WorldWideScience

Sample records for alley cropping systems

  1. Assessment of Carbon Sequestration in German Alley Cropping Systems

    Science.gov (United States)

    Tsonkova, P. B.; Quinkenstein, A.; Böhm, C.; Freese, D.

    2012-04-01

    Alley cropping systems (ACS) are agroforestry practices in which perennial trees or shrubs are grown in wide rows and arable crops are cultivated in the alleys between the tree rows. Recently, ACS which integrate stripes of short rotation coppices into conventional agricultural sites have gained interest in Germany. These systems can be used for simultaneous production of crops and woody biomass which enables farmers to diversify the provision of market goods. Adding trees into the agricultural landscape creates additional benefits for the farmer and society also known as ecosystem services. An ecosystem service provided by land use systems is carbon sequestration. The literature indicates that ACS are able to store more carbon compared to agriculture and their implementation may lead to greater benefits for the environment and society. Moreover, carbon sequestration in ACS could be included in carbon trading schemes and farmers rewarded additionally for the provision of this ecosystem service. However, methods are required which are easy to use and provide reliable information regarding change in carbon sequestration with change of the land use practice. In this context, our aim was to develop a methodology to assess carbon sequestration benefit provided by ACS in Germany. Therefore, the change of carbon in both soil and biomass had to be considered. To predict the change in soil carbon our methodology combined the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the soil organic carbon balance recommended by the Association of German Agricultural Investigation and Research Centers (VDLUFA). To reflect the change in biomass carbon average annual yields were adopted. The results showed that ACS established on agricultural sites can increase the carbon stored because in the new soil-plant system carbon content is higher compared to agriculture. ACS have been recommended as suitable land use systems for marginal sites, such as post-mining areas. In

  2. Assessment of competition for water between peanut (Arachis hypogaea) and Choerospondias axillaris in an alley cropping system in subtropical China

    International Nuclear Information System (INIS)

    Tree and crop components of an alley cropping system may compete for nutrients and water in the surface soil while the deeper-rooting tree may have better access to resources in the subsoil. The objectives of the present study in an alley cropping system were to monitor runoff and soil loss, spatial variation of soil water, and tree sap flow to determine competitiveness for water between the tree and peanut. Plant and root growth were also recorded to evaluate competition. The tree competed for water in the surface soil at some critical period as indicated by the spatial variation of monitored soil water content. The tree used deep soil water and reduced deep drainage as indicated by modelling of soil water fluxes and direction of water movement. Trees in the alley cropping system used less soil water than peanut, and more water than trees alone, as indicated by water balance modelling. The magnitude of the reduction of deep drainage increased with tree age. The alley cropping system increased system water use efficiency by using deep soil water as indicated by water balance modelling. The alley cropping system promoted Choerospondias axillaris growth by 50 to 100% and reduced peanut biomass and yield by 20 to 50%. Field management should aim to prevent water competition between trees and crops in the surface soil. (author)

  3. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso

    NARCIS (Netherlands)

    Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B.

    2005-01-01

    The effects of vegetation barriers and tillage on runoff and soil loss were evaluated in an alley crop system at a research station in central Burkina Faso. On a 2% slope of a sandy loam various local species (grasses, woody species and a succulent) were planted as conservation barriers in order to

  4. Fertilizer nitrogen recovery from different soil depths in an alley cropping system consisting of peanut (Arachis hypogaea) and Choerospondias axillaris in subtropical China

    International Nuclear Information System (INIS)

    Tree and crop components of an alley cropping system may compete for N in the surface soil while the tree may use leached N in the deep soil not accessed by the crop. The objective of the present study was to evaluate the recovery of nitrogen by placing 15N fertilizer at different soil depths to assess the competitiveness for N between tree and crop in an alley cropping system, consisting of peanut and Choerospondias axillaris. The tree competed with peanut for N in the surface soil as indicated by the lower 15N recovery by peanut and the higher 15N recovery in the tree in the alley cropping system, and by a higher N content in the tree mono treatment. The tree can use leached N in the deep soil as indicated by the high 15N recovery when 15N was placed at 60 cm depth. Usage of N in the deep soil was consistent with the deeper tree root distribution in the alley cropping system as compared to that in the tree alone system. The magnitudes of these changes were larger for the system with larger trees and increased with time. The alley cropping system increased system N use efficiency compared with the peanut mono cropping system. The N use efficiency increased as the tree grew as indicated by the increased 15N recovery. These results suggest that introduction of trees can reduce N loss in cropping systems, but management should aim to prevent N competition with the crop in the surface soil. (author)

  5. Phenotypic nutrient up-take differences in an alley cropping system in semi-arid Machakos, Kenya

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Alley cropping of Cassia siamea and maize was studied insemi-arid Kenya for soil fertility improvement. Katumani composite maize was planted except in the short rains of 1988 (SR88) when a hybrid variety was sown. Therefore the grain yield per row increased differently in the alley cropped maize (CM). Sole maize (SM) and CM yields were higher in SR88 than in the long rains of 1988 (LR88) by 62% and 38%, while yields from the same treatments in LR89 were only 21% and 45% of those in SR88. These differences in relative maize yields are attributed to differences between the two maize varieties in competition under nutrient stress conditions.

  6. The influence of tagasaste (chamaecytisus proliferus link) trees on the water balance of an alley cropping system on deep sand in south-western Australia)

    International Nuclear Information System (INIS)

    Components of the water balance of an alley cropping system were measured to assess the extent to which tree rows 30 m apart with access to a fresh, perched watertable at 5 m depth were able to capture deep drainage from an inter-cropped cereal-legume rotation. Neutron probe data showed that the 4-year-old trees, cut back to 0.6-m high at the beginning of the experiment, depleted soil water to 2, 4, and 8 m laterally from the tree rows in their first, second, and third years of coppice regrowth, respectively. Combining data from soil water depletion in summer and comparisons of deuterium/hydrogen ratios of groundwater, xylem sap of trees, and herbaceous plants, it was shown that tagasaste trees drew on soil water for 80% of their transpiration in the first winter and 40% in the second, while switching to near total dependence on groundwater each summer and early autumn. Tree water use on a whole plot basis was 170 mm in 1997 (68% from groundwater) v. 167 mm in 1998 (73% from groundwater). Recharge to the perched watertable was estimated to be 193 mm under sole crop in 1998 (52% of rainfall), reducing to 32 mm when uptake of groundwater by trees was included. The degree of complementarity between tagasaste trees and crops in alley cropping used for water management is quantified for 1998 by calculating the ratio of the distance over which trees reduced drainage to zero to the distance over which they reduced crop yield to zero. It is concluded that segregated monocultures of trees and crops would be a more appropriate strategy than a closely integrated system such as alley cropping in this case. Copyright (2001) CSIRO Australia

  7. Nutrient cycling, soil properties and physiological and yield responses in a Gliricidia Maize alley cropping system in the mid-country intermediate zone of Sri Lanka

    International Nuclear Information System (INIS)

    The objective of the research was to study the potential of alley-cropping agroforestry systems to improve degraded lands in the Mid-Country Intermediate Zone of Sri Lanka. A field experiment was carried out at the University of Peradeniya experimental station using Gliricidia as the hedgerow tree species. Gliricidia hedgerows having within row spacing of 0.75 m (8 m long rows) and between row spacing of 7 m were established. 15N-enriched ammonium sulphate (60 kg N ha1, 10 atom % 15N excess) was applied to a subplot (2.25 m wide x 3.5 m long) in the alley, which enclosed 3 Gliricidia trees. Labelled plant material was added to microplots as crop residue only (ML), Gliricidia loppings only (GL), crop residue and Gliricidia loppings (GLML), and no residues (NL) in the subsequent seasons. Soil properties, crop yields and nutrient dynamics were recorded regularly for every growing season.Addition of Gliricidia loppings and crop residues over 5 a improved soil chemical properties including soil organic matter, major (especially N) and minor nutrients and physical properties. There was no significant impact of hedgerows on soil fertility compared with the sole crop or at different distances from the hedgerow. Physiological parameters measured in this study illustrated that hedgerows may influence one or two adjacent crop rows negatively, possibly due to competition for light or water resources. Photosynthesis rates of both maize and cowpea crops were reduced near the hedgerow compared to the sole crops, due to partial shading by the hedgerow. However, leaf photosynthesis and yields were significantly greater in rows in the middle of the alleys compared with the sole-crop (control). This would suggest the existence of complementary interactions from Gliricidia hedgerows through increasing the resource availability and/or making the microenvironment more favorable for the crop species. Addition of Gliricidia and crop residues (MLGL) enhanced growth and yield of crops more

  8. Chemical Characteristics of Six Woody Species for Alley Cropping

    Directory of Open Access Journals (Sweden)

    Mosango, M.

    1999-01-01

    Full Text Available Leaves of six woody species (Leguminosae for alley cropping have been chemically analysed in order to evaluate their potentiality in the restoration of soil fertility. These species are : Acacia mangium, Cajanus cajan, Flemingia grahamiana, F. macrophylla, Leucaena leucocephala and Sesbania sesban. Nitrogen, carbon, cellulose, hemicellulose, lignin, active fraction and ash contents were determined as well as C/N and L/N ratios. AH these species appear to be rich in N and C. Fiber contents (cellulose, hemicellulose and lignin are globally low but variable from one species to another. C/N and L/N ratios are globally low. Among these species, Leucaena leucocephala and Senna spectabilis show the lowest C/N and LIN ratios. Such low values of C/N and L/N are normally found in species with rapid decomposition of organic matter.

  9. Growth and productivity of corn as affected by mulching and tillage in Alley cropping systems Crescimento e produtividade de milho afetados pela cobertura e preparo do solo sob um cultivo em Aléias

    Directory of Open Access Journals (Sweden)

    Emanoel Gomes de Moura

    2008-04-01

    Full Text Available Alley cropping has been considered a means of intensifying land use sustainably as an alternative to slash and burn agriculture in tropical regions. An experimental trial was used to evaluating the growth and productivity of corn under alley cropping to test the viability of this system as a sustainable land use practice in an amazonian Ultisol. The experimental layout was a completely randomized block design with four replications of six treatments: mulch with 13.4 and 8.9 t ha-1 of pigeon pea, and a control treatment without mulch of pigeon pea, with or without tillage. Sustainability of soil and crop were determined from changes on physical properties, such as total porosity, air capacity, available water capacity of the soil, net assimilation rate, crop growth rate, and leaf area index, as well as several productivity parameters, including average weight of ears, weight of 100 grains, and total dry matter. Both mulching and tillage increased the air capacity. Mulching of tilled areas protects the soil against the rainfall impact and prevented its recompaction. The reduced air capacity of the soil had a negative impact on the net assimilation rate, resulting in lower productivity in the no-mulch and no-till plots, mainly due to the reduction of grain weight.O sistema de cultivo em aléias é considerado uma forma de uso intensivo do solo, como uma alternativa ao sistema de corte e queima nas regiões tropicais. O cultivo em aléias foi testado para verificar sua viabilidade como prática de uso sustentável de um Argissolo da Amazônia. Foram avaliados o crescimento e a produtividade do milho sob esse sistema de cultivo. O arranjo experimental utilizado foi em blocos ao acaso, com quatro repetições e seis tratamentos: cobertura do solo com 13,4 e 8,9 t ha-1 de feijão guandu, um tratamento testemunha sem cobertura do solo com palha ("mulch", com ou sem preparo. Foram determinadas porosidade total, capacidade de aeração e capacidade de

  10. Using the N-15 method to determine N-soil, N-green manure, and N-urea availability after six seasons in an alley cropping system

    International Nuclear Information System (INIS)

    Nitrogen (N) is the most important nutrient for crop growth and production. This study was conducted to determine whether in each of six seasons and after these seasons the N-soil, N-green manure, N-green manure + urea, and N-urea is still available for crops. Upland rice and corn were planted successively for six seasons. In each season upland rice and corn were planted and applied with N-fertilizers at rate of: control (0N), N1 (100% green manure), N2 (50% green manure + 50% urea), N3 (100% urea). N-15 labelled urea was added at each season to determine the A-value of the crops. In each seasons it was shown that crops used N-soil as well as N-fertilizer. With the increase of the availability of N-fertilizers the use of N-soil decrease and so could preserve N-soil. With preservation of N-soil it could be assumed that soil quality has increased. The N-15 method could be used to determine the availability at each fertilizer rate’s in each season and at the end of the sixth season. (author)

  11. Frações oxidáveis do carbono orgânico em argissolo vermelho-amarelo sob sistema de aleias Oxidizable organic carbon fractions of an ultisol under an alley cropping system

    Directory of Open Access Journals (Sweden)

    Arcângelo Loss

    2009-08-01

    Full Text Available O aporte de matéria orgânica ao solo via leguminosas em sistemas de aleias pode ser uma alternativa para o uso sustentável do trópico úmido. O objetivo deste trabalho foi comparar o aporte de matéria orgânica facilmente oxidável proveniente da combinação de resíduos de diferentes leguminosas utilizadas em sistemas de condução de culturas em aleias sob Argissolo Vermelho-Amarelo. Foram avaliadas duas espécies de leguminosas de alta qualidade de resíduos - leucena (Leucaena leucocephala e guandu (Cajanus cajan, e duas espécies de baixa qualidade de resíduos - sombreiro (Clitoria fairchildiana e acácia (Acacia mangium, combinadas entre si, nos seguintes tratamentos: sombreiro + guandu; leucena + guandu; acácia + guandu; sombreiro + leucena; leucena + acácia e testemunha sem leguminosa. As amostras de solo foram coletadas nas profundidades de 0-5 e 5-10 cm, nas entrelinhas. Foi quantificado e fracionado o C orgânico total (COT, estratificado em quatro frações (F1, F2, F3 e F4 com graus decrescentes de oxidação. As áreas com sombreiro/leucena, acácia/leucena e acácia/guandu apresentaram os maiores teores de COT (0-5 cm, e a área testemunha, os menores (5-10 cm. A maior proporção do COT estava nas frações F1+F2; a área testemunha teve os menores teores de C nessas frações. O tratamento acácia/guandu apresentou maiores teores de C na fração F1 nas duas profundidades. O tratamento leucena/guandu apresentou as maiores proporções do COT nas frações F3 + F4. Os resultados indicam que, no cultivo em sistema de aleias, a combinação de leguminosas de alta e baixa qualidade de resíduos (acácia/guandu favorece o aumento de matéria orgânica facilmente decomponível, enquanto o uso de leguminosas de alta qualidade de resíduos favorece maiores proporções de C somente nas frações mais resistentes (F3 + F4.The input of organic matter to the soil by legumes in alley cropping systems may be an alternative for a

  12. Understanding yields in alley cropping maize (Zea mays L. ) and Cassia siamea Lam. under semi-arid conditions in Machakos,Eastern Kenya

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Six seasons of experiments in Machakos, Kenya, revealed that above about 150 mm of rainfall, maize yields per row in alley cropped “replacement” agroforestry (AF) plots, of Cassia siamea Lam. and maize (Zea mays, cv. Katumani Composite B), may be expected to exceed those in the control (sole maize) plots. Such yields were insufficient to compensate for the area “lost” to the hedgerows. Below about 150 mm the control plots may be expected to perform better. This result was due to competition for water. Greater association of the fine roots of Cassia and maize was observed in the middle of the alleys than near the hedgerows. Photosynthetic consequences of shading were insignificant relative to other factors. In the alleys, reductions of soil temperature due to shade in the western and eastern maize rows were higher than in the middle row. Soil moisture extraction was higher in the AF than in the control plots. In the AF plots, moisture extraction was greater under the central maize rows than under those nearest the Cassia. Yield patterns followed such soil temperature and soil moisture patterns. Maize transpiration and photosynthetic rates were significantly higher in the control than in the AF plots during a below-average rainy season but not during above-average rainy seasons. It is concluded that alley cropping under semi-arid conditions should be approached differently from the system worked on. It must at least provide strong physical protection of crops and/or soils and have a strong economic incentive to be of interest to the farmers.

  13. Alley cropping of legumes with grasses as forages : Effect of different grass species and row spacing of gliricidia on the growth and biomass production of forages

    Directory of Open Access Journals (Sweden)

    Siti Yuhaeni

    1998-12-01

    Full Text Available A study to evaluate the effect of different grass species and row spacing of gliricidia (Gliricidia sepium on the growth and biomass production of forages in an alley cropping system was conducted in two different agroclimatical zones i.e. Bogor, located at 500 m a .s .l . with an average annual rainfall of 3,112 nun/year and Sukabumi located at 900 m a .s .l . with an average annual rainfall of 1,402 mm/year . Both locations have low N, P, and K content and the soil is classified as acidic. The experimental design used was a split plot design with 3 replicates . The main plots were different grass species i.e. king grass (Pennisetum purpureum x P. typhoides and elephant grass (P. purpureum. The sub plots were the row spacing of gliricidia at 2, 3, 4, 6 m (1 hedgerows and 4 m (2 hedgerows. The results indicated that the growth and biomass production of grasses were significantly affected (P<0 .05 by the treatments in Bogor. The highest biomass productions was obtained from the 2 m row spacing which gave the highest dry matter production of grasses (1 .65 kg/hill and gliricidia (0 .086 kg/tree . In Sukabumi the growth and biomass production of grasses and gliricidia were also significantly affected by the treatments . The highest dry matter production was obtained with 2 m row spacing (dry matter of grasses and gliricidia were 1 .12 kg/hill and 0 .026 kg/tree, respectively . The result further indicated that biomass production of forages increased with the increase in gliricidia population. The alley cropping system wich is suitable for Bogor was the 2 m row spacing of gliricidia intercropped with either king or elephant grass and for Sukabumi 2 and 4 m (2 rows of gliricidia row spacing intercropped with king or elephant grass .

  14. Comportamento de dois genótipos de milho cultivados em sistema de aléias preestabelecido com diferentes leguminosas arbóreas Behaviour of two maize genotypes grown in alley cropping system pre-established with diferents leguminous trees

    Directory of Open Access Journals (Sweden)

    Andréia Araújo Lima Leite

    2008-12-01

    Full Text Available O cultivo em aléias tem sido recomendado como alternativa para a substituição da agricultura de corte e queima, no trópico úmido, devido à grande capacidade de produção de matéria orgânica e de reciclagem de nutrientes, mas algumas dúvidas quanto à sustentabilidade e à competição interespecífica são persistentes. O objetivo no trabalho foi avaliar a viabilidade da cultura do milho em um sistema de cultivo em aléias de leguminosas arbóreas. O delineamento experimental utilizado foi em blocos casualisados, com quatro repetições dos tratamentos: aléias de sombreiro (Clitoria fairchildiana, ingá (Inga edulis, guandu (Cajanus cajan e leucena (Leucaena leucocephala e uma testemunha sem aléias. Foram avaliadas a remobilização de carbono e nitrogênio, massa de grãos, massa de mil grãos e competição interespecífica entre as cultivares de milho e as leguminosas. A produção de grãos foi maior nas parcelas com C. fairchildiana e L. leucocephala. A produtividade do híbrido de milho foi superior à da variedade em todos os tratamentos. A produtividade e a massa de mil grãos de milho não são negativamente afetadas pela distância da linha da leguminosa arbórea. Esse estudo conclui que o sistema de aléias com leguminosas arbóreas é uma alternativa importante ao manejo sustentável dos agroecossistemas no tropico úmido. Além disso, nessa região a produtividade em grãos na cultura do milho é favorecida no sistema de aléias preeestabelecidas com as leguminosas arbóreas sombreiro, ingá e leucena e pela utilização de genótipos eficientes no aproveitamento do nitrogênio, cujo sincronismo entre a liberação e a absorção do N aplicado por meio das leguminosas deve ser aprimorado.Alley cropping has been recommended as alternative land use to slash-and-burn agriculture in humid tropics. However, interespecific competition between cash crop and hedgerow can reduce this potential. This study aimed to evaluate the

  15. Avaliação de um sistema de cultivo em aléias em um argissolo franco-arenoso da região amazônica Evaluation of an alley cropping system under humid tropical conditions of the amazon region

    Directory of Open Access Journals (Sweden)

    Emanoel Gomes de Moura

    2008-08-01

    Full Text Available No trópico úmido, a construção e manutenção da fertilidade dos solos são os maiores desafios dos que se dedicam à implantação de sistemas agrícolas sustentáveis. O objetivo deste estudo foi avaliar um sistema de cultivo em aléias com guandu, associado à adição anual de calcário e de K, em um Argissolo de textura franco-arenosa, a fim de verificar a possibilidade do uso desse sistema como alternativa ao corte e queima na agricultura do trópico úmido. Foram utilizados, como leguminosa, o guandu (Cajanus cajan e a cultura do milho. Os tratamentos foram os seguintes: T = testemunha, com solo desnudo; G2, G2,5 e G3, tratamentos com fileiras de guandu nos espaçamentos de 2, 2,5 e 3 m, respectivamente; G2K, G2,5K e G3K, tratamentos com guandu nos mesmos espaçamentos mais K; G2C, G2,5C e G3C, tratamentos com guandu mais calagem; G2KC, G2,5KC e G3KC, tratamentos com guandu mais K e calagem. A cobertura e o equilíbrio de nutrientes do solo foram os mais importantes fatores que influenciaram a produtividade do milho no sistema de cultivo em aléias com guandu; portanto, eles devem ser considerados como fundamentais para o manejo sustentável dos Argissolos de textura franco-argilosa do trópico úmido.In the humid tropics the buildup and maintenance of soil fertility are major challenges in terms of sustainability of agroecosystems. The objective of this study was to evaluate an alley cropping system with pigeon pea (Cajanus cajan on an Alfisol, with annual application of lime and potassium, with special concern regarding the viability of this system as an alternative to slash and burn practiced in tropical agriculture. Pigeon pea and maize (Zea mays were planted in the experiment with the following treatments: T = control, with bare soil; G2, G2.5 and G3 = treatments with pigeon pea, spacing between lines of 2, 2.5 and 3 m, respectively; G2K, G2.5K and G3K = pigeon pea, same spacing, plus potassium; G2C, G2.5C and G3C = pigeon pea

  16. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  17. Growth and yield of maize and cassava cultivars as affected by mycorrhizal inoculation and alley cropping regime

    Directory of Open Access Journals (Sweden)

    Salami Olusola Abiodun

    2006-01-01

    Full Text Available Effect of myeorrhizal inoculation and two pruning regimes in experimental alley cropping treatments on the leaf biomass and nutrient yield of sole and mixed Gliricidica septum (a Modulating plant ami Senna siamea (a non-nodulating plant were investigated both in the greenhouse and in the field. The impact of the mixtures of these legumes as hedgerows on maize and one cultivar of cassava was also studied on the Held. Gliricidia sepiuni prunnings were found to have high nutrient yields, notably 358.4 kg ha-1 of N and 14.7 kg ha-1 of P as well as fast decomposition and nutrient release. In both Giricidia and Senna. there was similar leaf dry matter values in sole and mixed inoculated or non-inoculated trees for either of the pruning regime and for most of the pruning harvests, although significant differences occurred between inoculated and non-inoculated mixed or sole trees. There was no difference between the total leaf dry matter of the two- and three-month pruning regimes in G. sepium. However, in contrast to G. sepium, the total leaf dry matter of the two-month pruning regime of iS'. sianica was lower than its three-month pruning regime, except for sole non-inoculated trees. Generally, inoculation and mixing of trees in the same hedgerows significantly increased the total N and P yield in G. sepium and S. siantea with greater values in the former than the latter. In G. sephium and except for mixed inoculated trees, while total N yield in the leaf was higher in three-monthly primed than two-monthly pruned trees, the converse was the case for P. For S. siamea the total N and P yield were higher in three-monthly than two-monthly pruned trees. Myeorrhizal inoculations consistently increased the yield of the cassava root tuber and maize grain over their non-inoculated counterparts.

  18. Land Tenure and the Potential for the Adoption of Alley Farming in West Africa

    OpenAIRE

    Lawry, S; Steinberger, D; Jabbar, Mohammad A.

    1994-01-01

    Alley farming was developed as a means of maintaining soil fertility in fields under permanent cultivation in Africa, as population pressure makes the traditional practice of slash-and-burn combined with fallowing unsustainable. It is an agroforestry system under which food crops are grown in alleys formed by hedgerows of leguminous trees and shrubs. Studies have shown that it works, but farmers are only taking it up very slowly. Recent work suggests that land tenure might be a factor in the ...

  19. 中国四川旱坡地植物篱农作系统能流特征%ENERGY FLOW CHARACTERISTICS OF ALLEY CROPPING ON HILLSIDES IN SICHUAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    陈一兵; 林超文; 黄晶晶; 涂仕华

    2007-01-01

    to control soil erosion and promote productivity. Our aims are to understand growth pattern and production mechanization of crops, determine effects of hedgerows on main crops in order to realize positive interactions, promote the level and structure of energy inputs, optimize and establish an environment-friendly farming system and realize sustainable agriculture on hillsides.Methods We recorded labor input, fertilizer, pesticides, farming activities and leaf fall on the soil surface in trial plots for two years. After harvesting, we separated plant parts to determine economic yield and biological yield, calculated energy of the different parts according to a conversion ratio of energy and studied energy structure and energy efficiency of alley cropping by statistical analysis.Important findings In comparison with the traditional agricultural system on hillsides, there were differences between hedgerows and crop in shape and spatial distribution of crown and roots, such that light, heat, water and soil were uitilized continuously in time and in space, resulting in enhanced efficiency of light utilization,efficiency of input labor energy utilization and total output energy per unit area on steeper hillsides. Moreover,input of inorganic energy of alley cropping was reduced significantly and use of chemical fertilizer and pesticide could be reduced, resulting in environmental protection. Quantity and structure change of output and input energy of alley cropping was affected mainly by the type of hedgerow subsystem. Total energy input (including organic energy) of hedgerow system with fruit trees was increased, which was useful for improving input energy structure and ecosystem and enhancing intensive agricultural development. A hedgerow system of shrubs and herbs could reduce input labor energy, decreasing input energy and input energy consumption greatly and resulting in increased efficiency of input labor energy utilization and biomass and energy output/input ratio

  20. Evaluation of hedgerow trees in alley cropping for phosphorus use efficiency and N2 fixation in low P soils in moist savanna in Nigeria

    International Nuclear Information System (INIS)

    Soils low in P and N are common in the moist savanna climatic zones and consequently growth of hedgerow trees in alley cropping systems might require addition of N and P fertilizers. This is difficult for small scale farmers who have limited access to fertilizers and therefore depend only on limited input cropping systems. Exploiting genetic differences in P use efficiency and using hedgerow trees selected for high N2 fixation ability can improve tree establishment and growth on N and P-poor soils, restore soil fertility and preserve soil from degradation. Field experiments carried out at Fashola (moist savanna) have shown that large differences in growth and P use efficiency occurred between N2 fixing trees such as Gliricidia sepium, and non N2-fixing trees such as Senna siamea and Senna spectabilis. Provenances or isoline differences in P use efficiency also occurred within species and was also influenced by level of P and period of growth. Differences between species and provenances in P uptake and growth were largely related to differences in physiological P-use efficiency (PPUE), root length and VAM infection rate, especially at low P. In general, nodulation was improved by P application, but varied among provenances. Gliricidia Sepium fixed about 61% of its N from atmospheric N2 in the pot experiment and 40% in the field. The percentage of N fixed was not affected by rate of P application. Differences in P and N accumulation and use efficiency were also influenced by management practices such as pruning. The distribution of total P followed the same trend as that of dry matter yield, while no significant correlations were found between partitioning of dry matter and total N. Uncut and cut G. Sepium derived 35 and 54% respectively of their N from atmospheric N2. About 54% of the fixed N2 was partitioned to shoots and roots and this was not proportional to the size of these organs relative the whole plant. 17 refs, 2 figs,. 2 tabs

  1. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  2. Management of biological processes in alley farming: Need for more research

    International Nuclear Information System (INIS)

    Alley farming involves the integration of trees, managed as hedgerows, within cropping systems. Research has shown that the system is highly stable and sustainable. The trees act within the system both as a nutrient pump and nutrient source, ensuring the constant injection of nutrients and their efficient cycling within the system. Nitrogen-fixing trees have a great capacity for maintaining soil fertility and sustainability in such systems, because of biological nitrogen fixation and its contribution to soil fertility. Some tree species such as Leucaena leucocephala, Gliricidia sepium can fix as much as 200-300 kg N/ha/year while others such as Faidherbia albida may fix only one tenth. Senna siamea and S. spectabilis do not fix N2. Nitrogen input from prunings of nitrogen fixing trees to alley farming systems is high but its use efficiency by an associated crop is low (10-30%). It may be that not enough is known of the basics of the biological processes to improve N use efficiency in alley cropping. This paper calls for increased research into such processes using precise and appropriate methodologies such as isotope aided techniques. (author). 33 refs, 2 tabs

  3. Crop Sequence Economics in Dynamic Cropping Systems

    Science.gov (United States)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  4. Simulating Stochastic Crop Management in Cropping Systems

    Science.gov (United States)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  5. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    the plant–soil system associated with faba bean cropping via nitrate leaching or emissions of N2O to the atmosphere as a consequence of the rapid mineralization of N from its N-rich residues. It is important to develop improved preventive measures, such as catch crops, intercropping, or no-till technologies......The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  6. Blind Alley Aware ACO Routing Algorithm

    Science.gov (United States)

    Yoshikawa, Masaya; Otani, Kazuo

    2010-10-01

    The routing problem is applied to various engineering fields. Many researchers study this problem. In this paper, we propose a new routing algorithm which is based on Ant Colony Optimization. The proposed algorithm introduces the tabu search mechanism to escape the blind alley. Thus, the proposed algorithm enables to find the shortest route, even if the map data contains the blind alley. Experiments using map data prove the effectiveness in comparison with Dijkstra algorithm which is the most popular conventional routing algorithm.

  7. Eliminating Major Tornadoes in Tornado Alley

    Science.gov (United States)

    Tao, R.

    2015-03-01

    In my recent paper, I propose that major tornadoes in Tornado Alley can be eliminated by building east-west ranged walls, 300 meter high and 50 meter wide. The work has received much attention, but some meteorologists are against the idea, claiming that the major tornadoes in Tornado Alley are not related to the collisions between northbound warm air flow and southbound cold air flow because supercells are not at the collision front. In this talk, we will show that wind tunnel experiments and airplane wing tip vortices clearly demonstrate that vortices produced by air mass collisions are usually not at the collision front because of the extremely volatile condition over there; they are either near the ends or at side of the collision fronts. When the warm and moist wind collides with the cold wind violently in Tornado Alley, similarly, the supercell storms cannot be right at the collision fronts, but are near the ends or at sides of the collision fronts. While only a small portion of vortices in the warm air side may have a chance to develop into tornadoes, the major tornadoes in Tornado Alley indeed start from the air mass clashes. If we can weaken such violent air mass collisions, we will eliminate the major tornadoes in Tornado Alley. The work is supported in part by Naval Research Lab.

  8. Establishing vegetable agroforestry system research at AVRDC - The World Vegetable Center

    OpenAIRE

    Palada, Manuel C.; Wu, D.; Luther, G.C.

    2008-01-01

    Tree-crop interactions in agroforestry systems involving vegetable crops have not been studied extensively, for previous research in agroforestry focused on agronomic arable field crops. A vegetable agroforestry system was established at the World Vegetable Center (AVRDC) to study tree-crop interactions in alley cropping vegetables with tropical fruit trees in terms of competition and/or complementarity; to investigate the influence of tree crops on natural habitat and insect pest population ...

  9. Economics of Rainfed Cropping Systems: Northeast Thailand

    Science.gov (United States)

    Johnson, Sam H., III; Charoenwatana, Terd

    1981-06-01

    Using a computer model to simulate effective rainfall, it is shown that a flexible rainfed cropping system based on a legume crop planted before rice has a greater expected return than present subsistent rainfed cropping systems. Combining a legume crop intercropped with cassava or kenaf further increases the expected returns yet maintains the stability of the new system. Further research is required to bring the farmer's yields up to match experiment station results and to facilitate effective transfer policies.

  10. May cover crops affect GHG emissions in irrigated cropping systems?

    OpenAIRE

    Sanz Cobeña, Alberto; Garcia Marco, S.; Quemada Saenz-Badillos, Miguel; Gabriel Pérez, José Luis; Ábalos Rodríguez, Diego; Sánchez Martín, Laura; Almendros García, Patricia; Vallejo Garcia, Antonio

    2013-01-01

    The use of cover crops (CC) both as catch crops and green manures has been proposed as a suitable strategy to increase the N use efficiency of the system through decreasing the N losses, mainly in the form of NO3-, (Thorup-Kristensen et al., 2003). Although improving crop yields, both the presence of CC and their use once harvested, as green manures, may change the C N balance of agricultural soils thus consequently affecting emissions of greenhouse gases (GHG). This study evaluates the effec...

  11. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.;

    2014-01-01

    , crop management technologies have been developed, with a special focus on the Mediterranean region, to enhance crop production by increasing land productivity and sustaining soil fertility under influence of climate changes and population increases. The main objective of this study was to analyse...... tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability. © 2014 Blackwell Verlag GmbH.......In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...

  12. Transition to Organic Cropping Systems under Risk

    OpenAIRE

    David W Archer; Kludze, Hillarius

    2006-01-01

    We analyze the risks, returns and optimal adoption strategies for a representative Minnesota farm switching from conventional to organic cropping systems. The EPIC simulation model was calibrated based on the yields observed in a farming systems field study. A farm-level simulation model was constructed using the EPIC simulated crop yields and historical prices. Results were compared for an expected utility maximizing farm under a range of risk aversion levels, with and without management lea...

  13. Replacing bare fallow with cover crops in an irrigated cropping system: soil salinity and salt leaching

    OpenAIRE

    Almendros García, Patricia; Gabriel Pérez, José Luis; Quemada Saenz-Badillos, Miguel

    2011-01-01

    In irrigated areas where cover crop establishment can be assured, consequent soil or nutrient conservation could increase sustainability of cropping systems. Replacing bare fallow with cover crops may increase sustainability by enhancing soil aggregate stability, water retention capacity or controlling nitrate leaching. Nevertheless, adoption of cover crops increase evapotranspiration and reduce water percolation beyond the root systems; therefore, it could lead to salt accumulation in the up...

  14. Environmental sustainability of cellulosic energy cropping systems

    Science.gov (United States)

    The environmental sustainability of bioenergy production depends on both direct and indirect effects of the production systems to produce bioenergy feedstocks. This chapter evaluates what is known about the environmental sustainability of cellulosic bioenergy crop production for the types of produc...

  15. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate how...... was shown to affect the leaching after the following oilseed rape crop with up to 50 kg N ha-1 taken up before it was lost to the environment when pre-crop fertilization as well as root depth penetration rate was high. All in all, the simulations illustrate the concept of NUE as the result of...

  16. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems.

    Science.gov (United States)

    Anten, Niels P R; Vermeulen, Peter J

    2016-06-01

    Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency. PMID:27012675

  17. A CRITICAL REVIEW ON NITROGEN MANAGEMENT IN SPECIALITY CORN UNDER PONGAMIA + MAIZE AGRI-SILVI SYSTEM

    Directory of Open Access Journals (Sweden)

    C. Prathyusha

    2013-08-01

    Full Text Available Intercropping of agricultural crops with woody species is an age-old practice in traditional farming systems in the tropics. Food production is the major aim of subsistence farmers with most of their farmland being allocated to food crops rather than to trees and shrubs. Due to increasing population and scarcity of productive lands that cannot sustain intensive exploitation, one method that has been proposed to enhance the sustainability of agricultural production is the growing of trees in association with crops. Alley cropping is an agroforestry system in which food crops are grown in alleys formed by hedge rows of trees or shrubs and these hedge rows are kept pruned during the rainy season. The hedge rows are usually cut to a height of about 2 m when crops are sown and kept pruned to reduce competition with crops. Work done on alley cropping in Pongamia pinnata was less in India and other countries. Hence literature pertaining to tree crop competition studies in agri-silvi system was presented in this chapter. Moreover, it was unable to get sizeable literature related to speciality corn. In view of the paucity of adequate literature related to speciality corn, few citations with respect to grain corn were also presented in brief to know the general scientific idea.

  18. The impact of new energy crops on weed flora diversification in energy cropping systems

    Directory of Open Access Journals (Sweden)

    Glemnitz, Michael

    2016-02-01

    Full Text Available Despite various options in energy cropping for the diversification of agricultural land use, such as the introduction of new crops, in practice, there is a one-sided orientation toward the use of maize as biogas feedstock in Germany. One reason, why they are not yet introduced in practice, is that for most of them neither the agricultural feasibility nor their ecological and economic benefit could be clearly shown to the farmers up to now. As part of the research projects “Site-adapted Cropping Systems for Energy Crops” (EVA, and “Optimized energy cropping systems for the sustainable biogas production (Upscaling” the effects of three new energy crops have been tested under real farm conditions in two different regions in the northern part of Germany. The large scale field trial consisted of the comparison of the following energy crops: 0- maize as reference crop, 1- perennial Silphie (Silphium perfoliatum, 2- Szarvasi grass (Agropyron elongatum, and 3-perennial wild flower mixture. The trail has been investigated regarding the following effects: α-diversity at the plot scale, contribution to the β-diversity among the crops and species composition. The results suggest that the integration of the new perennial energy crop might contribute to an essential weed diversity enhancement. Weed flora diversity was between 2-4 times higher in most of the cases in the new energy crops compared to maize.

  19. Nitrogen turnover and leaching in cropping systems with ryegrass catch crops

    OpenAIRE

    Aronsson, Helena

    2000-01-01

    This thesis deals with perennial ryegrass (Lolium perenne L.) catch crops and their short- and long-term effects on nitrogen leaching and nitrogen turnover in soils. Results are presented from three field experiments on a sandy soil in south-west Sweden, where undersown catch crops were used in cropping systems with and without applications of liquid manure. The effects of different tillage practices on soil mineral nitrogen and leaching were also studied. Two coupled simulation models, which...

  20. Estimation of USLE crop and management factor values for crop rotation systems in China

    Institute of Scientific and Technical Information of China (English)

    GUO Qian-kun; LIU Bao-yuan; XIE Yun; LIU Ying-na; YIN Shui-qing

    2015-01-01

    Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss assessments using the Universal Soil Loss Equation (USLE) would supply a scientiifc basis for soil conservation planning. However, a lack of in-formation on the cover and management (C) factor for cropland, one of the most important factors in the USLE, has limited accurate regional assessments in China due to the large number of crops grown and their complicated rotation systems. In this study, single crop soil loss ratios (SLRs) were col ected and quantiifed for 10 primary crops from past studies or re-ports. The mean annual C values for 88 crop rotation systems in 12 cropping system regions were estimated based on the combined effects of single crop SLRs and the percentage of annual rainfal erosivity (R) during the corresponding periods for each system. The C values in different cropping system regions were compared and discussed. The results indicated that the SLRs of the 10 primary crops ranged from 0.15 to 0.74. The mean annual C value for al 88 crop rotation systems was 0.34, with a standard deviation of 0.12. The mean C values in the single, double and triple cropping zones were 0.37, 0.36 and 0.28, respectively, and the C value in the triple zone was signiifcantly different from those in single and double zones. The C values of dryland crop systems exhibited signiifcant differences in the single and triple cropping system regions but the differences in the double regions were not signiifcant. This study is the ifrst report of the C values of crop rotation systems in China at the national scale. It wil provide necessary and practical parameters for accurately assessing regional soil losses from cropland to guide soil conservation plans and to optimize crop rotation systems.

  1. Cassini/CIRS Observations of Saturn's "Storm Alley"

    Science.gov (United States)

    Hesman, Brigette E.

    2010-01-01

    In the Voyager era storms on Saturn were observed predominantly in the northern hemisphere, however, in recent years storm activity has been confined to a narrow range of latitudes referred to as "storm alley" (approx.40degS planetographic latitude). Throughout Cassini's prime mission storms have been detected by two independent instruments: ISS through dayside images and RPWS using radio emissions from Saturn Electrostatic Discharges (SED's) (Dyudina et al. 2007). Analysis of these storms indicates that the cloud tops are in the 200 - 500rnbar altitude range. During Saturn's Equinox, in August 2009, lSS imaged lightning on the night side in storm alley when ring-shine was at a minimum (Dyudina et al. 2010). This study indicates that lightning may have originated as deep as the water cloud. Decently, Cassini/CIRS was targeted at storm alley while a storm, originally detected by amateurs, was ongoing (March 2010). Phosphine can be used as a tracer of vertical transport because it is a disequilibrium species that falls off with altitude in the upper troposphere. CIRS can measure temperature and phosphine abundance independently in the altitude range where these cloud tops occur. Early analysis of these data shows stronger phosphine absorption at storm longitudes. This is an indication that powerful updrafts were dredging material upward into the upper troposphere. The results of the analysis of the March 2010 CIRS observations of storm alley will be presented.

  2. Nutrient management studies in biofuel cropping systems

    Science.gov (United States)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  4. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining meteorological risks and subsequently relating the risk to the cropping calendar will be demonstrated for major arable crops in Belgium. Physically based crop models assist in understanding the links between adverse weather events, sensitive crop stages and crop damage. Financial support was obtained from Belspo under research contract SD/RI/03A.

  5. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.

  6. Crop productivity and economics during the transition to alternative cropping systems

    Science.gov (United States)

    Increasing economic pressures and continued environmental concerns in agricultural production have heightened the need for more sustainable cropping systems. Research is needed to identify systems that simultaneously improve the economic and social viability of farms and rural communities while prot...

  7. Soil Erosion of Various Farming Systems in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    ZHANGBIN; ZHANGTAOLIN; 等

    1996-01-01

    In order to optimise land use systems,to prevent erosion-induced degradation and to restore the degraded red soils in subtropical China,five cropping systems and four agrforestry systems were conducted in red soils with a slope of 7° from 1993 to 1995,The results showed that erosion risk period occurred from Aproil to June,and the annual runoff and and the losses of soil and nutrients with sediment were alarming for two conventional farming systems,whereas they were negligible for the farming systems with ridge tillage.Enrichment ratios of the lost soils from erosion erer more than 1.20 for all nutrients with much higher values for hydrolysable N and organic matter.Compared with the control,the alley cropping systems also distinctly decreased runoff by 30% or 50%.However,the coverage of soil surface varied with alley cropping systems for the competition of nutrients and soil water,which made a profound difference in runoff.The cropping systems of sweet potato intercropped with soybean,the alley cropping systems and the measures of mulching and ridge tillage were the alternatives for red soil reclamation so as to prevent erosion-induced degradation.

  8. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  9. Divesting in crop diversity: trade-offs of modern cropping systems

    Science.gov (United States)

    Engstrom, P.

    2013-12-01

    Since the advent of the Green Revolution in the 1960's, agriculture has experienced great advances in yield, seed genetics and management. This focus on increased yields and production came at the cost of many marginal, traditional crops because they could no longer compete with the bountiful harvests of massive mono-culture food systems. In the modern agricultural world, three staple crops are responsible for 46% of global agricultural production on 33% of global harvested area. Further, seventeen crops account for 73% of global crop production and use 58% of global harvested area. How has the distribution of individual crops today changed from before the Green Revolution began, and what are the broader implications of these changes for our food systems?

  10. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  11. Cropping System to Limit Blast Disease in Upland Rice

    OpenAIRE

    Sester, M.; Raveloson, H.; Michellon, R.; Dusserre, J.; Tharreau, D.

    2010-01-01

    Cropping system is an essential aspect to take into account to manage blast disease (caused by the fungus Magnaporthe oryzae). In addition to the selection of resistant cultivars, studies report opportunities to limit blast incidence by managing mineral amendment (N, Si, P, etc.), cultivar mixtures or other cropping system adaptations. In Madagascar, rice is the staple crop and food. Farmers traditionally grow irrigated or rainfed lowland rice wherever possible. In the mid-1980s, CIRAD and FO...

  12. EQUITABLE CROPSHARE ARRANGEMENTS FOR INTENSIVE DRYLAND CROPPING SYSTEMS

    OpenAIRE

    Burgener, Paul A.; Feuz, Dillon M.

    1999-01-01

    As producers move toward intensive dryland cropping systems, the potential for inequities in cropshare lease arrangements exists. A whole farm budget was developed to evaluate returns for landowner and tenant from different cropshare lease arrangements. Results suggest that cropshare lease adjustments are necessary as cropping systems become more intensive.

  13. No-till bioenergy cropping systems effect on soil aeration

    Science.gov (United States)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on soil quality, such as the effects of maize stover harvesting on soil aeration and the relationships to soil structure and water, associated with bioenergy cropping systems has been l...

  14. The Role of Crop Systems Simulation in Agriculture and Environment

    Science.gov (United States)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  15. Greenhouse gas emissions from traditional and biofuels cropping systems

    Science.gov (United States)

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  16. Root pruning reduces root competition in living mulch cropping systems

    OpenAIRE

    Båth, B.; Kristensen, Hanne Lakkenborg; Thorup-Kristensen, Kristian

    2009-01-01

    In intercropping systems with a cash crop and a living mulch intercrop, competition between the cash crop and the intercrop (the living mulch) often reduces the yield of the cash crop. This project investigated (1) the influence of root pruning of living mulches on aboveground biomass of white cabbage. Below-ground growth and competition were examined by measuring (2) root distribution in minirhizotrons and (3) uptake of 15N placed at different soil depths. Two field experiments were carried ...

  17. Database Structure for the Indonesian Food Crop Monitoring System

    OpenAIRE

    Gary Stampley

    1992-01-01

    The development of the Indonesian Food Crop Monitoring System (FCMS) database required the compilation of general information on the principal food crops, as well as supportive data on climate, land use, prices, trade, and various macroeconomic conditions. The purpose for the collection and management of these data was twofold: (1) to support several specific food-crop policy analyses to be conducted by the FCMS project team, and (2) to provide a simple capability for monitoring and describin...

  18. Integrating crops and livestock in subtropical agricultural systems.

    Science.gov (United States)

    Wright, Iain A; Tarawali, Shirley; Blümmel, Michael; Gerard, Bruno; Teufel, Nils; Herrero, Mario

    2012-03-30

    As the demand for livestock products increases, and is expected to continue to increase over the next few decades, especially in developing countries, smallholder mixed systems are becoming more intensive. However, with limited land and water resources and concern about the environmental impact of agricultural practices and climate change, the challenge is to find ways of increasing productivity that do not compromise household food security, but rather increase incomes equitably and sustain or enhance the natural resource base. In developed countries there has been increased specialisation of crop and livestock production. In contrast, the majority of livestock in developing countries is kept in mixed crop/livestock systems. Crops (cereal grains and pulses) and crop residues provide the basis of the diet for animals, e.g. cereal straw fed to dairy cattle or sweet potato vines fed to pigs. Animal manure can provide significant nutrient inputs to crops. Water productivity is higher in mixed crop/livestock systems compared with growing crops alone. Mixed systems allow for a more flexible and profitable use of family labour where employment opportunities are limited. They also spread risks across several enterprises, a consideration in smallholder systems that may become even more important under certain climate change scenarios. Integrated crop/livestock systems can play a significant role in improving global food security but will require appropriate technological developments, institutional arrangements and supportive policy environments if they are to fulfil that potential in the coming decades. PMID:21769884

  19. Fate of fertilizer nitrogen in a multiple cropping system

    International Nuclear Information System (INIS)

    The fate of 15N-labelled fertilizer nitrogen, applied to the maize crop only, in a multiple cropping system for two crop rotations of maize-wheat-moong, has been studied. The pattern of fertilizer uptake by this crop, the utilization of fertilizer nitrogen residue by the succeeding crops of wheat and moong, residual nitrogen in the soil, and losses due to leaching and other processes were measured. The nitrate content of tube-well waters of an agricultural farm of the Indian Agricultural Research Institute, monitored for three years (June 1975 - March 1978), varied from 5 ppm to 35 ppm. Broad conclusions based on the experimental data, for increasing the efficiency of applied nitrogen and reducing the nitrate pollution of groundwater in relation to fertilizer practices and the change in cropping pattern are discussed. (author)

  20. Perun: The System For Seasonal Crop Yield Forecasting Based On The Crop Model and Weather Generator

    Science.gov (United States)

    Dubrovsky, M.; Zalud, Z.; Trnka, M.; Haberle, J.; Pesice, P.

    The main purpose of the computer system PERUN, which is now being developed, is the probabilistic seasonal crop yield forecasting. The crop yields (winter wheat and spring barley in the first step) are simulated by crop model WOFOST. The input daily weather series consist of observed data, which are available in the date of forecast issuance, and synthetic data, which follow up with the observed data till the end of the crop model simulation. The synthetic weather series are generated by stochastic generator Met&Roll conditionally on the seasonal weather forecast. The probabilis- tic forecast is based on multiple crop model runs. To provide the six daily weather characteristics required for crop model simulation (precipitation, solar radiation, max- imum and minimum temperatures, air humidity, wind speed), the previous WGEN- like four-variate version of Met&Roll generator was supplemented by a new module. This module adds wind speed and air humidity (necessary to calculate evapotranspi- ration) using the nearest neighbours resampling from the observed data. Because of the problems with availability and/or accuracy of wind and humidity data, the source code of the WOFOST model was modified and allows now to switch between Penman and Makkink methods of calculating the evapotranspiration (the daily values of wind speed and humidity are not required in the Makkink method). The contribution will address following items: 1) Structure of the PERUN system: components and their inputs and outputs. Modifications to WOFOST crop model and Met&Roll generator will be discussed. 2) Validation of the WOFOST crop model. The accuracy obtained using the Penman and Makkink methods will be compared. 3) Demonstration of the forecast accuracy in dependence on the date of issuance. Acknowledgement: The system PERUN is being developed within the frame of project QC1316 sponsored by the Czech National Agency for Agricultural Research (NAZV).

  1. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  2. The Potato Systems Planner: Integrating Cropping System Impacts on Crop Yield and Quality, Soil Biology, Nutrient Cycling, Diseases, and Economics

    Science.gov (United States)

    Finding and developing profitable cropping systems is a high priority for the potato industry. Consequently, an interdisciplinary team of ARS scientists from the New England Plant, Soil, & Water Laboratory evaluated 14 different rotations for their impacts on crop yield and quality, nutrient availa...

  3. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    OpenAIRE

    Hiel, MP.; Chélin, M.; Parvin, N.; Barbieux, S.; Degrune, F.; Lemtiri, A.; Colinet, G.; Degré, A.; Bodson, B.; Garré, S.

    2016-01-01

    Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop produ...

  4. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  5. Improving sustainable intensification of cereal-grain legume cropping systems in the savannahs of West Africa: Quantifying residual effects of legumes on maize, enhancing P mobilization by legumes and studying long-term Soil Organic Matter (SOM) dynamics

    International Nuclear Information System (INIS)

    trees, SOC levels dropped from the initial 15.4 Mg C ha-1 to 7.3-8.0 Mg C ha-1 in 16 years (SOC content in 1700 Mg ha-1 equivalent soil mass). In the two continuously cropped alley cropping systems (Leucaena and Senna), the SOC levels dropped to levels between 10.7 and 13.2 Mg C ha-1. The 13C natural abundance technique yielded useful information to test the ROTHC- 26.3 SOC model in sub-humid tropical conditions under a complex pattern of cropping systems. (author)

  6. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  7. Meteorological risks and impacts on crop production systems in Belgium

    Science.gov (United States)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  8. 32 CFR 644.422 - Authorized widening of a public highway, street, or alley.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Authorized widening of a public highway, street... and Easement Interests § 644.422 Authorized widening of a public highway, street, or alley. 40 U.S.C... authorized widening of a public highway, street, or alley. The conveyance may be made with or...

  9. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  10. The value of crop germplasm and value accounting system

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; CHANG Ying

    2007-01-01

    The value evaluation and accounting of crop germplasm not only provides the theory and method for the price of germplasm, thus makes further lawful and fair transactions, but also ensures the benefits of crop germplasm owners and is also instructive in keeping the foodstuff safety. This paper founded a multidimensional value accounting system, which included physical accounting, value accounting and quality index accounting; individual accounting and total accounting; quantity accounting and quality accounting.

  11. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    DEFF Research Database (Denmark)

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E;

    2013-01-01

    In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...... aestivum L.) in four experimental cropping systems established in 1997 on three soil types. Three of the four systems were under organic management. Topsoil N, depth of the A horizon, and cumulated inputs of N since 1997 were determined at plot level. Labile soil N pools [mineral N, potentially...... mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...

  12. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    OpenAIRE

    Strašil Zdeněk; Vach Milan; Smutný Vladimír

    2015-01-01

    The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT) method, minimum tillage (MT) and a system with no tillage (NT). The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter) of the primary product and the total ...

  13. Nitrogen abatement cost comparison for cropping systems under alternative management choices

    OpenAIRE

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Hebb, Dale; Jamieson, Rob

    2013-01-01

    There is a need for cost-effective methods to reduce nitrogen pollution from agriculture. Marginal abatement cost (MAC) curves for nitrate-nitrogen pollution in an agricultural watershed are evaluated using estimated crop yield and nitrate pollution production functions for alternative cropping systems. The cropping systems considered in this study included i) two grain corn-based cropping systems; ii) two potato-based cropping systems; and iii) a vegetable-horticulture system, managed under ...

  14. Survey of Rice Cropping Systems in Kampong Chhnang Province, Cambodia

    Institute of Scientific and Technical Information of China (English)

    Volker KLEINHENZ; Sophon CHEA; Ngin HUN

    2013-01-01

    Although Cambodia might have achieved self-sufficiency and an exported surplus in rice production,its rice-based farming systems are widely associated with low productivity,low farmer income and rural poverty.The study is based on a questionnaire village survey in 14 communes containing 97 villages of Kampong Chhnang Province from March to June,2011.It analyzes the prevailing rice-based cropping systems and evaluates options for their improvement.Differences in cropping systems depend on the distance from the Tonle Sap water bodies.At distances greater than 10 km,transplanted wet-season rice cropping system with low productivity of about 1.6 t/hm2 prevails.This deficiency can be primarily attributed to soils with high coarse sand fractions and low pH (< 4.0),use of ‘late' cultivars,and exclusive use of self-propagated seeds.To improve this cropping system,commercial ‘medium' cultivars help prevent crop failure by shortening the cultivation period by one month and complementation of wet-season rice with non-rice crops should be expanded.Areas adjacent (≤ 1 km) to the water bodies become inundated for up to seven months between July until January of each year.In this area,soils contain more fine sand,silt and clay,and their pH is higher (> 4.0).Farmers predominantly cultivate dry-season recession rice between January and April.Seventy-nine percent of the area is sown directly and harvested by combines.Adoption ratio of commercial rice seeds is 59%and yields average 3.2 t/hm2.Introduction of the second dry-season rice between April and July may double annual yields in this rice cropping system.Besides upgrading other cultivation technologies,using seeds from commercial sources will improve yield and rice quality.Along with rice,farmers grow non-rice crops at different intensities ranging from single annual crops to intensive sequences at low yields.

  15. A Comparative Analysis of Global Cropping Systems Models and Maps

    Science.gov (United States)

    Anderson, W. B.; You, L.; Wood, S.; Wood-Sichra, U.; Wu, W.

    2013-12-01

    Agricultural practices have dramatically altered the land cover of the Earth, but the spatial extent and intensity of these practices is often difficult to catalogue. Cropland accounts for nearly 15 million km2 of the Earth's land cover - amounting to 12% of the Earth's ice-free land surface - yet information on the distribution and performance of specific crops is often available only through national or sub-national statistics. While remote sensing products offer spatially disaggregated information, those currently available on a global scale are ill-suited for many applications due to the limited separation of crop types within the area classified as cropland. Recently, however, there have been multiple independent efforts to incorporate the detailed information available from statistical surveys with supplemental spatial information to produce a spatially explicit global dataset specific to individual cropss for the year 2000. While these datasets provide analysts and decision makers with improved information on global cropping systems, the final global cropping maps differ from one another substantially. This study aims to explore and quantify systematic similarities and differences between four major global cropping systems products: the monthly irrigated and rainfed crop areas around the year 2000 (MIRAC2000) dataset, the spatial production allocation model (SPAM), the global agro-ecological zone (GAEZ) dataset, and the dataset developed by Monfreda et al., 2008. The analysis explores not only the final cropping systems maps but also the interdependencies of each product, methodological differences and modeling assumptions, which will provide users with information vital for discerning between datasets in selecting a product appropriate for each intended application.

  16. Alternative cropping systems can have contrasting effects on various soil-borne diseases : relevance of a systemic analysis in vegetable cropping systems

    OpenAIRE

    Collange, B.; M Navarrete; Montfort, F.; Mateille, Thierry; Tavoillot, Johannes; Martiny, Bernard; Tchamitchian, M.

    2014-01-01

    Vegetable production makes an intensive use of pesticides, and a major challenge is to build alternative cropping systems that can control pests and diseases with fewer uses of chemical products. An on-farm analysis was conducted in Southeast France to assess the efficacy of several cropping systems in simultaneously controlling two major pests: root-knot nematodes (Meloidogyne spp.) and lettuce drop due to Sclerotinia sclerotiorum. Ten cropping systems resulting from the combinations of thre...

  17. Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops

    OpenAIRE

    Firbank, L. G.; Rothery, P; May, M. J.; Clark, S J; Scott, R J; Stuart, R.C.; Boffey, C.W.H.; Brooks, D.R; Champion, G T; Haughton, A J; Hawes, C; Heard, M S; Dewar, A M; Perry, J.N; Squire, G R

    2005-01-01

    The Farm Scale Evaluations (FSEs) showed that genetically modified herbicide-tolerant (GMHT) cropping systems could influence farmland biodiversity because of their effects on weed biomass and seed production. Recently published results for winter oilseed rape showed that a switch to GMHT crops significantly affected weed seedbanks for at least 2 years after the crops were sown, potentially causing longer-term effects on other taxa. Here, we seek evidence for similar medium-term effects on we...

  18. Residual Influence of Early Season Crop Fertilization and Cropping System on Growth and Yield of Cassava

    Directory of Open Access Journals (Sweden)

    E. A. Makinde

    2008-01-01

    Full Text Available Problem statement: In assessing fertilizer effects to sustain an intensive cropping system, the residual effects of fertilizer applied to preceding maize on the growth and yield of cassava and the effects of intercropping with soybean were studied in field experiments at Ibadan, Nigeria. Approach: Maize, established in April was fertilized using either organic manure or inorganic fertilizer or a mixture of organic manure and inorganic fertilizers. Organic manure was an equal mixture of domestic waste collected from a composted refuse dumping site applied at l0 t ha-1. Inorganic fertilizer was 150kg N supplied as urea and 50 kg P ha-1 as Single Super phosphate fertilizer. The mixture of organic and inorganic fertilizer treatment was 5 tonnes organic manure and 75kg N+25 kg P ha-1. Cassava was established in June and soybean planted in July, after harvesting maize. Results: Organic fertilizer treatment gave the tallest plants of 53 cm. Plants from sole inorganic fertilizer and from a mixture of organic and inorganic fertilizers had comparable heights but were significantly lower than plants from sole organic fertilizer application. Organic fertilizer application gave the highest seed yield of 481 kg ha-1 that was significantly higher than 380 kg ha-1 observed from a mixture of organic and inorganic fertilizers. Stover yield followed the same trend as seed yield. Cassava plant height was increased with fertilization but was reduced with intercropping. Sole organic fertilization had the tallest plants. Plant leaf area was neither significantly affected by fertilizer type nor cropping system. Fresh root yield was significantly reduced by 16% with soybean intercropping. Sole organic fertilizer application gave the highest yields of 22 tons ha-1 in sole crop and 18 tons ha-1 in intercrop with soybean. Conclusion: Cultivating an early season maize crop, followed by a cassava-soybean intercrop is more

  19. Comprehensive evaluation of multiple cropping systems on upland red soil

    Institute of Scientific and Technical Information of China (English)

    Guoqin HUANG; Xiuying LIU; Longwang LIU; Fang YE; Mingling ZHANG; Yanhong SHU

    2008-01-01

    According to the principles and methods of ecology and system engineering,we set up an evaluation indicator system for multi-component and multiple crop-ping systems,evaluated the comprehensive benefits of multi-component and multiple cropping systems using grey relation clustering analysis and screened out the opti-mized model based on research done in the upland red soil in Jiangxi Agricultural University from 1984 to 2004.The results show that the grey relation degree of "cabbage/ potato/maize-sesame" was the highest among 23 multi-component and multiple cropping systems and was clustered into the optimized system.This indicates that "cabbage/potato/maize - sesame" can bring the best social,economic and ecological benefits,increase product yield and farmers' income and promote sustainable development of agricultural production.Therefore,it is suitable for promotion on upland red soil.The grey rela-tion degree of "canola/Chinese milk vetch/maize/mung bean/maize" was second,which is suitable for imple-mentation at the city outskirts.In conclusion,these two planting patterns are expected to play important roles in the reconstruction of the planting structure and optimiza-tion of the planting patterns on upland red soil.

  20. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  1. Soil organisms in organic and conventional cropping systems

    Directory of Open Access Journals (Sweden)

    Bettiol Wagner

    2002-01-01

    Full Text Available Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum and corn (Zea mays crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. CO2 evolution during the cropping season was higher, up to the double for the organic agriculture system as compared to the conventional. The number of earthworms was about ten times higher in the organic system. There was no difference in the decomposition rate of organic matter of the two systems. In general, the number of microartropods was always higher in the organic plots in relation to the conventional ones, reflectining on the Shannon index diversity. The higher insect population belonged to the Collembola order, and in the case of mites, to the superfamily Oribatuloidea. Individuals of the groups Aranae, Chilopoda, Dyplopoda, Pauropoda, Protura and Symphyla were occasionally collected in similar number in both cropping systems.

  2. Soilless cultivation system for functional food crops

    International Nuclear Information System (INIS)

    This soilless cultivation system is based on the fertigation system and cultivation technologies using Functional Plant Cultivation System (FPCS). EBARA Japan has been studying on the cultivation conditions in order to enhance the function of decease risk reduction in plants. Through the research and development activities, EBARA found the possibilities on the enhancement of functions. Quality and quantity of the products in term of bioactive compounds present in the plants may be affected by unforeseen environmental conditions, such as temperature, strong light and UV radiation. The main objective to develop this system is, to support? Functional Food Industry? as newly emerging field in agriculture business. To success the system, needs comprehensive applying agriculture biotechnologies, health biotechnologies and also information technologies, in agriculture. By this system, production of valuable bioactive compounds is an advantage, because the market size of functional food is increasing more and more in the future. (Author)

  3. Nitrogen dynamics in integrated crop-livestock systems

    Science.gov (United States)

    Agriculture has been utterly transformed by the availability of manufactured fertilizers that are inexpensive and easy to transport and handle. Fertilizers severed the need for livestock and poultry manure in crop production. Improved transport systems have allowed farmers to utilize distant markets...

  4. Nutrient Use Efficiency in Bioenergy Cropping Systems: Critical Research Questions

    Science.gov (United States)

    Current U.S. plans for energy security rely on converting large areas of cropland from food to biofuel production. Additionally, lands currently considered too marginal for intensive food production may be considered suitable for biofuels production; predominant cropping systems may shift to more va...

  5. Water table response to an experimental alley farming trial: dissecting the spatial and temporal structure of the data.

    Science.gov (United States)

    Noorduijn, S L; Ghadouani, A; Vogwill, R; Smettem, K R J; Legendre, P

    2010-09-01

    Clearing vegetation for traditional agriculture diminishes native habitat and reduces plant transpiration, leading to increased groundwater recharge and onset of dryland salinization due to rising groundwater and mobilization of salt stores in the soil profile. This change in hydrology and salinity can also negatively affect biodiversity in many semiarid regions. Alternating native perennial tree belts with mono-species agriculture within the tree belt alleys is one possible system that can provide recharge control and recover some of the ecosystem services of degraded agricultural landscapes. To assess the effect of this agroforestry technique on groundwater levels, an alley farming trial was established in 1995, incorporating different combinations of belt width, alley width, and revegetation density. Transects of piezometers within each design have been monitored from October 1995 to January 2008. The data set consisted of 70 piezometers monitored on 39 dates. Two trends were observed within the raw data: An increase in water table depth with time and an increase in the range of depths monitored at the site were clearly discernible. However, simple hydrograph analysis of the data has proved unsuccessful at distinguishing the effect of the tree belts on the water table morphology. The statistical techniques employed in this paper to show the effect of the experiment on the water table were variation partitioning, principal coordinates of neighbor matrices (PCNM), and canonical redundancy analysis (RDA). The environmental variables (alley farming design, distance of piezometer from the tree belt, and percentage vegetation cover including edge effect) explained 20-30% of the variation of the transformed and detrended data for the entire site. The spatial PCNM variables explained a further 20-30% of the variation. Partitioning of the site into a northern and southern block increased the proportion of explained variation for the plots in the northern block. The

  6. Soil/plant nutrition in lowland cropping systems

    International Nuclear Information System (INIS)

    Farming system approaches have led to rapid changes in agricultural systems in Asia and the Pacific. They have increased food and other agricultural commodities as well as developing awareness of scarcity of natural resources, environmental degradation and dissemination of new agricultural technology. This paper reviews and summarizes recent research and technology on soil/plant nutrition with emphasis on nitrogen, phosphorus, and sulphur in rice-based lowland cropping systems in Asia and the Pacific region. It mainly focuses on the application of isotopes 15N, 32P and 35S in such studies, but some current research using conventional methods is also covered. A search of the literature shows that technology studies have mostly concentrated on identifying improved varieties for short duration rice, improving tillage practices, pest and weed management. Research in soil/plant nutrition in rice-based cropping systems particularly using isotopes, is limited. (author). 51 refs, 2 tabs

  7. Adaptation strategies of Mediterranean cropping systems to climate change

    OpenAIRE

    Mula, Laura

    2014-01-01

    The EPIC simulation model was used to assess the impact of climate change (CC) on intensive and extensive Mediterranean forage systems to study the effects of CC and adaptation strategies. The intensive cropping system (corn silage – Italian ryegrass) is linked to dairy cattle farms. As first step the EPIC model was calibrated based on experimental data. After calibration the EPIC model was used to perform simulations with different climate scenarios (present and future climate) with diffe...

  8. Multifactorial biogeochemical monitoring of linden alley in Moscow

    Science.gov (United States)

    Ermakov, Vadim; Khushvakhtova, Sabsbakhor; Tyutikov, Sergey; Danilova, Valentina; Roca, Núria; Bech, Jaume

    2015-04-01

    The ecological and biogeochemical assessment of the linden alley within the Kosygin Street was conducted by means of an integrated comparative study of soils, their chemical composition and morphological parameters of leaf linden. For this purpose 5 points were tested within the linden alley and 5 other points outside the highway. In soils, water extract of soil, leaf linden the content of Cu, Pb, Mn, Fe, Cd, Zn, As, Ni, Co Mo, Cr and Se were determined by AAS and spectrofluorimetric method [1]. Macrocomponents (Ca, Mg, K, Na, P, sulphates, chlorides), pH and total mineralization of water soil extract were measured by generally accepted methods. Thio-containing compounds in the leaves were determined by HPLC-NAM spectrofluorometry [2]. On level content of trace elements the soils of "contaminated" points different from background more high concentrations of lead, manganese, iron, selenium, strontium and low level of zinc. Leaf of linden from contaminated sites characterized by an increase of lead, copper, iron, zinc, arsenic, chromium, and a sharp decrease in the level of manganese and strontium. Analysis of the aqueous extracts of the soil showed a slight decrease in the pH value in the "control" points and lower content of calcium, magnesium, potassium, sodium and total mineralization of the water soil extract. The phytochelatins test in the leaves of linden was weakly effective and the degree of asymmetry of leaf lamina too. The most differences between the variants were marked by the degree of pathology leaves (chlorosis and necrosis) and the content of pigments (chlorophyll and carotene). The data obtained reflect the impact of the application of de-icing salts and automobile emissions. References 1. Ermakov V.V., Danilova V.N., Khyshvakhtova S.D. Application of HPLC-NAM spectrofluorimtry to determination of sulfur-containing compounds in the environmental objects// Science of the biosphere: Innovation. Moscow State University by M.V. Lomonosov, 2014. P. 10

  9. Effects of organic matter input on soil microbial properties and crop yields in conventional and organic cropping systems

    OpenAIRE

    Chirinda, Ngonidzashe; Olesen, Professor Jørgen, E.

    2008-01-01

    Unlike conventional cropping systems, which are characterised by targeted short-term fertility management, organic farming systems depend on long-term increase in soil fertility and promotion of soil biodiversity. This study sought to investigate long-term effects of organic matter inputs on various cropping systems in a 10-year-old experiment. Results show that in the long-term high C and N inputs enhance microbial activity. Microbial biomass N and the potential nitrification rate were highe...

  10. Mixed cropping systems for biological control of weeds and pests in organic oilseed crops

    OpenAIRE

    Paulsen, Hans Marten; Schochow, Martin; Ulber, B; Kühne, Stefan; Rahmann, Gerold

    2006-01-01

    Agricultural advantages of mixed cropping are gained by biological effects like light competition, offering weed-suppressing capacities or by diversification of plant covers to break development cycles of pests. In a two-year project on mixed cropping with organic oilseed crops these effects were measured. It was found that weeds can be efficiently suppressed in organic linseed (Linum usitatissivum) in crop combinations with wheat (Triticum aestivum) or false flax (Camelina sativa). But linse...

  11. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  12. Recycling of crop residues for sustainable crop production in a wheat-peanut rotation system

    International Nuclear Information System (INIS)

    Field experiments were conducted in a sandy soil at west Samalout, Minia, Egypt, from December 1996 to October 1999. The main objectives were (i) to examine long-term effects of applications of crop residues on crop nutrition, yields and soil fertility; (ii) to improve process-level understanding of nutrient flows through the use of isotopic techniques, and (iii) to enhance the efficiency of use of nutrients by a wheat-peanut rotation system. There were four treatments: (i) T1, 15N-labelled (NH4)2SO4, 60 kg N/ha at 9.82% 15N with unlabelled residues; (ii) T2, 15N-labelled wheat residues, 26 kg N/ha at 1.94% 15N a.e, applied at the end of the first season; (iii) T3, to generate unlabelled residues and yield; and (iv) T4, 15N-labelled (NH4)2SO4, 60 kg N/ha at 9.82% 15N atom excess, applied at the beginning of the first season, without residues. The Ndff recoveries during the first season in treatments T1 and T4 were 27% and 26% respectively, while 25% of the 15N remained in the soil for T1 and T4. Thus, the total amounts of 15N accounted for (in plant and soil) were 51% for T1 and 50% for T4. After the second crop, the total 15N recovery was 25% and 13% for T1 and T4, respectively. Application of the crop residues seemed to decrease N losses from the soil. Values for %N derived from labelled residues (%Ndfr) by wheat (T2) were 1.0% and 0.4% during seasons 3 and 5, respectively, while recoveries of %Ndfr by peanut from T2 treatments were 3.7, 4.1 and 0.3 during seasons 2, 4 and 6, respectively. In the following five seasons (peanut-wheat-peanut-wheat-peanut), total 15N recoveries by plant and soil were 67, 54, 34, 25 and 16%, respectively. (author)

  13. Use of spot/vegetation in different versions of the European crop growth monitoring system.

    OpenAIRE

    Piccard, I.; Eerens, H.; Oger, Robert; Curnel, Y.; Tychon, Bernard; Ozer; van Diepen, K.

    2005-01-01

    The Crop Growth Monitoring System (CGMS) is a GIS-application, developed and operated since 1989 by the MARS-unit of the EU Joint Research Centre. The primary objective is the timely forecasting of the yields of the main crops on the Pan-European continent.To reach this goal, CGMS combines all available (historical and actual) resources: official crop statistics, daily meteorological data, specific crop and soil parameters, the predictions of the (spatialized) crop growth model WOFOST, and th...

  14. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    , penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K, and......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and...... moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test...

  15. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël;

    2013-01-01

    is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  16. SOIL FUNGISTASIS AGAINST FUSARIUM GRAMINEARUM UNDER DIFFERENT CROP MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bruno Brito Lisboa

    2015-02-01

    Full Text Available Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L. + vetch (Vicia sativa L./maize (Zea mays L. + cowpea (Vigna sinensis L., black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA. A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

  17. Nematode Numbers and Crop Yield in a Fenamiphos-Treated Sweet Corn-Sweet Potato-Vetch Cropping System

    OpenAIRE

    Johnson, A. W.; Dowler, C. C.; Glaze, N. C.; Chalfant, R.B.; Golden, A. M.

    1992-01-01

    Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P ≤ 0.05) yields of sweet corn in 1981 and 1982 and sweet potato number 1 grade ...

  18. DO LIVING MULCH BASED VEGETABLE CROPPING SYSTEMS YIELD SIMILARLY TO THE SOLE ONES?

    OpenAIRE

    Canali, S.; Campanelli, G.; Bavec, F.; von Fragstein, P.; Leteo, F.; Jocop, M.; Kristensen, H.L.

    2014-01-01

    Ecological services may be exploited by use of living mulches in intercropping systems for production of vegetable crops. But may high yields be attained in intercropping systems for production of resource demanding crops such as cauliflower? In the frame of the InterVeg (Core Organic II) project, four field experiments were carried out in IT, SLO, DE and DK in order to study the effect of the living mulch introduction in cauliflower based cropping systems on crop yield and yield quality. The...

  19. Designing Cropping Systems for Metal-Contaminated Sites: A Review

    Institute of Scientific and Technical Information of China (English)

    TANG Ye-Tao; CHEN Tong-Bin; G. ECHEVARRIA; T. STERCKEMAN; M. O. SIMONNOT; J. L. MOREL; DENG Teng-Hao-Bo; WU Qi-Hang; WANG Shi-Zhong; QIU Rong-Liang; WEI Ze-Bin; GUO Xiao-Fang; WU Qi-Tang; LEI Mei

    2012-01-01

    Considering that even contaminated soils are a potential resource for agricultural production,it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands while avoiding any transfer of toxic trace elements to the food chain.In this review,three main strategies,i.e.,phytoexclusion,phytostabilization,and phytoextraction,are proposed to establish cropping systems for production of edible and non-edible plants,and for extraction of elements for industrial use.For safe production of food crops,the selection of low-accumulating plants/cultivars and the application of soil amendments are of vital importance.Phytostabilization using non-food energy and fiber plants can provide additional renewable energy sources and economic benefit with minimum cost of agriculturai measures.Phytoextracting trace elements (e.g.,As,Cd,Ni,and Zn) using hyperaccumulator species is more suitable for slightly and moderately polluted sites,and phytomining of Ni from serpentine soils has shown a great potential to extract Ni-containing bio-ores of economic interests.We conclude that appropriate combinations of soil types,plant species/cultivars,and agronomic practices can restrict trace metal transfer to the food chain and/or extract energy and metals of industrial use and allow safe agricultural activities.

  20. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Science.gov (United States)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  1. Leguminous cover crops: an important tool for improving resource use efficiency in organic arable cropping systems

    OpenAIRE

    ANTICHI, DR. D.; MAZZONCINI, PROF. M.; BARBERI, PROF. P.; BIGONGIALI, DR. F.; CARPI, DR. G.

    2008-01-01

    Cover crops are one of the most effective tools for organic farmers to improve the efficiency of their agro-ecosystems, while also reducing economic costs and environmental problems. The choice and usefulness of a cover crop species strictly depend on its adaptability to specific climate and soil conditions, but also on its relationships with other species (crops and weeds) and on the quality of farm management. Nine different pure species and three species mixtures were cultivated for two ye...

  2. Mixed cropping systems for control of weeds and pests in organic oilseed crops

    OpenAIRE

    Paulsen, H. M.; Schochow, M; Ulber, B; Kuhne, S; Rahmann, G

    2006-01-01

    Agricultural advantages of mixed cropping are gained from biological effects like light competition offering weed-suppressing capacities, or by diversification of plant covers to break development cycles of pests. These effects were measured in a two-year project on mixed cropping with organic oilseed crops. It was found that weeds can be efficiently suppressed in organic linseed (Linum usitatissivum) grown in combination with wheat (Triticum aestivum) or false flax (Camelina sativa). Linseed...

  3. The Crop Disease and Pest Warning and Prediction System

    Science.gov (United States)

    Luo, Juhua; Huang, Wenjiang; Wang, Jihua; Wei, Chaoling

    The aim of this study was to establish the warning and prediction system for crop diseases and pests based on SuperMap IS. NET geographic information system (GIS), which was developed by Supermap company. In this system, the author used GIS and remote sensing (RS) technology. The system could transform data information into a geographical information map to show the occurrence degree and distribution on various diseases and pests. This paper described mainly warning flow, database design and the main functions of the system. Finally, the system realized successfully the warning of the wheat stripe rust in Xifeng region of Qingyang city in Gansu province in 2002, and the prediction result was satisfactory. It indicated that we could classify and predict diseases and pests, and select right time and technology to control the diseases and pests by this GIS system.

  4. ECONOMIC OPPORTUNITIES FOR REDUCING NET GLOBAL WARMING POTENTIAL IN IRRIGATED CROPPING SYSTEMS IN NORTHEASTERN COLORADO

    Science.gov (United States)

    A cropping systems field study initiated in 1999 was used in this analysis to evaluate the economic feasibility of achieving reductions in net global warming potential through changes in cropping system management. Crop yield and management information collected from 2000-2005 were used to estimate ...

  5. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  6. Multimedia networks, globalization and strategies of innovation : the case of the silicon alley

    OpenAIRE

    Heydebrand, Wolf

    1999-01-01

    The report offers a sociological portrait of the structure and dynamics of „Silicon Alley“, an industry cluster of about a thousand new media firms that has emerged since the early 1990s. Situated in the context of New York’s development as a global city, Silicon Alley is part of the rise of advanced producer services and the dramatic growth of information and communications technology in an increasingly transnational economy. In analyzing the nature and importance of inter-firm networks amon...

  7. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    OpenAIRE

    Betty Mulianga; Agnès Bégué; Pascal Clouvel; Pierre Todoroff

    2015-01-01

    Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014) to characterize c...

  8. Water use in a winter camelina – soybean double crop system

    Science.gov (United States)

    Double-cropping winter camelina (Camelina sativa) followed by soybean (Glycine max) may increase land-use efficiency by producing food and biofuel in a single season and is a viable cropping system for the northern Corn Belt. However, regional success of double-cropping, especially under dryland con...

  9. A greenhouse crop production system for tropical lowland conditions

    NARCIS (Netherlands)

    Impron, S.

    2011-01-01

    Key words: tropical lowland climate, tropical lowland greenhouse, plastic greenhouse, near infrared radiation (NIR) reflecting plastic, greenhouse climate model, determinate tomato, crop growth, development, truss appearance rate, crop simulation model, INTKAM.   The goal of this research w

  10. A Cropping Systems Approach to Improving Water Use Efficiency in Semi-Arid Irrigated Production Areas

    OpenAIRE

    Shennan, Carol

    1994-01-01

    This recently-completed 3-year field study evaluated the effectiveness of winter cover crop incorporation and surface gypsum applications relative to conventional fallows for maintaining/improving soil physical properties, stand establishment and crop productivity in a cropping system relying on saline drainage water for irrigation. Six amendment/soil cover treatments were imposed on a rotation of tomato-tomato-cotton as summer crops. Drainage water accounted for about 70% of the total water ...

  11. Efficacy of Fluensulfone in a Tomato–Cucumber Double Cropping System

    OpenAIRE

    Morris, Kelly A.; Langston, David B.; DICKSON, Donald W.; Davis, Richard F.; Timper, Patricia; Noe, James P.

    2015-01-01

    Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato–cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased r...

  12. "Storm Alley" on Saturn and "Roaring Forties" on Earth: two bright phenomena of the same origin

    Science.gov (United States)

    Kochemasov, G. G.

    2009-04-01

    "Storm Alley" on Saturn and "Roaring Forties' on Earth: two bright phenomena of the same origin. G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru Persisting swirling storms around 35 parallel of the southern latitude in the Saturnian atmosphere and famous "Roaring Forties" of the terrestrial hydro- and atmosphere are two bright phenomena that should be explained by the same physical law. The saturnian "Storm Alley" (as it is called by the Cassini scientists) is a stable feature observed also by "Voyager". The Earth's "Roaring Forties" are well known to navigators from very remote times. The wave planetology [1-3 & others] explains this similarity by a fact that both atmospheres belong to rotating globular planets. This means that the tropic and extra-tropic belts of these bodies have differing angular momenta. Belonging to one body these belts, naturally, tend to equilibrate their angular momenta mainly by redistribution of masses and densities [4]. But a perfect equilibration is impossible as long as a rotating body (Saturn or Earth or any other) keeps its globular shape due to mighty gravity. So, a contradiction of tropics and extra-tropics will be forever and the zone mainly between 30 to 50 degrees in both hemispheres always will be a zone of friction, turbulence and strong winds. Some echoes of these events will be felt farther poleward up to 70 degrees. On Earth the Roaring Forties (40˚-50˚) have a continuation in Furious Fifties (50˚-60˚) and Shrieking (Screaming) Sixties (below 60˚, close to Antarctica). Below are some examples of excited atmosphere of Saturn imaged by Cassini. PIA09734 - storms within 46˚ south; PIA09778 - monitoring the Maelstrom, 44˚ north; PIA09787 - northern storms, 59˚ north; PIA09796 - cloud details, 44˚ north; PIA10413 - storms of the high north, 70˚ north; PIA10411 - swirling storms, "Storm Alley", 35˚ south; PIA10457 - keep it rolling, "Storm Alley", 35˚ south; PIA10439 - dance

  13. An Ultrasonic System for Weed Detection in Cereal Crops

    Directory of Open Access Journals (Sweden)

    Dionisio Andújar

    2012-12-01

    Full Text Available Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group

  14. Integrated Crop/Livestock Systems Research: Practical research considerations

    Science.gov (United States)

    There are many reasons for the paucity of integrated crop/livestock research and associated publications. Integrated/crop livestock experiments that involve adequate treatments and replications, as perceived by both crop and animal scientists, require large acreages, many animals, considerable labor...

  15. Wireless computer vision system for crop stress detection

    Science.gov (United States)

    Knowledge of soil water deficits, crop water stress, and biotic stress from disease or insects is important for optimal irrigation scheduling and water management. Crop spectral reflectances provide a means to quantify visible and near infrared thermal crop stress, but in-situ measurements can be cu...

  16. Development of a Vehicle-Mounted Crop Detection System

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhen-jiang; SUN Hong; LI Min-zan; ZHANG Feng; LI Xiu-hua

    2014-01-01

    In order to monitor plant chlorophyll content in real-time, a new vehicle-mounted detection system was developed to measure crop canopy spectral characteristics. It was designed to work as a wireless sensor network with one control unit and one measuring unit. The control unit included a personal digital assistant (PDA) device with a ZigBee wireless network coordinator. As the coordinator of the whole wireless network, the control unit was used to receive, display and store all the data sent from sensor nodes. The measuring unit consisted of several optical sensor nodes. All the sensor nodes were mounted on an on-board mechanical structure so that the measuring unit could collect the canopy spectral data while moving. Each sensor node contained four optical channels to measure the light radiation at the wavebands of 550, 650, 766, and 850 nm. The calibration tests veriifed a good performance in terms of the wireless transmission ability and the sensor measurement precision. Both stationary and moving ifeld experiments were also conducted in a winter wheat experimental ifeld. There was a high correlation between chlorophyll content and vegetation index, and several estimation models of the chlorophyll content were established. The highest R2 of the estimation models was 0.718. The results showed that the vehicle-mounted crop detection system has potential for ifeld application.

  17. Frações oxidáveis do carbono orgânico em argissolo vermelho-amarelo sob sistema de aleias Oxidizable organic carbon fractions of an ultisol under an alley cropping system

    OpenAIRE

    Arcângelo Loss; Marcos Gervasio Pereira; Edilene Pereira Ferreira; Lauana Lopes dos Santos; Sidinei Julio Beutler; Altamiro Souza de Lima Ferraz Júnior

    2009-01-01

    O aporte de matéria orgânica ao solo via leguminosas em sistemas de aleias pode ser uma alternativa para o uso sustentável do trópico úmido. O objetivo deste trabalho foi comparar o aporte de matéria orgânica facilmente oxidável proveniente da combinação de resíduos de diferentes leguminosas utilizadas em sistemas de condução de culturas em aleias sob Argissolo Vermelho-Amarelo. Foram avaliadas duas espécies de leguminosas de alta qualidade de resíduos - leucena (Leucaena leucocephala) e guan...

  18. Arbuscular Mycorrhizal Fungal Associations in Biofuel Cropping Systems

    Science.gov (United States)

    Murray, K.

    2012-12-01

    Arbuscular mycorrhizal fungi (AMF) are soil microorganisms that play an important role in delivering nutrients to plant roots via mutualistic symbiotic relationships. AMF root colonization was compared between four different biofuel cropping systems in an effort to learn more about the factors that control colonization. The four biofuel systems sampled were corn, switchgrass, prairie, and fertilized prairie. We hypothesized that prairie systems would have the highest levels of AMF colonization and that fertilization would result in lower AMF colonization rates. Roots were sampled from each system in early June and mid-July. Soil P and pH were also measured. In contrast to our hypothesis, corn systems had 70-80% colonization and the unfertilized prairie system had ~35% (P=0.001) in June. In July, all systems saw an increase in colonization rate, but corn roots still had significantly more AMF colonization than unfertilized prairie (P=0.001). AMF colonization in the unfertilized prairie system increased ~55% from June to July. In contrast to previous work, AMF colonization rates were highest in systems with the greatest availability on P and N (corn systems). These results indicate that seasonal differences in root growth were more influential to AMF root colonization than soil nutrient availability.

  19. Environmental assessment of two different crop systems in terms of biomethane potential production.

    Science.gov (United States)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. PMID:23994820

  20. Nitrogen dynamics and balance in a lowland rice cropping system

    International Nuclear Information System (INIS)

    Two field experiments were conducted during consecutive dry and wet seasons of 1997 in central Thailand to determine the effects of rice-residue management on the fate and use efficiency of urea-N broadcast to lowland rice (70 kg N ha-1). Ammonia (NH3) losses during the 11 days following urea application were 7, 12, and 8% of the applied N from no-residue, burned-residue, and residue-treated plots, respectively, whereas the cumulative percentage of N2+N2O emission from added urea corresponded to 10, 4.3, and nil, respectively. During the first crop, only about 9% of the fertilizer N applied was recovered in grain and straw. Appreciable N fertilizer was either lost from the soil-plant system (27-33%) or remained in the soil at the end of the growing season (50- 53%). Residual fertilizer-N recovery in the second crop was only about 5% of what was initially applied. (author)

  1. Speech by CPAFFC Vice President Li Xiaolin at Commemorative Meeting Of Rewi Alley (Excerpts)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In Beijing on September 7, we held the commemorative meeting marking Rewi Alley’s 110th anniversary of birth, 80th anniversary of arrival in China and 20th anniversary of passing. Today we are holding this grand meeting here to cherish the memory of this renowned writer, poet, educator and social activist, our old friend Rewi Alley.

  2. "Manana Is Soon Enough for Me": Latin America through Tin Pan Alley's Prism.

    Science.gov (United States)

    Aiex, Nola Kortner

    In order to examine the vision of Latin America transmitted to the American public in Tin Pan Alley's popular songs in the first half of the twentieth century, a study analyzed nearly 50 songs. The songs were grouped into five categories: (1) songs which describe Latin locales; (2) songs which are constructed around a Latin woman's name; (3) songs…

  3. Environmental assessment of two different crop systems in terms of biomethane potential production

    International Nuclear Information System (INIS)

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  4. Environmental assessment of two different crop systems in terms of biomethane potential production

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  5. Using the GENESYS model quantifying the effect of cropping systems on gene escape from GM rape varieties to evaluate and design cropping systems

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2004-01-01

    Full Text Available Gene flow in rapeseed is a process taking place both in space and over the years and cannot be studied exclusively by field trials. Consequently, the GENESYS model was developed to quantify the effects of cropping systems on transgene escape from rapeseed crops to rapeseed volunteers in neighbour plots and in the subsequent crops. In the present work, this model was used to evaluate the risk of rape harvest contamination by extraneous genes in various farming systems in case of co-existing GM, conventional and organic crops. When 50 % of the rape varieties in the region were transgenic, the rate of GM seeds in non-GM crop harvests on farms with large fields was lower than the 0.9 % purity threshold proposed by the EC for rape crop production (food and feed harvests, but on farms with smaller fields, the threshold was exceeded. Harvest impurity increased in organic farms, mainly because of their small field size. The model was then used to evaluate the consequences of changes in farming practices and to identify those changes reducing harvest contamination. The effects of these changes depended on the field pattern and farming system. The most efficient practices in limiting harvest impurity comprised improved set-aside management by sowing a cover crop in spring on all set-aside fields in the region, permanently banning rape crops and set-aside around seed production fields and (for non-GM farmers clustering farm fields to reduce gene inflow from neighbour fields.

  6. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy;

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...

  7. Can new organic cropping systems produce vegetables with lower use of resources and losses of nitrate?

    OpenAIRE

    Kristensen, Hanne L.; Xie, Yue; Bavec, F.; von Fragstein, Peter; Campanelli, Gabriele; Ortolani, Livia; Canali, Stefano

    2014-01-01

    To secure a sustainable production of plant foods for the future, there is a need to develop new cropping systems. These systems should have reduced needs of external resources and reduced environmental impact, while product yields are maintained at high level. Therefore, field trials were performed in Italy, Slovenia, Germany and Denmark with the aim to study new organic cropping systems for production of vegetable crops; and the systems’ effect on labor and energy consumption and the risk o...

  8. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops

    Science.gov (United States)

    In this report we use Terminal Restriction Fragment Length Polymorphisms (TRFLP) in a tomato production system to “finger printing” the soil microbial community structure with Phylum specific primer sets. Factors influencing the soil microbes are a cover crop of Hairy Vetch (Vicia villosa) or Rye (...

  9. Sustainable cropping systems using cover crops, native species field borders and riparian buffers for environmental quality

    Science.gov (United States)

    This presentation will focus on the application of sustainable management practices for no-till cultivation using cover crops, native species field borders, and fast growing woody species integrated in vegetative strips and riparian buffers. An ongoing field project at the Bradford Research and Exte...

  10. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    Science.gov (United States)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  11. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  12. Diversity of segetal weeds in pea (Pisum sativum L. depending on crops chosen for a crop rotation system

    Directory of Open Access Journals (Sweden)

    Marta K. Kostrzewska

    2014-04-01

    Full Text Available This study, lasting from 1999 to 2006, was conducted at the Research Station in Tomaszkowo, which belongs to the University of Warmia and Mazury in Olsztyn. The experiment was set up on brown rusty soil classified as good rye complex 5 in the Polish soil valuation system. The analysis comprised weeds in fields sown with pea cultivated in two four-field crop rotation systems with a different first crop: A. potato – spring barley – pea – spring barley; B. mixture of spring barley with pea – spring barley – pea – spring barley. Every year, at the 2–3 true leaf stage of pea, the species composition and density of individual weed species were determined; in addition, before harvesting the main crop, the dry matter of weeds was weighed. The results were used to analyze the constancy of weed taxa, species diversity, and the evenness and dominance indices, to determine the relationships between all biological indicators analyzed and weather conditions, and to calculate the indices of similarity, in terms of species composition, density and biomass of weeds, between the crop rotations compared. The species richness, density and biomass of weeds in fields with field pea were not differentiated by the choice of the initial crop in a given rotation system. In the spring, the total number of identified taxa was 28 and it increased to 36 before the harvest of pea plants. Chenopodium album and Echinochloa crus-galli were the most numerous. Chenopodium album, Echinochloa crus-galli, Sonchus arvensis, Fallopia convolvulus and Viola arvensis were constant in all treatments, regardless of what the first crop in rotation was or when the observations were made. The species diversity and the evenness and species dominance indices varied significantly between years and dates of observations. Species diversity calculated on the basis of the density of weed species was higher in the rotation with a mixture of cereals and legumes, while that calculated on

  13. Alley Cropping: An Alternative to Slash and Burn in the Slopelands of the Mizo Hills

    Science.gov (United States)

    Sailo, Andrew

    2011-01-01

    Population pressure in the Mizo Hills, a small mountainous region in northeast India, has shortened fallow periods of slash-and-burn (S&B) plots substantially, making its practice unsustainable. Conventional farming and modern technology cannot be applied in this remote tropical region due to its topography; hence, most farmers continue practicing…

  14. DayCent modelling of Swiss cropping systems

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Büchi, Lucie; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Six, Johan

    2016-04-01

    There is a growing need to identify and evaluate sustainable greenhouse gas (GHG) mitigation options, their bio-economic feasibility in the agricultural sector, and support implementation of agricultural GHG mitigation activities that are an integral part of climate change strategies. In recent years, several ecosystem biogeochemical process-based models and comprehensive decision making tools integrated with these models have been developed. The DayCent model simulates all major ecosystem processes that affect soil C and N dynamics, including plant production, water flow, heat transport, SOC decomposition, N mineralization and immobilization, nitrification, denitrification, and methane oxidation. However, if the model is to be reliably used for identification of GHG mitigation options and climate change strategies across the EU agricultural regions, it requires site- and region-specific calibration and evaluation. Here, we calibrated and validated the model to Swiss climate and soil conditions and management options using available long-term experimental data. Data on crop productivity, soil organic carbon and N2O emissions were derived from four field sites located in Thervil (1977-2013), Frick (2003-2013), Changins (1971-2013), and Reckenholz (2009-2013) that have evaluated the effects of agricultural input systems (specifically, organic, biodynamic, and conventional with and without manure additions) and soil management options (various tillage practices and cover cropping). The preliminary results show that the DayCent model was able to reproduce 76% of variability in the crop productivity (n = 1 316) and 75% variability in measured soil organic carbon (n = 402) across all long-term trials. Model calibration was evaluated against independent proportions of the data. The uncertainty in model predictions induced by model structure and uncertainty in the measured data still needs to be further evaluated using the Monte Carlo approach. The calibrated model will be

  15. Impacts and adaptation of European crop production systems to climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Trnka, M; Kersebaum, K C;

    2011-01-01

    increased incidents of heat waves and droughts without possibilities for effectively shifting crop cultivation to other parts of the years. A wide range of adaptation options exists in most European regions to mitigate many of the negative impacts of climate change on crop production in Europe. However...... the: (1) main vulnerabilities of crops and cropping systems under present climate; (2) estimates of climate change impacts on the production of nine selected crops; (3) possible adaptation options as well as (4) adaptation observed so far. In addition we focused on the overall awareness and presence...... questionnaires show a surprisingly high proportion of negative expectations concerning the impacts of climate change on crops and crop production throughout Europe, even in the cool temperate northern European countries. The expected impacts, both positive and negative, are just as large in northern Europe as in...

  16. Spatiotemporal simulation of changes in rice cropping systems in the Mekong Delta, Vietnam

    Science.gov (United States)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh

    2015-04-01

    With the dramatic development of agro-economics, population growth, and climate change, the rice cropping systems in the Vietnamese Mekong Delta (VMD) have been undergoing a major change. Information on rice cropping practices and changes in cropping systems is critical for policymakers to devise successful strategies to ensure food security and rice grain exports for the country. The primary objective of this research is to map rice cropping systems and predict future dynamics of rice cropping systems using MODIS time-series data from 2002 to 2012. A phenology-based classification approach was applied for the classification and assessment of rice cropping systems. Then, the Cellular Automata-Markov (CA-Markov) model was used to simulate future changes in rice-cropping activities. To obtain precise prediction, a calibration of CA-Markov were implemented by using a series of rice crop maps. The comparisons between the classification maps and the ground reference data indicated satisfactory results with overall accuracies above 81%, and Kappa coefficients above 0.75, respectively. The simulated maps of rice cropping systems for 2010-2012 were extrapolated by CA-Markov model based on the trend of rice cropping systems during 2002-2009. The comparison between the predicted scenarios and the classification maps for 2010-2012 presents a reasonably close agreement. In summary, the CA-Markov model with a long-term calibration confirmed the validity of the approach for dynamic modeling of changes in rice cropping systems in the study region. The results obtained from this study demonstrate that the approach produced satisfactory results in terms of accuracy, quantitative forecast, and spatial pattern changes. Thus, projections of future changes would provide useful information for the agricultural policymakers in respect to formulating effective management strategies of rice cropping practices in VMD.

  17. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design

    OpenAIRE

    Gaba, Sabrina; Lescourret, Francoise; Boudsocq, Simon; Enjalbert, Jerome; Hinsinger, Philippe; Journet, Etienne-Pascal; Navas, Marie-Laure; Wéry, Jacques; Louarn, Gaëtan; Malézieux, Eric; Pelzer, Elise; Prudent, Marion; Ozier-Lafontaine, Harry

    2015-01-01

    Provisioning services, such as the production of food, feed, and fiber, have always been the main focus of agriculture. Since the 1950s, intensive cropping systems based on the cultivation of a single crop or a single cultivar, in simplified rotations or monocultures, and relying on extensive use of agrochemical inputs have been preferred to more diverse, self-sustaining cropping systems, regardless of the environmental consequences. However, there is increasing evidence that such intensive a...

  18. Adaptation of the European crop growth monitoring system to the Belgian conditions.

    OpenAIRE

    Buffet, D.; Dehem, Didier; Wouters, K.; Tychon, Bernard; Oger, Robert; Veroustraete, F.

    1999-01-01

    The aim of the Belgian Crop Growth Monitoring System (B-CGMS) is the elaboration of an integrated information system predicting reliable, timely and objective estimates of crop yields and monitoring calamity sites at regional scales. Seven major crops are concerned by the project : winter wheat, winter barley, fodder maize, winter rape seed, potatoes, sugar beet and permanent meadow. The main tasks in the adaptation of the European model come down to the completion and the improvement of the ...

  19. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts . A review

    OpenAIRE

    Triomphe, Bernard; Affholder, François; Da Silva, Fernando Antonio Macena; Corbeels, Marc; Xavier, José Humberto Valadares; Lahmar, Rabah; Recous, Sylvie; BERNOUX, MARTIAL,; Blanchart, Eric; Mendes, Ieda de Carvalho; de Tourdonnet, Stephane

    2013-01-01

    Nowadays, in a context of climate change, economical uncertainties and social pressure to mitigate agriculture externalities, farmers have to adopt new cropping systems to achieve a sustainable and cost-effective grain production. Conservation agriculture consists of a range of cropping systems based on a combination of three main principles: (1) soil tillage reduction, (2) soil protection by organic residues and (3) diversification in crop rotation. Conservation agriculture has been promoted...

  20. Effects of Cropping System Change for Paddy Field with Double Harvest Rice on the Crops Growth and Soil Nutrient

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of the cropping system change for paddy field with double harvest rice on crops growth and soil nutrient in red soil were studied. The results indicated that the economic benefit and the ratio of the output to input were all increased in terms of the market price for the crops under various treatments. The greatest economic benefit was obtained in the treatment of paddy-upland rotation, and the corresponding economic benefit was increased by 34.7, 21.4, and 2.2% in comparison with that of control (rice-rice-astragali), pasture, and upland cropping treatments. The economic benefits in pasture and upland cultivation treatments were increased by 11.0 and 31.8%, respectively, when compared with that of the control treatment (CK). The ratio of output to input in pasture, paddy-upland rotation, and upland cropping treatments was enhanced by 0.9, 0.6, and 0.3, respectively, in comparison with that of control. To grow pasture is beneficial for improving soil fertility since the contents of soil organic matter, total nitrogen, total phosphorus, and available phosphorus are all enhanced significantly. However, the concentrations of the soil available nitrogen, the total potassium, the available potassium were somewhat reduced in all the treatments, suggesting that increasing the input of nitrogen,particularly potassium, was necessary under the present fertilization level. Based on the conditions of fertility, climate,cultivation, and management of paddy field with double harvest rice in red soil regions, it is feasible to alter the cultivation system of paddy field with bad irrigation condition. In particular, cultivation systems such as pasture and paddy-upland rotation can be selected to extend because better economic benefit and improvement of soil fertility in the purpose region were obtained.

  1. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost;

    2010-01-01

    Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year....... The main objective of this study was to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticum aestivum L.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study...... was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha−1 in the form of NH4NO3, while the organic rotations received 100...

  2. Supply of wood-based bioenergy sources by means of agro-forestry systems; Bereitstellung von holzartigen Bioenergietraegern durch Agroforstsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Christian; Quinkenstein, Ansgar; Freese, Dirk [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl fuer Bodenschutz und Rekultivierung; Baerwolff, Manuela [Thueringer Landesanstalt fuer Landwirtschaft (Germany)

    2011-07-01

    Because of the initiated energy revolution and the associated increasing demand for woody biomass in Germany, the production of woody crops on agricultural sites is increasingly gaining in importance. In this context, agroforestry systems provide a promising option to cultivate simultaneously fast growing tree species and annual crops on the same field and to produce woody biomass and conventional products at the same time. Agroforestry systems in which hedgerows of fast growing tree species are established on agricultural sites in a regular pattern are called as alley cropping systems (ACS). These can be managed as low input systems and thus provide several ecological benefits. The cultivation of trees results in an enhanced humus accumulation in the soil and affects the quality of surface as well as percolating waters in a positive way. Additionally, ACS alter the microclimatic conditions at the site, from which the conventional crops cultivated in the alleys between the tree stripes benefit. However, from an economic point of view the production of woody crops with ACS is not generally preferable to conventional agriculture. The positive effects of ACS are most pronounced on marginal sites and, consequently, ACS are currently economically unfavorable compared to conventional agriculture on fertile soils. However, on unfertile, dry sites, such as can be found at a large scale in the Lusatian post-mining landscapes, ACS can be an ecologically and economically promising land-use alternative.

  3. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    Science.gov (United States)

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  4. Long-term effects of cropping system on N2O emission potential

    OpenAIRE

    Petersen, Søren O; Ambus, Per; Elsgaard, Lars; Schjønning, P.; Jørgen E. Olesen

    2013-01-01

    The potential for N2O emissions outside the main growing season may be influenced by long-term effects of cropping system. This was investigated by collecting intact soil cores (100 cm3, 0-4 cm depth) under winter wheat in three organic cropping systems and a conventional reference within a long-term crop rotation experiment. Average annual inputs of C in crop residues and manure ranged from 1.7 to 3.3 Mg ha-1. A simulated freeze-thaw cycle resulted in a flush of CO2 during the first 48 h, wh...

  5. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  6. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    Science.gov (United States)

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  7. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems

    Directory of Open Access Journals (Sweden)

    Moritz eReckling

    2016-05-01

    Full Text Available Europe’s agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2 % of the arable land and more than 70 % of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 % and 33 % and N fertilizer use by 24 % and 38 % in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22 % in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  8. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    Science.gov (United States)

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping. PMID:26572032

  9. Nuances and nuisances : crop production intensification options for smallholder farming systems of southern Africa

    OpenAIRE

    Rusinamhodzi, L.

    2013-01-01

    Key words: crop production, intensification, extensification, farming systems, tradeoff analysis, maize, legume, manure, fertiliser, southern Africa Soil fertility decline and erratic rainfall are major constraints to crop productivity on smallholder farms in southern Africa. Crop production intensification along with efficient use of chemical fertiliser is required to produce more food per unit area of land, while rebuilding soil fertility. The objective of this thesis was to identify approp...

  10. A WEB BASED TOMATO CROP EXPERT INFORMATION SYSTEM BASED ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Prasad Babu M.S

    2010-03-01

    Full Text Available Tomato is now the most widely grown vegetable crop in World. It is grown throughout the world in farm gardens, small home-gardens, and by market gardeners for fresh consumption as well as for processingpurposes. This Tomato crop expert advisory system is aimed at a collaborative venture with eminent Agriculture Scientist and Experts in the area of Tomato Plantation with an excellent team of computer Engineers, programmers and designers. This Expert System contains two main parts one is Tomato Information System and the other is Tomato Crop Expert System where in Information system, the user can get all the static information about different species, Diseases,Symptoms, chemical controls, Preventions, Pests, Virus of Tomato fruits and plants. In Advisory System, the user is having aninteraction with the expert system online; the user has to answer the questions asked by the Expert System. Depends on the response by the user the expert system decides the disease and displays its control measure of disease. This Tomato Crop Information Expert System deals with different varieties of Tomato Crop, Identification of various diseases generally occurs to tomato crop based on the symptoms.This Rule based Expert System validates the symptoms of the tomato crop using the techniques of ID3 Algorithm and some optimization algorithms. This is a Web based Expert System with java as the front end and SQL as the backend.

  11. Cropping systems and control of soil erosion in a Mediterranean environment

    Science.gov (United States)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  12. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18......Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals in...

  13. Systemic Risk in U.S. Crop Reinsurance Programs

    OpenAIRE

    Mason, Chuck; Hayes, Dermot J.; Sergio H. Lence

    2003-01-01

    This study develops a method to estimate the probability density function of the Federal Risk Management Agency's (RMA's) net income from reinsuring crop insurance for corn, wheat, and soybeans. When calibrated using 1997 data, results from the advocated method show that in 1997 there was a 5% probability RMA would have had to reimburse at least $1 billion to insurance companies, and the fair value of RMA's insurance services to insurance firms in 1997 was $78.7 million. Key words: crop insur...

  14. A Greenhouse Tomato Crop Grey Mould Disease Early Warning System

    OpenAIRE

    Neto, M; Baptista, F.J.; L..M. Navas; Ruiz, G.

    2011-01-01

    Tomato is a very important crop in the Mediterranean region in general and in Portugal in particular being the production for fresh consumption made essentially in greenhouses. Botrytis cinerea Pers.: Fr. is the causal agent of grey mould disease and is one of the most important diseases affecting greenhouse tomato crops, high relative humidity and the presence of free water on the plant surfaces have been recognized as favourable to the development of this disease. The avai...

  15. Assessing nutritional diversity of cropping systems in African villages.

    Directory of Open Access Journals (Sweden)

    Roseline Remans

    Full Text Available BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD, has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are

  16. Long term effects of cover crops on weeds in Mediterranean low input arable management systems

    OpenAIRE

    Carlesi, Stefano; Antichi, Daniele; Bigongiali, Federica; Mazzoncini, Marco; Barberi, Paolo

    2015-01-01

    The introduction of cover crops (CC) in crop rotations is a key tool to control weed and ameliorate soil conditions in low input arable systems. In 1992 a long term experiment (LTE) was set up at Centre for Agri-environmental Research “E. Avanzi (CIRAA), University of Pisa to determine the combined effect of tillage intensity, nitrogen fertilization levels and CC types on soil quality, crop yield and weed communities. The LTE is based on 4-year crop rotation (maize, durum wheat, sunflowe...

  17. Greenhouse Gas Mitigation Economics for Irrigated Cropping Systems in Northeastern Colorado

    Science.gov (United States)

    Recent soil and crop management technologies have potential for mitigating greenhouse gas emissions. However, these management strategies must be profitable if they are to be adopted by producers. The economic feasibility of reducing net greenhouse gas emissions in irrigated cropping systems was eva...

  18. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Science.gov (United States)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  19. The Myth of Coexistence: Why Transgenic Crops Are Not Compatible With Agroecologically Based Systems of Production

    Science.gov (United States)

    Altieri, Miguel

    2005-01-01

    The coexistence of genetically modified (GM) crops and non-GM crops is a myth because the movement of transgenes beyond their intended destinations is a certainty, and this leads to genetic contamination of organic farms and other systems. It is unlikely that transgenes can be retracted once they have escaped, thus the damage to the purity of…

  20. An Assessment of some Fertilizer Recommendations under Different Cropping Systems in a Humid Tropical Environment

    OpenAIRE

    Fondufe, EY.; Eneji, AE.; Agboola, AA.; Yamamoto, S.; Honna, T

    2001-01-01

    Studies were carried out to determine the effects of four fertilizer recommendation systems (bianket recommendation, soil test recommendation, recommendation based on nutrient supplementation index and unfertilized control) on five cropping systems (sole cassava, maize, melon, cassava + maize and cassava + maize + melon). The experiment was a split-plot in randomised complete block design, with fertilizer recommendation systems in main plots and cropping systems in subplots. Observations were...

  1. Comparison of Soil Respiration in Typical Conventional and New Alternative Cereal Cropping Systems on the North China Plain

    OpenAIRE

    Gao, B; Ju, X.T.; Su, F; Gao, F. B.; Q. S. Cao; Oenema, O.; P. Christie; Chen, X. P.; F. S. Zhang

    2013-01-01

    We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year - Con. W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. opti...

  2. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato.

    Science.gov (United States)

    Larkin, Robert P; Honeycutt, C Wayne

    2006-01-01

    ABSTRACT Eight different 3-year cropping systems, consisting of soybean-canola, soybean-barley, sweet corn-canola, sweet corn-soybean, green bean-sweet corn, canola-sweet corn, barley-clover, and continuous potato (non-rotation control) followed by potato as the third crop in all systems, were established in replicated field plots with two rotation entry points in Presque Isle, ME, in 1998. Cropping system effects on soil microbial community characteristics based on culturable soil microbial populations, single carbon source substrate utilization (SU) profiles, and whole-soil fatty acid methyl ester (FAME) profiles were evaluated in association with the development of soilborne diseases of potato in the 2000 and 2001 field seasons. Soil populations of culturable bacteria and overall microbial activity were highest following barley, canola, and sweet corn crops, and lowest following continuous potato. The SU profiles derived from BIOLOG ECO plates indicated higher substrate richness and diversity and greater utilization of certain carbohydrates, carboxylic acids, and amino acids associated with barley, canola, and some sweet corn rotations, indicating distinct differences in functional attributes of microbial communities among cropping systems. Soil FAME profiles also demonstrated distinct differences among cropping systems in their relative composition of fatty acid types and classes, representing structural attributes of microbial communities. Fatty acids most responsible for differentiation among cropping systems included 12:0, 16:1 omega5c, 16:1 omega7c, 18:1 omega9c, and 18:2omega6c. Based on FAME biomarkers, barley rotations resulted in higher fungi-to-bacteria ratios, sweet corn resulted in greater mycorrhizae populations, and continuous potato produced the lowest amounts of these and other biomarker traits. Incidence and severity of stem and stolon canker and black scurf of potato, caused by Rhizoctonia solani, were reduced for most rotations relative to the

  3. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees;

    2015-01-01

    Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops......) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  4. Comparative Economic Study of Mixed and Sole Cassava Cropping Systems in Nigeria

    Directory of Open Access Journals (Sweden)

    J. O. Ajayi

    2014-12-01

    Full Text Available Agricultural economists continue to argue if mixed or sole cassava cropping system is more economically profitable and in terms of yield and returns to farmers particularly for Nigeria which is the world’s largest producer of the crop. The study was carried out to analyse the economics comparatively of mixed and sole cassava cropping systems in Nigeria. The study made use of both primary and secondary data. Primary data were collected with the aid of well-structured questionnaires assisted with interview schedules. Field data collection was conducted between March and April, 2014. Multi-stage sampling technique was used to select four hundred and eighty (480 respondents across the six major cassava-producing states in Nigeria (Benue, Cross Rivers, Enugu, Kogi, Ondo, and Oyo. Data collected were analysed using descriptive statistics and comparative budgetary analysis. The study showed that mixed cropping system is more male-dominated than sole cropping system. The study also revealed that sole cassava cropping system is more economically profitable than mixed cassava cropping system while the later provides opportunities of all-year-round farm incomes to serve as a better poverty- alleviating mechanism.

  5. Controlled Drainage As Measure to Reduce Nitrate Leaching in a Wheat Cropping System

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Hvid, Søren Kolind; Thomsen, Ingrid Kaag;

    2013-01-01

    Subsurface drainage of soil to avoid water logging is a prerequisite for crop cultivation for a large proportion of the agricultural land, and approximately 50% of the Danish agricultural area is artificially drained. Multifunctional drain systems can be effective measures to reduce losses...... for the growing crop, and nutrient exports are reduced. CD has been shown to diminish leaching losses of soluble nutrients. So far CD has only been tested for spring sown crops but widespread implementation on drained clayey soils would rely on its adaption to winter cereal production systems. A new project on CD...... applied at four winter cropped fields in Denmark investigates how effects of anaerobic conditions created by CD will affect chemical/biological processes in the submerged soil, root growth, crop production, and nutrient losses. Nitrification is expected to be retarded by wet soils during winter...

  6. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  7. Integrating insect-resistant GM Crops in pest management systems

    Science.gov (United States)

    In 2006, GM cotton and maize with insect resistance were grown on 12.1 and 20.1 million hectares in 9 and 13 countries, respectively. These insect resistant GM crops produce various Cry toxins from Bacillus thuringiensis (Bt) and provide highly selective and effective control of lepidopteran and col...

  8. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  9. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  10. Linking N Cycling to Microbial Function Within Soil Microenvironments in Cover Crop Systems

    Science.gov (United States)

    Kong, A. Y.; Scow, K. M.; Hristova, K.; Six, J.

    2007-12-01

    Cover crops have emerged as a crop management strategy to achieve agricultural sustainability and maintain environmental quality. Thus, fundamental knowledge of microbial-mediated C and N cycling is vital to understanding soil organic matter (SOM) dynamics in cover cropped agroecosystems. We investigated the effects of short-term cover crop-C input on N processing by microbial communities within SOM microenvironments and in bulk soil, across a gradient of organic to conventional crop management. We hypothesized that cover crop C and N inputs promote soil aggregation, which increases the abundance of ammonia oxidizing bacteria (AOB) and stimulates greater microbial cycling of N within soil microenvironments, thereby leading to potential increases in N stabilization coupled with decreases in N loss. Our hypothesis was tested on the long-term organic, low-input, and conventional maize-tomato rotations at the Center for Integrated Farming Systems experiment (Davis, CA). We collected soil samples (0-15cm) across the cover crop and subsequent maize growing seasons and then isolated three SOM fractions soil: coarse particulate organic matter (cPOM; >250um), microaggregates (53-250um), and silt-and-clay (genes, amoA and nosZ, were employed to quantify AOB and denitrifier population sizes, respectively. We also measured gross ammonification and nitrification rates in short-term 15N-incubations of the bulk soil to link cover crop induced N cycling to N-transforming bacteria. Total soil C and N concentrations and soil aggregation were higher in the organic than conventional and low-input systems. The amoA and no Z copy numbers g-1 dry soil were highest in the microaggregate fraction and similar between the cPOM and silt-and-clay fractions, among all cropping treatments. Abundances of AOB and denitrifiers were lower in bulk soil from the conventional and low- input than organic system. Our study indicates that long-term, annual cover crop inputs to the organic system lead to

  11. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality

    Directory of Open Access Journals (Sweden)

    Patrick M. Carr

    2013-07-01

    Full Text Available Organic farming has been identified as promoting soil quality even though tillage is used for weed suppression. Adopting zero tillage and other conservation tillage practices can enhance soil quality in cropping systems where synthetic agri-chemicals are relied on for crop nutrition and weed control. Attempts have been made to eliminate tillage completely when growing several field crops organically. Vegetative mulch produced by killed cover crops in organic zero tillage systems can suppress annual weeds, but large amounts are needed for adequate early season weed control. Established perennial weeds are not controlled by cover crop mulch. Integrated weed management strategies that include other cultural as well as biological and mechanical controls have potential and need to be incorporated into organic zero tillage research efforts. Market crop performance in organic zero tillage systems has been mixed because of weed, nutrient cycling, and other problems that still must be solved. Soil quality benefits have been demonstrated in comparisons between organic conservation tillage and inversion tillage systems, but studies that include zero tillage treatments are lacking. Research is needed which identifies agronomic strategies for optimum market crop performance, acceptable levels of weed suppression, and soil quality benefits following adoption of organic zero tillage.

  12. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F;

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction......N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3single bondN leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop...

  13. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  14. Information Collection System of Crop Growth Environment Based on the Internet of Things

    Institute of Scientific and Technical Information of China (English)

    Hua; YU; Guangyu; ZHANG; Ningbo; LU

    2013-01-01

    Based on the technology of Internet of things, for the issues of large amount data acquisition and difficult real time transport in the data acquisition of crop growth environment, this paper designs one information collection system for crop growth environment. Utilizing the range free location mechanism which defines the node position and GEAR routing mechanism give solutions to the problems of node location, routing protocol applications and so on. This system can realize accurate and automatic real time collection, aggregation and transmission of crop growth environment information, and can achieve the automation of agricultural production, to the maximum extent.

  15. Comparative Economic Study of Mixed and Sole Cassava Cropping Systems in Nigeria

    OpenAIRE

    Ajayi, J. O.

    2014-01-01

    Agricultural economists continue to argue if mixed or sole cassava cropping system is more economically profitable and in terms of yield and returns to farmers particularly for Nigeria which is the world’s largest producer of the crop. The study was carried out to analyse the economics comparatively of mixed and sole cassava cropping systems in Nigeria. The study made use of both primary and secondary data. Primary data were collected with the aid of well-structured questionnaires assisted ...

  16. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.

  17. Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system.

    Science.gov (United States)

    Amanullah; Inamullah

    2016-01-01

    Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and crop productivity. One strategy to increase crop productivity under rice-wheat system is balanced application of crop nutrients. Field experiment was conducted to assess the impact of phosphorus (0, 40, 80, 120 kg P ha(-1)) and zinc (0, 5, 10, 15 kg Zn ha(-1)) on the productivity of rice genotypes (fine and coarse) and their residual effects on the grain yield (GY) and its components (YC) of the succeeding wheat crop under rice-wheat cropping system (RWCS) in North Western Pakistan during 2011-12 and 2012-13. After rice harvest in both years, wheat variety "Siren-2010" was grown on the same layout but no additional P, K and Zn was applied to wheat crop in each year. The GY and YC of wheat significantly increased in the treatments receiving the higher P levels (120 > 80 > 40 > 0 kg P ha(-1)) and Zn (15 > 10 > 5 > 0 kg Zn ha(-1)) in the previous rice crop. The residual soil P and Zn contents after rice harvest, GY and YC of wheat increased significantly under low yielding fine genotype (B-385) as compared to the high yielding coarse genotypes (F-Malakand and Pukhraj). The residual soil P and Zn, GY and of wheat increased significantly in the second year as compared with the first year of experiment. These results confirmed strong carry over effects of both P and Zn applied to the previous rice crop on the subsequent wheat crop under RWCS. PMID:27026947

  18. Impact of Organic Crop and Livestock Systems on Earthworm Population Dynamics

    OpenAIRE

    Kotcon, Dr. James

    2008-01-01

    Earthworm population dynamics and diversity were evaluated in long-term farming systems experiments at the West Virginia University Organic Research Farm from 2000-2007. Farming systems included vegetable and field crop rotations, with versus without annual compost amendments. Field crop rotations with livestock included three years of clover-grassland. Earthworms were monitored by hand-sorting soil samples. Aporrectodea caliginosa and Lumbricus rubellus were the most common species obser...

  19. Earthworm Population Density in Sugarcane Cropping System Applied with Various Quality of Organic Matter

    OpenAIRE

    Nurhidayati Nurhidayati; Endang Arisoesilaningsih; Didik Suprayogo; Kurniatun Hairiah

    2012-01-01

    Earthworms population in the soil are greatly impacted by agricultural management, yet little is known about how the quality and quantity of organic matter addition interact in sugarcane cropping system to earthworm population. This study describes the effect of various organic matter and application rates on earthworms in sugarcane cropping system. Earthworms were collected in April, July and December from 48 experimental plots under five kinds of organic matter application : (1) cattle manu...

  20. Information Collection System of Crop Growth Environment Based on the Internet of Things

    OpenAIRE

    Yu, Hua; Zhang, Guangyu; Lu, Ningbo

    2013-01-01

    Based on the technology of Internet of things, for the issues of large amount data acquisition and difficult real time transport in the data acquisition of crop growth environment, this paper designs one information collection system for crop growth environment. Utilizing the range free location mechanism which defines the node position and GEAR routing mechanism give solutions to the problems of node location, routing protocol applications and so on. This system can realize accurate and auto...

  1. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    OpenAIRE

    Fang, Bin; Wang, Guang-huo; Van den Berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology de...

  2. Modeling nitrogen and water management effects in a wheat-maize double-cropping system.

    Science.gov (United States)

    Fang, Q; Ma, L; Yu, Q; Malone, R W; Saseendran, S A; Ahuja, L R

    2008-01-01

    Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields. PMID:18948476

  3. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  4. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    Science.gov (United States)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  5. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter;

    2015-01-01

    Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report the...

  6. Crop water use efficiency following biochar application on maize cropping systems on sandy soils of tropical semiarid eastern Indonesia

    Science.gov (United States)

    Sukartono, S.; Utomo, W.

    2012-04-01

    A field study was conducted to evaluate the effect of biochar on crop water use efficiency under three consecutive maize cropping system on sandy loam of Lombok, eastern Indonesia from December 2010 to October 2011.The treatments tested were: coconut shell- biochar (CSB), cattle dung-biochar (CDB), cattle manure applied at only early first crop (CM1) and cattle manure applied at every planting time (CM2) and no organic amendment as the control. Evaluation after the end of third maize, the application of organic amendments (biochar and cattle manure) slightly altered the pore size distribution resulting changes in water retention and the available water capacity. The available water capacity was relatively comparable between biochar treated soils (0.206 cm3 cm-3) and soil treated with cattle manure applied at every planting time (0.220 cm3 cm-3). Water use efficiency (WUE) of maize under biochars were 9.44 kg/mm (CSB) and 9.24 kg/mm (CDB) while WUE for CM1 and CM2 were 8.54 and 9.97 kg/mm respectively, and control was 8.08 kg/mm. Thus, biochars as well as cattle manure applied at every planting time improved water use efficiency by 16.83% and 23.39 respectively compared to control. Overall, this study confirms that biochar and cattle manure are both valuable amendments for improving water use efficiency and to sustain maize production in the sandy loam soils of semiarid North Lombok, eastern Indonesia. However, unlike bicohar, in order to maintain its posivtive effect, cattle manure should be applied at every planting time, and this make cattle manure application is more costly. Keywords: Biochar, organic management, catle manure, water retention, maize yield

  7. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    Science.gov (United States)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  8. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  9. Development of a growth model-based decision support system for crop management

    Institute of Scientific and Technical Information of China (English)

    ZHU Yan; TANG Liang; LIU Xiaojun; TIAN Yongchao; YAO Xia; CAO Weixing

    2007-01-01

    A growth model-based decision support system for crop management (GMDSSCM) was developed,which integrates process-based models of four different crops-wheat,rice,rape and cotton-and realized decision support function,thus facilitating the simulation and application of the crop models for different purposes.The individual models include six sub models for simulating phase development,organ formation,biomass production,yield and quality formation,soil-crop water relations and nutrient (N,P,K)balance.The implemented system can be used for evaluating individual and comprehensive management strategies based on the results of crop growth simulation under various environments and different genotypes.A stand-alone edition (GMDSSCMA) was established on VC++ and VB platforms by adopting the characteristics of object-oriented and component-based software and with the effective integration and coupling of the growth prediction and decision-making functions.A web-based system (GMDSSCMw) was then further developed on the .net platform using C# language.These GMDSSCM systems have realized dynamic prediction of crop growth and decision making on cultural management,and thus should be helpful for the construction and application of informational and digital fanning system.

  10. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  11. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  12. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China

    International Nuclear Information System (INIS)

    An ecological energetic evaluation is presented in this paper as a complement to economic account for the cropping-grazing system in the Inner Mongolia Autonomous Region in China in the year 2000. Based on Odum's well-known concept of emergy in terms of embodied solar energy as a unified measure for environmental resources, human or animal labors and industrial products, a systems diagram is developed for the crop and livestock productions with arms and sub-arms for free renewable natural resource input, purchased economic investment, yields of and interactive fluxes between the cropping and grazing sub-industries. In addition to conventional systems indices of the emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR) and environmental sustainability index (ESI) introduced for congregated systems ecological assessment with essential implication for sustainability, new indicators of soil emergy cost (SEC), self-support intensity (SSI) and self-support orientation (SSO) are defined to characterize the desertification and internal recycling associated with the special agricultural system. Extensive emergy accounting is made for the cropping-grazing system as a whole as well as for the cropping and grazing subsystems. The overall cropping-grazing system is shown with outstanding production competence compared with agricultural systems in some other provinces and the national average in China, though confronted with severe desertification associated with soil loss. The production of crops has higher emergy density and yield rate per unit area as well as higher rate of soil loss than grazing system. The soil emergy cost defined as the soil loss emergy divided by the yield emergy is estimated to be of the same value for both of the subsystems, but the grazing activity is with less extraction intensity, leaving rangeland to rest and rehabilitate. Suggestions with regard to the local sustainability and national ecological security in

  13. A Hybrid Neural Network Method for Detecting Structural Change in Oil-Bioenergy Crops Prices System

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2012-09-01

    Full Text Available The present study detects the structural change in oil-bioenergy crops prices system before and during the food crisis of 2007/2008 and financial crisis 2008/2010. In the recent years, rising world crude oil prices lead to increase of bioenergy production around the world. Bioenergy, in turn, affects bioenergy crops price, because it uses these commodities as inputs. We develop a hybrid neural network approach which can test the structural change of the linkages without priori knowledge of the input data distribution. And then we studies price linkages applying the hybrid neural network to two major bioenergy crops prices, including Argentina corn and Brazil soybean, along with two major crude oil price, including West Texas and Brant crude oil. The data consists of 1467 observations from January 2006 to November 2011. The empirical findings confirm that the structures of oil-bioenergy crops prices system change observably during the food crisis and the financial crisis.

  14. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Anna Corsini

    2011-02-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  15. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Barbara Manachini

    2009-03-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  16. Impact of management strategies on the global warming potential at the cropping system level

    International Nuclear Information System (INIS)

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha−1 decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N2O, NO and NH3 flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha−1 reduced the GWP per ha and GJ basis by 18%. • N2O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact

  17. An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems

    Science.gov (United States)

    Whitaker, Laura O.; Leon, Jorge

    1996-01-01

    This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.

  18. A Business Intelligence Approach to Support a Greenhouse Tomato Crop Grey Mould Disease Early Warning System

    OpenAIRE

    Neto, Miguel; Baptista, Fátima; L..M. Navas; Ruiz, G.

    2012-01-01

    This paper presents a Business Intelligence architecture proposal, including data sources, data warehouse, business analytics, and information delivery, to launch an early warning system for greenhouse tomato crop grey mould disease. Tomato is a very important crop in the Mediterranean region in general and in Portugal in particular being the production for fresh consumption made essentially in greenhouses. Botrytis cinerea Pers.: Fr. is the causal agent of grey mould disease and is one...

  19. A GPS Backpack System for Mapping Soil and Crop Parameters in Agricultural Fields

    Science.gov (United States)

    Stafford, J. V.; Lebars, J. M.

    Farmers are having to gather increasing amounts of data on their soils and crops. Precision agriculture metre-by-metre is based on a knowledge of the spatial variation of soil and crop parameters across a field. The data has to be spatially located and GPS is an effective way of doing this. A backpack data logging system with GPS position tagging is described which has been designed to aid a fanner in the manual collection of data.

  20. A Hybrid Neural Network Method for Detecting Structural Change in Oil-Bioenergy Crops Prices System

    OpenAIRE

    Yu Zhao; Yu Zhang; Hong Xu

    2012-01-01

    The present study detects the structural change in oil-bioenergy crops prices system before and during the food crisis of 2007/2008 and financial crisis 2008/2010. In the recent years, rising world crude oil prices lead to increase of bioenergy production around the world. Bioenergy, in turn, affects bioenergy crops price, because it uses these commodities as inputs. We develop a hybrid neural network approach which can test the structural change of the linkages without priori knowledge of th...

  1. Chromolaena odorata fallow in food cropping systems. An agronomic assessment in South-West Ivory Coast.

    OpenAIRE

    Slaats, J.J.P.

    1995-01-01

    In tropical Africa, traditional shifting cultivation can no longer provide sufficient food for the rapidly increasing population, whereas it threatens the remaining forests. An alternative is a fallow system based on the shrub Chromolaena odorata. Food crop cultivation in rotation with this fallow type in Ivory Coast was analysed and options for efficient and sustainable land use were identified. Farmers obtained 1.8 t ha -1maize without external inputs in a three-year fallow-cropping cycle. ...

  2. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year) consistin

  3. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. PMID:26879345

  4. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System

    Science.gov (United States)

    Schwingel, W. R.; Sager, J. C.

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.

  5. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System.

    Science.gov (United States)

    Schwingel, W R; Sager, J C

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system. PMID:11538974

  6. Can we eliminate major tornadoes in Tornado Alley? — Response to the Comments

    Science.gov (United States)

    Tao, R.

    2014-11-01

    Dahl and Markowski are wrong and misleading to claim that the major tornadoes in USA Tornado Alley are not related to the collisions between northbound warm air flow and southbound cold air flow. In addition, they use incompressible and inviscid fluid model for atmosphere in their simulations about the interaction between air wind and the wall. Such approach ignores the basic physics and thus cannot reach any meaningful results. As air is compressible, the collision between the wind and wall will compress air, eventually lead the air density to decrease fast with the height and make the air flow stratified. The viscosity will produce wind shear, turbulent eddies and greatly reduce the wind's forwarding speed. Laboratory experiments and the Nature have all shown that hills with height about 300 m will not block winds completely to change the climate, but can effectively reduce the wind speed, weaken the air mass collisions and eliminate the major tornadoes. All these strongly support the theory that building east-west ranged walls of 300 m high and 50 m wide will eliminate major tornado threat in Tornado Alley.

  7. Efficacy of Fluensulfone in a Tomato-Cucumber Double Cropping System.

    Science.gov (United States)

    Morris, Kelly A; Langston, David B; Dickson, Donald W; Davis, Richard F; Timper, Patricia; Noe, James P

    2015-12-01

    Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato-cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased root galling by 91%, 73%, and 97%, respectively, compared to the untreated control. Tomato plots from the spring were divided into split plots for the fall where the main plots were the spring treatment and the subplots were cucumber either treated with fluensulfone (3.0 kg a.i./ha. via drip irrigation) or left untreated. The fall application of fluensulfone improved cucumber vigor and reduced gall ratings compared to untreated subplots. Fluensulfone reduced damage from root-knot nematodes when applied to the first crop as well as provided additional protection to the second crop when it was applied through a drip system. PMID:26941459

  8. ROLE OF ALLELOPATHY IN THE STIMULATORY AND INHIBITORY EFFECTS OF HAIRY VETCH COVER CROP RESIDUE IN NO-TILLAGE SUSTAINABLE PRODUCTION SYSTEMS

    Science.gov (United States)

    Cover crops can provide multiple benefits to sustainable cropping systems including building soil organic matter, controlling soil and nutrient losses from fields, moderating radiation and moisture exchange, releasing nutrients for subsequent crops, and suppressing weed and pest populations. Many o...

  9. The role of irrigation in the soil-crop system

    Science.gov (United States)

    Széles, Adrienn; Ragán, Péter; Nagy, János

    2015-04-01

    Agricultural production is performed in 85.5% of the total area of Hungary. Yearly average precipitation is 550-600 mm. Due to global warming, flooding, inland inundation and drought are frequent within a year. Extreme weather circumstances pose new challenges for crop producers. The results of long-term field experiments provide guidance to how each production technological intervention affects crop production, average yield and yield security. Examinations were performed on mid-heavy calcareous chenozem soil in a multifactorial small plot long-term field experiment under natural precipitation supply and irrigated circumstances to analyse the effect of irrigation and N fertilisation on soil moisture and maize grain yield. Drought and optimal years were involved in the examination. Six fertiliser treatments were used (0, 30, 60, 90, 120, 150 kg N ha-1) each year. Irrigation was performed with a Valmont linear equipment. Changes in soil moisture balance were examined with TDR-based soil moisture probes in the 0-120 cm profile. Evaluation was performed with SPSS. The moisture profiles of the 1.2 m soil profile show contrasting tendencies in different crop years in both irrigation treatments. In drought years, the 0-0.15 m layer showed the lowest moisture values (8.3-9.6 v/v%), increasing towards deeper layers. The significant (p<0.05) moisture content difference of 11-12 v/v% measured at the 12-leaf-stage constantly decreased by the end of the growing season as soil moisture stock decreased. In wet years, the highest moisture content was observed in the 0.15-0.30 m layer (37-39v/v%), decreasing towards deeper layers (13-16 v/v%). At natural precipitation supply, yield linearly increased until 60 kg ha-1 N in both years, but no yield surplus was obtained above this dose. Our results show that increasing N doses do not always cause yield increase if the water needed for nutrient uptake is limited. In irrigated treatments, the highest statistically significant yield was

  10. Farm Household Economic Model of The Integrated Crop Livestock System: Conceptual and Empirical Study

    Directory of Open Access Journals (Sweden)

    Atien Priyanti

    2007-06-01

    Full Text Available An integrated approach to enhance rice production in Indonesia is very prospectus throughout the implementation of adapted and liable integrated program. One of the challenges in rice crop sub sector is the stagnation of its production due to the limitation of organic matter availability. This provides an opportunity for livestock development to overcome the problems on land fertility through the use of manure as the source of organic fertilizer. Ministry of Agriculture had implemented a program on Increasing Integrated Rice Productivity with an Integrated Crop Livestock System as one of the potential components since 2002. Integrated crop livestock system program with special reference to rice field and beef cattle is an alternative to enhance the potential development of agriculture sector in Indonesia. The implementation on this integrated program is to enhance rice production and productivity through a system involving beef cattle with its goal on increasing farmers’ income. Household economic model can be used as one of the analysis to evaluate the success of the implemented crop livestock system program. The specificity of the farmers is that rationality behavior of the role as production and consumption decision making. In this case, farmers perform the production to meet home consumption based on the resources that used directly for its production. The economic analysis of farmers household can be described to anticipate policy options through this model. Factors influencing farmers’ decisions and direct interrelations to production and consumption aspects that have complex implications for the farmers’ welfare of the integrated crop livestock system program.

  11. Determination of Crop Water Use and Crop Coefficient of Two Hybrids of Sunflower (Euroflor and Sirna) under Drip-Tape Irrigation System

    OpenAIRE

    M. Kiani, M. Gheysari, B. Mostafazadeh-Fard, M. M. Majidi and E. Landi

    2014-01-01

    The purpose of this study was to measure daily and seasonal evapotranspiration and daily crop coefficient of two common varieties of sunflower (Sirna and Euroflor) via drip-tape irrigation system. For this purpose, the sunflower water use was determined by daily monitoring of soil moisture at the depths of 10, 20, 30, 40 and 60 cm, and the crop evapotranspiration (ETC) was measured using volume balance method. According to the equation recommended by FAO, the obtained value of KC for Euroflor...

  12. New climate-proof cropping systems in dry areas of the Mediterranean region

    DEFF Research Database (Denmark)

    Jacobsen, Sven-Erik

    2014-01-01

    A climate-proof cropping system is a system which is able to mitigate the effects of climate change, which often are unpredictable and extreme. The special issue is related to the subject of improving cropping systems in the Mediterranean region, which is one of the regions in the world facing most...... FP7 project entitled 'Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED)' working on climate-proof cropping systems in Morocco, Syria, Turkey and southern Europe, collaborating with UK, Denmark and Australia. The results are valid for other parts of the...... severe consequences of climate changes, under influence of multiple abiotic stresses. These stresses are becoming even more pronounced under changing climate, resulting in drier conditions, increasing temperatures and greater variability, causing desertification. This topic has been addressed in the EU...

  13. Production, Competition Indices, and Nutritive Values of Setaria splendida, Centrosema pubescens, and Clitoria ternatea in Mixed Cropping Systems in Peatland

    Directory of Open Access Journals (Sweden)

    A. Ali

    2013-12-01

    Full Text Available This research was conducted to evaluate production, different competition indices and nutritive value of Setaria splendida, Centrosema pubescens, and Clitoria ternatea in monoculture and mix cropping system on peat soil land. The experiment was set up in a randomized complete block design with five treatments and three replications. The five treatments were: S. splendida sole cropping (SS, C. pubescens sole cropping (CP, C. ternatea sole cropping (CT, S. splendida and C. pubescens mix cropping (SS/CP and S. splendida/C. ternatea mix cropping (SS/CT. The DM yield of S. splendida in mixed cropping with C. pubescens increased 43.4% and in mix cropping with C. ternatea increased 15.7% compared to sole S. splendida. The value of land equivalent ratio of SS/CP (LERSS/CP was >1. The LERSS/CT value was 1. The competition ratio (CR values of S. splendida in both mix cropping were >1. The agressivity (A values of S. splendida in both mix cropping were positive. The crude protein, NDF and ADF content of forage were not affected by mix cropping system. In conclusion, mix cropping in peatland do not affect productivity and nutritive value of S. splendida, C. pubescens, and C. ternatea. S. splendida is more effective in exploiting environmental resources when intercropped with C. pubescens compared to C. ternatea on peatland.

  14. Management of agroforestry systems for enhancing resource use efficiency and crop productivity

    International Nuclear Information System (INIS)

    Agroforestry is a low-input system which combines trees with crops in various combinations or sequences. It is an alternative to intensive cropping systems, which rely on large inputs of manufactured fertilizers and other external inputs to sustain production. Agroforestry also has the potential to reduce risk through diversification of a variety of products, including food, fuelwood and animal fodder. Other perceived benefits include enhanced nutrient and water use efficiencies, reduced nutrient leaching to groundwater and improved soil physical and biological properties. The use of leguminous or actinorhizal trees may further enhance these benefits because of their capacity to fix atmospheric nitrogen. Depending on the type of agroforestry system and the management practices employed, a substantial portion of this fixed nitrogen can be transferred to companion crops and to the soil. In considering the overall productivity of agroforestry systems, it is essential to investigate the competition or complementarity in the capture and partitioning of resources between tree and crop components. This is especially true for nutrients and water, usually the two most limiting factors influencing crop growth. The focus of this coordinated research project (CRP) was to evaluate the efficacy of various agroforestry systems used in Member States in terms of crop productivity, resource use efficiency and improvements in soil properties. The use of isotopes and nuclear techniques was essential for understanding the dynamics of nutrients and water in agroforestry systems. The contribution of nitrogen from fertilizers and leguminous trees to soil and crops was studied using both direct and indirect 15N labelling techniques. The cycling of carbon from trees or crops to soil was studied using natural variations in the 13C signatures of the soils and the different species. The soil moisture neutron probe in conjunction with tensionics was used to monitor soil water status and balance

  15. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    International Nuclear Information System (INIS)

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn–soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn–switchgrass system. A novel triticale–hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops. (letter)

  16. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    Science.gov (United States)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  17. Operationalizing crop monitoring system for informed decision making related to food security in Nepal

    Science.gov (United States)

    Qamer, F. M.; Shah, S. N. Pd.; Murthy, M. S. R.; Baidar, T.; Dhonju, K.; Hari, B. G.

    2014-11-01

    In Nepal, two thirds of the total population depend on agriculture for their livelihoods and more than one third of Gross Domestic Product (GDP) comes from the agriculture sector. However, effective agriculture production across the country remains a serious challenge due to various factors, such as a high degree of spatial and temporal climate variability, irrigated and rain-fed agriculture systems, farmers' fragile social and economic fabric, and unique mountain practices. ICIMOD through SERVIR-Himalaya initiative with collaboration of Ministry of Agricultural Development (MoAD) is working on developing a comprehensive crop monitoring system which aims to provide timely information on crop growth and drought development conditions. This system analyzes historical climate and crop conditions patterns and compares this data with the current growing season to provide timely assessment of crop growth. Using remote sensing data for vegetation indices, temperature and rainfall, the system generated anomaly maps are inferred to predict the increase or shortfall in production. Comparisons can be made both spatially and in graphs and figures at district and Village Developmental Committee (VDC) levels. Timely information on possible anomaly in crop production is later used by the institutions like Ministry of Agricultural Development, Nepal and World Food Programme, Nepal to trigger appropriate management response. Future potential includes integrating data on agricultural inputs, socioeconomics, demographics, and transportation to holistically assess food security in the region served by SERVIR-Himalaya.

  18. Energy, Nutrient and Economic Cross Indicators of Cropping Systems in Northern Italy

    Directory of Open Access Journals (Sweden)

    Nicola Castoldi

    2010-03-01

    Full Text Available Agro-ecological indicators are useful tools to provide synthetic representations of agricultural systems. Simple indicators can be combined to calculate cross indicators, for example efficiencies, calculated as a ratio between two simple indicators. In sustainability studies, efficiency is frequently calculated in energy terms (energy output / energy input; however, other “output” and “input” terms can be used. In this study, we evaluated how the ranking of systems changes when different metrics of agricultural production (economic gross margin vs. energy output and resource use (nutrients inputs and surpluses, fossil energy inputs, economic costs are used. The calculations were carried out for a study area in northern Italy (Sud Milano Agricultural Park, characterised by intensively cultivated arable cropping systems (cereals and forage crops. Crop types were ranked differently when metrics changed. In general, maize (a highly productive crop had good performances when evaluated using the output / input energy ratio, while rice was good when we used the ratios based on gross margin. When energy or monetary outputs were divided by N surplus, all crop types had very similar median values, suggesting a common energetic and economic efficiency of N use. Overall, different cross indicators may provide a different representation of the system studied. This means that it is not possible to provide a unique synthetic evaluation of sustainability, which instead depends on the indicator(s chosen.We conclude that it is very important to clarify the objective of sustainability studies and to select accordingly the most adequate indicators.

  19. The use of seasonal forecasts in a crop failure early warning system for West Africa

    Science.gov (United States)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date

  20. An integrated soil-crop system model for water and nitrogen management in North China.

    Science.gov (United States)

    Liang, Hao; Hu, Kelin; Batchelor, William D; Qi, Zhiming; Li, Baoguo

    2016-01-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364

  1. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal soil depth without restriction for rice root elongation was at least 25 cm from the soil surface. We suggest these values as indicative for optimal physical soil quality when growing rice in fine

  2. A Web Based Sweet Orange Crop Expert System using Rule Based System and Artificial Bee Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Prof.M.S.Prasad Babu,

    2010-06-01

    Full Text Available Citrus fruits have a prominent place among popular and exclusively grown tropical and sub-tropical fruits. Their nature ,multifold nutritional and medicinal values have made them so important. Sweet Orange Crop expert advisory system is aimed at a collaborative venture with eminent Agriculture Scientist and Experts in the area of Sweet Orange Plantation with an excellent team of computer Engineers, Programmers and designers. This Expert System contains two main parts one is Sweet Orange Information System and the other is Sweet Orange Crop Expert System where information system, the user can get all the static information about different species, Diseases, Symptoms, chemical controls, Preventions, Pests, Virus of Sweet Orange fruits and plants. In Advisory System , the user is having an interaction with the expert system online; the user has to answer the questions asked by the Expert System. Depends on the response by the user the expert system decides the disease and displays its control measureof disease. This Sweet Orange Crop Information Expert System deals with different varieties of Sweet Crop, Identification of various diseases generally occurs to Sweet Orange crop based on the symptoms.

  3. Beijing Alley

    Institute of Scientific and Technical Information of China (English)

    LiXiaoke

    2004-01-01

    There are many distinguished artists with work in residence at Beijing's Creation Gallery, but there is one worthy of particular mention - gallery founder Li Xiaoke. Through his work, Li successfully unites elements of western art with traditional Chinese ideas and art theories. His favorite places of inspiration are old Beijing, Tibet, and southern China.

  4. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    Science.gov (United States)

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  5. Genetic Resources of Energy Crops: Biological Systems to Combat Climate Change

    Science.gov (United States)

    Biological systems are expected to contribute to renewable energy production, help stabilize rising levels of green house gases (GHG), and mitigate the risk of global climate change (GCC). Bioenergy crop plants that function as solar energy collectors and thermo-chemical energy storage systems are t...

  6. Effects of cover cropping on soil and rhizosphere microbial community structure in tomato production systems

    Science.gov (United States)

    Black polyethylene film is frequently used in vegetable farming systems to promote rapid warming of the soil in spring, conserve soil moisture, and suppress weeds. Alternative systems have been developed using cover cropping with legumes to provide a weed-suppressive mulch while also fixing nitrogen...

  7. Cropping System Management Impacts on Greenhouse Gas Emissions in the Cool, Humid Northeastern U.S.

    Science.gov (United States)

    Estimating global greenhouse gas (GHG) emissions requires regional measurements be made within different production systems. A long-term potato cropping system experiment established in 2004 in Presque Isle, ME, on a sandy loam soil was designed to contribute to three of the following scenarios rel...

  8. Performance of Organic Grain Cropping Systems in Long-Term Experiments

    OpenAIRE

    Teasdale, John R.; Cavigelli, Michel A.

    2008-01-01

    Organic farming and conventional no-tillage farming systems share many of the same benefits from protecting and improving soils. A review of recent results from two long-term systems experiments in the mid-Atlantic region of the U.S.A. demonstrates that organic cropping systems with organic amendments can increase soil carbon, nitrogen, and yield potential more than conventional no-tillage, despite the use of tillage in organic systems. However, reduced-tillage organic systems present chall...

  9. PERUN system and its application for assessing the crop yield potential of the Czech Republic

    Science.gov (United States)

    Dubrovsky, M.; Zalud, Z.; Eitzinger, J.; Trnka, M.; Semeradova, D.

    2003-04-01

    The main purpose of the first version of the computer system PERUN, which has been developed in 2001-2002 (presented in EGS 2002), is the probabilistic seasonal crop yield forecasting for a given site. The system is based on the crop growth model WOFOST (version 7, slightly modified) and the six-variate version of the stochastic weather generator Met&Roll. The system is now being enhanced to allow assessment of the crop yield potential of a larger area. As this assessment requires a great amount of meteorological, pedological and crop data to be gathered, but these data are not yet all available to the authors, the presentation will rather focus on the methodological aspects and the results of the sensitivity analysis. The presentation will consist of the following points: (i) Overview of the PERUN system. The results of the validation experiments (spring barley and winter wheat at selected Czech locations) will be presented, too. (ii) Methodology used for a spatial assessment. The assessment is based on integrating model crop yields simulated at multiple sub-regions with region-specific climatic and pedological conditions. The input daily weather series are produced by the stochastic generator. The multi-year crop model simulation is performed for each sub-region to assess the mean and variability of the model yields. (iii) Sensitivity of the regional crop production potential to uncertainties in selected input characteristics: crop cultivar, soil type, hydrological characteristics (e.g. amount of available water at the beginning of the simulation), and climatic conditions (e.g temperature, precipitation). In assessing sensitivity to climate, the climatic characteristics will be varied within the range of values typical for the territory of the Czech Republic. The crops applied in the analysis are spring barley and winter wheat. Acknowledgement: The system PERUN has been developed within the frame of project QC1316 sponsored by the Czech National Agency for

  10. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    International Nuclear Information System (INIS)

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  11. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Directory of Open Access Journals (Sweden)

    Diego N. Chavarría

    2016-06-01

    Full Text Available Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L., vetch (Vicia sativa L. and radish (Raphanus sativus L. which were sown in two different mixtures of species: oat and radish mix (CC1 and oat, radish and vetch mix (CC2, with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

  12. Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review

    Directory of Open Access Journals (Sweden)

    William Deen

    2013-02-01

    Full Text Available In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover (Trifolium pratense is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability.

  13. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Tommaso Maggiore

    2011-02-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  14. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    rotations, designed to reduce the reliance on import of external resources significantly. We compared a conventional system (C) and an organic system relying on manure import for soil fertility (O1) to two novel systems (O2 and O3) all based on the same crop rotation. The O2 and O3 systems represented new...... versions of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for...... biodiversity and natural pest regulation in the crops. Reliance on resource import to the systems differed, with average annual import of nitrogen fertilizers of 149, 85, 25 and 25 kg N ha-1 in the C, O1, O2 and O3 systems, respectively. As expected, the crop yields were lower in the organic system. It...

  15. Nuclear techniques in the development of fertilizer practices for multiple cropping systems

    International Nuclear Information System (INIS)

    This document summarizes the results of a coordinated research programme. Eight Member States of the FAO and IAEA carried out a series of field studies aimed at identifying optimum practices for the use of fertilizers in multiple cropping systems and for maximizing the contribution of atmospheric nitrogen biologically fixed by the legume component of such systems to the non-fixing cereal component or to the succeeding crop. Isotope techniques allowed the researchers to accurately determine the uptake of specific nutrients and to compare selected treatments

  16. What is the potential for reducing national greenhouse gas emissions from crop and livestock production systems?

    OpenAIRE

    Audsley, Eric; Wilkinson, Mike

    2014-01-01

    Agriculture has a devolved commitment to reduce national emissions of greenhouse gases (GHG). Using a systems model-based life-cycle analysis we explored the potential for reducing GHG in systems used to produce twelve crop and seven livestock commodities. With a functional unit of kg of product, differences in GHG between crops reflect differences in yield. Metabolisable energy (ME) or crude protein (CP) could be used, but deriving an economic value of GB£8.6/GJ ME and GB£0.62/kg CP, leads t...

  17. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems

    Science.gov (United States)

    Mendez, Mariano J.; Buschiazzo, Daniel E.

    2015-03-01

    The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.

  18. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    Science.gov (United States)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  19. Soil nitrous oxide and methane fluxes in integrated crop-livestock systems in subtropics

    International Nuclear Information System (INIS)

    Integrated crop-livestock (ICL) system is an agricultural practice in which crop-pasture rotation is carried out in the same field over time. In Brasil, ICL associated with no-tillage farming is increasingly gaining importance as a soil use strategy that improves food production (grain, milk and beef) and economic returns to farmers. Integrated crop-livestock-forestry (ICLF) is a recent modification of ICL in Brazil, with the inclusion of trees cultivation aiming at additional wood production and offering thermal comfort to livestock (Porfírio-da-Silva & Moraes, 2010). However, despite the increasing importance of ICL, little information is available on how this system may affect soil-atmosphere exchange of nitrous oxide (N2O) and methane (CH4)

  20. Elements of an Integrated Phenotyping System for Monitoring Crop Status at Canopy Level

    Directory of Open Access Journals (Sweden)

    Donald Rundquist

    2014-02-01

    Full Text Available Great care is needed to obtain spectral data appropriate for phenotyping in a scientifically rigorous manner. This paper discusses the procedures and considerations necessary and also suggests important pre-processing and analytical steps leading to real-time, non-destructive assessment of crop biophysical characteristics. The system has three major components: (1 data-collection platforms (with a focus on backpack and tractor-mounted units including specific instruments and their configurations; (2 data-collection and display software; and (3 standard products depicting crop-biophysical characteristics derived using a suite of models to transform the spectral data into accurate, reliable biophysical characteristics of crops, such as fraction of green vegetation, absorbed photosynthetically active radiation, leaf area index, biomass, chlorophyll content and gross primary production. This system streamlines systematic data acquisition, facilitates research, and provides useful products for agriculture.

  1. Application of GIS technology in monitoring and warning system for crop diseases and insect pests

    Science.gov (United States)

    Wu, Xiaofang; Wang, Changwei; Xu, Zhiyong; Hu, Yueming

    2008-10-01

    By researching and analyzing the crop diseases and insect pests, we find the distribution and spread of crop diseases and insect pests have tight touch with the time and space information, which provides a premise of applying geography information system (GIS) and spatial interpolation technology especially. By considering the particularity of spatial interpolation on the plant diseases and insect pests in agriculture, the authors bring forward one new method: multifactors spatial interpolation model. It is made up of many factors, such as spatial orientation relationship, topological relationship, distance relationship and national weather conditions so on. Then, on the basis of building the multi-factors spatial interpolation model, the monitor and warning system of crop diseases and insect pests is constructed by using GIS technology and ArcIMS software. The basic functions, such as map visualization, information query, data input, data management, spatial interpolation, are implemented. What's more, by using the multi-factors spatial interpolation model, the effluence and spread speed of crop diseases and insect pests are showed and the monitoring and early-warning of crop diseases and insect pests is implemented.

  2. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A.

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  3. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  4. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  5. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    Science.gov (United States)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  6. How do livestock and crop sciences represent evolutions of farming systems ? A review

    OpenAIRE

    Coquil, Xavier; Dedieu, Benoit; Beguin, Pascal

    2010-01-01

    Farming systems have to evolve in order to face increasing uncertainty in their environment. In this review we analyse evolutions of farming systems over the long term as a double co-evolution : co-evolution of the farming system and its environment, and co-evolution of the farmer and his biotechnical system (farmer activity). We review literature from the livestock and crop sciences, and we deepen our analyse with some literature from management sciences, ergonomics, professional didactics t...

  7. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    Full text: Agricultural systems may be called sustainable if the management of the resources for agriculture successfully meets the human needs while maintaining or enhancing the quality of the environment and conserving natural resources. Among the major threats to sustainable soil productivity related to soil acidity are: (i) H+, Al and Mn toxicities (ii) low availability (P, Mo) and supply of nutrients (N, Ca, Mg), (iii) high nutrient (base) losses. One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. Improved acid soil-tolerant germplasm may contribute to minimise the maintenance fertilizer-applications through different pathways: (i) deeper root growth - more efficient uptake of nutrients from subsoil: less leaching, (ii) more biomass production - less seepage, less leaching, more intensive nutrient cycling, maintenance of a higher soil organic-matter content, less erosion owing to better soil protection by vegetation and mulch. The main objectives of the EU-INCO Programme ERBIC 18CT 960063 on which this presentation is mainly based, are: - To advance breeding strategies and breed maize cultivars with improved adaptation to acid soils high in Al and low in P. - To develop screening procedures for aluminium (Al) resistance and phosphorus (P) efficiency in maize based on an improved in-depth knowledge of the underlying physiological and molecular mechanisms. - To improve the quantitative understanding of the comparative contributions of genetic and agronomic approaches to sustainable maize production on acid soils. The results suggest that large genetic variability in adaptation of plants to acid soils exist. There is a range of different morphological and physiological plant characteristics that contribute to acid soil tolerance. Their understanding has contributed to develop quick screening

  8. Change in recharge of aquifers under several cropping systems due to climate change. Consequences on land use at territorial level

    OpenAIRE

    ITIER, Bernard; Brisson, Nadine; Badeau, Vincent; Breda, Nathalie; Bosc, Alexandre; Déqué, Michel; Durand, Jean Louis; Guilioni, Lydie; Pagé, Christian; Lardy, Romain; Pieri, Philippe; Roche, Romain; Terray, Laurent; Institut National de la Recherche Agronomique; Fédération de Recherche en Environnement

    2010-01-01

    Climate change will produce a decrease in rainfall over French territory, especially in western France. Cropping systems pattern is a key factor in water resources management at catchment basin level. In the frame of the ANR French project ―Climator‖, we have undertaken an analysis of the relationship between rainfall and the annual supply of water to the aquifers under several cropping systems and ecosystems. This was performed through crop modelling using agroclimatic data provided either b...

  9. Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems

    OpenAIRE

    Wilkins, R.J.

    2007-01-01

    Eco-efficiency is concerned with the efficient and sustainable use of resources in farm production and land management. It can be increased either by altering the management of individual crop and livestock enterprises or by altering the land-use system. This paper concentrates on the effects of crop sequence and rotation on soil fertility and nutrient use efficiency. The potential importance of mixed farming involving both crops and livestock is stressed, particularly when the systems incorp...

  10. Rice Ratoon Crop: A Sustainable Rice Production System for Tropical Hill Agriculture

    Directory of Open Access Journals (Sweden)

    Golam Faruq

    2014-08-01

    Full Text Available Increasing and sustainable production of rice in tropical hill area is facing various problems where rice ratooning can overcome the limitations. In this study; 22 rice entries were transplanted into experimental tank placed in the hill slope following Completely Randomized Design with five replications to asses’ agronomic performance of main crop and ratoon crop where Entry 13 demonstrated highest grain yield per plant (42.06 ± 1.2 gm as main crop, as well as ratoon crop (3.37 ± 0.28 gm; Entry 19 produced lowest grain yield per plant (5.01 ± 0.31 gm as main crop and Entry 31 as ratoon crop (0.47 ± 0.03 gm. The grain yield per plant of both the main and ratoon crop demonstrated significant (** at 5% level and *** at 1% level positive correlation with number of tiller per plant (0.64 ** and 0.52; number of fertile tiller per plant (0.66 ** and 0.63 **; grain per panicle (0.72 ** and 0.53; fertile grain per panicle (0.80 *** and 0.63 and thousand-grain weight (0.66 ** and 0.54. The Duncan Multiple Range test and Analysis of Variance also confirmed the different grouping and significant differences of productivity and agronomic performances of the entries. The information of this investigation will helps the rice breeder as well as marginal rice farmers to consider rice ratooning as an important practice for sustainable rice production in tropical agriculture system for maximum gains.

  11. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  12. Local crop planting systems enhance insecticide-mediated displacement of two invasive leafminer fly.

    Directory of Open Access Journals (Sweden)

    Yulin Gao

    Full Text Available Liriomyza sativae and L. trifolii are highly invasive leafminer pests of vegetable crops that have invaded southern China in recent years. Liriomyza sativae was the first of these species to invade China, but it is now being displaced by L. trifolii. The rate and extent of this displacement vary across southern China. In Hainan, monocultures of highly valuable cowpea are planted and treated extensively with insecticides in attempts to control leafminer damage. In Guangdong, cowpea fields are interspersed with other less valuable crops, such as towel gourd (Luffa cylindrica, which receive significantly fewer insecticide applications than cowpea. To determine how differences in cropping systems influence the Liriomyza species composition, we conducted field trials in 2011 and 2012 in Guangdong where both species were present. We replicated conditions in Hainan by planting cowpea monocultures that were isolated from other agricultural fields, and we replicated conditions in Guangdong by planting cowpea in a mixed crop environment with towel gourd planted in neighboring plots. We then compared leafminer populations in cowpea treated with the insecticide avermectin and untreated cowpea. We also monitored leafminer populations in the untreated towel gourd. Untreated cowpea and towel gourd had comparatively low proportions of L. trifolii, which remained relatively stable over the course of each season. Avermectin applications led to increases in the proportions of L. trifolii, and after three weekly applications populations were >95% L. trifolii in both crop systems. However, the rate of change and persistence of L. trifolii in the mixed crop system were less than in the monocrop. These results indicate that L. trifolii is much less susceptible to avermectin than is L. sativae. Further, L. sativae was able to persist in the untreated towel gourd, which probably enabled it to recolonize treated cowpea.

  13. Local crop planting systems enhance insecticide-mediated displacement of two invasive leafminer fly.

    Science.gov (United States)

    Gao, Yulin; Reitz, Stuart R; Wei, Qingbo; Yu, Wenyan; Zhang, Zhi; Lei, Zhongren

    2014-01-01

    Liriomyza sativae and L. trifolii are highly invasive leafminer pests of vegetable crops that have invaded southern China in recent years. Liriomyza sativae was the first of these species to invade China, but it is now being displaced by L. trifolii. The rate and extent of this displacement vary across southern China. In Hainan, monocultures of highly valuable cowpea are planted and treated extensively with insecticides in attempts to control leafminer damage. In Guangdong, cowpea fields are interspersed with other less valuable crops, such as towel gourd (Luffa cylindrica), which receive significantly fewer insecticide applications than cowpea. To determine how differences in cropping systems influence the Liriomyza species composition, we conducted field trials in 2011 and 2012 in Guangdong where both species were present. We replicated conditions in Hainan by planting cowpea monocultures that were isolated from other agricultural fields, and we replicated conditions in Guangdong by planting cowpea in a mixed crop environment with towel gourd planted in neighboring plots. We then compared leafminer populations in cowpea treated with the insecticide avermectin and untreated cowpea. We also monitored leafminer populations in the untreated towel gourd. Untreated cowpea and towel gourd had comparatively low proportions of L. trifolii, which remained relatively stable over the course of each season. Avermectin applications led to increases in the proportions of L. trifolii, and after three weekly applications populations were >95% L. trifolii in both crop systems. However, the rate of change and persistence of L. trifolii in the mixed crop system were less than in the monocrop. These results indicate that L. trifolii is much less susceptible to avermectin than is L. sativae. Further, L. sativae was able to persist in the untreated towel gourd, which probably enabled it to recolonize treated cowpea. PMID:24651465

  14. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    International Nuclear Information System (INIS)

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg-1 grain; wheat: 2.6 MJ kg-1 grain; soybean: 4.1 MJ kg-1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  15. Impact of management strategies on the global warming potential at the cropping system level

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  16. The role of cover crops in irrigated systems: Soil salinity and salt leaching

    OpenAIRE

    Gabriel Pérez, José Luis; Almendros García, Patricia; Hontoria Galan, Monica; Quemada Saenz-Badillos, Miguel

    2012-01-01

    Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with t...

  17. Reducing Meloidogyne incognita Injury to Cucumber in a Tomato-Cucumber Double-Cropping System

    OpenAIRE

    Colyer, P. D.; Kirkpatrick, T. L.; Vernon, P. R.; Barham, J. D.; Bateman, R.J.

    1998-01-01

    The effects of a root-knot nematode-resistant tomato cultivar and application of the nematicide ethoprop on root-knot nematode injury to cucumber were compared in a tomato-cucumber double-cropping system. A root-knot nematode-resistant tomato cultivar, Celebrity, and a susceptible cultivar, Heatwave, were grown in rotation with cucumber in 1995 and 1996. Celebrity suppressed populations of Meloidogyne incognita in the soil and resulted in a low root-gall rating on the subsequent cucumber crop...

  18. Soil physical properties and grape yield influenced by cover crops and management systems

    OpenAIRE

    Jaqueline Dalla Rosa; Alvaro Luiz Mafra; João Carlos Medeiros; Jackson Adriano Albuquerque; Davi José Miquelluti; Marcos André Nohatto; Evandro Zacca Ferreira; Odoni Loris Pereira de Oliveira

    2013-01-01

    The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis sy...

  19. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  20. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    Science.gov (United States)

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  1. National Science Foundation funds systems biology study of crop drought responses

    OpenAIRE

    Bland, Susan

    2009-01-01

    An international team of researchers, led by Virginia Bioinformatics Institute Professor Andy Pereira, has been awarded a three-year, $2.4 million grant from the National Science Foundation (NSF) to develop a systems biology approach to help combat the effects of drought on a variety of staple food crops.

  2. Soil carbon fractions as influenced by tillage, cropping system, and nitrogen fertilization source

    Science.gov (United States)

    Quantification of soil C cycling as influenced by management practices is needed for C sequestration, greenhouse gas mitigation, and soil quality improvement. We evaluated the 10-yr effect of combinations of tillage (no-till, mulch till, and conventional till), cropping systems (cotton-cotton-corn a...

  3. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes

    NARCIS (Netherlands)

    Hu, X.K.; Su, F.; Ju, X.T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.X.; Jiang, R.F.; Zhang, F.S.

    2013-01-01

    Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment, rec

  4. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  5. Remediation of Stratified Soil Acidity Through Surface Application of Lime in No-Till Cropping Systems

    Science.gov (United States)

    Yield reduction and reduced crop vigor, resulting from soil acidification, are of increasing concern in eastern Washington and northern Idaho. In this region, soil pH has been decreasing at an accelerated rate, primarily due to the long-term use of ammonium based fertilizers. In no-till systems, the...

  6. Effects of cropping and tillage systems on soil erosion under climate change in Oklahoma

    Science.gov (United States)

    Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...

  7. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Science.gov (United States)

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  8. Chromolaena odorata fallow in food cropping systems. An agronomic assessment in South-West Ivory Coast.

    NARCIS (Netherlands)

    Slaats, J.J.P.

    1995-01-01

    In tropical Africa, traditional shifting cultivation can no longer provide sufficient food for the rapidly increasing population, whereas it threatens the remaining forests. An alternative is a fallow system based on the shrub Chromolaena odorata. Food crop cultivation in rotation with this fallow t

  9. Extension Education for Dryland Cropping Systems in Iraq

    Science.gov (United States)

    Abi-Ghanem, Rita; Carpenter-Boggs, Lynne; Koenig, Richard; Pannkuk, Chris; Pan, William; Parker, Robert

    2009-01-01

    Iraq, formerly known as Mesopotamia, is the birthplace of agriculture. The recent war and instability have significantly impacted the country's agricultural production and knowledge support systems. To support revitalization of the Iraqi agricultural system, the USDA funded a consortium of five U.S. universities (Washington State University,…

  10. Much Improved Irrigation Use Efficiency in an Intensive Wheat-Maize Double Cropping System in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP). A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system. Soil water depletion (△SWS)by crop generally decreased with the increase of irrigation and rainfall, while △SWS for the whole rotation was relatively stable among these irrigation treatments. High irrigations in wheat season increased initial soil moisture and △SWS for subsequent maize especially in the drought season. Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems. Grain yield decreased prior to evapotranspiration(ET) when ET reached about 300 mm for wheat, while maize showed various WUEs with similar seasonal ET. For whole rotation, WUE declined when ET exceeded about 650 mm. These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP. Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.

  11. A Support System for Crop Water Requirement Diagnosis and Irrigation Decision Making

    OpenAIRE

    Chao Zhang; Bingqin Zhu; Su Ki Ooi; Xinmei Zhou; Wenting Han; Pute Wu

    2013-01-01

    A crop water requirement diagnosis and irrigation water requirement decision-making support system was developed which comprised of a data import module, a database module, a model library and diagnosis and decision-making modules. Depending on the information acquisition method, the system can adopt one of the following two modes: online real-time diagnosis and decision making between the monitoring and decision-making systems or offline diagnosis and decision making. Using software te...

  12. Water and nitrogen in crop and pasture systems in southern Australia

    International Nuclear Information System (INIS)

    Recent research on water and N for dryland crops in southern Australia has addressed the need for more efficient and sustainable production. Water-use efficiency is well below the potential and N-use efficiency well below optimum on farms. Excess water and N cause on-site and off-site environmental damage. The most effective means of illustrating these inefficiencies to growers is to present simple benchmarks of water and N-use efficiencies with which farmers can assess and improve the performance of their own crops. The practices shown by our recent research that best support the goals of more efficient and sustainable production are those that maximize extraction of soil water and mineral N, and increase biological N2 fixation. Wheat growing after a brassica break-crop extract more water and mineral N from the soil than when grown as a continuous cereal, apparently because of a 'biofumigation' effect that reduces the numbers of soil-borne pathogens of wheat and produces a stronger root system. In the case of phased pasture-crop systems, annual pastures do not fully extract subsoil water or mineral N. However, when the grasses are removed from annual pastures with a selective herbicide, the remaining pure clover rapidly decomposes after maturity, leaving a large amount of mineral N for the following crop. Perennial pastures containing lucerne produce more forage and fix more N2 than do annual pastures, but they dry the soil profile. After removal of the lucerne, the soil may be so dry that mineralization is slow, with the risk of water deficit for the subsequent crop. (author)

  13. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    International Nuclear Information System (INIS)

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans

  14. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    Energy Technology Data Exchange (ETDEWEB)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R. (Tennessee Univ., Knoxville, TN (United States). Dept. of Agricultural Economics and Rural Sociology)

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  15. Grain yield and agronomic traits in soybean according to crop rotation systems

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2014-09-01

    Full Text Available The effects of crop rotation systems (CRS on soybean yield and agronomic characteristics were evaluated from 1996/1997 to 2010/2011 at Embrapa Trigo, Passo Fundo (RS, Brazil. Four soil management systems (SMS were compared, namely: 1 no tillage, 2 minimum tillage, 3 conventional tillage using a disk plow and a disk harrow, and 4 conventional using a moldboard and a disk harrow - and three CRS: system I (wheat/soybean, system II (wheat/soybean and common vetch/corn or sorghum and system III (wheat/soybean, white oats/soybean and common vetch/corn or sorghum. This is a split-plot, randomized, complete block design with three replications. SMS were assigned in the main plot and CRS systems in the split-plots. This work addressed only data on crop rotation systems. There were no significant differences between the CRS for number of grains per plant, 1,000 grain weight and first pod height in soybean. The crop rotation for a summer, with corn or sorghum, propitiates a higher soybean yield compared with the other systems and monoculture soybean. The combination of conservation systems (no tillage and minimum tillage and CR resulted in a higher soybean yield. The lowest grain yield and grain weight per plant were obtained in monoculture soybean.

  16. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  17. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS. PMID:11542242

  18. Multi-Attribute Modelling of Economic and Ecological Impacts of Agricultural Innovations on Cropping Systems

    Directory of Open Access Journals (Sweden)

    Sara Scatasta

    2006-04-01

    Full Text Available Modeling of economic and ecological impacts of genetically modified crops is a demanding task. We present some models made for the purpose of the ECOGEN project "Soil ecological and economic evaluation of genetically modified crops". One of the goals of the project is to develop a computer-based decision support system for the assessment of economic and ecological impacts of using genetically modified crops, with special emphasis on soil biology and ecology. The decision support system is based on a rule-based model incorporating both economic and ecological criteria. In this paper we present an extension to previous results specifying further two sub-models assessing economic impacts of cropping systems at farm and regional level. Following a real option approach we show how both social and private costs and benefits, both at farm and regional level, can be classified in reversible and irreversible, and what irreversibility means for the size of the uncertainty associated to the adoption of agricultural innovations. All the qualitative models are developed using a qualitative multi-attribute modeling methodology, supported by the software tool DEXi.

  19. Mixed crop-livestock production systems of smallholder farmers in sub-humid and semi-arid areas of Zambia

    International Nuclear Information System (INIS)

    Livestock production activities among small-scale farmers of semi-arid (Agro-ecological zone 1) and sub-humid (Agro-ecological zone 2) areas of Zambia are integrated with crop production activities in what is termed as crop/livestock farming system. This is a closed system in which production of one enterprise depends on the other. In Zambia, crop production depends on draught animals for tillage of cropping area, animal manure for fertilisation of crops while livestock depend on crop residues for dry season feeding. Good quality grass is generally available in adequate amounts to support reasonable level of livestock productivity during the rainy season. But livestock rely on low quantity and poor quality, highly fibrous perennial grass from veld and fibrous crop residues during the dry season. These resources are inadequate to support optimum livestock productivity activities. Poor nutrition results in low rates of reproduction and production as well as increased susceptibility to diseases. With the increasing human population cropping land is expanding, leading to increased production of crop residues. This has however, reduced the grazing land available for ruminant production. In Zambia large quantities of crop residues (stovers, husks and straws, legume tops and hulls, sugar cane tops, cassava leaves, potato vines, etc.) are left in the field where they are wasted each year because small-scale farmers lack the knowledge on how best to use them. There is a need to find ways to reverse this situation by adapting known and workable technologies to local conditions and by introducing new approaches for improving the use of crop residues and poor quality fibrous feeds. Efforts should also be made to enlarge feed resource base. The technologies should be simple and effective. In the presence of a dynamic market system, livestock production in a crop/livestock system could be intensified and made profitable for small-scale farmers. (author)

  20. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance

    OpenAIRE

    Xudong Guan; Chong Huang; Gaohuan Liu; Xuelian Meng; Qingsheng Liu

    2016-01-01

    Normalized Difference Vegetation Index (NDVI) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data has been widely used in the fields of crop and rice classification. The cloudy and rainy weather characteristics of the monsoon season greatly reduce the likelihood of obtaining high-quality optical remote sensing images. In addition, the diverse crop-planting system in Vietnam also hinders the comparison of NDVI among different crop stages. To address these proble...

  1. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  2. Measuring and modeling the impact of intercrop management on plot-scale runoff and erosion in a continuous maize cropping system

    OpenAIRE

    Laloy, Eric

    2010-01-01

    Soil erosion on loess soils has long been recognized as a major environmental issue on cultivated soils, in particular in continuous maize cropping systems. Sowing winter cover crops or rough tillage at harvest can reduce erosion during the intercropping period in between two maize crops. The main goal of this thesis was to assess the long-term impact of tillage and cover crop management on runoff and erosion in a continuous maize cropping system, using both field experimentation and a modeli...

  3. Biogas from ley crops

    International Nuclear Information System (INIS)

    This report describes the cost of producing biogas from energy crops. Five process systems, sized 0.25-8 MW are studied. The cultivation of biogas-crops is made in three regions in Sweden. Also valued are the positive cultivation effects obtained when cereal dominated crop rotation is broken by biogas crops. 8 refs, 40 figs, 10 tabs

  4. Recovery of fertilizer and crop-residue 15N and effects on N fertilization in three cropping systems under mediterranean conditions

    International Nuclear Information System (INIS)

    Our objective was to study the effects of crop residues on nutrient cycling and availability for a following wheat crop. The research program was conducted at three sites with differing climatic conditions: south Morocco (a wheat-wheat cropping system), central Morocco (sunflower-wheat), and the Atlas Mountains region (faba bean-wheat). Forty to 85 kg N ha-1 (9.764 at % excess 15N) were applied in three doses. The fertilizer-N recovery by the wheat in the first year was 37%, by sunflower 33%, and by faba bean 37%. At harvest, 22 to 43% of fertilizer N was residual in the 0- to 80-cm soil profile. Twenty-three to 42% of the applied N could not be accounted for. Recovery of the residual labelled fertilizer N by the subsequent wheat crop was 3.4 to 13% for the treatment with residue incorporation and 3.6 to 10% for the treatment without residue incorporation and for the treatment with residues only (T2) 9.6 to 15%. The third crop recovered 1.2 to 6.8% for the treatment with residue incorporation and 0.59 to 6.2% for the treatment without residue incorporation, and 2.9 to 6.2 in T2. (author)

  5. Experiences and Research Perspectives on Sustainable Development of Rice-Wheat Cropping Systems in the Chengdu Plain,China

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-guo; CHI Zhong-zhi; JIANG Xin-lu; TANG Yong-lu; ZHANG Hong

    2010-01-01

    The rice and wheat cropping pattern is one of the main cropping systems in the world.A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hindering nutrition absorption,gradual degeneration of soil fertility,decline of soil organic matter,and increased incidence of diseases and pests.In China,especially in the Chengdu plain where rice-wheat cropping system is practiced,productivity and soil fertility was enhanced and sustained.This paper reviews the relevant data and experiences on rice-wheat cropping in the Chengdu Plain from 1977 to 2006.The principal sustainable strategies used for rice-wheat cropping systems in Chengdu Plain included: 1)creating a favorable environment and viable rotations; 2)balanced fertilization for maintenance of sustainable soil productivity; 3)improvement of crop management for higher efficiency; and 4)use the newest cultivars and cultivation techniques to upgrade the production level.Future research is also discussed in the paper as: 1)the constant topic: a highly productive and efficient rice-wheat cropping system for sustainable growth; 2)the future trend: simplified cultivation techniques for the rice-wheat cropping system; 3)the foundation: basic research for continuous innovation needed for intensive cropping.It is concluded that in the rice-wheat cropping system,a scientific and reasonable tillage/cultivation method can not only avoid the degradation of soil productivity,but also maintain sustainable growth in the long run.

  6. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  7. Radiation techniques for evaluation of water management practices for cropping systems

    International Nuclear Information System (INIS)

    Multiple cropping is a centuries-old technique of intensive farming that has persisted in many areas of the world as a method of maximizing land productivity per unit area per season. One of the main advantages of multiple cropping is the better exploitation of soil resources through the uptake of nutrients and water from different soil depths and at different rates and times depending on the growth cycles and root system distribution of the crops under consideration. The evaluation of water management practices for crop systems have to be based on following moisture changes in soil profiles while taking into consideration soil physical properties and the prevailing weather conditions. This requires the performance of very large numbers of soil moisture determinations which are very tedious, expensive and time consuming. The various types of portable radiation equipment now commercially available make intensive soil moisture studies possible. The paper discusses the principles involved as well as the advantages and limitations of using different types of radiation equipment for measuring soil moisture contents. (author)

  8. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  9. Integrated cropping systems : an answer to environmental regulations imposed on nursery stock in the Netherlands

    OpenAIRE

    Pronk, A.A.; Challa, H.

    2000-01-01

    Government regulations in the Netherlands are increasingly constraining and sometimes even banning conventional cultivation practices in nursery stock cropping systems. As a consequence, growers face problems concerning the use of manure, fertilisers and irrigation. In this study we analysed the production system and defined management options to improve input efficiency. Strategies based on results of small, preliminary experiments were then developed and tested in nursery stock production s...

  10. Cultivating knowledge on seed systems and seed strategies: Case of the rice crop

    OpenAIRE

    Amadou Moustapha Bèye; Wopereis, Marco C.S.

    2014-01-01

    This review gives key information about seed systems with the objective of helping countries in sub-Saharan Africa (SSA) to design appropriate strategies based on their own local realities. It starts with an in-depth assessment of the rice seed sector and emphasizes the factors that can influence its development. These factors may be associated with the biological characteristics of the rice crop, the complexity of farming systems, the policy environment, and the markets. The historical backg...

  11. Energy Utilization in Crop and Dairy Production in Organic and Conventional Livestock Production Systems

    OpenAIRE

    Refsgaard, Karen; Halberg, Niels; Kristensen, Erik Steen

    1998-01-01

    Searching for livestock production systems with a high energy utilization is of interest because of resource use and pollution aspects and because energy use is an indicator of the intensification of production processes. Due to interactions between crop and livestock enterprises and between levels of different input factors and their effects on yields, it is proposed to analyze agricultural energy utilization through system modelling of data from farm studies. Energy use in small grains, gra...

  12. Assessing Crop-Livestock Interaction in Mixed Farming Systems of North Western Kenya

    OpenAIRE

    Wanyama, J. M; Muyekho, F. N; Lusweti, N. F.; Lusweti, C. M.; Omamo, E; Wairimu, K. N.; Kariuki, Nelson; Komen, John

    2012-01-01

    A study was conducted in the four counties the maize- wheat-teapotato and sugarcane-based farming system in North western Kenya to explore the variability among household characteristics and farm productivity. The aim of this work was to establish homogenous groups of crop-livestock mixed farming systems of Kenya. A two step approach was adopted for the study. The first was a rapid rural appraisal followed by a formal survey aimed at establishing farm types to facilitate detailed analysis of ...

  13. Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems.

    Science.gov (United States)

    Garrido-Jurado, Inmaculada; Fernández-Bravo, María; Campos, Carlos; Quesada-Moraga, Enrique

    2015-09-01

    The diversity of entomopathogenic Hypocreales from the soil and phylloplanes in five Mediterranean cropping systems with different degrees of management [organic olive orchard conventional olive orchard, holm oak reforestation, holm oak dehesa (a multifunctional agro-sylvo-pastoral system), and sunflower plantation] was studied during four seasons. A total of 697 entomopathogenic fungal isolates were obtained from 272 soil samples, 1608 crop phylloplane samples and 1368 weed phylloplane samples. The following nine species were identified: Beauveria amorpha, B. bassiana, B. pseudobassiana, B. varroae, Metarhizium brunneum, M. guizhoense, M. robertsii, Paecilomyces marquandii and lilacinum using EF-1α gene sequences. All the fungal entomopathogenic species were found in both the soil and phylloplane samples, with the exception of M. robertsii, which was only isolated from the soil. The species richness, diversity (Shannon-Wiener index) and evenness (Pielou index) were calculated for each cropping system, yielding the following species ranking, which was correlated with the crop management intensity: holm oak reforestation>organic olive orchard>conventional olive orchard>holm oak dehesa>sunflower plantation. The number of fungal species isolated was similar in both phylloplane habitats and dissimilar between the soil and the crop phylloplane habitats. The ISSR analysis revealed high genotypic diversity among the B. bassiana isolates on the neighbourhood scale, and the isolates were clustered according to the habitat. These results suggest that the entomopathogenic Hypocreales in the phylloplane could result from the dispersal of fungal propagules from the soil, which might be their habitat of origin; a few isolates, including EABb 09/28-Fil of Beauveria bassiana, inhabit only the phylloplane. PMID:26146223

  14. Response of soil nutrients to different cropping systems in the oasis of arid land

    Institute of Scientific and Technical Information of China (English)

    XU Wenqiang; LUO Geping; CHEN Xi

    2006-01-01

    In the process of transformation of tropic rain forest and semi-arid grassland to farmland, the soil degradation usually occurs. But the transformation of arid desert to oasis is likely to differ from that of tropic rain forest and semi-arid grassland. Taking an alluvial plain oasis as a study case, the oasis soil properties during the process of the transformation of different cropping systems have been investigated and evaluated. Selected cropping systems consist of saline tolerance crop (STC), food crop (FC), melon and vegetables (MV), Economic plants-cotton (EP-C),economic plants-grape (EP-G), Economic plants-Hop (EP-H). Surface soil (0-20 cm) samples were collected in 1982, 1999 and 2003. Soil, organic matter (OM), and available N (AN), available P (AP) and available K (AK) were determined for each soil sample. SPSS statistical software was used to analyze the soil property data. The transformation of cropping systems in the Sangong River watershed was affected directly by the policy, law and market. The soil OM contents experienced a decline during 1982-1999, then a rise during 1999-2003. AN, AP and AK contents increased significantly with cultivated time.Soil OM tends to decrease during the conversion from STC and FC to cotton but increase during the conversion from the cotton to the grape. The soil OM was increased gradually with the cultivation time, so the oasis soil presented carbon sink, which indicates that human activities was reasonable and favorable for improvement of the oasis-ecosystem.

  15. The Potato Systems Planner: Cropping System Impacts on Soilborne Diseases and Soil Microorganisms

    Science.gov (United States)

    Different 2-yr and 3-yr crop rotations, consisting of barley/clover, canola, green bean, millet, soybean, and sweet corn in various combinations followed by potato, were evaluated for their effects on the development of soilborne potato diseases and soil microbial communities over several cropping s...

  16. Modelling of Cadmium Transport in Soil-Crop System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for simulating cadmium transport in a soil-plant system was built using a commercial simu lating program named Powersim on the basis of input-output processes happening in the soil-plant system.Convective and dispersive transport processes of cadmium in soil profile are embedded. Simulations on a daily base have been done up to a total simulating time of 250 years. Results show that applications of sewage sludge and fertilizer at the simulated rates would only cause slight cadmium accumulations in each layer of the soil, and cadmium accumulation would be levelling off, reaching an equilibrium concentrations layer by layer downward after certain time. The time scale to reach an equilibrium concentration varies from 10 years for the top three layers to over 250 years for the bottom layers. Plant cadmium uptake would increase from 52 ug m-2 under initial soil cadmium concentrations to 65 μg m-2 under equilibrium soil cadmium concentrations, which would not exceed the maximum allowable cadmium concentration in wheat grains. Main parameters which influence cadmium accumulation and transport in soil are total cadmium input, rainfall, evaporation, plant uptake and soil properties.

  17. Energy auditing of diversified rice-wheat cropping systems in Indo-gangetic plains

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, V.P.; Gangwar, B.; Pandey, D.K.; Gangwar, K.S. [Project Directorate for Cropping Systems Research, Modipuram, Meerut 250110 (U.P.) (India)

    2009-09-15

    The field investigations were carried out for energy use analysis in terms of different input requirements and outputs harvested under the diversified rice-wheat cropping systems at the research farm of Project Directorate for Cropping Systems Research, Modipuram, Meerut, India during the year 2000-2004. The experiments were conducted on rice (Oryza sativa L.)-wheat (Triticum aestivum L. emend. Fiori and Paol) system involving 8 sequences using diversification, furrow irrigated raised bed system (FIRB) of sowing wheat, use of summer period for deep ploughing or raising legume crops for seed or green manure to study the energy dynamics of different diversified cropping systems. Results revealed that total energy use was highest in rice-potato-wheat (i.e. 77,601 MJ/ha in flat bed and 75,697 MJ/ha in raised bed) followed by rice-wheat-sesbania (i.e. 48,770 MJ/ha in flat and 47,830 MJ/ha in raised bed) and rice-wheat-greengram (i.e. 48,414 MJ/ha in flat and 47,482 MJ/ha in raised bed). In overall, the raised bed sowing of wheat in the cropping system consumed 6-11% less fertilizer energy than flat bed while saved up to 4.2% energy through irrigation. The total output energy of the system was recorded significantly higher in rice-potato-wheat system (i.e. 222,836 MJ/ha in flat bed and 218,065 MJ/ha in raised bed) in comparison to rice-wheat-greengram (i.e. 177,477 MJ/ha in flat bed and 175,125 MJ/ha in raised bed), rice-wheat-sesbania (i.e. 172,000 MJ/ha in flat bed and 168,919 MJ/ha in raised bed) and rice-wheat system (i.e. 156,085 MJ/ha in flat bed and 151,862 MJ/ha in raised bed). The significantly higher net return of energy was obtained in rice-potato-wheat system as compared to other systems. This system required about 75% more input energy but provided about 42% more output energy compared to conventional rice-wheat system. About 10% higher output energy was obtained through growing greengram in summer for grain and foliage incorporation while 14% gain obtained

  18. Biofuel cropping system impacts on soil C, microbial communities and N2O emissions

    Science.gov (United States)

    McGowan, Andrew R.

    Substitution of cellulosic biofuel in place of gasoline or diesel could reduce greenhouse gas (GHG) emissions from transportation. However, emissions of nitrous oxide (N2O) and changes in soil organic carbon (SOC) could have a large impact on the GHG balance of cellulosic biofuel, thus there is a need to quantify these responses in cellulosic biofuel crops. The objectives of this study were to: (i) measure changes in yield, SOC and microbial communities in potential cellulosic biofuel cropping systems (ii) measure and characterize the temporal variation in N2O emissions from these systems (iii) characterize the yield and N2O response of switchgrass to N fertilizer and to estimate the costs of production. Sweet sorghum, photoperiod-sensitive sorghum, and miscanthus yielded the highest aboveground biomass (20-32 Mg ha-1). The perennial grasses sequestered SOC over 4 yrs, while SOC stocks did not change in the annual crops. Root stocks were 4-8 times higher in the perennial crops, suggesting greater belowground C inputs. Arbuscular mycorrhizal fungi (AMF) abundance and aggregate mean weight diameter were higher in the perennials. No consistent significant differences were found in N2O emissions between crops, though miscanthus tended to have the lowest emissions. Most N2O was emitted during large events of short duration (1-3 days) that occurred after high rainfall events with high soil NO3-. There was a weak relationship between IPCC Tier 1 N2O estimates and measured emissions, and the IPCC method tended to underestimate emissions. The response of N2O to N rate was nonlinear in 2 of 3 years. Fertilizer induced emission factor (EF) increased from 0.7% at 50 kg N ha-1 to 2.6% at 150 kg N ha-1. Switchgrass yields increased with N inputs up to 100-150 kg N ha-1, but the critical N level for maximum yields decreased each year, suggesting N was being applied in excess at higher N rates. Yield-scaled costs of production were minimized at 100 kg N ha-1 ($70.91 Mg-1

  19. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Isaque Daniel Rocha Eberhardt

    2016-03-01

    Full Text Available The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35 considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line, which also presented the lowest averaged values (15% of clear sky occurrence during the main (summer cropping period (November to February. In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another

  20. CLIMESCO: evolution of cropping systems as affected by climate change

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2012-03-01

    Full Text Available In this number of Italian Journal of Agronomy, seventeen scientific papers are published on the main results of the project CLIMESCO. This project was supported by three Italian Ministries (“Ministero dell'Istruzione, dell'Università e della Ricerca”, “Ministero delle Politiche Agricole Alimentari e Forestali” and “Ministero dell'Ambiente e della tutela del territorio e del Mare” in the framework of “Fondo Integrativo Speciale Ricerca” (FISR, Special Integrated Research Fund. Most recent studies based on observed data and simulations of future climate conditions showed that the global increase of temperatures is most likely due to the increased concentration of Green House Gases. The effect of warming is unequally distributed around the globe, with some areas more sensitive to climate change than others, as the Mediterranean region. Climate change over this region is shown to be characterized by increasing temperatures and by relatively large changes in the frequency of extreme climatic events for both temperature and rainfall. The agricultural and food systems represent one of the most sensitive and vulnerable sectors of the area....

  1. The beginnings of crop phosphoproteomics: exploring early warning systems of stress.

    Directory of Open Access Journals (Sweden)

    Christof eRampitsch

    2012-07-01

    Full Text Available This review examines why a knowledge of plant protein phosphorylation events is important in devising strategies to protect crops from both biotic and abiotic stresses, and why proteomics should be included when studying stress pathways. Most of the achievements in elucidating phospho-signalling pathways in biotic and abiotic stress are reported from model systems: while these are discussed, this review attempts mainly to focus on work done with crops, with examples of achievements reported from rice, maize, wheat, grape, Brassica, tomato and soy bean after cold acclimation, hormonal and oxidative H2O2 treatment, salt stress, mechanical wounding or pathogen challenge. The challenges that remain to transfer this information into a format that can be used to protect crops against biotic and abiotic stresses are enormous. The tremendous increase in the speed and ease of DNA sequencing is poised to reveal the whole genomes of many crop species in the near future, which will facilitate phosphoproteomics and phosphogenomics research.

  2. Effect of cropping systems in no-till farming on the quality of a Brazilian Oxisol

    Directory of Open Access Journals (Sweden)

    Getulio de Freitas Seben Junior

    2014-08-01

    Full Text Available The no-till system with complex cropping sequences may improve the structural quality and carbon (C sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L. (CC, soybean/soybean (Glycine max L. Merryll (SS, and soybean-corn (SC; and seven winter crops - corn, sunflower (Helianthus annuus L., oilseed radish (Raphanus sativus L., pearl millet (Pennisetum americanum (L. Leeke, pigeon pea (Cajanus cajan (L. Millsp, grain sorghum (Sorghum bicolor (L. Moench, and sunn hemp (Crotalaria juncea L.. Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively and geometric mean diameter (3.55 and 2.92 mm of the aggregates compared to soil under SS (3.18 and 2.46 mm. The CC resulted in the highest soil organic C content (17.07 g kg-1, soil C stock (15.70 Mg ha-1, and rate of C sequestration (0.70 Mg ha-1 yr-1 among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3, and that under sunn hemp had the highest water stable aggregates (93.74 %. In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1 and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1. The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water

  3. Effect of different cover crops on C and N cycling in sorghum NT systems.

    Science.gov (United States)

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. PMID:27107651

  4. Carbon sequestration in maize and grass dominant cropping systems in Flanders

    Science.gov (United States)

    Van De Vreken, Philippe; Gobin, Anne; Merckx, Roel

    2014-05-01

    Sources of soil organic matter (SOM) input to the soil in agro-ecosystems are typically crop residues. The question arises how removing crop residues from a field influences soil carbon sequestration. We investigated four long-term maize and grass dominant cropping systems each with a different residue management. Under silage maize (SM) all stover is removed from the field and only a stubble remains, whereas under grain maize (GM) only the grains are harvested and all stover is returned to the soil. Fields with a history of at least 15 consecutive years of either SM (with or without a second annual crop of Italian ryegrass) or GM, and fields under permanent grass were selected from a geodatabase that covers 15 years of crop rotation for all of the ca. 500,000 agricultural fields in Flanders. For each cropping system 10 fields were sampled (40 in total) following the area-frame randomized soil sampling (AFRSS) protocol (Stolbovoy et al., 2007). For 6 out of 10 fields only the topsoil was sampled (0-30 cm), whereas for the 4 other fields both topsoil and subsoil (30-60 cm and 60-90 cm) were sampled. The total soil organic carbon (SOC) and nitrogen content and the stable carbon isotope ratio (13C/12C) were determined for each soil sample. From each field 1 topsoil sample was fractionated by the Zimmermann fractionation procedure (Zimmermann et al., 2007) which distinguishes between 5 different SOC fractions (POM, DOC, silt and clay associated SOC, chemically resistant SOC, SOC associated with sand fraction). Besides analysis of the SOC and nitrogen content of each fraction, the origin of the carbon was determined through isotope-ratio mass spectrometry. Although there was no significant difference between SM and GM regarding the total SOC stock for the upper 30 cm (ca. 75 à 80 Mg C.ha-1), fields under continuous GM contained in the 0-30 cm layer 60% more maize-derived C4-SOC as compared to fields under continuous SM (ca. 14 and 9 Mg C.ha-1 respectively). Significant

  5. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.;

    2012-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape (canola) and maize (corn) in Europe. However, new regulations on pesticide use may hinder further...

  6. Energy crops for biogas

    International Nuclear Information System (INIS)

    This investigation aims at describing the effects on cropping systems, containing a.o. leguminosae plant leys for biogas production. Problems treated are effects on soil physics, circulation of crop nutrients, use of chemical pesticides, preceding crop effects, and the possibility of utilizing catch crops for methane production. It is observed that the studied biogas-crop sequences gives positive effects on soil structure, reduced need for artificial fertilizers and chemical pesticides. 26 refs, 28 tabs

  7. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    Science.gov (United States)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  8. Farming system design for innovative crop-livestock integration in Europe.

    Science.gov (United States)

    Moraine, M; Duru, M; Nicholas, P; Leterme, P; Therond, O

    2014-08-01

    The development of integrated crop-livestock systems (ICLS) is a major challenge for the ecological modernisation of agriculture but appears difficult to implement at a large scale. A participatory method for ICLS design has been developed and implemented in 15 case studies across Europe, representing a range of production systems, challenges, constraints and resources for innovation. Local stakeholders, primarily farmers, but also cooperatives, environmental-association representatives and natural-resource managers, were involved in the identification of challenges and existing initiatives of crop-livestock integration; in the design of new options at field, farm and territory levels; and then in qualitative multicriteria assessment of these options. A conceptual framework based on a conceptual model (crops, grasslands, animals) was developed to act as a boundary object in the design step and invite innovative thinking in 'metabolic' and 'ecosystemic' approaches. A diversity of crops and grasslands interacting with animals appeared central for designing sustainable farming systems at the territory level, providing and benefitting from ecosystem services. Within this diversity, we define three types of integrated systems according to their degrees of spatial and temporal coordination: complementarity, local synergy, territorial synergy. Moreover, the options for cooperation and collective organisation between farmers and other stakeholders in territories to organise and manage this diversity of land use revealed opportunities for smart social innovation. The qualitative multicriteria assessment identified farmer workload as the main issue of concern while demonstrating expected benefits of ICLS simultaneously for economic, agronomic, environmental and social criteria. This study concludes that participatory design of ICLS based on a generic multi-level and multi-domain framework and a methodology to deal with a local context can identify new systems to be tested

  9. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.

    Science.gov (United States)

    Hu, Xiao-Kang; Su, Fang; Ju, Xiao-Tang; Gao, Bing; Oenema, Oene; Christie, Peter; Huang, Bin-Xiang; Jiang, Rong-Feng; Zhang, Fu-Suo

    2013-05-01

    Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat-maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment, recommended fertilization, with and without straw and manure applications, and nitrification inhibitor and slow release urea. Application of N fertilizer slightly decreased CH4 uptake by soil. Direct N2O emissions derived from recommended urea application was 0.39% of the annual urea-N input. Both straw and manure had relatively low N2O emissions factors. Slow release urea had a relatively high emission factor. Addition of nitrification inhibitor reduced N2O emission by 55%. We conclude that use of nitrification inhibitors is a promising strategy for N2O mitigation for the intensive wheat-maize double cropping systems. PMID:23434574

  10. Transfer of Biogas Technology to Support Mixed Crop and Livestock Farming Systems in Indonesia

    DEFF Research Database (Denmark)

    Putra, Ahmad Romadhoni Surya

    Mixed crop and livestock (MCL) farming systems has been applied for many years to manage the limited resources owned by smallholder farmers. This farming practice is considered as the best practice to cultivate the limited resources by adopting an integrated life cycle approach within crop...... and livestock production. However, within this farming system, some externalities may appear because of the untreated livestock waste which may pollute air and the surrounding water environment at the farm. This may also affect greenhouse gas emission that potentially contributes to an increase of global...... such as reduction of air and water pollution and gas emission caused by manure. However, despite its multiple benefits, the biogas technology transfer is facing a slow rate of diffusion in most farm households in developing countries. This phenomenon calls for identification of reasons in order to develop solutions...

  11. Growth and yield responses of crops and macronutrient balance influenced by commercial organic manure used as a partial substitute for chemical fertilizers in an intensive vegetable cropping system

    Science.gov (United States)

    Lu, H. J.; Ye, Z. Q.; Zhang, X. L.; Lin, X. Y.; Ni, W. Z.

    A long-term field experiment was conducted with an annual rotation of tomato-radish-pakchoi to assess the effects of a commercial organic manure (COM) used as a partial substitute for chemical fertilizers on crop yield and nutrient balance in an intensive vegetable cropping system. Four treatments as chemical fertilizers (T1), chemical fertilizers + lower rate of COM (T2), chemical fertilizers + medium rate of COM (T3), and chemical fertilizers + high rate of COM (T4) were designed in the present experiment. The supplied doses of N, P, and K were equal for all treatments. Results showed that there were no significant differences in shoot biomass and market yields of tomato, radish and pakchoi among treatments ( P > 0.05). It was found that positive P and K balance existed in the tomato-radish-pakchoi cropping system of all treatments. Compared with no manure treatment (T1), application of medium rate of COM (T3) decreased N, P runoff losses, increased N, P, K contents in crop tissues except N, P in pakchoi shoot, and lessened P, K accumulation in soils, accordingly, improved the efficiency of macronutrient. It was concluded that appropriate COM used as a partial substitute for chemical fertilizers could not only meet the crops’ nutrient requirement, but also improved the efficiency of macronutrient and remained positive balance of P and K in the intensive tomato-radish-pakchoi cropping system, which can be regarded as an effective measure for a contribution towards sustainable agriculture and a control pathway for reducing the potential risk of castoff to water environment.

  12. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  13. Agave as a model CAM crop system for a warming and drying world.

    Science.gov (United States)

    Stewart, J Ryan

    2015-01-01

    As climate change leads to drier and warmer conditions in semi-arid regions, growing resource-intensive C3 and C4 crops will become more challenging. Such crops will be subjected to increased frequency and intensity of drought and heat stress. However, agaves, even more than pineapple (Ananas comosus) and prickly pear (Opuntia ficus-indica and related species), typify highly productive plants that will respond favorably to global warming, both in natural and cultivated settings. With nearly 200 species spread throughout the U.S., Mexico, and Central America, agaves have evolved traits, including crassulacean acid metabolism (CAM), that allow them to survive extreme heat and drought. Agaves have been used as sources of food, beverage, and fiber by societies for hundreds of years. The varied uses of Agave, combined with its unique adaptations to environmental stress, warrant its consideration as a model CAM crop. Besides the damaging cycles of surplus and shortage that have long beset the tequila industry, the relatively long maturation cycle of Agave, its monocarpic flowering habit, and unique morphology comprise the biggest barriers to its widespread use as a crop suitable for mechanized production. Despite these challenges, agaves exhibit potential as crops since they can be grown on marginal lands, but with more resource input than is widely assumed. If these constraints can be reconciled, Agave shows considerable promise as an alternative source for food, alternative sweeteners, and even bioenergy. And despite the many unknowns regarding agaves, they provide a means to resolve disparities in resource availability and needs between natural and human systems in semi-arid regions. PMID:26442005

  14. ASSESSMENT OF SOIL COMPACTION UNDER CENTER PIVOT IRRIGATION SYSTEMS AND ITS EFFECT ON CROP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Khalid Ali Al-Gaadi

    2013-01-01

    Full Text Available A field study on two 12.5 ha plots cultivated with wheat and alfalfa was conducted to determine Soil Compaction (SC, its spatial variability and its effect on crop performance under center pivot irrigation systems. Considering compaction at two tested soil depths, results revealed that the soil of the alfalfa plot exhibited significantly (p<0.01 and p<0.05 for 0 to 10 cm and 0 to 30 cm soil depth, respectively higher compaction values (an average of 1730.328 and 2329.604 kPa, respectively compared to those exhibited by the soil of the wheat plot (averaging at 1339.685 and 2088.903 kPa, respectively. Significant spatial variation of SC was observed within each of the tested plots. SC around pivot wheel tracks was also investigated at a soil depth of 0 to 30 cm for 5.5 m wide strips on both sides of the tracks. Results revealed that the Coefficient of Variation (CV of the SC around the tracks was 9.33 and 16.53% for alfalfa and wheat plots, respectively, suggesting that the SC was not laterally influenced by the wheel tracks. The effect of SC on crop performance, expressed as the Normalized Difference Vegetation Index (NDVI, was investigated on the two plots. Results showed that the NDVI was, in general, inversely proportional to the SC. For both crops, the NDVI was more affected by SC at the top soil layer (0-10 cm depth. Moreover, the alfalfa crop was shown to be significantly influenced by the SC (an average R2 value of 0.3165 and P value of 0.0287, unlike the wheat crop (an average R2 value of 0.0725 and P value of 0.4646.

  15. Emissions of N2O from peat soils under different cropping systems

    Science.gov (United States)

    Norberg, Lisbet; Berglund, Örjan; Berglund, Kerstin

    2016-04-01

    Drainage of peatlands for agriculture use leads to an increase in nitrogen turnover rate causing emissions of N2O to the atmosphere. Agriculture contributes to a substantial part of the anthropogenic emissions of N2O therefore mitigation options for the farmers are important. Here we present a field study with the aim to investigate if the choice of cropping system can mitigate the emission of N2O from cultivated organic soils. The sites used in the study represent fen peat soils with a range of different soil properties located in different parts of southern Sweden. All sites are on active farms with good drainage. N2O emissions from the soil under two different crops grown on the same field, with the same soil type, drainage intensity and weather conditions, are compared by gas sampling. The crops included are oat, barley, carrot, potato and grassland. Three or four sampling occasions during the growing season in 2010 were carried out with static chambers. The N2O emission is calculated from the linear increase of gas concentration in the chamber headspace during the incubation time of 40 minutes. Parallel to the gas sampling soil temperature and soil moisture are measured and some soil properties determined. The result from the gas sampling and measurements show no significant difference in seasonal average N2O emission between the compared crops at any site. There are significant differences in N2O emissions between the compared crops at some of the single sampling occasions but the result vary and no crop can be pointed out as a mitigation option. The seasonal average N2O emissions varies from 16±17 to 1319±1971 μg N2O/m2/h with peaks up to 3317 μg N2O/m2/h. The N2O emission rate from peat soils are determined by other factors than the type of crops grown on the field. The emission rates vary during the season and especially between sites. Although all sites are fen peat soil the soil properties are different, e.g. carbon content varies between 27-43% and

  16. Phosphorus fractions in valle del cauca soils under different coffee cropping systems

    OpenAIRE

    Mejía Umaña, Diana Milena; Ángel Sánchez, Diego Iván; Menjivar Flores, Juan Carlos

    2012-01-01

    This study was conducted in the coffee growing zone of Valle del Cauca (Colombia) to evaluate the effect of planting coffee under different cropping systems: organic, conventional and organic-mineral, on soil phosphorus (P) fractions.  Adapted sequential fractionation methodology was done by the International Center of Tropical Agriculture.  The statistical analysis consisted of a Complete Randomized Block Design under a split plot arrangement with three treatments and three replications.  Th...

  17. FEASIBILITY OF INTEGRATING SHEEP AND CROPS WITH SMALLHOLDER RUBBER PRODUCTION SYSTEMS IN INDONESIA

    OpenAIRE

    Deaton, Brady J.; San, Nu Nu.

    1999-01-01

    Diversified production systems are considered important tools for stabilizing the income of smallholder rubber producers in Indonesia. Based on empirical data collected from smallholder rubber producers in the Nucleus Estate Smallholder (NES) development project, estimations were made of the economic feasibility of integrating sheep and selected crops into smallholder rubber production plantations. The dynamic optimization procedure is used as an evaluation technique. This study finds that in...

  18. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management.

    Science.gov (United States)

    De Gryze, Steven; Wolf, Adam; Kaffka, Stephen R; Mitchell, Jeff; Rolston, Dennis E; Temple, Steven R; Lee, Juhwan; Six, Johan

    2010-10-01

    Despite the importance of agriculture in California's Central Valley, the potential of alternative management practices to reduce soil greenhouse gas (GHG) emissions has been poorly studied in California. This study aims at (1) calibrating and validating DAYCENT, an ecosystem model, for conventional and alternative cropping systems in California's Central Valley, (2) estimating CO2, N2O, and CH4 soil fluxes from these systems, and (3) quantifying the uncertainty around model predictions induced by variability in the input data. The alternative practices considered were cover cropping, organic practices, and conservation tillage. These practices were compared with conventional agricultural management. The crops considered were beans, corn, cotton, safflower, sunflower, tomato, and wheat. Four field sites, for which at least five years of measured data were available, were used to calibrate and validate the DAYCENT model. The model was able to predict 86-94% of the measured variation in crop yields and 69-87% of the measured variation in soil organic carbon (SOC) contents. A Monte Carlo analysis showed that the predicted variability of SOC contents, crop yields, and N2O fluxes was generally smaller than the measured variability of these parameters, in particular for N2O fluxes. Conservation tillage had the smallest potential to reduce GHG emissions among the alternative practices evaluated, with a significant reduction of the net soil GHG fluxes in two of the three sites of 336 +/- 47 and 550 +/- 123 kg CO2-eq x ha(-1) x yr(-1) (mean +/- SE). Cover cropping had a larger potential, with net soil GHG flux reductions of 752 +/- 10, 1072 +/- 272, and 2201 +/- 82 kg CO2-eq x ha(-1) x yr(-1). Organic practices had the greatest potential for soil GHG flux reduction, with 4577 +/- 272 kg CO2-eq x ha(-1) x yr(-1). Annual differences in weather or management conditions contributed more to the variance in annual GHG emissions than soil variability did. We concluded that the

  19. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems

    Science.gov (United States)

    Cai, Zucong; Sawamoto, Takuji; Li, Changsheng; Kang, Guoding; Boonjawat, Jariya; Mosier, Arvin; Wassmann, Reiner; Tsuruta, Haruo

    2003-12-01

    Validations of the DeNitrification-DeComposition (DNDC) model against field data sets of trace gases (CH4, N2O, and NO) emitted from cropping systems in Japan, China, and Thailand were conducted. The model-simulated results were in agreement with seasonal N2O emissions from a lowland soil in Japan from 1995 to 2000 and seasonal CH4 emissions from rice fields in China, but failed to simulate N2O and NO emissions from an Andisol in Japan as well as NO emissions from the lowland soil. Seasonal CH4 emissions from rice cropping systems in Thailand were poorly simulated because of site-specific soil conditions and rice variety. For all of the simulated cases, the model satisfactorily simulated annual variations of greenhouse gas emissions from cropping systems and effects of land management. However, discrepancies existed between the modeled and observed seasonal patterns of CH4 and N2O emissions. By incorporating modifications based on the local soil properties and management, DNDC model could become a powerful tool for estimating greenhouse gas emissions from terrestrial ecosystems.

  20. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?

    Science.gov (United States)

    Topp, Christopher N; Bray, Adam L; Ellis, Nathanael A; Liu, Zhengbin

    2016-03-01

    Root systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mechanistic understanding of root growth and function will be important for future agricultural gains. PMID:26911925

  1. The Crop Risk Zones Monitoring System for resilience to drought in the Sahel

    Science.gov (United States)

    Vignaroli, Patrizio; Rocchi, Leandro; De Filippis, Tiziana; Tarchiani, Vieri; Bacci, Maurizio; Toscano, Piero; Pasqui, Massimiliano; Rapisardi, Elena

    2016-04-01

    Food security is still one of the major concerns that Sahelian populations have to face. In the Sahel, agriculture is primarily based on rainfed crops and it is often structurally inadequate to manage the climatic variability. The predominantly rainfed cropping system of Sahel region is dependent on season quality on a year-to-year basis, and susceptible to weather extremes of droughts and extreme temperatures. Low water-storage capacity and high dependence on rainfed agriculture leave the agriculture sector even more vulnerable to climate risks. Crop yields may suffer significantly with either a late onset or early cessation of the rainy season, as well as with a high frequency of damaging dry spells. Early rains at the beginning of the season are frequently followed by dry spells which may last a week or longer. As the amount of water stored in the soil at this time of the year is negligible, early planted crops can suffer water shortage stresses during a prolonged dry spell. Therefore, the choice of the sowing date is of fundamental importance for farmers. The ability to estimate effectively the onset of the season and potentially dangerous dry spells becomes therefore vital for planning rainfed agriculture practices aiming to minimize risks and maximize yields. In this context, advices to farmers are key drivers for prevention allowing a better adaptation of traditional crop calendar to climatic variability. In the Sahel, particularly in CILSS (Permanent Interstates Committee for Drought Control in the Sahel) countries, national Early Warning System (EWS) for food security are underpinned by Multidisciplinary Working Groups (MWGs) lead by National Meteorological Services (NMS). The EWSs are mainly based on tools and models utilizing numeric forecasts and satellite data to outlook and monitor the growing season. This approach is focused on the early identification of risks and on the production of information within the prescribed time period for decision

  2. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    OpenAIRE

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    One of the core ideas behind organic production is that cropping systems should be less dependent on import of resources, and minimize negative effects on the surrounding environment compared to conventional production. However, even when clearly complying with regulations for organic production, it is not always obvious that these goals are reached. As an example, strong dependence on import of manure is often seen in current organic production, especially in systems producing high value cro...

  3. Dead level contours and infiltration pits for risk mitigation in smallholder cropping systems of southern Zimbabwe

    Science.gov (United States)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    The persistent droughts, dry spells, and chronic food insecurity in semi-arid areas necessitate the introduction of more robust rainwater harvesting and soil water management technologies. The study reported here was conducted to assess the influence of dead level contours and infiltration pits on in-field soil water dynamics over two growing seasons. A transect consisting of six access tubes, spaced at 5 m interval, was established across each dead level contour with or without an infiltration pit before the onset of the rains. Two access tubes were installed upslope of the contour while four tubes were installed on the downslope side. Dead level contours with infiltration pits captured more rainwater than dead level contours only resulting in more lateral soil water movement. Significant lateral soil water movement was detected at 3 m downslope following rainfall events of 60-70 mm/day. The 0.2-0.6 m soil layer benefited more from the lateral soil water movement at all the farms. Our results suggest that dead level contours have to be constructed at 3-8 m spacing for crops to benefit from the captured rainwater. It is probably worth exploring strip cropping of food and fodder crops on the downslope of the dead level contours and infiltration pits using the current design of these between-field structures. With the advent of in situ rainwater harvesting techniques included in some conservation agriculture practices it will benefit smallholder cropping systems in semi-arid areas if these between-field structures are promoted concurrently with other sustainable land management systems such as conservation agriculture.

  4. Agricultural production - Phase 2. Indonesia. Sources and sinks of nitrogen-E phosphorus-based nutrients in cropping systems

    International Nuclear Information System (INIS)

    This document is the report of an expert mission to assist in the initiation of research on sustainable agriculture in rice-based cropping systems as related to the flow of plant nutrients, and on the use of legumes in upland cropping systems. Experimental suggestions include an investigation of the acid tolerance of different soybean strains under upland conditions, an analysis of ways to replace fertilizer nitrogen for rice crops by a green manure such as azolla, and a study of the increase in nutrient availability due to th presence of fish in a paddy field

  5. A Hydroponic System for Purification of Anaerobically Treated Dairy Manure and Production of Wheat as a Nutritional Forage Crop

    OpenAIRE

    Abdel E. Ghaly; H. A. Farag; M. Verma

    2007-01-01

    A hydroponic system was developed and used for purification of an anaerobically treated dairy manure and production of forage crops. The effect of light duration, seeding rate and wastewater application rate on the crop yield and pollution potential reduction were studied. The results indicated that a wheat forage crop can be produced in 21 days from germination to harvest in this system and removal efficiencies of up to 89.9, 94.6, and 86.7 % can be achieved for the total solids, chemical ox...

  6. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa

    Science.gov (United States)

    Thornton, Philip K.; Herrero, Mario

    2015-09-01

    Mixed crop-livestock systems are the backbone of African agriculture, providing food security and livelihood options for hundreds of millions of people. Much is known about the impacts of climate change on the crop enterprises in the mixed systems, and some, although less, on the livestock enterprises. The interactions between crops and livestock can be managed to contribute to environmentally sustainable intensification, diversification and risk management. There is relatively little information on how these interactions may be affected by changes in climate and climate variability. This is a serious gap, because these interactions may offer some buffering capacity to help smallholders adapt to climate change.

  7. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Science.gov (United States)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  8. Modelling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors

    DEFF Research Database (Denmark)

    Doltra, J; Olesen, Jørgen E; Báez, D;

    2015-01-01

    Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal......-based cropping systems. Forage maize was grown in a conventional dairy system at Mabegondo (NW Spain) and wheat and barley in organic and conventional crop rotations at Foulum (NW Denmark). These two European sites represent agricultural areas with high and low to moderate emission levels, respectively. Field...... static chamber method with more frequent measurements post-fertilization and biweekly measurements when high fluxes were not expected. All cropping systems were simulated with the FASSET version 2.5 simulation model. Cumulative soil seasonal N2O emissions were about ten-fold higher at Mabegondo than at...

  9. Influence of conservation agriculture and tillage on soil quality in selected crop production systems in the Philippines

    OpenAIRE

    Ella, Victor B.; Manuel R. Reyes; Padre, R.; Mercado, Agustin R., Jr.

    2014-01-01

    The presentation describes a study to evaluate the influence of conservation agriculture and tillage on selected physical and chemical soil quality parameters in selected upland crop production systems in the Philippines

  10. Nuclear techniques in the development of management practices for multiple cropping systems

    International Nuclear Information System (INIS)

    The need for a new coordinated research programme was considered, aimed at the development of adequate fertilizer and water management practices for multiple cropping systems while taking into account soil properties and prevailing weather conditions. Ten papers were presented, followed by a summary of recommendations and a list of participants. Eight of the papers have been entered individually into the INIS data base. The remaining two papers, one on the role of legumes in intercropping systems (presented by Rajat De from New Delhi) and the other on the need for agroforestry and special considerations regarding field research (by P.A. Huxley from Nairobi) assess prevailing conditions but do not discuss isotope application

  11. Methodological Aspects of On-Farm Monitoring of Cropping Systems Management

    Directory of Open Access Journals (Sweden)

    Nicola Castoldi

    2011-02-01

    Full Text Available To conduct agro-environmental assessments at field and farm scale, detailed management data of crop and animal production systems are needed. However, this type of data is only rarely collected by public administrations. In the period 2005-2006, we made an experience of on-farm monitoring of cropping systems management, within a larger project aimed at assessing sustainability of agricultural systems in Italian Parks. In this paper, we describe and discuss the steps taken to carry out periodic face-to-face interviews in farms in the Sud Milano Agricultural Park (northern Italy. The first step was the selection of seven farms, which we identified by applying cluster analysis at a large database describing 733 farms of the Park. After having identified the most relevant agro-environmental issues in the studied area, we established a list of simple but sound indicators to evaluate the effects of agricultural management on the environment. The criteria used to select the indicators were that they should: be calculated on easily available data, not be based on direct measurements, make a synthesis of different aspects of reality, and be easily calculated and understood. The indicators selected evaluate nutrient management, fossil energy use, pesticide toxicity, soil management, and economic performance. Subsequently, we designed a data model to store input data used to calculate the indicators (farm configuration, flows of materials and money through the farm gate, animals and their rations, history of crop cultivation, crop management. The data model that we obtained is relatively complex, but adequate to store and analyse the large amount of data acquired during the two-year project. A questionnaire was developed to fully comply with the indicators selected and the data model. The questionnaire was used to carry out approximately six interviews per farm each year, with an investment of time of 1-2 hours per interview. Appropriate double checks of

  12. Methodological Aspects of On-Farm Monitoring of Cropping Systems Management

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    Full Text Available To conduct agro-environmental assessments at field and farm scale, detailed management data of crop and animal production systems are needed. However, this type of data is only rarely collected by public administrations. In the period 2005-2006, we made an experience of on-farm monitoring of cropping systems management, within a larger project aimed at assessing sustainability of agricultural systems in Italian Parks. In this paper, we describe and discuss the steps taken to carry out periodic face-to-face interviews in farms in the Sud Milano Agricultural Park (northern Italy. The first step was the selection of seven farms, which we identified by applying cluster analysis at a large database describing 733 farms of the Park. After having identified the most relevant agro-environmental issues in the studied area, we established a list of simple but sound indicators to evaluate the effects of agricultural management on the environment. The criteria used to select the indicators were that they should: be calculated on easily available data, not be based on direct measurements, make a synthesis of different aspects of reality, and be easily calculated and understood. The indicators selected evaluate nutrient management, fossil energy use, pesticide toxicity, soil management, and economic performance. Subsequently, we designed a data model to store input data used to calculate the indicators (farm configuration, flows of materials and money through the farm gate, animals and their rations, history of crop cultivation, crop management. The data model that we obtained is relatively complex, but adequate to store and analyse the large amount of data acquired during the two-year project. A questionnaire was developed to fully comply with the indicators selected and the data model. The questionnaire was used to carry out approximately six interviews per farm each year, with an investment of time of 1-2 hours per interview. Appropriate double checks of

  13. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  14. Re-desiging and assessing the cropping systems - The case of weed management in citrus orchards in Guadeloupe

    OpenAIRE

    Le Bellec, Fabrice

    2011-01-01

    Re-designing and assessing sustainable cropping systems has become a major challenge for agricultural researchers and farmers. In most prototyping methods, researchers are the main, or sometimes the only designers. However, more and more attempts for involving different kinds of stakeholders in participatory approaches have been accounted for. Besides, multi-criteria assessment tools are generally accepted as the solution to evaluating the overall sustainability of new cropping systems. The n...

  15. Effects of living mulches or residue amendments on soil microbial properties in direct seeded cropping systems of Madagascar

    OpenAIRE

    Rabary, B.; Sall, Saidou; Letourmy, P.; Husson, O.; Ralambofetra, E.; Moussa, N.; Chotte, Jean-Luc

    2008-01-01

    There is growing recognition for the need to study the impact of agricultural land uses on biological and biochemical properties of soils. In Madagascar, cropping systems based on direct seeding with permanent vegetation cover provide a new means for sustainable agriculture to protect the environment and make the most of natural resources. This study assessed the effects of different direct seeding mulch-based cropping systems on soil microbial biomass and activities. The soil was andic Dystr...

  16. Environmental evaluation and benchmarking of the traditional dryland Mediterranean crop farming system in the Alentejo region of Portugal.

    OpenAIRE

    Rosado, Maria; Marques, Carlos; Fragoso, Rui

    2015-01-01

    In this paper the effects of traditional Mediterranean crop farming system of the Alentejo region of Portugal on environment are evaluated and benchmarked. With this objective a typical farm of the region using a traditional system based on a crop-rotation of durum wheat with sunflower and peas was selected. Environmental indicators were used to evaluate production activities environmental effects. These include nitrogen balance and energy input determined using input and output processes ana...

  17. Trap Cropping Systems and a Physical Barrier for Suppression of Stink Bugs (Hemiptera: Pentatomidae) in Cotton.

    Science.gov (United States)

    Tillman, P G; Khrimian, A; Cottrell, T E; Lou, X; Mizell, R F; Johnson, C J

    2015-10-01

    Euschistus servus (Say), Nezara viridula (L.), and Chinavia hilaris (Say) (Hemiptera: Pentatomidae) are economic pests of cotton in the coastal plain of the southeastern United States. The objective of this 2-yr study was to determine the ability of trap cropping systems, pheromone-baited stink bug traps, and a synthetic physical barrier at the peanut-to-cotton interface to manage stink bugs in cotton. The physical barrier was the most effective management tactic. Stink bug density in cotton was lowest for this treatment. In 2010, boll injury was lower for the physical barrier compared to the other treatments except for soybean with stink bug traps. In 2011, boll injury was lower for this treatment compared to the control. Soybean was an effective trap crop, reducing both stink bug density in cotton and boll injury regardless if used alone or in combination with either stink bug traps or buckwheat. Incorporation of buckwheat in soybean enhanced parasitism of E. servus egg masses by Telenomus podisi Ashmead in cotton. The insertion of eyelets in the lid of the insect-collecting device of a stink bug trap allowed adult stink bug parasitoids, but not E. servus, to escape. Stand-alone stink bug traps were not very effective in deterring colonization of cotton by stink bugs or reducing boll injury. The paucity of effective alternative control measures available for stink bug management justifies further full-scale evaluations into these management tactics for control of these pests in crops. PMID:26453721

  18. Lentil production in Germany : testing different mixed cropping systems, sowing dates and weed controls

    OpenAIRE

    Wang, Lina

    2012-01-01

    As a kind of legume crop, lentils (Lens culinaris Medik.) with their high nutritional value are grown mainly for human consumption in many regions of the world. The crop has benefits in crop rotation due to its symbiotic N-fixation, which is important especially in organic farming, and it can also increase crop biodiversity in arable land. In Europe, lentils are considered one of the popular leguminous food crops. However, the cultivation and scientific research on lentils were neglected in G...

  19. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios

    Science.gov (United States)

    Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian

    Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize

  20. Long-term effects of cropping system on N2O emission potential

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Ambus, Per; Elsgaard, Lars;

    2013-01-01

    Pa and amended with excess 15NO3- prior to freezing and thawing. Denitrification was the main source of N2O during a 72-h incubation at 22 °C, as judged from N2O and total 15N evolution. Although the input of C in the conventionally managed cropping system was significantly less than in the organic......The potential for N2O emissions outside the main growing season may be influenced by long-term effects of cropping system. This was investigated by collecting intact soil cores (100 cm3, 0-4 cm depth) under winter wheat in three organic cropping systems and a conventional reference within a long...... cropping systems, it showed higher N2O evolution at all three matric potentials. Estimates of relative gas diffusivity (DP/D0) in soil from the four cropping systems indicated that C input affected soil aeration. Soil from the two cropping systems with highest C input showed N2O evolution at DP/D0 in...

  1. The Effects of Climate Change on the Planting Boundary and Potential Yield for Different Rice Cropping Systems in Southern China

    Institute of Scientific and Technical Information of China (English)

    YE Qing; YANG Xiao-guang; LIU Zhi-juan; DAI Shu-wei; LI Yong; XIE Wen-juan; CHEN Fu

    2014-01-01

    Based on climate data from 254 meteorological stations, this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010. The results indicated a signiifcant northward shift and westward expansion of northern boundaries for rice planting in the southern China. Compared with the period of 1951-1980, the average temperature during rice growing season in the period of 1981-2010 increased by 0.4°C, and the northern planting boundaries for single rice cropping system (SRCS), early triple cropping rice system (ETCRS), medium triple cropping rice system (MTCRS), and late triple cropping rice system (LTCRS) moved northward by 10, 30, 52 and 66 km, respectively. In addition, compared with the period of 1951-1980, the suitable planting area for SRCS was reduced by 11%during the period of 1981-2010. However, the suitable planting areas for other rice cropping systems increased, with the increasing amplitude of 3, 8, and 10%for ETCRS, MTCRS and LTCRS, respectively. In general, the light and temperature potential productivity of rice decreased by 2.5%. Without considering the change of rice cultivars, the northern planting boundaries for different rice cropping systems showed a northward shift tendency. Climate change resulted in decrease of per unit area yield for SRCS and the annual average yields of ETCRS and LTCRS. Nevertheless, the overall rice production in the entire research area showed a decreasing trend even with the increasing trend of annual average yield for MTCRS.

  2. Crop systems and plant roots can modify the soil water holding capacity

    Science.gov (United States)

    Doussan, Claude; Cousin, Isabelle; Berard, Annette; Chabbi, Abad; Legendre, Laurent; Czarnes, Sonia; Toussaint, Bruce; Ruy, Stéphane

    2015-04-01

    At the interface between atmosphere and deep sub-soil, the root zone plays a major role in regulating the flow of water between major compartments: groundwater / surface / atmosphere (drainage, runoff, evapotranspiration). This role of soil as regulator/control of water fluxes, but also as a supporting medium to plant growth, is strongly dependent on the hydric properties of the soil. In turn, the plant roots growing in the soil can change its structure; both in the plow layer and in the deeper horizons and, therefore, could change the soil properties, particularly hydric properties. Such root-related alteration of soil properties can be linked to direct effect of roots such as soil perforation during growth, aggregation of soil particles or indirect effects such as the release of exudates by roots that could modify the properties of water or of soil particles. On an another hand, the rhizosphere, the zone around roots influenced by the activity of root and associated microorganisms, could have a high influence on hydric properties, particularly the water retention. To test if crops and plant roots rhizosphere may have a significant effect on water retention, we conducted various experiment from laboratory to field scales. In the lab, we tested different soil and species for rhizospheric effect on soil water retention. Variation in available water content (AWC) between bulk and rhizospheric soil varied from non-significant to a significant increase (to about 16% increase) depending on plant species and soil type. In the field, the alteration of water retention by root systems was tested in different pedological settings for a Maize crop inoculated or not with the bacteria Azospirillum spp., known to alter root structure, growth and morphology. Again, a range of variation in AWC was evidenced, with significant increase (~30%) in some soil types, but more linked to innoculated/non-innoculated plants rather than to a difference between rhizospheric and bulk soil

  3. Effects of cropping system and rates of nitrogen in animal slurry and mineral fertilizer on nitrate leaching from a sandy loam

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Hansen, Jørgen Frederik; Kjellerup, Viggo K.;

    1993-01-01

    Leaching of nitrate from a sandy loam cropped with spring barley, winter wheat and grass was compared in a 4-year lysimeter study. Crops were grown continuously or in a sequence including sugarbeet. Lysimeters were unfertilized or supplied with equivalent amounts of inorganic nitrogen in calcium...... ammonium nitrate (CAN) or animal slurry according to recommended rates (1N) or 50% above recommended rates (1.5N). Compared with unfertilized crops, leaching of nitrate increased only slightly when 1N (CAN) was added. Successive annual additions of 1.5N (CAN) or IN and 1.5N (animal slurry) caused...... the four years were similar for the crops when grown in rotation or continuously. When crops received 1:5N (CAN) or animal slurry, nitrate losses from the crops grown continuously exceeded those from crops in rotation. Including a catch crop in the continuous cropping system eliminated the differences...

  4. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  5. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two new explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess clear advantages over available alternatives, including: (i) the new solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the new analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  6. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  7. Techniques for optimal crop selection in a controlled ecological life support system

    Science.gov (United States)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1993-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  8. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  9. Soil chemical atributtes on brachiaria spp in integrated crop livestock system

    Directory of Open Access Journals (Sweden)

    Valdinei Tadeu Paulino

    2013-12-01

    Full Text Available Integrated crop-livestock systems have attracted more interest in the last few years due to their capacity of improving stability and sustainability of agricultural systems when compared to more specialized production ones. The crop-livestock integration is an effective technique, but complex to maintain pasture productivity and its recovery, whose efficiency depends on soil physical management and its chemical fertility. Regarding the soil fertility, the corrective practices generally begin with the liming due to the high acidity of most Brazilian soils and low levels of Ca and Mg in the exchange complex and high Al saturation. In areas of crop-livestock systems, liming corrects the surface acidity potential. However, this practice can leave the subsoil with excess aluminum and lack of calcium, which inhibit root growth and affect the absorption of water and nutrients. The application of gypsum allows the improvement of the subsoil, reducing Al saturation and increasing levels of calcium and sulfur. The aim of this study was to investigate changes in the soil chemical properties of a Haplorthox soil in integrated crop-livestock system (ICL with Brachiaria brizantha cv. Marandu and Piatã, Brachiaria ruziziensis with gypsum and liming application. This study was conducted at the Instituto de Zootecnia, Nova Odessa/SP, a pasture established on a soil with medium texture (61.4% sand, silt 14.6% and 24.0% clay. The treatment plots consisted on integration crop-livestock (ICL cultivated - maize and B. Marandu,  ICL - maize and B. ruziziensis, ICL - maize and B. Piatã and an untreated control group (control - without liming and fertilization grazed pasture throughout the year, located immediately adjacent to the ICL evaluation, which was cultivated for 25 years with B. brizantha cv. Marandu. All pastures were desiccated in October with glyphosate-based herbicide (4 liters per hectare. Then gypsum (1.2 Mg ha-1 and liming (1.2 Mg ha-1 were applied

  10. The influences of cropping systems on weed communities of rice in Côte d'Ivoire, West Africa

    OpenAIRE

    Kent, R.; Johnson, D E; Becker, M

    2001-01-01

    In West Africa agricultural land use for rice production is changing rapidly with increased cropping intensity in some areas. Studies were conducted to examine how the different cropping systems are reflected in rice weed populations. Weed species were surveyed on 126 rice farms in the humid forest to the moist savannah zones of Côte d'Ivoire. Two additional surveys were undertaken in a peri-urban area of the savannah zone to examine the effects water control and cropping diversification on w...

  11. Crop status sensing system by multi-spectral imaging sensor, 1: Image processing and paddy field sensing

    International Nuclear Information System (INIS)

    The objective of the study is to construct a sensing system for precision farming. A Multi-Spectral Imaging Sensor (MSIS), which can obtain three images (G. R and NIR) simultaneously, was used for detecting growth status of plants. The sensor was mounted on an unmanned helicopter. An image processing method for acquiring information of crop status with high accuracy was developed. Crop parameters that were measured include SPAD, leaf height, and stems number. Both direct seeding variety and transplant variety of paddy rice were adopted in the research. The result of a field test showed that crop status of both varieties could be detected with sufficient accuracy to apply to precision farming

  12. Cultivating knowledge on seed systems and seed strategies: Case of the rice crop

    Directory of Open Access Journals (Sweden)

    Amadou Moustapha Bèye

    2014-01-01

    Full Text Available This review gives key information about seed systems with the objective of helping countries in sub-Saharan Africa (SSA to design appropriate strategies based on their own local realities. It starts with an in-depth assessment of the rice seed sector and emphasizes the factors that can influence its development. These factors may be associated with the biological characteristics of the rice crop, the complexity of farming systems, the policy environment, and the markets. The historical background of the seed sector in SSA is described in order to give a clear picture of the different attempts to find solutions in different countries and sub-regions. Five major strategic models and several alternative seed strategies are identified. However, local traditional seed systems will remain the primary source of seed supply for the majority of farmers for many years to come. These systems are based on farmer-saved seed and farmer-to-farmer seed exchanges, which are efficient tools in seed dissemination and food security. It is time to recognize local traditional systems and their contribution to the maintenance of seed quality and crop diversity and to develop tools for their better utilization. The community-based seed system (CBSS is proposed as such a tool. CBSS encourages technicians to recognize local traditional seed systems and to build integrated seed approaches that take into consideration local realities and the socio-cultural dimension of seed within African communities. This will likely require a transition period of 5 to 10 years to build the fundamentals of sustainable seed systems through the structuring of the seed sector and the creation of appropriate conditions to ensure food security, enriched biodiversity and sustainable production. With climate change, local traditional seed systems, as well as integrated seed approaches, will likely play a more important role to improve the performance of agricultural systems while ensuring farmer

  13. Carbon sequestration, nitrous oxide emission and nitrogen management in soil under no-till cropping system

    International Nuclear Information System (INIS)

    No-till practice is increasingly being used for crop production around the world. In Australia and Brazil, the current area under no-till practice exceeds 30% (8 million ha and 14 million ha, respectively), while for the USA, more than 15% ((20 million ha) and worldwide 72 million ha of the total grain cropping area is under minimum and no-till practice (Benites et al. 2003). While the primary incentives are for erosion control, moisture conservation, timely operations, and reduced operation costs for machinery and fuel, there are a number of potential benefits including aggregation, fertility maintenance, enhanced biotic activity, carbon sequestration and nitrogen cycling. The potential risks include herbicide resistance and environmental pollution, pests, cooler soil in early spring in temperate region thus delaying field operations, and increase in nitrous oxide emissions due to wetter soil conditions and slower plant N uptake after sowing. In most NT systems in Australia, there is only marginal C sequestration benefit (Dalal and Chan 2001; Chan et al. 2003) compared to the CT practice. This is because of the marginal increase in biomass production and hence similar carbon inputs. The challenge is to increase biomass production by maximising water use efficiency and nutrient efficiency, and minimising crop diseases. Net greenhouse gas benefits must consider all the energy inputs, including fertiliser N and fuel for considering GHG mitigation for the NT practice. There is limited information available on nitrous oxide emission and/or methane emission/sink for the tropical NT systems. Optimum water and nutrient management for NT systems is the key to enhance GHG benefits, improve productivity and maintain the quality of natural resources

  14. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  15. Inactivation of the Dorsal Raphé Nucleus Reduces the Anxiogenic Response of Rats Running an Alley for Intravenous Cocaine

    OpenAIRE

    Ettenberg, Aaron; Ofer, Oren A.; Mueller, Carl L.; Waldroup, Stephanie; Cohen, Ami; Ben-Shahar, Osnat

    2010-01-01

    Rats traversing a straight alley once a day for delivery of a single i.v. injection of cocaine develop over trials an ambivalence about entering the goal box. This ambivalence is characterized by the increasing occurrence of “retreat behaviors” where animals leave the start box and run quickly to the goal box, but then stop at the entry point and “retreat” back toward the start box. This unique pattern of retreat behavior has been shown to reflect a form of “approach-avoidance conflict” that ...

  16. Relation between soil organic matter and yield levels of nonlegume crops in organic and conventional farming systems

    OpenAIRE

    Brock, Christopher; Fließbach, Andreas; Oberholzer, Hans-Rudolf; Schulz, Franz; Wiesinger, Klaus; Reinicke, Frank; Koch, Wernfried; Pallutt, Bernhard; Dittman, Bärbel; Zimmer, Jörg; Hülsbergen, Kurt-Jürgen; Leithold, Günter

    2011-01-01

    The aim of this study was to evaluate the interaction between yield levels of nonleguminous crops and soil organic matter (SOM) under the specific conditions of organic and conventional farming, respectively, and to identify implications for SOM management in arable farming considering the farming system (organic vs. conventional). For that purpose, correlations between yield levels of nonlegume crops and actual SOM level (Corg, Nt, Chwe, Nhwe) as well as SOM-level development were examined i...

  17. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield

    OpenAIRE

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I.; Ong, Chin K.; Deans, J. Douglas; Okorio, John

    2008-01-01

    Tree root pruning is a potential tool for managing below-ground competition when trees and crops are grown together in agroforestry systems. This study investigates its effects on growth and root distribution of Alnus acuminata (HB & K), Casuarina equisetifolia (L), Grevillea robusta (A. Cunn. ex R. Br), Maesopsis eminii (Engl.), and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most spec...

  18. Cover crops and herbicide timing management on soybean yield under no-tillage system

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2012-02-01

    Full Text Available The objective of this work was to evaluate the effect of cover crops and timing of pre-emergence herbicide applications on soybean yield under no-tillage system. The experiment consisted of four cover crops (Panicum maximum, Urochloa ruziziensis, U. brizantha, and pearl millet and fallow, in addition to four herbicide timings (30, 20, 10, and 0 days before soybean sowing, under no-tillage system (NTS, and of two control treatments under conventional tillage system (CTS. The experimental design was a completely randomized block, in a split-plot arrangement, with three replicates. Soybean under fallow, P. maximum, U. ruziziensis, U. brizantha, and pearl millet in the NTS and soybean under U. brizantha in the CTS did not differ significantly regarding yield. Soybean under fallow in the CTS significantly reduced yield when compared to the other treatments. The amount of straw on soil surface did not significantly affect soybean yield. Chemical management of P. maximum and U. brizantha near the soybean sowing date causes significant damage in soybean yield. However, herbicide timing in fallow, U. ruziziensis, and pearl millet does not affect soybean yield.

  19. Soil Phosphorus Dynamics of Wheat-Based Cropping Systems in the Semiarid Region of Argentina

    Directory of Open Access Journals (Sweden)

    Liliana Suñer

    2014-01-01

    Full Text Available The dynamics of soil P forms and particle size fractions was studied under three wheat-based cropping sequences in production systems of Argentina. The whole soil and its coarse (100–2000 µm and fine (0–100 µm fractions were analyzed to determine Bray-Kurtz extractable (Pe, organic (Po, inorganic (Pi, and total (Pte phosphorus. The reference soil was determined at time 0 and compared to a four-year period (time 9 to 12 in three crop sequences: wheat (Triticum aestivum L.-cattle grazing on natural grasses (WG, continuous wheat (WW, and wheat-legume (WL. Levels of Pe showed differences over time, from 10 to 16 µg g−1 in WG, in line with agriculture and cattle grazing alternate sequences. In WW, P level increased with time, while in WL systems a significant decrease in P from 33.7 to 10.4 µg P g−1 was found during the legume period. Soil P values varied between reference soil and soil samples in year nine and between treatments. Pi was significantly lower in WW, and its concentration increased with time. The coarse fraction of the reference plots had significantly higher levels of Po and Pi than the cultivated treatments, probably a consequence of the particulate organic matter decomposition and coarse mineral particle weathering. The observed changes in Pi content could be attributed to differences in occluded P equilibrium under different soil environments (mainly pH and crop-tillage-climatic interaction.

  20. Soil attributes under different crop management systems in an Amazon Oxisols

    Directory of Open Access Journals (Sweden)

    Elessandra Laura Nogueira Lopes

    2015-01-01

    Full Text Available AbstractSoil biological properties have a high potential for use in assessing the impacts of crop systems. The objective of this study is to evaluate the effects of cropping systems on the biological attributes of an oxisol in the Amazonian state of Pará. The treatments consisted of approximately 20-year-old secondary vegetation, recovered pasture, no-tillage systems (NT maintained for 4 and 8 years after planting with corn (Zea mays L. and soybean (Glycine max L., and conventional tillage (CT systems every 2 years after planting with rice (Oryza sativa L. and soybean. The microbial biomass to nitrogen ratio was higher in the NT system (0.68 mg kg–1, and the NT system had greater microbial NT8. Thus, the contributions of organic matter from straw improved the soil quality in these areas. The total organic carbon (TOC content was greater in the secondary forest and CT areas (46.7 and 48.0 mg kg–1, respectively, potentially due to the higher amounts of organic matter and organic matter mineralization in these areas. However, the largest TOC stocks were observed in the pasture, which corresponded with greater carbon storage (63.5 Mg ha–1. By contrast, the no-till systems were not efficient for storing C, with concentrations of 5.0 and 5.3 Mg ha–1 in NT-4 and NT-8, respectively. These results may reflect the short period that these systems were adopted and the vast microbial activity that was observed in these areas, with microbial quotients of 8.03 and 10.41% in NT-4 and NT-8, respectively.

  1. Carbon stock and its compartments in a subtropical oxisol under long-term tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil organic matter (SOM plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years of tillage (CT-conventional tillage and NT-no tillage and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation on total, particulate and mineral-associated organic carbon (C stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification, the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C

  2. Nitrogen Release from Green Manure of Water Hyacinth in Rice Cropping Systems

    OpenAIRE

    Didik Wisnu Widjajanto; Terumasa Honmura; Nobufumi Miyauchi

    2002-01-01

    Nitrogen derived from water hyacinth and recovered in rice crops was measured to evaluate the effect of different amounts of added water hyacinth residues into rice cultivation on the performance of rice crop, N derived (Ndev) from residues and N recovery (Nrec) in rice crop. Dry matter production and N yield of rice crop decreased significantly as the amounts of added water hyacinth increased. The Ndev from water hyacinth was significantly increased as amounts of added water hyacinth increas...

  3. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    Science.gov (United States)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  4. Abundance and distribution of thrips (Thysanoptera: Thripidae in mangosteen (Garcinia mangostana L. grown in single- and mixed-cropping systems

    Directory of Open Access Journals (Sweden)

    Kanitta Pankeaw

    2011-06-01

    Full Text Available We investigated the abundance and distribution of thrips in a farmer’s mangosteen orchard by comparing single- andmixed-cropping systems at Nakhon Sri Thammarat province, the main planting area in southern Thailand, between April2005 and January 2006. A monitoring program at two-week-intervals was done to measure the number of thrips by usingtwenty yellow sticky traps per each cropping system. The mean number (223.5±23.4 thrips/trap of thrips throughout theperiod of study in the monocrop mangosteen sites was significantly (P<0.01 higher than 69.1±8.3 thrips/trap in the mixedcropmangosteen sites. Scarring on the fruit surfaces damaged by thrips was visually quantified, with average percentages ofscarring 32.2% and 19.8% in the mono- and mixed-cropping systems, respectively. Distribution of thrips in the upper andlower halves of the plant canopy in the four cardinal directions was studied by assessing scarring on the fruit surfaces. Thepercentage of scarring occurring in the upper canopy was significantly (P<0.01 higher than in the lower canopy. In thesingle-crop system, the average percentages of scarring were 46.6% and 25.4% on the upper and lower canopies, respectively.In the mixed-cropping system results obtained were similar to those in the single cropping system, with 31.5% and 20.4% onthe upper and lower canopies, respectively. The severity of damage to the fruits caused by thrips seemed to be higher in theNorth and East directions than in the South and West. In conclusion, mixed-cropping mangosteen orchards are recommendedfor reducing fruit damage caused by thrips. Fruits occurring on the upper canopy, in the North and East sides, should beunderlined for thrip control to meet the criteria for high quality mangosteen production from the south of Thailand.

  5. Group-based Crop Change Planning: Application of SmartScapeTM Spatial Decision Support System for Resolving Conflicts

    DEFF Research Database (Denmark)

    Tayyebi, Amin; Arsanjani, Jamal Jokar; Tayyebi, Amir H.;

    2016-01-01

    , there are currently a few SDSSs that indicate the trade-offs among multiple ecosystem services as a result of crop change and also enable stakeholders with diverse preferences to arrive at group-based decisions. In this study, we held a series of meetings with stakeholders, who were experts in economics......Agricultural changes are complex and managing an appropriate type of crop change to satisfy stakeholders with various interests is challenging. Decisions regarding a crop change need to be debated among multiple stakeholders with various conflicting viewpoints. Two kinds of conflicts might occur as...... a result of crop change in an agricultural landscape: (1) conflicts among multiple ecosystem services i.e., internal conflicts and (2) conflicts among multiple stakeholders i.e., external conflicts. While a spatial decision support system (SDSS) can provide answers concerning multifaceted problems...

  6. Coexistence between genetically modified, conventional and organic crops. Availability of organically produced seed of varieties adapted to organic production systems

    OpenAIRE

    Boelt, B.; Deleuran, L.C.

    2005-01-01

    To maintain the integrity of organic farming systems guidelines to ensure coexistence between genetically modified (GM), conventional and organic crops should be implied. Since seed is moved cross borders a regulatory system is need to allow for organically produced seed of varieties adapted to organic production systems being available to organic farmers both in developed and developing countries.

  7. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  8. Combined Effect of Nutrient and Pest Management on Soil Ecological Quality in Hybrid Rice Double-Cropping System

    Institute of Scientific and Technical Information of China (English)

    LIAO MIN; XIE XIAOMEI; A. SUBHANI

    2003-01-01

    The mineral fertilizers (NPK) and pesticide, including herbicides, insecticides and fungicides, were applied alone or in combination and the soil sampling was done at different growth stages during the crop cycle to study the changes in soil organic matter, microbial biomass and their activity parameters in a paddy soil with different nutrient and pest management practices in a hybrid rice double-cropping system. A consistent increase in the electron transport system (ETS) activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or with pesticides increased ETS activity, while a decline of ETS activity was noticed with pesticides alone as compared with the control. Nearly an increasing trend in soil phenol content was observed with the progression of crop growth stages, while the usage of pesticides alone caused maximum increments in the soil phenol content. The soil protein content was found nearly stable with fertilizers and/or pesticides application at various growth stages in both crops taken. But notable changes were noticed at different growth stages probably because of fluctuations in moisture and temperature at particular stages, which might have their effects on N mineralization. Marked depletions in the phospholipid content were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also produced slight changes, in which a higher decline was noticed with pesticide application alone compared with the control.

  9. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the

  10. Conceptual design of a bioregenerative life support system containing crops and silkworms

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong

    2010-04-01

    This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.

  11. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N2O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  12. Effectiveness of Perennial Vegetation Strips in Reducing Runoff in Annual Crop Production Systems

    Science.gov (United States)

    Hernandez-Santana, V.; Zhou, X.; Helmers, M.; Asbjornsen, H.; Kolka, R. K.

    2010-12-01

    In many parts of the world, unprecedented high crop yields have been attained by conversion of native perennial grasslands to intensively managed annual cropping systems. However, these achievements have often been accompanied by significant environmental impacts with far-reaching social and economic costs. Perhaps nowhere is this situation revealed more acutely than in the Midwestern US, where landscape-scale transformation of native tallgrass prairie to rowcrop corn and soybeans has dramatically altered the hydrologic cycle, increased nutrient and sediment loss, and diminished ecosystem services. The objective of this study was to assess the potential for reducing negative impacts of rowcrop agriculture on water quality and flow by incorporating native prairie vegetation in strategic locations within conventional rowcrop agriculture. Specifically, we tested the hypothesis that small amounts of prairie vegetation strategically located in agricultural landscapes would lead to disproportionate benefits by reducing runoff and nutrient and sediment loss. The study was conducted at the Neal Smith National Wildlife Refuge (Iowa), and consisted of a fully balanced, replicated, incomplete block design whereby twelve small experimental catchments (0.43 - 3.19 ha) received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (downslope “toe” vs. contour strips). Pre- treatment data were collected in 2005, treatments installed in 2006, and post-treatment responses monitored annually (April-October) thereafter. Volume and rate of surface runoff were measured with an H-Flume installed in each catchment, and automated ISCO samplers used to collect event-based runoff samples that were analyzed for sediment, nitrate (N), and phosphorus (P) concentration. A total of 102 rainfall events were registered during the study period (April-October, 2008 and 2009), accounting for a total rainfall amount of

  13. Crop yield and light / energy efficiency in a closed ecological system: two laboratory biosphere experiments

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22g/mole was inbetween those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher

  14. Reduced Nitrous Oxide Emissions in Tomato Cropping Systems under Drip Irrigation and Fertigation

    Science.gov (United States)

    Kennedy, T.; Suddick, E. C.; Six, J. W.

    2011-12-01

    In California, agriculture and forestry account for 8% of the total greenhouse gas (GHG) emissions, of which 50% is accounted for by nitrous oxide (N2O). Furrow irrigation and high temperatures in the Central Valley, together with conventional fertilization, are ideal for the production of food, but also N2O. These conditions lead to high N2O fluxes, but also mean there is great potential to reduce N2O emissions by optimizing fertilizer use and irrigation practices. Improving fertilizer use by better synchronizing nitrogen (N) availability and crop demand can reduce N losses and fertilizer costs. Smaller, more frequent fertilizer applications can increase the synchrony between available soil N and crop N uptake. Fertigation allows for more control over how much N is being added and can therefore allow for better synchrony throughout the growing season. In our study, we determined how management practices, such as fertilization, irrigation, tillage and harvest, affect direct N2O emissions in typical tomato cropping systems. We evaluated two contrasting irrigation managements and their associated fertilizer application method, i.e. furrow irrigation and knife injection versus drip irrigation and fertigation. Across two tomato-growing seasons, we found that shifts in fertilizer and irrigation water management directly affect GHG emissions. Seasonal N2O fluxes were 3.4 times lower under drip versus furrow irrigation. In 2010, estimated losses of fertilizer N as N2O were 0.60 ± 0.06 kg N2O-N ha-1 yr-1 in the drip system versus 2.06 ± 0.11 N2O-N kg ha-1 yr-1 in the furrow system, which was equivalent to 0.29% and 0.87% of the added fertilizer, respectively. Carbon dioxide (CO2) emissions were also lower in the drip system (2.21 ± 0.16 Mg CO2-C ha-1 yr-1) than the furrow system (4.65 ± 0.23 Mg CO2-C ha-1 yr-1). Soil mineral N, dissolved organic carbon and soil moisture also varied between the two systems and correlated positively with N2O and CO2 emissions, depending

  15. Evaluation of a handling system for ley crop used in biogas production. Capacities and costs for a centralised system

    Energy Technology Data Exchange (ETDEWEB)

    Vaagstroem, Lena

    2005-07-01

    Within the Vaextkraft project in Vaesteraas, Sweden, biogas is to be produced out of ley crop and organic waste. The aim of this study has been to estimate the capacities within the handling system used for the ley crop harvest, and the resources needed. For this purpose a model in the form of a calculation program in Excel was built. The model makes it possible to vary parameters such as transport system design, distance from fields to storage, dry matter content and yield. The results showed that it is essential to match the capacities between chopper and transport to minimise the time and cost connected to the harvest. To avoid creating costly bottlenecks in the Vaextkraft case the transport system has to consist of at least two trucks with trailers. The estimates made with the model suggests that the distance to storage is strongly linked to the dimensioning of the transport system, whereas the number of fields and their size has a lesser impact on harvest time and cost. Variation of the dry matter yield from a base scenario had an impact on the cost for harvesting, but not on the choice of transport system. The model couldn't detect any reliable differences in total costs due to the variation of dry matter content between 25-45%. The choice of chopping machinery in the Vaextkraft project leads to small timeliness costs. Together with a reasonable choice of transport system they will only constitute a few percent of the total costs for harvesting.

  16. Soil fungal resources in annual cropping systems and their potential for management.

    Science.gov (United States)

    Ellouze, Walid; Esmaeili Taheri, Ahmad; Bainard, Luke D; Yang, Chao; Bazghaleh, Navid; Navarro-Borrell, Adriana; Hanson, Keith; Hamel, Chantal

    2014-01-01

    Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i) highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii) examine the influence of agronomic practices on these fungi, and (iii) propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes) interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments) can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils. PMID:25247177

  17. Effect of Rice—Based Cropping System on Organic Matter Status in Soils

    Institute of Scientific and Technical Information of China (English)

    XIAOYONGLAN; YANGDONGPING; 等

    1997-01-01

    A long-term simulation experiment was carred out to study the effect of rice-based cropping system,green manure and ground-water level on soil organic matter.Soil organic matter content increased when upland soil was puddled and cropped under submerged conditions.Among all treatments,soil organic matter contents in the treatments of rice-rice-flooded fallow in winter(WF)were the highest,those in the treatments of rice-rice-astragalus(WG) came the seond,and those in the treatments of rice-rice-rape(WR). were the lowest At the same rate of green manur application,the degrees of organo-mineral compleing in soils of treatments WG and WR were higher than those of treatment WF.After 9-year rice cultivation, the state of combination of humus in heavy fraction varied with treatments.The relative content of loosely bonded humus decreased in the order of WR>WG>WF,and it correlated significantly with Se availability.

  18. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2011-08-01

    Full Text Available The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1 Black oat straw (Avena strigosa Schreb.; 2 Rye straw (Secale cereale L.; 3 Common vetch straw (Vicia sativa L.. The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

  19. Impact of land management system on crop yields and soil fertility in Cameroon

    Directory of Open Access Journals (Sweden)

    D. Tsozué

    2015-06-01

    Full Text Available The impact of direct-seeding mulch-based cropping systems (DMC, direct seeding (DS and tillage seeding (TS on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha−1 NPK + 25 kg ha−1 of urea in DMC, F2: 200 kg ha−1 NPK + 50 kg ha−1 of urea in DMC and F3: 300 kg ha−1 NPK + 100 kg ha−1 of urea in DMC were applied to each cropping system (DS, TS and DMC, resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha−1 respectively in DMC, DS and TS at F1, 1658, 1139 and 1192 kg ha−1 respectively in DMC, DS and TS at F2, and 2270, 2138 and 1780 kg ha−1 respectively in DMC, DS and TS at F3. pH values were 5.2 to 5.7 under DMC, 4.9 to 5.3 under DS and TS, and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were high in the control sample and the DMC than in the others systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low soil pH values.

  20. Impact of land management system on crop yields and soil fertility in Cameroon

    Science.gov (United States)

    Tsozué, D.; Nghonda, J. P.; Mekem, D. L.

    2015-09-01

    The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha-1 NPK + 25 kg ha-1 of urea in DMC, F2: 200 kg ha-1 NPK + 50 kg ha-1 of urea in DMC and F3: 300 kg ha-1 NPK + 100 kg ha-1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha-1 in DMC, DS and TS, respectively, at F1, 1658, 1139 and 1192 kg ha-1 in DMC, DS and TS, respectively, at F2, and 2270, 2138 and 1780 kg ha-1 in DMC, DS and TS, respectively, at F3. pH values were 5.2-5.7 under DMC, 4.9-5.3 under DS and TS and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were higher in the control sample and DMC than in the other systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low pH values.

  1. Environmental and agricultural benefits of a management system designed for sandy loam soils of the humid tropics Benefícios ambientais e agronômicos de um agrossistema definido para solos de textura franco arenosa do trópico úmido

    Directory of Open Access Journals (Sweden)

    Alana das Chagas Ferreira Aguiar

    2009-10-01

    Full Text Available A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.O manejo sustentável dos solos de baixa fertilidade natural na agricultura familiar do trópico tem sido um grande desafio, que, se vencido, resultará em vantagens para o ambiente e para os agricultores. Este trabalho foi realizado com o objetivo de avaliar os benefícios ambiental e agronômico de um cultivo em aleias, por meio da determinação do C sequestrado, dos indicadores da qualidade do solo e da produtividade da cultura do milho

  2. Cover Crops and Nitrogen Fertilization Effects on Nitrogen Soil Fractions under Corn Cultivation in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Márcia de Sousa Veras

    2016-01-01

    Full Text Available ABSTRACT The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L. Millsp, and Sorghum bicolor (L. Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.

  3. Less or More Intensive Crop Arable Systems of Alentejo Region of Portugal: what is the sustainable option?

    Directory of Open Access Journals (Sweden)

    Carlos Marques

    2015-03-01

    Full Text Available Competitiveness of traditional arable crop system of Alentejo region of Portugal has been questioned for long. Discussion and research on the sustainability of the system has evolved on two contrasted alternative options for production technologies to traditional system. On the one hand reduced and no tillage systems aim to more extensive technical operations reducing costs and maintaining production, or even to increase it in the long run as soil fertility improves. On the other hand, input intensification using irrigation, as a complement in the last stage of crop cycle or always when needed, aimed to increase system production levels. To evaluate competitiveness and sustainability of arable crop system we evaluated traditional rotation technology and alternative no tillage and irrigation systems and analyze their farm economic results as well as their energy efficiency and environmental impacts. The analysis of the impact of no tillage and irrigation on arable land production system showed that both alternatives contributed to cost savings and profit earnings, energy savings and reduced GHG emissions, increasing physical and economic factor efficiency. Research and technological development of both options are worthwhile to promote competitiveness and sustainability of arable crop production systems of the Alentejo region in Portugal.

  4. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pineros; Pierre-Luc Pradier; Nathanael M Shaw; Ithipong Assaranurak; Susan R McCouch; Craig Sturrock; Malcolm Bennett; Leon V Kochian; Brandon G Larson; Jon E Shaff; David J Schneider; Alexandre Xavier Falcao; Lixing Yuan; Randy T Clark; Eric J Craft; Tyler W Davis

    2016-01-01

    A plant’s ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architec-ture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyp-ing software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimen-sional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.

  5. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    Science.gov (United States)

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions. PMID:26683583

  6. Physical quality of an Oxisol under an integrated crop-livestock-forest system in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2014-04-01

    Full Text Available Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30; integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45; integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30; integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45; integrated crop-livestock with pasture height of 30 cm (CL30; integrated crop-livestock with pasture height of 45 cm (CL45 and native vegetation (NV. Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b and penetration resistance (PR, and decreased total porosity (¦t and macroporosity (¦ma, compared to NV. The values of r b (1.18-1.47 Mg m-3, ¦ma (0.14-0.17 m³ m-3 and PR (0.62-0.81 MPa at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC and the soil organic carbon pool (SOCpool. All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1.

  7. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  8. Integrating leguminous trees and shrubs in cropping systems of Southern Africa

    International Nuclear Information System (INIS)

    Soil and water management is an essential element in food security, agriculture sector growth and sustainable land management of sub-Saharan Africa (SSA). The increased land degradation and declining fertility of SSA soils contribute to food insecurity and poverty. Previously, agroforestry researchers tended to focus mostly on soil nutrient replenishment as being solely responsible for post-fallow crop yield dynamics. Missing from many studies on soil fertility issues is the recognition of the important role of soil physical properties in agricultural productivity. However, many factors affect soil fertility and some agroforestry measures taken to correct soil nutrient deficiencies can also produce desirable soil physical effects. We hypothesized that planted tree fallows can potentially increase soil N status and improve soil physical properties, thus increasing subsequent crop yields. Field studies were conducted on infertile sandy clay loams at Msekera and Kagoro, Zambia, to determine the effect of contrasting fallows (natural fallow, planted non-coppicing and coppicing tree fallows) and no-tree no-fallow [maize (Zea mays L.) with and without fertilizer] on soil fertility and maize yields. This study attempted to address agricultural productivity by viewing soil fertility in terms of both chemical and physical properties. Hence, this report discusses the implications of improving the nutrient status of soils without correcting soil physical constraints. Data from both tree-(agroforestry) and non-tree-based systems have been used to illustrate important physical and chemical changes that occur in soils as a consequence of varying management regimes or cropping systems. Such data show that the concept of soil productivity refers to more than replacement of the lost nutrients. Other aspects include soil structure, soil water retention, water storage, infiltration and soil penetration resistance. The results imply that standard inputs such as mineral or organic

  9. How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency?

    OpenAIRE

    Gérard Gaillard,; Thomas Nemecek; Emmanuel Frossard; Michal Kulak

    2013-01-01

    Low-input cropping systems were introduced in Western Europe to reduce the environmental impacts of intensive farming, but some of their benefits are offset by lower yields. In this paper, we review studies that used Life Cycle Assessment (LCA) to investigate the effects of reducing external inputs on the eco-efficiency of cropping systems, measured as the ratio of production to environmental impacts. We also review various cropping system interventions that can improve this ratio. Depending ...

  10. Quantifying nitrous oxide emissions from sugarcane cropping systems: Optimum sampling time and frequency

    Science.gov (United States)

    Reeves, Steven; Wang, Weijin; Salter, Barry; Halpin, Neil

    2016-07-01

    Nitrous oxide (N2O) emissions from soil are often measured using the manual static chamber method. Manual gas sampling is labour intensive, so a minimal sampling frequency that maintains the accuracy of measurements would be desirable. However, the high temporal (diurnal, daily and seasonal) variabilities of N2O emissions can compromise the accuracy of measurements if not addressed adequately when formulating a sampling schedule. Assessments of sampling strategies to date have focussed on relatively low emission systems with high episodicity, where a small number of the highest emission peaks can be critically important in the measurement of whole season cumulative emissions. Using year-long, automated sub-daily N2O measurements from three fertilised sugarcane fields, we undertook an evaluation of the optimum gas sampling strategies in high emission systems with relatively long emission episodes. The results indicated that sampling in the morning between 09:00-12:00, when soil temperature was generally close to the daily average, best approximated the daily mean N2O emission within 4-7% of the 'actual' daily emissions measured by automated sampling. Weekly sampling with biweekly sampling for one week after >20 mm of rainfall was the recommended sampling regime. It resulted in no extreme (>20%) deviations from the 'actuals', had a high probability of estimating the annual cumulative emissions within 10% precision, with practicable sampling numbers in comparison to other sampling regimes. This provides robust and useful guidance for manual gas sampling in sugarcane cropping systems, although further adjustments by the operators in terms of expected measurement accuracy and resource availability are encouraged. By implementing these sampling strategies together, labour inputs and errors in measured cumulative N2O emissions can be minimised. Further research is needed to quantify the spatial variability of N2O emissions within sugarcane cropping and to develop

  11. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    Science.gov (United States)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  12. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIAO Min; LIU Wei-ping; Susanne KLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages.

  13. Cover crops and N credits

    Science.gov (United States)

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  14. Adaptation to a warming-drying trend through cropping system adjustment over three decades: A case study in the northern agro-pastural ecotone of China

    Science.gov (United States)

    Zhang, Jingting; An, Pingli; Pan, Zhihua; Hao, Baozhen; Wang, Liwei; Dong, Zhiqiang; Pan, Xuebiao; Xue, Qingwu

    2015-06-01

    Long-term field monitoring data and historical crop data are useful to assess the impacts of climate change and to manage cropping systems. The objectives of this study are to understand the cropping system response to a warming-drying trend in the northern agro-pastural ecotone (NAE) of China and to document how farmers can adapt to the warming-drying trend by changing cropping system structure and adjusting planting date. The results indicate that a significant warming-drying trend existed in the NAE from 1980 to 2009, and this trend significantly decreased crop (spring wheat, naked oat, and potato) yields. Furthermore, the yield decreased by 16.2%-28.4% with a 1°C increase in maximum temperature and decreased by 6.6%-11.8% with a 10% decrease in precipitation. Considering food security, water use efficiency, and water ecological adaptability in the semi-arid NAE, cropping system structure adjustment (e.g., a shift from wheat to potato as the predominant crop) and planting date adaptation (e.g., a delay in crop planting date) can offset the impact of the warming-drying trend in the NAE. Based on the successful offsetting of the impact of the warming-drying trend in the NAE, we conclude that farmers can reduce the negative effects of climate change and minimize the risk of crop failure by adapting their cropping system structure at the farming level.

  15. Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives.

    Science.gov (United States)

    Veysset, P; Lherm, M; Bébin, D; Roulenc, M

    2014-08-01

    Mixed crop-livestock (MC-L) farming has gained broad consensus as an economically and environmentally sustainable farming system. Working on a Charolais-area suckler cattle farms network, we subdivided the 66 farms of a constant sample, for 2 years (2010 and 2011), into four groups: (i) 'specialized conventional livestock farms' (100% grassland-based farms (GF), n=7); (ii) 'integrated conventional crop-livestock farms' (specialized farms that only market animal products but that grow cereal crops on-farm for animal feed, n=31); (iii) 'mixed conventional crop-livestock farms' (farms that sell beef and cereal crops to market, n=21); and (iv) organic farms (n=7). We analyse the differences in structure and in drivers of technical, economic and environmental performances. The figures for all the farms over 2 years (2010 and 2011) were pooled into a single sample for each group. The farms that sell crops alongside beef miss out on potential economies of scale. These farms are bigger than specialized beef farms (with or without on-farm feed crops) and all types of farms show comparable economic performances. The big MC-L farms make heavier and consequently less efficient use of inputs. This use of less efficient inputs also weakens their environmental performances. This subpopulation of suckler cattle farms appears unable to translate a MC-L strategy into economies of scope. Organic farms most efficiently exploit the diversity of herd feed resources, thus positioning organic agriculture as a prototype MC-L system meeting the core principles of agroecology. PMID:24589421

  16. Discrimination rice cropping systems using multi-temporal Proba-V data in the Mekong Delta, Vietnam

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru; Chang, Ly-Yu; Chiang, Shou-Hao; Lau, Khin-Va

    2016-04-01

    Rice is considered a main source of livelihoods for several billions of people worldwide and plays an important role in the economy of many Asian countries. More than just a food source, rice production is regarded as one of the most important components to maintaining political stability and is also a national subject of economic policy due to domestic food consumption and grain exports. Vietnam is globally one of the largest rice producers and suppliers with more than 80% of the exported rice amount produced from the Mekong River Delta. This delta is one of the three deltas in the world most vulnerable to the climate change, causing the potential loss of rice yields. Thus, spatiotemporal information of rice cropping systems is important for agricultural management to ensure food security and rice grain exports. Coarse resolution satellite data such as MODIS demonstrates the applicability for rice mapping at a large scale. However, the use of MODIS data for such a monitoring purpose still reveals a challenging task due to mixed-pixel issues. The Proba-V satellite launched on 7 May 2013 is a potential candidate for this monitoring purpose because the data include four spectral bands (blue, red, near-infrared and mid-infrared) with a swath of 2,285 km with a spatial resolution of 100 m and temporal resolution of 5 days. This study aimed to investigate the applicability of multi-temporal Proba-V data for mapping rice cropping systems in Mekong Delta River, South Vietnam. The data were processed for 2014-2015 rice cropping seasons, following three main steps: (1) construction of smooth time-series NDVI data, (2) classification of rice cropping systems using crop phenological metrics, and (3) accuracy assessment of the mapping results. The results indicated that the smooth time-series NDVI profiles characterized the temporal spectral responses of rice fields through different growing stages of rice plant, which was critically important for understanding rice crop

  17. Tradeoffs between vigor and yield for crops grown under different management systems

    Science.gov (United States)

    Simic Milas, Anita; Keller Vincent, Robert; Romanko, Matthew; Feitl, Melina; Rupasinghe, Prabha

    2016-04-01

    Remote sensing can provide an effective means for rapid and non-destructive monitoring of crop status and biochemistry. Monitoring pattern of traditional vigor algorithms generated from Landsat 8 OLI satellite data represents a robust method that can be widely used to differentiate the status of crops, as well as to monitor nutrient uptake functionality of differently treated seeds grown under different managements. This study considers 24 factorial parcels of winter wheat in 2013, corn in 2014, and soybeans in 2015, grown under four different types of agricultural management. The parcels are located at the Kellogg Biological Station, Long-Term Ecological Research site in the State of Michigan USA. At maturity, the organic crops exhibit significantly higher vigor and significantly lower yield than conventionally managed crops under different treatments. While organic crops invest in their metabolism at the expense of their yield, the conventional crops manage to increase their yield at the expense of their vigor. Landsat 8 OLI is capable of 1) differentiating the biochemical status of crops under different treatments at maturity, and 2) monitoring the tradeoff between crop yield and vigor that can be controlled by the seed treatments and proper conventional applications, with the ultimate goal of increasing food yield and food availability, and 3) distinguishing between organic and conventionally treated crops. Timing, quantity and types of herbicide applications have a great impact on early and pre-harvest vigor, maturity and yield of conventionally treated crops. Satellite monitoring using Landsat 8 is an optimal tool for coordinating agricultural applications, soil practices and genetic coding of the crop to produce higher yield as well as have early crop maturity, desirable in northern climates.

  18. Role of Wheat in Diversified Cropping Systems in Dryland Agriculture of Central Asia

    OpenAIRE

    SULEIMENOV*, Mekhlis; AKHMETOV, Kanat; KASKARBAYEV, Zheksembay; KIREYEV, Aitkalym

    2005-01-01

    Wheat is major crop in dryland agriculture of Central Asia. In most cases both spring wheat and winter wheat are grown in rotation with summer fallow. Studies were conducted in order to identify alternative crops which possibly could replace part of summer fallow and part of wheat area. Summer fallow was found inefficient practice for soil moisture accumulation in semiarid steppes of northern and southern Kazakhstan as well as in Kyrgyzstan. Many alternative crops were identified in all zones...

  19. Earthworm Population Density in Sugarcane Cropping System Applied with Various Quality of Organic Matter

    Directory of Open Access Journals (Sweden)

    Nurhidayati Nurhidayati

    2012-12-01

    Full Text Available Earthworms population in the soil are greatly impacted by agricultural management, yet little is known about how the quality and quantity of organic matter addition interact in sugarcane cropping system to earthworm population. This study describes the effect of various organic matter and application rates on earthworms in sugarcane cropping system. Earthworms were collected in April, July and December from 48 experimental plots under five kinds of organic matter application : (1 cattle manure, (2 filter cake of sugar mill, (3 sugarcane trash, (4 mixture of cattle manure+filter cake, and (5 mixture of cattle manure+sugarcane trash. There were three application rates of the organic matter (5, 10, and 15 ton ha-1. The treatments were arranged in factorial block randomize design with three replications and one treatment as a control (no organic input. Earthworms were collected using monolith sampling methods and hand-sorted from each plot, and measured its density (D (indiv.m-2, biomass (B (g m-2 and B/D ratio (g/indiv.. All the plots receiving organic matter input had higher earthworm density, biomass, and B/D ratio than the control. The highest earthworm population density was found in the plot receiving application of sugarcane trash (78 indiv.m-2 and the mixture of cattle manure+sugarcane trash (84 indiv.m-2. The increase in application rates of organic matter could increase the earthworm density and biomass. Earthworm population density also appeared to be strongly influenced by the quality of organic matter, such as the C-organic, N, C/N ratio, lignin, polyphenols, and cellulose content. Earthworm preferred low quality organic matter. It was caused by the higher energy of low quality organic matter than high quality organic matter. Our findings suggest that the input of low quality organic matter with application rate as 10 ton ha-1 is important for maintaining earthworm population and soil health in sugarcane land.

  20. MICROBIAL CHARACTERISTICS OF SOILS UNDER AN INTEGRATED CROP-LIVESTOCK SYSTEM

    Directory of Open Access Journals (Sweden)

    Andréa Scaramal da Silva

    2015-02-01

    Full Text Available Integrated crop-livestock systems (ICLs are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR, Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC and soil enzymatic activity in an ICL of soybean (summer and Brachiaria ruziziensis (winter, with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI: 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively and a no grazing (NG control. The microbial characteristics analysed were MBC, microbial respiration (MR, metabolic quotient (qCO2, the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate grazing intensity contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10 contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20 and no grazing (NG treatments.

  1. Plants + soil/wetland microbes: Food crop systems that also clean air and water

    Science.gov (United States)

    Nelson, Mark; Wolverton, B. C.

    2011-02-01

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. Biogeochemical cycles have microbial links and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, has long been established. Wetland plants and the rootzone microbes of wetland soils/media also been extensively researched for their ability to purify wastewaters of a great number of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and rootzone microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an adaptive capacity as long as the starting populations are sufficiently diverse. Tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and equipment enclosed. Human waste products carry a plethora of microbes which are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors as these systems operate without the need for human intervention. We review

  2. Rice Ratoon Crop: A Sustainable Rice Production System for Tropical Hill Agriculture

    OpenAIRE

    Golam Faruq; Rosna Mat Taha; Zakaria H. Prodhan

    2014-01-01

    Increasing and sustainable production of rice in tropical hill area is facing various problems where rice ratooning can overcome the limitations. In this study; 22 rice entries were transplanted into experimental tank placed in the hill slope following Completely Randomized Design with five replications to asses’ agronomic performance of main crop and ratoon crop where Entry 13 demonstrated highest grain yield per plant (42.06 ± 1.2 gm) as main crop, as well as ratoon crop (3.37 ± 0.28 gm...

  3. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    after grain legumes had a higher grass proportion before incorporation as compared to grass-clover after oat, which had the greatest clover proportion. The dynamic response of interspecific interactions in the catch crop to the soil mineral N levels is moderating the preceding effect of main crops in...... observed. A higher soil mineral N content in the soil profile without undersown grass-clover increased the spring wheat yield. This effect was circumvented in the subsequent winter triticale, where yields in the treatments with catch crops undersown were significantly greater. The grass-clover catch crop...

  4. Differences in Ambient Polycyclic Aromatic Hydrocarbon Concentrations between Streets and Alleys in New York City: Open Space vs. Semi-Closed Space

    Directory of Open Access Journals (Sweden)

    Stephanie Lovinsky-Desir

    2016-01-01

    Full Text Available Background: Outdoor ambient polycyclic aromatic hydrocarbon (PAH concentrations are variable throughout an urban environment. However, little is known about how variation in semivolatile and nonvolatile PAHs related to the built environment (open space vs. semi-closed space contributes to differences in concentrations. Methods: We simultaneously collected 14, two-week samples of PAHs from the outside of windows facing the front (adjacent to the street open side of a New York City apartment building and the alley, semi-closed side of the same apartment unit between 2007 and 2012. We also analyzed samples of PAHs measured from 35 homes across Northern Manhattan and the Bronx, 17 from street facing windows with a median floor level of 4 (range 2–26 and 18 from alley-facing windows with a median floor level of 4 (range 1–15. Results: Levels of nonvolatile ambient PAHs were significantly higher when measured from a window adjacent to a street (an open space, compared to a window 30 feet away, adjacent to an alley (a semi-closed space (street geometric mean (GM 1.32 ng/m3, arithmetic mean ± standard deviation (AM ± SD 1.61 ± 1.04 ng/m3; alley GM 1.10 ng/m3, AM ± SD 1.37 ± 0.94 ng/m3. In the neighborhood-wide comparison, nonvolatile PAHs were also significantly higher when measured adjacent to streets compared with adjacent to alley sides of apartment buildings (street GM 1.10 ng/m3, AM ± SD 1.46 ± 1.24 ng/m3; alley GM 0.61 ng/m3, AM ± SD 0.81 ± 0.80 ng/m3, but not semivolatile PAHs. Conclusions: Ambient PAHs, nonvolatile PAHs in particular, are significantly higher when measured from a window adjacent to a street compared to a window adjacent to an alley, despite both locations being relatively close to street traffic. This study highlights small-scale spatial variations in ambient PAH concentrations that may be related to the built environment (open space vs. semi-closed space from which the samples are measured, as well as the relative

  5. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbies, Mark [SUNY ESF; Volk, Timothy [SUNY ESF

    2014-10-03

    Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short rotation woody crop systems in the United States has been constrained by high production costs and sluggish market acceptance due to problems with quality and consistency from first-generation harvesting systems. The objective of this study was to evaluate the effect of crop conditions on the performance of a single-pass, cut and chip harvester based on a standard New Holland FR-9000 series forage harvester with a dedicated 130FB short rotation coppice header, and the quality of chipped material. A time motion analysis was conducted to track the movement of machine and chipped material through the system for 153 separate loads over 10 days on a 54-ha harvest. Harvester performance was regulated by either ground conditions, or standing biomass on 153 loads. Material capacities increased linearly with standing biomass up to 40 Mgwet ha-1 and plateaued between 70 and 90 Mgwet hr-1. Moisture contents ranged from 39 to 51% with the majority of samples between 43 and 45%. Loads produced in freezing weather (average temperature over 10 hours preceding load production) had 4% more chips greater than 25.4 mm (P < 0.0119). Over 1.5 Mgdry ha-1 of potentially harvested material (6-9% of a load) was left on site, of which half was commercially undesirable meristematic pieces. The New Holland harvesting system is a reliable and predictable platform for harvesting material over a wide range of standing biomass; performance was consistent overall in 14 willow cultivars.

  6. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIEXiao-mei; LIAOMin; LIUWei-ping; SusanneKLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolyrJc bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport svstem activit), was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growrh stages

  7. Plants + microbes: Innovative food crop systems that also clean air and water

    Science.gov (United States)

    Nelson, Mark; Wolverton, B. C.

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. It is known that most biogeochemical cycles have a microbial link, and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, have long been established. Wetland plants and soil/media also been extensively researched for their ability to purify wastewaters of all kinds of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and root microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an extraordinary adaptive capacity as long as the starting populations are sufficiently diverse. It is known that tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and machines enclosed. Human waste products carry a plethora of microbes can are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors which operate without the need for human direction. We will

  8. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012

    International Nuclear Information System (INIS)

    Phosphorus (P) is an essential resource for agriculture and also a pollutant capable of causing eutrophication. The possibility of a future P scarcity and the requirement to improve the environment quality necessitate P management to increase the efficiency of P use. This study applied a substance flow analysis (SFA) to implement a P management procedure in a crop production–consumption (PMCPC) system model. This model determined the life-cycle P use efficiency (PUE) of the crop production–consumption system in China during 1980–2012. The system includes six subsystems: fertilizer manufacturing, crop cultivation, crop processing, livestock breeding, rural consumption, and urban consumption. Based on this model, the P flows and PUEs of the subsystems were identified and quantified using data from official statistical databases, published literature, questionnaires, and interviews. The results showed that the total PUE of the crop production–consumption system in China was low, notably from 1980 to 2005, and increased from 7.23% in 1980 to 20.13% in 2012. Except for fertilizer manufacturing, the PUEs of the six subsystems were also low. The PUEs in the urban consumption subsystem and the crop cultivation subsystem were less than 40%. The PUEs of other subsystems, such as the rural consumption subsystem and the livestock breeding subsystem, were also low and even decreased during these years. Measures aimed to improve P management practices in China have been proposed such as balancing fertilization, disposing livestock excrement, adjusting livestock feed, changing the diet of residents, and raising the waste disposal level, etc. This study also discussed several limitations related with the model and data. Conducting additional related studies on other regions and combining the analysis of risks with opportunities may be necessary to develop effective management strategies. - Highlights: • A model of P management of the crop production–consumption system

  9. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijun [School of Earth Environment, Anhui University of Science and Technology, Huainan 232001 (China); Yuan, Zengwei, E-mail: yuanzw@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Liangmin [School of Earth Environment, Anhui University of Science and Technology, Huainan 232001 (China); Zhang, Ling [College of Economics and Management, Nanjing Forestry University, Nanjing 210037 (China); Zhang, Yongliang [Policy Research Center for Environment and Economy, Ministry of Environmental Protection, Beijing 100029 (China)

    2015-01-01

    Phosphorus (P) is an essential resource for agriculture and also a pollutant capable of causing eutrophication. The possibility of a future P scarcity and the requirement to improve the environment quality necessitate P management to increase the efficiency of P use. This study applied a substance flow analysis (SFA) to implement a P management procedure in a crop production–consumption (PMCPC) system model. This model determined the life-cycle P use efficiency (PUE) of the crop production–consumption system in China during 1980–2012. The system includes six subsystems: fertilizer manufacturing, crop cultivation, crop processing, livestock breeding, rural consumption, and urban consumption. Based on this model, the P flows and PUEs of the subsystems were identified and quantified using data from official statistical databases, published literature, questionnaires, and interviews. The results showed that the total PUE of the crop production–consumption system in China was low, notably from 1980 to 2005, and increased from 7.23% in 1980 to 20.13% in 2012. Except for fertilizer manufacturing, the PUEs of the six subsystems were also low. The PUEs in the urban consumption subsystem and the crop cultivation subsystem were less than 40%. The PUEs of other subsystems, such as the rural consumption subsystem and the livestock breeding subsystem, were also low and even decreased during these years. Measures aimed to improve P management practices in China have been proposed such as balancing fertilization, disposing livestock excrement, adjusting livestock feed, changing the diet of residents, and raising the waste disposal level, etc. This study also discussed several limitations related with the model and data. Conducting additional related studies on other regions and combining the analysis of risks with opportunities may be necessary to develop effective management strategies. - Highlights: • A model of P management of the crop production–consumption system

  10. Trade-offs between biomass use and soil cover. The case of rice-based cropping systems in the lake Alaotra region of Madagascar

    OpenAIRE

    Naudin, K.; Scopel, E.; Andriamandroso, A.L.H.; Rakotosolofo, M.; Andriamarosoa Ratsimbazafy, N.R.S.; Rakotozandriny, J.N.; Salgado, P; Giller, K.E.

    2012-01-01

    Farmers in the Lake Alaotra region of Madagascar are currently evaluating a range of conservation agriculture (CA) cropping systems. Most of the expected agroecological functions of CA (weed control, erosion control and water retention) are related to the degree of soil cover. Under farmers’ conditions, the grain and biomass productivity of these systems is highly variable and the biomass is used for several purposes. In this study, we measured biomass production of cover crops and crops in f...

  11. ARE HARVEST AND SENSORY QUALITY OF LETTUCE AND ONION INFLUENCED BY GROWING CONDITIONS IN A CONVENTIONAL AND THREE ORGANIC CROPPING SYSTEMS?

    OpenAIRE

    Kristensen, Hanne Lakkenborg; Kidmose, Ulla; Dresbøll, Dorte; Thorup-kristensen, Kristian

    2011-01-01

    Differences in nutrient availability and methods of pest management may affect crop growth and product quality. The question is whether conventional and organic cropping systems, which differ clearly in strategies for nutrient and pest management, influence the harvest and sensory quality of the products? With the aim to elucidate this question, lettuce and onion were grown in a conventional and three organic cropping systems with increasing levels of nutrient re-cycling and use of intercrops...

  12. Rice Crop Field Monitoring System with Radio Controlled Helicopter Based Near Infrared Cameras Through Nitrogen Content Estimation and Its Distribution Monitoring

    OpenAIRE

    Kohei Arai; Yuko Miura; Osamu Shigetomi; Hideaki Munemoto

    2013-01-01

    Rice crop field monitoring system with radio controlled helicopter based near infrared cameras is proposed together with nitrogen content estimation method for monitoring its distribution in the field in concern. Through experiments at the Saga Prefectural Agricultural Research Institute: SPARI, it is found that the proposed system works well for monitoring nitrogen content in the rice crop which indicates quality of the rice crop and its distribution in the field in concern. Therefore, it be...

  13. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  14. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen

    International Nuclear Information System (INIS)

    China is the world’s largest consumer of synthetic nitrogen (N), where very low rates of fertilizer N recovery in crops have been reported, raising discussion around whether fertilizer N use can be significantly reduced without yield penalties. However, using recovery rates as indicator ignores a possible residual effect of fertilizer N—a factor often unknown at large scales. Such residual effect might store N in the soil increasing N availability for subsequent crops. The objectives of the present study were therefore to quantify the residual effect of fertilizer N in China and to obtain more realistic rates of the accumulative fertilizer N recovery efficiency (RE) in crop production systems of China. Long-term spatially-extensive data on crop production, fertilizer N and other N inputs to croplands in China were used to analyze the relationship between crop N uptake and fertilizer N input (or total N input), and to estimate the amount of residual fertilizer N. Measurement results of cropland soil N content in two time periods were obtained to compare the change in the soil N pool. At the provincial scale, it was found that there is a linear relationship between crop N uptake and fertilizer N input or total N input. With the increase in fertilizer N input, annual direct fertilizer N RE decreased and was indeed low (below 30% in recent years), while its residual effect increased continuously, to the point that 40–68% of applied fertilizer was used for crop production sooner or later. The residual effect was evidenced by a buildup of soil N and a large difference between nitrogen use efficiencies of long-term and short-term experiments. (paper)

  15. Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems.

    Science.gov (United States)

    Wilkins, R J

    2008-02-12

    Eco-efficiency is concerned with the efficient and sustainable use of resources in farm production and land management. It can be increased either by altering the management of individual crop and livestock enterprises or by altering the land-use system. This paper concentrates on the effects of crop sequence and rotation on soil fertility and nutrient use efficiency. The potential importance of mixed farming involving both crops and livestock is stressed, particularly when the systems incorporate biological nitrogen fixation and manure recycling. There is, however, little evidence that the trend in developed countries to farm-level specialization is being reduced. In some circumstances legislation to restrict diffuse pollution may provide incentives for more diverse eco-efficient farming and in other circumstances price premia for produce from eco-efficient systems, such as organic farming, and subsidies for the provision of environmental services may provide economic incentives for the adoption of such systems. However, change is likely to be most rapid where the present systems lead to obvious reductions in the productive potential of the land, such as in areas experiencing salinization. In other situations, there is promise that eco-efficiency could be increased on an area-wide basis by the establishment of linkages between farms of contrasting type, particularly between specialist crop and livestock farms, with contracts for the transfer of manures and, to a lesser extent, feeds. PMID:17652073

  16. Brachypodium distachyon as a model system for studies of copper transport in cereal crops

    Directory of Open Access Journals (Sweden)

    Ha-il eJung

    2014-05-01

    Full Text Available Copper (Cu is an essential micronutrient that performs a remarkable array of functions in plants including photosynthesis, cell wall remodeling, flowering, and seed set. Of the world's major cereal crops, wheat, barley, and oat are the most sensitive to Cu deficiency. Cu deficient soils include alkaline soils, which occupy approximately 30% of the world’s arable lands, and organic soils that occupy an estimated 19% of arable land in Europe. We used Brachypodium distachyon (brachypodium as a proxy for wheat and other grain cereals to initiate analyses of the molecular mechanisms underlying their increased susceptibility to Cu deficiency. In this report, we focus on members of the CTR/COPT family of Cu transporters because their homologs in A. thaliana are transcriptionally upregulated in Cu-limited conditions and are involved either in Cu uptake from soils into epidermal cells in the root, or long-distance transport and distribution of Cu in photosynthetic tissues. We found that of five COPT proteins in brachypodium, BdCOPT3 and BdCOPT4 localize to the plasma membrane and are transcriptionally upregulated in roots and leaves by Cu deficiency. We also found that BdCOPT3, BdCOPT4, and BdCOPT5 confer low affinity Cu transport, in contrast to their counterparts in A. thaliana that confer high affinity Cu transport. These data suggest that increased sensitivity to Cu deficiency in some grass species may arise from lower efficiency and, possibly, other properties of components of Cu uptake and tissue partitioning systems and reinforce the importance of using brachypodium as a model for the comprehensive analyses of Cu homeostasis in cereal crops.

  17. Impact of Tillage and Fertilizer Application Method on Gas Emissions in a Corn Cropping System

    Institute of Scientific and Technical Information of China (English)

    K. SMITH; D. WATTS; T. WAY; H. TORBERT; S. PRIOR

    2012-01-01

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas ernissions from soil.This study was conducted to determine the impact of fertilizer sources,land management practices,and fertilizer placement methods on greenhouse gas (CO2,CH4,and N2O) emissions.A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study.The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama,USA,on a Hartsells fine sandy loam (fine-loamy,siliceous,subactive,thermic Typic Hapludults).Measurements of carbon dioxide (CO2),methane (CH4),and nitrous oxide (N2O) emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network) protocols to assess the effects of different tillage (conventional vs.no-tillage) and fertilizer placement (subsurface banding vs.surface application) practices in a corn (Zea mays L.) cropping system.Fertilizer sources were urea-ammonium nitrate (UAN),ammonium nitrate (AN) and poultry litter (M) applied at a rate of 170 kg ha -1 of available N.Banding of fertilizer resulted in the greatest concentration of gaseous loss (CO2 and N2O) compared to surface applications of fertilizer.Fertilizer banding increased CO2 and N2O toss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding.Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day.Throughout the course of this study,CH4 flux was not affected by tillage,fertilizer source,or fertilizer placement method.These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.

  18. Surface N Balances in Agricultural Crop Production Systems in China for the Period 1980-2015

    Institute of Scientific and Technical Information of China (English)

    SUN Bo; SHEN Run-Ping; A.F.BOUWMAN

    2008-01-01

    Surface nitrogen (N) balances for ChinEs crop production systems was estimated using statistical data collected from 1980 to 2004 at the national and provincial scale and from 1994 to 1999 at the county level.There was a surplus N balance throughout these periods,but the surplus was nearly stable in recent years.Projections using nonseasonal Box-Jenkins model or exponential models show that the N surplus for the total cultivated land in China was likely to increase from 142.8 kg ha-1 in 2004 to 168.6 kg ha-1 in 2015.The N balance surplus in the more developed southeastern provinces was the largest,and was slightly less in the central region,which caused the nitrate pollution in the ground water.The N surplus was much less in the western and northern provinces because of lower synthetic fertilizer inputs.The region with high N risk includes Beijing Municipality and Jiangsu,Zhejiang,Fujian,Guangdong,Hubei,and Shandong provinces for 2002-2004.The projections suggested that 15 provinces (or municipalities) in the middle and southeastern part of China except Jiangxi and Shanxi provinces would become the high-risk region by 2015.The level of economic development,transportation,and labor force condition had an important effect on the N balance surplus at the county level,but the last two factors showed remarkable impact at the provincial level.To decrease the nonpoint pollution (Npp) risk from crop production,the authors suggested to reduce the target level for national grain self-sufficiency to 90%-95% and change the regional structure of grain production by moving some of the future grain production from the high Npp risk areas of eastern China to parts of the central and western provinces where the Npp risk was much less.

  19. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  20. Hydrological processes obtained on the plot scale under four simulated rainfall tests during the cycle of different crop systems

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-04-01

    Full Text Available The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51, the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.

  1. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  2. Robust cropping systems to tackle pests under climate change. A review

    NARCIS (Netherlands)

    Lamichhane, J.R.; Barzman, M.; Booij, C.J.H.; Boonekamp, P.M.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.H.; Ratnadass, A.; Ricci, P.; Sarah, J.L.; Messéan, A.

    2015-01-01

    Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops) and t

  3. Catch crop biomass production, nitrogen uptake and root development under different tillage systems

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller

    2012-01-01

    Catch crops are generally regarded as an efficient tool to reduce nitrate leaching. However, the benefits need to be balanced against potential adverse effects on the main crop yields. The objectives of the study were to study three contrasting catch crops, that is, dyer’s woad (DW) (Isatis......). Above-ground biomass production and N uptake were measured in the catch crops and the main crop. Catch crop root growth was studied using both minirhizotron and core methods. Soil penetration resistance was recorded to 60 cm depth. Fodder radish and RG produced up to 1800 kg/ha dry matter and DW 900 kg....../ha. The nitrogen uptake in November was 55, 37 and 31 kg N/ha for FR, RG and DW, respectively, when averaged across the 2 yr of study. The yield of the spring barley main crop was in general highest where FR was grown as a catch crop. Ploughing tended to result in highest yields although differences were only...

  4. Production of pulse in mono-cropped rice system in the coastal region of Eastern India

    International Nuclear Information System (INIS)

    This experiment was undertaken with an objective to increase the yield of black-gram leguminous pulse crop through optimal doses of phosphatic fertilizer with supplemental irrigation in mono-cropped rice-fallow regions of India. Irrigation and phosphorus fertilizer application were introduced for enhancing productivity of black-gram to provide better returns to available water resources

  5. Socioeconomic and environmental assessment of biodiesel crops on family farming systems in Brazil

    NARCIS (Netherlands)

    Belo Leitea, Dal J.G.; Barbosa Justino, F.; Nunes Vieira da Silva, J.V.; Florin, M.J.; Ittersum, van M.K.

    2015-01-01

    In Brazil, local agricultural research agendas are increasingly challenged by the search for sustainable biodiesel crop options for family farmers, especially under semi-arid conditions. The aim of this paper is to explore the suitability of different biodiesel crops (i.e. soybean, castor bean and s

  6. Spatial variability of soil carbon and nitrogen in two hybrid poplar-hay crop systems in southern Quebec, Canada

    Science.gov (United States)

    Winans, K. S.

    2013-12-01

    Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.

  7. Elytrigia repens population dynamics under different management schemes in organic cropping systems on coarse sand

    DEFF Research Database (Denmark)

    Rasmussen, Ilse A.; Melander, Bo; Askegaard, Margrethe;

    2014-01-01

    , and spring cereals (barley and wheat) caused the highest population increases (up to eightfold), especially when preceded by grass-clover. Winter rye and potatoes with ridging cultivations were neutral to the E. repens population. Cultivations between crops were necessary to diminish the infestation......-year crop rotations including various cash crops and grass-clover leys; two rotations running during the first two courses with the one replaced with another rotation during the last course. The rotations were combined with four combinations of the treatments; with and without animal manure (‘without......’ not in the last course) and with and without catch crops. E. repens was controlled by different tillage tactics and mowing strategies between and within crops and were conducted whenever the population had exceeded certain thresholds. Pulses, either in pure stands or in mixtures with spring barley...

  8. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    Science.gov (United States)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  9. AGRONOMY AND PHYSIOLOGY OF TROPICAL COVER CROPS

    Science.gov (United States)

    Cover crops are important components of a sustainable crop production system. They can be planted with plantation crops such as cacao, coffee, banana, rubber and oil palm or in rotation with cash crops. Their use in a cropping system is mainly beneficial for soil and water conservation, recycling of...

  10. Effects and Carry-Over Benefits of Nematicides in Soil Planted to a Sweet Corn-Squash-Vetch Cropping System

    OpenAIRE

    Johnson, A. W.; Leonard, R A

    1995-01-01

    The effects of irrigation on the efficacy of nematicides on Meloidogyne incognita race 1 population densities, yield of sweet corn, and the carry-over of nematicidal effect in the squash crop were determined in a sweet corn-squash-vetch cropping system for 3 years. Fenamiphos 15G and aldicarb 15G were applied at 6.7 kg a.i./ha and incorporated 15 cm deep with a tractor-mounted rototiller. Ethylene dibromide (EDB) was injected at 18 kg a.i./ha on each side of the sweet corn rows (total 36 kg a...

  11. The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation

    OpenAIRE

    Gabriel Pérez, José Luis; Muñoz Carpena, Rafael; Quemada Saenz-Badillos, Miguel

    2012-01-01

    Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with t...

  12. Can exotic phytoseiids be considered 'benevolent invaders' in perennial cropping systems?

    Science.gov (United States)

    Palevsky, Eric; Gerson, Uri; Zhang, Zhi-Qiang

    2013-02-01

    Numerous natural enemies were adopted worldwide for the control of major pests, including exotic phytoseiid species (Acari: Mesostigmata: Phytoseiidae) that had been moved from continent to continent in protected and perennial agricultural systems. However, relatively fewer successes were recorded in perennial agricultural systems. In this manuscript we focus on the question: Can and will exotic phytoseiids provide better pest control than indigenous species in perennial agricultural systems? To answer this question, we review the efficacy of biological control efforts with phytoseiids in several case studies, where exotic and indigenous species were used against pests on indigenous host plants and some crops that were historically or recently introduced. Related factors affecting predator establishment, such as intraguild predation and pesticide effects are discussed, as well as the potential negative effects of exotic species releases on biological control and their impact on the indigenous natural fauna. On citrus, apple, grape and cassava exotic phytoseiids have enhanced biological control without negatively affecting indigenous species of natural enemies, except for the case of Euseius stipulatus (Athias-Henriot) on citrus that displaced Euseius hibisci (Chant) in a limited region of coastal California, USA, the latter considered to be an inferior biocontrol agent of Panonychus citri Koch. Phytoseiulus persimilis Athias-Henriot on gorse, an invasive weed, is perhaps the only recorded case of a negative effect of an established exotic phytoseiid on biological control. PMID:22669275

  13. Standardization of Experimental Design for Crop Cultivation in Life Support Systems for Space Exploration

    Science.gov (United States)

    Wolff, Silje Aase; Coelho, Liz Helena; Karoliussen, Irene; Kittang Jost, Ann-Iren

    Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, fresh air, and clean water for humans. The extensive work performed have shown that higher plants are able to adapt to space conditions in low Earth orbit, at least from one generation from seed to seed. Since the hardware has turned out to be of great importance for the results in microgravity research, full environmental monitoring and control must be the standard for future experiments. Selecting a few model plants, including crop plants for life support, would further increase the comparability between studies. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plants, with continuous recycling of resources. In the present study, recommended standardization of the experimental design for future scientific work assessing the effects of graded gravity on plant metabolism will be presented. This includes the environmental conditions required for cultivation of the selected MEliSSA species (wheat, bread wheat, soybean and potato), as well as guidelines for sowing, plant handling and analysis. Keywords: microgravity; magnetic field; radiation; MELiSSA; Moon; Mars.

  14. Natural Suppression of Rhizoctonia Bare Patch in a Long-Term No-Till Cropping Systems Experiment

    Science.gov (United States)

    The soil-borne fungus Rhizoctonia solani AG-8 is a major concern for farmers who practice no-till in the inland Pacific Northwest, USA. Bare patches caused by Rhizoctonia first appeared in 1999 during year 3 of a 15-year no-till cropping systems experiment near Ritzville, WA (269 mm annual precipit...

  15. Selection pressure, cropping system and rhizosphere proximity affect atrazine degrader populations and activity in s-triazine adapted soil

    Science.gov (United States)

    Atrazine degrader populations and activity in s-triazine adapted soils are likely affected by interactions among and (or) between s-triazine application frequency, crop production system, and proximity to the rhizosphere. A field study was conducted on an s-triazine adapted soil to determine the ef...

  16. EFFECTS OF COVER CROPPING AND PLASTICULTURE ON SOIL AND RHIZOSPHERE MICROBIAL COMMUNITY STRUCTURE IN TOMATO PRODUCTION SYSTEMS

    Science.gov (United States)

    In a previous study (Carrera et al., submitted for publication) we found that soil microbial community structure was distinctly different under plasticulture than under hairy vetch cover crops in tomato production systems. In order to determine the major factors affecting microbial communities we se...

  17. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities

    Science.gov (United States)

    Four different potato cropping systems, designed to address specific management goals of soil conservation (SC), soil improvement (SI), disease suppression (DS), and a status quo standard rotation control (SQ), were evaluated for their effects on soilborne diseases of potato and soil microbial commu...

  18. Agronomic and economic performance characteristics of conventional and low-external-input cropping systems in the central corn belt

    Science.gov (United States)

    Agriculture in the Midwestern USA is characterized by heavy reliance on agrichemicals, widespread chemical emissions to water, and strong dependence on government subsidies. Diversified low-external-input (LEI) cropping systems offer important opportunities to reduce use of synthetic fertilizers and...

  19. Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region, China.

    Science.gov (United States)

    Chen, Hongyan; Yuan, Xuyin; Li, Tianyuan; Hu, Sun; Ji, Junfeng; Wang, Cheng

    2016-04-01

    Soil heavy metals and their bioaccumulation in agricultural products have attracted widespread concerns, yet the transfer and accumulation characteristics of heavy metals in different soil-crop systems was rarely investigated. Soil and crop samples were collected from the typical agricultural areas in the Yangtze River Delta region, China. The concentrations of Cu, Pb, Zn, Cd and Hg in the soils, roots and grains of rice (Oryza Sativa L.), wheat (Triticum L.) and canola (Brassica napus L.) were determined in this study. Transfer ability of heavy metals in soil-rice system was stronger than those in soil-wheat and soil-canola systems. The wheat showed a strong capacity to transfer Zn, Cu and Cd from root to the grain while canola presented a restricting effect to the intake of Cu and Cd. Soil pH and total organic matter were major factors influencing metal transfer from soil to rice, whereas soil Al2O3 contents presented a negative effect on heavy metal mobility in wheat and canola cultivation systems. The concentration of Zn and Cd in crop grains could well predicted according to the stepwise multiple linear regression models, which could help to quantitatively evaluate the ecologic risk of heavy metal accumulation in crops in the study area. PMID:26771531

  20. Avaliação de um sistema de cultivo em aléias em um argissolo franco-arenoso da região amazônica Evaluation of an alley cropping system under humid tropical conditions of the amazon region

    OpenAIRE

    Emanoel Gomes de Moura; Antônio José de França Silva; Mariléia Barros Furtado; Alana das Chagas Ferreira Aguiar

    2008-01-01

    No trópico úmido, a construção e manutenção da fertilidade dos solos são os maiores desafios dos que se dedicam à implantação de sistemas agrícolas sustentáveis. O objetivo deste estudo foi avaliar um sistema de cultivo em aléias com guandu, associado à adição anual de calcário e de K, em um Argissolo de textura franco-arenosa, a fim de verificar a possibilidade do uso desse sistema como alternativa ao corte e queima na agricultura do trópico úmido. Foram utilizados, como leguminosa, o guandu...

  1. Comportamento de dois genótipos de milho cultivados em sistema de aléias preestabelecido com diferentes leguminosas arbóreas Behaviour of two maize genotypes grown in alley cropping system pre-established with diferents leguminous trees

    OpenAIRE

    Andréia Araújo Lima Leite; Altamiro Souza de Lima Ferraz Junior; Emanoel Gomes de Moura; Alana das Chagas Ferreira Aguiar

    2008-01-01

    O cultivo em aléias tem sido recomendado como alternativa para a substituição da agricultura de corte e queima, no trópico úmido, devido à grande capacidade de produção de matéria orgânica e de reciclagem de nutrientes, mas algumas dúvidas quanto à sustentabilidade e à competição interespecífica são persistentes. O objetivo no trabalho foi avaliar a viabilidade da cultura do milho em um sistema de cultivo em aléias de leguminosas arbóreas. O delineamento experimental utilizado foi em blocos c...

  2. Evaluation of environmentally-friendly crop management systems based on very early sowing dates for winter oilseed rape in France

    OpenAIRE

    Dejoux, Jean-François; Meynard, Jean-Marc; Reau, Raymond; Roche, Romain; Saulas, Patrick

    2003-01-01

    International audience We assessed new crop management systems for winter oilseed rape based on very early sowing dates, with a view to improving environmental performance without decreasing economic benefits. In a network of 36 trials conducted over 3 years in France, the new systems turned out to be more effective than current systems in terms of environmental variables: absorption of almost all the mineral N present in the soil in autumn, even after organic manure spreading; nitrate con...

  3. Development of a farm-firm modelling system for evaluation of herbaceous energy crops. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R. [Tennessee Univ., Knoxville, TN (United States). Dept. of Agricultural Economics and Rural Sociology

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  4. Fertilizer 15N balance in a coffee cropping system: a case study in Brazil

    International Nuclear Information System (INIS)

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively

  5. Fertilizer {sup 15}N balance in a coffee cropping system: a case study in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo [Universidade Regional de Blumenau (URB), SC (Brazil). Dept. de Engenharia Florestal]. E-mail: tfenilli@furb.br; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mails: klaus@cena.usp.br; osny@cena.usp.br; Favarin, Jose Laercio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Producao Vegetal; Silva, Adriana Lucia [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil). Fazenda Santo Antonio]. E-mail: adriana.silva@ctc.com.br; Timm, Luis Carlos [Universidade Federal de Pelotas (UFPel), RS (Brazil). Dept. de Engenharia Rural]. E-mail: lcartimm@yahoo.com.br

    2008-07-15

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the {sup 15}N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the {sup 15}N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a {sup 15}N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and {sup 15}N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH{sub 3} were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and {sup 15}N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of {sup 15}N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were

  6. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  7. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists,environmental groups,and agricultural policymakers worldwide.In high-yielding maize systems the major method of N loss is nitrate leaching.In this review paper,the characteristic of nitrate movement in the soil,N uptake by maize as well as the regulation of root growth by soil N availability are discussed.We suggest that an ideotype root architecture for efficient N acquisition in maize should include(i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil;(ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil;and(iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.

  8. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  9. Evaluation of Soil Moisture Sensors under Intelligent Irrigation Systems for Economical Crops in Arid Regions

    Directory of Open Access Journals (Sweden)

    Mohamed S.A. El Marazky

    2011-01-01

    Full Text Available Problem statement: In irrigation water management, irrigation water use represents a substantial opportunity for agriculture water savings. Automation of irrigation systems, based on Soil Moisture Sensors Systems (SMSS has the potential to provide maximum water use efficiency by maintaining soil moisture at optimum levels. Approach: The objective of this research was to evaluate the performance of soil moisture sensors under field conditions during growing season in two different irrigated. This evaluation to be conducted with regard to accuracy; precision; quickness of the response to moisture variation. Moreover to quantify the easiness of use, this encompasses installing and operating the instrument as well as interpreting the readings. Results: The Watermark resulted in higher tension readings than the tensiometers. While Watermark showed a consistent and increasingly drier estimate of water content compared to tensiometers. However, the trend of soil water tension curves that resulted from both treatments was very similar. The linear relationships of the Soil Moisture Content (SMC obtained from all sensors and gravimetric measurement were observed to be best fit. The correlations (R2 are ranging from 0.96-0.98 and from 0.91-0.95 for tensiometers and watermarks successively. The statistical analyses indicate that changeability existed between soil water contents by the sensors and the gravimetric method. Conclusion: Soil Moisture Sensors Systems (SMSS can be used: To monitor soil moisture sensors under wheat crop cultivation practices using intelligent irrigation system. The tensiometers and Watermarks were less responsive to the soil drying between irrigations than GM. So, Watermark can operate in a drier range than tensiometers, but with a lower resolution at the wet end of soil water tension. Anyhow, watermark remains a good tool for automatic irrigation scheduling and be integrated with inelegant irrigation systems

  10. Promoting Cassava as an Industrial Crop in Ghana: Effects on Soil Fertility and Farming System Sustainability

    OpenAIRE

    Adjei-Nsiah, S.; Owuraku Sakyi-Dawson

    2012-01-01

    Cassava is an important starchy staple crop in Ghana with per capita consumption of 152.9 kg/year. Besides being a staple food crop, cassava can be used as raw material for the production of industrial starch and ethanol. The potential of cassava as an industrial commercial crop has not been exploited to a large extent because of perceptions that cassava depletes soils. Recent finding from field studies in the forest/savannah transitional agroecological zone of Ghana indicates that when integ...

  11. Effect of cropping system and mineral fertilizer on root yield of cassava

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the effect of cropping system and fertilizer on the root yield of three introduced high yielding cassava varieties (Afisiafi, Abasafitaa and Tekbankye) and two local varieties (Tuakentenma and Akosuatumtum). Two cropping systems (sole cassava and cassava-maize intercrop and five fertilizer regimes (0-0-0, 30-30-30, 60-60-60, 90-90-90 and 120-120-120 kg ha-I N-P2O5-K2O) were studied in 2000 and 2001. A split-split plot design with four replications was used in the first study and a split-plot design for the second. Cassava-maize intercrop significantly reduced root yield at Mampong (2000) and Asuansi (2001) but not at Wenchi (2001). Afisiafi and Abasafitaa performed better than the local varieties or Tekbankye. At Asuansi and Kpeve, Afisiafi gave significantly greater root yield than Abasafitaa. Root yields of Afisiafi and Abasafita were, however, similar at Mampong and Wenchi in 2000. At Wenchi (2001), Abasafitaa gave significantly greater root yield than Atisiafi. At Mampong (2000) and Wenchi (2001), Afisiafi produced significantly more roots per stand than the local varieties and Abasafitaa gave significantly greater root yield per stand than the local variety. At all the four sites mineral fertilizer resulted in significantly greater root yield over control. At Asuansi (2001), Kpeve (2001) and Mampong (2000), 60-60-60 kg ha-1 N-P2O3-K2O gave significantly greater root yield than the 30-30-30 kg N-P2O5-K2O ha-1 but similar to the 90-90-90 and 120-120-120 kg ha-1 N-P2O5-K2O. At Wenchi (2001) all the rates gave similar root yield. Across locations, Afisiafi and Abasafitaa produced greater root yield than the local varieties and Tekbankye. Mineral fertilizer at 60-60-60 kg ha-1 N-P2O5-K2O was the optimum level for root yields. (au)

  12. Pea-barley intercropping for efficient symbiotic N-2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per;

    2009-01-01

    recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites the...... highly resilient. It is concluded that pea-barley intercropping is a relevant cropping strategy to adopt when trying to optimize N-2-fixation inputs to the cropping system....

  13. Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems

    OpenAIRE

    Bosshard, C.; Sørensen, P.; Frossard, E.; Mayer, J.; Mäder, P.; Nanzer, S.; Oberson, A.

    2009-01-01

    Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a conventional (CONMIN) and a bioorganic (BIOORG) cropping system of a long-term field experiment over three vegetation periods (winter wheat–soybean–maize). Microplots planted with wheat received a single application of 15N-labelled slurries (either urine or faeces labelled) or mi...

  14. Investigating host plant selection of harlequin bug, Murgantia histrionica (Hahn), in order to improve a trap cropping system for its management.

    OpenAIRE

    Wallingford, Anna Kate

    2012-01-01

    Harlequin bug (HB), Murgantia histrionica (Hahn), is a pest of cole crops. Alternative control strategies were investigated for control of HB, including trap cropping and systemic neonicotinoid insecticide applications. Potential trap crops, mustard (Brassica juncea â Southern Giant Curledâ ), rapeseed (B. napus â Athenaâ ), rapini (B. rapa) and arugula (Eruca sativa) were preferred over collard (B. oleracea â Championâ ), and a non-brassica control, bean (Phaseolus vulgaris â Bron...

  15. Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and More Sustainable Production Systems

    OpenAIRE

    Andreas W Ebert

    2014-01-01

    Agriculture is under pressure to produce greater quantities of food, feed and biofuel on limited land resources. Current over-reliance on a handful of major staple crops has inherent agronomic, ecological, nutritional and economic risks and is probably unsustainable in the long run. Wider use of today’s underutilized minor crops provides more options to build temporal and spatial heterogeneity into uniform cropping systems and will enhance resilience to both biotic and abiotic stress. Many ...

  16. Analysis of the technical / economic performance of four cropping systems involving Jatropha curcas L. in the Kinshasa Region (Democratic Republic of the Congo)

    OpenAIRE

    Minengu, J.D.; Mobambo, P.; Mergeai, Guy

    2015-01-01

    In order to assess the sustainability of cultivating Jatropha curcas L. in rural areas in the Kinshasa region, four cropping systems were compared : cultivation of J. curcas as a sole crop with and without fertilisers, a combination of J. curcas with subsistence crops (maize - Zea mays L., the common bean - Phaseolus vulgaris L.) with and without fertilisers. The major attacks by pests (mainly Aphthona sp.) suffered by J. curcas plants in the region make it vital to conduct at least two insec...

  17. Exclusion of soil macrofauna did not affect soil quality but increases crop yields in a sub-humid tropical maize-based system

    OpenAIRE

    Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Ayuke, F.O.; Pulleman, M M

    2015-01-01

    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g. Conservation Agriculture), are not well understood. This study aimed to quantify soil macrofauna and its impact on soil aggregation, soil carbon and crop yields in a maize-soybean system under tropical su...

  18. A Hydroponic System for Purification of Anaerobically Treated Dairy Manure and Production of Wheat as a Nutritional Forage Crop

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2007-01-01

    Full Text Available A hydroponic system was developed and used for purification of an anaerobically treated dairy manure and production of forage crops. The effect of light duration, seeding rate and wastewater application rate on the crop yield and pollution potential reduction were studied. The results indicated that a wheat forage crop can be produced in 21 days from germination to harvest in this system and removal efficiencies of up to 89.9, 94.6, and 86.7 % can be achieved for the total solids, chemical oxygen demand (COD and ammonium nitrogen, respectively. Increasing the wastewater application rate increased the crop yield and decreased the pollutants removal efficiencies. A treatment combination of wastewater application rate of 900 mL/day, a seeding rate of 400 g and a light duration of 12 hours gave the best results for crop yield (3.65 kg of wheat/tray. A total possible yield of 3160 tonnes per hectare per year can be achieved with the system (with thirteen harvests per year. This is more than 98 times greater than the yield obtainable from a field grown conventional forage of 245 tonnes per hectare per year. At the optimum forage production, removal efficiencies of 75.7, 85.9 and 75.6% were achieved for the solids, COD, ammonium nitrogen, respectively. A nitrate nitrogen concentration of 6.7 mg/L was found in the effluent from the hydroponic system. This is below the Canadian Environmental and Health Guidelines of 10 mg/L.

  19. Assessment of Cropping System Diversity in the Fergana Valley Through Image Fusion of Landsat 8 and SENTINEL-1

    Science.gov (United States)

    Dimov, D.; Kuhn, J.; Conrad, C.

    2016-06-01

    In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  20. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    Science.gov (United States)

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances. PMID:18055434

  1. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    Science.gov (United States)

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  2. Soil Management Practices to Improve Nutrient-use Efficiencies and Reduce Risk in Millet-based Cropping Systems in the Sahel

    Directory of Open Access Journals (Sweden)

    Koala, S.

    2003-01-01

    Full Text Available Low soil fertility and moisture deficit are among the main constraints to sustainable crop yields in the Sahel. A study therefore, was conducted at the ICRISAT Sahelian Center, Sadore in Niger to test the hypothesis that integrated soil husbandry practices consisting of manure, fertilizer and crop residues in rotational cropping systems use organic and mineral fertilizes efficiently, thereby resulting in higher yields and reduced risk. Results from an analysis of variance showed that choice of cropping systems explained more than 50% of overall variability in millet and cowpea grain yields. Among the cropping systems, rotation gave higher yields than sole crop and intercropping systems and increased millet yield by 46% without fertilizer. Rainfall-use efficiency and partial factor productivity of fertilizer were similarly higher in rotations than in millet monoculture system. Returns from cowpea grown in cowpea-millet rotation without fertilizer and the medium rates of fertilizers (4 kg P.ha-1 + 15 kg N.ha-1 were found to be most profitable in terms of high returns and low risk, principally because of a higher price of cowpea than millet. The study recommends crop diversification, either in the form of rotations or relay intercropping systems for the Sahel as an insurance against total crop failure.

  3. Crop Management to Cope with Global Change: A Systems Perspective Aided by Information Technologies

    Science.gov (United States)

    Optimizing crop management must consider the dynamic interaction of abiotic and biotic factors within the context of economic, environmental, sociological, and policy constraints. A wide array of information technologies exists to assist producers, consultants, scientists, agribusiness, action agenc...

  4. Reducing irrigation water supply to accomplish the goal of designing sustainable cropping systems in the North China plain

    OpenAIRE

    Binder, Jochen

    2007-01-01

    An International Research Training Group (IRTG) of the University of Hohenheim and the China Agricultural University, entitled ?Modeling Material Flows and Production Systems for Sustainable Resource Use in the North China Plain? was launched in 2004. The major hypothesis was ?that adjustments in cropping systems and management practices provided potential for sustainable resource protection on a high yield level?. The research program was conducted in one of the most important economic an...

  5. Fungal communities of the rhizosphere and the rhizoplane of yellow lupine in a crop rotation system

    OpenAIRE

    Bożena Cwalina-Abroziak; Tomasz P. Kurowski

    2014-01-01

    Fungal community populating the rhizosphere and lhe rhizoplane of yellow lupine Juno and Markiz cultivated in the crop rotation with the 20% and 33% portion of lupine was analyzed. The total fungus number was reduced when the participation of lupine in the crop rotation was established at level 20%. Then the pathogenic fungi were replaced by more frequently appeared saprofitic species representing the following genera: Trichoderma, Paecilomyces and Penicillium. Pathogenic Fusarium were more f...

  6. Organic farming practices for rice under diversified cropping systems in humid tropics.

    OpenAIRE

    Varughese, Kuruvilla Dr.; Rani, B Dr.; Abraham, Suja; John, Jacob Dr; M, Vijayan Dr

    2009-01-01

    In Asia rice farming is confined to small farmers who are compelled to obtain higher productivity for their livelihood. In general there is an increase in area and production of rice in India. In the humid tropical region of Kerala State the area has been drastically reduced inspite of the efforts of the local Government. Crop diversification is a practical means to enhance the crop output. In conventional rice farming the usage of plant protection chemicals is very high and can cause ...

  7. TOTAL CARBON STOCK IN AGRICULTURAL SYSTEM HAVING CROP ROTATION IN TARAI REGION OF NORTHERN INDIA

    OpenAIRE

    Kavita Tariyal

    2014-01-01

    Soil organic carbon pools are important in maintaining soil productivity and influencing the CO2 loading into the atmosphere. Agricultural soils can mitigate the problem of carbon concentration increase in atmosphere if proper management practices are involved. In the present study, total carbon stock in crops and soil was analyzed for two years along with crop rotation practice to observe its impact on the carbon pool. For that two agricultural fields C12 and D7 were incorporated with differ...

  8. Robust cropping systems to tackle pests under climate change. A review

    OpenAIRE

    Barzman, Marc; Booij, Kees; Boonekamp, Piet; DESNEUX, Nicolas; Huber, Laurent; Kudsk, Per; Langrell, Stephen R H; Ratnadass, Alain; RICCI, Pierre; Sarah, Jean-Louis; Messean, Antoine

    2015-01-01

    International audience Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge u...

  9. Sustainability and integrated weed management in Australian winter cropping systems: a bioeconomic analysis

    OpenAIRE

    Jones, Randall E.

    2005-01-01

    Economic evaluations of the benefits of integrated weed management often only consider the benefits of management in the crop phase, and ignore the impact of rotational options. In particular, non-crop phases such as annual and perennial pasture phases can have a substantial impact upon weed population dynamics and economic returns. Moreover, extended perennial pasture phases are being promoted to address a range of onfarm sustainability issues such as excessive deep drainage (i.e. salinity),...

  10. Agave as a model CAM crop system for a warming and drying world

    OpenAIRE

    Stewart, J. Ryan

    2015-01-01

    As climate change leads to drier and warmer conditions in semi-arid regions, growing resource-intensive C3 and C4 crops will become more challenging. Such crops will be subjected to increased frequency and intensity of drought and heat stress. However, agaves, even more than pineapple (Ananas comosus) and prickly pear (Opuntia ficus-indica and related species), typify highly productive plants that will respond favorably to global warming, both in natural and cultivated settings. With nearly 2...

  11. Mercury Pollution of Soil—Crop System in Acid precipitation Area

    Institute of Scientific and Technical Information of China (English)

    MOUSHU-SEN; QINGCHANG-LE

    1995-01-01

    In acid precipitation area of Chongqing suburb the average of Hg in soil rose from 0.158mg/kg in 1984 to 0.20mg/kg in 1989,and Hg content of crops grown on these soils increased too.Both soil and vegetable Hg came mainly from power plant emission.which caused Hg and acid precipitiation pollution in environment and the Hg pollution of water,crops and milk in the area.

  12. Combining mechanical rhizome removal and cover crops for Elytrigia repens control in organic barley systems

    OpenAIRE

    Melander, Bo; Nørremark, Michael; Kristensen, E.F.

    2013-01-01

    Mechanical weed control of perennial weeds in organic crop production over long post-harvest periods is incompatible with the establishment of cover crops for improving soil quality and preventing nutrient leaching. We suggest a new concept that comprises uprooting and immediate removal of vegetative propagules located within the plough layer to allow for quick re-establishment of a plant cover. A field experiment comparing the effects of conventional practices (stubble cultivation) with diff...

  13. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais

    Directory of Open Access Journals (Sweden)

    Ademir de Oliveira Ferreira

    2012-11-01

    Full Text Available The adoption of no-tillage systems (NT and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0 of two soils (Typic Hapludox with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a two soil types: Typic Hapludox (Oxisol with medium texture (LVTM and Oxisol with clay texture (LVTA, (b two sampling layers (0-5 and 5-20 cm, and (c two sampling periods (P1 - October 2007; P2 - September 2008. Samples were collected from fields under a long-term (20 years NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM and wheat/maize/black oat + vetch/soybean (LVTA. The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0 were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

  14. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping.

    Directory of Open Access Journals (Sweden)

    Mengyi Wang

    Full Text Available Soil sickness is a critical problem for eggplant (Solanum melongena L. under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L. on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK, eggplant relay intercropping with normal garlic (NG and eggplant relay intercropping with green garlic (GG. The major results are as follows: (1 the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2 relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg(-1, significantly higher than 61.95 mg·kg(-1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg(-1 in NG and GG, both were significantly higher than 314.84 mg·kg(-1 in CK; (3 the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4 the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production.

  15. Optimizing water and nitrogen inputs for winter wheat cropping system on the Loess Plateau, China

    Institute of Scientific and Technical Information of China (English)

    QiuPing FU; QuanJiu WANG; XinLei SHEN; Jun FAN

    2014-01-01

    Optimal use of water and fertilizers can enhance winter wheat yield and increase the efficiencies of water and fertilizer usage in dryland agricultural systems. In order to optimize water and nitrogen (N) management for winter wheat, we conducted field experiments from 2006 to 2008 at the Changwu Agro-ecological Experimental Station of the Chinese Academy of Sciences on the Loess Plateau, China. Regression models of wheat yield and evapotranspiration (ET) were established in this study to evaluate the water and fertilizer coupling effects and to determine the optimal coupling domain. The results showed that there was a positive effect of water and N fertilizer on crop yield, and optimal irrigation and N inputs can significantly increase the yield of winter wheat. In the drought year (2006-2007), the maximum yield (Ymax) of winter wheat was 9.211 t/hm2 for the treatment with 324 mm irriga-tion and 310 kg/hm2 N input, and the highest water use efficiency (WUE) of 16.335 kg/(hm2⋅mm) was achieved with 198 mm irrigation and 274 kg/hm2 N input. While in the normal year (2007-2008), the maximum winter wheat yield of 10.715 t/hm2 was achieved by applying 318 mm irrigation and 291 kg/hm2 N, and the highest WUE was 18.69 kg/(hm2⋅mm) with 107 mm irrigation and 256 kg/hm2 N input. Crop yield and ET response to irrigation and N inputs followed a quadratic and a line function, respectively. The optimal coupling domain was determined using the elas-ticity index (EI) and its expression in the water-N dimensions, and was represented by an ellipse, such that the global maximum WUE (WUEmax) and Ymax values corresponded to the left and right end points of the long axis, respectively. Considering the aim to get the greatest profit in practice, the optimal coupling domain was represented by the lower half of the ellipse, with the Ymax and WUEmax on the two end points of the long axis. Overall, we found that the total amount of irrigation for winter wheat should not exceed 324 mm. In

  16. GM Crops: Patently Wrong?

    OpenAIRE

    Wilson, J.

    2007-01-01

    Abstract This paper focuses on the ethical justifiability of patents on Genetically Modified (GM) crops. I argue that there are three distinguishing features of GM crops that make it unethical to grant patents on GM crops, even if we assume that the patent system is in general justified. The first half of the paper critiques David Resnik’s recent arguments in favor of patents on GM crops. Resnik argues that we should take a consequentialist approach to the issue, and that the best way to do s...

  17. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  18. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  19. Planning and costing adaptation of perennial crop systems to climate change: Coffee and banana in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Ngabitsinze, Jean Chrysostome; Mukashema, Adrie; Ikirezi, Mireille; Niyitanga, Fidele

    2011-10-15

    The Rwandan economy is mainly based on agriculture. Since agricultural production in Rwanda depends almost exclusively on the quality of the rainy season and specific temperature ranges, it makes the country particularly vulnerable to climate variability and change. The study objective of evaluating and costing the most suitable climate change adaptation measures for this geographic context responds to the Rwandan Economic Development and Poverty Reduction Strategy, 2008-2012 (EDPRS) (MINECOFIN 2007), in which climate change and its adverse impacts were recently identified as a high priority. This study has particularly focused on coffee and banana farming systems and aimed at analysing shocks due to climate change from farmer to policymaker perspectives. The study found that in the last 30 years, Rwanda has experienced a series of climate fluctuations in terms of frequency, intensity, and persistence of existing extremes. Heavy rains, storms, heatwaves and droughts are the observed manifestations of climate change in specific areas of Rwanda. Changing weather patterns have an adverse impact on the country's agricultural production and thus on the country's GDP. Adaptation options for Rwanda include the following efficiency-enhancing agricultural interventions: 1. Adaption of crop calendars to new climate patterns (more effective distribution of inputs such as fertilizers and pesticides). 2. Investments in farming equipment. 3. Improvement of extension services and research. 4. Restructuring of the institutional frameworks and development plans. Integrated water resources management (IWRM); setting up information systems for early warning systems and rapid intervention mechanisms; intense agri-pastoral activities; and research on climate-resilient varieties were identified as primary requirements for agricultural adaption to climate change. In addition, developing alternative energy sources (e.g., substituting firewood) and the promotion of non

  20. A Study of Phosphorus and Calcium Dynamics in an Integrated Rainbow Trout and Spinach (Nores variety) Aquaponic System with Different Crop Densities

    OpenAIRE

    Stefan Mihai Petrea; Victor Cristea; Lorena Dediu; Maria Contoman; Mirela Cretu; Alina Antache; Marian Coada; Alexandru Cristian Bandi

    2014-01-01

    The goal of this study is to quantify both calcium and phosphorus budgets for an integrated rainbow trout – spinach (Nores variety) aquaponic system, where three crops densities were used (BH1 –59 crops/m2, BH2 – 48 crops/m2 and BH3 – 39 crops/m2 and a control variant). Fish were fed with two types of feed (41% and 50% protein), using 3 different feeding regimes. Total calcium and total phosphorus retention rates for each of the three tested spinach biomass densities were individually determi...

  1. Comparison of soil respiration in typical conventional and new alternative cereal cropping systems on the North China plain.

    Science.gov (United States)

    Gao, Bing; Ju, Xiaotang; Su, Fang; Gao, Fengbin; Cao, Qingsen; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2013-01-01

    We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year--Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize--W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha(-1) for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region. PMID:24278340

  2. Comparison of soil respiration in typical conventional and new alternative cereal cropping systems on the North China plain.

    Directory of Open Access Journals (Sweden)

    Bing Gao

    Full Text Available We monitored soil respiration (Rs, soil temperature (T and volumetric water content (VWC% over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year--Con.W/M. Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M, three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize--W/M-M and W/S-M, and single spring maize per year (M. Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha(-1 for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.

  3. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    Directory of Open Access Journals (Sweden)

    Lai Wang

    Full Text Available Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia monoculture system (JRMS, a wheat (Triticum aestivum monoculture system (TAMS, and a walnut-wheat alley cropping system (JTACS over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.

  4. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    Science.gov (United States)

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832

  5. The Effect of Organic and Conventional Cropping Systems on CO2 Emission from Agricultural Soils: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Stefano Grego

    2011-02-01

    Full Text Available The effects of different agricultural systems on soil organic carbon content and CO2 emission are investigated in this work. In a long-term experiment a conventional system, characterized by traditional agricultural practices (as deep tillage and chemical inputs was compared with an organic one, including green manure and organic fertilizers. Both systems have a three-year crop rotation including pea – durum wheat – tomato; the organic system is implemented with the introduction of common vetch (Vicia sativa L. and sorghum (Sorghum vulgare bicolor as cover crops. In the year 2006 (5 years after the experimentation beginning was determined the soil C content and was measured the CO2 emissions from soil. The first results showed a trend of CO2 production higher in organic soils in comparison with conventional one. Among the two compared cropping systems the higher differences of CO2 emission were observed in tomato soil respect to the durum wheat and pea soils, probably due to the vetch green manuring before the tomato transplanting. These results are in agreement with the total organic carbon content and water soluble carbon (WSC, which showed the highest values in organic soil. The first observations suggest a higher biological activity and CO2 emission in organic soil than conventional one, likely due to a higher total carbon soil content.

  6. Combined Effect of Nutrient and Pest Managements on Substrate Utilization Pattern of Soil Microbial Population in Hybrid Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A field experiment was conducted to study the combined effect of nutrient and pest managements on soil biomass phospholipid contents, functional biodiversity and substrate utilization patterns of soil microbial populations in hybrid rice cropping system. The mineral N, P and K fertilizers (as urea, calcium superphosphate and KCl respectively) were incorporated at 100, 25, and 100 kg ha-1, respectively, and the various pesticides were applied at the recommended rates. The results of the experiment demonstrated a decline in the microbial abundance and soil microbial biomass phospholipid contents with the advancement of crop growth, and significant changes in substrate utilization pattern of soil microbial population studied were observed with different management practices and at different growth stages. The principal component analysis (PGA) using all 95-carbon sources (BIOLOG plates) gave good differentiation among the treatments, indicating that they have different patterns of carbon utilization under different habitats. The data showed that diversity in microbial community continuously changed with the progression in crop stage, particularly at physiological maturity (PM) stage that was evident from the utilization of different carbon sources at various crop stages.

  7. Reduction of weed pressure by establishing catch crops in maize-bean-intercropping systems

    Directory of Open Access Journals (Sweden)

    Fischer, Jenny

    2016-02-01

    Full Text Available Intercropping field experiments with maize and Phaseolus beans are conducted at the Thünen-Institute of Organic Farming (Schleswig-Holstein, SL, 740 mm, 8.7 °C from 2014-2016. As known from previous experiments, maize and beans have a very low competitiveness against weeds, due to their relative slow youth development. Therefore, the beans were sown subsequently to the mechanical weed control with harrow and hoe, at the 4-leaf development stage (BBCH 14 of maize. Hence a mechanical weed control after bean emergence is critical, a field experiment is conducted to find out whether the establishment of an additional catch crop can reduce weed pressure substantially. For this purpose two catch crop mixtures are evaluated in pure maize plots as well as in intercropping plots with scarlet runner beans (Phaseolus coccineus, cv. Preisgewinner or common runner beans (Phaseolus vulgaris, cv. Tarbais respectively. As control variants, plots without undersown crops were used. The undersown crop mixtures are composed of Italian ryegrass (cv. Gersimi, sowing density: 15 kg ha-1, which is combined with subterranean clover (cv. Seaton Park, sowing density: 30 kg ha-1 in US1 and with Chicory (cv. Puna II, sowing density 7.5 kg ha-1 in US2. The highest biomass (50 g DM m-2 was produced by US1 in all variants, while the biomass of US2 was significantly lower with 32 g DM m-2. As a result of a successful mechanical weed control as well as a good development of the main crops, the weed pressure in 2014 was generally low. Nevertheless, the results show that undersown crops can reduce weeds substantially. While the significantly highest weed biomass was recorded in the plots without undersown crops, it was reduced by 70% with US1 and by 80% with US2 on average respectively.

  8. Analysis of energy consumption in lowland rice-based cropping system of Malaysia

    Directory of Open Access Journals (Sweden)

    Chan Chee Wan

    2005-07-01

    Full Text Available Sufficient energy is needed in the right form and at the right time for adequate crop production. One way to optimize energy consumption in agriculture is to determine the efficiency of methods and techniques used. With the current increase in world population, energy consumption needs effective planning. That is, the input elements need to be identified in order to prescribe the most efficient methods for controlling them. This study was undertaken in order to determine the direct and indirect energy consumption of field operations in a lowland rice production system of Malaysia. Field time, fuel and other energy requirements were measured for the tillage, planting, fertilizing, spraying and harvesting operations performed. Energy analysis carried out revealed the highest average operational energy consumption was for tillage (1747.33 MJ ha-1 which accounted for about 48.6% of the total operational energy consumption (3595.87 MJ ha-1, followed by harvesting (1171.44 MJ ha-1, 32.6% and planting (562.91 MJ ha-1, 15.7%. Fertilizing and pesticide spraying did not make any significant contributions to the operational energy consumption. Based on energy sources, fuel was the main consumer of direct energy with 2717.82 MJha-1 (22.2%, and fertilizer recording the highest indirect energy consumption of 7721.03 MJha-1 (63.2%. Human labour, pesticides, seeds and indirect energy for machinery use had marginal importance, contributing only 0.2%, 0.6%, 6.8% and 6.9%, respectively to the total energy consumption (12225.97 MJha-1. Average grain yield was 6470.8 kg ha-1, representing energy output of 108321.75 MJha-1, that is, 96095.78 MJ net energy gain or 8.86 MJ output per MJ input. Energy input per kilogram grain yield was 1.89 MJkg-1. The results of the study indicate energy gain in the lowland rice production system of Malaysia.

  9. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system

    Science.gov (United States)

    Hüppi, R.; Felber, R.; Neftel, A.; Six, J.; Leifeld, J.

    2015-12-01

    Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar. Emission measurements under field conditions however are more scarce and show weaker or no reductions, or even increases in N2O emissions. One of the hypothesised mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH following the application of alkaline biochar. To test the effect of biochar on N2O emissions in a temperate maize cropping system, we set up a field trial with a 20t ha-1 biochar treatment, a limestone treatment adjusted to the same pH as the biochar treatment (pH 6.5), and a control treatment without any addition (pH 6.1). An automated static chamber system measured N2O emissions for each replicate plot (n = 3) every 3.6 h over the course of 8 months. The field was conventionally fertilised at a rate of 160 kg N ha-1 in three applications of 40, 80 and 40 kg N ha-1 as ammonium nitrate. Cumulative N2O emissions were 52 % smaller in the biochar compared to the control treatment. However, the effect of the treatments overall was not statistically significant (p = 0.27) because of the large variability in the data set. Limed soils emitted similar mean cumulative amounts of N2O as the control. There is no evidence that reduced N2O emissions with biochar relative to the control is solely caused by a higher soil pH.

  10. Long-term dynamics of soil C and N in intensive rice-based cropping systems of the Indo-Gangetic Plains (IGP): A modelling approach

    NARCIS (Netherlands)

    Shibu, M.E.; Keulen, van H.; Leffelaar, P.A.

    2012-01-01

    We describe a summary model for the dynamics of carbon and nitrogen under varying weather, crop and soil conditions to investigate the role of soil organic carbon and nitrogen in yield formation in rice-based cropping systems of the Indo-Gangetic Plains (IGP). The model consists of three modules: so

  11. From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso

    NARCIS (Netherlands)

    Andrieu, N.; Vayssières, J.; Corbeels, M.; Blanchard, M.; Vall, E.; Tittonell, P.A.

    2015-01-01

    Traditionally, cereal crop harvest residues are communally grazed by the ruminant herds of villagers and transhumant pastoralists in the agro-pastoral systems which predominate in the savannah zone of West Africa. We analysed the impact of the private use of crop residues by individual farmers on cr

  12. Greenhouse Gas Emissions and Global Warming Potential of Traditional and Diversified Tropical Rice Rotation Systems including Impacts of Upland Crop Management Practices i.e. Mulching and Inter-crop Cultivation

    Science.gov (United States)

    Janz, Baldur; Weller, Sebastian; Kraus, David; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from flooded double-rice systems to the introduction of well-aerated upland crop systems in the dry season. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will increase and soil organic carbon (SOC) stocks will most likely be volatilized in the form of carbon dioxide (CO2). We measured greenhouse gas (GHG) emissions at the International Rice Research Institute (IRRI) in the Philippines to provide a comparative assessment of the global warming potentials (GWP) as well as yield scaled GWPs of different crop rotations and to evaluate mitigation potentials or risks of new management practices i.e. mulching and inter-crop cultivation. New management practices of mulching and intercrop cultivation will also have the potential to change SOC dynamics, thus can play the key role in contributing to the GWP of upland cropping systems. To present, more than three years of continuous measurement data of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation have been collected. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower (pcultivation when compared to a control treatment. Subsequent measurements will be necessary to further quantify and assess the mitigation potentials or risks of new management practices

  13. Yield and apparent dry matter and nitrogen balances for muskmelon in a long-term comparison between an organic and a conventional low input cropping system

    Directory of Open Access Journals (Sweden)

    Michela Farneselli

    2015-09-01

    Full Text Available Nine-year yields and apparent balances of dry matter and nitrogen (N are reported for muskmelon cultivated in a long-term comparison trial between an organic and a conventional low input system in Central Italy. In every year, yield, above ground biomass and N accumulation of each cash crop, green manure and weeds, and the partitioning between marketable yield and crop residues were determined. Apparent dry matter and nitrogen balances were calculated at the end of each crop cycle by taking into account the amounts of dry matter and ex novo N supplied to the system as green manure legume Ndfa (i.e., an estimate of N derived from the atmosphere via symbiotic fixation and fertilisers, and those removed with marketable yield. Differences between systems varied across years. On average, organic muskmelon yielded 16% less than the conventional one, while the fruit quality was similar in the two cropping systems. Fruit ripening began one week later and it was more scaled than in the crop grown conventionally. This was the consequence of a slow initial growth of the organic crop, due to inadequate green manure N total supply or timing of N release. Moreover such a wide spaced crop (0.5 plants m–2, in rows 2 m apart was not efficient in intercepting N released from green manure biomass incorporated broadcast. Compared to the conventional crop management, the organic crop management resulted in much higher organic matter supply to the soil and in higher residual N after harvest. Thus, the choice of cultivating wheat just after melon to prevent postharvest residual N loss appears a key strategy especially in organic systems. Fall-winter green manure crops contributed to the self-sufficiency of the organic system by supplying muskmelon with either N absorbed from the soil or ex novo legume Ndfa.

  14. Modelling for water supply of irrigated cropping systems on climate change

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2012-03-01

    Full Text Available The vulnerability of Mediterranean environment due to climatic changes makes necessary to define the effects of the increase of CO2 atmospheric concentration and the consequent alterations of temperature and precipitation variations upon the processes which regulate the plants’ water supply. The traditional research can not meet the needs of this information because of the difficulty of carrying out the experiments. Therefore, it is necessary to use models based upon mathematical representation of the processes and interactions between climatic scenarios, plant and soil, with which to simulate different agronomic situations. The integration of global circulation models with water balance models is a valid tool for studying the influence of climatic changes on water supply. This study took into account the influence of climatic changes on water supply of poly-annual (artichoke and asparagus and annual (potato and broccoli crops with the CRITERIA simulation model of water balance. The simulations were performed with two future climate scenarios (A2 and B1. The results of the simulations highlight how the A2 scenario gives a greater influence on cycle length of crops which develop in summer time determining a reduction of crop cycle from 15 to 20% compared to the observed data, and so, as a consequence in the future, the crops with a summer crop cycle will be subjected to reductions of water supply up to 25%.

  15. Uptake and accumulation of antimicrobials, triclocarban and triclosan, by food crops in a hydroponic system.

    Science.gov (United States)

    Mathews, Shiny; Henderson, Shannon; Reinhold, Dawn

    2014-05-01

    Commonly used in personal care products, triclocarban (TCC) and triclosan (TCS) are two chemicals with antimicrobial properties that have recently been recognized as environmental contaminants with the potential to adversely affect human health. The objective of the study described herein was to evaluate the potential of food crops to uptake TCC and TCS. Eleven food crops, grown in hydroponic nutrient media, were exposed to a mixture of 500 μg L(-1) TCC and TCS. After 4 weeks of exposure, roots accumulated 86-1,350 mg kg(-1) of antimicrobials and shoots had accumulated 0.33-5.35 mg kg(-1) of antimicrobials. Translocation from roots to shoots was less than 1.9 % for TCC and 3.7 % for TCS, with the greatest translocation for TCC observed for pepper, celery, and asparagus and for TCS observed for cabbage, broccoli, and asparagus. For edible tuber- or bulb-producing crops, the concentrations of both TCC and TCS were lower in the tubers than in the roots. Exposure calculations using national consumption data indicated that the average exposure to TCC and TCS from eating contaminated crops was substantially less than the exposure expected to cause adverse effects, but exceeded the predicted exposure from drinking water. Exposure to antimicrobials through food crops would be substantially reduced through limiting consumption of beets and onions. PMID:24464075

  16. Living on the Edge:The Cost/Benefit Perceptions of TornadoSafe Rooms on the Periphery of Tornado Alley

    OpenAIRE

    Kuntz, Gerard

    2012-01-01

    Abstract There is a lack of correlation between the believed and actual threat of tornadoes on the periphery of Tornado Alley. The purpose of this project is to record the perceptions of homeowners and realtors of the threat posed by tornadoes in a specific geographic location and the need of tornado safe rooms to mitigate that threat and/or provide peace of mind from the potential of that threat. The research included surveying real estate agents and residents within the specified geo...

  17. Water Erosion in Relation with Soil Management System and Crop Sequence during 20 Years on an Inceptisol in South Brazil

    Science.gov (United States)

    Bertol, I.; Schick, J.; Barbosa, F. T.; Paz-Ferreiro, J.; Flores, M. T.; Paz González, A.

    2012-04-01

    Soil erosion still remains persistent at the world scale, even if big efforts have been done to control and reduce it, mainly using soil crop residues to protect soil surface. Although in South Brazil the main management system for most crops is no tillage and direct drilling, water erosion prevails as the most important soil erosion type, which is due both, to the high erosivity and the evenly distribution of rainfall over the year. Moreover, some crops are still grown under soil tillage systems consisting of ploughing, harrowing and less frequently chiselling. Starting 1992, a field experiment under natural rainfall has been conducted on an Inceptisol located in Lages, Santa Catarina State, Brazil, which objective was to assess rainfall water erosion. Two soil cover conditions and four soil management systems were studied: I) a crop rotation, which included oats (Avena strigosa), soybean (Glycine max), common vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and common bean (Phaseolus vulgaris) under the following soil management types: 1) ploughing plus two levelling operations (CT), chiselling plus levelling (RT) and direct drilling with no tillage (NT), and II) bare soil (BS) without crop cover tilled by ploughing plus two levelling. In more than 90% of the study cases, soil losses were collected for single rain events with erosive power, whose erosivity was calculated. Total rain recorded during the 20 year experimental period was approximately 66,400 mm, which is equivalent to roughly 105,700, MJ mm ha-1 h-1 (EI30), whereas soil losses in the BS treatment were higher than 1,700 t.ha-1. On average, soil losses under RT treatment showed a 92% reduction in relation with BS, whereas under CT the reduction in relation to BS was about 66%. Soil management by direct drilling (NT) was the most efficient system to minimize water erosion, as soil losses decreased about 98% when compared with BS. Moreover, soil management systems with a crop

  18. Crop substitution behavior among food crop farmers in Ghana: An efficient adaptation to climate change or costly stagnation in traditional agricultural production system?

    OpenAIRE

    Issahaku, Zakaria A.; Maharjan, Keshav L.

    2014-01-01

    This study analyzes impact of climate change on yield, planting decisions and output of five major food crops (cassava, maize, sorghum, rice and yam) in Ghana. Results of Multivariate Tobit Model show that yield, planting decisions and output of cassava, maize, sorghum and rice will increase as a result of climate change. This is in clear contrast to the hypothesis that warming and drying will reduce crop yields in countries located within the tropics. Climate change impact on yields, plantin...

  19. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Jakob Geipel

    2014-10-01

    Full Text Available Precision Farming (PF management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs enable advanced methods for crop yield prediction. This work utilizes an Unmanned Aircraft System (UAS to capture standard RGB imagery datasets for corn grain yield prediction at three early- to mid-season growth stages. The imagery is processed into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height determination at different spatial resolutions. Three linear regression models are tested on their prediction ability using site-specific (i unclassified mean heights, (ii crop-classified mean heights and (iii a combination of crop-classified mean heights with according crop coverages. The models show determination coefficients \\({R}^{2}\\ of up to 0.74, whereas model (iii performs best with imagery captured at the end of stem elongation and intermediate spatial resolution (0.04m\\(\\cdot\\px\\(^{-1}\\.Following these results, combined spectral and spatial modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.

  20. Can Crops with Greater Rooting Systems Improve Nitrogen Retention and Mitigate Emissions of Nitrous Oxide?

    Science.gov (United States)

    Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan

    2016-04-01

    It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas