexual size dimorphism in copepods.

    Science.gov (United States)

    Hirst, Andrew G; Kiørboe, Thomas

    2014-09-22

    Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch's rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes. PMID:25100692

  6. Allometric scaling of UK urban emissions: interpretation and implications for air quality management

    Science.gov (United States)

    MacKenzie, Rob; Barnes, Matt; Whyatt, Duncan; Hewitt, Nick

    2016-04-01

    Allometry uncovers structures and patterns by relating the characteristics of complex systems to a measure of scale. We present an allometric analysis of air quality for UK urban settlements, beginning with emissions and moving on to consider air concentrations. We consider both airshed-average 'urban background' concentrations (cf. those derived from satellites for NO2) and local pollution 'hotspots'. We show that there is a strong and robust scaling (with respect to population) of the non-point-source emissions of the greenhouse gases carbon dioxide and methane, as well as the toxic pollutants nitrogen dioxide, PM2.5, and 1,3-butadiene. The scaling of traffic-related emissions is not simply a reflection of road length, but rather results from the socio-economic patterning of road-use. The recent controversy regarding diesel vehicle emissions is germane to our study but does not affect our overall conclusions. We next develop an hypothesis for the population-scaling of airshed-average air concentrations, with which we demonstrate that, although average air quality is expected to be worse in large urban centres compared to small urban centres, the overall effect is an economy of scale (i.e., large cities reduce the overall burden of emissions compared to the same population spread over many smaller urban settlements). Our hypothesis explains satellite-derived observations of airshed-average urban NO2 concentrations. The theory derived also explains which properties of nature-based solutions (urban greening) can make a significant contribution at city scale, and points to a hitherto unforeseen opportunity to make large cities cleaner than smaller cities in absolute terms with respect to their airshed-average pollutant concentration.

  7. Confronting remote sensing product with ground base measurements across time and scale

    Science.gov (United States)

    Pourmokhtarian, A.; Dietze, M.

    2015-12-01

    Ecosystem models are essential tools in forecasting ecosystem responses to global climate change. One of the most challenging issues in ecosystem modeling is scaling while preserving landscape characteristics and minimizing loss of information, when moving from point observation to regional scale. There is a keen interest in providing accurate inputs for ecosystem models which represent ecosystem initial state conditions. Remote sensing land cover products, such as Landsat NLCD and MODIS MCD12Q1, provide extensive spatio-temporal coverage but do not capture forest composition and structure. Lidar and hyperspectral have the potential to meet this need but lack sufficient spatial and historical coverage. Forest inventory measurements provide detailed information on the landscape but in a very small footprint. Combining inventory and land cover could improve estimates of ecosystem state and characteristic across time and space. This study focuses on the challenges associated with fusing and scaling the US Forest Service FIA database and NLCD across regional scales to quantify ecosystem characteristics and reduce associated uncertainties. Across Southeast of U.S. 400 stratified random samples of 10x10 km2 landscapes were selected. Data on plant density, species, age, and DBH of trees in FIA plots within each site were extracted. Using allometry equations, the canopy cover of different plant functional types (PFTs) was estimated using a PPA-style canopy model and used to assign each inventory plot to a land cover class. Inventory and land cover were fused in a Bayesian model that adjusts the fractional coverage of inventory plots while accounting for multiple sources of uncertainty. Results were compared to estimates derived from inventory alone, land cover alone, and model spin-up alone. Our findings create a framework of data assimilation to better interpret remote sensing data using ground-based measurements.

  8. Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size

    Directory of Open Access Journals (Sweden)

    Peter G. Tickle

    2014-07-01

    Full Text Available Genetic selection for improved meat yields, digestive efficiency and growth rates have transformed the biology of broiler chickens. Modern birds undergo a 50-fold multiplication in body mass in just six weeks, from hatching to slaughter weight. However, this selection for rapid growth and improvements in broiler productivity is also widely thought to be associated with increased welfare problems as many birds suffer from leg, circulatory and respiratory diseases. To understand growth-related changes in musculoskeletal and organ morphology and respiratory skeletal development over the standard six-week rearing period, we present data from post-hatch cadaveric commercial broiler chickens aged 0, 2, 4 and 6 weeks. The heart, lungs and intestines decreased in size for hatch to slaughter weight when considered as a proportion of body mass. Proportional liver size increased in the two weeks after hatch but decreased between 2 and 6 weeks. Breast muscle mass on the other hand displayed strong positive allometry, increasing in mass faster than the increase in body mass. Contrastingly, less rapid isometric growth was found in the external oblique muscle, a major respiratory muscle that moves the sternum dorsally during expiration. Considered together with the relatively slow ossification of elements of the respiratory skeleton, it seems that rapid growth of the breast muscles might compromise the efficacy of the respiratory apparatus. Furthermore, the relative reduction in size of the major organs indicates that selective breeding in meat-producing birds has unintended consequences that may bias these birds toward compromised welfare and could limit further improvements in meat-production and feed efficiency.

  9. Global trends and vulnerabilities of mangrove forests

    Science.gov (United States)

    Simard, M.; Fatoyinbo, T. E.; Rivera-Monroy, V. H.; Castaneda, E.; Roy Chowdhury, R.

    2015-12-01

    Mangrove forests are located along Earth's coastlines and estuaries within tropical and subtropical latitudes. They provide numerous services functioning as an extraordinary carbon sequestration system and serving as habitat and nursery for fish, crustaceans and amphibians. To coastal populations, they provide livelihood, food, lumber and act as an effective protection against tsunamis, storm surges and hurricanes. Their vulnerability to sea level rise is strongly related to their extraordinary ability to accumulate soils, which is in part related to their productivity and therefore canopy structure. As a first step to understand their vulnerability, we seek to understand mangrove dependencies on environmental and geophysical setting. To achieve this, we mapped mangrove canopy height and above ground biomass (AGB) at the Global scale. To identify mangrove forests, existing maps derived from a collection of Landsat data around the 2000 era were used. Using the Shuttle Radar Topography Mission elevation data collected in February of 2000, we produced a Global map of mangrove canopy height. The estimated heights were validated with the ICESat/Geoscience Altimeter System (GLAS) and in situ field data. Most importantly, field data were also used to derive relationships between canopy height and AGB. While the geographical coverage of in situ data is limited, ICESat/GLAS data provided extensive geographical coverage with independent estimates of maximum canopy height. These estimates were used to calibrate SRTM-estimates of height at the Global scale. We found the difference between GLAS RH100 and SRTM resulted from several sources of uncertainty that are difficult to isolate. These include natural variations of canopy structure with time, system errors from GLAS and SRTM, geo-location errors and discrepancies in spatial resolution. The Global canopy height map was trnasormed into AGB using the field-derived allometry. Depending on the scale of analysis and geographical

  10. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  11. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    net primary production (NPP) budgets. Autotrophic respiration budgets will be constructed using chamber measurements for each tissue and NPP and standard allometry techniques (Gower et al. 1999). (4) Compare microbial and root dynamics, and net soil surface CO2 flux, of control and warmed soils to identify causes that may explain the hypothesized minimal effect of soil warming on soil surface CO2 flux. Fine root production and turnover will be quantified using minirhizotrons, and microbial dynamics will be determined using laboratory mineralization incubations. Soil surface CO2 flux will be measured using automated soil surface CO2 flux systems and portable CO2 analyzers. The proposed study builds on the existing research programs Gower has in northern Manitoba and would not be possible without in-kind services and financial support from Manitoba Hydro and University of Wisconsin.

  12. An allometric approach to quantify the extinction vulnerability of birds and mammals.

    Science.gov (United States)

    Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J

    2016-03-01

    Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species

  13. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    Science.gov (United States)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    unmanaged areas, using high point density lidar collected over transmission line corridors. The lidar metric of quadratic mean height guided our selection of field plots spanning the full range from low to high levels of aboveground biomass across the study region. Before model selection, we minimized two of the major sources of errors in lidar calibration: variance in tree allometry across landscapes and plot edge effects (spatial mismatch between field measurements and lidar points). We tested an assortment of model selection techniques and goodness of fit measures for deriving forest structural metrics of interest. For example, we obtained an R-squared value for aboveground biomass (Mg/ha) of 0.9 using stepwise regression. The forest metrics obtained are being used in the next stage of the project to parameterize biogeochemical models linking terrestrial carbon pools and atmospheric greenhouse gas exchanges.

  14. Nutrient Budgets in Successional Northern Hardwood Forests: Uncertainty in soil, root, and tree concentrations and pools (Invited)

    Science.gov (United States)

    Yanai, R. D.; Bae, K.; Levine, C. R.; Lilly, P.; Vadeboncoeur, M. A.; Fatemi, F. R.; Blum, J. D.; Arthur, M.; Hamburg, S.

    2013-12-01

    Ecosystem nutrient budgets are difficult to construct and even more difficult to replicate. As a result, uncertainty in the estimates of pools and fluxes are rarely reported, and opportunities to assess confidence through replicated measurements are rare. In this study, we report nutrient concentrations and contents of soil and biomass pools in northern hardwood stands in replicate plots within replicate stands in 3 age classes (14-19 yr, 26-29 yr, and > 100 yr) at the Bartlett Experimental Forest, USA. Soils were described by quantitative soil pits in three plots per stand, excavated by depth increment to the C horizon and analyzed by a sequential extraction procedure. Variation in soil mass among pits within stands averaged 28% (coefficient of variation); variation among stands within an age class ranged from 9-25%. Variation in nutrient concentrations were higher still (averaging 38%, within element, depth increment, and extraction type), perhaps because the depth increments contained varying proportions of genetic horizons. To estimate nutrient contents of aboveground biomass, we propagated model uncertainty through allometric equations, and found errors ranging from 3-7%, depending on the stand. The variation in biomass among plots within stands (6-19%) was always larger than the allometric uncertainties. Variability in measured nutrient concentrations of tree tissues were more variable than the uncertainty in biomass. Foliage had the lowest variability (averaging 16% for Ca, Mg, K, N and P within age class and species), and wood had the highest (averaging 30%), when reported in proportion to the mean, because concentrations in wood are low. For Ca content of aboveground biomass, sampling variation was the greatest source of uncertainty. Coefficients of variation among plots within a stand averaged 16%; stands within an age class ranged from 5-25% CV, including uncertainties in tree allometry and tissue chemistry. Uncertainty analysis can help direct research

  15. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    Directory of Open Access Journals (Sweden)

    M. Scherstjanoi

    2013-09-01

    Full Text Available Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change, GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10

  16. Making the most of what we have: application of extrapolation approaches in wildlife transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, Nicholas A.; Barnett, Catherine L.; Wells, Claire [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Vives i Batlle, Jordi [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Brown, Justin E.; Hosseini, Ali [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Yankovich, Tamara L. [International Atomic Energy Agency, Vienna International Centre, 1400, Vienna (Austria); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691 (Sweden); Willey, Neil [Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    Radiological environmental protection models need to predict the transfer of many radionuclides to a large number of organisms. There has been considerable development of transfer (predominantly concentration ratio) databases over the last decade. However, in reality it is unlikely we will ever have empirical data for all the species-radionuclide combinations which may need to be included in assessments. To provide default values for a number of existing models/frameworks various extrapolation approaches have been suggested (e.g. using data for a similar organism or element). This paper presents recent developments in two such extrapolation approaches, namely phylogeny and allometry. An evaluation of how extrapolation approaches have performed and the potential application of Bayesian statistics to make best use of available data will also be given. Using a Residual Maximum Likelihood (REML) mixed-model regression we initially analysed a dataset comprising 597 entries for 53 freshwater fish species from 67 sites to investigate if phylogenetic variation in transfer could be identified. The REML analysis generated an estimated mean value for each species on a common scale after taking account of the effect of the inter-site variation. Using an independent dataset, we tested the hypothesis that the REML model outputs could be used to predict radionuclide activity concentrations in other species from the results of a species which had been sampled at a specific site. The outputs of the REML analysis accurately predicted {sup 137}Cs activity concentrations in different species of fish from 27 lakes. Although initially investigated as an extrapolation approach the output of this work is a potential alternative to the highly site dependent concentration ratio model. We are currently applying this approach to a wider range of organism types and different ecosystems. An initial analysis of these results will be presented. The application of allometric, or mass

  17. Relações de tamanho e peso das grandes medusas (Cnidaria do litoral do Paraná, Sul do Brasil Size-weight relationship among macromedusae (Cnidaria of Paraná coast Southern Brazil

    Directory of Open Access Journals (Sweden)

    Miodeli Nogueira Jr

    2006-12-01

    Xb was used, in which Y = wet weight, X = umbrellar diameter (except for T. haplonema, in which umbrellar height was used, a and b are fitted parameters for each population. The majority of species showed negative allometry, since b was usually less than 3, and varied between 2.415 and 3.028.

  18. Reproductive biology of Plagioscion magdalenae (Teleostei: Sciaenidae (Steindachner, 1878 in the bay of Marajo, Amazon Estuary, Brazil

    Directory of Open Access Journals (Sweden)

    Nayara Barbosa Santos

    2010-01-01

    Full Text Available Plagioscion magdalenae (pacora is a commercially important benthopelagic sciaenid and widely distributed in the Amazon River basin. The present study describes the reproductive biology of this species in the bay of Marajo, Amazon Estuary, Brazil. The gonadal development stage, age and size at first sexual maturity (L50, sex ratio, and reproductive strategy were determined. The data were collected bi-monthly from December 2005 to October 2006. A total of 251 specimens were examined, with the total length (TL ranging between 220 and 590 mm. The weight-length relationship for females, males and grouped sexes was highly significant, showing a positive allometry. The L50 was of 279 mm for grouped sexes, with 305 mm and 269 mm TL for females and males respectively. The sex ratio for the total number of individuals favored the males (2.02 males: 1 female. Macroscopically, the gonads were classified as immature, maturing, mature and spent. Considering the macro and microscopic evaluation of the gonads, an extended spawning period, mainly in August to February, was observed.Plagioscion magdalenae (pescada-curuca é um sciaenídeo bentopelágico, de importância comercial, amplamente distribuído na bacia do rio Amazonas. O objetivo deste trabalho foi descrever a biologia reprodutiva dessa espécie na baía do Marajó, estuário Amazônico, Brasil. Neste estudo foi determinado o estádio do desenvolvimento gonadal, tamanho de primeira maturação gonadal (L50, proporção entre sexos, época e o tipo de desova. A coleta foi realizada bimestralmente no período de dezembro de 2005 a outubro de 2006. Foi examinado um total de 251 exemplares, variando entre 220 e 590 mm de comprimento total (CT. A relação peso-comprimento para fêmeas, machos e sexos agrupados foi altamente significativa, com alometria positiva. O L50 foi de 279 mm considerando sexos agrupados, 305 e 269 mm CT para fêmeas e machos respectivamente. A proporção entre sexos para o total de

  19. Crescimento alométrico, morfologia e uso do habitat em cinco espécies de Mabuya Fitzinger (Reptilia, Scincidae Allometric growth, morphology and habitat use in five species of Mabuya Fitzinger (Reptilia, Scincidae

    Directory of Open Access Journals (Sweden)

    Gabriel Silva Pinto

    2004-06-01

    allometry, while remaining segments were variable. Some hypothesis relating body form and habitat in these species have been raised, which need to be tested.

  20. Crescimento relativo e composição do ganho de tecidos na carcaça de bubalinos Mediterrâneo jovens abatidos com diferentes pesos Relative growth and gain composition of carcass tissues from young Mediterranean buffaloes slaughtered at different weights

    Directory of Open Access Journals (Sweden)

    Taís Aline Bregion dos Santos

    2009-02-01

    Full Text Available Utilizaram-se 32 bubalinos machos não-castrados, da raça Mediterrâneo, divididos aleatoriamente em cinco categorias. Os animais de uma categoria foram abatidos imediatamente, enquanto os demais foram alimentados, à vontade, com ração contendo 70% de concentrado (na matéria seca e abatidos ao atingirem 450, 480, 510 ou 540 kg de peso corporal. Adotou-se a equação de regressão do logaritmo da quantidade corporal de carcaça e de seus tecidos (muscular, adiposo e ósseo em função do logaritmo do peso de corpo vazio. A carcaça apresentou valor de alometria, o que indica desenvolvimento proporcionalmente igual ao do peso corporal vazio. Derivando as equações, obtiveram-se as equações de predição da participação dos componentes corporais no ganho de 1 kg de peso de corpo vazio. Na carcaça, o tecido adiposo teve maior impulso de crescimento em idade mais tardia, enquanto os tecidos ósseo e muscular tiveram maior impulso para crescimento em idade mais precoce.Thirty-two non castrated Mediterranean male buffaloes were used, being divided into five groups (categories. One group was randomly assigned to immediate slaughter, four groups were fully fed with ration containing 70% of concentrate, dry matter basis until reaching the slaughter weights of 450, 480, 510 and 540 kg. Regression equations of log content of carcass and their tissues (muscle, adipose tissue and bone were adopted as a function of log empty-body-weight. Carcass presented positive allometry value close to 1, reflecting development proportionally equal to the empty-body-weight. Deriving the equations above, the prediction equations of body components in the body gain of 1 kg of the empty-body-weight were obtained. In the carcass, the adipose tissue presented late growth while bone and muscular tissues developed in an earlier age.

  1. Masticatory form and function in the African apes.

    Science.gov (United States)

    Taylor, Andrea B

    2002-02-01

    This study examines variability in masticatory morphology as a function of dietary preference among the African apes. The African apes differ in the degree to which they consume leaves and other fibrous vegetation. Gorilla gorilla beringei, the eastern mountain gorilla, consumes the most restricted diet comprised of mechanically resistant foods such as leaves, pith, bark, and bamboo. Gorilla gorilla gorilla, the western lowland gorilla subspecies, consumes leaves and other terrestrial herbaceous vegetation (THV) but also consumes a fair amount of ripe, fleshy fruit. In contrast to gorillas, chimpanzees are frugivores and rely on vegetation primarily as fallback foods. However, there has been a long-standing debate regarding whether Pan paniscus, the pygmy chimpanzee (or bonobo), consumes greater quantities of THV as compared to Pan troglodytes, the common chimpanzee. Because consumption of resistant foods involves more daily chewing cycles and may require larger average bite force, the mechanical demands placed on the masticatory system are expected to be greater in folivores as compared to primates that consume large quantities of fleshy fruit. Therefore, more folivorous taxa are predicted to exhibit features that improve load-resistance capabilities and increase force production. To test this hypothesis, jaw and skull dimensions were compared in ontogenetic series of G. g. beringei, G. g. gorilla, P. t. troglodytes, and P. paniscus. Controlling for the influence of allometry, results show that compared to both chimpanzees and bonobos, gorillas exhibit some features of the jaw complex that are suggestive of improved masticatory efficiency. For example, compared to all other taxa, G. g. beringei has a significantly wider mandibular corpus and symphysis, larger area for the masseter muscle, higher mandibular ramus, and higher mandibular condyle relative to the occlusal plane of the mandible. However, the significantly wider mandibular symphysis may be an

  2. How much Carbon is Stored in Deserts? AN Approach for the Chilean Atacama Desert Using LANDSAT-8 Products

    Science.gov (United States)

    Hernández, H. J.; Acuña, T.; Reyes, P.; Torres, M.; Figueroa, E.

    2016-06-01

    The Atacama Desert in northern Chile is known as the driest place on Earth, with an average rainfall of about 15 mm per year. Despite these conditions, it contains a rich variety of flora with hundreds of species characterised by their extraordinary ability to adapt to this extreme environment. These biotic components have a direct link to important ecosystem services, especially those related to carbon storage and sequestration. No quantitative assessment is currently available for these services and the role of the desert in this matter remains unclear. We propose an approach to estimate above-ground biomass (AGB) using Landsat-8 data, which we tested in the Taparacá region, located in the northern section of the desert. To calibrate and validate the models, we used field data from 86 plots and several spectral indexes (NDVI, EVI and SAVI) obtained from the provisional Landsat-8 Surface-reflectance products. We applied randomised branch sampling and allometry principles (non-destructive methods) to collect biomass samples for all plant biological types: wetlands, steppes, shrubs and trees. All samples were dried in an oven until they reached constant weight and the final values were used to extrapolate dry matter content (AGB) to each plot in terms of kg m-2. We used all available scenes from September 2014 to August 2015 to calculate the maximum, minimum and average value for each index in each pixel within this period. For modeling, we used the method based on classification and regression trees called random forest (RF), available in the statistical software R-Project. The explained variance obtained by the RF algorithm was around 80-85%, and it improved when a wetland vector layer was used as the predictive factor in the model to reach the range 85-90%. The mean error was 1.45 kg m-2 of dry matter. The best model was obtained using the maximum and mean values of SAVI and EVI indexes. We were able to estimate total biomass storage of around 8 million tons

  3. An allometric approach to quantify the extinction vulnerability of birds and mammals.

    Science.gov (United States)

    Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J

    2016-03-01

    Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species

  4. Alligators and Crocodiles Have High Paracellular Absorption of Nutrients, But Differ in Digestive Morphology and Physiology.

    Science.gov (United States)

    Tracy, Christopher R; McWhorter, Todd J; Gienger, C M; Starck, J Matthias; Medley, Peter; Manolis, S Charlie; Webb, Grahame J W; Christian, Keith A

    2015-12-01

    Much of what is known about crocodilian nutrition and growth has come from animals propagated in captivity, but captive animals from the families Crocodilidae and Alligatoridae respond differently to similar diets. Since there are few comparative studies of crocodilian digestive physiology to help explain these differences, we investigated young Alligator mississippiensis and Crocodylus porosus in terms of (1) gross and microscopic morphology of the intestine, (2) activity of the membrane-bound digestive enzymes aminopeptidase-N, maltase, and sucrase, and (3) nutrient absorption by carrier-mediated and paracellular pathways. We also measured gut morphology of animals over a larger range of body sizes. The two species showed different allometry of length and mass of the gut, with A. mississippiensis having a steeper increase in intestinal mass with body size, and C. porosus having a steeper increase in intestinal length with body size. Both species showed similar patterns of magnification of the intestinal surface area, with decreasing magnification from the proximal to distal ends of the intestine. Although A. mississippiensis had significantly greater surface-area magnification overall, a compensating significant difference in gut length between species meant that total surface area of the intestine was not significantly different from that of C. porosus. The species differed in enzyme activities, with A. mississippiensis having significantly greater ability to digest carbohydrates relative to protein than did C. porosus. These differences in enzyme activity may help explain the differences in performance between the crocodilian families when on artificial diets. Both A. mississippiensis and C. porosus showed high absorption of 3-O methyl d-glucose (absorbed via both carrier-mediated and paracellular transport), as expected. Both species also showed surprisingly high levels of l-glucose-uptake (absorbed paracellularly), with fractional absorptions as high as those

  5. Emergence, development, and maturity of the gonad of two species of chitons "sea cockroach" (Mollusca: Polyplacophora) through the early life stages.

    Science.gov (United States)

    Avila-Poveda, Omar Hernando; Abadia-Chanona, Quetzalli Yasú

    2013-01-01

    This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or "early life stages" were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aX(b) . A total of 125 chitons (4≤TL≤40 mm, in total length "TL") were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods ("Pw" without gonad, "Pe" gonad emergence, and "Pf" gonadal sac formed) and four stages ("S0" gametocytogenesis, "S1" gametogenesis, "S2" mature, and "S3" spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13-14.32 mm, Pe 10.32-16.93 mm, Pf 12.99-25.01 mm, S0 16.08-24.34 mm (females) and 19.51-26.60 mm (males), S1 27.15-35.63 mm (females) and 23.45-32.27 mm (males), S2 24.48-40.24 mm (females) and 25.45-32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management. PMID:23936353

  6. Emergence, Development, and Maturity of the Gonad of Two Species of Chitons “Sea Cockroach” (Mollusca: Polyplacophora) through the Early Life Stages

    Science.gov (United States)

    Avila-Poveda, Omar Hernando; Abadia-Chanona, Quetzalli Yasú

    2013-01-01

    This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or “early life stages” were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aXb. A total of 125 chitons (4≤TL≤40 mm, in total length “TL”) were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods (“Pw” without gonad, “Pe” gonad emergence, and “Pf” gonadal sac formed) and four stages (“S0” gametocytogenesis, “S1” gametogenesis, “S2” mature, and “S3” spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13–14.32 mm, Pe 10.32–16.93 mm, Pf 12.99–25.01 mm, S0 16.08–24.34 mm (females) and 19.51–26.60 mm (males), S1 27.15–35.63 mm (females) and 23.45–32.27 mm (males), S2 24.48–40.24 mm (females) and 25.45–32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management. PMID:23936353

  7. Emergence, development, and maturity of the gonad of two species of chitons "sea cockroach" (Mollusca: Polyplacophora through the early life stages.

    Directory of Open Access Journals (Sweden)

    Omar Hernando Avila-Poveda

    Full Text Available This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or "early life stages" were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aX(b . A total of 125 chitons (4≤TL≤40 mm, in total length "TL" were used. All allometric relations showed a strong positive correlation (r, close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods ("Pw" without gonad, "Pe" gonad emergence, and "Pf" gonadal sac formed and four stages ("S0" gametocytogenesis, "S1" gametogenesis, "S2" mature, and "S3" spawning, respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13-14.32 mm, Pe 10.32-16.93 mm, Pf 12.99-25.01 mm, S0 16.08-24.34 mm (females and 19.51-26.60 mm (males, S1 27.15-35.63 mm (females and 23.45-32.27 mm (males, S2 24.48-40.24 mm (females and 25.45-32.87 mm (males. Sexual differentiation (in S0 of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management.

  8. Relação peso-comprimento de Orthopristis ruber (Cuvier (Teleostei, Haemulidae na Baia de Sepetiba, Rio de Janeiro, Brasil Length-weight relationship of Orthopristis ruber (Cuvier (Teleostei, Haemulidae in the Sepetiba Bay, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    André L. B. dos Santos

    2004-06-01

    Full Text Available A relação peso-comprimento de Orthopristis ruber (Cuvier, 1830 na Baia de Sepetiba (22º54'-23º04'S; 43º34'-44º10'W, Rio de Janeiro foi determinada. Este trabalho objetiva contribuir com o conhecimento sobre a morfometria desta espécie na baía e fornecer bases para comparações com outros ambientes. Os peixes foram coletados em programas de amostragens de arrasto de praia (juvenis e arrasto de fundo (adultos entre outubro de 1998 e setembro de 1999. A equação encontrada foi W = 0,000006 L3,1368 para machos e W = 0,000006 L3,14º3 para fêmeas. Alometria positiva foi encontrada para machos e fêmeas e a proporção sexual foi de 1:1. Os altos valores para o coeficiente alométrico indicam alto investimento no crescimento, que pode ser devido ao pequeno tamanho relativo dos espécimes da população analisada, ou ser um mecanismo para suportar as condições de estresse nesta área.The lenght-weight relationship of Orthopristis rubber (Cuvier, 1830 in the Sepetiba Bay (22º54'-23º04'S; 43º34'-44º10'W, Rio de Janeiro was determined. It aims to contribute to morphometrics knowledge of this species in a semi-closed coastal area and to supply basis for comparisons with others environment. Fishes were collected by beach seine (juveniles and otter trawl (adults from October 1998 to September 1999. The equation found was W = 0,000006 L3,1368 for males and W = 0,000006 L3,14º3 for females. Positive allometry was found for both sexes and sex rate was 1:1. The comparatively high values for allometric coefficient indicate high investment in growth, which can be due to relatively small size of the examined fish populations, or a mechanism to overcome stress conditions in the area.

  9. Body mass and body weight: a dual reference system in biology Masa y peso corporales: un sistema dual de referencia en biología

    Directory of Open Access Journals (Sweden)

    BRUNO GÜNTHER

    2003-03-01

    Full Text Available ABSTRACT The aim of the present study was to compare two different biological similarity criteria, one was based on body mass (M as a theoretical reference system in accordance with the MLT-system of physics, while the other utilized the body weight (W for the same purpose. The mass-dependent allometry should be applied during space flights as well as during fetal and newborn conditions of life, whereas the weight-dependence should prevail in earth-bound physiology. The above mentioned distinctions are relevant not only for the specific metabolic rates but also for numerous biological time functions, as for instance for the heart and respiratory rates of all mammals, whose allometric exponent is b = - 0.09 during fetal life, and b = - 0.25 in all adult specimens.El objetivo del presente trabajo fue la comparación de dos diferentes criterios de similitud, uno basado en la masa corporal (M como sistema teórico de referencia de acuerdo con el sistema MLT de la Física, en tanto que el otro utilizó el peso corporal (W con este mismo propósito. La alometría dependiente de la masa debería aplicarse durante los vuelos espaciales así como durante la vida fetal y la condición de recién nacido, en tanto que la dependencia del peso debe prevalecer en la fisiología terrestre. La distinción antes mencionada es relevante, no sólo para el metabolismo específico y también para numerosas funciones biológicas en relación con funciones de tiempo, como ser con las frecuencias cardiaca y respiratoria de todos los mamíferos cuyo exponente alométrico es b = - 0,09 durante la vida fetal, y b = - 0,25 en todos los especimenes adultos.

  10. Anatomy, feeding ecology, and ontogeny of a transitional baleen whale: a new genus and species of Eomysticetidae (Mammalia: Cetacea) from the Oligocene of New Zealand.

    Science.gov (United States)

    Boessenecker, Robert W; Fordyce, R Ewan

    2015-01-01

    The Eocene history of cetacean evolution is now represented by the expansive fossil record of archaeocetes elucidating major morphofunctional shifts relating to the land to sea transition, but the change from archaeocetes to modern cetaceans is poorly established. New fossil material of the recently recognized family Eomysticetidae from the upper Oligocene Otekaike Limestone includes a new genus and species, Waharoa ruwhenua, represented by skulls and partial skeletons of an adult, juvenile, and a smaller juvenile. Ontogenetic status is confirmed by osteohistology of ribs. Waharoa ruwhenua is characterized by an elongate and narrow rostrum which retains vestigial alveoli and alveolar grooves. Palatal foramina and sulci are present only on the posterior half of the palate. The nasals are elongate, and the bony nares are positioned far anteriorly. Enormous temporal fossae are present adjacent to an elongate and narrow intertemporal region with a sharp sagittal crest. The earbones are characterized by retaining inner and outer posterior pedicles, lacking fused posterior processes, and retaining a separate accessory ossicle. Phylogenetic analysis supports inclusion of Waharoa ruwhenua within a monophyletic Eomysticetidae as the earliest diverging clade of toothless mysticetes. This eomysticetid clade also included Eomysticetus whitmorei, Micromysticetus rothauseni, Tohoraata raekohao, Tokarahia kauaeroa, Tokarahia lophocephalus, and Yamatocetus canaliculatus. Detailed study of ontogenetic change demonstrates postnatal elaboration of the sagittal and nuchal crests, elongation of the intertemporal region, inflation of the zygomatic processes, and an extreme proportional increase in rostral length. Tympanic bullae are nearly full sized during early postnatal ontogeny indicating precocial development of auditory structures, but do increase slightly in size. Positive allometry of the rostrum suggests an ontogenetic change in feeding ecology, from neonatal suckling to a more

  11. Developmental dynamics of Ambystoma tigrinum in a changing landscape

    Directory of Open Access Journals (Sweden)

    McMenamin Sarah K

    2010-04-01

    Full Text Available Abstract Background Loss of pond habitat is catastrophic to aquatic larval amphibians, but even reduction in the amount of time a breeding site holds water (hydroperiod can influence amphibian development and limit reproductive success. Using the landscape variation of a glacial valley in the Greater Yellowstone Ecosystem as the context for a natural experiment, we examined variation in growth pattern and life history of the salamander Ambystoma tigrinum melanostictum and determined how these developmental characteristics varied with hydroperiod over several summers. Results In ponds that dried early in the season, maximum larval size was reduced relative to the sizes achieved in permanent ponds. Ephemeral ponds were associated with early metamorphosis at small body sizes, while permanent ponds facilitated longer larval periods and later metamorphosis. Paedomorphosis resulted from indefinite metamorphic postponement, and was identified only in the most permanent environments. Patterns of growth and allometry were similar between ponds with different hydroperiods, but considerable life history variation was derived from modulating the timing of and size at metamorphosis. Considering maximum rates of growth and inferring the minimum size at metamorphosis across 25 ponds over the course of three years, we calculated that hydroperiods longer than three months are necessary to support these populations through metamorphosis and/or reproductive maturity. Conclusions Landscape heterogeneity fosters life history variation in this natural population. Modulation of the complex ambystomatid life cycle allows this species to survive in unpredictable environments, but current trends towards rapid pond drying will promote metamorphosis at smaller sizes and could eliminate the paedomorphic phenotype from this region. Metamorphosis at small size is has been linked to altered fitness traits, including reduced survival and fecundity. Thus, widespread

  12. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2012-04-01

    Full Text Available Dynamic Global Vegetation Models (DGVMs typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical Plant Functional Types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity DGVM (JeDi-DGVM as a new approach to global vegetation modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs.

    JeDi-DGVM simulates the performance of a large number of randomly-generated plant growth strategies (PGSs, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a PGS is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other PGSs. The biogeochemical fluxes and land-surface properties of the individual PGSs are aggregated to the grid cell scale using a mass-based weighting scheme.

    Simulated global biogeochemical and biogeographical patterns are evaluated against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favorably with other state-of-the-art terrestrial biosphere models. This is despite the parameters describing the ecophysiological functioning and allometry of JeDi-DGVM plants evolving as a function of vegetation survival in a given climate, as opposed to

  13. Root biomechanics in Rhizophora mangle: anatomy, morphology and ecology of mangrove’s flying buttresses

    Science.gov (United States)

    Méndez-Alonzo, Rodrigo; Moctezuma, Coral; Ordoñez, Víctor R.; Angeles, Guillermo; Martínez, Armando J.; López-Portillo, Jorge

    2015-01-01

    Background and Aims Rhizophora species of mangroves have a conspicuous system of stilt-like roots (rhizophores) that grow from the main stem and resemble flying buttresses. As such, the development of rhizophores can be predicted to be important for the effective transmission of dynamic loads from the top of the tree to the ground, especially where the substrate is unstable, as is often the case in the habitats where Rhizophora species typically grow. This study tests the hypothesis that rhizophore architecture in R. mangle co-varies with their proximity to the main stem, and with stem size and crown position. Methods The allometry and wood mechanical properties of R. mangle (red mangrove) trees growing in a mangrove basin forest within a coastal lagoon in Mexico were compared with those of coexisting, non-buttressed mangrove trees of Avicennia germinans. The anatomy of rhizophores was related to mechanical stress due to crown orientation (static load) and to prevailing winds (dynamic load) at the study site. Key Results Rhizophores buttressed between 10 and 33 % of tree height. There were significant and direct scaling relationships between the number, height and length of rhizophores vs. basal area, tree height and crown area. Wood mechanical resistance was significantly higher in the buttressed R. mangle (modulus of elasticity, MOE = 18·1 ± 2 GPa) than in A. germinans (MOE = 12·1 ± 0·5 GPa). Slenderness ratios (total height/stem diameter) were higher in R. mangle, but there were no interspecies differences in critical buckling height. When in proximity to the main stem, rhizophores had a lower length/height ratio, higher eccentricity and higher xylem/bark and pith proportions. However, there were no directional trends with regard to prevailing winds or tree leaning. Conclusions In comparison with A. germinans, a tree species with wide girth and flare at the base, R. mangle supports a thinner stem of higher mechanical resistance that is

  14. Predicting biomass of hyperdiverse and structurally complex central Amazonian forests - a virtual approach using extensive field data

    Science.gov (United States)

    Magnabosco Marra, Daniel; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Carneiro, Vilany M. C.; Lima, Adriano J. N.; Chambers, Jeffrey Q.; Negrón-Juárez, Robinson I.; Holzwarth, Frederic; Reu, Björn; Wirth, Christian

    2016-03-01

    Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90 % of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height ≥ 5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different models and an available pantropical model, we observed systematic biases ranging from -31 % (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha-1 (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha-1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express

  15. Shape covariation between the craniofacial complex and first molars in humans

    Science.gov (United States)

    Polychronis, Georgios; Halazonetis, Demetrios J

    2014-01-01

    The occurrence of mutual genetic loci in morphogenesis of the face and teeth implies shape covariation between these structures. However, teeth finalize their shape at an early age, whereas the face grows and is subjected to environmental influences for a prolonged period; it is therefore conceivable that covariation might modulate with age. Here we investigate the extent of this covariation in humans by measuring the 3D shape of the occlusal surface of the permanent first molars and the shape of the craniofacial complex from lateral radiographs, at two maturations stages. A sample of Greek subjects was divided into two groups (110 adult, 110 prepubertal) with equally distributed gender. The occlusal surfaces of the right first molars were 3D scanned from dental casts; 265 and 274 landmarks (including surface and curve semilandmarks) were digitized on the maxillary and mandibular molars, respectively. The corresponding lateral cephalometric radiographs were digitized with 71 landmarks. Geometric morphometric methods were used to assess shape variation and covariation. The vertical dimension of the craniofacial complex was the main parameter of shape variation, followed by anteroposterior deviations. The male craniofacial complex was larger (4.0–5.7%) and was characterized by a prominent chin and clockwise rotation of the cranial base (adult group only). Allometry was weak and statistically significant only when examined for the sample as a whole (percent variance explained: 2.1%, P = 0.0002). Covariation was statistically significant only between the lower first molar and the craniofacial complex (RV = 14.05%, P = 0.0099, and RV = 12.31%, P = 0.0162, for the prepubertal and adult groups, respectively). Subtle age-related covariation differences were noted, indicating that environmental factors may influence the pattern and strength of covariation. However, the main pattern was similar in both groups: a class III skeletal pattern (relative maxillary retrusion and

  16. 草兔胚后发育过程中头骨大小与形状变化的几何形态学分析(兔形目:兔科)%Geometric morphometric of postnatal size and shape changes in the cranium of cape hare (Lagomorpha, Leporidea, Lepus capensis)

    Institute of Scientific and Technical Information of China (English)

    葛德燕; 吕雪霏; 夏霖; 黄乘明; 杨奇森

    2012-01-01

    We analyzed the geometric morphometrics analysis of the crana of 58 Lepus capensis of various ages using 180 landmarks/semi-landmarks.These exhibited rapid establishment of structure and allometric growth in different morphological components.Primary size and shape changes occurred from infant to age Ⅰ (within six months).Nasal size displayed the most prominent positive allometry.Frontal and orbital grew nearly isometrically with the overall size change of the cranium.The parietal,tympanic bulla and foramen magnum displayed negative allometry.Growth trajectories were illustrated for the dorsal,ventral and lateral view of the cranium.Allometric shape changes were observed in the nasal,premaxilla and supraorbital process,as well as in the longitudinal axis of the cranium.The overall shape of the cranium was narrowed.These ontogenetic size and shape changes are beneficial in establishing a complete cranial system in young hares,particularly,in improving ventilation of the respiratory system,enhancing the ability to maintain vigilance,and in stabilization over a diverse range of locomotion activities as well as strengthening the ability for solid food acquisition.This pattern of allometric growth probably is one of the main functional adaptations in herbivorous mammals that have a cursorial lifestyle.%在本文中,我们使用几何形态学的研究方法对58个处于不同年龄阶段的草兔头骨进行了分析.分析中总共使用来自头骨背面、腹面和侧面的180个标点和半标点.研究结果表明,草兔在胚后发育早期即迅速建立起与成年个体近似的形态结构,组成头骨的不同形态单元存在显著的异速生长现象,主要的形变发生在幼年至年龄1阶段,即出生后的6个月以内.从大小的变化来看,鼻骨在胚后发育过程中呈现正的异速生长,额骨和眼眶区则与头骨整体大小变化基本等速,而顶骨、听泡和枕骨大孔则呈现显著的负异速生长.我们亦用几何形

  17. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  18. Root phenology at Harvard Forest and beyond

    Science.gov (United States)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, pinfluenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April 2012 through August 2013 at the Harvard Forest in Petersham, MA, USA. Greenness and stem growth were highest in late May and early June with one clear maximum growth period. In contrast, root

  19. 臭腹腺蝗(直翅目:锥头蝗科)胃盲囊的异速生长和功能特性%Allometric growth and performance of the gastric caeca of Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae)

    Institute of Scientific and Technical Information of China (English)

    Bassey E. AKPAN; Tony G. OKORIE

    2003-01-01

    通过对臭腹腺蝗Zonocerus variegatus(直翅目:锥头蝗科)6个若虫期及成虫期主消化道和胃盲囊分段进行解剖和测量,对其胃盲囊的异速生长和功能特性进行了研究.结果表明,胃盲囊和主消化道的生长是不同速的.胃盲囊前段较后段生长速率更高,但两者生长速率显著相关.消化道和胃盲囊的平均长度亦显著相关.随年龄增长,消化道的生长速率降低,而胃盲囊的生长速率上升.与胃盲囊前段功能相同,胃盲囊后段亦具有消化和吸收功能,被认为能在营养缺乏的旱季起到增加肠胃吸收面的功能.%The allometry, growth and activities of the gastric caeca of Zonocerus variegatus ( L. ) were determined to find outthe functions of its posterior caeca which are unknown. This was done by dissecting out the gut and measuring the main gut re-gions and the gastric caeca in the six nymphal stages and adult. The gut consists of three main regions; the crop, ventriculus,with gastric caeca attached at anterior rim, and the hindgut. Each set of caeca consists of a long anteriorly pointed arm and ashort posteriorly pointed arm. The growth of the caeca relative to the main gut was allometric. The anterior caeca had highergrowth ratios than the posterior caeca and both were highly correlated. The relationship between gut and caeca mean length washighly significant. The mean gut length and age were significantly correlated with growth rate exponent < 1 indicating a decreas-ing growth increment with age. The mean caeca length and age were highly correlated with growth exponent > 1 indicating an in-creasing growth with age. Females had higher mean lengths than males and this was highly significant ( P < 0.05). Males hadhigher growth ratios than females except at growth centres. The growth patterns of the caeca for wet and dry seasons were similarwith a single growth centre. But the mean length of the caeca was significantly different between wet and dry

  20. Carbon sequestration by young Norway spruce monoculture

    Science.gov (United States)

    Pokorny, R.; Rajsnerova, P.; Kubásek, J.

    2012-04-01

    Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree

  1. Topo-edaphic Controls over Woody Biomass in South African Savannas

    Science.gov (United States)

    Colgan, M.; Asner, G. P.; Levick, S. R.

    2009-12-01

    The influence of substrate type on woody plant growth is well documented in the granite and basalt savannas of Kruger National Park, South Africa. Over the past two decades field studies and airborne photography have shown the gradually undulating granitic landscapes support higher woody cover than the basaltic plains. Yet nested within these broader trends are significant variations in biomass at the hillslope scale (0.5-1km), and it is debated to what extent the gradual slopes and subtle relief exert a catena influence on woody biomass. These trends have been qualitatively observed in the field, especially on the granite substrates, but drawing clear correlations between vegetation and terrain is hampered in the field by limited visibility due to relatively gradual (1-2°) and long (hundreds of meters) hillslopes. Here airborne LiDAR reveals clear, quantifiable biomass trends at the hillslope spatial scale and at the resolution (~1m) necessary to resolve the heterogeneity inherent in an open-canopy system. Our aim is to investigate the importance of hillslope topographic and soil properties in controlling woody biomass relative to regional differences in parent material. Aboveground woody biomass (AGWB) was estimated using airborne LiDAR over seven sites in Kruger National Park (KNP) in April-May 2008. Sites were selected to encompass the park’s range of substrate types, as well as variation in precipitation, topography, and dominant vegetation types. Throughout these seven sites 202 field plots were collected during the same period to inform and validate airborne biomass estimates. Basal diameter, height, and species of 4,500+ trees spanning 50+ woody species were recorded, and existing field allometry was applied to estimate dry AGWB. When regressed individually, canopy height and canopy cover each explained approximately the same variation in biomass (R2=0.60). Using canopy cover from three height classes significantly improved goodness of fit (R2=0.80) and

  2. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Roegner, Curtis; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Johnson, Gary E.; Sobocinski, Kathryn L.; Anderson, Michael G.; Ebberts, Blaine

    2005-12-15

    indicators for detecting a signal in the estuarine system resulting from the multiple projects were also reviewed, i.e. organic matter production, nutrient cycling, sedimentation, food webs, biodiversity, salmon habitat usage, habitat opportunity, and allometry. In subsequent work, this information will be used to calculate the over net effect on the ecosystem. To evaluate the effectiveness of habitat restoration actions in the lower Columbia River and estuary, a priority of this study has been to develop a set of minimum ecosystem monitoring protocols based on metrics important for the CRE. The metrics include a suite of physical measurements designed to evaluate changes in hydrological and topographic features, as well as biological metrics that will quantify vegetation and fish community structure. These basic measurements, intended to be conducted at all restoration sites in the CRE, will be used to (1) evaluate the effectiveness of various restoration procedures on target metrics, and (2) provide the data to determine the cumulative effects of many restoration projects on the overall system. A protocol manual is being developed for managers, professional researchers, and informed volunteers, and is intended to be a practical technical guide for the design and implementation of monitoring for the effects of restoration activities. The guidelines are intended to standardize the collection of data critical for analyzing the anticipated ecological change resulting from restoration treatments. Field studies in 2005 are planned to initiate the testing and evaluation of these monitoring metrics and protocols and initiate the evaluation of higher order metrics for cumulative effects.

  3. Le mythe du microcèbe primitif The myth of the primitive mouse lemur

    Directory of Open Access Journals (Sweden)

    Fabien Génin

    2011-10-01

    criticise this almost mythical view, which is neither supported by the fossil record nor by the most recent phylogenies. We propose the alternative hypothesis of a reduction of body size, or dwarfism, a phenomenon known to occur frequently on islands, and in isolated regions subject to El Niño-related unpredictable droughts. We confirm Gould’s model of progenesis, which explains dwarfism by hypervariability leading to acceleration of life history. Cheirogaleids appear as paedomorphic dwarfs compared to their sister-taxon, the Lepilemuridae (Lepilemur. They probably experienced at least 3 independent events of dwarfing which lead to parallel changes in the proportions of the head and limbs (allometry. The first one (dwarfing has led to a decrease in the size of body and limbs, without any significant change in cranial form (with the exception of teeth in the largest forms Phaner, Mirza, and the largest forms of the genus Cheirogaleus. The second (hyper-dwarfing has led to parallel changes in cranial form in the smallest taxa (Allocebus, Microcebus and the smaller forms of the genus Cheirogaleus, associated with typical paedomorphic traits (large eyes and small, pointed snout. This new interpretation explains many unique characteristics of this group of lemurs, in particular their rapid life histories.

  4. Evaluation of Water Use Efficiency of Short Rotation Poplar Coppice at Bohemian-Moravian Highlands

    Science.gov (United States)

    Hlaváčová, Marcela; Fischer, Milan; Mani Tripathi, Abhishek; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    comparison of both approaches. Since application of the two mentioned scripts led to two sets of resulting values, calculations of Fd and consequent sap flow values were computed for both variants of ΔTmaxvalues. The sample trees were divided into 3 diameter classes according to DBH values at the beginning of regular measurements (April 24, 2013). Allometry was carried out on February 20, 2014 to calculation of aboveground woody biomass. The input data for calculations of WUE of aboveground woody biomass productivity was biomass increments and monthly totals of sap flow for 16 sample trees. The total WUE for 16 measured trees reached 4.93 g kg-1 (when calculated with data set without VPD condition) and 4.63 g kg-1 (when calculated with data set under VPD condition). This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248 and LD130030 supporting COST Action ES1106.

  5. Carbon dioxide sequestration by urban vegetation at neighbourhood scale in tropical cities

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Perrusquia, R.; Molina, L. T.; Norford, L.

    2013-12-01

    the total CO2 emissions to the atmosphere. For the neighbourhood studied in Mexico City an uptake of 1.6 ton km-2 day-1 (568 ton km-2 yr-1) was estimated by allometry and represents 2% of the observed flux by eddy covariance. Due to the large extension of impervious surfaces, soil respiration contributes only 0.6%, resulting in a net offset of 1.4% by the biogenic component to the total CO2 flux. Surprisingly, the estimated aboveground CO2 sequestration was similar for both neighbourhoods, even though the differences in the number of trees, species and size. The available surface for soil respiration in Singapore's neighbourhood (15%) is three times the surface in Mexico City's neighbourhood (5%), and explains why the biogenic component acts as an emission source for the former and as a sink for the latter. The relevance of urban vegetation in the carbon flux at neighbourhood scale depends on the characteristics of trees, extension of green areas and intensity of the anthropogenic sources.

  6. Effect of different stocking density on growth performance of develop-ing fry of Salmo trutta%不同养殖密度对褐鳟(Salmo trutta)稚鱼生长性能的影响

    Institute of Scientific and Technical Information of China (English)

    王炳谦; 王芳; 谷伟; 户国; 白庆利

    2014-01-01

    The objective of the study presented was to determine the effects of different stocking density on the growth and survival of Salmo trutta fry at two months age. Experimental fish were reared at five different stocking densities, 400, 600, 800, 1 000 and 1 200 individuals per tank. Over the experimental period of 49 days, the weight of Salmo trutta fry went up from 0.14g to 1g, the results showed that stocking density had insignificant effects on the survival rate and condition factor. The final body, daily weight gain, specific growth rate and weight growth efficiency of fry were decreased with the increase of stocking densities, among those, daily weight gain decreased significantly from (0.018±0.001) g to (0.013 ± 0.001) g. The result showed that stocking density had negative effects on growth. However, net yield was increased with the increase of stocking densities, and there were significant differences between the low and high densities groups (P<0.05). The fry of Salmo trutta reared in different densities grew in allometry, but the stocking density had insignificant effect on the variation in growth.%以褐鳟(Salmo trutta)商业品系为研究对象,通过设置不同养殖密度梯度,对处于稚鱼期的褐鳟进行常规生长指标差异测定,综合分析养殖密度对其生长性能的影响。试验共设置5个养殖密度组,每个试验槽分别放养400、600、800、1000、1200尾,每组3个重复。经过49 d的养殖试验,褐鳟稚鱼体重从0.14 g长到1 g,结果表明,不同养殖密度条件下褐鳟稚鱼的生长指标明显不同,其中最终体重、日增重、特定生长率及增重率均随着养殖密度增大而呈现出明显下降趋势,其中日增重由(0.018±0.001)g下降为(0.013±0.001)g,降幅明显;净增重却随着养殖密度增大而上升,各养殖密度组之间差异性显著(P<0.05),这可能是由于高密度组种群个体基数较大。各密度组褐鳟稚鱼

  7. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  8. Size at sexual maturity of female crabs Sesarma rectum Randall (Crustacea, Brachyura and ontogenetic variations in the abdomen relative growth Tamanho da maturidade sexual de fêmeas do caranguejo Sesarma rectum Randall (Crustacea, Brachyura e variações ontogenéticas no crescimento relativo do abdômen

    Directory of Open Access Journals (Sweden)

    Maria H. de A. Leme

    2005-06-01

    Full Text Available The aim of the present study was to ascertain the size at sexual maturity in females of the crab Sesarma rectum Randall, 1840 by comparing gonadal maturity to morphologic maturity (using abdomen-width data. The relative growth of the abdomen was analysed for all growth phases (for each 3-mm carapace width size class, and the slopes of the separate allometric relationships were compared through analysis of covariance (ANCOVA from log e-transformed data to detect changes in the level of allometry during ontogeny. The physiological size at maturity (gonadal criteria was determined through a logistic curve, indicating the size at which 50% of females presented mature gonads (M50 = 17.4 mm CW. The highest allometric levels occurred in growth phases 2 and 3 (body sizes ranging from 15 to 21 mm CW, indicating faster growth of the abdomen during those phases. Phases 1 (O objetivo do presente estudo foi determinar o tamanho da maturidade sexual em fêmeas do caranguejo Sesarma rectum através de comparações da maturidade gonadal com a maturidade morfológica (usando dados da largura do abdômen. O crescimento relativo do abdômen foi analisado para todas as fases de crescimento (para cada classe de tamanho de 3 mm de largura de carapaça e os coeficientes de regressão foram comparados para cada relação alométrica através de analises de covariância (ANCOVA após transformação logarítmica dos dados, afim de detectar mudanças nos níveis da alometria ao longo da ontogenia. O tamanho da maturidade sexual fisiológica (critério gonadal foi determinado através de uma curva logística, indicando o tamanho no qual 50% das fêmeas apresentaram gônadas maduras (M50 = 17.4 mm LC. Os maiores níveis alométricos ocorreram nas fases de crescimento 2 e 3 (tamanho de corpo variando de 15 a 21 mm LC, indicando acentuado crescimento do abdômen durante estas fases. Crescimento isométrico ocorreu nas fases 1 (< 15 mm LC e fases 4 e 5 (classes de tamanho

  9. Comparative analysis of the relative growth of Uca rapax (Smith (Crustacea, Ocypodidae from two mangroves in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Daniela da Silva Castiglioni

    2004-03-01

    Full Text Available A study on the relative growth of two populations of Uca rapax (Smith, 1870 was performed primarily to determine the size at onset sexual maturity. The species was sampled monthly in Itamambuca (23º24'43"S and 45º00'73"W and Ubatumirim (23º20'17.8"S and 44º53'2.2"W mangroves. Carapace width (CW and length (CL, abdomen width (AW, major cheliped propodus length (PL and height (PH for each sex, and gonopod length (GL for males were measured with a calliper (0.01 mm. Allometric analyses were used to estimate size at maturity. The relationships that most precisely indicated the size at onset of sexual maturity were AW vs. CW, for females and PL vs. CW, for males. Males and females are mature, respectively at 15.2 and 12.1 mm CW in samples from Itamambuca and 13.5 and 11.2 mm CW in samples from Ubatumirim mangrove. Positive allometric growth of females abdominal width is likely related to the incubation process, while positively allometry growth of male's cheliped almost certainly relates to reproductive behaviour.O estudo do crescimento relativo foi utilizado para determinar quais dimensões evidenciam melhor a maturidade sexual morfológica de Uca rapax (Smith, 1870. Os caranguejos foram coletados mensalmente nos manguezais de Itamambuca (23º24'43"S e 45º00'73"W e Ubatumirim (23º20'17,8"S e 44º53'2,2"W, em período de maré baixa. Os caranguejos de ambos os sexos foram mensurados com um paquímetro (0,01 mm quanto à largura da carapaça (LC, comprimento da carapaça (CC e largura do abdome (LA. Nos machos mensurou-se ainda o comprimento e altura do própodo do quelípodo maior (CPQ e APQ e comprimento do gonopódio (CG e, no caso das fêmeas, comprimento e altura do própodo do quelípodo direito (CPQ e APQ. As análises alométricas foram utilizadas para estimar o tamanho da maturidade sexual morfológica. As relações que melhor evidenciaram o tamanho da maturidade foram LA vs. LC para fêmeas e CPQ vs. LC para machos. Machos e f

  10. Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional Procrustes analysis.

    Science.gov (United States)

    Penin, Xavier; Berge, Christine; Baylac, Michel

    2002-05-01

    Heterochronic studies compare ontogenetic trajectories of an organ in different species: here, the skulls of common chimpanzees and modern humans. A growth trajectory requires three parameters: size, shape, and ontogenetic age. One of the great advantages of the Procrustes method is the precise definition of size and shape for whole organs such as the skull. The estimated ontogenetic age (dental stages) is added to the plot to give a graphical representation to compare growth trajectories. We used the skulls of 41 Homo sapiens and 50 Pan troglodytes at various stages of growth. The Procrustes superimposition of all specimens was completed by statistical procedures (principal component analysis, multivariate regression, and discriminant function) to calculate separately size-related shape changes (allometry common to chimpanzees and humans), and interspecific shape differences (discriminant function). The results confirm the neotenic theory of the human skull (sensu Gould [1977] Ontogeny and Phylogeny, Cambridge: Harvard University Press; Alberch et al. [1979] Paleobiology 5:296-317), but modify it slightly. Human growth is clearly retarded in terms of both the magnitude of changes (size-shape covariation) and shape alone (size-shape dissociation) with respect to the chimpanzees. At the end of growth, the adult skull in humans reaches an allometric shape (size-related shape) which is equivalent to that of juvenile chimpanzees with no permanent teeth, and a size which is equivalent to that of adult chimpanzees. Our results show that human neoteny involves not only shape retardation (paedomorphosis), but also changes in relative growth velocity. Before the eruption of the first molar, human growth is accelerated, and then strongly decelerated, relative to the growth of the chimpanzee as a reference. This entails a complex process, which explains why these species reach the same overall (i.e., brain + face) size in adult stage. The neotenic traits seem to concern

  11. Literacy in Action: A Carbon-Neutral Field Program at Cornell University

    Science.gov (United States)

    Moore, A.; Derry, L.

    2010-12-01

    added value by gathering data for and modeling the resulting carbon sequestration. The data include species composition and allometry, outplanting numbers, survivorship, and annual growth increment. Modeling elements include allometric equations, growth trajectories, mortality, and an economic discount rate. Although the project is young, initial estimates indicate that the CO2 offset from outplanting several hundred trees per year significantly exceeds (>3X) the CO2 footprint of the program, including all air travel. The project allows students to gain first hand experience with quantifying multiple aspects of CO2 generation and offsets, and with the rate and scale of transfer and sequestration processes - with which are important and which are not - resulting in valuable and sometimes surprising insights. We view this project as a win-win scenario for all participants.

  12. A Review on the Accuracy Analysis of Spatial Scaling Data%空间尺度转换数据精度评价的准则和方法

    Institute of Scientific and Technical Information of China (English)

    徐芝英; 胡云锋; 刘越; 艳燕

    2012-01-01

    空间尺度问题是地理学、生态学和水文学等多个学科的基础科学问题之一。空间数据尺度转换是将数据从一个空间尺度转换到另一个空间尺度的过程,它是尺度科学研究的重要内容之一。对尺度转换后的成果数据深入分析,提炼尺度转换成果数据精度评价的原则、指标以及模型方法,这对正确选择和应用尺度转换成果数据具有重要意义。在详细评述尺度和尺度转换研究概念、内容和主要进展的基础上,本文主要从数据处理、地图学角度出发,提出了空间数据尺度转换精度评价的3项基本准则,即保持构成信息守恒、保持面积信息守恒、保持区域空间格局和形态信息守恒。继而据此将当前常见的指标进行了梳理和归并;根据上述准则和指标,结合GIS方法、常规统计方法、地统计方法等,给出了上述评价指标的计算模型及其应用方法和典型案例。最后指出,在实际应用中需结合研究目标,针对性选择尺度转换效应函数,通过开展模型模拟和对比分析,最终确定合适的尺度转换方法。%Scale is like a lens through which geographers observe and study the world. Scale dependence is one of the key studies and a challenge in geography, ecology, hydrology and meteorology in recent decades. One of the core scale issues is spatial scaling. Different scaling methods produce different resulting data with different degree of information loss. Thus, quantitative and qualitative assessment of scaling accuracy for spatial data is critical for correctly understanding and using scales. In the scaling research the basic theoretical frameworks include level theory, fractal theory, regional variable theory and first law of geography. In eco-geographical fields, scaling methods mainly are: spatial allometry, the dynamic model-based scaling method, wavelet analysis, auto- correlation analysis, fractal methods, semi-variogram method, and so

  13. Consistent allometric scaling of stomatal sizes and densities across taxonomic ranks and geologic time

    Science.gov (United States)

    de Boer, H. J.; Price, C. A.; Wagner-Cremer, F.; Dekker, S. C.; Veneklaas, E. J.

    2013-12-01

    Stomatal pores on plants leaves are an important link in the chain of processes that determine biosphere fluxes of water and carbon. Stomatal density (i.e. the number of stomata per area) and the size of the stomatal pore at maximum aperture are particularly relevant traits in this context because they determine the theoretical maximum diffusive stomatal conductance (gsmax) and thereby set an upper limit for leaf gas exchange. Observations on (sub)fossil leaves revealed that changes in stomatal densities are anti-correlated with changes in stomatal sizes at developmental and evolutionary timescales. Moreover, this anti-correlation appears consistently within single species, across multiple species in the extant plant community and at evolutionary time scales. The consistency of the relation between stomatal densities and sizes suggests that common mechanisms constrain the adaptation of these traits across the plant community. In an attempt to identify such potential generic constraints, we investigated the allometry between stomatal densities and sizes in the extant plant community and across geological time. As the size of the stomatal pore at maximum aperture is typically derived from the length of the stomatal pore, we considered the allometric scaling of pore length (lp) with stomatal density (Ds) as the power law: lp = k . Dsa in which k is a normalization constant and the exponent a is the slope of the scaling relation. Our null-hypothesis predicts that stomatal density and pore length scale along a constant slope of -1/2 based on a scale-invariant relation between pore length and the distance between neighboring pores. Our alternative hypothesis predicts a constant slope of -1 based on the idea that stomatal density and pore length scale along an invariant gsmax. To explore these scaling hypotheses in the extant plant community we compiled a dataset of combined observations of stomatal density and pore length on 111 species from published literature and new

  14. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to

  15. Estimation of Above-Ground Tree Biomass Based on Probability Distribution of Allometric Parameters%基于异速参数概率分布的立木地上生物量估算

    Institute of Scientific and Technical Information of China (English)

    黄兴召; 陈东升; 孙晓梅; 张守攻

    2014-01-01

    Allometric biomass equations are widely used to predict above-ground biomass in forest ecosystems. It found the distribution of the parameters a and b of the allometry between above-ground biomass ( M ) and diameter at breast height( D) ,lnM = a + blnD,well approximated by a bivariate normal from analysis a data of 304 functions of 80 papers. ANOVA was tested to parameters in seven genera. In contrast to the parameter a,there was significant difference in parameter b. There were negative correlation between the parameter a and b,the parameter b and latitude. From this negative correlation,simultaneous-equation was used to build general model for parameters which were changed by latitude . Three methods which include established general model,minimum-least-square regression and Bayesian approach were used to fitting the above-ground biomass of Larix kaempferi in sub-tropical alpine area. The result showed that general model was the lowest precise quantifications ( R2 =0. 892 ) ,but it could estimate the biomass where forest situated in latitude without samples. With sample size was more than 50,both Bayesian method and minimum-least-square regression was no significant difference in the mean absolute error. And it was less than 50,Bayesian method was better than minimum-least-square regression. Therefore,it was suggested that Bayesian method was used to estimate above-ground biomass when the sample size was less than 50 .%对收集的80篇文献中304个地上部分生物量( M)和胸径( D)的异速生物量模型 lnM =a+blnD数据集研究发现:模型参数a和b符合二元正态分布;参数a和b之间、参数b和纬度间呈负相关,并依此相关关系应用联立方程组建立参数a和b随纬度变化的通用模型。以实测的北亚热带高山区日本落叶松地上部分生物量数据对新建的通用模型、最小二乘法和贝叶斯方法拟合生物量的适用性进行研究,结果表明:虽然通用模型的拟合精度最低( R

  16. 异速生长法计算秋茄红树林生物量%An assessment method of Kandelia obovata population biomass

    Institute of Scientific and Technical Information of China (English)

    金川; 王金旺; 郑坚; 陈秋夏; 李俊清; 卢翔

    2012-01-01

    conducted to assess the population biomass of K. obovata in Aojiang Estuary. Mathematical methods that use easily measured variables to predict difficult-to-measure variables are important to mangrove managers. As a result, standard plant methods and allometric equations have been developed for several decades to estimate mangrove biomass. Single-stemed mangrove production was usually estimated by allometry between biomass and stem diameter at breast height. Because mangroves are usually dwarf forests in higher latitude sites, and moreover, the crown bases and multi-stems of dominant individuals may begin within a few decimeters of ground level, estimates of community production that depend on allometry based on single-stemed mangrove may not be accurate. Here, we develop allometric relations to predict total biomass and individual components of biomass (e. g. , leaves, stemts, roots and butts) of K. obovata, a multi-stemmed mangrove, in the Aojiang Estuary, Zhejiang province.This procedure treated each stem as a discrete tree that shared a proportion of the butt and other elements common to all stems. linear log-log relationships were obtained between biomass and stem diameter at one-tenth of the stem length nearly the ground. Population biomass of artificial K. obovata forest in Aojiang Estuary was calculated according to the function model. We compared the difference on population biomass of K. obovata in different regions of China. The results showed that K. obovata biomass ( W) correlated to the stem diameter (D) at a significance level (P < 0.001). The function model between plant biomass (leaf, WL; stem, WS; Root and butt, WB; and total, WT) and stem diameter (D) was as follows-WL=0. 187D1.855 =0.612, P< 0.0001); WS=0.267D1.906(R2 =0.821, P<0.0001); WB=4.6D1.136(R2=0.644, P < 0.0001) ; WT = 3. 614D1.446 (R2 = 0. 801, P < 0. 0001). The regression relationship between K. obovata aboveground biomass and stand age and latitude was significant in different regions of

  17. Associação de cetamina S(+ e midazolam pelo método convencional de cálculo e pela extrapolação alométrica em bugios-ruivo (Alouatta guariba clamitans: resposta clínica e cardiorrespiratória S(+ ketamine and midazolam association by the conventional method of calculation and allometric extrapolation in red howler monkeys (Alouatta guariba clamitans: clinical and cardiopulmonary response

    Directory of Open Access Journals (Sweden)

    Joana Aurora Braun Chagas

    2010-02-01

    calculation (weight dose and allometric extrapolation. Twelve healthy red howler monkeys (Alouatta guariba clamitans, average weight 4.84±0.97kg, male and female, were used for this study. After a 12-hour period of food restriction and 6 hours of water restriction, the animals were physically restraint and the following parameters were measured: heart rate (HR, respiratory rate (RR, capillary refill time (CRT, rectal temperature (RT, non invasive systolic arterial pressure (NISAP and arterial blood gases analysis. The animals were distributed into two groups: CG (Conventional Group, n=6, in which the animals received S(+ ketamine (5mg kg-1 and midazolam (0.5mg kg-1, by intramuscular (IM injection; and AG (Allometry Group, n=6, in which the animals also received S(+ ketamine and midazolan IM, but the doses were calculated by allometric extrapolation. Parameters were evaluated at the following moments: M5, M10, M20 and M30 (5, 10, 20 and 30 minutes after IM injection, respectively. Muscle relaxation, pedal and caudal reflexes, interdigital pinch, recumbency time, sedation's quality and duration, and recovery time and its quality were also evaluated. The AG had a faster time for recumbency, higher period and quality of sedation, and a significantly reduction on HR and SAP from M5 to M30 when compared to CG. It was concluded that allometric extrapolation presented a better muscle relaxation and sedation without significant cardiorespiratory depression.

  18. Amphibian fertilization and development in microgravity

    Science.gov (United States)

    Souza, Kenneth A.

    1993-01-01

    correlation between the SEP and the dorsal lip of the blastopore will be determined. Under normal terrestrial conditions it was shown that the SEP typically is located on the side of the egg opposite the future dorsal side of the embryo. The neurulae will be examined for the normality and completeness of the neural plate and archenteron expansion. The tadpole stages will be used to study the allometry and morphology of the various organ systems.

  19. Allometric relationships of the arboreal community in different areas of a mixed ombrophylous forest in south Brazil Relações alométricas da comunidade arbórea de diferentes áreas de uma floresta ombrófila mista do sul do Brasil

    Directory of Open Access Journals (Sweden)

    Yves Rafael Bovolenta

    2010-12-01

    Full Text Available The study of allometry is important for understanding ecological and evolutionary aspects of plant species, and also in understanding the structure and dynamics of forests. This study aimed to assess the tree community allometric relationships of two areas in different successional stage (more advanced – area 1, and less advanced – area 2 of a Mixed Ombrophylous Forest located in the Klabin’s Ecological Park, Telêmaco Borba/Paraná state (24º17´S 50º35´W. The edge arboreal community was also included in the analysis. A 4 m width transect was established in each area, where 150 arboreal individuals with height equal to or greater than 1,5 m were sampled. Individuals had the diameter at breast height (DBH, total height and branching height recorded. The allometric relationships studied were total height x DBH, total height x branching height and branching height x DBH. Analysis of covariance was used to test allometric differences, and a posteriori Scheffé test. Plants of areas 1 and 2 invested more in diameter growth in relation to height, and also invested more in diameter growth in relation to branching height. Colonization of the edge and area 2 by pioneer species and the presence of understory species in area 1 may be the main causes of differences in the community tree architecture of the studied areas. O estudo da alometria é importante para a compreensão de aspectos ecológicos e evolutivos em espécies de plantas, além de auxiliar no entendimento da estrutura e dinâmica das florestas. O objetivo deste estudo foi analisar as relações alométricas da comunidade arbórea de duas áreas em diferentes estádios sucessionais (mais avançado - área 1, e menos avançado - área 2 da Floresta Ombrófila Mista do Parque Ecológico da Klabin, Telêmaco Borba/PR/Brasil (24º17´S 50º35´W. A comunidade arbórea da borda do fragmento em estádio sucessional mais avançado também foi incluída nas análises. Foi estabelecida uma

  20. Alometria no crescimento de Uca mordax (Smith (Crustacea, Decapoda, Ocypodidae na Baía de Guaratuba, Paraná, Brasil Allometric growth in the fiddler crab Uca mordax (Smith (Crustacea, Decapoda, Ocypodidae from Guaratuba Bay, Parana, Brazil

    Directory of Open Access Journals (Sweden)

    Setuko Masunari

    2005-12-01

    undifferentiated crabs were measured. Carapace width (LC was the reference dimension for both sexes, which ranged from 1.94 to 20.0 mm for males, from 2.50 to 18.85 mm for females, and from 1.94 to 3.15 mm for sexually undifferentiated crabs. Relationship between LC and CMQ showed a transition point at 11.70 mm LC in males, and between LC and LAB, at 8.77 mm LC in females. Males (mean LC = 14.24 mm showed a slightly greater size than females (mean LC = 13,97 mm. These dimensions had positive allometrical growth during all life for both sexes: before and after the puberal molting. Regressions between LC and CMQ in males read as: logCMQ = -0,542265 + 1,51.logLC for male juveniles and logCMQ = -1,446281 + 2,37.logLC for male adults. In females, the regressions between LC and LAB were: logLAB = -0,607282 + 1,22.logLC for juveniles and logLAB = -0,912074 + 1,60.logLC for adults. These body dimensions are related to reproductive activities of this species. The level of allometry in CMQ of adult males was the highest among Uca species which relative growth of this dimension is known. The handedness had a proportion of 1:1 between right-handed and left-handed males.

  1. 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响%Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    严正兵; 金南瑛; 韩廷申; 方精云; 韩文轩

    2013-01-01

    Aims Arabidopsis thaliana,a widely used model organism in plant biology,is an ideal plant to test the growth rate hypothesis (GRH) and homeostasis theory about plant nutrition.Our objectives are to test i) whether GRH applies to this plant species,ii) how leaf nitrogen (N) and phosphorus (P) of A.thaliana follow the homeostasis theory and iii) whether the allometric relationship between leaf N and P content is consistent with the 3/4 power function (N-P3/4) for individual plant species.Methods Based on a pot experiment in a phytotron with N and P fertilizer additions,we measured the leaf carbon (C),N and P content and leafbiomass ofA.thaliana.Specific growth rate (mg·mg-1·d-1) was the leafbiomass increment divided by the initial biomass at planting,and by the days after planting.The homeostasis of plant elements is indicated by the exponent (reciprocal of the regulation coefficient) of the power function of leaf nutrient against soil nutrient concentrations.Important findings P is the limiting nutrient of the culture substrate for A.thaliana,while N fertilization could cause toxic effects in cases of excessive N uptake.The growth ofA.thaliana is consistent with GRH—the specific growth rate decreases with increasing leaf N∶P or C∶P.Leaf P content shows a significant regulation coefficient (3.51) (leaf-P-substrate-p1/3.51),but leaf N content has no significant relationship with substrate N.There is a significant allometric relationship between leaf N and P content,which is inconsistent with the 3/4 power function (N-p3/4).The power exponent (0.209) between leaf N content and leaf P content in the P fertilization treatments is significantly lower than the exponent (0.466) in the N fertilization treatments,suggesting that fertilization may affect the allometry between nutrients.Our findings can offer reference for future field studies on plant ecological stoichiometry at scales from species to community to ecosystem.%研究植物碳(C)氮(N)磷(P)化学计量

  2. Ontogenetic variation in light interception, self-shading and biomass distribution of seedlings of the conifer Araucaria araucana (Molina K. Koch Variación ontogenética en la intercepción lumínica, autosombramiento y distribución de biomasa en plántulas de la conífera Araucaria araucana (Molina K. Koch

    Directory of Open Access Journals (Sweden)

    CHRISTOPHER H LUSK

    2006-09-01

    Full Text Available One of the factors thought to contribute to ontogenetic declines in plant growth rates is diminishing light interception efficiency, as a result of the difficulties of avoiding self-shading among a growing number of leaves, and by stems. The effects of plant size on self-shading and light interception have rarely been quantified, however. We used a three-dimensional digitising system to construct virtual models of the architecture of Araucaria araucana seedlings 71 to 358 mm tall, and modelled their light interception in the forest understorey using the program YPLANT. We also analyzed seedling allometry, to determine the combined effects of biomass distribution and self-shading on total light interception. Average light interception efficiencies calculated for A. araucana (29 % were the lowest reported for rainforest tree seedlings, reflecting the limitations imposed by short leaves, lack of petioles and an inability to develop planar foliage geometry on branches. Total light interception was related to seedling leaf area by an exponent of 0.735, reflecting increasing self-shading as seedlings grew bigger. However, because leaf area was related to seedling mass by an exponent of 1.24, light interception scaled nearly isometrically (0.91 power with seedling mass. This resulted from taller plants having proportionally thinner stems, and a smaller fraction of their biomass in roots. Thus, an ontogenetic increase in self-shading in A. araucana is largely offset by allocation changes which increase leaf area ratio as seedlings grow bigger. These mechanisms conserving the relationship of light interception with plant mass seem likely to be restricted to species with long-lived leaves, growing in humid situations protected from wind stress. In open habitats, where wind and drought stress likely make such allocation patterns less feasible, the role of self-shading in ontogenetic declines in relative growth rate may be more evidentLa caída en la

  3. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    designated as a bioenergy crop by the U.S. Department of Energy, as a result of research following the oil embargo. Populus species also serve as model trees for plant molecular biology research. In this article, we will review recent progress in the genetic improvement of Populus, considering both classical breeding and genetic engineering for bioenergy, as well as in using transgenics to elucidate gene functionality. A perspective for future improvement of Populus via functional genomics will also be presented. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during