WorldWideScience

Sample records for alleviating urban energy

  1. Urban agriculture and urban poverty alleviation: South African debates

    OpenAIRE

    Rogerson, Christian M.

    1998-01-01

    Growing international attention has focussed on the potential role of urban agriculture in poverty alleviation. The aim in this paper is to analyse the existing challenge of urban poverty in South Africa and examine the potential role of urban agriculture as a component of a pro-poor urban development strategy.

  2. Alleviating Urban Energy Poverty in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This regional study is comprised of three case studies, which concentrate on Greater Buenos Aires, Caracas and Rio de Janeiro - Caju. Each case focuses on the analysis of specific aspects of urban poverty, energy availability and policies to improve living conditions from the energy point of view. Unlike other developing regions in the world, the problem of energy poverty in Latin America has been concentrated increasingly in the large cities and urban areas. This problem has deep systemic, economic, political, structural and cultural roots. Providing basic energy services to the urban poor is an issue that requires far more attention and expertise than it is receiving today, and therefore WEC has taken the initiative to address this issue, and the results of their study are presented in this report.

  3. Rural-to-urban migration and its implications for poverty alleviation.

    Science.gov (United States)

    Skeldon, R

    1997-03-01

    This article examines rural-urban migration, its role in poverty alleviation in Thailand, and policy implications. The empirical research literature suggests that the poorest tend be left behind by wealthier migrants moving to urban areas. The youngest tend to migrate. The impact of remittances tends to appear more positive in international migration, but the impact of remittances among rural internal migrant families can also be substantial and be responsible for wealth differences within rural communities. Return migrants contribute to communities by bringing back new ideas and new attitudes toward family size. Migration can also produce negative impacts for sending communities, but the total analysis appears to favor positive impacts. The urban sector becomes another resource base for rural populations that can sustain rural populations during rapid change processes. The migrant population tends to be wealthier and better educated than rural populations, but poorer and less educated than urban populations. Informal sectors in urban areas may offer migrants flexible working hours, no taxes or deductions, less bureaucratic structures, and only 9% less income than the formal sector. Social networks reinforce migrant work in the informal sector and segmentation of the labor force. Social networks may be formalized into associations and help in securing migrant's housing and living. Migrants are integrated in a variety of ways into city life. Migrant communities are a source of energy, organizational skills, and talent. The incidence of poverty appears to be the greatest among women. Women migrants and women left behind by migrants must adjust to new conditions. Migration policies tend to focus on regulating the volume of migration. The author concludes that migration alleviates poverty and that policies should address city management, migrant adjustment processes, and training programs for nonmigrants.

  4. Model of urban poverty alleviation through the development of entrepreneurial spirit and business competence

    Science.gov (United States)

    Aryaningsih, NN; Irianto, Kt; Marsa Arsana, Md; Juli Suarbawa, Kt

    2018-01-01

    The rapid increased of urban population can not be controlled by the city government. This will have an impact on the emergence of new poverty in urban areas, due to inadequate of the job opportunities and skills. Government programs for poverty alleviation can reduce some rural poverty, but have not been able to overcome poverty in urban areas. The diversity of urban issues and needs is greater than in rural areas. Therefore, it is necessary to conduct the research with the aim to build urban poverty reduction model through the development of entrepreneurship spirit and business competence. This research was conducted by investigation method, and questionnaire. Questionnaires are arranged with rating scale measurements. The validity and reliability of the questionnaire were tested by factor analysis. Model construction is constructed from various informant analyzes and descriptive statistical analysis. The results show that poverty alleviation model is very effective done by developing spirit of entrepreneurship and business competence.

  5. Cooling and energy saving potentials of shade trees and urban lawns in a desert city

    International Nuclear Information System (INIS)

    Wang, Zhi-Hua; Zhao, Xiaoxi; Yang, Jiachuan; Song, Jiyun

    2016-01-01

    Highlights: • We developed a numerical framework incorporating trees in an urban canopy model. • Shade trees have more prominent energy saving potential than urban lawns. • The trade-off between water-energy is a key for urban landscape management. • Urban vegetation can significantly alleviate outdoor thermal stress. - Abstract: The use of urban vegetation in cities is a common landscape planning strategy to alleviate the heat island effect as well as to enhance building energy efficiency. The presence of trees in street canyons can effectively reduce environmental temperature via radiative shading. However, resolving shade trees in urban land surface models presents a major challenge in numerical models, especially in predicting the radiative heat exchange in canyons. In this paper, we develop a new numerical framework by incorporating shade trees into an advanced single-layer urban canopy model. This novel numerical framework is applied to Phoenix metropolitan area to investigate the cooling effect of different urban vegetation types and their potentials in saving building energy. It is found that the cooling effect by shading from trees is more significant than that by evapotranspiration from lawns, leading to a considerable saving of cooling load. In addition, analysis of human thermal comfort shows that urban vegetation plays a crucial role in creating a comfortable living environment, especially for cities located in arid or semi-arid region.

  6. Alleviating energy poverty: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Garima

    2010-09-15

    Energy services play an important role in human welfare. India faces acute energy poverty indicating lack of access of clean energy fuels. Access to electricity is limited to 56% households in India and about 89% of rural households depend on polluting energy sources. Energy poverty impacts income poverty as poor find it difficult to acquire high priced cleaner fuels. It also adversely impacts the socio economic conditions of women. The paper highlights the linkage of energy poverty with income poverty and gender inequality. It analyses measures taken to alleviate energy poverty and recommends regulatory and policy measures as way forward.

  7. Biomass energy: Employment generation and its contribution to poverty alleviation

    International Nuclear Information System (INIS)

    Openshaw, Keith

    2010-01-01

    Studies were undertaken in Malawi from 1995 to 1997 and 2007 to 2008 to estimate the supply and demand of household energy. Because little is known about the supply chain for biomass, surveys were carried out for urban areas on its production, transport and trade as well as sustainable supply. Also, because biomass is used by all people for a multitude of purposes, a complete picture was made of regional and urban biomass supply and demand. The results indicated that biomass is not only the principal energy, accounting for 89 percent of demand, but also the main traded energy in the two time periods accounting for 56-59 percent of commercial demand. Petroleum products supplied 26-27 percent, electricity 8-12 percent and coal 6-10 percent. The market value of traded woodfuel was US$ 48.8 million and US$ 81.0 million in 1996 and 2008 respectively, about 3.5 percent of gross domestic product (GDP). The study found that in 1996 and 2008 respectively, the equivalent of 93,500 and 133,000 full-time people was employed in the biomass supply chain, approximately 2 percent of the potential workforce. In contrast, about 3400 and 4600 people were employed in the supply chain of other fuels in these years. If the Malawi findings are applied to the current estimated wood energy consumption in sub-Saharan Africa, then approximately 13 million people could be employed in commercial biomass energy; this highlights its importance as a means to assist with sustainable development and poverty alleviation. (author)

  8. AN APPROACH TO ALLEVIATE THE FALSE ALARM IN BUILDING CHANGE DETECTION FROM URBAN VHR IMAGE

    Directory of Open Access Journals (Sweden)

    J. Chen

    2016-06-01

    Full Text Available Building change detection from very-high-resolution (VHR urban remote sensing image frequently encounter the challenge of serious false alarm caused by different illumination or viewing angles in bi-temporal images. An approach to alleviate the false alarm in urban building change detection is proposed in this paper. Firstly, as shadows casted by urban buildings are of distinct spectral and shape feature, it adopts a supervised object-based classification technique to extract them in this paper. Secondly, on the opposite direction of sunlight illumination, a straight line is drawn along the principal orientation of building in every extracted shadow region. Starting from the straight line and moving toward the sunlight direction, a rectangular area is constructed to cover partial shadow and rooftop of each building. Thirdly, an algebra and geometry invariant based method is used to abstract the spatial topological relationship of the potential unchanged buildings from all central points of the rectangular area. Finally, based on an oriented texture curvature descriptor, an index is established to determine the actual false alarm in building change detection result. The experiment results validate that the proposed method can be used as an effective framework to alleviate the false alarm in building change detection from urban VHR image.

  9. The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests

    Directory of Open Access Journals (Sweden)

    Haoming Guan

    2017-12-01

    Full Text Available Forest bathing, i.e. spending time in a forest to walk, view and breathe in a forest, can alleviate the mental depression of visitors, but the tree-species-specific effect of this function by the urban forest is unknown. In this study, sixty-nine university students (aged 19-22, male ratio: 38% were recruited as participants to visit urban forests dominated by birch (Betula platyphylla Suk., maple (Acer triflorum Komarov and oak (Quercus mongolica Fisch. ex Ledeb trees in a park at the center of Changchun City, Northeast China. In the maple forest only the anxiety from study interest was decreased, while the anxiety from employment pressure was alleviated to the most extent in the birch forest. Participants perceived more anxiety from lesson declined in the oak forest than in the birch forest. Body parameters of weight and age were correlated with the anti-anxiety scores. In the oak forest, female participants can perceive more anxiety alleviation than male participants. For university students, forest bathing in our study can promote their study interest. Forest bathing can be more effective to alleviate the anxiety of young adults with greater weight. The birch forest was recommended to be visited by students to alleviate the pressure of employment worry, and the oak forest was recommended to be visited by girls.

  10. An economic model for energisation and its integration into the urban energy planning process

    International Nuclear Information System (INIS)

    Nissing, Christian; Blottnitz, Harro von

    2010-01-01

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea, and if implemented in its full complexity it should have multiple beneficial effects. To demonstrate this, an economic model is developed for an urban developmental context, drawing on the theory of urban ecosystems and illustrating energy and waste production and consumption issues with current South African data sets. This new understanding of the concept of energisation is then integrated into a local government energy planning process, by means of a checklist for energy planners, covering 18 aspects that between them affect all 7 identifiable tiers of the energy service supply network. A 6-step structured approach is proposed for integrating sustainable energisation into the first four phases of the advanced local energy planning (ALEP) tool.

  11. Let there be light: A multi-actor approach to alleviating energy poverty in Asia

    International Nuclear Information System (INIS)

    Spagnoletti, Belinda; O’Callaghan, Terry

    2013-01-01

    Energy poverty is the primary energy security issue impacting almost 800 million people, particularly women and children, in the developing countries of Asia. Current trends indicate that should there be no change to existing policies, and the governance systems and institutions underpinning them, the absolute number of energy poor will barely shift. Most significantly, addressing energy poverty is critical to absolute poverty reduction, enhanced gender equality and political stability in the Asian region. We offer a solution to progress the energy poverty alleviation effort focused on encouraging sustainable, development-centred investment. This will involve multi-actor partnerships between developed and developing country governments, investors, and multilateral institutions. We propose that there may be spill over effects for investing firms, in the form of strengthened corporate reputation. Consequently, energy poverty alleviation efforts can create new opportunities for commerce, multilateral institutions, NGOs, and developing and developed countries. It is envisaged that the multi-actor approach put forward by this paper will facilitate the partnerships, programs and provisions needed to alleviate energy poverty in Asia. However, critical to the success of this collaborative approach is a genuine shift in sentiment from the key stakeholders involved in the effort

  12. Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kikegawa, Yukihiro [Department of Environmental Systems, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506 (Japan); Genchi, Yutaka [Research Center for Life Cycle Assessment, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kondo, Hiroaki [Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Hanaki, Keisuke [Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2006-06-15

    This study quantifies the possible impacts of urban heat-island countermeasures upon buildings' energy use during summer in Tokyo metropolis. Considering the dependency of the buildings air temperature upon the local urban canopy structure, Tokyo urban canopies were classified in the city-block-scale using the sky-view factor (svf). Then, a multi-scale model system describing the interaction between buildings' energy use and urban meteorological conditions was applied to each classified canopy. In terms of urban warming alleviation and cooling energy saving, simulations suggested that the reduction in the air-conditioning anthropogenic heat could be the most effective measure in office buildings' canopies, and that vegetative fraction increase on the side walls of buildings in residential canopies. Both measures indicated daily and spatially averaged decreases in near-ground summer air temperature of 0.2-1.2{sup o}C. The simulations also suggested these temperature decreases could result in the buildings' cooling energy-savings of 4-40%, indicating remarkable savings in residential canopies. These temperature drops and energy savings tended to increase with the decrease of the svf of urban canopies. (author)

  13. Urban structure, energy and planning

    DEFF Research Database (Denmark)

    Große, Juliane; Fertner, Christian; Groth, Niels Boje

    2016-01-01

    Transforming energy use in cities to address the threats of climate change and resource scarcity is a major challenge in urban development. This study takes stock of the state of energy in urban policy and planning and reveals potentials of and constraints to energy-efficient urban development....... The relationship between energy and urban structure provides a framework for discussing the role of urban planning to increase energy efficiency in cities by means of three in-depth case studies of medium-sized cities in Northern Europe: Eskilstuna in Sweden, Turku in Finland and Tartu in Estonia. In some ways...... these cities go ahead when it comes to their national climate and energy policies and aim to establish urban planning as an instrument to regulate and influence the city’s transition in a sustainable way. At the same time, the cities are constantly facing goal conflicts and limitations to their scope of action...

  14. Thematic report on urban energy planning

    DEFF Research Database (Denmark)

    Meijers, Evert; Romein, Arie; Stead, Dominic

    The report reviews relations between urban structure (spatial structure + institutional structure) and four core themes of urban energy: • Urban planning and energy use in buildings (mainly residential buildings) • Industrial energy use and urban form • Spatial Planning, Urban Form and Transport...... Energy Consumption • Urban energy generation The reports ends with a summary of potential measure and policies of spatial planning in each of the four themes. However, we highlight also that it is crucial to consider the wider perspective and include considerations of potential rebound effects on direct...

  15. Alleviating energy poverty for the world's poor

    International Nuclear Information System (INIS)

    Sagar, Ambuj D.

    2005-01-01

    Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. The dependence of these households on traditional forms of energy leads to significant health impacts as well as other major disbenefits, yet there has been little progress in meeting this challenge. This viewpoint argues for an 'energy-poverty alleviation' fund to help provide modern energy services to these households. It also proposes an approach through which to create such a fund, namely by introducing an incremental levy on petroleum. Notably, this scheme does not need a global agreement since a levy could be introduced by major oil-exporting countries. The implementation of this mechanism would result in a climate-friendly outcome (even before taking into account the elimination of products of incomplete combustion resulting from the traditional household use of biomass-based fuels) while providing immense socio-economic benefits to the world's poor. Such an approach would allow significant progress on the sustainable development front while reducing global greenhouse gas emissions, and therefore is very much consistent with the United Nations Framework Convention on Climate Change

  16. Improvement Of Rural Off-Farm Energy Use In Nigeria: A Prerequisite For Rural Development And Poverty Alleviation

    International Nuclear Information System (INIS)

    Umar, B

    2002-01-01

    In Nigeria, agricultural production takes place predominantly in the rural areas. The development of those areas, therefore, is necessary for the much-coveted rise in agricultural production and poverty alleviation. Development is a natural ally of improved energy use, both on and off-farm. Energy use in rural Nigeria is rudimentary and unimpressive. This paper discusses the existing pattern of energy use in the off-farm sector of rural areas and suggests ways of improvement to alleviate poverty and propel rural development

  17. Energy-urban transition: The Mexican case

    International Nuclear Information System (INIS)

    Paez, Armando

    2010-01-01

    In this paper I present a study regarding the institutional conditions of Mexican cities based on a post-petroleum urban model that considers transport, architecture, urban planning and land use, renewable energy sources, energy saving and efficiency, and urban metabolism issues. The model was constructed with recommendations of authors and organizations that have analysed the energy dimension of cities under an energy-availability, environmental or petroleum-independent view. To make the study I sent a questionnaire to some local governments of all the country. The information indicates that Mexican cities do not have institutional conditions to manage the urban-energy transition that signify the end of cheap oil and the peak of world oil production.

  18. Alleviating Energy Poverty through innovation: The case of Jyotigram Yojana (rural lighting scheme) of Gujarat

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Pramod Kumar

    2010-09-15

    Access to electricity is important for alleviation energy poverty in rural areas of developing countries. In spite of rural electrification schemes people in numerous villages do not have access to electricity because of inadequate and erratic power supply. The Jyotigram Yojana (Rural Lighting Scheme) of Gujarat in India transformed the rural electricity distribution scenario creating immense opportunities for socio-economic development. It shows how vision and political will can transcend the boundaries of technical and financial expertise and systemic rigidities, and facilitate successful adoption of simple but innovative approaches for alleviation of energy poverty and bringing about socio-economic development.

  19. Urban energy planning in Turku

    DEFF Research Database (Denmark)

    Fertner, Christian; Christensen, Emil Maj; Große, Juliane

    prevailing urban sprawl, characterising urban development since the 1950s. The city is densifying and promoting sustainable urban develop-ment, though at a regional scale with several growth centres. Its future development is envisioned in the “Structure model 2035”, focusing on more compact urban...... development along public transport corridors. From the case report three issues arise which might be of considerable interest in a broader context of the PLEEC project: 1. Working with energy efficient regional urban structure (e.g. regarding urban sprawl) in a low density country and on a voluntary...

  20. Can urban rail transit curb automobile energy consumption?

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    With the rapid development of China's economy and the speed of urbanization, China's automobile sector has experienced rapid development. The rapid development of the automobile sector has increased energy consumption. According to the results of this paper, automobile energy consumption accounted for about 10.73% of total energy consumption in China in 2015, about 3.6 times the proportion a decade ago. With the deterioration of urban traffic conditions, relying on expanding the amount of vehicles and city road network cannot solve the problem. Urban rail transit is energy-saving and less-polluting, uses less space, has large capacity, and secure. Urban rail transit, according to the principle of sustainable development, is a green transportation system and should be especially adopted for large and medium-sized cities. The paper uses the binary choice model (Probit and Logit) to analyze the main factors influencing the development of rail transit in Chinese cities, and whether automobile energy consumption is the reason for the construction of urban rail transit. Secondly, we analyze the influence of urban rail transit on automobile energy consumption using DID model. The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly, with continuous impact in the second year. - Highlights: • Investigate the main factors influencing the building of rail transit for Chinese cities. • Analyze the influence of urban rail transit on automobile energy consumption by DID model. • The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly.

  1. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  2. Inter-dependence not Over-dependence: Reducing Urban Transport Energy Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Michael James; Rodrigues da Silva, Antonio Nelson

    2007-07-01

    A major issue of concern in today's world is urban transport energy dependence and energy supply security. In an energy inter-dependent world, energy over-dependence brings risks to urban transport systems. Many urban areas are over-dependent on finite petroleum resources for transport. New technology and the development and integration of renewable resources into transport energy systems may reduce some of the current transport energy dependence of urban areas. However, the most effective means of reducing energy dependence is to first design urban areas for this condition. An urban policy framework is proposed that requires transport energy dependence to be measured and controlled in the urban development process. A new tool has been created for this purpose, the Transport Energy Specification (TES), which measures transport energy dependence of urban areas. This creates the possibility for cities to regulate urban development with respect to energy dependence. Trial assessments were performed in Germany, New Zealand and Brazil; initial analysis by transport and government professionals shows promise of this tool being included into urban policy. The TES combined with a regulatory framework has the potential to significantly reduce transport energy consumption and dependence in urban areas in the future. (auth)

  3. Energy performance assessment in urban planning competitions

    International Nuclear Information System (INIS)

    Eicker, Ursula; Monien, Dirk; Duminil, Éric; Nouvel, Romain

    2015-01-01

    Highlights: • Quantification of energy efficiency in urban planning. • Analysis based on 3D (city) model. • Impact evaluation of urban form on energy demand, supply and building costs. • Primary energy balance with and without inclusion of shadowing effects. - Abstract: Many cities today are committed to increase the energy efficiency of buildings and the fraction of renewables especially in new urban developments. However, quantitative data on building energy performance as a function of urban density, building compactness and orientation, building use and supply options are rarely available during the design of new cities or early scenario analysis for existing city quarters, making it difficult for cities to effectively evaluate which concepts work today and in the future. The paper proposes a methodology to assess the energy demand and supply options as a function of the availability of geometry, building standard and use data. An automated procedure was implemented to identify each building’s geometry and volume and transfer the information to a simulation tool, which then calculates heating demand and solar energy generation on roofs and facades. The simulation includes shading calculations for each segment of the façades and roofs and thus allows a very detailed quantification of the building energy demand. By applying the methodology to a case study city quarter designed in an urban competition in Munich, it could be shown how the urban design influences the energy demand of the quarter and which fractions of renewable energy can be integrated into the roofs. While the building insulation standard and use are the is most important criteria for building energy efficiency (with an impact of more than a factor 2), the exact geometrical form, compactness and urban shading effects influences the energy demand by 10–20%. On the other hand, the detailed roof geometry and orientation influences the possible solar coverage of electricity or thermal

  4. Open innovation in urban energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M. [Technische Universitaet Muenchen, TUM School of Management, Freising (Germany); Barth, V. [Carl von Ossietzky Universitaet Oldenburg, Ecological Economics, Oldenburg (Germany)

    2012-08-15

    Despite recent efforts, existing urban energy systems still hardly meet the demands of sustainable development or climate change. Meeting these targets thus will require innovations that use energy much more efficiently and emit far less greenhouse gases. These innovations need to be made on the production as well as the consumption side, on all levels, and need to cover not only technical aspects, but even more service solutions. While many of these solutions still need to be developed, some are already invented but only exist in limited market segments. Opening closed urban planning processes and using open innovation tools can foster bottom-up urban energy system transformation by addressing the interactive ways of decision-making integrating company representatives and citizens. While open innovation tools like (open) innovation workshops or ideas competitions are already used by several companies to find and develop new designs and products, there is yet little experience with energy efficiency ideas and bottom-up changes. Therefore, we analyse energy-efficient ideas generated in three different ideas competitions. We discuss the findings for theory and research on open innovation approaches and bottom-up urban changes. Our results show that there are a vast number of ideas available in the public. Open innovation tools offer advanced possibilities to generate energy-efficient solutions.

  5. Provincial energy intensity in China: The role of urbanization

    International Nuclear Information System (INIS)

    Yan, Huijie

    2015-01-01

    Chinese policymakers have attached great importance to energy intensity reduction. However, the unprecedented urbanization process exercises additional pressure on the realization of energy intensity reduction targets. A better understanding of the impacts of urbanization is necessary for designing effective policies aimed at reaching the next energy intensity reduction targets. This paper empirically investigates the impacts of urbanization on China's aggregate and disaggregated energy intensities using a balanced panel dataset of 30 provinces covering the period from 2000 to 2012 and panel estimation techniques. The results show that urbanization significantly increases aggregate energy intensity, electricity intensity and coal intensity. - Highlights: • This paper investigates the determinants of China's energy intensity. • Urbanization is responsible for the increase in China's energy intensity. • The fluctuation in China's energy intensity is also affected by other key factors.

  6. A systems approach to reduce urban rail energy consumption

    International Nuclear Information System (INIS)

    González-Gil, A.; Palacin, R.; Batty, P.; Powell, J.P.

    2014-01-01

    Highlights: • An insightful overview of energy usage in urban rail systems is given. • The principal measures to reduce urban rail energy consumption are appraised. • A methodology is proposed to help implement energy saving schemes in urban rail. • Regenerative braking is shown to offer the greatest energy saving potential. - Abstract: There is increasing interest in the potential of urban rail to reduce the impact of metropolitan transportation due to its high capacity, reliability and absence of local emissions. However, in a context characterised by increasing capacity demands and rising energy costs, and where other transport modes are considerably improving their environmental performance, urban rail must minimise its energy use without affecting its service quality. Urban rail energy consumption is defined by a wide range of interdependent factors; therefore, a system wide perspective is required, rather than focusing on energy savings at subsystem level. This paper contributes to the current literature by proposing an holistic approach to reduce the overall energy consumption of urban rail. Firstly, a general description of this transport mode is given, which includes an assessment of its typical energy breakdown. Secondly, a comprehensive appraisal of the main practices, strategies and technologies currently available to minimise its energy use is provided. These comprise: regenerative braking, energy-efficient driving, traction losses reduction, comfort functions optimisation, energy metering, smart power management and renewable energy micro-generation. Finally, a clear, logical methodology is described to optimally define and implement energy saving schemes in urban rail systems. This includes general guidelines for a qualitative assessment and comparison of measures alongside a discussion on the principal interdependences between them. As a hypothetical example of application, the paper concludes that the energy consumption in existing urban

  7. Sustainable Urban Regeneration Based on Energy Balance

    Directory of Open Access Journals (Sweden)

    Sacha Silvester

    2012-07-01

    Full Text Available In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs, and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4 in the Rotterdam city port in the Netherlands. In order to optimize the energy balance of this urban renewal area, it is found to be impossible to do this by tuning the energy consumption. It is more effective to change the energy mix and related infrastructures. However, the problem in existing urban areas is that often these areas are restricted to a few energy sources due to lack of available space for integration. Besides this, energy consumption in most cases is relatively concentrated in (existing urban areas. This limits the potential of sustainable urban regeneration based on decentralized systems, because there is no balanced choice regarding the energy mix based on renewables and system optimization. Possible solutions to obtain a balanced energy profile can come from either the choice to not provide all energy locally, or by adding different types of storage devices to the systems. The use of energy balance based on renewables as a

  8. The role of urban form as an energy management parameter

    International Nuclear Information System (INIS)

    Futcher, Julie Ann; Mills, Gerald

    2013-01-01

    Urban areas are recognised to be significant global energy consumers, and therefore high CO 2 emitters, making energy management at urban scales a relevant research focus. However, one of the main obstacles faced with upgrading existing urban systems to meet target energy reductions is the current rate of refurbishment and new build, where it is estimated that 75% of existing buildings will still be in place by 2050. Moreover limited renewable resources and predicted warming trends place further limitations on policies aimed at carbon management. This paper examines current thinking around energy management associated with building operational and regulated loads and the role of urban form. Its focus is on cooling loads for office buildings in central London and offers a new perspective on energy management at an urban scale by demonstrating (within the 25% redevelopment rate) that when building energy management is considered within an urban context, the overall performance of an urban system can be significantly improved. The work highlights the often overlooked role of urban form on building energy performance (both individually and in combination) and demonstrates that as we move towards a low energy future; the role of urban form becomes increasing significant. - Highlight: ► The work reports on the energy performance patterns of modern office building groups. ► Mutual shading from adjacent buildings significantly lowers cooling loads. ► Demonstrates the role of urban form as an urban energy management parameter.

  9. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    Science.gov (United States)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  10. Energy in the urban environment: the role of energy use and energy efficiency in buildings; Final

    International Nuclear Information System (INIS)

    Levine, Mark D.; Meier, Alan K.

    1999-01-01

    A century ago, the world had many cities of which the greatest were magnificent centers of culture and commerce. However, even in the most industrialized countries at the time, only a tiny fraction of the people lived in these cities. Most people lived in rural areas, in small towns, in villages, and on farms. Visits to a great city were, for most of the population, uncommon events often of great fascination. The world has changed dramatically in the intervening years. Now most of the industrial world lives in urban areas in close proximity to large cities. Industry is often located in these vast urban areas. As the urbanized zones grow in extent, they begin to approach one another, as on the East Coast of the United States. The phenomenon of urbanization has moved to developing countries as well. There has been a flood of migrants who have left impoverished rural areas to seek economic opportunities in urban areas throughout the developing world. This movement from the countryside to cities has changed the entire landscape and economies of developing nations. Importantly, the growth of cities places very great demands on infrastructure. Transportation systems are needed to assure that a concentrated population can receive food from the countryside without fail. They are needed to assure personal and work-related travel. Water supplies must be created, water must be purified and maintained pure, and this water must be made available to a large population. Medical services - and a host of other vital services - must be provided to the population. Energy is a vital underpinning of all these activities, and must be supplied to the city in large quantities. Energy is, in many ways, the enabler of all the other services on which the maintenance of urban life depends. In this paper, we will discuss the evolution of energy use in residential and commercial buildings. This topic goes beyond urban energy use, as buildings exist in both urban and non-urban areas. The topic

  11. City-integrated renewable energy for urban sustainability.

    Science.gov (United States)

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  12. Issues - I. Renewable energies and urban planning law - Urban planning law and renewable energies: I love you, neither I

    International Nuclear Information System (INIS)

    Gregory Kalfleche

    2012-01-01

    After having noticed that fossil energies must still be used beside renewable energies, and that renewable energies have some negative impacts on landscape and on the environment, the author highlights the fact that the French urban planning law gives a strong support to small renewable energy production units. In a second part, he shows that despite a commitment for the development of renewable energies, urban planning law mostly remains a constraint as far as the development of large units is concerned

  13. Urbanism and energy in developing regions

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R.L.; Berman, S.; Dowell, D.

    1978-03-01

    The pace of urbanization must continue, because in most parts of the world the surplus population in the countryside has nowhere else to go. The world is about 40% urban now and apparently headed for the 80 to 90% share of the total population presently exhibited by the developed countries. Thus, the 1.6 billion urban dwellers in 1978 would become about 3 billion in 1995--if major catastrophes can be avoided. Feasibility assessments for Sao Paulo-Rio de Janeiro, Calcutta, Cairo-Alexandria, Mexico City, and Seoul are presented in the appendices. This analysis-from-a-distance is insufficient to judge how much extra installed electrical generating capacity is required before 1995, the added refining capability for liquid fuels, or the uses for new LNG and coal imports due to be arranged. It is evident that energy (and perhaps also water in most regions) planning is the major determinant of the manner in which these urban areas will adapt to the extraordinary pressures for new settlement. The current round of planning in such metropolitan areas has been addressed to solving traffic-congestion problems, and reorganizing land use in central districts, as the most-pressing issues. Since energy sources and distribution systems now affect the largest and most crucial investments in urban growth it is to be expected that future metropolitan planning may concentrate upon energy efficiency. Energy supplies must be planned to meet requirements set by locally dominant values regarding human services and the environment.

  14. Urban wind energy. State of the Art 2009

    Energy Technology Data Exchange (ETDEWEB)

    Beller, C.

    2009-10-15

    Wind energy in urban areas is a new area and a rather blank page concerning design criteria, aesthetics, concepts, minimizing costs etc. Even though the potential energy in the flow is much higher on the country side or off-shore, the erection of wind turbines in urban areas is carried out and also shows perspectives regarding e. g. direct use of the energy instead of redirecting the energy to the grid and reduction of transmission loss. Within the area of urban wind energy, different applications are to be distinguished. The main groups are turbines integrated in buildings, small turbines on already existing buildings and free standing turbines in public areas. In this report, a look is taken on the mentioned applications, a short introduction to urban climate is given, followed by a list of already existing small turbines which are compared. Examples in between, field tests and experiments support the understanding. An overview of current projects set the application of wind turbines in the urban environment in a relevant perspective. (author)

  15. Scenarios for a urban energy transition. Actors, regulations, technologies

    International Nuclear Information System (INIS)

    Debizet, Gilles; Blanco, Sylvie; Buclet, Nicolas; Forest, Fabrice; Gauthier, Caroline; La Branche, Stephane; Menanteau, Philippe; Schneuwly, Patrice; Tabourdeau, Antoine

    2016-01-01

    Cities concentrate populations, consumptions, levers of actions, and are places of various experiments for energy transition. This book aims at giving an overview of possible scenarios of development of renewable energies in urban context. It is based on interviews of actors of the energy, building and urban planning sectors by researchers in town planning, management, technology, political and economic sciences. The authors examine what would occur if large companies would manage entire quarters, if local authorities would supervise production and supply, if the State would take control of all fields of action again, or if consumer cooperatives would exchange energy and pool productions. In its different chapters, the book presents four scenarios of energy coordination in urban context by 2040, discuss energy transition in urban spaces, discuss the perspectives of evolution towards more autonomous cities and quarters from an energetic point of view, and discuss business models and urban energetic innovations

  16. An urban energy performance evaluation system and its computer implementation.

    Science.gov (United States)

    Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong

    2017-12-15

    To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Measure for Measure: Urban Water and Energy

    Science.gov (United States)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  18. Visions of sustainable urban energy systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, Ursula [HFT Stuttgart (Germany). zafh.net - Centre of Applied Research - Sustainable Energy Technology; Mikosch, Milena [Steinbeis-Zentrum, Stuttgart (Germany). Europaeischer Technologietransfer; Liesner, Lisa (eds.)

    2010-09-15

    Within the polycity final conference from 15th to 17th September, 2010, in Stuttgart (Federal Republic of Germany) the following lectures were held: (1) Visions of sustainable urban energy system (Ursula Eicker); (2) Words of welcome (Tanja Goenner); (3) Zero-energy Europe - We are on our way (Jean-Marie Bemtgen); (4) Polycity - Energy networks in sustainable cities An introduction (Ursula Pietzsch); (5) Energy efficient city - Successful examples in the European concerto initiative (Brigitte Bach); (6) Sustainable building and urban concepts in the Catalonian polycity project contributions to the polycity final conference 2010 (Nuria Pedrals); (7) Energy efficient buildings and renewable supply within the German polycity project (Ursula Eicker); (8) Energy efficient buildings and cities in the US (Thomas Spiegehalter); (9) Energy efficient communities - First results from an IEA collaboration project (Reinhard Jank); (10) The European energy performance of buildings directive (EPBD) - Lessons learned (Eduardo Maldonado); (11) Passive house standard in Europe - State-of-the-art and challenges (Wolfgang Feist); (12) High efficiency non-residential buildings: Concepts, implementations and experiences from the UK (Levin Lomas); (13) This is how we can save our world (Franz Alt); (14) Green buildings and renewable heating and cooling concepts in China (Yanjun Dai); (15) Sustainable urban energy solutions for Asia (Brahmanand Mohanty); (16) Description of ''Parc de l'Alba'' polygeneration system: A large-scale trigeneration system with district heating within the Spanish polycity project (Francesc Figueras Bellot); (17) Improved building automation and control systems with hardware-in-the loop solutions (Martin Becker); (18) The Italian polycity project area: Arquata (Luigi Fazari); (19) Photovoltaic system integration: In rehabilitated urban structures: Experiences and performance results from the Italian polycity project in Turin (Franco

  19. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  20. Eight energy and material flow characteristics of urban ecosystems.

    Science.gov (United States)

    Bai, Xuemei

    2016-11-01

    Recent decades have seen an expanding literature exploring urban energy and material flows, loosely branded as urban metabolism analysis. However, this has occurred largely in parallel to the mainstream studies of cities as ecosystems. This paper aims to conceptually bridge these two distinctive fields of research, by (a) identifying the common aspects between them; (b) identifying key characteristics of urban ecosystems that can be derived from energy and material flow analysis, namely energy and material budget and pathways; flow intensity; energy and material efficiency; rate of resource depletion, accumulation and transformation; self-sufficiency or external dependency; intra-system heterogeneity; intersystem and temporal variation; and regulating mechanism and governing capacity. I argue that significant ecological insight can be, or has the potential to be, drawn from the rich and rapidly growing empirical findings of urban metabolism studies to understand the behaviour of cities as human-dominated, complex systems. A closer intellectual linkage and cross pollination between urban metabolism and urban ecosystem studies will advance our scientific understanding and better inform urban policy and management practices.

  1. Building synergies between climate change mitigation and energy poverty alleviation

    International Nuclear Information System (INIS)

    Ürge-Vorsatz, Diana; Tirado Herrero, Sergio

    2012-01-01

    Even though energy poverty alleviation and climate change mitigation are inextricably linked policy goals, they have remained as relatively disconnected fields of research inquiry and policy development. Acknowledging this gap, this paper explores the mainstream academic and policy literatures to provide a taxonomy of interactions and identify synergies and trade-offs between them. The most important trade-off identified is the potential increase in energy poverty levels as a result of strong climate change action if the internalisation of the external costs of carbon emissions is not offset by efficiency gains. The most significant synergy was found in deep energy efficiency in buildings. The paper argues that neither of the two problems – deep reductions in GHG emissions by mid-century, and energy poverty eradication – is likely to be solved fully on their own merit, while joining the two policy goals may provide a very solid case for deep efficiency improvements. Thus, the paper calls for a strong integration of these two policy goals (plus other key related benefits like energy security or employment), in order to provide sufficient policy motivation to mobilise a wide-scale implementation of deep energy efficiency standards. - Highlights: ► A taxonomy of interactions between climate change and energy poverty is offered. ► Energy poverty levels may increase as a result of strong climate change action. ► However, strong synergies are offered by deep improvements of energy efficiency. ► Access to modern energy carriers is a key requirement in developing countries. ► Sufficiently solving both problems requires the integration of policy goals.

  2. Urban Planners with Renewable Energy Skills

    Directory of Open Access Journals (Sweden)

    Arto Emerik Nuorkivi

    2013-06-01

    Full Text Available There is no much tradition to combine urban and energy planning together to fight Climate Change even though energy production with fossil fuels is the main cause to the Change. Pilot training of urban planners in five EU countries such Finland, Germany, Hungary, Spain and the United Kingdom to understand the basics of renewable energy sources (RES and energy efficiency (EE has been carried out during 2011-2012 under co-financing of Intelligent Energy Europe. Organizing such pilot training was challenging for many reasons, but the outcome can be consdered highly statisfactory, based on the recorded feedback of trainees and other stakeholders. The project encourages other planning schools in Europe to learn from the experience and to use the published training materials available in ten languages in their curricula.

  3. The urban canyon and building energy use: Urban density versus daylight and passive solar gains

    DEFF Research Database (Denmark)

    Strømann-Andersen, Jakob Bjørn; Sattrup, Peter Andreas

    2011-01-01

    .It was found that the geometry of urban canyons has an impact on total energy consumption in the range of up to +30% for offices and +19% for housing, which shows that the geometry of urban canyons is a key factor in energy use in buildings. It was demonstrated how the reflectivity of urban canyons plays...

  4. Urban agriculture and poverty alleviation in developing countries ...

    African Journals Online (AJOL)

    Urban agriculture has served for a long time as a vital asset in the livelihood strategies of urban households in developing countries. It has been considered since then as a relevant input in responding to the embryonic economic situation of developing countries resulting to the structural adjustment programs and increasing ...

  5. Energy Efficiency and Urban Renewal in the Economies in Transition

    International Nuclear Information System (INIS)

    Brendow, K.

    1997-01-01

    The Paper notes the importance of energy consumption in agglomerations (65-70% in the economies in transition) and of related emissions. It assesses the technical and cost-effective potential for a 40% and more decrease in urban energy intensities and SO 2 /NO x emissions by 2020, resulting from a systematic approach to urban as well as energy planning. Compared to approaches worldwide, urban energy renewal in the economies in transition appears, as its beginning, characterized by a traditional focus on existing technological supply sub-systems such as district heating and co-generation. The obstacles to a more systematic approach, including demand side management, are slow progress in urban and energy reforms and a lack of acquaintance with modern planning tools. International cooperation is incommensurate with the long-term challenge of s ustainable urban development . (author)

  6. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  7. Urban transport energy consumption: Belgrade case study

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir M.

    2015-01-01

    Full Text Available More than half of the global population now lives in towns and cities. At the same time, transport has become the highest single energy-consuming human activity. Hence, one of the major topics today is the reduction of urban transport demand and of energy consumption in cities. In this article we focused on the whole package of instruments that can reduce energy consumption and transport demand in Belgrade, a city that is currently at a major crossroad. Belgrade can prevent a dramatic increase in energy consumption and CO2 emissions (and mitigate the negative local environmental effects of traffic congestion, traffic accidents and air pollution, only if it: 1 implements a more decisive strategy to limit private vehicles use while its level of car passenger km (PKT is still relatively low; 2 does not try to solve its transport problems only by trying to build urban road infrastructure (bridges and ring roads; and 3 if it continues to provide priority movement for buses (a dominant form of public transport, while 4 at the same time developing urban rail systems (metro or LRT with exclusive tracks, immune to the traffic congestion on urban streets. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  8. Urban Wind Energy - State of the Art 2009

    DEFF Research Database (Denmark)

    Beller, Christina

    Wind energy in urban areas is a new area and a rather blank page concerning design criteria, aesthetics, concepts, minimizing costs etc. Even though the potential energy in the flow is much higher on the country side or off-shore, the erection of wind turbines in urban areas is carried out and also...

  9. Analysing urban planning implications from an electric vehicles scenario for urban structure-, transport- and energy-systems

    Energy Technology Data Exchange (ETDEWEB)

    Rid, Wolfgang [Stuttgart Univ. (Germany). Lehrstuhl Stadtplanung und Entwerfen; Fachhochschule Erfurt (Germany). Fachgebiet Stadt- und Regionaloekonomie; Pesch, Franz; Wewer, Max; Sperle, Tilman [Stuttgart Univ. (Germany). Lehrstuhl Stadtplanung und Entwerfen

    2013-06-01

    Depending on scenarios of actual electric vehicles on the road, ''electric mobility'' will heavily affect urban planning and infrastructure. We analyze these effects by developing an ''urban typology for electro-mobility''. By doing so, we seek to demonstrate that both requirements from electric vehicle scenarios (infrastructure, on-site provision of renewable energy etc.) and potential benefits (noise-reduction, NOx-reduction, modal-split etc.) are dependent on the urban context. The typology was developed according to preliminary studies' results recommending to use the GFZ (Gross Floor Area) and residential density to describe different types of urban structure, but additionally makes use of the proportion of public space and number of resident families (per ha net residential area) to extract five different ''urban types for electro-mobility''. Electro-mobility will have a significant climate effect only if 'green' electric power production is able to provide the additional amount of renewable energy needed. On-site power plants must be further developed to reduce externalities from large scale power plants providing C02-free energy (e.g. externalities from offshore wind energy plants). The potential to produce renewable energy from on-site power plants is dependent on the type of the urban context: Advanced ''plus-energy-concepts'' for example, today, are restricted to building scales of low-density residential zones, whereas in inner city zones, buildings have to provide energy for far more people per floorspace or for cooling purposes, as well. On-site renewable energy plants should be placed in urban settings, where they can work most efficiently and where they can be best integrated into the urban context given, hence, electro-mobility needs to be viewed from an urban perspective. Many other projects, so far, have investigated technical solutions to improve

  10. Urban and energy planning in Santiago de Compostela : Final Report

    NARCIS (Netherlands)

    Fernandez Maldonado, A.M.

    2015-01-01

    The purpose of Deliverable 4.2 is to give an overview of urban energy planning in the six PLEEC partner cities. The six reports illustrate how cities deal with different challenges of the urban energy transformation from a structural perspective including issues of urban governance and spatial

  11. URBAN EFFICIENT ENERGY EVALUATION IN HIGH RESOLUTION URBAN AREAS BY USING ADAPTED WRF-UCM AND MICROSYS CFD MODELS

    Science.gov (United States)

    San Jose, R.; Perez, J. L.; Gonzalez, R. M.

    2009-12-01

    Urban metabolism modeling has advanced substantially during the last years due to the increased detail in mesoscale urban parameterization in meteorological mesoscale models and CFD numerical tools. Recently the implementation of the “urban canopy model” (UCM) into the WRF mesoscale meteorological model has produced a substantial advance on the understanding of the urban atmospheric heat flux exchanges in the urban canopy. The need to optimize the use of heat energy in urban environment has produced a substantial increase in the detailed investigation of the urban heat flux exchanges. In this contribution we will show the performance of using a tool called MICROSYS (MICRO scale CFD modelling SYStem) which is an adaptation of the classical urban canopy model but on a high resolution environment by using a classical CFD approach. The energy balance in the urban system can be determined in a micrometeorologicl sense by considering the energy flows in and out of a control volume. For such a control volume reaching from ground to a certain height above buildings, the energy balance equation includes the net radiation, the anthropogenic heat flux, the turbulent sensible heat flux, the turbulent latent heat flux, the net storage change within the control volume, the net advected flux and other sources and sinks. We have applied the MICROSYS model to an area of 5 km x 5 km with 200 m spatial resolution by using the WRF-UCM (adapted and the MICROSYS CFD model. The anthropogenic heat flux has been estimated by using the Flanner M.G. (2009) database and detailed GIS information (50 m resolution) of Madrid city. The Storage energy has been estimated by calculating the energy balance according to the UCM procedure and implementing it into the MICROSYS tool. Results show that MICROSYS can be used as an energy efficient tool to estimate the energy balance of different urban areas and buildings.

  12. Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2015-01-01

    Highlights: • Urban energy consumption was assessed from three different perspectives. • A new concept called controlled energy was developed from network analysis. • Embodied energy and controlled energy consumption of Beijing were compared. • The integration of all three perspectives will elucidate sustainable energy use. - Abstract: Energy consumption has always been a central issue for sustainable urban assessment and planning. Different forms of energy analysis can provide various insights for energy policy making. This paper brought together three approaches for energy consumption accounting, i.e., energy flow analysis (EFA), input–output analysis (IOA) and ecological network analysis (ENA), and compared their different perspectives and the policy implications for urban energy use. Beijing was used to exemplify the different energy analysis processes, and the 42 economic sectors of the city were aggregated into seven components. It was determined that EFA quantifies both the primary and final energy consumption of the urban components by tracking the different types of fuel used by the urban economy. IOA accounts for the embodied energy consumption (direct and indirect) used to produce goods and services in the city, whereas the control analysis of ENA quantifies the specific embodied energy that is regulated by the activities within the city’s boundary. The network control analysis can also be applied to determining which economic sectors drive the energy consumption and to what extent these sectors are dependent on each other for energy. So-called “controlled energy” is a new concept that adds to the analysis of urban energy consumption, indicating the adjustable energy consumed by sectors. The integration of insights from all three accounting perspectives further our understanding of sustainable energy use in cities

  13. Urban energy planning in Eskilstuna

    DEFF Research Database (Denmark)

    Groth, Niels Boje; Große, Juliane; Fertner, Christian

    as a stakeholder of energy initiatives towards the general public. The efficiency of the first is very high, due to an omnipresence of ‘sustainability thinking’. The total effect of the latter is, however, much larger, due to the size of the arena. Principles of urban development are generally acknowledged...... in transport remains the key challenge. At municipal level the consumption of electricity is of special concern. Only about 25% of electricity it is possible to produce by local combined power and district heating plants. Some small additional power may be provided locally by e.g. solar cells...... as an important instrument for sustainability. Urban densification and urban connectivity to transport routes facilitated by public transport are the two main principles. Policies of sustainability are of ‘second-order’ as compared to the economic driven changes of the urban system. A prime ‘first...

  14. Urban Wind Energy

    DEFF Research Database (Denmark)

    Beller, Christina

    important for the implementation of wind energy conversion systems are the macro and micro wind climate, the siting within a micro wind climate and the choice of a wind turbine model most appropriate for the selected site. In the frame of this work, all these important elements are analyzed and a row......New trends e.g. in architecture and urban planning are to reduce energy needs. Several technologies are employed to achieve this, and one of the technologies, not new as such, is wind energy. Wind turbines are installed in cities, both by companies and private persons on both old and new buildings....... However, an overview of the energy content of the wind in cities and how consequently turbines shall be designed for such wind climates is lacking. The objective of the present work is to deliver an objective and fundamental overview of the social, practical and physical conditions relevant...

  15. The Impact of Urbanization on Energy Intensity in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mounir Belloumi

    2016-04-01

    Full Text Available This paper investigates the long-term and causal relationship between energy intensity, real GDP per capita, urbanization and industrialization in Saudi Arabia over the period 1971–2012 using the breakpoint unit root tests developed by Perron (1989 and the autoregressive distributed lag (ARDL model bounds testing to cointegration proposed by Pesaran et al. (2001 and employing a modified version of the Granger causality test proposed by Toda and Yamamoto (1995. Additionally, to test the robustness of the results, the fully modified ordinary least squares (OLS regression, the dynamic OLS regression, and the Hansen test are used. Our results show that the variables are cointegrated when energy intensity is the dependent variable. It is also found that urbanization positively affects energy intensity in both the short term and the long term. Causality tests indicate that urbanization causes economic output that causes energy intensity in the long term. Our results do not support the urban compaction hypothesis where urban cities benefit from basic public services and economies of scale for public infrastructure. Therefore, measures that slow down the rapid urbanization process should be taken to reduce energy intensity in Saudi Arabia. In addition, reducing energy inefficiency in energy consumption should be a strategy to attain sustainable development in the near future in Saudi Arabia.

  16. Urban form and energy use for transport. A Nordic experience

    Energy Technology Data Exchange (ETDEWEB)

    Naess, P

    1995-02-10

    The main research problem addressed in this thesis is the possible influence of several urban form variables on the amount of transportation, on the modal split between different means of transport, and on energy use for transportation. This problem is elucidated through five empirical investigations covering different geographic levels in a Nordic context, from individual employees and households to commuting regions. A main feature of the study is the combination of socioeconomic and urban form variables in empirical investigations, employing techniques of multivariate analysis. The investigations of residential areas and job sites have been based on travel surveys, while the investigations where the units of analysis are towns or regions have been based on fuel sales. The socioeconomic data have been collected from official statistics and from questionnaires. It is found that urban form variables exert important influences on transportation energy use. Urban density affects energy use for transportation. A central location of residences as well as workplaces is favourable with respect to energy conservation on an intra-urban scale, but not in a wider geographical context, where decentralization into several dense, relatively self-contained local communities distributed over the region is the most energy-saving pattern of regional development. Urban form characteristics favourable for minimizing transport energy requirements also seem favourable for energy conservation in buildings. 160 refs., 39 figs., 46 tabs.

  17. Urban climate and energy demand interaction in Northern Eurasia

    Science.gov (United States)

    Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.

    2017-11-01

    The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.

  18. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of

  19. Urban Systems and Energy Consumptions: A Critical Approach

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available City transformations are also due to the development of new energy sources, which have influenced economy and lifestyles, as well as the physical and functional organization of urban systems. Cities are the key place where it is need to act for the achievement of strategic environmental objectives, such as reducing greenhouse gas emissions and energy saving. The hard resolution of these challenges depends on several factors: their multidimensional nature, the change of the economic and settlement development model, and also the complexity of the relationships between the elements that constitute the urban systems and that affect energy consumption. According to this awareness the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R & C Axis II, from 2012 to 2015 has been developed: it is aimed at supporting local authorities in the development of strategies for the reduction of energy consumption through actions designed to change behavior (in terms of use and energy consumption and to improve the energy efficiency of equipment and infrastructure. With the goal of describing some of the results of the methodological phase of this project, this paper proposes a review of the major studies on the issue of energy consumption at the urban scale in the first section; in the second section the outcomes of the first phase of the development of the comprehension/interpretive model related to the identification of the set of physical/environmental variables at urban scale, that most affect the energy consumption, are described; the third makes a critical review of the reference scientific literature, characterised by a too sectoral approach, compared to the complexity of the topic.

  20. Reducing urban heat island effects to improve urban comfort and balance energy consumption in Bucharest (Romania)

    Science.gov (United States)

    Constantinescu, Dan; Ochinciuc, Cristina Victoria; Cheval, Sorin; Comşa, Ionuţ; Sîrodoev, Igor; Andone, Radu; Caracaş, Gabriela; Crăciun, Cerasella; Dumitrescu, Alexandru; Georgescu, Mihaela; Ianoş, Ioan; Merciu, Cristina; Moraru, Dan; Opriş, Ana; Paraschiv, Mirela; Raeţchi, Sonia; Saghin, Irina; Schvab, Andrei; Tătui-Văidianu, Nataşa

    2017-04-01

    In the recent decades, extreme temperature events and derived hazards are frequent and trigger noteworthy impacts in Romania, especially over the large urban areas. The cities produce significant disturbances of many elements of the regional climate, and generates adverse effects such as Urban Heat Islands (UHI). This presentation condenses the outputs of an ongoing research project (REDBHI) developed through (2013-2017) focused on developing a methodology for monitoring and forecasting indoor climate and energy challenges related to the intensity of UHI of Bucharest (Romania), based on relevant urban climate zones (UCZs). Multi-criteria correlations between the UHI and architectural, urban and landscape variables were determined, and the vulnerability of buildings expressed in the form of transfer function between indoor micro-climate and outdoor urban environment. The vulnerability of civil buildings was determined in relation with the potential for amplifying the thermal hazards intensity through the anthropogenic influence. The project REDBHI aims at developing innovative and original products, with direct applicability, which can be used in any urban settlement and have market potential with regards to energy design and consulting. The concrete innovative outcomes consist of a) localization of the Bucharest UCZs according to the UHI intensity, identifying reference buildings and sub-zones according to urban anthropic factors and landscape pattern; b) typology of representative buildings with regards to energy consumption and CO2 emitted as a result of building exploitation; c) 3D modelling of the reference buildings and of the thermal/energy reaction to severe climatic conditions d) empirical validation of the dynamic thermal/energy analysis; d) development of an pilot virtual studio capable to simulate climate alerts, analyse scenarios and suggest measures to mitigate the UHI effects, and disseminate the outcomes for educational purposes; e) compendium of

  1. Urban food-energy-water nexus: a case study of Beijing

    Science.gov (United States)

    Wu, Z.; Shao, L.

    2017-12-01

    The interactions between the food, energy and water sectors are of great importance to urban sustainable development. This work presents a framework to analyze food-energy-water (FEW) nexus of a city. The method of multi-scale input-output analysis is applied to calculate consumption-based energy and water use that is driven by urban final demand. It is also capable of accounting virtual energy and water flows that is embodied in trade. Some performance indicators are accordingly devised for a comprehensive understanding of the urban FEW nexus. A case study is carried out for the Beijing city. The embodied energy and water use of foods, embodied water of energy industry and embodied energy of water industry are analyzed. As a key node of economic network, Beijing exchanges a lot of materials and products with external economic systems, especially other Chinese provinces, which involves massive embodied energy and water flows. As a result, Beijing relies heavily on outsourcing energy and water to meet local people's consumption. It is revealed that besides the apparent supply-demand linkages, the underlying interconnections among food, water and energy sectors are critical to create sustainable urban areas.

  2. Multicriteria Spatial Decision Support Systems for Future Urban Energy Retrofitting Scenarios

    Directory of Open Access Journals (Sweden)

    Patrizia Lombardi

    2017-07-01

    Full Text Available Nowadays, there is an increasing concern about sustainable urban energy development taking into account national priorities of each city. Many cities have started to define future strategies and plans to reduce energy consumption and greenhouse gas emissions. Urban energy scenarios involve the consideration of a wide range of conflicting criteria, both socio-economic and environmental ones. Moreover, decision-makers (DMs require proper tools that can support their choices in a context of multiple stakeholders and a long-term perspective. In this context, Multicriteria Spatial Decision Support Systems (MC-SDSS are often used in order to define and analyze urban scenarios since they support the comparison of different solutions, based on a combination of multiple factors. The main problem, in relation to urban energy retrofitting scenarios, is the lack of appropriate knowledge and evaluation criteria. The latter are crucial for delivering and assessing urban energy scenarios through a MC-SDSS tool. The main goal of this paper is to analyze and test two different methods for the definition and ranking of the evaluation criteria. More specifically, the paper presents an on-going research study related to the development of a MC-SDSS tool able to identify and evaluate alternative energy urban scenarios in a long-term period perspective. This study refers to two Smart City and Communities research projects, namely: DIMMER (District Information Modeling and Management for Energy Reduction and EEB (Zero Energy Buildings in Smart Urban Districts.

  3. Do urbanization and industrialization affect energy intensity in developing countries?

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2013-01-01

    Against a backdrop of concerns about climate change, peak oil, and energy security issues, reducing energy intensity is often advocated as a way to at least partially mitigate these impacts. This study uses recently developed heterogeneous panel regression techniques like mean group estimators and common correlated effects estimators to model the impact that income, urbanization and industrialization has on energy intensity for a panel of 76 developing countries. In the long-run, a 1% increase in income reduces energy intensity by − 0.45% to − 0.35%. Long-run industrialization elasticities are in the range 0.07 to 0.12. The impact of urbanization on energy intensity is mixed. In specifications where the estimated coefficient on urbanization is statistically significant, it is slightly larger than unity. The implications of these results for energy policy are discussed. - Highlights: ► The impact of urbanization and industrialization on energy intensity is modeled. ► Use recently developed heterogeneous panel regression techniques ► The model is tested on a panel of developing countries. ► Income has a negative impact on energy intensity. ► Industrialization has a positive impact on energy intensity

  4. Energy and fuel efficient parallel mild hybrids for urban roads

    International Nuclear Information System (INIS)

    Babu, Ajay; Ashok, S.

    2016-01-01

    Highlights: • Energy and fuel savings depend on battery charge variations and the vehicle speed parameters. • Indian urban conditions provide lot of scope for energy and fuel savings in mild hybrids. • Energy saving strategy has lower payback periods than the fuel saving one in mild hybrids. • Sensitivity to parameter variations is the least for energy saving strategy in a mild hybrid. - Abstract: Fuel economy improvements and battery energy savings can promote the adoption of parallel mild hybrids for urban driving conditions. The aim of this study is to establish these benefits through two operating modes: an energy saving mode and a fuel saving mode. The performances of a typical parallel mild hybrid using these modes were analysed over urban driving cycles, in the US, Europe, and India, with a particular focus on the Indian urban conditions. The energy pack available from the proposed energy-saving operating mode, in addition to the energy already available from the conventional mode, was observed to be the highest for the representative urban driving cycle of the US. The extra energy pack available was found to be approximately 21.9 times that available from the conventional mode. By employing the proposed fuel saving operating mode, the fuel economy improvement achievable in New York City was observed to be approximately 22.69% of the fuel economy with the conventional strategy. The energy saving strategy was found to possess the lowest payback periods and highest immunity to variations in various cost parameters.

  5. Generalized Scaling of Urban Heat Island Effect and Its Applications for Energy Consumption and Renewable Energy

    Directory of Open Access Journals (Sweden)

    T.-W. Lee

    2014-01-01

    Full Text Available In previous work from this laboratory, it has been found that the urban heat island intensity (UHI can be scaled with the urban length scale and the wind speed, through the time-dependent energy balance. The heating of the urban surfaces during the daytime sets the initial temperature, and this overheating is dissipated during the night-time through mean convection motion over the urban surface. This may appear to be in contrast to the classical work by Oke (1973. However, in this work, we show that if the population density is used in converting the population data into urbanized area, then a good agreement with the current theory is found. An additional parameter is the “urban flow parameter,” which depends on the urban building characteristics and affects the horizontal convection of heat due to wind. This scaling can be used to estimate the UHI intensity in any cities and therefore predict the required energy consumption during summer months. In addition, all urbanized surfaces are expected to exhibit this scaling, so that increase in the surface temperature in large energy-consumption or energy-producing facilities (e.g., solar electric or thermal power plants can be estimated.

  6. Optimal energy management of urban rail systems: Key performance indicators

    International Nuclear Information System (INIS)

    González-Gil, A.; Palacin, R.; Batty, P.

    2015-01-01

    Highlights: • An overall picture of urban rail energy use is provided. • Performance indicators are developed for urban rail system energy optimisation. • A multi-level methodology for assessing energy efficiency measures is presented. - Abstract: Urban rail systems are facing increasing pressure to minimise their energy consumption and thusly reduce their operational costs and environmental impact. However, given the complexity of such systems, this can only be effectively achieved through a holistic approach which considers the numerous interdependences between subsystems (i.e. vehicles, operations and infrastructure). Such an approach requires a comprehensive set of energy consumption-related Key Performance Indicators (KEPIs) that enable: a multilevel analysis of the actual energy performance of the system; an assessment of potential energy saving strategies; and the monitoring of the results of implemented measures. This paper proposes an original, complete list of KEPIs developed through a scientific approach validated by different stakeholders. It consists of a hierarchical list of 22 indicators divided into two levels: 10 key performance indicators, to ascertain the performance of the whole system and complete subsystems; and 12 performance indicators, to evaluate the performance of single units within subsystems, for example, a single rail vehicle or station. Additionally, the paper gives a brief insight into urban rail energy usage by providing an adequate context in which to understand the proposed KEPIs, together with a methodology describing their application when optimising the energy consumption of urban rail systems

  7. Energy prices and the urban poor in India: Some policy imperatives

    International Nuclear Information System (INIS)

    Bhatia, R.

    1989-01-01

    The objectives of this paper are: to study the pattern of domestic energy consumption of poor people in selected urban centers in India; to analyse the role of prices in determining the cost of providing energy for lighting and cooking in these urban areas; and to suggest policy alternatives which can reduce the cost meeting basic energy needs of the urban poor. Refs, 10 tabs

  8. Urban energy generation and the role of cities

    DEFF Research Database (Denmark)

    Groth, Niels Boje; Fertner, Christian; Große, Juliane

    2016-01-01

    Although a major part of energy consumption happens in cities, contemporary energy generation is less obviously connected to the urban structure. Energy based on fossil fuels and consumed in transportation is produced at global scale; energy for electricity is usually distributed through a national...... or continental grid; energy for heating, if related to district heating systems or the use of local/regional resources for its generation (e.g. biomass, waste), has a more local or at least regional character. In the latter case, electricity might be a by-product of combined-heat-power plants, but still feeding...... on energy generation and distribution. However, contemporary focus on sustainable and efficient use of resources and energy at local level, mainstreaming of renewable energy production and ideas of urban energy harvesting put energy generation again on the local agenda. The role of cities can be twofold: (1...

  9. Energy efficiency in urban management: Russian and world experience

    Science.gov (United States)

    Pryadko, Igor

    2017-10-01

    The article discusses the role of energetics in creating a comfortable and safe environment of modern megacities, and the problem is considered in the socio-economic aspect. The object is the energy security of the city, and the subject is the influence of urban society on the formation of energy security. In particular, the problems are raised: ecological problems of urban energy supply, the condition of surface layer of the atmosphere near electric power lines. The author assesses the actions, implemented by the urban authorities in Mytischi, in the southwestern areas of New Moscow. The author assesses these sample areas on the basis of Ch. Landry’s concept of self-training, designated for municipal authorities and urban communities, and offers several successfully implemented self-study cases and in the light of modern methods of ensuring energy security. The forecasts of creation of energy-safe space, made by modern sociologist-urbanist Leo Hollis, are taken into account. The author also considers some of the economic aspects of biosphere safety. In particular, he insists that biosphere safety, convenience, and comfort have developed into competitive advantages in the housing market.

  10. Energy in urban and regional planning. ; Energia yhdyskuntasuunnittelussa. Rohkeita ratkaisuja kestaevaempaeaen tulevaisuuteen

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, A.-M.; Nuorkivi, A. (eds.)

    2013-03-01

    Urban and regional planner is the first in the row to choose whether any renewable energy system, comprising production, storing and distribution, will be economic and environmentally sound in the subject planning area during the years to come. In order make right choices, understanding of the links prevailing between urban and energy planning as well as co-planning with energy experts is essential. So far there has not been systematic training to develop these competencies among urban and regional planners. In the UP-RES project (Urban Planners with Renewable Energy Skills) the project partners organized several pilot trainings in Germany, Hungary, Spain and the United Kingdom during 2011-2012. The objective of the pilots was to train planners understand the basics of renewable energy and energy related emissions. Training of urban and regional planners to understand energy issues as well as supporting co-planning between energy and urban planning experts have appeared to be productive ways towards more sustainable communities. This publication has been an essential part of the Finnish pilot training. The learning project case reports in this publication have been written by the training participants as a completion of their course. The cases were made in groups and the topics were chosen by the groups themselves. All projects focused on utilizing renewable energies and promoting energy efficiency in urban and regional planning. This publication consists of five reports: Inclusion of energy on various hierarchical levels of planning: major pain spots, gate keepers and points of impact. Comparison of measuring tools for renewable energy and energy efficiency. Inclusion of renewable energy systems and energy efficiency in regional planning cases in Finnish cities of Oulu, Espoo, Jyvaskyla and Kuopio. Metamorphosis of Talma village to a sustainable suburban area. Measures to improve energy efficiency of spatial plans. Based on the project reports, energy

  11. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  12. Renewable Energy in Urban Areas: Worldwide Research Trends

    Directory of Open Access Journals (Sweden)

    Miguel-Angel Perea-Moreno

    2018-03-01

    Full Text Available This study aims to highlight the contribution made by different international institutions in the field of urban generation of renewable energy, as a key element to achieve sustainability. This has been possible through the use of the Scopus Elsevier database, and the application of bibliometric techniques through which the articles content published from 1977 to 2017 has been analysed. The results shown by Scopus (e.g., journal articles and conferences proceedings have been taken into account for further analysis by using the following search pattern (TITLE-ABS-KEY ({Renewable energy} AND ({urban} OR ({cit*}. In order to carry out this study, key features of the publications have been taken into consideration, such as type of document, language, thematic area, type of publication, and keywords. As far as keywords are concerned, renewable energy, sustainability, sustainable development, urban areas, city, and energy efficiency, have been the most frequently used. The results found have been broken down both geographically and by institution, showing that China, the United States, the United Kingdom, Italy, Germany and India are the main research countries and Chinese Academy of Sciences, Ministry of Education China and Tsinghua University the major contributing institutes. With regard to the categories, Energy, Environmental Sciences, and Engineering are positioned as the most active categories. The scientific community agrees that the study of the renewable energy generation in cities is of vital importance to achieve more sustainable cities, and for the welfare of a growing urban population. Moreover, this is in line with the energy policies adopted by most of developed countries in order to mitigate climate change effects.

  13. London and beyond: Taking a closer look at urban energy policy

    International Nuclear Information System (INIS)

    Keirstead, James; Schulz, Niels B.

    2010-01-01

    This paper considers the field of urban energy policy, a neglected yet important topic. Cities account for approximately two-thirds of global primary energy consumption creating significant benefits and costs. As a result there has been growing interest in the contribution of cities to global energy policy issues such as climate change but a number of significant questions remain: e.g. how do energy policy processes differ between national and urban scales, and how can cities contribute most effectively to global policy goals? We present the results of interviews with key stakeholders in London to illustrate some unique features of the urban energy policy cycle. We then take a wider view, proposing a research agenda with three key goals: describing the global variety of urban energy consumption and policy; understanding the resulting diversity in responsibility, vulnerability and capacity; and developing shared procedures and solutions. Tackling these questions is vital if cities are to contribute fully to current energy policy efforts.

  14. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    Science.gov (United States)

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  15. Urban household energy consumption in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Pongsapich, Amara; Wongsekiarttirat, Wathana (Chulalongkorn Univ., Bangkok (Thailand). Social Research Inst.)

    1994-05-01

    This study was aimed at developing a better understanding of urban household energy consumption in Thailand through a series of in-depth household energy surveys. Households in urban areas used electricity, LPG, charcoal and fuelwood. Traditional biomass fuels such as husk and dung, as well as kerosene, were essentially not used in urban households. Nearly all households used electricity and most households used LPG. Some households used more than one fuel for cooking, particularly LPG and charcoal. There was a great difference in electricity used between the households in Bangkok and other urban areas. Most households in the study areas used LPG stove or burners for cooking. But charcoal stoves were also used by many households for specific culinary purposes. Electric rice-cookers are widely used for convenience. The study suggests that the number of households using charcoal stoves will decrease gradually and fuelwood use will disappear. Saturation rates for refrigerators and colour television sets were very high and air conditioners were common in Bangkok. Some users may be unaware of the benefits of LPG as a cooking fuel. To improve indoor air quality and cooking safety and reduce pressures on forests from commercial fuelwood use, measures to promote LPG should be undertaken. The government should also provide information about efficient appliances and electricity conservation. (Author)

  16. Poverty alleviation programmes in India: a social audit.

    Science.gov (United States)

    K Yesudian, C A

    2007-10-01

    The review highlights the poverty alleviation programmes of the government in the post-economic reform era to evaluate the contribution of these programmes towards reducing poverty in the country. The poverty alleviation programmes are classified into (i) self-employment programmes; (ii) wage employment programmes; (iii) food security programmes; (iv) social security programmes; and (v) urban poverty alleviation programmes. The parameter used for evaluation included utilization of allocated funds, change in poverty level, employment generation and number or proportion of beneficiaries. The paper attempts to go beyond the economic benefit of the programmes and analyzes the social impact of these programmes on the communities where the poor live, and concludes that too much of government involvement is actually an impediment. On the other hand, involvement of the community, especially the poor has led to better achievement of the goals of the programmes. Such endeavours not only reduced poverty but also empowered the poor to find their own solutions to their economic problems. There is a need for decentralization of the programmes by strengthening the panchayat raj institutions as poverty is not merely economic deprivation but also social marginalization that affects the poor most.

  17. The Power of Micro Urban Structures, Theory of EEPGC - the Micro Urban Energy Distribution Model as a Planning Tool for Sustainable City Development

    Directory of Open Access Journals (Sweden)

    Tkáč Štefan

    2015-11-01

    Full Text Available To achieve the smart growth and equitable development in the region, urban planners should consider also lateral energies represented by the energy urban models like further proposed EEPGC focused on energy distribution via connections among micro-urban structures, their onsite renewable resources and the perception of micro-urban structures as decentralized energy carriers based on pre industrialized era. These structures are still variously bound when part of greater patterns. After the industrial revolution the main traded goods became energy in its various forms. The EEPGC is focused on sustainable energy transportation distances between the villages and the city, described by the virtual “energy circles”. This more human scale urbanization, boost the economy in micro-urban areas, rising along with clean energy available in situ that surely gives a different perspective to human quality of life in contrast to overcrowded multicultural mega-urban structures facing generations of problems and struggling to survive as a whole.

  18. The Power of Micro Urban Structures, Theory of EEPGC - the Micro Urban Energy Distribution Model as a Planning Tool for Sustainable City Development

    Science.gov (United States)

    Tkáč, Štefan

    2015-11-01

    To achieve the smart growth and equitable development in the region, urban planners should consider also lateral energies represented by the energy urban models like further proposed EEPGC focused on energy distribution via connections among micro-urban structures, their onsite renewable resources and the perception of micro-urban structures as decentralized energy carriers based on pre industrialized era. These structures are still variously bound when part of greater patterns. After the industrial revolution the main traded goods became energy in its various forms. The EEPGC is focused on sustainable energy transportation distances between the villages and the city, described by the virtual "energy circles". This more human scale urbanization, boost the economy in micro-urban areas, rising along with clean energy available in situ that surely gives a different perspective to human quality of life in contrast to overcrowded multicultural mega-urban structures facing generations of problems and struggling to survive as a whole.

  19. Urban Consortium Energy Task Force - Year 21 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  20. Complex assessment of urban housing energy sustainability

    Science.gov (United States)

    Popova, Olga; Glebova, Julia; Karakozova, Irina

    2018-03-01

    The article presents the results of a complex experimental-analytical research of residential development energy parameters - survey of construction sites and determination of calculated energy parameters (resistance to heat transfer) considering their technical condition. The authors suggest a methodology for assessing residential development energy parameters on the basis of construction project's structural analysis with the use of advanced intelligent collection systems, processing (self-organizing maps - SOM) and data visualization (geo-informational systems - GIS). SOM clustering permitted to divide the housing stock (on the example of Arkhangelsk city) into groups with similar technical-operational and energy parameters. It is also possible to measure energy parameters of construction project of each cluster by comparing them with reference (normative) measures and also with each other. The authors propose mechanisms for increasing the area's energy stability level by implementing a set of reproduction activities for residential development of various groups. The analysis showed that modern multilevel and high-rise construction buildings have the least heat losses. At present, however, ow-rise wood buildings is the dominant styles of buildings of Arkhangelsk city. Data visualisation on the created heat map showed that such housing stock covers the largest urban area. The development strategies for depressed areas is in a high-rise building, which show the economic, social and environmental benefits of upward growth of the city. An urban regeneration programme for severely rundown urban housing estates is in a high-rise construction building, which show the economic, social and environmental benefits of upward growth of the city.

  1. Urban Greening as part ofDistrict Energy Services

    OpenAIRE

    MELIN, Sébastien

    2017-01-01

    Work carried out during this master’s thesis is about urban greening and its close integration with district energy systems. Urban greening is the fact to develop green infrastructures (parks, street trees, ...) instead of grey infrastructures (buildings, roads, ...) in cities. Despite that the actual economic value of green infrastructure is less appreciated at first glance and very difficult to valorize, urban greening has many undeniable advantages such as reducing pollution and heat islan...

  2. Residential energy consumption in urban China: A decomposition analysis

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Na; Ma, Chunbo

    2012-01-01

    Residential energy consumption (REC) is the second largest energy use category (10%) in China and urban residents account for 63% of the REC. Understanding the underlying drivers of variations of urban REC thus helps to identify challenges and opportunities and provide advices for future policy measures. This paper applies the LMDI method to a decomposition of China's urban REC during the period of 1998–2007 at disaggregated product/activity level using data collected from a wide range of sources. Our results have shown an extensive structure change towards a more energy-intensive household consumption structure as well as an intensive structure change towards high-quality and cleaner energy such as electricity, oil, and natural gas, which reflects a changing lifestyle and consumption mode in pursuit of a higher level of comfort, convenience and environmental protection. We have also found that China's price reforms in the energy sector have contributed to a reduction of REC while scale factors including increased urban population and income levels have played a key role in the rapid growth of REC. We suggest that further deregulation in energy prices and regulatory as well as voluntary energy efficiency and conservation policies in the residential sector should be promoted. - Highlights: ► We examine china's residential energy consumption (REC) at detailed product level. ► Results show significant extensive and intensive structure changed. ► Price deregulation in the energy sector has contributed a reduction of REC. ► Growth of population and income played a key role in REC rapid growth. ► We provide policy suggestions to promote REC saving.

  3. Sustainable urban energy planning: A strategic approach to meeting climate and energy goals

    Energy Technology Data Exchange (ETDEWEB)

    Dobriansky, Larisa

    2010-09-15

    Meeting our 21st century challenges will require sustainable energy planning by our cities, where over half of the population resides. This already has become evident in the State of California, which has set rigorous greenhouse gas emission reduction targets and timeframes. To attain these targets will necessitate technically-integrated and cost-optimum solutions for innovative asset development and management within urban communities. Using California as a case study, this paper focuses on the crucial role for sustainable energy planning in creating the context and conditions for integrating and optimizing clean and efficient energy use with the urban built environment and infrastructure.

  4. Household pathway selection of energy consumption during urbanization process in China

    International Nuclear Information System (INIS)

    Sun, Chuanwang; Ouyang, Xiaoling; Cai, Hongbo; Luo, Zhichao; Li, Aijun

    2014-01-01

    Highlights: • Energy consumption patterns have long-term impacts on energy demand. • We explore determinants and structure of household energy consumption. • Tobit and OLS models are adopted to explore factors influencing energy expenditure. • Residential energy consumption in 2030 is evaluated using scenario analysis. - Abstract: China’s growing energy demand is driven by urbanization. Facing the problem of energy scarcity, residential energy consumption is a crucial area of energy conservation and emissions reduction. Household energy consumption patterns, which are characterized by effects of “path lock-in”, have long-term impacts on China’s energy demand. Based on the survey data, this paper explores factors that influence household energy consumption and analyzes the structure of residential energy consumption in China. Based on the results of analysis of variance (ANOVA), this paper applies the Tobit and Ordinary Least Squares (OLS) models to investigate impacts of variables of “the tiered pricing for household electricity (TPHE)”, “solar energy usage”, “automobile ownership”, “rural or urban areas”, “household income” and “city scale” on the residential energy expenditure. In addition, household energy consumption is estimated under different scenarios including improving the utilization of solar energy, rise in energy prices and the increase in automobile ownership. Residential energy consumption in 2030 is evaluated by simulating different models for urban development. Policy recommendations are suggested for China’s urban development strategy, new energy development and household pathway selection of energy consumption

  5. A brief history and the possible future of urban energy systems

    International Nuclear Information System (INIS)

    Rutter, Paul; Keirstead, James

    2012-01-01

    Modern cities depend on energy systems to deliver a range of services such as heating, cooling, lighting, mobility, communications, and so on. This article examines how these urban energy systems came to be, tracing the major transitions from the earliest settlements through to today's fossil-fuelled cities. The underlying theme is “increasing efficiency under constraints” with each transition marked by increasing energy efficiency in service provision, increasing per capita energy use, increasing complexity in the energy system's structure, with innovations driven by a strategic view of the overall system, and accompanied by wider changes in technology and society. In developed countries, the future of urban energy systems is likely to continue many of these trends, with increased efficiency being driven by the constraints of climate change and rising fuel prices. Both supply and demand side technologies are discussed as potential solutions to these issues, with different impacts on the urban environment and its citizens. However in developing countries, rising urban populations and access to basic energy services will drive the next transition. - Highlights: ► Urban energy system transitions in history are reviewed. ► Common features include increased per capita energy use, growing system complexity, and technological innovation. ► Future transitions will be shaped by the constraints of climate change, rising fuel prices, and urbanisation. ► Long-term sustainability depends on ability to innovate rapidly; opportunities exist on supply and demand sides.

  6. Dynamics of the Urban Water-Energy Nexuses of Mumbai and London

    Science.gov (United States)

    De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V.

    2016-12-01

    Both in developing as well as industrialized countries, cities are seeing their populations increase as more people concentrate in urban settlements. This burdens existing water and energy systems, which are also increasingly stressed on the supply side due to availability, and policy goals. In addition to the water and energy embedded in the electricity, fuels and water delivered to the city, the linkages in the urban environment itself are important and in magnitude they significantly exceed those upstream in the case of industrialized countries. However, little research has been published on urban water-energy linkages in developing countries. For cities in general, there is also a dearth of studies on the dynamics of these linkages with urban growth and socioeconomic development, and hence of the mutual influence of the urban water and energy systems. System dynamics modeling was used to understand and simulate these dynamics, building on modeling techniques from the water, energy, and urban systems literature. For each of the two characteristically different cities of Mumbai and London a model was constructed and calibrated with data from various public sources and personal interviews. The differences between the two cases are discussed by means of the models. Transition pathways to sustainable cities with respect to water use, energy use and greenhouse gas emissions are illustrated for each city. Furthermore, uncertainties and model sensitivity, and their implications, are presented. Finally, applicability of either or a hybrid of these models to other cities is investigated.

  7. Making cities energy efficient. Urban and regional planning adopting RES

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, A.-M.; David, T.; Dorfner, J. [and others

    2013-06-01

    This report summarises the outcomes of a 30 months duration continuing education project entitled 'Urban Planners with Renewable Energy Skills' (UP-RES). The project was carried out by a multi-disciplinary international consortium with the aim of informing planners and related professionals about energy-efficient and CO{sub 2} reducing technologies, practices and systems that can be developed across urban areas to serve whole communities. This report provides an overview of the key issues: The overall project approach to devising a training program based on preceding training needs analysis The key tasks involved in creating the training materials The marketing of the training as well as evaluation results Best practise examples of RES in urban planning. The UP-RES project has focused on several major target groups. These include those groups directly involved in taking forward renewable energy projects for whom the UP-RES training was principally focused; those who wish to deliver such training programmes; and policy makers who are ultimately responsible for the decisions that govern how widely such technologies will be implemented. Each of these groups has its own perspective concerning renewable energy technologies so the report is structured accordingly: For professionals involved in implementation: Among those professions that are likely to become involved with renewable energy initiatives in urban areas are urban planners, architects, energy suppliers, developers, building owners, and consulting engineers. For these professionals chapters 3.2 (summary of training need analysis) and 4 (best practise examples) are most likely to appeal. For training experts and organisations: Training programmes that address the relevance of renewable energies in urban areas require a comprehensive set of materials. As an example of how to organise training courses and lessons learnt, chapter 3 might be interesting. For the generally interested: Renewable energies are

  8. Energy and sustainable urban transport development in China: Challenges and solutions

    International Nuclear Information System (INIS)

    Zhang, Xilang; Hu, Xiaojun

    2002-01-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  9. Energy and sustainable urban transport development in China: Challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilang; Hu, Xiaojun

    2002-07-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  10. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China

    International Nuclear Information System (INIS)

    Zhang Chuanguo; Lin Yan

    2012-01-01

    As urbanization accelerates, urban areas play a leading role in energy consumption and CO 2 emissions in China. The existing research is extensively concerned with the relationships between urbanization, energy consumption and CO 2 emissions in recent years, but little attention has been paid to the regional differences. This paper is an analysis of the impact of urbanization on energy consumption and CO 2 emissions at the national and regional levels using the STIRPAT model and provincial panel data from 1995 to 2010 in China. The results showed that urbanization increases energy consumption and CO 2 emissions in China. The effects of urbanization on energy consumption vary across regions and decline continuously from the western region to the central and eastern regions. The impact of urbanization on CO 2 emissions in the central region is greater than that in the eastern region. The impact of urbanization on energy consumption is greater than the impact on CO 2 emissions in the eastern region. And some evidences support the argument of compact city theory. These results not only contribute to advancing the existing literature, but also merit particular attention from policy makers and urban planners in China. - Highlights: ► We analyze the impact of urbanization on energy use and CO 2 emissions in China. ► Urbanization increases energy consumption and CO 2 emissions in China. ► The effects of urbanization on energy use and CO 2 emissions vary across regions.

  11. Global scenarios of urban density and its impacts on building energy use through 2050

    Energy Technology Data Exchange (ETDEWEB)

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L.; Fragkias, Michail; Li, Xiaoma; Seto, Karen C.

    2017-01-09

    Urban areas play a significant role in planetary sustainability. While the scale of impending urbanization is well acknowledged, we have a limited understanding on how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use, specifically, for heating and cooling. We also assess associated cobenefits and trade-offs with human well-being. Globally, the energy use for heating and cooling by midcentury will reach anywhere from about 45 EJ/yr to 59 EJ/yr (respectively, increases of 5% to 40% over the 2010 estimate). Most of this variability is due to the uncertainty in future urban forms of rapidly growing cities in Asia and, particularly, in China. Compact urban development overall leads to less energy use in urban environments. Delaying the retrofit of the existing built environment leads to more savings in building energy use. Potential for savings in the energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared to the business-as-usual scenario in energy use for heating and cooling in South Asia and Sub-Saharan Africa but significantly contribute to energy savings in North America and Europe. A systemic effort that focuses on both urban form and energy-efficient technologies, but also accounts for potential co-benefits and trade-offs, can contribute to both local and global sustainability. Particularly in mega-urban regions, such efforts can improve local environments for billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas and associated greenhouse gas emissions.

  12. Synergies and trade-offs between energy-efficient urbanization and health

    Science.gov (United States)

    Ahmad, Sohail; Pachauri, Shonali; Creutzig, Felix

    2017-11-01

    Energy-efficient urbanization and public health pose major development challenges for India. While both issues are intensively studied, their interaction is not well understood. Here we explore the relationship between urban infrastructures, public health, and household-related emissions, identifying potential synergies and trade-offs of specific interventions by analyzing nationally representative household surveys from 2005 and 2012. Our analysis confirms previous characterizations of the environmental-health transition, but also points to an important role of energy use and urbanization as modifiers of this transition. We find that non-motorized transport may prove a sweet spot for development, as its use is associated with lower emissions and better public health in cities. Urbanization and improved access to basic services correlate with lower short-term morbidity (STM), such as fever, cough and diarrhea. Our analysis suggests that a 10% increase in urbanization from current levels and concurrent improvement in access to modern cooking and clean water could lower STM for 2.4 million people. This would be associated with a modest increase in electricity related emissions of 84 ktCO2e annually. Promoting energy-efficient mobility systems, for instance by a 10% increase in bicycling, could lower chronic conditions like diabetes and cardio-vascular diseases for 0.3 million people while also abating emissions. These findings provide empirical evidence to validate that energy-efficient and sustainable urbanization can address both public health and climate change challenges simultaneously.

  13. Energy performance of areas for urban development (Arkhangelsk is given as example)

    Science.gov (United States)

    Popova, Olga; Glebova, Yulia

    2017-01-01

    The present research provides an overview and analysis of the legal framework and the technology to increase energy save and energy efficiency. The challenges of the mentioned activities implementation in urban areas are revealed in the paper. A comparison was made of the principal methods of increasing energy efficiency that is based on payback period. The basic shortcomings of the methods used are found. The way of capital reproducing assets acquisition is proposed with consideration of the rate of wear and tear and upgrading of urban residential development. The present research aims at characterizing energy sustainability of urban areas for forming the information basis that identifies capital construction projects together within the urban area. A new concept - area energy sustainability is introduced in the study to use system-structural approach to energy saving and energy efficiency. Energy sustainability of the area as an integral indicator of the static characteristics of the territory is considered as a complex involving the following terms: energy security, energy intensity and energy efficiency dynamic indicators of all the components of the power system of the area. Dimensions and parameters of energy sustainability of the area are determined. Arkhangelsk is given as example.

  14. Spatial Variation and Distribution of Urban Energy Consumptions from Cities in China

    Directory of Open Access Journals (Sweden)

    Yanpeng Cai

    2010-12-01

    Full Text Available With support of GIS tools and Theil index, the spatial variance of urban energy consumption in China was discussed in this paper through the parallel comparison and quantitative analysis of the 30 provincial capital cities of mainland China in 2005, in terms of scale, efficiency and structure. The indicators associated with urban energy consumption show large spatial variance across regions, possibly due to diversities of geographic features, economic development levels and local energy source availability in China. In absolute terms, cities with the highest total energy consumption are mostly distributed in economic-developed regions as Beijing-Tianjin-Tangshan Area, Yangtze River Delta and Pearl River Delta of China, however, the per capita urban energy use is significantly higher in the Mid-and-Western regions. With regard to the energy mix, coal still plays the dominant role and cities in Mid-and-Western regions rely more on coal. In contrast, high quality energy carrier as electricity and oils are more used in southeast coastal zone and northern developed areas. The energy intensive cities are mainly located in the northwest, while the cities with higher efficiency are in southeast areas. The large spatial variance of urban energy consumption was also verified by the Theil indices. Considering the Chinese economy-zones of East, Middle and West, the within-group inequalities are the main factor contributing to overall difference, e.g., the Theil index for per capita energy consumption of within-group is 0.18, much higher than that of between group (0.07, and the same applies to other indicators. In light of the spatial variance of urban energy consumptions in China, therefore, regionalized and type-based management of urban energy systems is badly needed to effectively address the ongoing energy strategies and targets.

  15. The realities of Lagos urban development vision on livelihoods of the urban poor

    Directory of Open Access Journals (Sweden)

    Oluwafemi Ayodeji Olajide

    2018-04-01

    Full Text Available Similar to many other cities in sub-Saharan African countries, the struggle between urban development policies and the livelihoods of the urban poor is one of the urban development challenges facing Lagos. This paper examines the realities of the Lagos urban development policies and intiatives on the livelihoods of the urban poor. The state government embarked on series of what it calls sustainable urban transformation policies towards making Lagos ‘an African model megacity’ and a global economic and financial hub that is safe, secure, functional and productive, with a view to achieving poverty alleviation and sustainable development. This paper, through the lens of theoretical and analytical underpinnings of Sustainable Livelihoods Framework, however, argues that the actions of the state government contradict the whole essence of sustainable urban development and poverty alleviation, but reflect an agenda deliberately targeted to further impoverish the poor. While the Sustainable Livelihood was used as the theoretical and analytical framework, this paper essentially focuses on the Policies, Institutions and Processes component of the framework. This provides a unique entry point for understanding the implications of the Lagos urban development aspirations on the livelihoods of the urban poor. The research uses mixed methods research design with a broad range of data-collection methods, including household surveys, interviews, direct observation and photography, documentary review and policy document analysis. The study reveals that there is a disconnection between urban development policies and realities of the poor. The implementation of urban development projects and policies works against the urban poor and resulted in more hardship, through reduction in livelihood opportunities or complete loss of livelihoods. This study, therefore, suggests that one important element in reducing poverty in Lagos’ informal settlements is a policy

  16. Urbanization Process and Variation of Energy Budget of Land Surfaces

    Directory of Open Access Journals (Sweden)

    Ciro Gardi

    2007-06-01

    Full Text Available Urban areas are increasing at a rate much higher than human population growth in many part of the world; actually more than 73 towns in the world are larger than 1000 km2. The European Environmental Agency indicates an urban area average growth rate, over the last 20 years, of 20%. The urbanization process, and the consequent soil sealing, determines not only the losses of the ecological functions of the soil, but also a variation of the energy budget of land surfaces, that affect the microclimatic conditions (heat islands. The alteration of the energy budget are determined by the variations of albedo and roughness of surfaces, but especially by the net losses of evapotranspirating areas. In the present research we have assessed the variation of Parma territory energy budget, induced by the change in land use over the last 122 years. The urban area increase between 1881 and 2003 was 535%.

  17. Channelling urban modernity to sustainable pro-poor tourism development in Indonesia

    Science.gov (United States)

    Prasetyanti, R.

    2017-06-01

    Sustainable urban planning and development requires not only a fast-growing economic growth and modernity, but also social equity and environmental sustainability. Meanwhile, the global goals of sustainable development have fascinatingly set a promising urban development future by enhancing ecology based pro-poor policy program. Apparently, pro-poor development agenda has led to the notion of pro-poor tourism as part of urban development strategies on poverty alleviation. This research presents Jakarta Hidden Tour and Kampung Warna-warni as certain cases of pro-poor tourism in Indonesia. By the emergence of criticism on “pro-growth” paradigm, the critical analysis of this research focuses on the scenario of sustainable pro-poor tourism through eco-cultural based Kampung-Tour development. In accordance, debates and dilemma have been continuously arising as pros and cons regarding the ethical issues of poverty alleviation based Kampung-Tour development. Nevertheless, this paper tries to redefine Slum Kampung as potential; the writer wildly offers a concept of poverty alleviation by reinventing pro-poor tourism strategy; revitalizing slum site to eco-cultural based pro-poor tourism development as an embodiment of a sustainable urban development. By holding system thinking analysis as research method, sustainable pro-poor tourism highlights the urgency community based tourism and eco-tourism so that poverty alleviation based tourism can be tangibly perceived by the poor. In this sense, good local governance and public private partnership must be enhanced, it is due to, like any other development projects; sustainable pro-poor tourism needs a strong political commitment to alleviate urban poverty, as well as to pursue a better future of sustainable nation.

  18. Smartness and Urban Resilience. A Model of Energy Saving

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2015-10-01

    The results have shown that the possibility of identifying an "ideal" sustainable urban form, able to maximize energy efficiency, still remains theoretical, opening up the possibility that there are different consumption patterns due to the different physical, environmental and building characteristics of urban areas.

  19. The Effects of Domestic Energy Consumption on Urban Development Using System Dynamics

    Science.gov (United States)

    Saryazdi, M. D.; Homaei, N.; Arjmand, A.

    2018-05-01

    In developed countries, people have learned to follow efficient consumption patterns, while in developing countries, such as Iran, these patterns are not well executed. A large amount of energy is almost consumed in buildings and houses and though the consumption patterns varies in different societies, various energy policies are required to meet the consumption challenges. So far, several papers and more than ten case studies have worked on the relationship between domestic energy consumption and urban development, however these researches did not analyzed the impact of energy consumption on urban development. Therefore, this paper attempts to examine the interactions between the energy consumption and urban development by using system dynamics as the most widely used methods for complex problems. The proposed approach demonstrates the interactions using causal loop and flow diagrams and finally, suitable strategies will be proposed for urban development through simulations of different scenarios.

  20. Global scenarios of urban density and its impacts on building energy use through 2050.

    Science.gov (United States)

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L; Fragkias, Michail; Li, Xiaoma; Seto, Karen C

    2017-08-22

    Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.

  1. Female labour force integration and the alleviation of urban poverty: a case study of Kingston, Jamaica.

    Science.gov (United States)

    Holland, J

    1995-01-01

    The author posits that female labor force integration in Jamaica accomplishes little in alleviating poverty and making maximum use of human resources. Women are forced into employment in a labor market that limits their productivity. Women have greater needs to increase their economic activity due to price inflation and cuts in government spending. During the 1980s and early 1990s the country experienced stabilization and structural adjustment resulting in raised interest rates, reduced public sector employment, and deflated public expenditures. Urban population is particularly sensitive to monetary shifts due to dependency on social welfare benefits and lack of assets. Current strategies favor low wage creation in a supply-side export-oriented economy. These strategies were a by-product of import-substitution industrialization policies during the post-war period and greater control by multilateral financial institutions in Washington, D.C. The World Bank and US President Reagan's Caribbean Basin Initiative stressed export-oriented development. During the 1980s, Jamaican government failed to control fiscal policy, built up a huge external debt, and limited the ability of private businessmen to obtain money for investment in export-based production. Over the decade, uncompetitive production declined and light manufacturing increased. Although under 10% of new investment was in textile and apparel manufacturing, almost 50% of job creation occurred in this sector and 80% of all apparel workers were low-paid women. Devaluation occurred both in the exchange rate and in workers' job security, fringe benefits, union representation, and returns on skills. During 1977-89 women increased employment in the informal sector, which could not remain competitive under devaluation. Women's stratification in the labor market, high dependency burdens, and declining urban infrastructure create conditions of vulnerability for women in Jamaica.

  2. Capacity building for sustainable energy development and poverty alleviation in sub-saharan Africa - the contribution of AFREPREN

    Energy Technology Data Exchange (ETDEWEB)

    Karekezi, S.; Kithyoma, W. [AFREPREN/FWD, Nairobi (Kenya)

    2004-09-01

    African Energy Policy Research Network and Foundation for Woodstoves (AFREPREN /FWD) is an African initiative on energy, environment and sustainable development. AFREPREN/FWD brings together 97 African energy researchers and policy makers who have a long-term interest in energy research and the attendant policy-making process. AFREPREN/FWD has initiated policy research studies in 19 African countries, namely: Angola, Botswana, Burundi, Eritrea, Ethiopia, Kenya, Lesotho, Malawi, Mauritius, Mozambique, Rwanda, Seychelles, Somalia, South Africa, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. AFREPREN/FWD's ultimate goal is to promote the greater use of cleaner energy options such as renewables for poverty alleviation in Africa. The near-term objective of AFREPREN /FWD is to strengthen local research capacity and to harness it in the service of energy policy making and planning. Initiated in 1987, AFREPREN is a collective regional response to the widespread concern over the weak link between energy research and the formulation and implementation of energy policy in Africa. (orig.)

  3. URBAN FEATURES AND ENERGY CONSUMPTION AT LOCAL LEVEL

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2012-12-01

    Full Text Available There has been a growing interest in discovering the human effects on the environment and energy consumption in recent decades. It is estimated that the share of energy consumed in transportation and housing systems are around 20 and 30 percent of total energy consumption respectively. Furthermore, the residential greenhouse emissions depend on urban form and structure. This paper explores the effects of urban features on residential energy consumption at neighborhood level using data collected through household questionnaire (n=140. Two residential districts in metropolitan Shiraz, south of Iran, were selected as case study areas. Different features of two areas were compared including building density, typology, housing location, parcel size, floor area and construction materials. Ordinary linear regression was used to discover the impact of explanatory variables on energy consumption. It was found that some physical variables such as parcel size, setback and number of floors played significant roles in explaining the variances exist in energy use level. The results can be used by governmental agencies to modify land use policies and subdivision rules in hope of saving energy and achieving a sustainable community.

  4. Energy transition and urban ecological inequalities

    International Nuclear Information System (INIS)

    Hamman, Philippe; Christen, Guillaume

    2017-01-01

    This paper deals with social inequalities in the relationship to the environment, by looking at the capacity of actors to mobilize around renewable energy initiatives in the context of the energy transition. It is based on field surveys (qualitative and quantitative) on an urban scale, conducted between 2012 and 2015 in the metropolitan area of Strasbourg. We show that the emphasis on resident involvement masks the reality of rather prescriptive 'eco-innovations'; and that the differentiated relations of the inhabitants to the technical tools meant to materialize renewable energy reveal ecological inequalities that reinforce socio-economic division in the city

  5. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    Science.gov (United States)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  6. Framework for reports on urban energy planning in 6 case cities

    DEFF Research Database (Denmark)

    Fertner, Christian; Groth, Niels Boje; Große, Juliane

    a general model for energy efficiency and sustainable city planning. By connecting scientific excellence and innovative enterprises in the energy sector with ambitious and well-organized cities, the project aims to reduce energy use in Europe in the near future and will therefore be an important tool...... on the case study reports (D4.2). The wider target group are other PLEEC partners who are interested in WP4’s work as well as other professionals who would like to get inspiration how to conduct an analysis of energy issues in relation to spatial planning and urban form in medium-sized cities. Five main...... chapters are suggested to follow in all case study reports: • Overview of city (geography, socio-economic, history, …) • Historical urban development and spatial planning development • Evolution of national and local energy planning • Management of urban planning and energy today • Pilot projects / good...

  7. Modeling urban building energy use: A review of modeling approaches and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; Eom, Jiyong; Wang, Yu; Chen, Gang; Zhang, Xuesong

    2017-12-01

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-date review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.

  8. Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste to Energy-Environmental Sustainability in Urban Areas at Small Scale

    Directory of Open Access Journals (Sweden)

    Umberto Di Matteo

    2017-02-01

    Full Text Available Urban waste management is one of the most challenging issues in energy planning of medium and large cities. In addition to the traditional landfill method, many studies are investigating energy harvesting from waste, not as a panacea but as a foreseeable solution. Thermo-chemical conversion to biogas, or even bio-methane under certain conditions, could be an option to address this challenge. This study focuses on municipal solid waste conversion to biogas as a local energy supply for the cities. Three urban models and their subdivision into urban areas were identified along with a typical Organic Fraction of Municipal Solid Waste (OFMSW matrix for each urban area. Then, an energy analysis was carried out to provide an optimization map for an informed choice by urban policy-makers and stakeholders. The results highlighted how the urban context and its use could affect the opportunity to produce energy from waste or to convert it in fuel. So, in this case, sustainability means waste turning from a problem to a renewable resource.

  9. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  10. Energy Transition in the Nebular City: Connecting Transition Thinking, Metabolism Studies, and Urban Design

    Directory of Open Access Journals (Sweden)

    Griet Juwet

    2018-03-01

    Full Text Available Transforming urban infrastructures is an essential part of creating more sustainable urban regions. But rethinking these complex systems requires a better understanding of their spatial dimensions and their relation with urban morphology and spatial structure. This paper addresses that gap by examining different conceptualizations of technical infrastructure and space in science, technology and society studies (STS, transition thinking, urban metabolism studies, and urban political ecology, and draws connections with the spatial perspective of urban planning and design. It illustrates and tests these concepts through the case of energy transition in the Flemish region of Belgium. Transport and supply networks have played a crucial role in facilitating, structuring, and reproducing the region’s characteristic dispersed and energy-intensive urban landscape. Bringing different disciplinary perspectives together, the research broadens the conceptualization of the spatial dimension in transition thinking, and identifies useful concepts and design parameters for urban design to engage with the technical and socio-political complexity of transforming urban infrastructure. It reveals the energy transition as an inherently spatial project, and explores the spatially and socio-politically transformative potential of the transition towards a new energy system.

  11. China's energy demand and its characteristics in the industrialization and urbanization process

    International Nuclear Information System (INIS)

    Jiang Zhujun; Lin Boqiang

    2012-01-01

    China is currently in the process of industrialization and urbanization, which is the key stage of transition from a low-income country to a middle-income country and requires large amount of energy. The process will not end until 2020, so China's primary energy demand will keep high growth in the mid-term. Although each country is unique considering its particular history and background, all countries are sharing some common rules in energy demand for economic development. Based on the comparison with developed countries, here, we report some rules in the process of industrialization and urbanization as follows: (1) urbanization always goes along with industrialization; (2) the higher economic growth is, the higher energy demand is; (3) economic globalization makes it possible to shorten the time of industrialization, but the shorter the transition phase is, the faster energy demand grows; (4) the change of energy intensity presents as an “inverted U” curve, but whose shape can be changed for different energy policy. The above rules are very important for the Chinese government in framing its energy policy. - Highlights: ► China's energy demand will maintain high growth in mid-term. ► Urbanization always goes along with industrialization. ► Higher economic growth needs more energy. ► The energy intensity presents as an “inverted U” curve.

  12. Decoupling emissions of greenhouse gas, urbanization, energy and income: analysis from the economy of China.

    Science.gov (United States)

    Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang

    2018-05-08

    The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.

  13. Energy efficiency and urbanism: Guide for urbanism planning energetically efficiency; Eficiencia energetica y urbanismo: Guia del planeamiento urbanistico energeticamente eficiente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The present book summarizes the urbanism in the context of energy efficiency. the book has 4 chapters and 3 annexes: The energy in the context of substantiality, the soil planning, recommendations for the urbanism planning with substantiality criteria and small description URBE project.

  14. Energy transition or incremental change? Green policy agendas and the adaptability of the urban energy regime in Los Angeles

    International Nuclear Information System (INIS)

    Monstadt, Jochen; Wolff, Annika

    2015-01-01

    Drawing on recent research in urban policy studies and social studies of technology, this paper examines the capability of urban energy regimes in adapting to environmental policy pressures. Focusing on the case of the City of Los Angeles, we critically analyze the transformative capacity of the city's recent energy and climate policies and the innovation patterns of its urban infrastructure regime. This case study suggests that despite considerable success in switching from coal to renewable energies, the patterns of sociotechnical change in Los Angeles still tend to supplement and sustain the existing regime. Sociotechnical change in Los Angeles tends to unfold incrementally through adjustments within the established patterns of the existing regime. - Highlights: • Theory-guided case study on the transition of the urban energy regime in Los Angeles. • Evaluation of the transformative capacity of environmental policies. • Assessment of the adaptability and innovation patterns of urban infrastructure regimes. • The policy changes have sustained the existing regime and unfold incrementally

  15. Direct Energy Consumption Associated Emissions by Rural-to-Urban Migrants in Beijing.

    Science.gov (United States)

    Ru, Muye; Tao, Shu; Smith, Kirk; Shen, Guofeng; Shen, Huizhong; Huang, Ye; Chen, Han; Chen, Yilin; Chen, Xi; Liu, Junfeng; Li, Bengang; Wang, Xilong; He, Canfei

    2015-11-17

    Hundreds of millions of rural residents have migrated to cities in China in recent years. Different lifestyles and living conditions lead to substantial changes in their household energy. Here, we present the result of a survey on direct household energy use of low-skilled rural-to-urban migrants in Beijing. The migrants moved up the energy ladder immediately after arriving in the city by replacing biomass fuels with coal, electricity, and liquefied petroleum gas. After the original shift, pattern of household energy use by the migrants has not changed much over decades, likely due to the long-existing household registration system (Hukou). As a result, the mix of energy types used by the rural-to-urban migrants were different from those by long-term urban residents, although total quantities were similar. Shifting from biomass fuels to coal, the migrants emitted 2.4 times more non-neutral CO2 than rural residents and 14% more than urban residents. The migration also resulted in significant increase in emissions of SO2 and mercury but dramatic decreases in some incomplete combustion products including particulate matter. All these changes have significant implication on air quality, health, and climate considering the scale of urbanization in China.

  16. Urban energy planning in Tartu

    DEFF Research Database (Denmark)

    Große, Juliane; Groth, Niels Boje; Fertner, Christian

    The Estonian planning system allots the main responsibilities for planning activities to the local level, whereas the regional level (county) is rather weak. That implies a gap of cooperation on the regional level, leading to dispersed urban development in suburban municipalities and ongoing urban...... sprawl in the vicinity of Tartu. This development appears contrary to the concept of “low-density urbanised space” as formulated in the National Spatial Plan “Estonia 2030+” (NSP) as the central spatial development concept for Estonia and also to a compact and intensive city development as formulated...... in the Master Plan of Tartu. Since Tartu has no relevant big industries, the main employers are the municipality and the university, energy related challenges occur from transport and residential (district) heating. The modal split shows big differences between journeys within Tartu and journeys between Tartu...

  17. The Factors Influencing Transport Energy Consumption in Urban Areas: a Review

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available Transport energy consumption accounts for about one third of total energy consumption in EU. Despite significant advances in transport technology and fuel formulation, transport energy consumption has increased in most EU countries over the last three decades. This increase in consumption occurred as a result of factors such as higher car ownership, a growth in automobile use and an increase in vehicle distances traveled. As travel and land-use are a function of one another, it is often hypothesized that changing urban structure can result in changes in energy consumption. Understanding how different land use characteristics may influence travel behaviour and the corresponding energy consumption is crucial for planners and policy makers in order to develop strategic actions to shrink the environmental footprint of the urban transportation sector. The aim of this article is to review the current literature on the connections between land use, travel behavior and energy consumption. In particular, this paper seeks to identify the determinants of transport energy consumption in urban areas by reviewing evidence from empirical studies. To this aim, nine characteristics of land use are presented and their effects on both travel behaviour and energy use are discussed Our review shown that, in contrast to the focus on the effect of the built environment on travel, only few researchers have empirically investigated the linkage between the built environment and transportation energy use. The research described in this paper has been developed within the PON04a2_E Smart Energy Master project. It represents part of a much broader research project aimed at the development of an integrated model of urban energy efficiency.

  18. Urban warming and energy consumption in Tokyo metro area

    International Nuclear Information System (INIS)

    Saitoh, T.; Hisada, T.; Shimada, T.

    1992-01-01

    This paper reports the results of field observation and three-dimensional simulation of urban warming in Tokyo metropolitan area. The three-dimensional governing equations in an urban atmospheric boundary layer were formulated by virtue of vorticity-velocity vector potential method. Particular attention was focused on the representation of a buoyancy term in equation of motion in the vertical direction, thereby describing the crossover and stratification effects near the ground surface. The vorticity-velocity potential method is superior from the view point of numerical stability and suitable for the simulation of an urban heat island. The authors first made a survey on the energy consumption in Tokyo metropolitan area. Next, the three-dimensional simulations were carried out using these data. The simulation results were then compared with the data of field observation of the surface temperature by automobiles. Further future prediction of urban warming was performed when the energy consumption rate is increased five times as large as the present rate, which will correspond to the year 2030 if the present consumption rate were maintained until then

  19. Dilemmas of energy efficient urban development in three Nordic cities

    DEFF Research Database (Denmark)

    Große, Juliane; Fertner, Christian; Groth, Niels Boje

    Energy is high on the agenda of the European Union and in current urban development. In this study we focus on the role of urban planning in energy efficiency in 3 Northern European cities - Turku (FI), Eskilstuna (SE) and Tartu (EE). The case studies were developed in close collaboration between...... the authors and representatives of the cities. The research was carried out by field trips, interviews and analysis of local reports and planning documents. This work was done in the framework of the EU-FP7 project PLEEC (Planning for energy efficient cities), GA no. 314704, www.pleecproject.eu...

  20. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy

    International Nuclear Information System (INIS)

    González-Gil, Arturo; Palacin, Roberto; Batty, Paul

    2013-01-01

    Highlights: • Review of principal regenerative braking strategies and technologies for urban rail. • Different energy storage technologies are assessed for use in urban rail. • Optimising timetables is a preferential measure to improve energy efficiency. • Energy storage systems improve efficiency and reliability of urban rail systems. • Reversible substations allow for a complete recovery of braking energy. - Abstract: In a society characterised by increasing rates of urbanisation and growing concerns about environmental issues like climate change, urban rail transport plays a key role in contributing to sustainable development. However, in order to retain its inherent advantages in terms of energy consumption per transport capacity and to address the rising costs of energy, important energy efficiency measures have to be implemented. Given that numerous and frequent stops are a significant characteristic of urban rail, recuperation of braking energy offers a great potential to reduce energy consumption in urban rail systems. This paper presents a comprehensive overview of the currently available strategies and technologies for recovery and management of braking energy in urban rail, covering timetable optimisation, on-board and wayside Energy Storage Systems (ESSs) and reversible substations. For each measure, an assessment of their main advantages and disadvantages is provided alongside a list of the most relevant scientific studies and demonstration projects. This study concludes that optimising timetables is a preferential measure to increase the benefits of regenerative braking in any urban rail system. Likewise, it has been observed that ESSs are a viable solution to reuse regenerative energy with voltage stabilisation and energy saving purposes. Electrochemical Double Layer Capacitors has been identified as the most suitable technology for ESSs in general, although high specific power batteries such as Li-ion may become a practical option for on

  1. Energy in the urban environment. Proceedings of the 22. annual Illinois energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference addressed the energy and environmental challenges facing large metropolitan areas. The topics included a comparison of the environmental status of cities twenty years ago with the challenges facing today`s large cities, sustainable economic development, improving the energy and environmental infrastructure, and the changing urban transportation sector. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Household energy preferences for cooking in urban Ouagadougou, Burkina Faso

    International Nuclear Information System (INIS)

    Ouedraogo, Boukary

    2006-01-01

    An extensive survey on household expenditures in Ouagadougou, the capital of Burkina Faso, was used to analyze the factors determining urban household energy choices using a multinomial logit model. Wood-energy remains the preferred fuel of most urban households in the country; though rational, the choice is not sustainable as it portends a threat to the savanna woodlands and the economy. Many important policies have been adopted by public authorities to minimize household wood-energy consumption and to substitute it by alternative fuel. Despite the magnitude of all these policies, the depletion rate of the forest resource is increasing. A kind of inertia is thus observed for household preferences for cooking fuel. This model analyzes the sociological and economic variables of household energy preferences for cooking in Ouagadougou. The analyses show that the inertia of household cooking energy preferences are due to poverty factors such as low income, poor household access to electricity for primary and secondary energy, low house standard, household size, high frequency of cooking certain meals using woodfuel as cooking energy. The descriptive analyses show that the domestic demand for wood-energy is strongly related to household income. The firewood utilization rate decreases with increasing household income. In other words, this fuel appears as a 'transition good' for these households which aim for other sources of energy for cooking that are more adapted for urban consumption. This implies that a price subsidy policy for liquid petroleum gas (LPG) and its cook stoves could significantly decrease the utilization rate of wood-energy

  3. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    Science.gov (United States)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  4. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy

    Directory of Open Access Journals (Sweden)

    Maibritt Pedersen Zari

    2017-03-01

    Full Text Available This paper presents an ecosystem biomimicry methodology for urban design called ecosystem service analysis. Ecosystem services analysis can provide quantifiable goals for urban ecological regeneration that are determined by site specific ecology and climate of an urban area. This is important given the large negative environmental impact that most cities currently have on ecosystems. If cities can provide some of their own ecosystem services, pressure may be decreased on the surrounding ecosystems. This is crucial because healthier ecosystems enable humans to better adapt to the impacts that climate change is currently having on urban built environments and will continue to have in the future. A case study analyzing two ecosystem services (provision of energy and provision of water for an existing urban environment (Wellington, New Zealand is presented to demonstrate how the ecosystem services analysis concept can be applied to an existing urban context. The provision of energy in Wellington was found to be an example of an ecosystem service where humans could surpass the performance of pre-development ecosystem conditions. When analyzing the provision of water it was found that although total rainfall in the urban area is almost 200% higher than the water used in the city, if rainwater harvested from existing rooftops were to meet just the demands of domestic users, water use would need to be reduced by 20%. The paper concludes that although achieving ecological performance goals derived from ecosystem services analysis in urban areas is likely to be difficult, determining site and climate specific goals enable urban design professionals to know what a specific city should be aiming for if it is to move towards better sustainability outcomes.

  5. Macroeconomic Policies and their Impact on Poverty Alleviation in Pakistan

    OpenAIRE

    Rashid Amjad; A.R. Kemal

    1997-01-01

    The paper provides a consistent time-series of poverty estimates for the period 1963- 64 to 1992-93 for both the rural as well as the urban areas, examines the influence of macroeconomic policies on the poverty levels, analyses the impact of Structural Adjustment Programmes on the levels of poverty, and suggests a strategy for poverty alleviation in Pakistan. The paper explores in particular the influence on poverty of such factors as economic growth, agricultural growth, terms of trade for t...

  6. Impact of the urban heat island on residents’ energy consumption: a case study of Qingdao

    Science.gov (United States)

    Ding, Feng; Pang, Huaji; Guo, Wenhui

    2018-02-01

    This paper examines impact of urban heat island on residents’ energy consumption through comparative analyses of monthly air temperature data observed in Qingdao, Laoshan and Huangdao weather stations. The results show effect of urban heat island is close related with urbanization speed. Recently, effects of urban heat island of Laoshan and Huangdao exceed that of Qingdao, consistent with rapid urbanization in Laoshan and Huangdao. Enhanced effect of urban heat island induces surface air temperature to rise up, further increase electricity energy consumption for air conditioning use in summer and reduce coal consumption for residents heating in winter. Comparing change of residents’ energy consumption in summer and winter, increments in summer are less than reduction in winter. This implicates effect of urban heat island is more obvious in winter than in summer.

  7. Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3d City Models - the Energy Atlas of Berlin

    Science.gov (United States)

    Krüger, A.; Kolbe, T. H.

    2012-07-01

    In the context of increasing greenhouse gas emission and global demographic change with the simultaneous trend to urbanization, it is a big challenge for cities around the world to perform modifications in energy supply chain and building characteristics resulting in reduced energy consumption and carbon dioxide mitigation. Sound knowledge of energy resource demand and supply including its spatial distribution within urban areas is of great importance for planning strategies addressing greater energy efficiency. The understanding of the city as a complex energy system affects several areas of the urban living, e.g. energy supply, urban texture, human lifestyle, and climate protection. With the growing availability of 3D city models around the world based on the standard language and format CityGML, energy system modelling, analysis and simulation can be incorporated into these models. Both domains will profit from that interaction by bringing together official and accurate building models including building geometries, semantics and locations forming a realistic image of the urban structure with systemic energy simulation models. A holistic view on the impacts of energy planning scenarios can be modelled and analyzed including side effects on urban texture and human lifestyle. This paper focuses on the identification, classification, and integration of energy-related key indicators of buildings and neighbourhoods within 3D building models. Consequent application of 3D city models conforming to CityGML serves the purpose of deriving indicators for this topic. These will be set into the context of urban energy planning within the Energy Atlas Berlin. The generation of indicator objects covering the indicator values and related processing information will be presented on the sample scenario estimation of heating energy consumption in buildings and neighbourhoods. In their entirety the key indicators will form an adequate image of the local energy situation for

  8. Sustainable urban regeneration based on energy balance

    NARCIS (Netherlands)

    Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S.

    2012-01-01

    In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming

  9. Energy And Environment in Urban Regeneration. Studies for a Method of Analysis of Urban Periphery

    Directory of Open Access Journals (Sweden)

    Paolo De Pascali

    2014-05-01

    Full Text Available Despite planning of urban regeneration has been theorized from several decades, today activating concrete programs encounters major difficulties. Moreover, the structural nature of economic crisis and the operators tendency to maintaining obsolete models of urban transformation certainly do not help to overcome the stalemate.The article argues, however, that this framework appears to evolve under the influence of some external factors that bring to the fore the importance of the energy - environmental components in the renewal of the existing city.This address, focused on the concept of urban environment, seems to identify new principles of economic environmental sustainability of the city that converge towards social models of smart community and urban models of smart city.The article then describes the research in progress regarding an operative method to define explicit and replicable bases of the urban environment concept to be considered in plans of urban renewal. Main fields of observation and measurement are “urban comfort” and “anthropogenic load (pollution”. An experimental application of the analysis is developed on the eastern area of Rome. Finally, the paper offers specific lines for the research development.

  10. Geothermal energy use in terms of a more balanced & sustainable urban-rural development of Southeast Serbia, with focus on Nis region

    Directory of Open Access Journals (Sweden)

    Jovanović Aleksandar

    2017-01-01

    Full Text Available The surrounding of Nis has been known for various geothermal manifestations (see Figure 3 and 4. The city itself has direct use of Nis Spa, where a couple of sites have been used for balneology and where heating systems have been installed. However, other local resources in Nis surrounding are little known. Also, Sokobanja has a long history of thermal waters 'use throughout its rich history, from the Antiquity throughout the middle ages and Turkish rule. This is also present in towns of Bela Palanka and Svrljig in South-East Serbian region surrounding Nis. These resources can be used for supplying the cities and villages with heat in the future. More importantly, communities in local towns in the region can be supported by more proficient use of geothermal potentials, as this idea supports the alleviated concentration of inhabitants in the region. It supports local renewable energy sources and a greater ration between potentials and actual use of geothermal sources, which tends to be very low in Serbian cities and rural places. In this paper, these resources are going to be presented, for the community in Serbia to have an insight and to be reminded of its potentials and significance for regional development and local resource utilization. Built heritage and urban-architectural wholes in some of these towns and in the villages, are neglected and geothermal resources in their vicinity underused. A more organized use of geothermal potentials can lead to their regenerations. It can support the idea of a more balanced rural-urban development of the region of Nis. However, geothermal energy can also be beneficial for future regional energy planning and cooperation between towns and villages in South-Eastern Serbian regions like Nis region. And this can be an important strategy in regional planning and energy planning for the future, once the economic crisis would stop to prevail in Serbia. The authors of this paper point out to the long

  11. THE USE OF DIETARY FATS AND CONCENTRATES TO ALLEVIATE THE NEGATIVE ENERGY BALANCE IN CROSSBRED COWS IN EARLY LACTATION

    Directory of Open Access Journals (Sweden)

    Carlos F. Aguilar-Pérez

    2014-08-01

    Full Text Available Energy balance (EB is defined as the difference between energy intake and energy expenditure. Fertility in the high-merit cow has been adversely associated with high milk production, low intake of energy and mobilisation of body reserves in early lactation, which combine in the term negative energy balance (NEB.  The timing of insemination usually coincides with peak milk yield, when dairy cows are often in NEB. Crossbred cows (Bos taurus x Bos indicus in the tropics have comparatively lower nutrient requirements and different partition of nutrients than high merit dairy cows. Thus, it would be expected that both the magnitude and length of negative energy balance were different in a crossbred cow. Because of marked differences compared with high-merit cows, crossbred cows in the tropics would be expected to show greater response to additional energy in early lactation improving their energy status and hence reproductive performance. Knowing the influence of nutrition on reproduction, many methods have been proposed for manipulating the diet to avoid or to alleviate negative energy balance. The use of fats is one alternative, which has been extensively studied in dairy and beef cows but with inconclusive results. Another alternative is to use starch-based concentrates, taking into account level of inclusion and quality and availability of pasture, in order to avoid substitution effects and to get maximum profits. Two experiments were carried out in Yucatan Mexico, in order to evaluate the use of bypass fats (calcium soaps of long-chain fatty acids, CAFA or a starch-based concentrate to alleviate the NEB in grazing crossbred cows in early lactation. The NEB in early lactation was successfully avoided by the use of the starch-based concentrate but not by the use of bypass fats, this due to a reduction in the grass DM intake. It was concluded that crossbred cows in the tropics may experience a period of NEB postpartum, which can be avoided if

  12. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications

    International Nuclear Information System (INIS)

    Wiedenhofer, Dominik; Lenzen, Manfred; Steinberger, Julia K.

    2013-01-01

    Household consumption requires energy to be used at all stages of the economic process, thereby directly and indirectly leading to environmental impacts across the entire production chain. The levels, structure and determinants of energy requirements of household consumption therefore constitute an important avenue of research. Incorporating the full upstream requirements into the analysis helps to avoid simplistic conclusions which would actually only imply shifts between consumption categories without taking the economy wide effects into account. This paper presents the investigation of the direct and indirect primary energy requirements of Australian households, contrasting urban, suburban and rural consumption patterns as well as inter- and intra-regional levels of inequality in energy requirements. Furthermore the spatial and socio-economic drivers of energy consumption for different categories of energy requirements are identified and quantified. Conclusions regarding the relationships between energy requirements, household characteristics, urban form and urbanization processes are drawn and the respective policy implications are explored. - Highlights: • We statistically analyze the energy requirements of consumption in Australia. • Contrasting urban/suburban/rural consumption patterns and spatial inequality. • Energy requirements are influenced by urban form, income and demographics. • Urban households require less direct energy, but their total consumption is higher. • Significant rebound effects can be expected when direct energy use is decreased

  13. Urban sound energy reduction by means of sound barriers

    Science.gov (United States)

    Iordache, Vlad; Ionita, Mihai Vlad

    2018-02-01

    In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  14. Urban sound energy reduction by means of sound barriers

    Directory of Open Access Journals (Sweden)

    Iordache Vlad

    2018-01-01

    Full Text Available In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  15. A comparative analysis of urban energy governance in four European cities

    International Nuclear Information System (INIS)

    Morlet, Clémence; Keirstead, James

    2013-01-01

    Cities are at the forefront of efforts to combat climate change and in this paper, we examine the influence of urban energy governance on these policy goals. An innovative framework for quantifying the combined governance of cities and energy systems is presented before focusing on a detailed study of London, Paris, Berlin and Copenhagen. By applying an optimization model to assess the lowest cost technology pathways to achieve emission reduction targets, the links between the governance of urban energy systems and the cost of achieving carbon targets are shown. Additionally a novel metric of scenario similarity is introduced in order to evaluate the difficulty of hypothesized energy system transitions. The results indicate that these tools can be valuable in identifying similar cities for the sharing of best practice, for performing comparative evaluations of energy transitions, and for reinforcing the need to complement quantitative assessments with a more holistic appreciation of local context. - Highlights: • Novel framework for comparing urban energy systems and their governance is presented. • Applied to four European cities with focus on climate change issues. • Bhattacharyya's distance introduced as measure of energy system scenario similarity. • Results suggest Paris is closest to its 2020 climate goals, London furthest

  16. City and Energy Infrastructures between Economic Processes and Urban Planning

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzeo

    2013-11-01

    Full Text Available The paper deals with the issues related to the relationship between city, energy, economic factors and city planning. These issues are analyzed from a theoretical point of view and are placed in a logical path based on three assumptions. The first considers the city as an intelligent system constantly evolving. The second considers the city as a system where economic processes come out at their highest level affecting other aspects of social and urban structure. The third considers the planning as the weak link in the process of urban development, one of the most exposed to economic and social pressures.Energy production has experienced a great progress since steam and electricity were discovered. Each stage of this evolution has affected city and territory introducing significant physical signs, changing the ways of carrying out functions and creating new needs and new activities. The energy revolution, based on sustainable sources and on skillful management of the networks, will strongly affect the city and the way of organizing the activities, their location, dimension, and the shape of the spaces.The paper explores some of the issues related to the relationship between urban system and energy.The first section analyzes the meaning of the intelligent city as an entity that is constantly changing and constantly adapting. The second section analyzes the role of the energy systems in the evolution of the activities and of the city’s image. The last section investigates the role of the economic factors in the evolution of the shape and meaning of city, pointing out that the way towards smart and green urban systems will largely depend on their economic advantage. 

  17. Evaluation of the impact of the surrounding urban morphology on building energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Nyuk Hien; Chen, Yixing; Hajadi, Norwin; Sathyanarayanan, Haripriya; Manickavasagam, Yamini Vidya [Department of Building, National University of Singapore (Singapore); Jusuf, Steve Kardinal [Center for Sustainable Asian Cities, National University of Singapore (Singapore); Syafii, Nedyomukti Imam [Institute of High Performance Computing (Singapore)

    2011-01-15

    Empirical models of minimum (T{sub min}), average (T{sub avg}) and maximum (T{sub max}) air temperature for Singapore estate have been developed and validated based on a long-tem field measurement. There are three major urban elements, which influence the urban temperature at the local scale. Essentially, they are buildings, greenery and pavement. Other related parameters identified for the study, such as green plot ratio (GnPR), sky view factor (SVF), surrounding building density, the wall surface area, pavement area, albedo are also evaluated to give a better understanding on the likely impact of the modified urban morphology on energy consumption. The objective of this research is to assess and to compare how the air temperature variation of urban condition can affect the building energy consumption in tropical climate of Singapore. In order to achieve this goal, a series of numerical calculation and building simulation are utilized. A total of 32 cases, considering different urban morphologies, are identified and evaluated to give better a understanding on the implication of urban forms, with the reference to the effect of varying density, height and greenery density. The results show that GnPR, which related to the present of greenery, have the most significant impact on the energy consumption by reducing the temperature by up to 2 C. The results also strongly indicate an energy saving of 4.5% if the urban elements are addressed effectively. (author)

  18. An experiment for urban energy autonomy in Seoul: The One ‘Less’ Nuclear Power Plant policy

    International Nuclear Information System (INIS)

    Lee, Taehwa; Lee, Taedong; Lee, Yujin

    2014-01-01

    This study examines an experiment in energy self-sufficiency in Seoul, Republic of Korea, through a particular energy policy called the One Less Nuclear Power Plant (OLNPP) policy. We define an urban energy experiment as a purposive intervention for energy transition from an energy system based on nuclear and fossil fuels to one based on renewable energy and energy demand management. We suggest three findings. First, we find that the themes of our theoretical framework policy backgrounds, governance and policy contents have played important roles for Seoul’s energy experiments aimed at urban energy autonomy. In particular, political leadership based on the mayor’s previous experiences contributed significantly to the formation and implementation of this policy. Second, the OLNPP policy adds a social or moral dimension to urban energy policies. The norm change from an environmental and economic focus to a focus on the combination of social, environmental, and economic considerations is a unique contribution of the OLNPP policy to urban experiments in energy transition. Third, we find that experiments through purposive interventions serve as a means for facilitating urban energy governance where the actors involved can communicate and enhance their new ideas and practices. - Highlights: • We analyze One Less Nuclear Power Plant policy, with background, governance and content framework. • The OLNPP policy aims to achieve energy self-sufficiency at a local scale. • An urban energy experiment is for energy transition to renewable energy and energy demand management. • A unique contribution of Seoul’s energy experiment is changing norms by adding a moral dimension

  19. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  20. A research agenda for a people-centred approach to energy access in the urbanizing global south

    Science.gov (United States)

    Broto, Vanesa Castán; Stevens, Lucy; Ackom, Emmanuel; Tomei, Julia; Parikh, Priti; Bisaga, Iwona; To, Long Seng; Kirshner, Joshua; Mulugetta, Yacob

    2017-10-01

    Energy access is typically viewed as a problem for rural areas, but people living in urban settings also face energy challenges that have not received sufficient attention. A revised agenda in research and practice that puts the user and local planning complexities centre stage is needed to change the way we look at energy access in urban areas, to understand the implications of the concentration of vulnerable people in slums and to identify opportunities for planned management and innovation that can deliver urban energy transitions while leaving no one behind. Here, we propose a research agenda focused on three key issues: understanding the needs of urban energy users; enabling the use of context-specific, disaggregated data; and engaging with effective modes of energy and urban governance. This agenda requires interdisciplinary scholarship across the social and physical sciences to support local action and deliver large-scale, inclusive transformations.

  1. Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region

    International Nuclear Information System (INIS)

    Mörtberg, Ulla; Goldenberg, Romain; Kalantari, Zahra; Kordas, Olga; Deal, Brian; Balfors, Berit; Cvetkovic, Vladimir

    2017-01-01

    Urban development trajectories are changing towards compact, energy-efficient cities and renewable energy sources, and this will strongly affect ecosystem services (ES) that cities are dependent on but tend to disregard. Such ES can be provisioning, regulating and cultural ES, around which competition over land resources will increase with energy system shifts. Much of this can be foreseen to take place within urbanising regions that are simultaneously the living environment of a major part of the human population today. In order to inform critical urban policy decisions, tools for integrated assessment of urban energy and transport options and ecosystem services need to be developed. For this purpose, a case study of the Stockholm region was conducted, analysing three scenarios for the future urbanisation of the region, integrating a transport energy perspective and an ES perspective. The results showed that a dense but polycentric development pattern gives more opportunities for sustainable urban development, while the dense monocentric scenario has apparent drawbacks from an ES perspective. The methodology is compatible with a model integration platform for urban policy support and will thus enable integrated policy assessment of complex urban systems, with the goal of increasing their sustainability. - Highlights: • A diffuse urban pattern leads to low access to jobs and high energy consumption. • A dense monocentric urban pattern implies high energy efficiency and low access to ES. • A dense polycentric urban pattern allows for a combination of urban functions. • ES needs to be integrated into sustainability assessments of urban policy options.

  2. Comprehensive Forecast of Urban Water-Energy Demand Based on a Neural Network Model

    Directory of Open Access Journals (Sweden)

    Ziyi Yin

    2018-03-01

    Full Text Available Water-energy nexus has been a popular topic of rese arch in recent years. The relationships between the demand for water resources and energy are intense and closely connected in urban areas. The primary, secondary, and tertiary industry gross domestic product (GDP, the total population, the urban population, annual precipitation, agricultural and industrial water consumption, tap water supply, the total discharge of industrial wastewater, the daily sewage treatment capacity, total and domestic electricity consumption, and the consumption of coal in industrial enterprises above the designed size were chosen as input indicators. A feedforward artificial neural network model (ANN based on a back-propagation algorithm with two hidden layers was constructed to combine urban water resources with energy demand. This model used historical data from 1991 to 2016 from Wuxi City, eastern China. Furthermore, a multiple linear regression model (MLR was introduced for comparison with the ANN. The results show the following: (a The mean relative error values of the forecast and historical urban water-energy demands are 1.58 % and 2.71%, respectively; (b The predicted water-energy demand value for 2020 is 4.843 billion cubic meters and 47.561 million tons of standard coal equivalent; (c The predicted water-energy demand value in the year 2030 is 5.887 billion cubic meters and 60.355 million tons of standard coal equivalent; (d Compared with the MLR, the ANN performed better in fitting training data, which achieved a more satisfactory accuracy and may provide a reference for urban water-energy supply planning decisions.

  3. Designing integrated energy and spatial development for sustainable urban areas in the Northern Netherlands

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to reduce CO2 emission in an efficient way in urban areas by reducing conventional energy use and implementing renewable energy. The research urban area is Zuidlanden, located in the south of Leeuwarden in the north of the Netherlands. The

  4. Urban energy management today: Ten year compendium of UCETF programs. Products and expertise of the Urban Consortium Energy Task Force, 1979--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The reports listed in this Overview summarize projects conducted through the Urban Consortium Energy Task Force by local government staff who have defined and implemented many of the energy strategies described above. Reports from their projects illustrate effective approaches to plan and implement these strategies, as well as software tools, surveys, and technical instruments valuable to other local government officials conducting similar projects.

  5. Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries

    International Nuclear Information System (INIS)

    Poumanyvong, Phetkeo; Kaneko, Shinji; Dhakal, Shobhakar

    2012-01-01

    Few attempts have been made to investigate quantitatively and systematically the impact of urbanization on transport energy use for countries of different stages of economic development. This paper examines the influence of urbanization on national transport and road energy use for low, middle and high income countries during 1975–2005, using the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model. After controlling for population size, income per capita and the share of services in the economy, the main results suggest that urbanization influences national transport and road energy use positively. However, the magnitude of its influence varies among the three income groups. Changes in urbanization appear to have a greater impact on transport and road energy use in the high income group than in the other groups. Surprisingly, the urbanization elasticities of transport and road energy use in the middle income group are smaller than those of the low income group. This study not only sheds further light on the existing literature, but also provides policy makers with insightful information on the link between urbanization and transport energy use at the three different stages of development. - Highlights: ► Overall, urbanization increases national transport and road energy use. ► Urbanization elasticities of transport energy use differ across development stages. ► Urbanization elasticities in high-income group are higher than in other groups.

  6. Urban physics : effect of the micro-climate on comfort, health and energy demand

    NARCIS (Netherlands)

    Moonen, P.; Defraeye, T.W.J.; Dorer, V.; Blocken, B.J.E.; Carmeliet, J.E.

    2012-01-01

    The global trend towards urbanization explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on energy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian

  7. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  8. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia

    International Nuclear Information System (INIS)

    Shahbaz, Muhammad; Lean, Hooi Hooi

    2012-01-01

    This paper assesses the relationship among energy consumption, financial development, economic growth, industrialization and urbanization in Tunisia from 1971 to 2008. The autoregressive distributed lag bounds testing approach to cointegration and Granger causality tests is employed for the analysis. The result confirms the existence of long-run relationship among energy consumption, economic growth, financial development, industrialization and urbanization in Tunisia. Long-run bidirectional causalities are found between financial development and energy consumption, financial development and industrialization, and industrialization and energy consumption. Hence, sound and developed financial system that can attract investors, boost the stock market and improve the efficiency of economic activities should be encouraged in the country. Nevertheless, promoting industrialization and urbanization can never be left out from the process of development. We add light to policy makers with the role of financial development, industrialization and urbanization in the process of economic development. - Highlights: ► We find the existence of long-run relationship among variables. ► Financial development is positively related to energy consumption. ► Bidirectional causal relationship between financial development and energy consumption. ► Sound and developed financial system should be encouraged.

  9. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  10. Managing urban energy system: A case of Suzhou in China

    International Nuclear Information System (INIS)

    Liang Sai; Zhang Tianzhu

    2011-01-01

    Managing urban energy system is vital for energy conservation and CO 2 reduction. Integrating energy input-output model with carbon emission pinch analysis, we propose a framework for managing urban energy system. This framework could analyze current energy demands and CO 2 emissions, predict their future possibilities and optimize energy mix of key sectors under CO 2 emission constraints. Key sectors are identified by the energy input-output table from both direct and accumulative perspectives. Moreover, taking Suzhou, a typical manufacturing center and export-oriented city in China, as a case example, energy metabolism of Suzhou in 2020 is predicted using energy input-output model. And three sectors named Coking, Smelting and pressing of metals and Production and supply of electric power are identified to have big effects on CO 2 emissions. Subsequently, energy mix of three identified key sectors is optimized under CO 2 emission constraints by the carbon emission pinch analysis. According to the results, clean energy sources will occupy a great position in Suzhou's future energy demands. And the reuse of wastes as energy sources should be limited to achieve CO 2 mitigation targets. Finally, policy implications of results and future work are discussed. - Research highlights: → We construct a framework for sustainable energy system management. → We apply the framework in a typical manufacturing center named Suzhou in China. → Key sectors for CO 2 emissions are identified, and energy mix is optimized. → Policy implications of results and future work are discussed.

  11. A model for predicting the potential diffusion of solar energy systems in complex urban environments

    International Nuclear Information System (INIS)

    La Gennusa, Maria; Lascari, Giovanni; Rizzo, Gianfranco; Scaccianoce, Gianluca; Sorrentino, Giancarlo

    2011-01-01

    The necessity to reduce greenhouse gases emission produced by energy building consumptions and to cut the energy bill (mainly due to the use of fossil sources) leads to the employment of renewable energy sources in new planned scenarios. In particular, more and more often municipal energy and environmental plans pay great attention to the possibilities of employment of the solar technologies at urban scale. Solar thermal and photovoltaic (PV) systems are, by far, the most suitable tools to be utilized in urban areas. Obviously, the proper adoption of such systems in buildings does call for the availability of calculation methods suitable to provide the actual level of exploitation of solar energy in urban layouts. In this work, a procedure for evaluating the geographical energy potential of building roofs in urban areas is proposed; in particular, the amount of surface on the roof that could be used for the installation of systems able to capture solar radiation for the energy production is investigated. The proposed procedure is based on the use of the GIS technology and 3D cartography. The effectiveness of the proposed method is assessed by means of an application to the town of Palermo (Italy). - Highlights: → The GIS techniques allow to analyze various future scenarios about urban planning. → We propose a procedure for assessing the extension of superficial urban areas useable for the installation of solar systems. → This procedure allow to compile a scale of priority of intervention. → The cost for financing such interventions is compared to the penalty to pay for not achieving the Kyoto goals.

  12. 3. national sittings on energy ''energy, urban mobility,... tomorrow: which responsibilities for the local governments?''; 3. assises nationales de l'energie. ''Energie, mobilite urbaine,... demain: quelles responsabilites pour les collectivites locales?''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This conference deals with the local government policy concerning the energy mastership of the transportation sector. Sixteen workshops discussed on the problem of the urban mobility in an environmental quality context: legal provisions affecting the energy mastership, mobility in the urban area, regulations, clean technologies enhancement, the public information impact on the energy consumption and the financial means. (A.L.B.)

  13. Proceedings: energy from urban wastes workshop, Washington, DC, September 11-12, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.S.; Brooks, C. (eds.)

    1979-06-01

    This workshop, for members of public interest groups, was sponsored by DOE's Urban Waste Technology Branch to provide information on the use of urban waste as an energy resource. A separate abstract was prepared for each of seven presentations plus the Summary of discussions. Two acts are included as appendices: (1) Public Law 95-238: Department of Energy Act of 1978 - Civilian Applications; and (2) Public Law 94-580: Resource Conservation and Recovery Act of 1976.

  14. Urban characteristics and homelessness in Bucharest

    Directory of Open Access Journals (Sweden)

    Mirela Paraschiv

    2013-06-01

    Full Text Available Urban poverty continues to prove itself a concern in cities’ territorial planning as it disrupts the quality of life and the development process in some cities. Homelessness emerges sometimes as extreme urban poverty even in developed European Union countries. The study assesses Bucharest urban space to differentiate characteristics that influence the homeless to locate in certain places. The analysis included a three-level urban space categorization. Functional types of space were correlated to homelessness presence according to three space characteristics: property type, physical structure and state of use. The main findings argue that homeless people localization in Bucharest depends on urban space capacity to meet homelessness housing and living needs. Analysis’ conclusions evidence homeless location patterns to urban planners and authorities that may use the information to improve policies and actions to alleviate extreme poverty in Bucharest.

  15. Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy

    International Nuclear Information System (INIS)

    Baynes, Timothy; Lenzen, Manfred; Steinberger, Julia K.; Bai Xuemei

    2011-01-01

    Assessment of urban energy use may proceed by a number of methods. Here we derive an energy account from local statistics, and compare them with an input output (IO) analysis as applied to Melbourne, Australia. These approaches highlight different aspects of urban energy use and comparable outputs are presented together to assess consistency, to identify complementarities and discuss the insight each approach brings to understanding urban energy. The IO method captures the direct and embodied primary energy requirements of local household expenditure (235.8 GJ/capita/year) while the regional assessment more directly accounts for local production activity (258.1 GJ/capita/year). The parity of these results is unexpected for a developed city with a strong tertiary sector. Sectoral detail reveals differences between the primary energy required by Melbourne's economic structure and that ultimately required through the full supply chain relating to household expenditure. This is accompanied by an IO analysis of the geography of Melbourne's 'energy catchment'. It is suggested that the IO consumption and regional production approaches have particular relevance to policies aimed at consumption behaviour and economic (re)structuring, respectively. Their complementarity further suggests that a combined analysis would be valuable in understanding urban energy futures and economic transitions elsewhere. - Highlights: → We compare an IO approach and a regional assessment of an urban energy use case. → Unusually, regional assessment of the primary energy use exceeds that from IO. → Sectoral and geographical detail reveals the urban consumption/production character. → We discuss the relative merits and policy utility of the different methods. → A combined approach is recommended for urban energy and economic transitions.

  16. Energy saving and emission reduction of China's urban district heating

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2013-01-01

    China's carbon dioxide (CO 2 ) emission ranks highest in the world. China is committed to reduce its CO 2 emission by 40% to 45% from the 2005 levels by 2020. To fulfill the target, China's CO 2 emission reduction must exceed 6995 million tons. Energy consumption and CO 2 emission of China's urban district heating (UDH) are increasing. The current policy implemented to improve UDH focuses on replacing coal with natural gas to reduce energy consumption and CO 2 emission to some extent. This paper proposes that heat pump heating (HPH) could serve as a replacement for UDH to help realize energy-saving and emission-reduction goals to a greater extent. The paper also analyzes the impact of this replacement on the heating and power generation sectors. The results show that replacing coal-based UDH with HPH decreases energy consumption and CO 2 emission by 43% in the heating sector. In the power generation sector, the efficiency of power generation at the valley electricity time increases by 0.512%, and the ratio of peak–valley difference decreases by 16.5%. The decreases in CO 2 emission from the heating and power generation sectors cumulatively account for 5.55% of China's total CO 2 emission reduction target in 2020. - Highlights: ► Replacing urban district heating with heat pump heating. ► Impact of heat pump heating on heating and power generation sectors. ► Potential of energy saving and emission reduction for heat pump heating. ► China should adjust current urban heating strategy

  17. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  18. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Directory of Open Access Journals (Sweden)

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  19. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    Science.gov (United States)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  20. The Urban Fabric of the City as Its Affects Thermal Energy Responses Derived from Remote Sensing Data

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    2000-01-01

    The physical geography of the city affects numerous aspects of its interlinked biophysical, social, and land-atmosphere characteristics - those attributes that come together to form the total urban environment. One approach to studying the multitude of interactions that occur as a result of urbanization is to view the city from a systems ecology perspective, where energy and material cycle into and out of the urban milieu. Thus, the urban ecosystem is synergistic in linking land, air, water, and living organisms in a vast network of interrelated physical, human, and biological process. Given the number and the shear complexity of the exchanges and, ultimately, their effects, that occur within the urban environment, we are focusing our research on looking at how the morphology or urban fabric of the city, drives thermal energy exchanges across the urban landscape. The study of thermal energy attributes for different cities provides insight into how thermal fluxes and characteristics are partitioned across the city landscape in response to each city's morphology. We are using thermal infrared remote sensing data obtained at a high spatial resolution from aircraft, along with satellite data, to identify and quantify thermal energy characteristics for 4 U.S. cities: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. Analysis of how thermal energy is spatially distributed across the urban landscapes for these cities provides a unique perspective for understanding how the differing morphology of cities forces land-atmosphere exchanges, such as the urban heat island effect, as well as related meteorological and air quality interactions. Keyword: urban ecosystems, remote sensing, urban heat island

  1. An energy and mortality impact assessment of the urban heat island in the US

    International Nuclear Information System (INIS)

    Lowe, Scott A.

    2016-01-01

    Increased summer energy use and increased summer heat related mortality are the two most cited detrimental impacts of the urban heat island (UHI). An assessment of these impacts was made that considered the annual impact of the UHI, not just the summer impact. It was found that in north of the US there was a net decrease in energy use from the UHI, as heating energy reductions were larger than the increase in cooling energy. In the south there was a net energy increase from the UHI. The impact of the UHI on heat related deaths was an estimated increase of 1.1 deaths per million people. The impact of the UHI on cold related deaths was an estimated decrease of 4.0 deaths per million people. These estimates are caveated by the acknowledgement that compounding factors influence mortality. Hypothermia related death rates were three times higher in rural areas than urban areas. This is surprising as the homeless population is usually considered the most at risk, yet they mostly live in urban areas. - Highlights: • The urban heat island (UHI) may actually be beneficial in colder cities in the US in terms of energy use • The UHI may cause an increase in heat related mortality of ~ 1 deaths per million • In winter the UHI may decrease cold related mortality by ~ 4 deaths per million • Cold related death rates were 3 times higher in rural areas although the homeless population live mainly in urban areas

  2. An energy and mortality impact assessment of the urban heat island in the US

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Scott A., E-mail: Scott.lowe@manhattan.edu

    2016-01-15

    Increased summer energy use and increased summer heat related mortality are the two most cited detrimental impacts of the urban heat island (UHI). An assessment of these impacts was made that considered the annual impact of the UHI, not just the summer impact. It was found that in north of the US there was a net decrease in energy use from the UHI, as heating energy reductions were larger than the increase in cooling energy. In the south there was a net energy increase from the UHI. The impact of the UHI on heat related deaths was an estimated increase of 1.1 deaths per million people. The impact of the UHI on cold related deaths was an estimated decrease of 4.0 deaths per million people. These estimates are caveated by the acknowledgement that compounding factors influence mortality. Hypothermia related death rates were three times higher in rural areas than urban areas. This is surprising as the homeless population is usually considered the most at risk, yet they mostly live in urban areas. - Highlights: • The urban heat island (UHI) may actually be beneficial in colder cities in the US in terms of energy use • The UHI may cause an increase in heat related mortality of ~ 1 deaths per million • In winter the UHI may decrease cold related mortality by ~ 4 deaths per million • Cold related death rates were 3 times higher in rural areas although the homeless population live mainly in urban areas.

  3. Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes

    International Nuclear Information System (INIS)

    Ma, Ben

    2015-01-01

    Although there has been extensive debate in the literature that addresses the impact of urbanization on total energy use, the relative magnitude of each impact channel has not been empirically examined and urbanization's effects on energy transition dynamics in China remains unknown. Using panel datasets at the provincial level from 1986 to 2011, this paper employs dynamic models to investigate both the long-run and short-run elasticities of urbanization on energy intensities and the most significant impact channel is identified. Coal intensity and electricity intensity are also modeled to reveal energy transition dynamics driven by urbanization. A set of newly developed regression techniques, namely well-performed common correlated effects mean group (CCEMG) and augmented mean group (AMG) estimators, are used to treat residual cross-sectional dependence, nonstationary residuals, and unlikely-to-hold homogeneous slope assumptions. The results obtained verify that the net effects of urbanization on overall energy intensity and electricity intensity are statistically positive, with long-run elasticities of 0.14% to 0.37% and 0.23% to 0.29%, respectively, whereas China's urbanization does not significantly increase coal intensity. The fact that short-run elasticities account for a majority of corresponding long-run values indicates that the short-run effect, that is, indirect energy use induced by urban infrastructures is the most significant impact channel of urbanization on energy use in China. An energy transition from high-pollution coal to clean electricity is also present in China, although the fundamental transition to renewable energy is still in its infancy. From a regional perspective, urbanization exerts asymmetric impacts on provincial energy use so that energy policies associated with urbanization should be province-specific. The findings also illustrate that for a panel dataset on regional dimension within large and fast-growing economies such

  4. Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States

    Science.gov (United States)

    David J. Nowak; Nathaniel Appleton; Alexis Ellis; Eric Greenfield

    2017-01-01

    Urban trees and forests alter building energy use and associated emissions from power plants by shading buildings, cooling air temperatures and altering wind speeds around buildings. Field data on urban trees were combined with local urban/community tree and land cover maps, modeling of tree effects on building energy use and pollutant emissions, and state energy and...

  5. A Global Geospatial Ecosystem Services Estimate of Urban Agriculture

    Science.gov (United States)

    Clinton, Nicholas; Stuhlmacher, Michelle; Miles, Albie; Uludere Aragon, Nazli; Wagner, Melissa; Georgescu, Matei; Herwig, Chris; Gong, Peng

    2018-01-01

    Though urban agriculture (UA), defined here as growing of crops in cities, is increasing in popularity and importance globally, little is known about the aggregate benefits of such natural capital in built-up areas. Here, we introduce a quantitative framework to assess global aggregate ecosystem services from existing vegetation in cities and an intensive UA adoption scenario based on data-driven estimates of urban morphology and vacant land. We analyzed global population, urban, meteorological, terrain, and Food and Agriculture Organization (FAO) datasets in Google Earth Engine to derive global scale estimates, aggregated by country, of services provided by UA. We estimate the value of four ecosystem services provided by existing vegetation in urban areas to be on the order of 33 billion annually. We project potential annual food production of 100-180 million tonnes, energy savings ranging from 14 to 15 billion kilowatt hours, nitrogen sequestration between 100,000 and 170,000 tonnes, and avoided storm water runoff between 45 and 57 billion cubic meters annually. In addition, we estimate that food production, nitrogen fixation, energy savings, pollination, climate regulation, soil formation and biological control of pests could be worth as much as 80-160 billion annually in a scenario of intense UA implementation. Our results demonstrate significant country-to-country variability in UA-derived ecosystem services and reduction of food insecurity. These estimates represent the first effort to consistently quantify these incentives globally, and highlight the relative spatial importance of built environments to act as change agents that alleviate mounting concerns associated with global environmental change and unsustainable development.

  6. Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)

    International Nuclear Information System (INIS)

    Liu, Yaobin

    2009-01-01

    The paper develops a function of energy consumption, population growth, economic growth and urbanization process, and provides fresh empirical evidences for urbanization and energy consumption for China over the period 1978-2008 through the use of ARDL testing approach and factor decomposition model. The results of the bounds test show that there is a stable long run relationship amongst total energy consumption, population, GDP (Gross domestic product) and urbanization level when total energy consumption is the dependent variable in China. The results of the causality test with ECM (error correction model) specification, the short run and long run dynamics of the interested variables are tested, indicating that there exists only a unidirectional Granger causality running from urbanization to total energy consumption both in the long run and in the short run. At present, the contribution share which urbanization drags the energy consumption is smaller than that in the past, and the intensity holds a downward trend. Therefore, together with enhancing energy efficiency, accelerating the urbanization process that can cut reliance on resource and energy dependent industries is a fundamental strategy to solve the sustainable development dilemma between energy consumption and urbanization.

  7. Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaobin [Research Center of the Central China Economic Development, Nanchang University, Nanchang 330047 (China)

    2009-11-15

    The paper develops a function of energy consumption, population growth, economic growth and urbanization process, and provides fresh empirical evidences for urbanization and energy consumption for China over the period 1978-2008 through the use of ARDL testing approach and factor decomposition model. The results of the bounds test show that there is a stable long run relationship amongst total energy consumption, population, GDP (Gross domestic product) and urbanization level when total energy consumption is the dependent variable in China. The results of the causality test with ECM (error correction model) specification, the short run and long run dynamics of the interested variables are tested, indicating that there exists only a unidirectional Granger causality running from urbanization to total energy consumption both in the long run and in the short run. At present, the contribution share which urbanization drags the energy consumption is smaller than that in the past, and the intensity holds a downward trend. Therefore, together with enhancing energy efficiency, accelerating the urbanization process that can cut reliance on resource and energy dependent industries is a fundamental strategy to solve the sustainable development dilemma between energy consumption and urbanization. (author)

  8. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO 2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  9. Using mobile probes to inform and measure the effectiveness of traffic control strategies on urban networks.

    Science.gov (United States)

    2015-07-01

    Urban traffic congestion is a problem that plagues many cities in the United States. Testing strategies to alleviate this : congestion is especially challenging due to the difficulty of modeling complex urban traffic networks. However, recent work ha...

  10. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    Science.gov (United States)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  11. Energy demand in China: Comparison of characteristics between the US and China in rapid urbanization stage

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    Highlights: • Energy demand characteristics of the US and China were compared. • Major factors affecting energy demand were examined based on the panel data and the cointegration models. • China’s energy demand would reach 5498.13 Mtce in 2020 and 6493.07 Mtce in 2030. • Urbanization can be an opportunity for low-carbon development in China. - Abstract: China’s energy demand has shown characteristics of rigid growth in the current urbanization stage. This paper applied the panel data model and the cointegration model to examine the determinants of energy demand in China, and then forecasts China’s energy demand based on the scenario analysis. Results demonstrate an inverted U-shaped relationship between energy demand and economic growth in the long term. In business as usual scenario, China’s energy consumption will reach 6493.07 million tons of coal equivalent in 2030. The conclusions can be drawn on the basis of the comparison of characteristics between the US and China. First, energy demand has rigid growth characteristics in the rapid urbanization stage. Second, coal-dominated energy structure of China will lead to the severe problems of CO 2 emissions. Third, rapid economic growth requires that energy prices should not rise substantially, so that energy conservation will be the major strategy for China’s low-carbon transition. Major policy implications are: first, urbanization can be used as an opportunity for low-carbon development; second, energy price reform is crucial for China’s energy sustainability

  12. A research agenda for a people-centred approach to energy access in the urbanizing global south

    DEFF Research Database (Denmark)

    Broto, Vanesa Castán; Stevens, Lucy; Ackom, Emmanuel

    2017-01-01

    focused on three key issues: understanding the needs of urban energy users; enabling the use of context-specific, disaggregated data; and engaging with effective modes of energy and urban governance. This agenda requires interdisciplinary scholarship across the social and physical sciences to support...

  13. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  14. Rural-urban household energy use and inter-relation in the Central Region of the Sudan

    International Nuclear Information System (INIS)

    Elgizouli, I.A.R.

    1990-01-01

    Urban and rural household energy consumption accounts for the major part of total energy consumption in most African countries. It ranges between 50 and 70 percent in African countries with medium per capita incomes and between 58 and 93 percent in those with low per capita incomes. Satisfying household energy needs takes up a substantial portion of the income of the urban household, while in the rural areas much time and effort are spent collecting wood instead of in more productive activities. Woodfuel meets over 85 percent of household energy demand in most African countries. This high level of consumption will remain, irrespective of the country's per capita income: woodfuel will continue to play a major role in the economics of developing countries and especially in the living standards of both rural and urban poor. The two major issues which must be considered are whether the forest resources are going to meet the future demand for woodfuel and whether prices will remain affordable to the low income groups. This paper deals with household energy issues with special reference to the Central Region in the Sudan. It assesses local resources in the region, analyzes consumption patterns of both rural and urban households, and discusses possible solutions to the impact of current energy practices

  15. The Impact of Energy Consumption on the Surface Urban Heat Island in China’s 32 Major Cities

    Directory of Open Access Journals (Sweden)

    Weilin Liao

    2017-03-01

    Full Text Available Supported by the rapid economic development in the last few decades, China has become the largest energy consumer in the world. Alongside this, the effect of the anthropogenic heat released from energy consumption is increasingly apparent. We quantified the daytime and nighttime surface urban heat island intensity (SUHII for the 32 major cities in mainland China, using MODIS land surface temperature data from 2008 to 2012, and estimated the energy consumption intensity (ECI based on the correlation between energy consumption and the sum of nighttime lights. On this basis, the impact of energy consumption on the surface urban heat island in China’s 32 major cities was analyzed, by directly examining the relationship between SUHII and the urban-suburban difference in ECI. The results show that energy consumption has a significantly positive correlation with the nighttime SUHII, but no correlation with the daytime SUHII. It indicates that the cities with a larger urban-suburban difference in ECI have a far greater impact on SUHII during the nighttime. Therefore, the statistical analysis of the historical observation data in this study provides evidence for a long-held hypothesis that the anthropogenic heat released from energy consumption is an important contributor to the urban thermal environment.

  16. Assessment of photobiological safety of energy-efficiency urban lighting

    Directory of Open Access Journals (Sweden)

    Łukasz Stanisław Pierzchała

    2018-02-01

    Full Text Available Exceeding the safe threshold for exposure on high energy radiation (UV and blue light could cause the emergence of a number of diseases. Eyesight is particularly sensitive to excessive lighting. This paper presents the laboratory research on the assessment of the photobiological risk generated by the energy-efficiency urban lighting. The results show that LED lighting systems can be a source of radiation that significantly negatively affects the eyesight and could contribute to circadian rhythm disorders.

  17. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    Directory of Open Access Journals (Sweden)

    Li-Chun Huang

    2018-02-01

    Full Text Available This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban areas. The production systems use less labor, pesticide, water, and nutrition. However, food production of plant factories has many challenges including higher energy demand, energy costs, and installation costs of artificially controlled technologies. In the research, stochastic optimization model and linear complementarity models are formulated to conduct optimal and equilibrium food–energy analysis of plant factory production. A case study of plant factories in the Taiwanese market is presented.

  18. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  19. Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Li, Zhaoling; Higano, Yoshiro; Wang, Xian’en

    2016-01-01

    Highlights: • A waste-to-energy system is constructed incorporating various urban wastes and technologies. • Waste-to-energy industries are formed and introduced into current socioeconomic system. • A novel input–output simulation model is developed and applied to a metropolis. • Complete energy, economic and environmental potentials of urban wastes are discovered. - Abstract: Tremendous amounts of wastes are generated in urban areas due to accelerating industrialization and urbanization. The current unreasonable waste disposal patterns and potential energy value of urban wastes necessitates the promotion of waste-to-energy implementation. This study is intent on discovering the complete energy, economic and environmental potentials of urban wastes taking municipal solid wastes, waste oil, organic wastewater and livestock manure into consideration. A waste-to-energy system is constructed incorporating these wastes and five waste-to-energy technologies. A novel input–output simulation model is developed and applied to a metropolis to introduce the waste-to-energy system into the current socioeconomic system and form five waste-to-energy industries. The trends in waste generation and energy recovery potential, economic benefits and greenhouse gas mitigation contribution for the study area are estimated and explored from 2011 to 2025. By 2025, biodiesel production and power generation could amount to 72.11 thousand t and 1.59 billion kW h respectively. Due to the highest energy recovery and the most subsidies, the organic wastewater biogas industry has the highest output and net profit, followed by the waste incineration power generation industry. In total 17.97 million t (carbon dioxide-equivalent) accumulative greenhouse gas emission could be mitigated. The organic wastewater biogas industry and waste incineration power generation industry are more advantageous for the study area in terms of better energy, economic and environmental performances. The

  20. Conceptualizing urban household energy use: Climbing the 'Energy Services Ladder'

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2011-01-01

    This article begins by defining energy services and identifying how they differ according to sector, urban and rural areas, and direct and indirect uses. It then investigates household energy services divided into three classes: lower income, middle income, and upper income. It finds that the primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items). The study highlights how focusing on energy services reorients the direction of energy policy interventions, that energy services are neither uniform nor innate, and by noting exciting areas of potential research. - Research highlights: → The primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. → Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. → The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items).

  1. Urban Physics: Effect of the micro-climate on comfort, health and energy demand

    OpenAIRE

    Moonen, Peter; Defraeye, Thijs; Dorer, Viktor; Blocken, Bert; Carmeliet, Jan

    2012-01-01

    The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on energy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/thermal comfort, pollutant dispersion and wind-driven rain are of interest. Urban Physics is a well-established discipline, incorporating relevant branches of physics, environmental chemistry, aero...

  2. Using mobile probes to inform and measure the effectiveness of macroscopic traffic control strategies on urban networks.

    Science.gov (United States)

    2015-06-01

    Urban traffic congestion is a problem that plagues many cities in the United States. Testing strategies to alleviate this : congestion is especially challenging due to the difficulty of modeling complex urban traffic networks. However, recent work ha...

  3. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  4. A Comparative study on the Role of Energy Efficiency in Urban Planning Instruments of Iran and Germany

    Directory of Open Access Journals (Sweden)

    Mahta Mirmoghtadaee

    2015-12-01

    Full Text Available In recent years energy efficiency in different levels become of prime importance. Studies have been shown that urban planning can play a critical role in this area. At the same time in oil-producing countries like Iran, energy efficiency has not been considered as a national priority. However, in recent years with increase in the population growth, rapid urbanization and acceleration of environmental degradation, the issue is gaining more importance. Iran has adopted its first national building code on energy efficiency in 90’s. However, as the country lacks a hierarchical energy planning system, its achievements were below the expectations. To improve the situation, it is important to study the experiences of other countries. Germany with a solid and successful energy planning in different scales can be considered as one of the pioneering countries, and its programs could be used as a guideline to achieve similar goals in other countries. Recently the German government has adopted a highly ambitious energy program, called “Energy transition” (Energiewende. The program will affect all planning instruments and ordinances in the country. As a comprehensive and upper level plan, "Energy transition" can be studied form different viewpoints. In the current study, its influence on urban planning instruments will be the main focus. The main objective is to compare the role of energy in urban planning instruments of Iran and Germany, and to develop some solutions and strategies to be considered in Iran. The first step in this study is the introduction of urban planning systems and instruments in the two countries, then the role of energy in each country will be introduced and with an analytical review, some suggestion for Iranian planning instruments will be made. Using comparative study as the research methodology, the study will focus on "comprehensive plan" and "detailed plan" as two main urban planning instruments in Iran, and "binding land

  5. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    Science.gov (United States)

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  6. Impact of energy subsidies on energy consumption and supply in Zimbabwe. Do the urban poor really benefit?

    International Nuclear Information System (INIS)

    Dube, Ikhupuleng

    2003-01-01

    Twenty percent of Zimbabwe's urban poor households are still to be connected to the grid. The majority of these households are poor. There are several reasons why the Zimbabwe urban poor are still not connected to the grid, the most important one being the household incomes and the cost of different sources of energy. In order to facilitate wider usage of electricity by the poor, the policy makers have introduced a subsidy policy. The objective of this paper is to ascertain the extent to which the poor urban households could afford the cost of electricity with or without subsidies. This gives an indication on whether contrary to the current thinking, subsidies are decisive for the affordability of electricity by the urban households. The paper also examines the distribution of the subsidies, amongst the different urban household income categories and other economic sectors. Furthermore the impact of such subsidies on the utility's finances is assessed

  7. The role of city size and urban form in the surface urban heat island.

    Science.gov (United States)

    Zhou, Bin; Rybski, Diego; Kropp, Jürgen P

    2017-07-06

    Urban climate is determined by a variety of factors, whose knowledge can help to attenuate heat stress in the context of ongoing urbanization and climate change. We study the influence of city size and urban form on the Urban Heat Island (UHI) phenomenon in Europe and find a complex interplay between UHI intensity and city size, fractality, and anisometry. Due to correlations among these urban factors, interactions in the multi-linear regression need to be taken into account. We find that among the largest 5,000 cities, the UHI intensity increases with the logarithm of the city size and with the fractal dimension, but decreases with the logarithm of the anisometry. Typically, the size has the strongest influence, followed by the compactness, and the smallest is the influence of the degree to which the cities stretch. Accordingly, from the point of view of UHI alleviation, small, disperse, and stretched cities are preferable. However, such recommendations need to be balanced against e.g. positive agglomeration effects of large cities. Therefore, trade-offs must be made regarding local and global aims.

  8. From Problems to Potentials : The Urban Energy Transition of Gruž, Dubrovnik

    NARCIS (Netherlands)

    van den Dobbelsteen, A.A.J.F.; Martin, C.L.; Keeffe, Greg; Pulselli, Riccardo; Vandevyvere, Han

    2018-01-01

    IIn the challenge for a sustainable society, carbon-neutrality is a critical objective for all cities in the coming decades. In the EU City-zen project, academic partners collaborate to develop an urban energy transition methodology, which supports cities in making the energy transition to

  9. Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks.

    Science.gov (United States)

    Wadud, Zahid; Javaid, Nadeem; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-07-21

    In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime.

  10. Optimal Intra-Urban Hierarchy of Activity Centers—A Minimized Household Travel Energy Consumption Approach

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2015-08-01

    Full Text Available An intra-urban hierarchy of activity centers interconnected by non-motorized and public transportation is broadly believed to be the ideal urban spatial structure for sustainable cities. However, the proper hinterland area for centers at each level lacks empirical study. Based on the concentric structure of everyday travel distances, working centers, shopping centers, and neighborhood centers are extracted from corresponding types of POIs in 286 Chinese cities at the prefectural level and above. A U-shaped curve between Household Transportation Energy Consumption (HTEC per capita and center density at each of the three levels has been found through regression analysis. An optimal intra-urban hierarchy of activity centers is suggested to construct energy-efficient cities.

  11. Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, M.J.; Sathaye, J.

    1993-08-01

    This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

  12. Alleviating Praxis Shock: Induction Policy and Programming for Urban Music Educators

    Science.gov (United States)

    Shaw, Julia T.

    2018-01-01

    An integral part of a teacher learning continuum ranging from preservice education to professional development for experienced educators, new teacher induction holds particular potential to effect change in urban education. Accordingly, this article offers recommendations for induction-related policy and programming capable of supporting beginning…

  13. Paradigm shift in urban energy systems through distributed generation: Methods and models

    International Nuclear Information System (INIS)

    Manfren, Massimiliano; Caputo, Paola; Costa, Gaia

    2011-01-01

    The path towards energy sustainability is commonly referred to the incremental adoption of available technologies, practices and policies that may help to decrease the environmental impact of energy sector, while providing an adequate standard of energy services. The evaluation of trade-offs among technologies, practices and policies for the mitigation of environmental problems related to energy resources depletion requires a deep knowledge of the local and global effects of the proposed solutions. While attempting to calculate such effects for a large complex system like a city, an advanced multidisciplinary approach is needed to overcome difficulties in modeling correctly real phenomena while maintaining computational transparency, reliability, interoperability and efficiency across different levels of analysis. Further, a methodology that rationally integrates different computational models and techniques is necessary to enable collaborative research in the field of optimization of energy efficiency strategies and integration of renewable energy systems in urban areas. For these reasons, a selection of currently available models for distributed generation planning and design is presented and analyzed in the perspective of gathering their capabilities in an optimization framework to support a paradigm shift in urban energy systems. This framework embodies the main concepts of a local energy management system and adopts a multicriteria perspective to determine optimal solutions for providing energy services through distributed generation.

  14. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    Science.gov (United States)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  15. Energy assessment of peri-urban horticulture and its uncertainty: Case study for Bogota, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Bojaca, C.R. [Centro de Investigaciones y Asesorias Agroindustriales, Facultad de Ciencias Naturales, Universidad de Bogota Jorge Tadeo Lozano, P.O. Box: 140196, Chia (Colombia); Schrevens, E. [Department of Biosystems, Faculty of Applied Bioscience Engineering, Katholieke Universiteit Leuven, Geo-Institute, Celestijnenlaan 200 E, 3001 Heverlee (Belgium)

    2010-05-15

    Scarce information is available about the energy use pattern of horticultural commodities in general and more specifically for peri-urban horticulture. Peri-urban horticulture in the outskirts of Bogota is an important source of vegetables for Colombia's capital city. Based on detailed follow-ups and periodic field measurements an output-input energy balance was performed with the main objective to study the energy use efficiency of those systems. An uncertainty analysis on the input factors and on the energy equivalents was then applied. Over a measurement period of 18-month, the energy use for coriander, lettuce, radish and spinach was investigated, respectively 12.1, 18.8, 6.6 and 10.7 GJ ha{sup -1} were consumed in these cropping systems. Negative balances were observed for all species exception made for spinach where an output:input ratio of 1.16 was found. The two-way uncertainty analysis showed the highest uncertainty for N-based fertilization while no significant effect was observed for seeds in direct sowing crops. Sustainability of peri-urban horticulture around Bogota is compromised not only because of the city expansion but also due to its inefficient energy use. Technical improvements are required to ensure the environmental subsistence of this important sector for the metropolitan area of the city. (author)

  16. First results from the International Urban Energy Balance Model Comparison: Model Complexity

    Science.gov (United States)

    Blackett, M.; Grimmond, S.; Best, M.

    2009-04-01

    A great variety of urban energy balance models has been developed. These vary in complexity from simple schemes that represent the city as a slab, through those which model various facets (i.e. road, walls and roof) to more complex urban forms (including street canyons with intersections) and features (such as vegetation cover and anthropogenic heat fluxes). Some schemes also incorporate detailed representations of momentum and energy fluxes distributed throughout various layers of the urban canopy layer. The models each differ in the parameters they require to describe the site and the in demands they make on computational processing power. Many of these models have been evaluated using observational datasets but to date, no controlled comparisons have been conducted. Urban surface energy balance models provide a means to predict the energy exchange processes which influence factors such as urban temperature, humidity, atmospheric stability and winds. These all need to be modelled accurately to capture features such as the urban heat island effect and to provide key information for dispersion and air quality modelling. A comparison of the various models available will assist in improving current and future models and will assist in formulating research priorities for future observational campaigns within urban areas. In this presentation we will summarise the initial results of this international urban energy balance model comparison. In particular, the relative performance of the models involved will be compared based on their degree of complexity. These results will inform us on ways in which we can improve the modelling of air quality within, and climate impacts of, global megacities. The methodology employed in conducting this comparison followed that used in PILPS (the Project for Intercomparison of Land-Surface Parameterization Schemes) which is also endorsed by the GEWEX Global Land Atmosphere System Study (GLASS) panel. In all cases, models were run

  17. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    OpenAIRE

    Li-Chun Huang; Yu-Hui Chen; Ya-Hui Chen; Chi-Fang Wang; Ming-Che Hu

    2018-01-01

    This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban a...

  18. Urban sustainable energy development: A case study of the city of Philadelphia

    Science.gov (United States)

    Argyriou, Iraklis

    This study explores the role of cities in sustainable energy development through a governance-informed analysis. Despite the leading position of municipalities in energy sustainability, cities have been mostly conceptualized as sites where energy development is shaped by external policy scales, i.e. the national level. A growing body of research, however, critiques this analytical perspective, and seeks to better understand the type of factors and dynamics that influence energy sustainability within a multi-level policy context for urban energy. Given that particular circumstances are applicable across cities, a context-specific analysis can provide insight regarding how sustainable energy development takes place in urban areas. In applying such an analytical perspective on urban energy sustainability, this study undertakes a qualitative case study analysis for the city of Philadelphia, Pennsylvania, by looking at four key local policy initiatives relevant to building energy efficiency and solar electricity development at the municipal government and city-wide level. The evaluation of the initiatives suggests that renewable electricity use has increased substantially in the city over the last years but the installed capacity of local renewable electricity systems, including solar photovoltaics, is low. On the other hand, although the city has made little progress in meeting its building energy efficiency targets, more comprehensive action is taken in this area. The study finds that the above outcomes have been shaped mainly by four factors. The first is the city government's incremental policy approach aiming to develop a facilitative context for local action. The second is the role that a diverse set of stakeholders have in local sustainable energy development. The third is the constraints that systemic policy barriers create for solar power development. The fourth is the ways through which the relevant multi-level policy environment structures the city

  19. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-12-15

    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In

  20. Mode selection of China's urban heating and its potential for reducing energy consumption and CO2 emission

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2014-01-01

    China's carbon dioxide (CO 2 ) emission ranks the highest in the world. CO 2 emission from urban central heating, which has an average annual growth rate of 10.3%, is responsible for 4.4% of China's total CO 2 emission. The current policy for improving urban central heating focuses on replacing coal with natural gas. This paper analyzes the existing situation and problems pertaining to urban heating, and evaluates the potential for reducing energy consumption and CO 2 emission by heat pump heating. The results show that the current policy of replacing coal with natural gas for urban central heating decreases energy consumption and CO 2 emission by 16.6% and 63.5%, respectively. On the other hand, replacing coal-based urban central heating with heat pump heating is capable of decreasing energy consumption and CO 2 emission by 57.6% and 81.4%, respectively. Replacing both urban central and decentralized heating with heat pump heating can lead to 67.7% and 85.8% reduction in energy consumption and CO 2 emission, respectively. The decreases in CO 2 emission will account for 24.5% of China's target to reduce total CO 2 emission by 2020. - Highlights: • Existing situation and problems of urban heating in China. • Feasibility of heat pump heating in China. • Potential of energy saving and emission reduction for heat pump heating. • China should adjust urban heating strategy. • Replacing urban central heating and decentralized heating with heat pump heating

  1. The socioeconomic impact of energy saving renovation measures in urban buildings

    OpenAIRE

    Mikulić, Davor; Rašić Bakarić, Ivana; Slijepčević, Sunčana

    2016-01-01

    The purpose of the paper is to investigate the role of measures oriented to energy savings in residential buildings in the economic development at the regional level. The aim of the paper is to estimate overall socio-economic impact of energy saving renovation measures in the Croatian urban areas. Impact assessment is based on input–output methodology which is able to quantify direct and indirect effects of investment in the energy saving projects on the economic activity and employment...

  2. The capacity for integrated community energy solutions policies to reduce urban greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, C.; Goldberg, S.; Sharp, J.; Melton, N.; Peters, J.; Wolinetz, M. [Quality Urban Energy Systems of Tomorrow, Ottawa, ON (Canada); Miller, E. [University of Toronto, Toronto, ON (Canada); Cavens, D. [University of British Columbia, Vancouver, BC (Canada)

    2010-08-26

    The implementation of policies promoting integrated urban energy solutions (ICES) could allow a reduction in Canada's urban greenhouse gas (GHG) emissions by 2050. The concept and its related policies impact all urban sectors of the economy, such as residential, commercial, urban and inter-city personal transportation, freight transportation, waste and water. ICES policies are considered feasible and necessary, and many cities around the world, like Stockholm and Utrecht, have implemented them successfully. Sustainable land use policies should be the first to be developed since all urban form, transportation, and energy use decisions are made within the framework they generate. In the long term, moderate to aggressive ICES policies generate reductions of GHG emission and energy use but also an increase of 0.3-0.9% of the GDP. Aggressive ICES policies also allow a reduction in the structural unemployment and an increase of the number of jobs. While the effects of the implementation of targeted abatement policies such as the carbon tax or technology regulations are observed within a few years, ICES produce effects on a longer term. In the short term, they allow the release of money that could be spent by households to reduce the economic burden generated by abatement policies. In the longer term, they allow reductions to take over the effects of the short term policies, taking into consideration the increasing size of the population and the economy. Therefore, ICES policies seem to be an important part of comprehensive policy efforts intending to satisfy Canada's energy use and GHG emissions objectives. 218 refs., 49 tabs., 41 figs.

  3. Research on Energy-Saving Operation Strategy for Multiple Trains on the Urban Subway Line

    Directory of Open Access Journals (Sweden)

    Jianqiang Liu

    2017-12-01

    Full Text Available Energy consumption for multiple trains on the urban subway line is predominantly affected by the operation strategy. This paper proposed an energy-saving operation strategy for multiple trains, which is suitable for various line conditions and complex train schedules. The model and operation modes of the strategy are illustrated in detail, aiming to take full use of regenerative braking energy in complex multi-train systems with different departure intervals and dwell times. The computing method is proposed by means of the heuristic algorithm to obtain the optimum operation curve for each train. The simulation result based on a real urban subway line is provided to verify the correctness and effectiveness of the proposed energy-saving operation strategy.

  4. Urban passenger transport energy saving and emission reduction potential: A case study for Tianjin, China

    International Nuclear Information System (INIS)

    Peng, Binbin; Du, Huibin; Ma, Shoufeng; Fan, Ying; Broadstock, David C.

    2015-01-01

    Highlights: • Potential to reduce urban passenger transport is projected between 2010 and 2040. • Four scenarios reflecting different policy mixes are considered. • The potential for energy conservation and emission reductions are obtained. • Vehicle population regulation is most effective in energy saving and reducing overall GHG. • Emission standards are the most effective measure to reduce pollutant emissions. - Abstract: With rapid growth of the vehicle population, urban passenger transport in China is largely responsible for increases in energy consumption, greenhouse gas (GHG) emissions, and also atmospheric pollutants (NO x , CO, HC, PM). In this paper, we first develop an urban passenger transport energy saving and emission reduction potential evaluation model using the “Long Range Energy Alternatives Planning (LEAP)” tool; and then take Tianjin city as an empirical case to evaluate the reduction potential of final energy consumption, GHG emissions and pollutants emissions of Tianjin’s urban passenger transport sector between 2010 and 2040 under four scenarios, i.e. BAU (business as usual) scenario, PP (the 12th five-year plan policy) scenario, CP (comprehensive policy) scenario and HP (hybrid policy of PP and CP) scenario. The results show that due to the public transport promotion, energy consumption and CO 2 emissions in 2040 can be reduced by 22% and 22.6% in the PP scenario, compared to BAU. The largest reductions in energy consumption, CO 2 and atmospheric pollutants emissions can be achieved under CP scenario, in which vehicle population regulation is the most effective to be implemented. Emissions standard regulation is the most effective measure to reduce atmospheric pollutant emissions in all the scenarios and green energy promotion is especially effective to reduce NO x and PM

  5. Retroreflective façades for urban heat island mitigation: Experimental investigation and energy evaluations

    International Nuclear Information System (INIS)

    Rossi, Federico; Castellani, Beatrice; Presciutti, Andrea; Morini, Elena; Filipponi, Mirko; Nicolini, Andrea; Santamouris, Matheos

    2015-01-01

    Highlights: • Retro-reflective (RR) materials are an effective strategy for mitigating UHI. • Optical properties of RR materials are assessed by a new experimental facility. • Angular distribution of reflected radiation is assessed during daytime. • RR component is treated as a diffusely reflected radiation by a reduction factor. • An algorithm evaluates the cooling potential of RR materials in urban canyons. - Abstract: The optimization of optical properties of buildings’ envelope and urban paving represents an important research field for reducing the urban heat island effect. The overheating of a surface exposed to sunlight can be reduced by improving solar reflectance. In this sense, several studies have demonstrated the positive effect of cool materials on UHI mitigation. In addition to traditional cool materials, retroreflective (RR) materials have been recently proposed for this application. The present paper aims at the assessment of angular reflectance of RR films for several inclination angles of solar radiation. To reproduce variation of solar radiation’s inclination during the daytime, an ad hoc experimental setup was designed and used. Characterization of RR materials when hit by solar radiation with different inclinations allows to assess their behaviour on daytime if used as novel urban coatings for mitigation of the UHI phenomenon. Measurement results are used as input for an original algorithm which allows to quantify cooling potential of RR materials in terms of energy reflected and sent beyond the urban canyon. The experimental characterization and energy evaluations showed that RR materials could be effectively applied as coatings on urban paving and building envelope, in order to reduce the circulating energy into the canyon

  6. Urban-rural difference in the determinants of dietary and energy intake patterns: A case study in West Java, Indonesia.

    Science.gov (United States)

    Kosaka, Satoko; Suda, Kazuhiro; Gunawan, Budhi; Raksanagara, Ardini; Watanabe, Chiho; Umezaki, Masahiro

    2018-01-01

    Few studies have explored differences in the determinants of individual dietary/energy intake patterns between urban and rural areas. To examine whether the associations between individual characteristics and dietary/energy intake patterns differ between urban and rural areas in West Java, Indonesia. A 3-day weighed food record, interviews, and anthropometric measurements were conducted in Bandung (urban area; n = 85) and Sumedang (rural area; n = 201). Total energy intake and intake from protein, fat, and carbohydrates were calculated. Food items were grouped into dietary categories based on the main ingredients to calculate their share of total energy intake. The associations between individual characteristics and dietary/energy intake were examined by fitting regression models. Models that also included education and body mass index (BMI) were fitted to adult samples only. In Sumedang, the total energy intake and energy intake from carbohydrates, fat, and grain/tubers were significantly associated with age and occupation. In Bandung, energy intake from grain/tubers and vegetables/legumes was related to sex and occupation, while other indicators showed no associations. Among adults, BMI was associated with the total energy intake and educational level was associated with energy intake from vegetables/legumes (both only in Sumedang). The relationship between demographic and socioeconomic factors and dietary/energy intake patterns differs in rural versus urban areas in West Java. These results suggest that different strategies are needed in rural and urban areas to identify and aid populations at risk of diet-related diseases.

  7. Urban agriculture in the transition to low carbon cities through urban greening

    Directory of Open Access Journals (Sweden)

    Mary Thornbush

    2015-08-01

    Full Text Available Urban agriculture presents an opportunity to extend food production to cities. This could enhance food security, particularly in developing countries, and allow for adaptation to growing urbanization. This review paper examines current trends in urban agriculture from a global perspective as a mitigation-adaptation approach to climate change adaptation in the midst of a growing world population. Employing vegetation as a carbon capture and storage system encapsulates a soft-engineering strategy that can be easily deployed by planners and environmental managers. In this review, urban agriculture is presented as a land-use solution to counteract the effects of urbanization, and as a means to establish a continuum between cities and the countryside. It espouses the usefulness of urban agriculture to enhance food security while sequestering carbon. As part of urban greening (including newer approaches, such as green roofs and gardens as well as more established forms of greening, such as forests and parks, urban agriculture offers traditionally rural services in cities, thereby contributing to food resources as well as working to alleviate pressing social issues like poverty. It also provides a way to reduce stress on farmland, and creates opportunities for employment and community-building. As part of greening, urban agriculture provides a buffer for pollution and improves environmental (and well as human health and well-being. This review begins by addressing the physical factors of adopting urban agriculture, such as climate change and development, land use and degradation, technology and management, and experimental findings as well as human factors investigated in the published literature. As such, it presents an integrated approach to urban agriculture that is part of a social-ecological perspective.

  8. Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States

    International Nuclear Information System (INIS)

    Parshall, Lily; Gurney, Kevin; Hammer, Stephen A.; Mendoza, Daniel; Zhou, Yuyu; Geethakumar, Sarath

    2010-01-01

    Local policy makers could benefit from a national, high-resolution inventory of energy consumption and related carbon dioxide (CO 2 ) emissions based on the Vulcan data product, which plots emissions on a 100 km 2 grid. We evaluate the ability of Vulcan to measure energy consumption in urban areas, a scale of analysis required to support goals established as part of local energy, climate or sustainability initiatives. We highlight the methodological challenges of this type of analytical exercise and review alternative approaches. We find that between 37% and 86% of direct fuel consumption in buildings and industry and between 37% and 77% of on-road gasoline and diesel consumption occurs in urban areas, depending on how these areas are defined. We suggest that a county-based definition of urban is preferable to other common definitions since counties are the smallest political unit for which energy data are collected. Urban counties, account for 37% of direct energy consumption, or 50% if mixed urban counties are included. A county-based definition can also improve estimates of per-capita consumption.

  9. Resources and Energy Management: the case of the Agropoli Urban Plan

    OpenAIRE

    Francesco Domenico Moccia

    2013-01-01

    The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on ...

  10. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    Science.gov (United States)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  11. Thermographic Mobile Mapping of Urban Environment for Lighting and Energy Studies

    Directory of Open Access Journals (Sweden)

    Susana Lagüela López

    2014-12-01

    Full Text Available The generation of 3D models of buildings has been proved as a useful procedure for multiple applications related to energy, from energy rehabilitation management to design of heating systems, analysis of solar contribution to both heating and lighting of buildings. In a greater scale, 3D models of buildings can be used for the evaluation of heat islands, and the global thermal inertia of neighborhoods, which are essential knowledge for urban planning. This paper presents a complete methodology for the generation of 3D models of buildings at big-scale: neighborhoods, villages; including thermographic information as provider of information of the thermal behavior of the building elements and ensemble. The methodology involves sensor integration in a mobile unit for data acquisition, and data processing for the generation of the final thermographic 3D models of urban environment.

  12. Measuring the impact of urban policies on transportation energy saving using a land use-transport model

    Directory of Open Access Journals (Sweden)

    Masanobu Kii

    2014-03-01

    This study demonstrates the applicability of a land-use transport model to the assessment of urban policies for building smart communities. First, we outline a model that explicitly formulates the actors' location-related decisions and travel behavior. Second, we apply this model to two urban policies – road pricing and land-use regulation – to assess their long-term impact on energy saving and sustainability using the case of a simplified synthetic city. Our study verifies that, under assumed conditions, the model has the capacity to assess urban policies on energy use and sustainability in a consistent fashion.

  13. Energy budget of the convective boundary layer over an urban and rural environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerschgens, M J; Hacker, J M

    1985-05-01

    The results of a two day field study in and around the city of Bonn (50/sup 0/ 42'N, 7/sup 0/ 2'E) are presented. The study was designed to compare the energy balances at the top of the rural and urban canopy layer, and to get estimates of the various terms of the budgets of sensible and latent heat. The synoptic situation during the experiment was dominated by a high pressure cell leading to mostly undisturbed conditions with a convective boundary layer under a subsidence inversion. The measurements of several ground-based instruments, a radiosonde, two tethered sondes and a motorglider were combined to give a comprehensive picture of the contrasts between the urban and rural conditions. Main results of the study are: a confirmation of the previously supposed relation between the strength of the urban heat and moisture anomaly and the mean wind; a correlation between the Bowen ratio of the canopy fluxes and the fractional amount of green space in urban areas; a negligible difference in the net radiative fluxes and their divergences between the urban and rural environment; significant differences in the energy budgets of the two regions, especially in the divergences of the turbulent vertical heat fluxes and the advection mechanisms and time-height cross sections of the Bulk-Richardson number for two sites upwind and downwind of the city.

  14. Is urbanization eco-friendly? An energy and land use cross-country analysis

    International Nuclear Information System (INIS)

    Long, X.; Ji, Xi; Ulgiati, S.

    2017-01-01

    Urbanization imposes complicated and heterogeneous impacts on ecosystems. With the purpose of reflecting the comprehensive influence of urbanization on the ecosystem, we choose the ecological footprint to represent the ecosystem's integrated change and distinguish low-income, middle-income and high-income countries to reflect the nonlinear impact. This paper uses both static and dynamic STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) models to analyze 72 countries at different income levels during the 1980–2008 period. The results show that the overall ecological elasticity of urbanization at the global level is negative. Specifically, results suggest urbanization, associated to increased income, to have eco-friendly potential in terms of decreased ecological footprint. To explain such results, this paper answers two questions: Why does urbanization show ecological protection effects? Why does a more pronounced protection effect seem associated to increased income levels? Improved market mechanism, increased resource use efficiency as well as increased environmental awareness in urban areas associated to increased income levels are likely to support an eco-friendly urbanization process. Burden-shift to low-income countries also needs to be taken into account, in order to avoid policies that increase wellbeing locally at the expenses of far-away areas. - Highlights: • Ecological effects of urbanization are estimated. • Ecological footprint is used to represent the integrated change related to energy and land use. • Static and dynamic STIRPAT models are employed for regression. • The reasons for the ecological protection effect of urbanization are analyzed. • The heterogeneity of urban structure and function across income levels is discussed.

  15. Concept of the Interactive Platform for Real Time Energy Consumption Analysis in the Complex Urban Environment

    Directory of Open Access Journals (Sweden)

    Ales Podgornik

    2015-03-01

    Full Text Available This paper presents a concept of interactive and comprehensive platform based on advanced metering infrastructure for exchanging information on energy consumption and consequently on energy efficiency in urban and industrial environment which can serve as powerful tool for monitoring of progress in transition toward low carbon society. Proposed concept aims at supporting energy utilities in optimizing energy performance of both supply and demand side aspect of their work and have a potential to fill the gap and help in harmonization of interests between the energy utilities, energy service providers, local energy agencies and citizens. The proposed concept should be realized as a platform with the modular architecture, allowing future expansion of user’s portfolio and inventory management (new energy efficiency measures, technologies, different industries, urban districts and regions.

  16. Urban biomass - not an urban legend

    Science.gov (United States)

    Utilizing biomass from urban landscapes could significantly contribute to the nation’s renewable energy needs. There is an estimated 16.4 million hectares of land in urban areas cultivated with turfgrass and associated vegetation. Vegetation in urban areas is intensely managed which lead to regula...

  17. Fit-for-purpose land administration : lessons from urban and rural Ethopia

    NARCIS (Netherlands)

    Bennett, R.M.; Alemie, B.K.

    2016-01-01

    Lessons for designing fit-for-purpose land administration and land management activities, where the stated purposes are poverty alleviation, food security, and good governance, are provided. Contemporary developments from urban and rural Ethiopia provide the empirical basis: data is synthesised from

  18. Impact of energy consumption on urban warming and air pollution in Tokyo metropolitan area

    International Nuclear Information System (INIS)

    Saitoh, T.S.; Hoshi, H.

    1995-01-01

    The rapid progress of industrialization and urbanization due to economic growth and concentration of social function in the urban areas in Japan have had an adverse effect on the urban environment. In most cities, it has become evident that the increase in energy consumption is causing environmental problems, including a temperature rise in the urban atmosphere (urban heat island) and air pollution. This paper reports the results of field observations and three dimensional simulations of the urban heat island using a three-dimensional modelling vorticity-velocity vector potential formation, in the Tokyo metropolitan area. According to the simulation for urban warming in the study area for the year 2031, the maximum temperature of a summer evening (18:00) would exceed 43 degrees celsius, indicating that Tokyo would no longer be comfortable for its inhabitants. It is concluded that in the near future, the problem of the urban heat island will become a more important issue than that of global warming because the rate of urban warming is greater. For this reason, the urban heat island could be fatal to humans unless resolved in the near future. (author). 1 tab., 11 figs., 18 refs

  19. LIDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling

    Energy Technology Data Exchange (ETDEWEB)

    Christen, A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Geography; Coops, N. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Canada Research Chairs, Ottawa, ON (Canada); Kellet, R. [British Columbia Univ., Vancouver, BC (Canada). School of Architecture and Landscape Architecture

    2010-07-01

    A remote sensing technology was used to model neighbourhood scale energy and carbon emissions in a case study set in Vancouver, British Columbia (BC). The study was used to compile and aggregate atmospheric carbon flux, urban form, and energy and emissions data in a replicable neighbourhood-scale approach. The study illustrated methods of integrating diverse emission and uptake processes on a range of scales and resolutions, and benchmarked comparisons of modelled estimates with measured energy consumption data obtained over a 2-year period from a research tower located in the study area. The study evaluated carbon imports, carbon exports and sequestration, and relevant emissions processes. Fossil fuel emissions produced in the neighbourhood were also estimated. The study demonstrated that remote sensing technologies such as LIDAR and multispectral satellite imagery can be an effective means of generating and extracting urban form and land cover data at fine scales. Data from the study were used to develop several emissions reduction and energy conservation scenarios. 6 refs.

  20. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  1. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  2. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  3. Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets

    International Nuclear Information System (INIS)

    Cerezo Davila, Carlos; Reinhart, Christoph F.; Bemis, Jamie L.

    2016-01-01

    City governments and energy utilities are increasingly focusing on the development of energy efficiency strategies for buildings as a key component in emission reduction plans and energy supply strategies. To support these diverse needs, a new generation of Urban Building Energy Models (UBEM) is currently being developed and validated to estimate citywide hourly energy demands at the building level. However, in order for cities to rely on UBEMs, effective model generation and maintenance workflows are needed based on existing urban data structures. Within this context, the authors collaborated with the Boston Redevelopment Authority to develop a citywide UBEM based on official GIS datasets and a custom building archetype library. Energy models for 83,541 buildings were generated and assigned one of 52 use/age archetypes, within the CAD modelling environment Rhinoceros3D. The buildings were then simulated using the US DOE EnergyPlus simulation program, and results for buildings of the same archetype were crosschecked against data from the US national energy consumption surveys. A district-level intervention combining photovoltaics with demand side management is presented to demonstrate the ability of UBEM to provide actionable information. Lack of widely available archetype templates and metered energy data, were identified as key barriers within existing workflows that may impede cities from effectively applying UBEM to guide energy policy. - Highlights: • Data requirements for Urban Building Energy Models are reviewed. • A workflow for UBEM generation from available GIS datasets is developed. • A citywide demand simulation model for Boston is generated and tested. • Limitations for UBEM in current urban data systems are identified and discussed. • Model application for energy management policy is shown in an urban PV scenario.

  4. Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district

    International Nuclear Information System (INIS)

    Gabillet, Pauline

    2015-01-01

    Through the analysis of energy supply choices, this article explores the way in which energy priorities and their climate-related features are incorporated into urban public policy. These choices must take account of different factors, as is the case with district heating, which is justified as a vehicle of renewable energy while subject to pressure in eco-districts because its techno-economic balances are destabilised by falls in demand. Our study focuses particularly on the city of Metz (France), which has chosen district heating as the primary source for provision for the municipal area and for its first eco-district. We analyse the tensions within these choices, with particular attention to the way in which they are negotiated inside municipal departments and with the local energy operator. This enables us to explore the tensions in defining the scale that governs decisions and the linkages between energy-related and urban priorities. - Highlights: • Analyses of tensions in the choice of energy supplies for eco-districts. •District heating networks can be vehicles of renewable energy. • District heating networks are threatened by drops in energy consumption. • Energy supply issues oppose urban planning and energy policy in municipal departments. • Technical and financial adjustments can be made by the municipality to justify its energy choices

  5. Connecting cities and their environments: Harnessing the water-energy-food nexus for sustainable urban development

    Directory of Open Access Journals (Sweden)

    Chan Arthur

    2015-01-01

    Full Text Available Thousands of years of development have made the production and consumption of water, energy, and food for urban environments more complex. While the rise of cities has fostered social and economic progress, the accompanying environmental pressures threaten to undermine these benefits. The compounding effects of climate change, habitat loss, pollution, overexploitation (in addition to financial constraints make the individual management of these three vital resources incompatible with rapidly growing populations and resource-intensive lifestyles. Nexus thinking is a critical tool to capture opportunities for urban sustainability in both industrialised and developing cities. A nexus approach to water, energy, and food security recognises that conventional decisionmaking, strictly confined within distinct sectors, limits the sustainability of urban development. Important nexus considerations include the need to collaborate with a wide spectrum of stakeholders, and to “re-integrate” urban systems. This means recognising the opportunities coming from the interconnected nature of cities and metropolitan regions, including links with rural environments and wider biophysical dynamics.

  6. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Directory of Open Access Journals (Sweden)

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  7. THE CALCULATION OF THE ENERGY RECOVERY ELECTRIFIED URBAN TRANSPORT DURING THE INSTALLATION DRIVE FOR TRACTION SUBSTATION

    Directory of Open Access Journals (Sweden)

    A. A. Sulim

    2014-01-01

    Full Text Available At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application  with drive and without it.These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.

  8. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  9. 3. national sittings on energy ''energy, urban mobility,... tomorrow: which responsibilities for the local governments?''; 3. assises nationales de l'energie. ''Energie, mobilite urbaine,... demain: quelles responsabilites pour les collectivites locales?''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This conference deals with the local government policy concerning the energy mastership of the transportation sector. Sixteen workshops discussed on the problem of the urban mobility in an environmental quality context: legal provisions affecting the energy mastership, mobility in the urban area, regulations, clean technologies enhancement, the public information impact on the energy consumption and the financial means. (A.L.B.)

  10. Understanding congested travel in urban areas

    Science.gov (United States)

    Çolak, Serdar; Lima, Antonio; González, Marta C.

    2016-03-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings.

  11. From Problems to Potentials—The Urban Energy Transition of Gruž, Dubrovnik

    Directory of Open Access Journals (Sweden)

    Andy van den Dobbelsteen

    2018-04-01

    Full Text Available In the challenge for a sustainable society, carbon-neutrality is a critical objective for all cities in the coming decades. In the EU City-zen project, academic partners collaborate to develop an urban energy transition methodology, which supports cities in making the energy transition to sustainable lifestyles and carbon neutrality. As part of the project, so-called Roadshows are organised in cities that wish to take the first step toward zero-energy living. Each Roadshow is methodologically composed to allow sustainability experts from across Europe to co-create designs, strategies and timelines with local stakeholders in order to reach this vital goal. Following a precursory investigative student workshop (the SWAT Studio, Dubrovnik was the third city to host the Roadshow in November 2016. During these events the characteristics of Dubrovnik, and the district of Gruž in particular, were systematically analysed, leading to useful insights into the current problems and potentials of the city. In close collaboration with local stakeholders, the team proposed a series of interventions, validated by the calculation of carbon emission, to help make Gruž, and in its wake the whole city of Dubrovnik, net zero energy and zero carbon. The vision presented to the inhabitants and its key city decision makers encompassed a path towards an attainable sustainable future. The strategies and solutions proposed for the Dubrovnik district of Gruž were able to reduce the current carbon sequestration compensation of 1200 hectares of forestland to only 67 hectares, an area achievable by urban reforestation projects. This paper presents the City-zen methodology of urban energy transition and that of the City-zen Roadshow, the analysis of the city of Dubrovnik, proposed interventions and the carbon impact, as calculated by means of the carbon accounting method discussed in the paper.

  12. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    Science.gov (United States)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  13. Wind Energy Assessment for Small Urban Communities in the Baja California Peninsula, Mexico

    Directory of Open Access Journals (Sweden)

    Quetzalcoatl Hernandez-Escobedo

    2016-10-01

    Full Text Available Mexico needs to exploit its renewable resources and many studies have determined the great renewable potential it has using wind energy. However it is necessary to calculate the amount of this resource for small urban communities, which in this country lack essential services such as electricity. This study is focused in the Baja California Peninsula, using GIS as a tool to identify small urban zones with higher wind power. For this work data was analyzed from meteorological stations and recorded every 10 min for two years (2012–2014. Weibull distribution, linear regression, kriging interpolation, power and energy output and useful hours were calculated for each station. It was found that the total energy generated is 38,603,666 kWh per year and the mean of useful hours is 5220 h per year for the whole Peninsula. Maps of Wind Power Density (WPD show a good power per square meter, GIS shows the areas with the most wind power where it can be used i.e., the state of Baja California wind power can generate electricity for 12% of those communities, meanwhile for Baja California Sur, the electric power generation could electrify almost 25% of the total of small urban communities.

  14. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  15. Conceptualizing urban household energy use: Climbing the 'Energy Services Ladder'

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2011-03-15

    This article begins by defining energy services and identifying how they differ according to sector, urban and rural areas, and direct and indirect uses. It then investigates household energy services divided into three classes: lower income, middle income, and upper income. It finds that the primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items). The study highlights how focusing on energy services reorients the direction of energy policy interventions, that energy services are neither uniform nor innate, and by noting exciting areas of potential research. - Research highlights: {yields} The primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. {yields} Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. {yields} The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items).

  16. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  17. Domestic energy-use pattern by the households: A comparison between rural and semi-urban areas of Noakhali in Bangladesh

    International Nuclear Information System (INIS)

    Miah, Md.Danesh; Foysal, Muhammad Abul; Koike, Masao; Kobayashi, Hajime

    2011-01-01

    An explorative survey was carried out on rural and semi-urban households to find out the energy consumption pattern with respect to socio-demographic and geographic factors in Bangladesh by using stratified random sampling technique. The study revealed that 100% of the households used biomass, 98% kerosene, 61% electricity, 23% LPG and 5% candle in the rural areas. In the semi-urban areas, 100% of the households used electricity, candle and natural gas, 60% kerosene and 13% petrol. Households' mean expenditure for total energy was US$ 5.34 (SE, 0.43) with total income US$ 209.84 (SE, 6.69) month -1 in the rural areas, while it was US$ 6.20 (SE, 1.35) in the semi-urban areas with the total income US$ 427.76 (SE, 24.19) month -1 . This study may be a useful baseline information to energy policy makers in Bangladesh. - Highlights: →The study provides an empirical analysis of household energy consumption. → Rural households are dominated by biomass energy. → Semi-urban households are dominated by standard commercial energy (natural gas and electricity).→ Monthly income, dwelling status and literacy of the households clearly influences energy use.→ The major energy use in the rural households is for the cooking purpose.

  18. Domestic energy-use pattern by the households: A comparison between rural and semi-urban areas of Noakhali in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md.Danesh, E-mail: danesh@cu.ac.bd [Institute of Forestry and Environmental Sciences, University of Chittagong, 4331 Chittagong (Bangladesh); Forest Policy Laboratory, Shinshu University, 8304 Minamiminowa-Mura, Kami Ina Gun, 399-4598 Nagano-ken (Japan); Foysal, Muhammad Abul [Institute of Forestry and Environmental Sciences, University of Chittagong, 4331 Chittagong (Bangladesh); Koike, Masao [Forest Policy Laboratory, Shinshu University, 8304 Minamiminowa-Mura, Kami Ina Gun, 399-4598 Nagano-ken (Japan); Kobayashi, Hajime [Laboratory of Forest Environment and Ecology, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa-Mura, Kami Ina Gun, 399-4598 Nagano-ken (Japan)

    2011-06-15

    An explorative survey was carried out on rural and semi-urban households to find out the energy consumption pattern with respect to socio-demographic and geographic factors in Bangladesh by using stratified random sampling technique. The study revealed that 100% of the households used biomass, 98% kerosene, 61% electricity, 23% LPG and 5% candle in the rural areas. In the semi-urban areas, 100% of the households used electricity, candle and natural gas, 60% kerosene and 13% petrol. Households' mean expenditure for total energy was US$ 5.34 (SE, 0.43) with total income US$ 209.84 (SE, 6.69) month{sup -1} in the rural areas, while it was US$ 6.20 (SE, 1.35) in the semi-urban areas with the total income US$ 427.76 (SE, 24.19) month{sup -1}. This study may be a useful baseline information to energy policy makers in Bangladesh. - Highlights: >The study provides an empirical analysis of household energy consumption. > Rural households are dominated by biomass energy. > Semi-urban households are dominated by standard commercial energy (natural gas and electricity).> Monthly income, dwelling status and literacy of the households clearly influences energy use.> The major energy use in the rural households is for the cooking purpose.

  19. DEVELOPING AN INTEGRATED MANAGEMENT SYSTEM FOR URBAN AND ENERGY PLANNING TOWARDS A LOW-CARBON CITY

    Science.gov (United States)

    Maeda, Hideto; Nakakubo, Toyohiko; Tokai, Akihiro

    In this study, we developed an integrated management model that supports local government to make a promising energy saving measure on a block-scale combined with urban planning. We applied the model to Osaka city and estimated CO2 emissions from the residential and commercial buildings to 2050. The urban renewal cases selected in this study included advanced multipole accumulation case, normal multipole accumulation case, and actual trend continuation case. The energy saving options introduced in each case included all-electric HP system, micro grid system, and we also set the option where the greater CO2 reduction one is selected in each block. The results showed that CO2 emission in 2050 would be reduced by 54.8-57.6% relative to the actual condition by introducing the new energy system in all cases. In addition, the amount of CO2 reduction in actual trend continuation case was highest. The major factor was that the effect of CO2 emission reductions by installing the solar power generation panel was higher than the effect by utilizing heated water mutually on the high-density blocks in terms of total urban buildings' energy consumption.

  20. CO2 Emissions from Direct Energy Use of Urban Households in India.

    Science.gov (United States)

    Ahmad, Sohail; Baiocchi, Giovanni; Creutzig, Felix

    2015-10-06

    India hosts the world's second largest population and offers the world's largest potential for urbanization. India's urbanization trajectory will have crucial implications on its future GHG emission levels. Using household microdata from India's 60 largest cities, this study maps GHG emissions patterns and its determinants. It also ranks the cities with respect to their household actual and "counter-factual" GHG emissions from direct energy use. We find that household GHG emissions from direct energy use correlate strongly with income and household size; population density, basic urban services (municipal water, electricity, and modern cooking-fuels access) and cultural, religious, and social factors explain more detailed emission patterns. We find that the "greenest" cities (on the basis of household GHG emissions) are Bareilly and Allahabad, while the "dirtiest" cities are Chennai and Delhi; however, when we control for socioeconomic variables, the ranking changes drastically. In the control case, we find that smaller lower-income cities emit more than expected, and larger high-income cities emit less than expected in terms of counter-factual emissions. Emissions from India's cities are similar in magnitude to China's cities but typically much lower than those of comparable U.S. cities. Our results indicate that reducing urban heat-island effects and the associated cooling degree days by greening, switching to modern nonsolid cooking fuels, and anticipatory transport infrastructure investments are key policies for the low-carbon and inclusive development of Indian cities.

  1. The Energy-Gender Nexus: A Case Study among Urban and Peri ...

    African Journals Online (AJOL)

    The study was conducted in Southern Ethiopia with the objective of investigating the linkages between energy and gender among urban female-headed households (FHHs) residing both in and surrounding parts of Arba-Minch Town. The research design is mainly based on the quantitative methods and complemented with ...

  2. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  3. Poverty in Rural and Semi-Urban Mexico during 1992-2002

    OpenAIRE

    Verner, Dorte

    2005-01-01

    This paper analyzes poverty in rural and semi-urban areas of Mexico (localities with less than 2,500 and 15,000 inhabitants, respectively) and provides guidance on a social agenda and poverty alleviation strategy for rural Mexico. The analyses are based on INIGH and ENE data sets for 1992-2002. Monetary extreme poverty affected 42 percent of the rural dwellers in dispersed rural areas and 21 percent in semi-urban areas in 2002, slightly less than one decade earlier. Most of the rural poor liv...

  4. Renewable energy for sustainable urban development: Redefining the concept of energisation

    Energy Technology Data Exchange (ETDEWEB)

    Nissing, Christian [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); Blottnitz, Harro von, E-mail: Harro.vonBlottnitz@uct.ac.z [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); African Centre for Cities, University of Cape Town (South Africa)

    2010-05-15

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development.

  5. Renewable energy for sustainable urban development. Redefining the concept of energisation

    Energy Technology Data Exchange (ETDEWEB)

    Nissing, Christian [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); Von Blottnitz, Harro [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); African Centre for Cities, University of Cape Town (South Africa)

    2010-05-15

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development. (author)

  6. Renewable energy for sustainable urban development: Redefining the concept of energisation

    International Nuclear Information System (INIS)

    Nissing, Christian; Blottnitz, Harro von

    2010-01-01

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development.

  7. Electric buses - An energy efficient urban transportation means

    Energy Technology Data Exchange (ETDEWEB)

    Kuehne, Reinhart [German Aerospace Center (DLR), Transportation Studies, Rutherfordstr. 2, 12489 Berlin (Germany)

    2010-12-15

    Bus transit systems with electric traction are an important contribution to the post fossil fuel mobility. Most renewable energy sources provide energy in the form of electricity. Electric motors thus have promise in the development of the way ''beyond oil''. The reactivation of trolley bus systems - grid bounded but also catenary free for short distances - paves this way. The design of modern trolley bus operations overcomes the existing disadvantages of conventional buses using fossil fuel. Germany has an efficient industry in this field, that offers braking energy recovery and energy storage in modern supercapacitors as well as technical and organisational innovations for a local emission free and a low noise transit system. Gentle but powerful when starting and braking, the trolley bus is cost effective and easy to integrate into an existing infrastructure. Such an electric bus system is ecological, customer-friendly and suitable for cities. It has a high economic efficiency and it also expands the traffic planning field towards an ecological future technology. This paper shows examples at home and abroad how electric buses achieve an energy solving modern urban traffic. It gives insights into technical developments of electric vehicle equipment, cateneries with fast driving handling characteristics and the use of plain electric and hybrid powertrains. (author)

  8. GLP-1 nanomedicine alleviates gut inflammation.

    Science.gov (United States)

    Anbazhagan, Arivarasu N; Thaqi, Mentor; Priyamvada, Shubha; Jayawardena, Dulari; Kumar, Anoop; Gujral, Tarunmeet; Chatterjee, Ishita; Mugarza, Edurne; Saksena, Seema; Onyuksel, Hayat; Dudeja, Pradeep K

    2017-02-01

    The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate that GLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD). Published by Elsevier Inc.

  9. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria.

    Science.gov (United States)

    Ali, Hamisu Sadi; Law, Siong Hook; Zannah, Talha Ibrahim

    2016-06-01

    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment.

  10. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA.

    Science.gov (United States)

    Dogan, Eyup; Turkekul, Berna

    2016-01-01

    This study aims to investigate the relationship between carbon dioxide (CO2) emissions, energy consumption, real output (GDP), the square of real output (GDP(2)), trade openness, urbanization, and financial development in the USA for the period 1960-2010. The bounds testing for cointegration indicates that the analyzed variables are cointegrated. In the long run, energy consumption and urbanization increase environmental degradation while financial development has no effect on it, and trade leads to environmental improvements. In addition, this study does not support the validity of the environmental Kuznets curve (EKC) hypothesis for the USA because real output leads to environmental improvements while GDP(2) increases the levels of gas emissions. The results from the Granger causality test show that there is bidirectional causality between CO2 and GDP, CO2 and energy consumption, CO2 and urbanization, GDP and urbanization, and GDP and trade openness while no causality is determined between CO2 and trade openness, and gas emissions and financial development. In addition, we have enough evidence to support one-way causality running from GDP to energy consumption, from financial development to output, and from urbanization to financial development. In light of the long-run estimates and the Granger causality analysis, the US government should take into account the importance of trade openness, urbanization, and financial development in controlling for the levels of GDP and pollution. Moreover, it should be noted that the development of efficient energy policies likely contributes to lower CO2 emissions without harming real output.

  11. Energy efficiency of urban transportation system in Xiamen, China. An integrated approach

    International Nuclear Information System (INIS)

    Meng, Fanxin; Liu, Gengyuan; Yang, Zhifeng; Casazza, Marco; Cui, Shenghui; Ulgiati, Sergio

    2017-01-01

    Highlights: • An integrated life cycle approach is used to study Urban Transport Metabolism (UTM). • A selection of different material, energy and environmental assessment methods is synergically applied. • The study is based on an accurate inventory of infrastructure, machinery and operative resource costs. • Results show that the different methods provide much needed insight into different aspects of UTM. • Innovative Bus Rapid Transport shows better resource and environmental performance than Normal Bus Transport system. - Abstract: An integrated life cycle approach framework, including material flow analysis (MFA), Cumulative Energy Demand (CED), exergy analysis (EXA), Emergy Assessment (EMA), and emissions (EMI) has been constructed and applied to examine the energy efficiency of high speed urban bus transportation systems compared to conventional bus transport in the city of Xiamen, Fujian province, China. This paper explores the consistency of the results achieved by means of several evaluation methods, and explores the sustainability of innovation in urban public transportation systems. The case study dealt with in this paper is a Bus Rapid Transit (BRT) system compared to Normal Bus Transit (NBT). All the analyses have been performed based on a common yearly database of natural resources, material, labor, energy and fuel input flows used in all life cycle phases (resource extraction, processing and manufacturing, use and end of life) of the infrastructure, vehicle and vehicle fuel. Cumulative energy, material and environmental support demands of transport are accounted for. Selected pressure indicators are compared to yield a comprehensive picture of the public transportation system. Results show that Bus Rapid Transit system (BRT) shows much better energy and environmental performance than NBT, as indicated by the set of sustainability indicators calculated by means of our integrated approach. This is because of the higher efficiency of such

  12. Wind Energy Assessment for Small Urban Communities in the Baja California Peninsula, Mexico

    OpenAIRE

    Quetzalcoatl Hernandez-Escobedo

    2016-01-01

    Mexico needs to exploit its renewable resources and many studies have determined the great renewable potential it has using wind energy. However it is necessary to calculate the amount of this resource for small urban communities, which in this country lack essential services such as electricity. This study is focused in the Baja California Peninsula, using GIS as a tool to identify small urban zones with higher wind power. For this work data was analyzed from meteorological stations and reco...

  13. The Urban Social and Energy Use Data Embedded in Suomi-NPP VIIRS Nighttime Lights: Algorithm Overview and Status

    Science.gov (United States)

    Stokes, E. C.; Roman, M. O.; Seto, K. C.

    2014-12-01

    Although urban areas contribute between 67-75% of global greenhouse gas (GHG) emissions, there is very little understanding of what drives anthropogenic emissions both locally and globally. Part of this gap in knowledge is due to a lack of reliable measurements across a range of urban scales. Where, when, and how much urban areas use energy is also a function of human activity patterns and social practices deeply embedded in culture. One apparent manifestation of energy use patterns in human settlements is in the celebration of holidays - when human activity patterns change, this affects short-term patterns in energy consumption. Using satellite-based retrievals of nighttime lighting (NTL) during three major holiday periods, (1) Christmas and New Year's, (2) the Holy Month of Ramadan, and (3) the Chinese Spring Festival, we demonstrate that cultural variations within and between urban areas contextualize and shape the magnitude and timing of energy use. We derived NTL signatures from the Suomi-NPP satellite's (VIIRS) Day/Night Band for two years and over 1200 cities. The high-quality NTL retrievals are based on the latest science reprocessing (Collection V1.1, c. 8/2014) produced by the Land Product Evaluation and Analysis Tool Element (Land PEATE) at NASA's Goddard Space Flight Center. After correcting for cloud and snow cover, as well as atmospheric-, terrain-, lunar BRDF-, fire-, and straylight effects, the high-resolution NTL time series were decomposed into seasonal, trend, and remainder signals—revealing strong, consistent patterns of activity changes during holiday periods. We demonstrate that patterns of holiday luminosity reveal changes in human activities important for understanding urban demographics and urban dynamics, and are strong examples of the socio-cultural and energy demand signatures embedded in satellite remote sensing imagery.

  14. Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China

    International Nuclear Information System (INIS)

    Sun, Chuanwang; Ouyang, Xiaoling

    2016-01-01

    Urbanization, one of the most obvious characteristics of economic growth in China, has an apparent “lock-in effect” on residential energy consumption pattern. It is expected that residential sector would become a major force that drives China's energy consumption after urbanization process. We estimate price and expenditure elasticities of residential energy demand using data from China's Residential Energy Consumption Survey (CRECS) that covers households at different income levels and from different regional and social groups. Empirical results from the Almost Ideal Demand System model are in accordance with the basic expectations: the demands for electricity, natural gas and transport fuels are inelastic in the residential sector due to the unreasonable pricing mechanism. We further investigate the sensitivities of different income groups to prices of the three types of energy. Policy simulations indicate that rationalizing energy pricing mechanism is an important guarantee for energy sustainable development during urbanization. Finally, we put forward suggestions on energy pricing reform in the residential sector based on characteristics of China's undergoing urbanization process and the current energy consumption situations.

  15. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    International Nuclear Information System (INIS)

    Lachenal, X; Daynes, S; Weaver, P M

    2013-01-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements. (paper)

  16. Research on Urban Road Traffic Congestion Charging Based on Sustainable Development

    Science.gov (United States)

    Ye, Sun

    Traffic congestion is a major problem which bothers our urban traffic sustainable development at present. Congestion charging is an effective measure to alleviate urban traffic congestion. The paper first probes into several key issues such as the goal, the pricing, the scope, the method and the redistribution of congestion charging from theoretical angle. Then it introduces congestion charging practice in Singapore and London and draws conclusion and suggestion that traffic congestion charging should take scientific plan, support of public, public transportation development as the premise.

  17. Rural tourism development: a viable formula for poverty alleviation ...

    African Journals Online (AJOL)

    The case of rural tourism and community development has been made in general terms with less focus on poverty alleviation and more emphasis on economic modernisation. Recently, a link between rural tourism and poverty alleviation has been emphasised in the contemporary tourism and poverty alleviation literature.

  18. A community survey of the pattern and determinants of household sources of energy for cooking in rural and urban south western, Nigeria.

    Science.gov (United States)

    Desalu, Olufemi Olumuyiwa; Ojo, Ololade Olusola; Ariyibi, Ebenezer Kayode; Kolawole, Tolutope Fasanmi; Ogunleye, Ayodele Idowu

    2012-01-01

    The use of solid fuels for cooking is associated with indoor pollution and lung diseases. The objective of the study was to determine the pattern and determinants of household sources of energy for cooking in rural and urban South Western, Nigeria. We conducted a cross sectional study of households in urban (Ado-Ekiti) and rural (Ido-Ekiti) local council areas from April to July 2010. Female respondents in the households were interviewed by trained interviewers using a semi-structured questionnaire. A total of 670 households participated in the study. Majority of rural dwellers used single source of energy for cooking (55.6%) and urban dwellers used multiple source of energy (57.8%). Solid fuel use (SFU) was higher in rural (29.6%) than in urban areas (21.7%). Kerosene was the most common primary source of energy for cooking in both urban and rural areas (59.0% vs.66.6%) followed by gas (17.8%) and charcoal (6.6%) in the urban areas, and firewood (21.6%) and charcoal (7.1%) in the rural areas. The use of solid fuel was strongly associated with lack of ownership of dwellings and larger household size in urban areas, and lower level of education and lower level of wealth in the rural areas. Kerosene was associated with higher level of husband education and modern housing in urban areas and younger age and indoor cooking in rural areas. Gas was associated with high income and modern housing in the urban areas and high level of wealth in rural areas. Electricity was associated with high level of education, availability of electricity and old age in urban and rural areas respectively. The use of solid fuel is high in rural areas, there is a need to reduce poverty and improve the use of cleaner source of cooking energy particularly in rural areas and improve lung health.

  19. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    Science.gov (United States)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  20. Global drivers for transformation of energy systems

    International Nuclear Information System (INIS)

    Christensen, John M.; Radka, M.

    2006-01-01

    With climate change gradually emerging as a major global environmental concern, illustrated by the establishment of the UN Framework Convention on Climate Change (UNFCCC) and later the negotiation of the Kyoto Protocol (KP)the role of the energy sector as the main emitter of greenhouse gases has brought a new political rationale for the development of more climate-friendly energy supply and increased efficiency. The last couple of years have seen the increasing importance in the global energy market of rapidly-expanding national economies, notably China and India. Together with other geopolitical developments such as political changes in some of the major oil producing regions, this has produced strong political concerns about future security of supply. This has been compounded by simultaneous dramatic increases in oil and gas prices. The role of energy supply as a key facilitator for economic development in the poorer regions of the world has been increasingly recognised over the last decade. Developing countries are devoting more attention to securing their future energy supplies for a variety of uses: industry, and urban uses and for the poorer communities in both rural and peri-urban areas communities. Global energy policy is therefore dominated by three overriding concerns making them drivers for future energy development activities: 1) security of supply; 2) climate change; 3) energy for development and poverty alleviation. The three areas are in several ways interlinked, and every energy policy or programme should ideally promote them allor at least not have negative effects in any area. In practice, however, many national policy landscapes have been dominated by just one of these factors. (au)

  1. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China

    International Nuclear Information System (INIS)

    Lin Jianyi; Cao Bin; Cui Shenghui; Wang Wei; Bai Xuemei

    2010-01-01

    To assess the effectiveness of urban energy conservation and GHG mitigation measures, a detailed Long-range Energy Alternatives Planning (LEAP) model is developed and applied to analyze the future trends of energy demand and GHG emissions in Xiamen city. Two scenarios have been designed to describe the future energy strategies in relation to the development of Xiamen city. The 'Business as Usual' scenario assumes that the government will do nothing to influence the long-term trends of urban energy demand. An 'Integrated' scenario, on the other hand, is generated to assess the cumulative impact of a series of available reduction measures: clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control, and new and renewable energy development and utilization. The reduction potentials in energy consumption and GHG emissions are estimated for a time span of 2007-2020 under these different scenarios. The calculation results in Xiamen show that the clean energy substitution measure is the most effective in terms of energy saving and GHG emissions mitigation, while the industrial sector has the largest abatement potential.

  2. Spatial planning based on urban energy harvesting toward productive urban regions

    NARCIS (Netherlands)

    Leduc, Wouter R. W. A.; Van Kann, Ferry M. G.

    The industrial revolution and the exploitation of fossil fuels fostered profound changes on transportation systems and infrastructure enabling unprecedented urban growth. Urban regions, which now host the majority of the world's population, resemble a linear metabolism: importing most of their raw

  3. Spatial planning based on urban energy harvesting toward productive urban regions

    NARCIS (Netherlands)

    Leduc, W.R.W.A.; Kann, van F.M.G.

    2013-01-01

    The industrial revolution and the exploitation of fossil fuels fostered profound changes on transportation systems and infrastructure enabling unprecedented urban growth. Urban regions, which now host the majority of the world's population, resemble a linear metabolism: importing most of their raw

  4. Frameworks for Understanding and Promoting Solar Energy Technology Development

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2015-02-01

    Full Text Available In this paper, the contrasting theories of metabolic rift and ecological modernization theory (EMT are applied to the same empirical phenomenon. Metabolic rift argues that the natural metabolic relationship between humans and nature has been fractured through modernization, industrialization and urbanization. EMT, in contrast, argues that societies in an advanced state of industrialization adopt ecologically benign production technologies and political policies, suggesting that modern societies could be on course to alleviate the ecological damage caused by capitalism. These two theories are fundamentally different in their assumptions about modern economies and technologies, yet both can be used as a theoretical lens to examine the phenomenon of solar energy technology adoption. Furthermore, both theories shed light on the increasing adoption of solar energy technologies in both “developing” and “developed” regions and the potential social conditions for promoting renewable energy technology adoption.

  5. Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective

    NARCIS (Netherlands)

    Vandevijvere, H.; Stremke, S.

    2012-01-01

    Urban planning for a renewable energy future requires the collaboration of different disciplines both in research and practice. In the present article, the planning of a renewable energy future is approached from a designer’s perspective. A framework for analysis of the planning questions at hand is

  6. [Energy and macronutrients intake from pre-packaged foods among urban residents].

    Science.gov (United States)

    Zhang, Jiguo; Huang, Feifei; Wang, Huijun; Zhai, Feigying; Zhang, Bing

    2015-03-01

    To analyze the energy and macronutrients intake from pre-packaged foods among urban residents in China. The adult subjects were selected from 9 cities of Beijing, Shanghai, Chongqing, Shenyang, Harbin, Jinan, Zhengzhou, Changsha, Nanning. The recording method for 7 consecutive days was used to collect pre-packaged foods consumption information. Among subjects, the median intake of energy, protein, fat and carbohydrate from pre-packaged foods were 628. 8kJ/d, 5.0 g/d, 6.7 g/d and 17.0 g/d, respectively. Among consumers, the median intake of energy, protein, fat and carbohydrate from pre-packaged foods were 745. 3 kJ/d, 6. 0 g/d, 7. 7 g/d and 20. 7 g/d, respectively. The energy and macronutrients intake from pre-packaged foods were at low level.

  7. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves.

    Directory of Open Access Journals (Sweden)

    Guoxian Zhang

    Full Text Available The effect of exogenous CaCl2 on photosystem I and II (PSI and PSII activities, cyclic electron flow (CEF, and proton motive force of tomato leaves under low night temperature (LNT was investigated. LNT stress decreased the net photosynthetic rate (Pn, effective quantum yield of PSII [Y(II], and photochemical quenching (qP, whereas CaCl2 pretreatment improved Pn, Y(II, and qP under LNT stress. LNT stress significantly increased the non-regulatory quantum yield of energy dissipation [Y(NO], whereas CaCl2 alleviated this increase. Exogenous Ca2+ enhanced stimulation of CEF by LNT stress. Inhibition of oxidized PQ pools caused by LNT stress was alleviated by CaCl2 pretreatment. LNT stress reduced zeaxanthin formation and ATPase activity, but CaCl2 pretreatment reversed both of these effects. LNT stress caused excess formation of a proton gradient across the thylakoid membrane, whereas CaCl2 pretreatment decreased the said factor under LNT. Thus, our results showed that photoinhibition of LNT-stressed plants could be alleviated by CaCl2 pretreatment. Our findings further revealed that this alleviation was mediated in part by improvements in carbon fixation capacity, PQ pools, linear and cyclic electron transports, xanthophyll cycles, and ATPase activity.

  8. Poverty Alleviation Programmes in Nigeria: Reflections on ...

    African Journals Online (AJOL)

    In it, we have argued that past poverty alleviation policies and programmes have been elitist and non-participatory, especially by the target population. In most cases the designs for poverty alleviations are characterized by improper conceptualization, grandiosity and lack of social justice even in implementation. Based on ...

  9. Maximizing recovery of energy and nutrients from urban wastewaters

    International Nuclear Information System (INIS)

    Selvaratnam, T.; Henkanatte-Gedera, S.M.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J.

    2016-01-01

    Historically, UWWs (urban wastewaters) that contain high levels of organic carbon, N (nitrogen), and P (phosphorous) have been considered an environmental burden and have been treated at the expense of significant energy input. With the advent of new pollution abatement technologies, UWWs are now being regarded as a renewable resource from which, useful chemicals and energy could be harvested. This study proposes an integrated, algal-based system that has the potential to treat UWWs to the desired discharge standards in a sustainable manner while recovering high fraction of its energy content as well as its N- and P-contents for use as fertilizers. Key embodiments of the system being proposed are: i) cultivation of an extremophile microalga, Galdieria sulphuraria, in UWW for removal of carbon, N, and P via single-step by mixotrophic metabolism; ii) extraction of energy-rich biocrude and biochar from the cultivated biomass via hydrothermal processing; and, iii) enhancement of biomass productivity via partial recycling of the nutrient-rich AP (aqueous product) from hydrothermal-processed biomass to the cultivation step to optimize productivity, and formulation of fertilizers from the remaining AP. This paper presents a process model to simulate this integrated system, identify the optimal process conditions, and establish ranges for operational parameters. - Highlights: • Developed model for algal system for wastewater treatment/energy production. • Evaluated energy efficiency in algal wastewater treatment/energy production. • Optimized algal wastewater treatment/energy production. • Demonstrated feasibility of energy-positive wastewater treatment.

  10. Distributed energy resources for a zero-energy neighbhourhood

    NARCIS (Netherlands)

    Morales Gonzalez, R.M.D.G.; Asare-Bediako, B.; Cobben, J.F.G.; Kling, W.L.; Scharrenberg, G.R.; Dijkstra, D.

    2012-01-01

    Zero energy buildings are on the increasing trend. They are perceived as appropriate technology to reducing CO2 emissions, improving energy efficiency and alleviating energy poverty. The main goal is that a grid-connected building produces enough energy on site to equal or exceed its annual energy

  11. Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Bojan Đurin

    2014-05-01

    Full Text Available Because of the importance of water supply for the sustainability of urban areas, and due to the significant consumption of energy with prices increasing every day, an alternative solution for sustainable energy supply should be sought in the field of Renewable Energy Sources (RES. An innovative solution as presented in this paper has until now not been comprehensively analyzed. This work presents the solution with the application of a (Photovoltaic PV generator. The main technological features, in addition to the designing methodology and case study are presented in this paper. The critical period approach has been used for the first time for system sizing. The application of this sizing method provides a high reliability of the proposed system. The obtained results confirm the assumption that the PV generator is a promising energy sustainable solution for urban water supply systems. The service reservoir, which acts as water and energy storage for the proposed system, provides the basis for a sustainable solution of water and energy supply. In accordance with the proposed, the reliability of such system is high. This concept of energy supply operation does not generate any atmospheric emission of greenhouse gases, which contributes significantly to the reduction of the impacts of climate changes. The proposed solution and designing methodology are widely applicable and in accordance with the characteristics of the water supply system and climate.

  12. Urban-Rural and Provincial Disparities in Child Malnutrition in China.

    Science.gov (United States)

    Wu, Yichao; Qi, Di

    2016-10-01

    This article investigates how the nutritional deprivation and inequality among children in China by provinces and urban/rural areas has changed over time from 1991 to 2009 using the China Health and Nutrition Survey data. The children who were undernourished in stunting and underweight have declined over years, but provincial disparities were significant and urban children performed better than the rural peers. The nutritional deprivation of children has been alleviated in China over time, but more efforts should be made by the government to improve the nutritional condition in less developed provinces and for those children who are severely undernourished.

  13. Urban temperature analysis and impact on the building cooling energy performances: an Italian case study

    Directory of Open Access Journals (Sweden)

    Michele Zinzi

    2016-06-01

    Full Text Available Climate changes and urban sprawl are dramatically increasing the heat island effect in urban environments, whatever the size and the latitude are, affecting these latter parameters the effect intensity. The urban heats island is a phenomenon observed since the last decades of the XIX century but demonstrated at large scale only one century later, characterised by the increase of air temperature in densely built urban environments respect to the countryside surround cities. Many studies are available, showing urban heat island intensities up to 12°C. This thermal stress causes social, health and environmental hazards, with major consequences on weaker social classes, as elderly and low income people, it is not by chance that survey demonstrated the increase of deaths in such categories during intense and extended heat waves. This study presents the firs results on the observation of air temperature measures in different spots of Rome, city characterised by a typical Mediterranean climate and by a complex urban texture, in which densely built areas are kept separated by relatively green or not-built zones. Six spots are monitored since June 2014 and include: historical city centre, semi-central zones with different construction typologies, surrounding areas again with various urban and building designs. The paper is focused on the analysis of summer temperature profiles, increase respect to the temperature outside the cities and the impact on the cooling performance of buildings. Temperature datasets and a reference building model were inputted into the well-known and calibrated dynamic tool TRNSYS. Cooling net energy demand of the reference building was calculated, as well as the operative temperature evolution in the not cooled building configuration. The results of calculation allow to compare the energy and thermal performances in the urban environment respect to the reference conditions, usually adopted by building codes. Advice and

  14. Long-term energy consumptions of urban transportation: A prospective simulation of 'transport-land uses' policies in Bangalore

    International Nuclear Information System (INIS)

    Lefevre, Benoit

    2009-01-01

    The current trends of urban dynamics in the Third World are alarming with regard to climate change, because they are giving an increasingly important role to cars-to the detriment of public and non-motorized transportation. Yet this is the type of energy consumption that is expected to grow the fastest, in business-as-usual scenarios. How can these market-based urban trends be influenced? What level of emissions reduction can be achieved? This article shows that first, there is a relevant and urgent need to tackle the urban dynamics of cities in developing countries focusing on the 'transport-land uses' couple, and second, that existing transport technologies and decision-helping tools are already available to take up the climate change challenge. Through the application of an integrated 'transport-land uses' model, TRANUS, this study demonstrates that transit technologies affordable to an emerging city like Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of appropriate urban planning. Furthermore, this study establishes that there are tools which are available to facilitate the necessary policy-making processes. These tools allow stakeholders to discuss different political alternatives integrating energy issues, based on quantitative assessments

  15. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    Science.gov (United States)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  16. Social Media Meets Big Urban Data: A Case Study of Urban Waterlogging Analysis

    Directory of Open Access Journals (Sweden)

    Ningyu Zhang

    2016-01-01

    Full Text Available With the design and development of smart cities, opportunities as well as challenges arise at the moment. For this purpose, lots of data need to be obtained. Nevertheless, circumstances vary in different cities due to the variant infrastructures and populations, which leads to the data sparsity. In this paper, we propose a transfer learning method for urban waterlogging disaster analysis, which provides the basis for traffic management agencies to generate proactive traffic operation strategies in order to alleviate congestion. Existing work on urban waterlogging mostly relies on past and current conditions, as well as sensors and cameras, while there may not be a sufficient number of sensors to cover the relevant areas of a city. To this end, it would be helpful if we could transfer waterlogging. We examine whether it is possible to use the copious amounts of information from social media and satellite data to improve urban waterlogging analysis. Moreover, we analyze the correlation between severity, road networks, terrain, and precipitation. Moreover, we use a multiview discriminant transfer learning method to transfer knowledge to small cities. Experimental results involving cities in China and India show that our proposed framework is effective.

  17. Social Media Meets Big Urban Data: A Case Study of Urban Waterlogging Analysis.

    Science.gov (United States)

    Zhang, Ningyu; Chen, Huajun; Chen, Jiaoyan; Chen, Xi

    2016-01-01

    With the design and development of smart cities, opportunities as well as challenges arise at the moment. For this purpose, lots of data need to be obtained. Nevertheless, circumstances vary in different cities due to the variant infrastructures and populations, which leads to the data sparsity. In this paper, we propose a transfer learning method for urban waterlogging disaster analysis, which provides the basis for traffic management agencies to generate proactive traffic operation strategies in order to alleviate congestion. Existing work on urban waterlogging mostly relies on past and current conditions, as well as sensors and cameras, while there may not be a sufficient number of sensors to cover the relevant areas of a city. To this end, it would be helpful if we could transfer waterlogging. We examine whether it is possible to use the copious amounts of information from social media and satellite data to improve urban waterlogging analysis. Moreover, we analyze the correlation between severity, road networks, terrain, and precipitation. Moreover, we use a multiview discriminant transfer learning method to transfer knowledge to small cities. Experimental results involving cities in China and India show that our proposed framework is effective.

  18. Classroom Practices and Academic Outcomes in Urban Afterschool Programs: Alleviating Social-Behavioral Risk

    Science.gov (United States)

    Cappella, Elise; Hwang, Sophia H. J.; Kieffer, Michael J.; Yates, Miranda

    2018-01-01

    Given the potential of afterschool programs to support youth in urban, low-income communities, we examined the role of afterschool classroom ecology in the academic outcomes of Latino and African American youth with and without social-behavioral risk. Using multireporter methods and multilevel analysis, we find that positive classroom ecology…

  19. Developing Intelligent System Dynamic Management Instruments on Water-Food-Energy Nexus in Response to Urbanization

    Science.gov (United States)

    Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.

    2016-12-01

    Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.

  20. BARRIERS TO ENERGY ACCESS IN THE URBAN POOR AREAS OF DHAKA, BANGLADESH: ANALYSIS OF PRESENT SITUATION AND RECOMMENDATIONS

    Directory of Open Access Journals (Sweden)

    Molla Shahadat Hossain Lipu

    2013-10-01

    Full Text Available Energy is a crucial input to promote socioeconomic development. In Bangladesh, about 96 million people (59% do not have access to electricity and 143 million people (88% still depend on biomass for cooking. The urban poor living in slum areas with lack of access to clean and modern sources of energy have not been addressed comprehensively. The main objective of this study is to identify the barriers faced by the urban poor in the slum areas of Dhaka in accessing different fuels and provide specific recommendations to overcome the barriers to enable energy access. The study is mainly based on field survey covering 185 households of the four major slum areas of Dhaka, literature review, and stakeholder interviews. Many barriers have been identified through this research where urban poor face problems in accessing legal energy services due to illegal settlement, lack of explicit policy on energy and housing, lack of dedicated institution, the pervasive role of Mastaans, poor infrastructure and lack of monitoring and evaluating system. Barriers specific recommendations are also suggested based on the experiences from the field visit and the best practices outside Bangladesh are also identified.

  1. Computing Pathways for Urban Decarbonization.

    Science.gov (United States)

    Cremades, R.; Sommer, P.

    2016-12-01

    Urban areas emit roughly three quarters of global carbon emissions. Cities are crucial elements for a decarbonized society. Urban expansion and related transportation needs lead to increased energy use, and to carbon-intensive lock-ins that create barriers for climate change mitigation globally. The authors present the Integrated Urban Complexity (IUC) model, based on self-organizing Cellular Automata (CA), and use it to produce a new kind of spatially explicit Transformation Pathways for Urban Decarbonization (TPUD). IUC is based on statistical evidence relating the energy needed for transportation with the spatial distribution of population, specifically IUC incorporates variables from complexity science related to urban form, like the slope of the rank-size rule or spatial entropy, which brings IUC a step beyond existing models. The CA starts its evolution with real-world urban land use and population distribution data from the Global Human Settlement Layer. Thus, the IUC model runs over existing urban settlements, transforming the spatial distribution of population so the energy consumption for transportation is minimized. The statistical evidence that governs the evolution of the CA departs from the database of the International Association of Public Transport. A selected case is presented using Stuttgart (Germany) as an example. The results show how IUC varies urban density in those places where it improves the performance of crucial parameters related to urban form, producing a TPUD that shows where the spatial distribution of population should be modified with a degree of detail of 250 meters of cell size. The TPUD shows how the urban complex system evolves over time to minimize energy consumption for transportation. The resulting dynamics or urban decarbonization show decreased energy per capita, although total energy increases for increasing population. The results provide innovative insights: by checking current urban planning against a TPUD, urban

  2. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  3. Multicriteria Decisions in Urban Energy System Planning: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Cajot, Sébastien, E-mail: sebastien.cajot@alumni.epfl.ch [European Institute for Energy Research, Karlsruhe (Germany); Industrial Process and Energy Systems Engineering Group, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Mirakyan, Atom [Energy Economics and Planning Department, Lahmeyer International, Bad Vilbel (Germany); Koch, Andreas [European Institute for Energy Research, Karlsruhe (Germany); Maréchal, François [Industrial Process and Energy Systems Engineering Group, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2017-05-30

    Urban energy system planning (UESP) is a topic of growing concern for cities in deregulated energy markets, which plan to decrease energy demand, reduce their dependency on fossil fuels, and increase the share of renewable energy sources. UESP being a highly multisectoral and multi-actor task, multicriteria decision analysis (MCDA) methods are frequently used in the decision processes. These methods may provide support in organizing and identifying solutions to problems with conflicting objectives. However, knowing which method to use is generally not straightforward, as the appropriateness of a method or combination of methods depends on the decision problem’s context. Therefore, this article reviewed scientific papers to characterize and analyze MCDA problems and methods in the context of UESP. The review systematically explores issues such as the scope of the problems, the alternatives and criteria considered, the expected decision outcomes, the decision analysis methods and the rationales for selecting and combining them, and the role of values in driving the decision problems. The final outcome is a synthesis of the data and insights obtained, which may help potential users identify appropriate decision analysis methods based on given problem characteristics.

  4. Multicriteria Decisions in Urban Energy System Planning: A Review

    International Nuclear Information System (INIS)

    Cajot, Sébastien; Mirakyan, Atom; Koch, Andreas; Maréchal, François

    2017-01-01

    Urban energy system planning (UESP) is a topic of growing concern for cities in deregulated energy markets, which plan to decrease energy demand, reduce their dependency on fossil fuels, and increase the share of renewable energy sources. UESP being a highly multisectoral and multi-actor task, multicriteria decision analysis (MCDA) methods are frequently used in the decision processes. These methods may provide support in organizing and identifying solutions to problems with conflicting objectives. However, knowing which method to use is generally not straightforward, as the appropriateness of a method or combination of methods depends on the decision problem’s context. Therefore, this article reviewed scientific papers to characterize and analyze MCDA problems and methods in the context of UESP. The review systematically explores issues such as the scope of the problems, the alternatives and criteria considered, the expected decision outcomes, the decision analysis methods and the rationales for selecting and combining them, and the role of values in driving the decision problems. The final outcome is a synthesis of the data and insights obtained, which may help potential users identify appropriate decision analysis methods based on given problem characteristics.

  5. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  6. CAPE-OPEN simulation of waste-to-energy technologies for urban cities

    Science.gov (United States)

    Andreadou, Christina; Martinopoulos, Georgios

    2018-01-01

    Uncontrolled waste disposal and unsustainable waste management not only damage the environment, but also affect human health. In most urban areas, municipal solid waste production is constantly increasing following the everlasting increase in energy consumption. Technologies aim to exploit wastes in order to recover energy, decrease the depletion rate of fossil fuels, and reduce waste disposal. In this paper, the annual amount of municipal solid waste disposed in the greater metropolitan area of Thessaloniki is taken into consideration, in order to size and model a combined heat and power facility for energy recovery. From the various waste-to-energy technologies available, a fluidised bed combustion boiler combined heat and power plant was selected and modelled through the use of COCO, a CAPE-OPEN simulation software, to estimate the amount of electrical and thermal energy that could be generated for different boiler pressures. Although average efficiency was similar in all cases, providing almost 15% of Thessaloniki's energy needs, a great variation in the electricity to thermal energy ratio was observed.

  7. Considerations for reducing food system energy demand while scaling up urban agriculture

    Science.gov (United States)

    Mohareb, Eugene; Heller, Martin; Novak, Paige; Goldstein, Benjamin; Fonoll, Xavier; Raskin, Lutgarde

    2017-12-01

    There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and interactions with other components of the food-energy-water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA. Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs. By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the

  8. Experimental assessment of the energy consumption of urban rail vehicles during stabling hours: Influence of ambient temperature

    International Nuclear Information System (INIS)

    Powell, J.P.; González-Gil, A.; Palacin, R.

    2014-01-01

    Urban rail has widely recognised potential to reduce congestion and air pollution in metropolitan areas, given its high capacity and environmental performance. Nevertheless, growing capacity demands and rising energy costs may call for significant energy efficiency improvements in such systems. Energy consumed by stabled rolling stock has been traditionally overlooked in the scientific literature in favour of analysing traction loads, which generally account for the largest share of this consumption. Thus, this paper presents the methodology and results of an experimental investigation that aimed to assess the energy use of stabled vehicles in the Tyne and Wear Metro system (UK). It is revealed that approximately 11% of the rolling stock's total energy consumption is due to the operation of on-board auxiliaries when stabled, and investigation of these loads is therefore a worthwhile exercise. Heating is responsible for the greatest portion of this energy, and an empirical correlation between ambient temperature and power drawn is given. This could prove useful for a preliminary evaluation of further energy saving measures in this area. Even though this investigation focused on a particular metro system in a relatively cold region, its methodology may also be valid for other urban and main line railways operating in different climate conditions. - Highlights: •Energy use of stabled vehicles in an actual metro system is experimentally examined. •Stabling hours account for about 11% of the vehicles' total energy consumption. •Heating is the major consumer during stabling hours. •An empirical correlation between ambient temperature and power drawn is derived. •The methodology described may also be applied to other urban and main line railways

  9. Evaluating Water and Energy Fluxes across Three Land Cover Types in a Desert Urban Environment through a Mobile Eddy Covariance Platform

    Science.gov (United States)

    Pierini, N.; Vivoni, E. R.; Schreiner-McGraw, A.; Lopez-Castrillo, I.

    2015-12-01

    The urbanization process transforms a natural landscape into a built environment with many engineered surfaces, leading to significant impacts on surface energy and water fluxes across multiple spatial and temporal scales. Nevertheless, the effects of different urban land covers on energy and water fluxes has been rarely quantified across the large varieties of construction materials, landscaping and vegetation types, and industrial, commercial and residential areas in cities. In this study, we deployed a mobile eddy covariance tower at three different locations in the Phoenix, Arizona, metropolitan area to capture a variety of urban land covers. The three locations each represent a common urban class in Phoenix: 1) a dense, xeric landscape (gravel cover and native plants with drip-irrigation systems near tall buildings); 2) a high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) a suburban mesic landscape (sprinkler-irrigated turf grass in a suburban neighborhood). At each site, we measured meteorological variables, including air temperature and relative humidity at three heights, precipitation and pressure, surface temperature, and soil moisture and temperature (where applicable), to complement the eddy covariance measurements of radiation, energy, carbon dioxide and water vapor fluxes. We evaluated the tower footprint at each site to characterize the contributing surface area to the flux measurements, including engineered and landscaping elements, as a function of time for each deployment. The different sites allowed us to compare how turbulent fluxes of water vapor and carbon dioxide vary for these representative urban land covers, in particular with respect to the role of precipitation events and irrigation. While the deployments covered different seasons, from winter to summer in 2015, the variety of daily conditions allowed quantification of the differential response to precipitation events during the winter, pre

  10. An Assessment of the Relationship between Urban Air Quality and Environmental Urban Factors in Urban Regeneration Areas

    Directory of Open Access Journals (Sweden)

    Yakup Egercioglu

    2016-06-01

    Full Text Available Urban air pollution has been increasing due to ever increasing population, rapid urbanization, industrialization, energy usage, traffic density. The purpose of the study is to examine the relation between urban air quality and urban environmental factors in urban regeneration areas. Two common air polluters (SO2 and PM10 are considered in the study. The data are collected for Cigli district, including the level of air pollutants, the local natural gas service lines and planning decisions for the years between 2007 and 2011. According to the examinations, urban environmental factors and planning decisions affect the urban air quality in urban regeneration areas.

  11. The Linkage of Urban and Energy Planning for Sustainable Cities: The Case of Denmark and Germany

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful...

  12. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    Science.gov (United States)

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Benchmarking the energy situation of Danish municipalities - Rural production and urban efficiency

    DEFF Research Database (Denmark)

    Fertner, Christian; Groth, Niels Boje

    Energy is a key issue for sustainable urban development, mainly related to the twin challenges of climate change and resource scarcity (Droege 2011). Despite agendas set on national and international level, local authorities are the key actors in this transformation (Lewis et al. 2013). European...... initiatives as the Covenant of Mayors or Energy Cities are closely following this development and supporting local authorities in their actions. Still, a general benchmarking of states and efforts is still missing which could however increase the use of good practice and enforce discussions in lagging cities....... Against this background, a model was developed in the ongoing European FP7 project PLEEC (www.pleecproject.eu) to measure the energy situation in cities, called “Energy-Smart City”, compiling over 50 energy-related indicators. In this paper we adapt the model to the Danish context and benchmark the 98...

  14. PROJECT CI-NERGY: TOWARDS AN INTEGRATED ENERGY URBAN PLANNING SYSTEM FROM A DATA MODELLING AND SYSTEM ARCHITECTURE PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2017-09-01

    Full Text Available Growing urbanisation, its related environmental impacts, and social inequalities in cities are challenges requiring a holistic urban planning perspective that takes into account the different aspects of sustainable development. One crucial point is to reconcile urban planning with environmental targets, which include decreasing energy demand and CO2 emissions, and increasing the share of renewable energy. Within this context, the project CI-NERGY aims to develop urban energy modelling, simulation and optimisation methods and tools to support decision making in urban planning. However, there are several barriers to the implementation of such tools, such as: fragmentation of involved disciplines, different stakeholders, multiplicity of scales in a city and extreme heterogeneity of data regarding all the processes to be addressed. Project CI-NERGY aims, among other goals, at overcoming these barriers, and focuses on two case study cities, Geneva in Switzerland and Vienna in Austria. In particular, project CI-NERGY faces several challenges starting with different cities, heterogeneous data sources and simulation tools, diverse user groups and their individual needs. This paper describes the experiences gathered during the project. After giving a brief overview of the project, the two case study cities, Geneva and Vienna, are briefly presented, and the focus shifts then on overall system architecture of the project, ranging from urban data modelling topics to the implementation of a Service-Oriented Architecture. Some of the challenges faced, the solutions found, as well some plans for future improvements are described and commented.

  15. Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China

    International Nuclear Information System (INIS)

    Niu Shuwen; Zhang Xin; Zhao Chunsheng; Niu Yunzhu

    2012-01-01

    As energy consumption is closely related to all aspects of human life, it becomes the standard by which to measure people's quality of life and the national development level. Based on the “energy ladder” hypothesis, we conducted questionnaire surveys in the Western Loess Plateau of China, and accessed a considerable amount of information about the energy usage of rural and urban households. The results show that the per capita effective heat is 323.3, 282.8, 250.0 and 123.6 kgce in the provincial capital, medium-sized cities, county towns and rural areas, respectively. The energy ladder feature is obvious. Using 719 sample data, the multiple regression analysis was conducted between per capita effective heat and two independent variables including per capita income and the attributes of energy used, the parameter estimation of the cross-quadratic model produced more significant effects. The three-dimensional graph clearly shows the differences in living standards and survival status between urban and rural households. High-income residents in urban areas consume more high-quality energy, they enjoy an affluent lifestyle. While low-income households in rural areas obtain less effective heat, and use poor quality fuels, they are still at the level of basic survival. - Highlights: ► The per capita effective heat is 323.3.4, 282.8, 250.0 and 123.6 kgce in four types of region. ► The energy attributes score of a rural resident is 60% of that of an urban resident. ► The energy ladder feature is obvious. ► The effective heat is the result of two independent variables interacting together. ► The differences in living standards and survival status between urban and rural households are great.

  16. Can the Green Deal be fair too? Exploring new possibilities for alleviating fuel poverty

    International Nuclear Information System (INIS)

    Guertler, Pedro

    2012-01-01

    Energy efficiency and social programmes have failed to stem the dramatic increase in the number of fuel poor households in recent years. As the 2016 deadline for eradicating fuel poverty nears, energy efficiency and fuel poverty programmes are undergoing significant changes. The ambitions for Britain's Green Deal, the overhaul of supplier obligations alongside the winding down of Warm Front, and the introduction of an incentive for renewable heat combine to form a sea change in how energy efficiency and fuel poverty objectives are financed and delivered. Green Deal Finance (GDF) eliminates the up-front capital cost of energy efficiency measures to the household by linking repayments to energy savings and spreading them over many years. This paper asks whether and how GDF could be beneficial to fuel poor households. Using scenarios modelled on the English House Condition Survey, it explores the extent to which fuel poverty could be reduced, allowing for repayments incurred by GDF. It examines how much further fuel poverty could be alleviated were the capital cost subsidised or repayments supported, and concludes that a flexible design for GDF is necessary if it is to contribute to alleviating fuel poverty. - Highlights: ► The potential impact of Green Deal finance (GDF) on fuel poverty (FP) is explored. ► GDF based on actual energy use rather than notional need is better at reducing FP. ► Additional subsidy by energy companies improves the impact of GDF on FP. ► However, the resultant increases in energy bills would negate much of this effect. ► Government support for repayments could be fairer and go further.

  17. Poverty alleviation in Uganda: the case for a viable optimum ...

    African Journals Online (AJOL)

    Poverty alleviation is a long and painstaking process. It involves knowing what poverty is, its causes and means of alleviating it. Poverty is one of the scourges including disease and ignorance a combination of which deprives humanity of the basic needs for living. Among the strategies to alleviate poverty is effective ...

  18. Research on differences in the factors influencing the energy-saving behavior of urban and rural residents in China–A case study of Jiangsu Province

    International Nuclear Information System (INIS)

    Ding, Zhihua; Wang, Guangqiang; Liu, Zhenhua; Long, Ruyin

    2017-01-01

    As environmental problems grow increasingly prominent, energy-saving behavior research has gradually captured the attention of scholars throughout the world. This paper conducts a study of energy-saving behavior and the influencing factors using correlation analysis, multiple regression analysis and other research methods; it focuses first on urban and rural residents in Jiangsu Province and then regionally on North Jiangsu, Middle Jiangsu and South Jiangsu. The results show that (1) urban residents in Jiangsu Province tend to engage in more energy-saving activities than rural residents; regionally, the energy-saving tendencies of residents from the area can be ranked as follows: Middle Jiangsu residents > North Jiangsu residents > South Jiangsu residents. (2) Urban-rural differences and regional differences also exist in Jiangsu Province in terms of both buying choice behavior and daily use behavior. With regard to regional differences in the factors influencing buying choice behavior and daily use behavior to support energy saving, North Jiangsu residents are most influenced by a sense of responsibility for the environment, Middle Jiangsu residents by policies and regulations and energy-saving knowledge, and South Jiangsu residents by low-carbon energy-saving willingness and energy-saving knowledge. This paper offers differentiated guidance regarding policies based on its research conclusions. - Highlights: • The paper separates energy consumption behavior into buying choice and daily use behavior. • Urban-rural and regional differences exist in residents’ energy consumption behavior. • Urban residents show a greater tendency toward energy-saving behavior than rural residents. • Middle Jiangsu residents’ energy-saving behavior is higher than that of residents of North and South Jiangsu.

  19. The urban lighting in the rehabilitation of the minor historical centre. The design scenarios for the architectural valorisation and the energy efficiency improvement of the urban environment

    Directory of Open Access Journals (Sweden)

    Pierluigi De Berardinis

    2015-12-01

    Full Text Available In the last decades, the topic of lighting of the historical minor centres is taking a prominent role in the cultural debate on the urban recovery interventions, because of the development of a greater awareness of the regenerative potential role that a careful planning system of urban lighting can take in this context. The latter, which had a purely functional role in the past, has recently taken a figurative and emotional role, associated with the vision of the urban light scene during the night and its valorization. The study of light, therefore, has inevitably turned into an instrument of knowledge and critical interpretation of the urban spaces, aimed both to functional recovery of the lighting network technology, and the regeneration of the urban image and its night scenes. The needs that this sector should satisfy are multiple and, sometimes, conflicting: the need for road safety, the reduction of light pollution, the need for energy and cost savings. The research aims to define an operative methodology to deal with the light planning in complex contexts as the minor historical centers, in which the concept of transformation of the urban scene clashes directly with the concept of preserving the identity features of the places and its constructive values and materials. Among the goals, there is therefore the aim of highlighting the main gaps in the network, due both to plant engineering reasons and to the obsolescence of the existing lighting fixtures. We operatively work in the urban voids system field, as spaces that characterize the urban scene. Through the knowledge of their dominant features it is possible to preserve their identity and, at the same time, enhance their singularity, with a suitable lighting project, which requires the study of materials, colors and consumption. The purpose is to promote an urban development, able to produce positive economic, social and cultural effects, oriented to improve the quality of life, as well

  20. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed-forward control have been demonstrated through both experiments and simulations in several...... studies, whereas the potential of preview control for alleviating the load variations caused by azimuth dependent inflow variations is less described. Individual or cyclic pitch is required to alleviate azimuth dependent load variations and is traditionally applied through feedback control of the blade...

  1. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  2. Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries

    International Nuclear Information System (INIS)

    Sharif Hossain, Md.

    2011-01-01

    This paper empirically examines the dynamic causal relationships between carbon dioxide emissions, energy consumption, economic growth, trade openness and urbanization for the panel of newly industrialized countries (NIC) using the time series data for the period 1971-2007. Using four different panel unit root tests it is found that all panel variables are integrated of order 1. From the Johansen Fisher panel cointegration test it is found that there is a cointegration vector among the variables. The Granger causality test results support that there is no evidence of long-run causal relationship, but there is unidirectional short-run causal relationship from economic growth and trade openness to carbon dioxide emissions, from economic growth to energy consumption, from trade openness to economic growth, from urbanization to economic growth and from trade openness to urbanization. It is found that the long-run elasticity of carbon dioxide emissions with respect to energy consumption (1.2189) is higher than short run elasticity of 0.5984. This indicates that over time higher energy consumption in the newly industrialized countries gives rise to more carbon dioxide emissions as a result our environment will be polluted more. But in respect of economic growth, trade openness and urbanization the environmental quality is found to be normal good in the long-run. - Highlights: → Dynamic causal relationships are conducted for different panel variables of NIC. → Test results support only existence of unidirectional short-run causal relationships. → Environment will be polluted more due to energy consumption in the long-run. → But environmental quality is found to be normally good in respect of other variables. → NIC should use solar energy as the substitute of oil to control CO 2 emissions.

  3. Domestic fuel energy consumption in an Indian urban ecosystem

    International Nuclear Information System (INIS)

    Misra, M.K.; Rao, B.G.; Nisanka, S.K.; Sahu, N.C.

    1995-01-01

    Berhampur is one of the oldest and biggest towns of Orissa State where 93% of people earn their living from non-primary economic activities. The fuel consumption structure reveals an element of rural bias since the domestic sector derives 49% of its energy used for cooking and heating from biomass sources. Firewood is the only fuel used by all income groups and almost all occupations. Other traditional fuels such as dungcake, agricultural waste and leaf litter are used in the town with different degrees of dominance in various occupation groups and income classes. The inequality of income distribution is reflected in the fuel consumption structure of the rich and poor with greater dependence on non-biomass in the high income group and biomass in the low income group. Family size is an important determinant of biomass fuel use. For the urban poor, there is a relationship between income and fuel consumption. There exists scope for enlarging the biomass base by utilising the available bio-wastes and developing a green belt around the town. This requires some rural features in the urban area using new technologies. (author)

  4. Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region

    International Nuclear Information System (INIS)

    Liu Xiaochen; Sweeney, John

    2012-01-01

    This study aims to investigate the relationship between household space heating energy use and urban form (land use characteristics) for the Greater Dublin Region. The geographical distributions of household energy use are evaluated at the Enumeration Districts (ED) level based on the building thermal balance model. Moreover, it estimates the impact of possible factors on the household space heating consumption. Results illustrate that the distribution profile of dwellings is a significant factor related to overall heating energy demand and individual dwelling energy consumption for space heating. Residents living in compact dwellings with small floor areas consume less energy for space heating than residents living in dwellings with big floor areas. Moreover, domestic heating energy demand per household was also estimated for two extreme urban development scenarios: the compact city scenario and the dispersed scenario. The results illustrate that the compact city scenario is likely to decrease the domestic heating energy consumption per household by 16.2% compared with the dispersed city scenario. Correspondingly, the energy-related CO 2 emissions could be significantly decreased by compact city scenario compared with the dispersed city scenario. - Highlights: ► A method was developed to investigate urban form impacts on energy demand. ► This study estimates impacts of possible factors on the household energy consumption. ► Household heating energy demand is sensitive to dwelling distribution profile. ► The compact case could reduce domestic energy demand compared with the dispersed case.

  5. On Roof Geometry for Urban Wind Energy Exploitation in High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Francisco Toja-Silva

    2015-06-01

    Full Text Available The European program HORIZON2020 aims to have 20% of electricity produced by renewable sources. The building sector represents 40% of the European Union energy consumption. Reducing energy consumption in buildings is therefore a priority for energy efficiency. The present investigation explores the most adequate roof shapes compatible with the placement of different types of small wind energy generators on high-rise buildings for urban wind energy exploitation. The wind flow around traditional state-of-the-art roof shapes is considered. In addition, the influence of the roof edge on the wind flow on high-rise buildings is analyzed. These geometries are investigated, both qualitatively and quantitatively, and the turbulence intensity threshold for horizontal axis wind turbines is considered. The most adequate shapes for wind energy exploitation are identified, studying vertical profiles of velocity, turbulent kinetic energy and turbulence intensity. Curved shapes are the most interesting building roof shapes from the wind energy exploitation point of view, leading to the highest speed-up and the lowest turbulence intensity.

  6. How can urban green spaces be planned for climate adaptation in subtropical cities?

    DEFF Research Database (Denmark)

    Yu, Zhaowu; Guo, Xieying; Jørgensen, Gertrud

    2017-01-01

    of a focus in urban ecology studies. In this paper, we proposed and defined the urban cooling island (UCI) extent, intensity, and efficiency, as well as the threshold value of efficiency (TVoE) introduced from the “law of diminishing marginal utility” for the first time. The radiative transfer equation has......The cooling effect of greenspaces is an important ecosystem service, essential for mitigating the urban heat island (UHI) effect and thus increasing urban resilience to climate change. Techniques based on landscape planning to alleviate the increasing frequency of extreme climate are becoming more...... are within the 30–180 m limit, and the mean UCI extent and intensity are 104 m and 1.78 °C. (4) The greenspaces connected with waterbodies intensified the UCI effects, whereas the grassland-based greenspace shows the weakest UCI effects. The methodology and results of this study could help urban planners...

  7. Energy-microfinance intervention for below poverty line households in India

    International Nuclear Information System (INIS)

    Rao, P. Sharath Chandra; Miller, Jeffrey B.; Wang, Young Doo; Byrne, John B.

    2009-01-01

    More than 72% of India's population resides in rural India and it also has a high concentration of people living under abject poverty. Of the total rural population 27.1-28.3% lives below the poverty line (BPL). A lack of energy-finance options is hampering the 'quality of life' of the BPL community. The members of this disadvantaged household which forms 27.1% and 23.6% of the India's rural and urban population has no ready access to mainstream finance or know-how of sustainable energy products nor do they have access to energy service providing agency. This lack of energy-finance options has provided the marginalized population little means to break the conventional energy paradigm and the corresponding poverty cycle. Considering the afore-mentioned problem we propose an energy-microfinance intervention or a model that encompasses two independent entities. One has an energy expertise and the other possesses finance management skills. Alternately, we also propose a special purpose entity that comprises of these two entities. This entity fosters different institutional, technical and financial engineering approaches to the provision of energy, finance and infrastructure services necessary for poverty alleviation.

  8. Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Rabia; Ahmad, Sheikh Saeed [Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi (Pakistan)

    2010-05-15

    A research associated with urban transportation was carried out in Rawalpindi and Islamabad to analyze the status of emission of air pollutants and energy demands. The study included a discussion of past trends and future scenarios in order to reduce the future emissions. A simple model of passenger transport has been developed using computer based software called Long-Range Energy Alternatives Planning System (LEAP). The LEAP model was used to estimate total energy demand and the vehicular emissions for the base year 2000 and extrapolated till 2030 for the future predictions. Transport database in Rawalpindi and Islamabad, together with fuel consumption values for the vehicle types and emission factors of NO{sub x}, SO{sub 2} and PM{sub 10} corresponding to the actual vehicle types, formed the basis of the transport demand, energy consumption and total emission calculations. Apart from base scenario, the model was run under three alternative scenarios to study the impact of different urban transport policy initiatives that would reduce energy demand and emissions in transport sector of Rawalpindi and Islamabad. The prime objective was to arrive at an optimal transport policy, which limits the future growth of fuel consumption as well as air pollution. (author)

  9. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  10. Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The 'flexy-energy' concept

    International Nuclear Information System (INIS)

    Azoumah, Y.; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, P.

    2011-01-01

    Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy-energy' concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage. - Research highlights: → Design and load management Optimization are big concerns for hybrid systems. → Hybrid solar PV/Diesel is economically viable for remote areas and environmental friendly. → 'Flexy-energy' concept is a flexible hybrid solar PV/diesel/biomass suitable for remote areas. → 'Flexy-energy' concept is a flexible hybrid solar PV/diesel/biomass suitable for remote areas.

  11. Towards a 3d Spatial Urban Energy Modelling Approach

    Science.gov (United States)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  12. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    International Nuclear Information System (INIS)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-01-01

    Highlights: •Developed methods and used data models to integrate city’s public building records. •Shading from neighborhood buildings strongly influences urban building performance. •A case study demonstrated the workflow, simulation and analysis of building retrofits. •CityBES retrofit analysis feature provides actionable information for decision making. •Discussed significance and challenges of urban building energy modeling. -- Abstract: Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details of using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city’s mild

  13. On the Climate Variability and Energy Demands for Indoor Human Comfort Levels in Tropical Urban Environment

    Science.gov (United States)

    Pokhrel, R.; Ortiz, L. E.; González, J. E.; Ramírez-Beltran, N. D.

    2017-12-01

    The main objective of this study is to identify how climate variability influences human comfort levels in tropical urban environments. San Juan Metropolitan Area (SJMA) of the island of Puerto Rico was chosen as a reference point. A new human discomfort index (HDI) based on environmental enthalpy is defined. This index is expanded to determine the energy required to maintain indoor human comfort levels and was compared to Total Electricity consumption for the Island of Puerto Rico. Regression analysis shows that both Temperature and HDI are good indictor to predict total electrical energy consumption. Results showed that over the past 35 years the average enthalpy have increased and have mostly been above thresholds for human comfort for SJMA. The weather stations data further shows a clear indication of urbanization biases ramping up the index considered. From the trend analysis local scale (weather station) data shows a decreasing rate of maximum cooling at -11.41 kW-h/years, and minimum is increasing at 10.64 kW-h/years. To compare human comfort levels under extreme heat wave events conditions, an event of 2014 in the San Juan area was identified. The analysis for this extreme heat event is complemented by data from the National Center for environmental Prediction (NCEP) at 250km spatial resolution, North American Re-Analysis (NARR) at 32 km spatial resolution, by simulations of the Weather Forecasting System (WRF) at a resolution of 2 km, and by weather station data for San Juan. WRF simulation's results showed an improvement for both temperature and relative humidity from the input NCEP data. It also shows that difference in Energy per Capita (EPC) in urban area during a heat wave event can increase to 16% over a non-urban area. Sensitivity analysis was done by modifying the urban land cover to the most common rural references of evergreen broadleaf forest and cropland to investigate the Urban Heat Island (UHI) effect on HDI. UHI is seen to be maximum during

  14. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  15. New approach to recycling and waste-to-energy in paper production, Urban Mill

    Energy Technology Data Exchange (ETDEWEB)

    Ristola, P. [Metso Corporation (Finland)

    2002-10-01

    Greenfield paper mills are commonly perceived as massive investments with a high level of associated impact on the local environment. Parallel to this, increasingly strict targets are being set by modem legislation for reducing waste disposal at landfills. One long-term solution to this dilemma lies in extended materials recycling, combined with effective utilisation of waste as energy. Metso Paper's Urban Mill is a unique pilot concept that promises to become an important part of such a solution. The novelty of Metso Paper's new eco-efficient Urban Mill concept lies in its combination of a small paper mill with using solid waste to generate energy. The roots of the concept go back to the early 1990s, when several mini-mills were built to produce raw materials for corrugated containers in North America. The competitiveness of mini-mills like this is based on several benefits: lowcost, high-quality waste paper raw material, utilisation of adjacent facilities for utilities, and modern machines with lean manning and low inbound and outbound logistics costs.

  16. Making a technological choice for disaster management and poverty alleviation in India.

    Science.gov (United States)

    Srivastava, Sanjay K

    2009-03-01

    The right mix of policy, institutional arrangements and use of technology provides the framework for a country's approach to disaster mitigation. Worldwide, there has been a shift away from a strictly 'top-down' approach relying on government alone, to a combination of 'top-down' and 'bottom-up' approaches. The aim is to enhance the indigenous coping mechanisms of vulnerable communities; draw on their cooperative spirit and energy; and empower them through appropriate information and contextual knowledge to mitigate natural disasters. In light of this, the paper examines India's use of space technology in its disaster management efforts. Poverty alleviation and disaster management are almost inseparable in many parts of the country, as vulnerability to natural disasters is closely aligned with poverty. Addressing these issues together requires integrated knowledge systems. The paper examines how knowledge inputs from space technology have strengthened the national resolve to combat natural disasters in conjunction with alleviating rural poverty.

  17. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    Science.gov (United States)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  18. Spatio-Temporal Variability of Urban Heat Island and Urban Mobility

    Science.gov (United States)

    Kar, B.; Omitaomu, O.

    2017-12-01

    A 2016 report by the U.S. Census stated that while the rural areas cover 97% of the U.S. landmass, these areas house only 19.7% of the nation's population. Given that the U.S. coastal counties are home to more than 50% of the U.S. population, these urban areas are clustered along the coast that is susceptible to sea level rise induced impacts. In light of increasing climate variability and extreme events, it is pertinent to understand the Urban Heat Island (UHI) effect that results from increasing population density and mobility in the urban areas, and that contributes to increased energy consumption and temperature as well as unmitigated flooding events. For example, in Illinois, warmer summers contribute to heavy precipitation that overwhelms the region's drainage capacity. This study focuses on understanding the spatio-temporal variability of the relationship between population density and mobility distribution, and creation of UHI due to temperature change in selected cities across the U.S. This knowledge will help us understand the role of UHI in energy-water nexus in urban areas, specifically, energy consumption.

  19. Developing a district energy system in a competitive urban market

    Energy Technology Data Exchange (ETDEWEB)

    Mitola, J.P. [Unicom Thermal Technologies, Chicago, IL (United States)

    1995-09-01

    In two year`s time, Unicorn Thermal Technologies has grown into one of the largest district cooling systems of 25,000 tons with a 1996 plan to grow to 40,000 tons. This growth is attributed to the development and implementation of a marketing and sales plan based on thorough market research and innovative marketing and sales strategies, and the consistent implementation of those strategies. The beginning of the sales effort was focused around the company`s first district cooling facility, However, it quickly grew into a much broader vision as market acceptance increased. Although the district energy industry has often based its message on being a low cost energy provider, market research and early sales experience indicated that customers choose district cooling as a value added service. As customers began to reserve capacity in the first plant, the idea that district cooling is a value added service and not a commodity energy product was continually reinforced through marketing communications. Although this analysis is a review of developing a district energy system in a competitive urban market, it purposely avoids a long winded discussion of head to head competition.

  20. Remotely sensed thermal pollution and its relationship with energy consumption and industry in a rapidly urbanizing Chinese city

    International Nuclear Information System (INIS)

    Zhao, Xiaofeng; Jiang, Hui; Wang, Huina; Zhao, Juanjuan; Qiu, Quanyi; Tapper, Nigel; Hua, Lizhong

    2013-01-01

    Taking the city of Xiamen, China, as an example, we used thermal infrared remote sensing to detect thermal pollution, and examined its relationship to energy consumption and the industrial economy. Monthly changes in 2002 and dynamics throughout the period of rapid urbanization (1987–2007) are analysed. It is found that seasonal variation led to distinct shapes and sizes of thermal pollution areas, and winter thermal pollution was highly indicative of industrial and energy transformation sources. Industrial enterprises were the dominant sources of winter thermal pollution in Xiamen. The number and ratio of industrial thermal pollution sources increased stably in the earlier years, and dramatically in the later period (2002–2007), attributable to the effects of China entering the World Trade Organization. Linear regression shows that the number of thermal pollution sources was strongly correlated with several factors of the industrial economy and energy consumption, including industrial outputs, industrial enterprise numbers, LPG and electricity. Related mitigation measures are also discussed. This research builds a link between remote sensing-detected thermal pollution information and statistical energy consumption data, as well as industrial economy statistics. It thereby enhances understanding of the relationship between urbanization, industrialization, energy consumption and related environmental effects. - Highlights: ► A method was provided for detecting thermal pollution through remote sensing. ► Seasonal dynamics and dynamics with the process of urbanization were examined. ► Winter thermal pollution is quite indicative of industrial energy consumption. ► Thermal pollution has high correlations with industrial economy and energy factors. ► It builds a link between remotely sensed thermal pollution and energy-economic data

  1. Negotiating the labyrinth of modernity's promise a paradigm analysis of energy poverty in peri-urban Kumasi, Ghana

    Science.gov (United States)

    Odarno, Lily Ameley

    Energy poverty in developing countries has been conventionally attributed to a lack of access to sufficient, sustainable and modern forms of energy (ESMAP 2001; Modi et al. 2006). Per this definition, Sub--Saharan Africa is the most energy poor region in the world today. In line with this, efforts at addressing energy poverty in the region have concentrated on the expansion of access to modern energy sources, particularly electricity. In spite of the implementation of diverse energy development interventions, access to modern energy services remains limited. That energy poverty remains one of the most pressing challenges in Sub--Saharan Africa today in spite of the many decades of energy development necessitates a candid and thorough re--evaluation of the questions that have been traditionally asked about this issue and the solutions that have been offered in response to it. Based on theoretical analyses and empirical studies in peri--urban Kumasi, Ghana, this study attempts to offer some of the much needed re--evaluations. Using Kuhn's paradigm approach as a conceptual tool, this dissertation identifies peri--urban energy poverty as a paradigm--scale conflict in the modern arrangement of energy--development relations. By emphasizing the importance of context and political economy in understanding energy poverty, the study proposes strategies for an alternative paradigm in which energy--development relations are fundamentally redefined; one which enlists appropriate knowledge, technologies, and institutions in addressing the needs of the energy poor in ways which promote environmental values, social equity and sustainable livelihoods.

  2. Rapid urbanization and the need for sustainable transportation policies in Jakarta

    Science.gov (United States)

    Rukmana, D.

    2018-03-01

    Not only is Jakarta the largest metropolitan area in Southeast Asia, it is the also one of the most dynamic, though beset with most of the urban problems experienced in twenty-first century Southeast Asia. Batavia, colonial capital of the Netherland Indies in the first half of the 20th century was a small urban area of approximately 150,000 residents. In the second half, Batavia became Jakarta, the 28 million megacity capital of independent Indonesia. Among many urban problems, one major problem plagued Jakarta in the last two decades is traffic congestions. This paper discusses the extent to which rapid urbanization in Jakarta has contributed to the need for sustainable transportation policies in Jakarta. The development of MRT could be viable solutions to alleviate the acute traffic jams in Jakarta. Jakarta will need to implement other innovative sustainable transportation policies including promoting active live through more walking and bicycling, carpool matching services, shuttle services, telecommuting and downzoning in downtown areas.

  3. Impacts of Urbanization on Water Use and Energy-related CO2 Emissions of Residential Consumption in China: A Spatio-temporal Analysis during 2003-2012

    Science.gov (United States)

    Cai, J.; Yin, H.; Varis, O.

    2017-12-01

    China has been undergoing unprecedented urbanization since the 1978 economic reform, especially with the present growth rate for the last decade at approximately 20 million people per year. This rapid and perennial progress has been raising soaring concerns on environmental sustainability, due to a severe nationwide deterioration of China's environment and ecosystems in the context of ceaselessly increasing demand for water and energy. It is therefore of prime necessity and importance to comprehend China's water and energy security under the effect of its dramatic demographic changes. Analyses of this issue still remain few and far between, and a comprehensive picture has not been available that would help understand China's recent development in urbanization, its spatial features and links to water and energy security, particularly regarding residential consumption, as well as national policy-making in the context of its water-energy nexus. Consequently, we addressed these knowledge gaps by performing an integrated and quantitative spatio-temporal analysis of the impacts of China's urbanization on water use of residential consumption (WURC) and energy-related CO2 emissions of residential consumption (ERCERC). We proposed per capita WURC and per capita ERCERC as potential national indicators for policy-making targets of its water and energy security. Our study, conducted over the period 2003-2012, for the first time demonstrated strong evidence of the significant impacts of China's urbanization on WURC and ERCERC. Its highlights can be portrayed as follows: (1) rural areas dominated per capita WURC at both national and provincial scales, with a significant increasing trend, while WURC share and per capita WURC in urban areas decreased, despite the fact that the urban population was soaring; (2) per capita ERCERC was significantly augmented in both urban and rural areas nationwide; and (3) per capita WURC and per capita ERCERC had a significant positive correlation

  4. Impact of government poverty alleviation programmes on the socio ...

    African Journals Online (AJOL)

    Despite these programmes, poverty still exists among Nigerians especially the youth. This study therefore examines the impact of government poverty alleviation programmes on the youth. The population of the study comprised of all youths who have benefited from government poverty alleviation programmes. The Random ...

  5. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China

    International Nuclear Information System (INIS)

    Zheng, Y.H.; Li, Z.F.; Feng, S.F.; Wu, G.L.; Li, Y.; Li, C.H.; Lucas, M.; Jiang, G.M.

    2010-01-01

    A biomass energy exploration experiment was conducted in Jiangjiazhuang, a typical agro-village in Shandong, China from 2005 to 2009. The route of this study was designed as an agricultural circulation as: crops → crop residues → ''Bread'' forage → cattle → cattle dung → biogas digester → biogas/digester residues → green fertilizers → crops. About 738.8 tons of crop residues are produced in this village each year. In 2005, only two cattle were fed in this village and 1.1% of the crop residues were used as forage. About 38.5% crop residues were used for livelihood energy, 24.5% were discarded and 29.7% were directly burned in the field. Not more than three biogas digesters were built and merely 2250 m 3 biogas was produced a year relative to saving 1.6 tons standard coal and equivalent to reducing 4.3 tons CO 2 emission. A total of US$ 4491 profits were obtained from cattle benefit, reducing fossil energies/chemical fertilizer application and increasing crop yield. After 5 years experiment, cattle capita had raised gradually up to 146 and some 62.3% crop residues were used as forage. The percentages used as livelihood energy, discarded and burned in the field decreased to 16.3%, 9.2% and 9.8%, respectively. Biogas digesters increased to 123 and 92,250 m 3 biogas was fermented equal to saving 65.9 tons standard coal and reducing 177.9 tons CO 2 emission. In total US$ 60,710 profits were obtained in 2009. In addition, about 989.9 tons green fertilizers were produced from biogas digesters and applied in croplands. The results suggested that livestock and biogas projects were promising strategies to consume the redundant agricultural residues, offer livelihood energy and increase the villagers' incomes. Biogas production and utilization could effectively alleviate energy crisis and CO 2 emission, which might be a great contribution to reach the affirmatory carbon emission goal of the Chinese government on Climate Conference in Copenhagen in 2009. (author)

  6. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    Science.gov (United States)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  7. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    Science.gov (United States)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  8. Determination of the Energy Potential of the Urban Solid Residuals in Three Municipalities of the County of Luanda, Angola

    Directory of Open Access Journals (Sweden)

    Dra.C. Yudith González-Diaz

    2015-11-01

    Full Text Available The biological conversion of the Urban Solid Residuals (USR for energy purposes she comeswinning importance every day, once the urban residuals became considered a source ofalternative energy. To foresee the generation of resulting biogas of the process of biologicaldecomposition of the solid residuals of organic origin in the sanitary fillers is fundamental toestimate the energy and economic balance of facilities of recovery of gas. For the appropriatedetermination of the potential of generation of gases you employment the calculationmethodology presented by the Agency of Environmental Protection of United States. In thiscontext, the objective of this article is to quantify the potential of electric power generationcoming from the gas methane originating of the Urban Solid Residuals of the municipalitiesBelas, Cacuaco and Viana of the County of Luanda in Angola. The available energy power wasdetermined annually of the three municipalities. The instinct demonstrates that the biogas flow e"> arrives at the maximum level and it possesses the maximum available Power in the year 2037,obtaining stops the municipalities Belas, Cacuaco and Viana 3 330· 103, 1 206,13· 103 and 2 809,23· 103m3/ year of profitable methane respectively whose calculated energy potential wasrespectively of 2 316,52, 1 358,88 and 3 165,02 kW. The carried out calculations not allowalone to evaluate the energy potential of the filler, but also to evaluate, in certain way, theenvironmental impact for the mitigation of emissions of gases of effect hothouse.

  9. Electricity (in)accessibility to the urban poor in developing countries

    DEFF Research Database (Denmark)

    Singh, Rozita; Wang, Xiao; Mendoza, Juan Carlos

    2015-01-01

    More than half of the world’s population now lives in urban areas. The difficulties involved in providing new urban residents with a wide variety of services reveals a new face of poverty, one in which urban communities cannot access or afford basic modern energy services for their development...... and empowerment. As an enabler of development processes, access to electricity in urban and peri-urban contexts plays a key role in providing possibilities and solutions to the urban poor. Energy poverty is no longer a rural-only phenomenon, and a concerted effort is needed to find solutions. Taking...... this into account, the Global Network on Energy for Sustainable Development (GNESD) initiated the Urban Peri-Urban Energy Access (UPEA) project in 2006. The objective was to understand the barriers to energy access in the context of the urban poor in seven countries. Barriers from both the supply and demand sides...

  10. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings; Universite d'ete 2010 SLC - L'Ocean dans la problematique Climat-Energie, politiques urbaines. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO{sub 2} problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  11. A simple tool to evaluate the effect of the urban canyon on daylight level and energy demand in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Momme, Amalie Jin; Hviid, Christian Anker

    2014-01-01

    Daylight is a restricted resource in urban contexts. Rooms situated in an urban context often have a significant proportion of the sky and the sun blocked out by the urban building mass. The reduced direct daylight potential makes daylight reflected from outdoor surfaces an important daylight sou...... the impact of urban canyon parameters on indoor environment and energy performance....

  12. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency

    International Nuclear Information System (INIS)

    Reames, Tony Gerard

    2016-01-01

    Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publicly available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group residential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs). Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and Hispanic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnerable block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may be more effective than existing self-referral approaches. - Highlights: • Develops statistical model to predict block group (BG) residential heating energy use intensity (EUI), an energy efficiency proxy. • Bivariate and multivariate analyses explore racial/ethnic and socioeconomic relationships with heating EUI. • BGs with more racial/ethnic minority households had higher heating EUI. • BGs with lower socioeconomics had higher heating EUI. • Mapping heating EUI can facilitate effective energy efficiency intervention targeting.

  13. Seed storage-mediated dormancy alleviation in Fabaceae from campo rupestre

    Directory of Open Access Journals (Sweden)

    Naïla Nativel

    2015-09-01

    Full Text Available ABSTRACTWe studied the effects of seed storage on germination and dormancy alleviation in three species of Fabaceae endemic to campo rupestrein southeastern Brazil. Fresh seeds of Collaea cipoensis, Mimosa maguirei and Mimosa foliolosawere set to germinate and germination of seeds after four, five and 13 years of storage was tested. Seed viability was maintained for all species after the full storage period. Seed storage significantly increased germination percentage and decreased germination time for C. cipoensisand M. foliolosa, suggesting the alleviation of physical dormancy with storage. However, we did not find evidence of dormancy alleviation in M. maguirei since stored seeds showed a decrease in germination in comparison to that of fresh seeds. Our data indicate species-specific storage-mediated dormancy alleviation, which will have important implications for restoration of campo rupestre.

  14. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  15. Urban energy generation: The added value of photovoltaics in social housing

    International Nuclear Information System (INIS)

    Bahaj, A.S.; James, P.A.B.

    2007-01-01

    Social housing offers an alternative for low-to-medium income families and keyworkers (teachers, nurses, and police). In the United Kingdom (UK), this fairly priced, rental accommodation is normally owned by housing associations. This paper explores urban energy generation (micro-generation) focussing on photovoltaics (PV) and how its generated electricity can be used to provide added value in terms of demand reduction and contribute to a reduction in fuel poverty. It presents the results associated from in-depth monitoring of nine low-energy social housing units equipped with PV systems commissioned in 2004 in the South of England, UK. We report on energy load profiles and relate these to occupier behaviour and any changes in consumption that occur. The results highlight the impact of micro-generation showing a close correlation between occupant behaviour and energy consumption. Increased energy awareness can lead to changes in the way energy is used, reducing overall consumption but 'education' must be sustained to ensure long-term energy reductions. The financial benefit of operating high demand electrical appliances at the peak of the solar day as opposed to in the evening when overall demand on the central grid is higher is highlighted. The paper also draws conclusions allied to the challenges that PV micro-generation technology presents in the social housing context. (author)

  16. Energy demand, poverty and the urban environment in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Probert, S.D.

    2001-01-01

    This paper presents some insights into the prime problems of energy and related environmental issues as well as urbanisation in Jordan. The country has very limited natural resources: water is scarce; arable land is limited; and fossil-fuel sources are few. Moreover, the population is increasing rapidly. Hence, problems are arising. During the last 30 years, the country has experienced vast changes in its infrastructure with respect to the housing, urbanisation, commerce, agriculture and industry. Such developments have led to increasing demographic stresses: unemployment has increased and poverty is experienced by more than half of the population. The pressures have resulted in a high percentage of the population moving from rural to urban areas and so society is becoming less self-sufficient. At present, energy consumption in the residential sector accounts for about one quarter of the kingdom's fuel consumption. Kerosene, bottled LPG, diesel fuel and electricity are the main forms of energy used by households, but kerosene is still the dominant fuel because about 83% of households depend on it for space and water heating. The use of open fires and/or portable stoves has led to an increasing number of people being killed each year by suffocation or suffering health problems due to the inhalation of fumes and gaseous pollutants. Thus a national plan to achieve energy thrift and protect the environment, as well as accomplish the more rational utilisation of the limited natural resources available, is urgently needed and should be enacted soon. (author)

  17. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    Science.gov (United States)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  18. The urban energy balance of a lightweight low-rise neighborhood in Andacollo, Chile

    Science.gov (United States)

    Crawford, Ben; Krayenhoff, E. Scott; Cordy, Paul

    2018-01-01

    Worldwide, the majority of rapidly growing neighborhoods are found in the Global South. They often exhibit different building construction and development patterns than the Global North, and urban climate research in many such neighborhoods has to date been sparse. This study presents local-scale observations of net radiation ( Q * ) and sensible heat flux ( Q H ) from a lightweight low-rise neighborhood in the desert climate of Andacollo, Chile, and compares observations with results from a process-based urban energy-balance model (TUF3D) and a local-scale empirical model (LUMPS) for a 14-day period in autumn 2009. This is a unique neighborhood-climate combination in the urban energy-balance literature, and results show good agreement between observations and models for Q * and Q H . The unmeasured latent heat flux ( Q E ) is modeled with an updated version of TUF3D and two versions of LUMPS (a forward and inverse application). Both LUMPS implementations predict slightly higher Q E than TUF3D, which may indicate a bias in LUMPS parameters towards mid-latitude, non-desert climates. Overall, the energy balance is dominated by sensible and storage heat fluxes with mean daytime Bowen ratios of 2.57 (observed Q H /LUMPS Q E )-3.46 (TUF3D). Storage heat flux ( ΔQ S ) is modeled with TUF3D, the empirical objective hysteresis model (OHM), and the inverse LUMPS implementation. Agreement between models is generally good; the OHM-predicted diurnal cycle deviates somewhat relative to the other two models, likely because OHM coefficients are not specified for the roof and wall construction materials found in this neighborhood. New facet-scale and local-scale OHM coefficients are developed based on modeled ΔQ S and observed Q * . Coefficients in the empirical models OHM and LUMPS are derived from observations in primarily non-desert climates in European/North American neighborhoods and must be updated as measurements in lightweight low-rise (and other) neighborhoods in

  19. Rural and urban energy scenario of the developing countries and related health assessment

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1982-01-01

    The pattern of energy use in India is considered in order to assess the impact on health of rural and urban energy sources in the developing countries. The health impact of the 'non-commercial' sources of energy used in India is discussed, with particular reference to the use of firewood and farm wastes for domestic cooking. The commercial energy sources considered include coal, oil and electricity. The generation of electricity from coal, hydro sources and nuclear fuels is discussed with regard to their health impact. The production and use of biogas instead of dried animal dung for domestic cooking in the rural areas of India is proposed in order to reduce the health detriment. On the basis of the past trend in the use of commercial and non-commercial energy in India, projections are made for the future, taking into consideration health detriment and evironmental damage associated with different sources. Finally, bases for changing the energy-use pattern in the developing countries are discussed, with particular emphasis on renewable sources and nuclear energy. (author)

  20. Ecological urban renewal in Vesterbro, Copenhagen - 3 buildings with low-energy and solar energy in practice[Denmark]; Byoekologisk byfornyelse paa Vesterbro - 3 ejendomme med lavenergi- og solenergianvendelse i praksis

    Energy Technology Data Exchange (ETDEWEB)

    Vejsig Pedersen, P.

    2000-03-01

    The report is the final report on a demonstration project backed by the Danish Energy Agency concerning solar energy/low energy solutions in relation to ecological urban renewal in Hedebygade, Vesterbro. The report describes developing work relating to solar cells, ventilation with counter current heat recover and total economic and ecological urban optimization, and innovating initiatives relating to 3 buildings with a total of 62 apartments and a business property. The annual energy consumption for heating and hot water can be reduced by a combination of the following means: Use of super low-energy windows; New ventilation solutions with counter current heat recovery and air heating; Use of facade insulation, solar walls and building integrated solar cells; New types of low temperature installations e.g. centrally placed radiators and use of hot water heat exchangers; Improved light conditions by use of glassed rooms. (EHS)

  1. Representing soakaways in a physically distributed urban drainage model – Upscaling individual allotments to an aggregated scale

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin; Mark, Ole; Kuczera, George

    2012-01-01

    the infiltration rate based on water depth and soil properties for each time step, and controls the removal of water from the urban drainage model. The model is intended to be used to assess the impact of soakaways on urban drainage networks. The model is tested using field data and shown to simulate the behavior......The increased load on urban stormwater systems due to climate change and growing urbanization can be partly alleviated by using soakaways and similar infiltration techniques. However, while soakaways are usually small-scale structures, most urban drainage network models operate on a larger spatial...... of individual soakaways well. Six upscaling methods to aggregate individual soakaway units with varying saturated hydraulic conductivity (K) in the surrounding soil have been investigated. In the upscaled model, the weighted geometric mean hydraulic conductivity of individual allotments is found to provide...

  2. Integration of family planning with poverty alleviation.

    Science.gov (United States)

    Peng, P

    1996-12-01

    The Chinese Communist Central Committee and the State Council aim to solve food and clothing problems among impoverished rural people by the year 2000. This goal was a priority on the agenda of the recent October 1996 National Conference on Poverty Alleviation and Development and the 1996 National Conference of the State Family Planning Commission. Poverty is attributed to rapid population growth and underdevelopment. Poverty is concentrated in parts of 18 large provinces. These provinces are characterized by Family Planning Minister Peng as having high birth rates, early marriage and childbearing, unplanned births, and multiple births. Overpopulation is tied to overconsumption, depletion of resources, deforestation, soil erosion, pollution, shortages of water, decreases in shares of cultivated land, degraded grasslands, and general destruction of the environment. Illiteracy in poor areas is over 20%, compared to the national average of 15%. Mortality and morbidity are higher. Family planning is harder to enforce in poor areas. Pilot programs in Sichuan and Guizhou provinces are promoting integration of family planning with poverty alleviation. Several conferences have addressed the integrated program strategies. Experience has shown that poverty alleviation occurs by controlled population growth and improved quality of life. Departments should "consolidate" their development efforts under Communist Party leadership at all levels. Approaches should emphasize self-reliance and public mobilization. The emphasis should be on women's participation in development. Women's income should be increased. Family planning networks at the grassroots level need to be strengthened simultaneously with increased poverty alleviation and development. The government strategy is to strengthen leadership, mobilize the public, and implement integrated programs.

  3. DETERMINATION OF OBJECTIVES FOR URBAN FREIGHT POLICY

    Directory of Open Access Journals (Sweden)

    Daniel Kaszubowski

    2014-12-01

    Full Text Available Background: Decisions regarding strategic planning of urban freight transport very often are based on superficial assumptions inadequately reflecting the actual character of encountered challenges. The trend may be observed to adapt isolated solutions without supporting measures and verification of expected outcomes. Selected urban freight solutions have a significant potential to alleviate transport related problems, but they require unorthodox approach beyond standard traffic planning and road management. City's current planning experience must be taken into account to plan an optimized sequence of actions. Method: Due to complexity of the problem and specific decision making factors the analytic network process ANP was selected to determine relevant objective of the urban freight policy. Gdynia was selected as the subject for modeling with a review of the current freight planning practice as a first step. Then, classification of policy objective and their prerequisites were identified supported with descriptive feasibility assessment. This allowed for a development of the ANP decision-making model. Results: Considered objectives for urban freight policy were identified were optimization, reduction and transfer. After verifying relevant decision factors optimization was selected as the most feasible option for Gdynia. Other alternatives were rated around four times lower with a slight prevalence of reduction over transfer. Such ranking reflects current planning practice and availability of transferable experiences. Despite the indicative results, it must be stressed that urban freight planning should be based on the long term methodical approach not to exclude any emerging possibilities. 

  4. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  5. Determination of the energy potential of the Urban Solid Residuals in three municipalities of the county of Luanda. Angola

    International Nuclear Information System (INIS)

    González Diaz, Yudith; Gato Clavell, Tania; Girón Guillot, Rosa L.; Pires Araújo, Luis

    2015-01-01

    The biological conversion of the Urban Solid Residuals (USR) for energy purposes comes winning importance every day, once the urban residuals became considered a source of alternative energy. To foresee the generation of resulting biogas of the process of biological decomposition of the solid residuals of organic origin in the sanitary fillers is fundamental to estimate the energy and economic balance of facilities of recovery of gas. For the appropriate determination of the potential of generation of gases you employment the calculation methodology presented by the Agency of Environmental Protection of United States. In this context, the objective of this article is to quantify the potential of electric power generation coming from the gas methane originating of the Urban Solid Residuals of the municipalities Belas, Cacuaco and Viana of the County of Luanda in Angola. The available energy power was determined annually of the three municipalities. The instinct demonstrates that the biogas flow arrives at the maximum level and it possesses the maximum available Power in the year 2037, obtaining stops the municipalities Belas, Cacuaco and Viana 3330 · 103, 1206.13 · 103 and 2809.23 · 103m"3/year of profitable methane respectively whose calculated energy potential was respectively of 2316.52, 1358.88 and 3165,02 kW. The carried out calculations not allow alone to evaluate the energy potential of the filler, but also to evaluate, in certain way, the environmental impact for the mitigation of emissions of gases of effect hothouse. (author)

  6. Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data.

    Science.gov (United States)

    Chen, Guo; Glasmeier, Amy K; Zhang, Min; Shao, Yang

    2016-01-01

    This paper investigates the potential causal relationship(s) between China's urbanization and income inequality since the start of the economic reform. Based on the economic theory of urbanization and income distribution, we analyze the annual time series of China's urbanization rate and Gini index from 1978 to 2014. The results show that urbanization has an immediate alleviating effect on income inequality, as indicated by the negative relationship between the two time series at the same year (lag = 0). However, urbanization also seems to have a lagged aggravating effect on income inequality, as indicated by positive relationship between urbanization and the Gini index series at lag 1. Although the link between urbanization and income inequality is not surprising, the lagged aggravating effect of urbanization on the Gini index challenges the popular belief that urbanization in post-reform China generally helps reduce income inequality. At deeper levels, our results suggest an urgent need to focus on the social dimension of urbanization as China transitions to the next stage of modernization. Comprehensive social reforms must be prioritized to avoid a long-term economic dichotomy and permanent social segregation.

  7. Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data.

    Directory of Open Access Journals (Sweden)

    Guo Chen

    Full Text Available This paper investigates the potential causal relationship(s between China's urbanization and income inequality since the start of the economic reform. Based on the economic theory of urbanization and income distribution, we analyze the annual time series of China's urbanization rate and Gini index from 1978 to 2014. The results show that urbanization has an immediate alleviating effect on income inequality, as indicated by the negative relationship between the two time series at the same year (lag = 0. However, urbanization also seems to have a lagged aggravating effect on income inequality, as indicated by positive relationship between urbanization and the Gini index series at lag 1. Although the link between urbanization and income inequality is not surprising, the lagged aggravating effect of urbanization on the Gini index challenges the popular belief that urbanization in post-reform China generally helps reduce income inequality. At deeper levels, our results suggest an urgent need to focus on the social dimension of urbanization as China transitions to the next stage of modernization. Comprehensive social reforms must be prioritized to avoid a long-term economic dichotomy and permanent social segregation.

  8. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario

    International Nuclear Information System (INIS)

    Rafael, S.; Martins, H.; Sá, E.; Carvalho, D.; Borrego, C.; Lopes, M.

    2016-01-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of + 200 W m"−"2) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of − 62.8 and − 35 W m"−"2, respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. - Graphical abstract: A combination of white roofs and increased green urban areas has the potential do reduce the sensible heat flux of urban areas, being of great effectiveness in improving the thermal comfort of the urban population under future climate. - Highlights: • Evaluation of energy fluxes behaviour under RCP8.5 climate change scenario • Increase in the frequency, duration and magnitude of severe heat waves • Cities must become resilient to be able to deal with climate change

  9. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  10. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    Science.gov (United States)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  11. Energy-based method for near-real time modeling of sound field in complex urban environments.

    Science.gov (United States)

    Pasareanu, Stephanie M; Remillieux, Marcel C; Burdisso, Ricardo A

    2012-12-01

    Prediction of the sound field in large urban environments has been limited thus far by the heavy computational requirements of conventional numerical methods such as boundary element (BE) or finite-difference time-domain (FDTD) methods. Recently, a considerable amount of work has been devoted to developing energy-based methods for this application, and results have shown the potential to compete with conventional methods. However, these developments have been limited to two-dimensional (2-D) studies (along street axes), and no real description of the phenomena at issue has been exposed. Here the mathematical theory of diffusion is used to predict the sound field in 3-D complex urban environments. A 3-D diffusion equation is implemented by means of a simple finite-difference scheme and applied to two different types of urban configurations. This modeling approach is validated against FDTD and geometrical acoustic (GA) solutions, showing a good overall agreement. The role played by diffraction near buildings edges close to the source is discussed, and suggestions are made on the possibility to predict accurately the sound field in complex urban environments, in near real time simulations.

  12. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    Science.gov (United States)

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  13. Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Lin

    2016-03-01

    Full Text Available With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the optimization of train dwell time and builds a multiple train operation model for energy conservation of a power supply system. By changing the dwell time, the braking energy can be absorbed and utilized by other traction trains as efficiently as possible. The application of genetic algorithms is proposed for the optimization, based on the current schedule. Next, to validate the correctness and effectiveness of the optimization, a real case is studied. Actual data from the Beijing subway Yizhuang Line are employed to perform the simulation, and the results indicate that the optimization method of the dwell time is effective.

  14. Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia

    International Nuclear Information System (INIS)

    Andadari, Roos Kities; Mulder, Peter; Rietveld, Piet

    2014-01-01

    In low- and middle-income countries, Liquefied Petroleum Gas (LPG) can be an attractive alternative to the widespread use of traditional kerosene. Not only is LPG a relatively clean, safe and cost-effective fuel for households, its large-scale adoption also reduces the heavy burden of kerosene consumption subsidies on government budgets. Against this background, we evaluate the impact of a large government program to substitute LPG for kerosene in Indonesia. Using a household survey across urban, suburban and rural regions we find that this program was very effective in causing a large scale shift from kerosene to LPG. This shift was positively influenced by level of education, household size and household income. Contradicting the energy-ladder model, the LPG program, reinforced by an increase in the price of kerosene, led to increased stacking of fuels, including increasing consumption of both electricity and traditional biomass. In addition, our analysis shows that the LPG program failed to substantially reduce the overall number of energy-poor people, but it has been effective in alleviating extreme energy-poverty. Finally, we find that medium and higher income households in suburban areas benefitted most from the LPG program. - Highlights: • Impact evaluation of a government program to substitute LPG for kerosene in Indonesia. • The program caused a large scale shift from kerosene to LPG. • Contradicting the energy-ladder model, the program led to increased stacking of fuels. • The program did not substantially reduce overall energy poverty, but alleviated extreme energy-poverty. • Medium and higher income households in suburban areas benefitted most from the LPG program

  15. Psychosocial routes from housing investment to health: Evidence from England's home energy efficiency scheme

    International Nuclear Information System (INIS)

    Gilbertson, Jan; Grimsley, Michael; Green, Geoff

    2012-01-01

    Over the past decade the Warm Front Scheme has been the English Government's principal programme for improving domestic energy efficiency and reducing fuel poverty. This paper reports on a cross-sectional survey of low income householders participating in the Warm Front Scheme in five urban areas of England. Surveys were conducted of 2685 individuals, before and or after intervention. Pathways to self reported health were modelled by logistic regression. Of all the dimensions of health examined, only self reported mental health is directly associated with Warm Front measures. Intermediary variables associated with Warm Front intervention were shown to be significantly correlated with more dimensions of self reported health status. Higher temperatures, satisfaction with the heating system, greater thermal comfort, reductions in fuel poverty and lower stress were significantly correlated with improved health. Alleviating fuel poverty and reducing stress appeared to be the main route to health. We conclude there are complex and indirect relationships linking energy efficiency measures to outcomes on all dimensions of health which contribute to significant material and psychosocial benefits. The impact of the Warm Front Scheme cannot be fully understood by a limited analysis which merely relates indoor temperature and property characteristics to physiological health outcomes. - Highlights: ► Warm Front improvements are linked to significant material and psychosocial benefits. ► The alleviation of fuel poverty and the reduction of stress emerge as the likely route to health. ► The scope for improving health is greater than implied by the UK Government's Fuel Poverty Strategy. ► A dual but integrated approach to alleviating cold living conditions and fuel poverty is required.

  16. Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: evidence from the ARDL approach and impulse saturation break tests.

    Science.gov (United States)

    Raggad, Bechir

    2018-05-01

    This study investigates the existence of long-run relationship between CO 2 emissions, economic growth, energy use, and urbanization in Saudi Arabia over the period 1971-2014. The autoregressive distributed lag (ARDL) approach with structural breaks, where structural breaks are identified with the recently impulse saturation break tests, is applied to conduct the analysis. The bounds test result supports the existence of long-run relationship among the variables. The existence of environmental Kuznets curve (EKC) hypothesis has also been tested. The results reveal the non-validity of the EKC hypothesis for Saudi Arabia as the relationship between GDP and pollution is positive in both the short and the long run. Moreover, energy use increases pollution both in short and long run in the country. On the contrary, the results show a negative and significant impact of urbanization on carbon emissions in Saudi Arabia, which means that urban development is not an obstacle to the improvement of environmental quality. Consequently, policy-makers in Saudi Arabia should consider the efficiency enhancement, frugality in energy consumption, and especially increase the share of renewable energies in the total energy mix.

  17. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.H. [State Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Li, Z.F. [State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China); Taishan Academy of Science and Technology, Tai' an, Shandong 271000 (China); Feng, S.F.; Wu, G.L.; Li, Y.; Li, C.H. [State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China); Lucas, M. [Rheinisch-Westfalisch Technische Hochschule, Aachen University, Aachen 52070 (Germany); Jiang, G.M. [State Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China)

    2010-12-15

    A biomass energy exploration experiment was conducted in Jiangjiazhuang, a typical agro-village in Shandong, China from 2005 to 2009. The route of this study was designed as an agricultural circulation as: crops {yields} crop residues {yields} ''Bread'' forage {yields} cattle {yields} cattle dung {yields} biogas digester {yields} biogas/digester residues {yields} green fertilizers {yields} crops. About 738.8 tons of crop residues are produced in this village each year. In 2005, only two cattle were fed in this village and 1.1% of the crop residues were used as forage. About 38.5% crop residues were used for livelihood energy, 24.5% were discarded and 29.7% were directly burned in the field. Not more than three biogas digesters were built and merely 2250 m{sup 3} biogas was produced a year relative to saving 1.6 tons standard coal and equivalent to reducing 4.3 tons CO{sub 2} emission. A total of US$ 4491 profits were obtained from cattle benefit, reducing fossil energies/chemical fertilizer application and increasing crop yield. After 5 years experiment, cattle capita had raised gradually up to 146 and some 62.3% crop residues were used as forage. The percentages used as livelihood energy, discarded and burned in the field decreased to 16.3%, 9.2% and 9.8%, respectively. Biogas digesters increased to 123 and 92,250 m{sup 3} biogas was fermented equal to saving 65.9 tons standard coal and reducing 177.9 tons CO{sub 2} emission. In total US$ 60,710 profits were obtained in 2009. In addition, about 989.9 tons green fertilizers were produced from biogas digesters and applied in croplands. The results suggested that livestock and biogas projects were promising strategies to consume the redundant agricultural residues, offer livelihood energy and increase the villagers' incomes. Biogas production and utilization could effectively alleviate energy crisis and CO{sub 2} emission, which might be a great contribution to reach the affirmatory carbon

  18. Industrial Energy Use and Interventions in Urban Form : Heavy Manufacturing versus New Service and Creative Industries

    NARCIS (Netherlands)

    Romein, A.

    2016-01-01

    Now that it becomes obvious that disregarding the seriousness of climate change and the exhaustibility of fossil fuels would have severe and unpredictable impacts, improvement of the efficiency of urban energy consumption is of utmost importance. Hence, a rather diverse spectrum of policies to

  19. Renewable energy in urban areas. The future has already begun; Energies renouvelables en milieu urbain. Le futur, c'est deja maintenant

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.

    1999-10-01

    Renewable energy is still often presented as the energy of tomorrow or the day after tomorrow. It is true: 6% of the European energy total is still too little. But, 6% is not something to be sneezed at either. The White Paper fixed the ambitious objective of 12% in 2010 and initiatives are flourishing. These initiatives are far from coming exclusively from the countryside, where local resources (biomass, small-scale hydro power, etc.) or space (wind energy) are to be found. Urban areas, which have to meet higher energy requirements, often have district heating working on biomass and geothermal energy, biogas produced from sewage treatment plants and used as bus fuel, building roofs fitted for thermal and photovoltaic solar collectors or rivers running through the city. Encouraging examples will be find in this special issue dedicated to ''renewable''. (author)

  20. Energy development and urban employment creation: the case of the city of Los Angeles

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A; Kolk, D; Brady, M; Kneisel, R

    1981-10-01

    This paper analyzes four energy management tactics in terms of their economic viability and ability to generate employment at the local level. They include: (1) solar water heating, (2) weatherization, (3) coal-fired electricity generation, and (4) liquified natural gas distribution. In general it was found that new energy options offer a significant number of job openings, though they are by no means a major solution to urban unemployment as some have suggested. Also, the time-path and pattern of employment gains must be evaluated carefully by policy-makers if labor force dislocations are to be avoided. 21 refs.

  1. Saturation, energy consumption, CO{sub 2} emission and energy efficiency from urban and rural households appliances in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Flores, Jorge Alberto; Rosas-Flores, Dionicio [Division de Estudios de Posgrado, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Posgrado de Arquitectura, Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Galvez, David Morillon [Posgrado de Arquitectura, Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad, Universitaria, Coyoacan 04510, Mexico, DF (Mexico)

    2011-01-15

    Energy usage and energy efficiency are of increasing concern in Mexico, electricity generation principally depends upon fossil fuels. On one hand, the stocks of these fuels have been confirmed to be critically limited. On the other hand, in process of electricity generation by means of these fuels, a number of poisonous by-products adversely affect the conservation of natural eco-system. This paper focuses on estimation of energy consumption, energy savings, reduction of emissions of CO{sub 2} for use of urban and rural household appliances in Mexico between 1996 and 2021. The analysis concentrates on six major energy end uses in the residential sector: refrigerators, air conditioners, washing machines, TV set, iron and heater. It is estimated that by 2021 there will be a cumulative saving of 22,605 GWh, as a result of the implementation of government programs on energy efficiency that represents a cumulative reduction of CO{sub 2} emissions of 15,087 Tg CO{sub 2}. It means that Mexico can reduce in 5650 MW the generation capacity of national electricity system, which is to avoid burning 40.35 MM barrels of oil. The findings can be useful to policy makers as well as household appliances users. (author)

  2. Nested High Resolution Modeling of the Impact of Urbanization on Regional Climate in Three Vast Urban Agglomerations in China

    Science.gov (United States)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2013-04-01

    In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.

  3. Resources and Energy Management: the case of the Agropoli Urban Plan

    Directory of Open Access Journals (Sweden)

    Francesco Domenico Moccia

    2013-07-01

    Full Text Available The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on the environment posed by the European Union with the Directive " EP seals climate change package 20-20-20". In particular the planning tool provides a series of actions aimed at containing the uses energy through measures to rationalize, do not waste and reduce the use of non-renewable resources, by promoting "best practices" from the management of public assets, the use of innovative technologies in all sectors and activities; the diffusion of renewable energy production, with care to avoid impacts and interference with the historical landscape, including the promotion of programs and interventions of public management. The different strategic projects will take care of specific actions also for the experimental use of innovative technologies.The article proposes, within the framework of strategies and actions at the European level for small municipalities, the example of the City of Agropoli drawing conclusions and reflections on the theme of energy saving relative to the housing stock.

  4. Can the urban poor afford modern energy? The case of Ethiopia

    International Nuclear Information System (INIS)

    Kebede, Bereket; Bekele, Almaz; Kedir, Elias

    2002-01-01

    Comparing rough measures of costs of using modern fuels and purchasing power of the urban poor in Ethiopia, this article finds that, while kerosene is relatively cheap even for the very poor, electricity is extremely expensive even for the relatively well to do. The upper stratum of the poor may have the purchasing power to access butane gas. In addition, the article examines the relevance of the 'energy ladder' hypothesis. Generally, both at the aggregate level and for individual urban areas, the prediction from the hypothesis holds; but our results indicate that the relevance of the hypothesis weakens on lower levels of aggregation implying significant inter-city variations. Finally, demand equations for each fuel are econometrically estimated and the elasticities are used to examine price and income effects. The budget elasticities indicate that with economic growth, the demand for traditional fuels will increase. In addition, the cross-price elasticities show that increase in the price of a traditional fuel mainly shifts demand towards other traditional fuels rather than towards modern fuels. This slows down the transition towards modern fuels. The article concludes by presenting policy recommendations arising from the analysis. (Author)

  5. Can the urban poor afford modern energy? The case of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Bereket [Oxford Univ., St Antony' s Coll., Oxford (United Kingdom); Bekele, Almaz [Central Statistical Authority, Transport and Finance Dept., Addis Ababa (Ethiopia); Kedir, Elias [Addis Ababa Univ., Dept. of Economics, Addis Ababa (Ethiopia)

    2002-09-01

    Comparing rough measures of costs of using modern fuels and purchasing power of the urban poor in Ethiopia, this article finds that, while kerosene is relatively cheap even for the very poor, electricity is extremely expensive even for the relatively well to do. The upper stratum of the poor may have the purchasing power to access butane gas. In addition, the article examines the relevance of the 'energy ladder' hypothesis. Generally, both at the aggregate level and for individual urban areas, the prediction from the hypothesis holds; but our results indicate that the relevance of the hypothesis weakens on lower levels of aggregation implying significant inter-city variations. Finally, demand equations for each fuel are econometrically estimated and the elasticities are used to examine price and income effects. The budget elasticities indicate that with economic growth, the demand for traditional fuels will increase. In addition, the cross-price elasticities show that increase in the price of a traditional fuel mainly shifts demand towards other traditional fuels rather than towards modern fuels. This slows down the transition towards modern fuels. The article concludes by presenting policy recommendations arising from the analysis. (Author)

  6. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, S., E-mail: sandra.rafael@ua.pt; Martins, H.; Sá, E.; Carvalho, D.; Borrego, C.; Lopes, M.

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of + 200 W m{sup −2}) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of − 62.8 and − 35 W m{sup −2}, respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. - Graphical abstract: A combination of white roofs and increased green urban areas has the potential do reduce the sensible heat flux of urban areas, being of great effectiveness in improving the thermal comfort of the urban population under future climate. - Highlights: • Evaluation of energy fluxes behaviour under RCP8.5 climate change scenario • Increase in the frequency, duration and magnitude of severe heat waves • Cities must become resilient to be able to deal with climate change

  7. Understanding structure of urban traffic network based on spatial-temporal correlation analysis

    Science.gov (United States)

    Yang, Yanfang; Jia, Limin; Qin, Yong; Han, Shixiu; Dong, Honghui

    2017-08-01

    Understanding the structural characteristics of urban traffic network comprehensively can provide references for improving road utilization rate and alleviating traffic congestion. This paper focuses on the spatial-temporal correlations between different pairs of traffic series and proposes a complex network-based method of constructing the urban traffic network. In the network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding spatial-temporal correlation. Further, a modified PageRank algorithm, named the geographical weight-based PageRank algorithm (GWPA), is proposed to analyze the spatial distribution of important segments in the road network. Finally, experiments are conducted by using three kinds of traffic series collected from the urban road network in Beijing. Experimental results show that the urban traffic networks constructed by three traffic variables all indicate both small-world and scale-free characteristics. Compared with the results of PageRank algorithm, GWPA is proved to be valid in evaluating the importance of segments and identifying the important segments with small degree.

  8. Urbanity and Urbanization: An Interdisciplinary Review Combining Cultural and Physical Approaches

    Directory of Open Access Journals (Sweden)

    Christoph Schneider

    2014-01-01

    Full Text Available This review paper focuses on research schemes regarding urbanity and urbanization, and brings together both cultural and physical approaches. First, we review the cultural and social construction of urbanity (as related to urbanization in Germany. In the early 20th century, urbanity was mainly the result of identity derived from a historical perspective in cities. This has changed profoundly in recent decades as urbanity stems more and more from various urban lifestyles and the staging of societal experiences, as summarized in the German term, “Erlebnisgesellschaft” (thrill-seeking society. The discussion is extended by an assessment of the recent state of the art regarding physical urban research. The focus lies on different fields of research; we address topics such as biodiversity, urban climate, air pollution, and resilience, as well as their impact on urban planning and governance. In conclusion, in order to tackle recent developments and future challenges regarding social and environmental issues, an integrative approach urges novel cross- and inter-disciplinary research efforts in urban studies, including urban-rural linkages. A newly constituted assessment of urbanization and city quarter development is proposed; the assessment focuses on the conjoint analysis of mobility, “Energiewende” (energy transition, cultural drivers, demographic development, and environmental issues.

  9. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    Science.gov (United States)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  10. Energy conservation in urban areas in the framework of a sustainable transportation concept

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, M.

    2001-07-01

    The widespread of transport is recognized as a major contributor to an extensive range of undesirable side effects, covering all stages, from production to use and disposal. The transport sector is one of the major consumers of energy mainly fossil fuels and therefore contributes adverse emissions with local direct health effects as well as a significant share of 'greenhouse gases' (GHGs), which play a crucial role in determining the earth's climate. Moreover, the transportation sector is implicated in causing some social problems such as intensive use of public space. Present growth in vehicle ownership and use in urban areas, is unsustainable. Petroleum fuels, which are the main energy source for the transport sector, are essentially non-renewable. In short, the transportation system is unsustainable and is becoming more unsustainable. Measures need to be taken at a number of levels to mitigate the negative effects of transport and to reduce the increasing dependence on the fossil fuels as a main transportation energy soruce. The main objectives of this study are: (a) analyzing the transportation's role in the energy markets and its related environmental problems and defining the sustainable transport in urban areas, (b) analyzing alternative urban planning philosophies, (c) presenting a suggested procedure for sustainable develop ment of urban transport and energy consumption, (d) identifying the potential impacts of this procedure by being applied to Alexandria city, as a case study. The identification is based on evaluating four different scenarios for the year 2015 which are compared to each other, as well as with a business-as usual scenario (Do-Nothing Solution). These scenarios are based on the proposed sustainable transport and energy systems started from (Do-Minimum Solution) until (Do-Maximum Solution). To facilitate the calculations, an interactive computer program called 'TraEnergy' is developed in the framework of this

  11. Energy Justice in Sub-Saharan Africa

    Science.gov (United States)

    Buchholz, Kathleen B.

    Sub-Saharan Africa has the lowest rates of electrification and some of the worst education statistics worldwide. In the absence of strong infrastructure for a reliable grid system and quality universal primary schooling, the poor suffer significantly. Though substantial research has been done on both issues separately, the relationship between the two has yet to be explored. This thesis uses social justice theories to introduce the connections between energy poverty and an individual's education capabilities through a case study in Zambia. Case study research was carried out in the urban low-resource settlements of Lusaka, Zambia over a period of two months with Lifeline Energy, using methods of participant observation. Drawing on trends discovered in survey responses, interviews and feedback from a distribution of renewable technologies, this study demonstrates that a lack of modern forms of energy detracts from education. By synthesizing the data with Martha Nussbaum's capabilities approach and Sendhil Mullainathan and Eldar Shafir's scarcity theory, the research reveals that energy poverty hinders an individual's ability to study and gain a quality education and diminishes their available cognitive capacity to learn by tunneling attention to the resource deficit. Furthermore, it supports the claim that energy poverty is not gender neutral. The research concludes that the scarcity caused by energy poverty can be lessened by the investment in and use of small-scale renewable technologies which alleviates some of the daily stress and grind of poverty. This thesis lays the groundwork to recognize energy poverty as an injustice. Keywords: Energy Poverty, Education, Gender, Sub-Saharan Africa, Scarcity, Capabilities Approach..

  12. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China

    Science.gov (United States)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2012-11-01

    In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1°C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.

  13. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    Science.gov (United States)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  14. Conceptual framework for describing selected urban and community impacts of federal energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A,; Marcus, A.A.; Keller, D.

    1980-06-01

    A conceptual framework is presented for describing selected urban and community impacts of Federal energy policies. The framework depends on a simple causal model. The outputs of the model are impacts, changes in the state of the world of particular interest to policymakers. At any given time, a set of determinants account for the state of the world with respect to an impact category. Application of the model to a particular impact category requires: establishing a definition and measure for the impact category and identifying the determinants of these impacts. Analysis of the impact of a particular policy requires the following: identifying the policy and its effects (as estimated by others), isolating any effects that themselves constitute an urban and community impact, identifying any effects that change the value of determinants, and describing the impact with reference to the new values of determinants. This report provides a framework for these steps. Three impacts addressed are: neighborhood stability, housing availability, and quality and availability of public services. In each chapter, a definition and measure for the impact are specified; its principal determinants are identified; how the causal model can be used to estimate impacts by applying it to three illustrative Federal policies (domestic oil price decontrol, building energy performance standards, and increased Federal aid for mass transit) is demonstrated. (MCW)

  15. Evaluating impacts of energy prices release on urban planning of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Babaei Aghdam, Feridoun [Mohaghegh Ardabili University (Iran, Islamic Republic of)], email: Fbabei@uma.ac.ir, email: freydoun2001@yahoo.com

    2011-07-01

    The Parliament of Iran adopted a subsidy reform plan in January, 2010. This reform constitutes one of the most significant changes to Iran's economy in the last 50 years, as it aims to replace subsidies on food and energy with social assistance. This will have important effects on the sectors consuming the most energy such as transport, buildings, industry and agriculture. The aim of this paper is to determine both the positive and negative impacts of this reform. A review of the available information was carried out using library resources, the press and the Internet; interviews with experts were also conducted. Then field investigations were conducted and a comparative survey was done. Results of this research showed that the subsidy reform plan will result in economic, social, political and traffic benefits but will also raise socio-economic issues in urban areas. This study pointed out that the subsidy reform will have more positive than negative impacts.

  16. Energy subsidies and costs in urban Ethiopia: The cases of kerosene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Bereket [School of Development Studies, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2006-10-15

    Making energy affordable to the poor is a widely cited reason for subsidies. Whether subsidies achieve this objective is rarely analysed. In this article, the significance of kerosene and electricity subsidies in relation to the purchasing power of Ethiopian urban households is examined. The results indicate that subsidies on kerosene prices and electricity tariffs do not significantly change the overall costs for households. Even poor households on the average have the purchasing power to access unsubsidised kerosene. The overall costs-including fixed costs-of accessing electricity are very high relative to purchasing power even for the well to do urban households if down payments are made. But when costs are spread over the lifespan of fixed components, even the average poor have the purchasing power to access electricity. These results underscore the importance of a mechanism that spreads fixed costs over longer periods of time. Spreading fixed costs over electricity bills and providing credit facilities are two options that can ameliorate the condition. (author)

  17. Physical Activity Energy Expenditure and Sarcopenia in Black South African Urban Women.

    Science.gov (United States)

    Kruger, Herculina S; Havemann-Nel, Lize; Ravyse, Chrisna; Moss, Sarah J; Tieland, Michael

    2016-03-01

    Black women are believed to be genetically less predisposed to age-related sarcopenia. The objective of this study was to investigate lifestyle factors associated with sarcopenia in black South African (SA) urban women. In a cross-sectional study, 247 women (mean age 57 y) were randomly selected. Anthropometric and sociodemographic variables, dietary intakes, and physical activity were measured. Activity was also measured by combined accelerometery/heart rate monitoring (ActiHeart), and HIV status was tested. Dual energy x-ray absorptiometry was used to measure appendicular skeletal mass (ASM). Sarcopenia was defined according to a recently derived SA cutpoint of ASM index (ASM/height squared) decreasing to 8.1% after exclusion of participants who were HIV positive. In multiple regressions with ASM index, grip strength, and gait speed, respectively, as dependent variables, only activity energy expenditure (β = .27) was significantly associated with ASM index. Age (β = -.50) and activity energy expenditure (β = .17) were significantly associated with gait speed. Age (β = -.11) and lean mass (β = .21) were significantly associated with handgrip strength. Sarcopenia was prevalent among these SA women and was associated with low physical activity energy expenditure.

  18. An analysis of the influence of urban form on energy consumption by individual consumption behaviors from a microeconomic viewpoint

    International Nuclear Information System (INIS)

    Yin, Yanhong; Mizokami, Shoshi; Maruyama, Takuya

    2013-01-01

    Using 1997 personal trip survey (PTS) data in the Kumamoto metropolitan area, this paper examined the influence of urban form on energy consumption through an energy estimation model from a microeconomic perspective. As all goods and service are assumed to satisfy the need of people, we estimated the individual energy consumption based on the demand of goods, which is explained by a utility maximization problem constrained by income. 52.84 GJ of energy is estimated for one person one year in Kumamoto metropolitan area. 19.57% of energy is used for mobility goods. A spatial regression was performed to analyze the relationship between energy efficiency and urban form characteristics in terms of density, diversity, and accessibility. The results of regression analysis show that employment density, ratio of employee in retail department, transit fare, and distance to city center are the most influential factors of energy efficiency. Findings suggest compact development and integrated policies for increasing employment density, especially, employment proportion of local residents are suggested. Moreover, measures to improve the attractiveness of mass transit should be encouraged to increase energy efficiency in Kumamoto. - Highlights: • Energy consumption is estimated by demand of composite goods, mobility goods. • 52.84 GJ of energy is estimated to satisfy one person per year in Kumamoto. • 80% of energy is for composite goods and 20% for mobility goods. • Land use diversity and distance to city center, affect energy consumption most. • Employment density and transit fare are influential factors of energy efficiency

  19. Expression of ultraviolet-induced restriction alleviation in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Thoms, B.; Wackernagel, W.

    1983-01-01

    Ultraviolet-induced restriction alleviation is an SOS function which partially relieves the K-12-specific DNA restriction in Escherichia coli. Restriction alleviation is determined by observing elevated survival of unmodified phage lambda in cells irradiated with ultraviolet prior to infection. The authors demonstrate that restriction of lambda is also relieved when log-phase cells are irradiated as late as 50 min after adsorption of lambda. At this time more than 60% of the lambda DNA is already released as acid-soluble material from the cells. Experiments involving reextraction of lambda DNA from infected cells and a mild detergent treatment removing adsorbed phages from the cellular surface showed that only a small specific fraction of all lambda infections is destined to escape restriction due to restriction alleviation. This fraction (10-20%) has a retarded mode of DNA injection (60 min or longer) after adsorption which allows the expression of the restriction alleviation function before the phage DNA is exposed to restriction endonucleases. This behaviour of a fraction of lambda phages explains why the SOS function restriction alleviation could initially be discovered. The authors show that the retarded mode of DNA injection is not required for another SOS function acting on lambda DNA, the increased repair of ultraviolet-irradiated DNA (Weigle reactivation). (Auth.)

  20. Resilience offers escape from trapped thinking on poverty alleviation.

    Science.gov (United States)

    Lade, Steven J; Haider, L Jamila; Engström, Gustav; Schlüter, Maja

    2017-05-01

    The poverty trap concept strongly influences current research and policy on poverty alleviation. Financial or technological inputs intended to "push" the rural poor out of a poverty trap have had many successes but have also failed unexpectedly with serious ecological and social consequences that can reinforce poverty. Resilience thinking can help to (i) understand how these failures emerge from the complex relationships between humans and the ecosystems on which they depend and (ii) navigate diverse poverty alleviation strategies, such as transformative change, that may instead be required. First, we review commonly observed or assumed social-ecological relationships in rural development contexts, focusing on economic, biophysical, and cultural aspects of poverty. Second, we develop a classification of poverty alleviation strategies using insights from resilience research on social-ecological change. Last, we use these advances to develop stylized, multidimensional poverty trap models. The models show that (i) interventions that ignore nature and culture can reinforce poverty (particularly in agrobiodiverse landscapes), (ii) transformative change can instead open new pathways for poverty alleviation, and (iii) asset inputs may be effective in other contexts (for example, where resource degradation and poverty are tightly interlinked). Our model-based approach and insights offer a systematic way to review the consequences of the causal mechanisms that characterize poverty traps in different agricultural contexts and identify appropriate strategies for rural development challenges.

  1. Resilience offers escape from trapped thinking on poverty alleviation

    Science.gov (United States)

    Lade, Steven J.; Haider, L. Jamila; Engström, Gustav; Schlüter, Maja

    2017-01-01

    The poverty trap concept strongly influences current research and policy on poverty alleviation. Financial or technological inputs intended to “push” the rural poor out of a poverty trap have had many successes but have also failed unexpectedly with serious ecological and social consequences that can reinforce poverty. Resilience thinking can help to (i) understand how these failures emerge from the complex relationships between humans and the ecosystems on which they depend and (ii) navigate diverse poverty alleviation strategies, such as transformative change, that may instead be required. First, we review commonly observed or assumed social-ecological relationships in rural development contexts, focusing on economic, biophysical, and cultural aspects of poverty. Second, we develop a classification of poverty alleviation strategies using insights from resilience research on social-ecological change. Last, we use these advances to develop stylized, multidimensional poverty trap models. The models show that (i) interventions that ignore nature and culture can reinforce poverty (particularly in agrobiodiverse landscapes), (ii) transformative change can instead open new pathways for poverty alleviation, and (iii) asset inputs may be effective in other contexts (for example, where resource degradation and poverty are tightly interlinked). Our model-based approach and insights offer a systematic way to review the consequences of the causal mechanisms that characterize poverty traps in different agricultural contexts and identify appropriate strategies for rural development challenges. PMID:28508077

  2. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    Science.gov (United States)

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The study of urban metabolism and its applications to urban planning and design

    International Nuclear Information System (INIS)

    Kennedy, C.; Pincetl, S.; Bunje, P.

    2011-01-01

    Following formative work in the 1970s, disappearance in the 1980s, and reemergence in the 1990s, a chronological review shows that the past decade has witnessed increasing interest in the study of urban metabolism. The review finds that there are two related, non-conflicting, schools of urban metabolism: one following Odum describes metabolism in terms of energy equivalents; while the second more broadly expresses a city's flows of water, materials and nutrients in terms of mass fluxes. Four example applications of urban metabolism studies are discussed: urban sustainability indicators; inputs to urban greenhouse gas emissions calculation; mathematical models of urban metabolism for policy analysis; and as a basis for sustainable urban design. Future directions include fuller integration of social, health and economic indicators into the urban metabolism framework, while tackling the great sustainability challenge of reconstructing cities. - This paper presents a chronological review of urban metabolism studies and highlights four areas of application.

  4. Urban-Rural Disparities in Energy Intake and Contribution of Fat and Animal Source Foods in Chinese Children Aged 4-17 Years.

    Science.gov (United States)

    Zhang, Ji; Wang, Dantong; Eldridge, Alison L; Huang, Feifei; Ouyang, Yifei; Wang, Huijun; Zhang, Bing

    2017-05-21

    Excessive energy intake and poor food choices are major health concerns associated with overweight and obesity risk. This study aims to explore disparities in energy intake and the contributions from fat and animal source foods among Chinese school-aged children and adolescents in different communities based on urbanization levels. Three consecutive 24 h recalls were used to assess dietary intake. Subjects' height and weight were measured using standard equipment. Standardized questionnaires were used to collect household demographic and socioeconomic characteristics by trained interviewers. The 2011 China Health and Nutrition Survey is part of an ongoing longitudinal household survey across 228 communities in nine provinces and three mega-cities in China. Subjects consisted of children aged 4-17 years ( n = 1866; 968 boys and 898 girls). The estimated average energy intake was 1604 kcal/day (1706 kcal/day for boys and 1493 kcal/day for girls). Proportions of energy from fat and animal source foods were 36.8% and 19.8% respectively and did not differ by gender. Total energy intake showed no significant disparity, but the proportion of energy from fat and animal source foods increased with increasing urbanization levels and increasing household income level. The largest difference in consumption percentages between children in rural areas and those in highly urban areas was for milk and dairy products (14.8% versus 74.4%) and the smallest difference was seen in percent consuming meat and meat products (83.1% versus 97.1%). Results of this study highlight the need for developing and implementing community-specific strategies to improve Chinese children's diet quality.

  5. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments

    DEFF Research Database (Denmark)

    Gücker, Björn; Silva, Ricky C. S.; Graeber, Daniel

    2016-01-01

    , pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than...... natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation...... of heterotrophic DOM decomposition, but increased P limitation. Land use—especially urbanization—also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high...

  6. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa.

    Science.gov (United States)

    Hanif, Imran

    2018-05-01

    The present study explores the impact of economic growth; urban expansion; and consumption of fossil fuels, solid fuels, and renewable energy on environmental degradation in developing economies of Sub-Saharan Africa. To demonstrate its findings in detail, the study adopts a system generalized method of moment (GMM) on a panel of 34 emerging economies for the period from 1995 to 2015. The results describe that the consumption of fossil and solid fuels for cooking and expansion of urban areas are significantly contributing to carbon dioxide emissions, on one end, and stimulating air pollution, on the other. The results also exhibit an inverted U-shape relationship between per capita economic growth and carbon emissions. This relation confirms the existence of an environmental Kuznets curve (EKC) in middle- and low-income economies of Sub-Saharan Africa. Furthermore, the findings reveal that the use of renewable energy alternatives improves air quality by controlling carbon emissions and lowering the direct interaction of households with toxic gases. Thus, the use of renewable energy alternatives helps the economies to achieve sustainable development targets.

  7. Exercise alleviates depression related systemic inflammation in ...

    African Journals Online (AJOL)

    Exercise alleviates depression related systemic inflammation in chronic obstructive pulmonary disease patients. ... African Health Sciences ... Currently, physical activity is an important lifestyle factor that has the potential to modify inflammatory ...

  8. A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Dasaraden Mauree

    2018-04-01

    Full Text Available Building more energy-efficient and sustainable urban areas that will both mitigate the effects of climate change and anticipate living conditions in future climate scenarios requires the development of new tools and methods that can help urban planners, architects and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099 were run, as well as a renovation scenario (Minergie-P. We analyzed the impact of climate change on the heating and cooling demand of buildings and determined the relevance of taking into account the local climate in this particular context. The results from the simulations confirmed that in the future, there will be a constant decrease in the heating demand, while the cooling demand will substantially increase. Significantly, it was further demonstrated that when the local urban climate was taken into account, there was an even higher rise in the cooling demand, but also that a set of proposed Minergie-P renovations were not sufficient to achieve resilient buildings. We discuss the implication of this work for the simulation of building energy consumption at the neighborhood scale and the impact of future local climate on energy system design. We finally give a few perspectives regarding improved urban design and possible pathways for future urban areas.

  9. Life cycle implications of urban green infrastructure.

    Science.gov (United States)

    Spatari, Sabrina; Yu, Ziwen; Montalto, Franco A

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Studies on energy system for an energy-saving society; Sho energy gata shakai ni okeru energy system kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The system to which new energy technology and energy saving technology were introduced was constructed for case studies of urban areas including core cities and the peripheral areas, and the quantitative analysis was conducted on environmental effects, etc. In the energy supply system model, the following element technologies were all considered: cogeneration system, sewage water heat, river water heat, the photovoltaic power generation, energy storage/heat storage/cold heat storage, adsorption type refrigerator, etc. Also considered were power interchange between clusters, system power buying/power selling, heat interchange or no heat interchange, etc. As a result, it was found that when constructing the energy system which synthetically takes into account thermoelectric ratios, rates of simultaneous loads, ratios of daytime/nighttime in the energy supply and demand in the urban area, the energy saving effect multiplicatively increases, and the energy system using cogeneration and unused energy such as refuse and sewage in the urban area and river water brings an energy saving effect of 32% especially in the concentrated cluster. 83 figs., 45 tabs.

  11. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  12. Prospects of renewable-energy sources in Pakistan

    International Nuclear Information System (INIS)

    Zaigham, N.A.; Nayyar, Z.A.

    2005-01-01

    Pakistan, despite the enormous potential of its energy resources, remains energy- deficient and has to rely heavily on imports to satisfy its needs. Moreover, a very large part of the rural areas does not have the electrification facilities, because they are either too remote and/or too expensive to connect to the national grid. Pakistan obtains its energy requirements from a variety of traditional and commercial sources. Share of various primary energy-sources in energy-supply mix remained during last few years as oil: 43.5%, gas: 41.5%, LPG: 0.3%, coal: 4.5%, hydro-electricity: 9.2%, and nuclear electricity: 1.1%. The electric-power generation included 71.9% thermal, 25.2% hydel and 2.9% nuclear. While there is no prospect for Pakistan to reach self-sufficiency in hydrocarbons, a good option is the exploitation and utilization of the huge coal-reserves of Thar and the other renewable energy sources. Pakistan has wide spectrum of high potential renewable energy sources, conventional as well as non-conventional, which have not been adequately explored, exploited and developed. 'Thus, the primary energy supplies today are not enough to meet even the present demand. So, Pakistan, like other developing countries of the region, is facing a serious challenge of energy deficit. The development of the renewable energy sources can play an important role in meeting this challenge. Present observations, based on reviewing the geological setup, geographical position, climatological cycles and the agricultural/industrial/ urbanization activities, reveal that there are bright prospects for the exploitation of various renewable-energy sources, which include mega and macro/micro-hydel, biomass, biogas, wind, solar, co-generation, city and other solid wastes, utilization of low-head canal levels, sea wave and tide and geothermal energies etc. Technologically, all these renewable-energy sources are viable and consequently suited to efforts for poverty alleviation and cleaner

  13. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    Science.gov (United States)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  14. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  15. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  16. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    Science.gov (United States)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  17. Supporting Urban Energy Efficiency with Volunteered Roof Information and the Google Maps API

    Directory of Open Access Journals (Sweden)

    Bilal Abdulkarim

    2014-10-01

    Full Text Available The Heat Energy Assessment Technologies (HEAT project uses high-resolution airborne thermal imagery, Geographic Object-Based Image Analysis (GEOBIA, and a Geoweb environment to allow the residents of Calgary, Alberta, Canada to visualize the amount and location of waste heat leaving their houses, communities, and the city. To ensure the accuracy of these measures, the correct emissivity of roof materials needs to be known. However, roof material information is not readily available in the Canadian public domain. To overcome this challenge, a unique Volunteered Geographic Information (VGI application was developed using Google Street View that engages citizens to classify the roof materials of single dwelling residences in a simple and intuitive manner. Since data credibility, quality, and accuracy are major concerns when using VGI, a private Multiple Listing Services (MLS dataset was used for cross-verification. From May–November 2013, 1244 volunteers from 85 cities and 14 countries classified 1815 roofs in the study area. Results show (I a 72% match between the VGI and MLS data; and (II in the majority of cases, roofs with greater than, or equal to five contributions have the same material defined in both datasets. Additionally, this research meets new challenges to the GEOBIA community to incorporate existing GIS vector data within an object-based workflow and engages the public to provide volunteered information for urban objects from which new geo-intelligence is created in support of urban energy efficiency.

  18. ANALYSIS OF URBAN AND EDUCATIONAL INFRASTRUCTURE IN DISADVANTAGED AREAS OF BEACH TOWN WITH THE IMPLEMENTATION OF PHOTOVOLTAIC ENERGY; STUDY CASE PUERTO VALLARTA, MEXICO

    Directory of Open Access Journals (Sweden)

    Alberto Reyes-González

    2017-07-01

    Full Text Available The objective of this research was to develop an analysis in two scales, the first scale identified as urban, in order to meet the socio-territorial urban immediate context of educational equipment. The second scale was to generate a comprehensive integral analysis of energy efficiency in the facilities of the Superior Technological Institute of Puerto Vallarta (ITSPV to generate some implementation scenarios of photovoltaic technology and energy management strategies, integrated in 3 technical solution proposals for implementation within the ITSPV territorial reserve. The impact of this project integrates five educational institutions, with an impact of approximately 30,000 people directly and indirectly, which share a mountain reserve land, in one of the areas with the highest degree of urban marginalization of the metropolitan area of Puerto Vallarta, Jalisco, which is identified as the second most important beach tourist center of Mexico. These 5 educational institutions cover regional education demand, which extends 2 states of the Mexican Republic: Jalisco and Nayarit, who share territorial limits. The implementation of photovoltaic systems is contemplated in 2 stages, the first stage is to meet the demand generated by illumination systems, air conditioning motors, equipment for the processing of raw materials, illumination through the generation of onsite energy for a building that works self-sufficiently and serve as a training- production center about energy and transformation of raw material for innovation in industrial and architectural design. The line of research is oriented to establish analysis within academia and industry on the impacts of design, construction, manufacturing, technology implementation, and use of energy in projects of industrial design, architecture and urban design.

  19. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum

    Directory of Open Access Journals (Sweden)

    Guangyue Su

    2017-05-01

    Full Text Available Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin.Method:1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar-induced liver and kidney toxicity.Results: The metabolic profiles of groups receiving Baicalin at a dose of 80 mg/kg were remarkably different from cinnabar, and meanwhile, the level of endogenous metabolites returned to normal compared to group cinnabar. PLS-DA scores plots demonstrated that the variation tendency of control and Baicalein are apart from Cinnabar. The metabolic profiles of group Baicalein were similar to those of group control. Statistics results were confirmed by the histopathological examination and biochemical assay.Conclusion: Baicalin have the alleviation effect to the liver and kidney damage induced by cinnabar. The Baicalin could regulate endogenous metabolites associated with the energy metabolism, choline metabolism, amino acid metabolism, and gut flora.

  20. Life cycle implications of urban green infrastructure

    International Nuclear Information System (INIS)

    Spatari, Sabrina; Yu Ziwen; Montalto, Franco A.

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. - Highlights: → LCA methods can identify environmental tradeoffs for urban low impact development. → Energy and GHG payback time is sensitive to LID construction material choice. → LCA of LID upscaled from street to watershed level is expected to be nonlinear. - The benefits of low impact development and green infrastructure in cities can be modeled using life cycle assessment to understand and guide decisions for meeting sustainability goals.

  1. A bottom-up approach to urban metabolism: the perspective of BRIDGE

    Science.gov (United States)

    Chrysoulakis, N.; Borrego, C.; San Josè, R.; Grimmond, S. B.; Jones, M. B.; Magliulo, V.; Klostermann, J.; Santamouris, M.

    2011-12-01

    Urban metabolism considers a city as a system and usually distinguishes between energy and material flows as its components. "Metabolic" studies are usually top-down approaches that assess the inputs and outputs of food, water, energy, and pollutants from a city, or that compare the changing metabolic process of several cities. In contrast, bottom-up approaches are based on quantitative estimates of urban metabolism components at local to regional scales. Such approaches consider the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment. The city is considered as a system and the physical flows between this system and its environment are quantitatively estimated. The transformation of landscapes from primarily agricultural and forest uses to urbanized landscapes can greatly modify energy and material exchanges and it is, therefore, an important aspect of an urban area. Here we focus on the exchanges and transformation of energy, water, carbon and pollutants. Recent advances in bio-physical sciences have led to new methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, there is often poor communication of new knowledge and its implications to end-users, such as planners, architects and engineers. The FP7 Project BRIDGE (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aims at bridging this gap and at illustrating the advantages of considering environmental issues in urban planning. BRIDGE does not perform a complete life cycle analysis or calculate whole system urban metabolism, but rather focuses on specific metabolism components (energy, water, carbon and pollutants). Its main goal is the development of a Decision Suport System (DSS) with the potential to select planning actions which better fit the goal of changing the metabolism of urban systems towards sustainability. BRIDGE evaluates how planning alternatives can modify the physical

  2. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    Science.gov (United States)

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  3. A Study on the efficient alleviation of domestic oil price at international oil crisis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ku [Korea Energy Economics Institute, Euiwang (Korea)

    1999-01-01

    For alleviating domestic oil price when the international oil crisis happens, the government has been reacted directly such as using stored oil or alleviation fund. Although the release of stored oil works for short-term depending on the type of crisis, concerning that most of oil crisis had been resulted in temporary supply reduction rather than long-term supply suspension, utilizing the domestic alleviation fund is regarded more economical than storing oil. However, it has been suggested to compare efficiencies of alleviation fund and a futures market regarding the perspectives that using alleviation fund is more inefficient than utilizing a futures market. Moreover, the direct management by government is less efficient than indirect management. As an efficient way to alleviate domestic oil price at international oil crisis, this study presents an effective utilization of trading in futures of crude oil. There is a high probability of occurrence of this kind of oil crisis by judging from the world political situation and the trend of oil market. In such a case, the government as a crude oil importer should minimize the stored oil and utilize a futures market effectively. The subject of alleviating oil price by trading in futures is an oil supplier, such as oil refining companies or oil importers not the government as a prerequisite. Furthermore, the government should approve to include appropriate cost for preparing oil price alleviation in the oil price and it is required that such a government policy should be consistent. (author). 41 refs., 3 figs., 15 Tabs.

  4. Methods of Evaluation of the State and Efficiency of the Urban Environment

    Science.gov (United States)

    Patrakeyev, I.; Ziborov, V.; Lazorenko-Hevel, N.

    2017-12-01

    Today, humanity is experiencing an "urban age", and therefore issues of good management of energy consumption and energy spent on utilization of waste in cities are becoming particularly acute. In this regard, the working group of the World Energy Council proposed a concept of the "energy balance" of the urban environment. This concept was that the energy produced should cover the energy consumed. Metabolism of the urban environment is so hot and so rarely studied by urban planners. This condition is linked first with the fact that metabolism is nothing more than a network of exchange of physical, energy resources and information. This is the real point of meeting the natural, technological, social, economic processes and their transformation into one another. Metabolism is the most important tool for knowing the real mechanics of the movement of resources in such a complex system as the urban environment. The content of the article is an analysis of significant energy and material flows characterizing the metabolism of the urban environment. We considered in the article a new energy paradigm. This paradigm will help in carrying out research in such areas as reducing the burden on the state of the environment, reducing environmental problems and reducing dependence on fossil fuels. Methods and models of metabolic processes in the urban environment will allow to implement in practice the concept of sustainable development of the urban environment, which is the development of the teaching V. Vernadsky about the noosphere.

  5. Poverty Alleviation Programmes and Economic Development in ...

    African Journals Online (AJOL)

    Poverty Alleviation Programmes and Economic Development in Nigeria: A Comparative Assessment of Asa and Ilorin West Local ... Journal Home > Vol 3, No 4 (2009) > ... and worst hit income inequality group with about 84percent of total

  6. The role of forestry development in China in alleviating greenhouse effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong

    1996-12-31

    Forestry development in China has gained great achievements and made great progress in realizing sustainable forest management and alleviating global climate change. The main measures to mitigate greenhouse effects through the means of forestry development include afforestation to increase the forested area, fuel wood forest development, management improvement, wise utilization, international cooperation, investment increase, forest related scientific research, strengthening the forest law enforcement system. Climate change as well as how to alleviate the greenhouse effects is a hot topic at present. This paper describes the achievements of China`s forestry development and its role to alleviate the greenhouse effects, and puts forward the measures to mitigate greenhouse effects through the means of forestry development.

  7. Urban form and heat consumption, a comparative study in Copenhagen districts

    DEFF Research Database (Denmark)

    Mohammadi Dehcheshme, Mostafa; Jensen, Jesper Ole

    Since urban form and land use patterns significantly influence the cities energy needs, the study linkage of energy consumption and urban form is an interdisciplinary issue and one the current central topics of urban planners in recent years. Our concern in this paper, therefore, is to address...... the implications of urban development and form in terms of its impact on energy consumption in ten districts of Copenhagen city. As comparative study, this paper is trying to respond the question: How does urban form impact the heat consumption in households in Copenhagen districts? To respond this question, two...

  8. Examples of Small-scale Urban Area. Experiment Energy Leap Built Environment; Voorbeeldenboek Kleinschalige Binnenstedelijke Gebieden. Experiment Energiesprong Gebouwde Omgeving

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    The Dutch government considers the transition process to be necessary and stimulates investments in energy innovations in the built environment. This innovation effort is the programme 'Energy Leap' (Energiesprong), which is being carried out by the Steering Group Experimental Housing (SEV) on behalf of the Dutch Ministry of the Interior and Kingdom Relations (BZK). The programme is derived from the Innovation Agenda for Energy in the Built Environment. The examples in this book are intended to inspire (potential) participants in the Experiment Energy Leap for Small-scale Urban Areas. The examples focus explicitly on the reduction of CO2 emissions in urban areas, and thus, in addition to CO2 reduction on a building level, the aspects of energy supply, (local) energy production and the energy infrastructure [Dutch] Het SEV-programma Energiesprong (SEV is Stuurgroep Experimenten Volkshuisvesting) beoogt een substantiele bijdrage te leveren aan de condities waaronder de energietransitie effectief tot stand kan komen. In dit basisplan wordt uiteengezet hoe de markt daartoe moet kunnen komen en welke activiteiten daarvoor worden ondersteund, opgezet en/of uitgevoerd vanuit Energiesprong. Het SEV-programma Energiesprong wordt in opdracht van het Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (BZK) uitgevoerd. Het programma is afgeleid van de Innovatie Agenda energie Gebouwde Omgeving. Dit voorbeeldenboek dient ter inspiratie van (potentiele) deelnemers aan het Experiment Energiesprong kleinschalige Binnenstedelijke Gebieden. De voorbeelden richten zich expliciet op de CO2-reductie van binnenstedelijke gebieden en daarmee, naast de CO2-reductie op woning- en gebouwniveau, op de aspecten energievoorziening, (locale) energieopwekking en energie-infrastructuur.

  9. Active gust load alleviation system for flexible aircraft: Mixed feedforward/feedback approach

    DEFF Research Database (Denmark)

    Alam, Mushfiqul; Hromcik, Martin; Hanis, Tomas

    2015-01-01

    Lightweight flexible blended-wing-body (BWB) aircraft concept seems as a highly promising configuration for future high capacity airliners which suffers from reduced stiffness for disturbance loads such as gusts. A robust feedforward gust load alleviation system (GLAS) was developed to alleviate ...

  10. Thermal Characteristics of Urban Landscapes

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1998-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.

  11. The Role of Forests in Poverty Alleviation: Dealing with Multiple Millennium Development Goals

    NARCIS (Netherlands)

    Wiersum, K.F.; Ros-Tonen, Mirjam A.F.

    2005-01-01

    This policy brief summarises the present state of scientific understanding of the potential contribution of tropical forests to poverty alleviation and highlights the implications of this knowledge for forest-based poverty alleviation policies

  12. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    Directory of Open Access Journals (Sweden)

    Fuwang Wang

    2014-01-01

    Full Text Available Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8 of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD is used to extract θ, α, and β subbands of drivers’ electroencephalogram (EEG signals. Performances of the two algorithms (θ+α/(α+β and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8 using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  13. The Effectiveness of Light Shelf in Tropical Urban Context

    Directory of Open Access Journals (Sweden)

    Binarti Floriberta

    2016-12-01

    Full Text Available Light shelf was developed to create uniform indoor illuminance. However, in hot climates the unshaded clerestory above the shelf transmits high solar heat gain. In dense urban context, these advantages and disadvantages might vary regarding the context and position of the fenestration. This study employed an integrated energy simulation software to investigate the effectiveness of light shelf application in a tropical urban context in terms of building energy consumption. Radiance and EnergyPlus based simulations performed the effects of urban canyon aspect ratio and external surface albedo on the daylighting performances, space cooling load, as well as the lighting energy consumption of the building equipped with lightshelves in 2 humid tropical cities. Comparison of the energy performances of 3 fenestration systems, i.e. fenestration without any shading device, with overhangs, and with light shelves, yielded some recommendations concerning the best application of light shelf on the certain floor levels and aspect ratio of the urban context.

  14. Contribution of foods consumed away from home to energy intake in Brazilian urban areas: the 2008-9 Nationwide Dietary Survey.

    Science.gov (United States)

    Bezerra, Ilana Nogueira; de Moura Souza, Amanda; Pereira, Rosangela Alves; Sichieri, Rosely

    2013-04-14

    The objectives of the present study were to estimate the dietary contribution of away-from-home food consumption, to describe the contribution of away-from-home foods to energy intake, and to investigate the association between eating away from home and total energy intake in Brazilian urban areas. In the first Brazilian Nationwide Dietary Survey, conducted in 2008-9, food records were collected from 25 753 individuals aged 10 years or older, living in urban areas of Brazil. Foods were grouped into thirty-three food groups, and the mean energy intake provided by away-from-home food consumption was estimated. Linear regression models were used to evaluate the association between away-from-home food consumption and total energy intake. All analyses considered the sample design effect. Of the total population, 43 % consumed at least one food item away from home. The mean energy intake from foods consumed away from home was 1408 kJ (337 kcal), averaging 18 % of total energy intake. Eating away from home was associated with increased total energy intake, except for men in the highest income level. The highest percentage of away-from-home energy sources was for food with a high content of energy, such as alcoholic beverages (59 %), baked and deep-fried snacks (54 %), pizza (42 %), soft drinks (40 %), sandwiches (40 %), and sweets and desserts (30 %). The consumption of foods away from home was related to a greater energy intake. The characterisation of away-from-home food habits is necessary in order to properly design strategies to promote healthy food consumption in the away-from-home environment.

  15. Measuring the influence of the greening design of the building environment on the urban real estate market in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kuei-Feng [Department of Real Estate Management, National Pingtung Institute of Commerce (China); Chou, Po-Cheng [Department of Interior Design, Shu-Te University, Kaohsiung County (China)

    2010-10-15

    To address the worsening problems of global warming and the urban heat island effect, ecological cities and building environment greening are being promoted in population-dense urban areas domestically and abroad. For example, the Japanese Ministry of Land, Infrastructure, Transport, and Tourism announced the CASBEE-HI (Heat Island) assessment system in 2008 as a response to worsening urban warming and urban heat island effects. The Ministry implemented ''Building Space Greening Plans'' in Tokyo, Osaka, and other cities, enforcing by law the effective reduction of urban temperatures and improving urban living environments and alleviating the threat of urban ecological disasters. Therefore, this study integrates Taiwan domestic and foreign building space greening design, derived greening benefits, implementation promotion methods, and greening design policies as measurement constructs to examine the mutual influence between different constructs and to analyze the degree of influence on the urban real estate market. From the result, demonstrating that building space environment greening design does bring about positive benefits. In addition, the greening benefit was shown to have a positive impact on the urban real estate market. At the same time, greening promotion implementation method and urban policy standard both had a positive impact on the urban real estate market, demonstrating that government promotion of building environment greening design through urban design policy means is acceptable to the public. (author)

  16. Measuring Thermal Characteristics of Urban Landscapes

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.

    1999-01-01

    The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace, what the benefits are of the urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.

  17. Alleviating Poverty Through Vocational Education: The Nigerian ...

    African Journals Online (AJOL)

    The paper concludes that well-articulated vocational education policy and programmes will assist in employment generations and poverty reduction in Nigeria. Keywords: Alleviating Poverty, Vocational Education, Nigerian Experience Journal of Technology and Education in Nigeria Vol. 10 (2) 2005: pp. 10-14 ...

  18. Eco-Efficiency Indicators for Urban Transport

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2015-06-01

    Full Text Available This paper focuses on urban passenger transport eco-efficiency, which can be defined as the production of maximum benefits to society while minimising environmental impacts from urban transport’s inputs of energy and materials. Researchers have intensively studied transport’s varied environmental impacts, particularly through Life Cycle Assessment; this paper argues that primary transport energy per capita is presently the best measure of impact. Although transport’s societal benefits have generally been regarded as self-evident, access to out-of-home activities, not passenger-km, should be considered as the fundamental useful output of an urban transport system, since transport is a derived demand. We argue that access levels are roughly similar in all high-income OECD cities, so that these cities can be ranked on transport eco-efficiency simply on the basis of per capita primary transport energy.

  19. Waste to Energy in Urban Infrastructure. Experiences from Indo-Swedish collaboration 2009-2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-15

    This report provides an illustration of the progress that has been made in Indo-Swedish biogas collaboration since the delegation Biogas for Urban Infrastructure initiated action in 2009. A number of Swedish government organisations and private sector organisations have worked together with Indian counterparts to develop the Indo-Swedish Waste-to-Energy cooperation. A mere two years later, we can now state that this has been a very fruitful venture. The Swedish-Indian cooperation that was formed in conjunction with the biogas delegation has already resulted in new knowledge, new methods, opportunities for new strategies and new business models.

  20. Strategic plant choices can alleviate climate change impacts: A review.

    Science.gov (United States)

    Espeland, Erin K; Kettenring, Karin M

    2018-06-01

    Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.

  1. Nuclear energy the best alternative in alleviating global warming

    International Nuclear Information System (INIS)

    Malaki Khoshkbijari, M.; Moghadam, M. Kh.

    2008-01-01

    During the last century, the average temperature of the earth has abnormally increased by 0.74 c, causing concern among scientists. Some experts believe that the earth has experienced the warmest years during the last decades of 20 century, to the extent that the last 400 years have been the warmest years. The reports 2007 suggest that the hottest periods recorded occur a 1990 - 2007 which was a record high during the past 150 years. It seems that industrialization has contributed significantly to the global warming. The measurement of earth temperature dates hack to 1880 which has continued up to the present time. It is also predicted that the year 2014 would witness an unprecedented high air temperature. Moreover, scientists have expressed grave concern about the occurrence of severe droughts, scorching heat and formidable storms which are yet to strike the earth in the year 2100. According to the I nternational atomic agency , nuclear energy is by far, the best and safest production source of electricity in the future due to it's low emission rate of carbon dioxide. However , prior to making any commitment, it seem imperative to increase public awareness about the dire consequences of the continued utilization of fossil fuels. Based on research carried out by International atomic agency, nuclear energy is superior to other sources of energy in two major respects: lack of any so-called greenhouse gas emission and the utilization of uranium as the single source the energy production. The study aims at first; probing into the causes of global warming, the outcomes and ultimately provision of a way out of the problem and identifying the means to seriously cope with the problem. 5

  2. Geothermal concept for energy efficient improvement of space heating and cooling in highly urbanized area

    Directory of Open Access Journals (Sweden)

    Vranjes Ana

    2015-01-01

    Full Text Available New Belgrade is a highly urbanized commercial and residential district of Belgrade lying on the alluvial plane of the Sava and the Danube rivers. The groundwater of the area is a geothermal resource that is usable through geothermal heat pumps (GHP. The research has shown that the “heat island effect” affects part of the alluvial groundwater with the average groundwater temperature of about 15.5°C, i.e. 2°C higher than the one in less urbanized surroundings. Based on the measured groundwater temperatures as well as the appraisal of the sustainable aquifer yield, the available thermal power of the resource is estimated to about 29MWt. The increasing urbanization trend of the New Belgrade district implies the growing energy demands that may partly be met by the available groundwater thermal power. Taking into consideration the average apartment consumption of 80 Wm-2, it is possible to heat about 360,000 m2 and with the consumption efficiency of 50 Wm-2, it would be possible to heat over 570,000 m2. Environmental and financial aspects were considered through the substitution of conventional fuels and the reduction of greenhouse gas emission as well as through the optimization of the resource use.

  3. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  4. Alleviating gizzard erosion with Hepasan ® - Provisional ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Alleviating gizzard erosion with Hepasan® - Provisional Communication. K Boa-Amponsem, A Osei-Somuah. Full Text:.

  5. Food insecurity in households in informal settlements in urban South Africa.

    Science.gov (United States)

    Naicker, N; Mathee, A; Teare, J

    2015-04-01

    Food insecurity in the urban poor is a major public health challenge. The Health, Environment and Development study assessed trends in food insecurity and food consumption over a period of 7 years in an informal settlement in Johannesburg, South Africa (SA). Annual cross-sectional surveys were conducted in the informal settlement (Hospital Hill). The degree of household food insecurity decreased significantly from 2006 (85%) to 2012 (70%). There was a spike in 2009 (91%), possibly owing to global food price increases. Childhood food insecurity followed the same trend as household food insecurity. During the first 3 study years, consumption of protein, vegetables and fruit decreased by 10-20%, but had returned to previous levels by 2012. In this study, although declining, food insecurity remains unacceptably high. Hunger relief and poverty alleviation need to be more aggressively implemented in order to improve the quality of life in poor urban communities in SA.

  6. Energy Output Estimation for a Small Wind Turbine Positioned on a Rooftop in the Urban Environment with and without a Duct

    DEFF Research Database (Denmark)

    Beller, Christina

    , the free standing turbines had an energy potential of 300kWh/m2/a for the horizontal axis wind turbine (HAWT) and for the vertical axis wind turbine (VAWT) 180kWh/m2/a. For the ducted turbines an energy output of 180kWh/m2/a was found for the HAWT configuration, while the VAWT configuration reached......Nowadays, wind turbines in general, but also urban wind turbines attained acceptance to a certain extend. Conceptual designs and some examples in reality exist, where small-scale wind turbines have been implemented close to buildings or even integrated in the building structure. This work is aiming...... to estimate how much energy a wind turbine could produce in the built environment, depending on its integration and configuration. On the basis of measurements taken on the rooftop of H.C. Ørsted Institut in Copenhagen, which is located in an urban area, a comparison of fictive free standing turbines...

  7. Assessing ecological sustainability in urban planning - EcoBalance model

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, I., Email: irmeli.wahlgren@vtt.fi

    2012-06-15

    Urban planning solutions and decisions have large-scale significance for ecological sustainability (eco-efficiency) the consumption of energy and other natural resources, the production of greenhouse gas and other emissions and the costs caused by urban form. Climate change brings new and growing challenges for urban planning. The EcoBalance model was developed to assess the sustainability of urban form and has been applied at various planning levels: regional plans, local master plans and detailed plans. The EcoBalance model estimates the total consumption of energy and other natural resources, the production of emissions and wastes and the costs caused directly and indirectly by urban form on a life cycle basis. The results of the case studies provide information about the ecological impacts of various solutions in urban development. (orig.)

  8. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario.

    Science.gov (United States)

    Rafael, S; Martins, H; Sá, E; Carvalho, D; Borrego, C; Lopes, M

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of +200Wm(-2)) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of -62.8 and -35Wm(-2), respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  10. Can Aerosol Offset Urban Heat Island Effect?

    Science.gov (United States)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  11. Chinese herbal medicine alleviating hyperandrogenism of PCOS ...

    African Journals Online (AJOL)

    Background: Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women hence Chinese herbal medicine (CHM) has been chosen by many clinicians and patients as alternative treatment for PCOS. The present study was to explore the effects of CHM in alleviating hyperandrogenism of PCOS ...

  12. Sulfur-Mediated-Alleviation of Aluminum-Toxicity in Citrus grandis Seedlings

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2017-12-01

    Full Text Available Limited data are available on the sulfur (S-mediated-alleviation of aluminum (Al-toxicity in higher plants. Citrus grandis seedlings were irrigated for 18 weeks with 0.5 mM MgSO4 or 0.5 mM MgSO4 + 0.5 mM Na2SO4, and 0 (−Al or 1 mM AlCl3·6H2O (+Al, Al-toxicity. Under Al-toxicity, S decreased the level of Al in leaves; increased the relative water content (RWC of roots and leaves, the contents of phosphorus (P, calcium (Ca and magnesium (Mg per plant, the dry weights (DW of roots and shoots, the ratios of root DW/shoot DW, and the Al-induced secretion of citrate from root; and alleviated the Al-induced inhibition of photosynthesis via mitigating the Al-induced decrease of electron transport capacity resulting from the impaired photosynthetic electron transport chain. In addition to decreasing the Al-stimulated H2O2 production, the S-induced upregulation of both S metabolism-related enzymes and antioxidant enzymes also contributed to the S-mediated-alleviation of oxidative damage in Al-treated roots and leaves. Decreased transport of Al from roots to shoots and relatively little accumulation of Al in leaves, and increased leaf and root RWC and P, Ca, and Mg contents per plant might also play a role in the S-mediated-alleviation of Al-toxicity.

  13. Assessing emergency situations and their aftermath in urban areas: The EMRAS II Urban Areas Working Group

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Berkovskyy, V.

    2011-01-01

    The Urban Areas Working Group is part of the International Atomic Energy Agency’s EMRAS II (Environmental Modelling for Radiation Safety) Programme. The goal of this Working Group is to test and improve the capabilities of models used in assessment of radioactive contamination in urban settings...

  14. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  15. Energy poverty in rural Bangladesh

    International Nuclear Information System (INIS)

    Barnes, Douglas F.; Khandker, Shahidur R.; Samad, Hussain A.

    2011-01-01

    Energy poverty is a well-established concept among energy and development specialists. International development organizations frequently cite energy-poverty alleviation as a necessary condition to reduce income poverty. Several approaches used to measure energy poverty over the past 20 years have defined the energy poverty line as the minimum quantity of physical energy needed to perform such basic tasks as cooking and lighting. This paper uses a demand-based approach to define the energy poverty line as the threshold point at which energy consumption begins to rise with increases in household income. At or below this threshold point, households consume a bare minimum level of energy and should be considered energy poor. This approach was applied using cross-sectional data from a comprehensive 2004 household survey representative of rural Bangladesh. The findings suggest that some 58 percent of rural households in Bangladesh are energy poor, versus 45 percent that are income poor. The findings also suggest that policies to support rural electrification and greater use of improved biomass stoves might play a significant role in reducing energy poverty. - Research Highlights: →We estimate energy poverty for rural Bangladesh adopting a demand-based approach. →Findings suggest that energy poverty does not necessarily follow the same pattern as income poverty. →Access to modern energy and efficient use of traditional energy help alleviate energy poverty. →Energy poverty indicator can help track the effectiveness of a wide range of energy policies.

  16. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).

    Science.gov (United States)

    Wetz, Michael S; Hayes, Kenneth C; Fisher, Kelsey V B; Price, Lynn; Sterba-Boatwright, Blair

    2016-03-15

    Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (Oso Bay that receives wastewater effluent. Despite being shallow (Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    Science.gov (United States)

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  18. Investigation on the Factors Affecting the Temperature in Urban Distribution Substations and an Energy-Saving Cooling Strategy

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2011-02-01

    Full Text Available The different locations of the equipment in urban distribution substations (DSSs and the location of inlet holes and outlet holes usually result in different ventilation effect, which means the power consumed by any ventilating devices present is different. In this paper the temperature field distribution in an urban distribution substation with different locations of the equipment in the substation was calculated first, then factors influencing the temperature field distribution were investigated, and the influence of the different factors was analyzed. When the distance between the apparatus and walls exceeds 3 m, the change of the temperature in the DSS is very small. Therefore considering the floor area of the DSS, 3 m is the best value of the distance between the apparatus. With the change of the environment temperature or the velocity of the ventilation fans, the maximum temperature in the DSS or apparatus will change. Hence an energy saving ventilation strategy is proposed in the paper, and an intelligent cooling control system is developed, which can modify the velocity of the ventilation fans according to the environment temperature, and thus realize energy savings.

  19. Renewable Energy Services For Developing Countries - In support of the millennium development goals: recommended practice and key lessons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Almost 1.6 billion people currently live without electricity in developing countries. These people live in either remote rural areas that have no connection to electrical power grids, or urban areas with inadequate utility systems. The demand for energy in these countries is expected to grow with increases in population and living standards. The International Energy Agency (IEA) estimates that developing countries will need to double their electrical power output by 2020. Despite the growth in energy consumption, the number of people disadvantaged by a lack of modern energy services has remained relatively unchanged. The focus of the international donor community is clearly aimed at poverty alleviation in general, and specifically at achieving the targets known as the Millennium Development Goals (MDGs). Renewable energy technologies have a tremendous potential in providing energy services to developing countries and in helping achieve the MDGs. This document highlights how meeting the MDGs can be facilitated through a sustainable energy supply, and provides case studies from around the world to demonstrate that these technologies are applicable in real-life situations. Based on these cumulative experiences and in order for energy services to be delivered effectively, key lessons and recommendations are put forward with regard to policy, finance and implementation. (author)

  20. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.

    Science.gov (United States)

    Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate

    2017-07-01

    Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a

  1. Factors Influencing Poverty Alleviation amongst Microfinance Adopting Households in Zambia

    Directory of Open Access Journals (Sweden)

    Mavhungu Abel Mafukata

    2016-01-01

    Full Text Available The main objective of this paper is to investigate the factors having the most influence on the alleviation of poverty amongst the households adopting microfinance in Zambia. Ninety nine (n=99 respondents were randomly and purposively selected from amongst 340 microfinance adopters of the so-called Micro Bankers Trust programme operating a microfinance business in the Makululu Compound of Kabwe, Zambia. Socio-demographic primary data were collected through face-to-face interviews based on a semi-structured questionnaire instrument. The data were entered into an excel spreadsheet for analysis. The descriptive data were thereafter exported and fitted to an empirical model. The descriptive results revealed that the majority of the respondents were married, unemployed, fairly educated younger women from larger-sized poor households who drew their household income mainly from microfinance activities. The majority of the respondents thought microfinance had improved their well-being in some crucial areas. The results of the empirical model found that some respondents were indeed alleviated from poverty through microfinance. Conclusion drawn in this paper is that microfinance does alleviate poverty of the poor.

  2. A study of helicopter gust response alleviation by automatic control

    Science.gov (United States)

    Saito, S.

    1983-01-01

    Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.

  3. Smart Mobility Stakeholders - Curating Urban Data & Models

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    This presentation provides an overview of the curation of urban data and models through engaging SMART mobility stakeholders. SMART Mobility Urban Science Efforts are helping to expose key data sets, models, and roles for the U.S. Department of Energy in engaging across stakeholders to ensure useful insights. This will help to support other Urban Science and broader SMART initiatives.

  4. An approach to costs and energy consumption in private urban Spanish Mediterranean landscapes from a simplified model in sprinkle irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Arbat, G.; Pujol, J.; Pelegri, M.; Puig-Bargues, J.; Duran-Ros, M.; Ramirez de Cartagena, F.

    2013-05-01

    The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m{sup 2} and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resulting in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche). Mean total irrigation costs for the locality with lower water needs (Girona) and greater needs (Elche) were {epsilon} 2,974 ha{sup -}1 yr-1 and {epsilon}3,383 ha{sup -}1 yr{sup -}1, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution. (Author) 32 refs.

  5. An approach to costs and energy consumption in private urban Spanish Mediterranean landscapes from a simplified model in sprinkle irrigation

    Directory of Open Access Journals (Sweden)

    G. Arbat

    2013-02-01

    Full Text Available The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m2 and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resulting in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche. Mean total irrigation costs for the locality with lower water needs (Girona and greater needs (Elche were € 2,974 ha-1 yr-1 and € 3,383 ha-1 yr-1, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution.

  6. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Fath, Brian D.

    2014-01-01

    Cities consume 80% of the world's energy; therefore, analyzing urban energy metabolism and the resulting carbon footprint provides basic data for formulating target carbon emission reductions. While energy metabolism includes both direct and indirect consumptions among sectors, few researchers have studied indirect consumption due to a lack of data. In this study, we used input–output analysis to calculate the energy flows among directly linked sectors. Building on this, we used ecological network analysis to develop a model of urban energy flows and also account for energy consumption embodied by the flows among indirectly linked sectors (represented numerically as paths with a length of 2 or more). To illustrate the model, monetary input–output tables for Beijing from 2000 to 2010 were analyzed to determine the embodied energy consumption and associated carbon footprints of these sectors. This analysis reveals the environmental pressure based on the source (energy consumption) and sink (carbon footprint) values. Indirect consumption was Beijing's primary form, and the carbon footprint therefore resulted mainly from indirect consumption (both accounting for ca. 60% of the total, though with considerable variation among sectors). To reduce emissions, the utilization efficiency of indirect consumption must improve. - Highlights: • We quantified the embodied energy transfers among Beijing's socioeconomic sectors. • We calculated the sectors' intensity of energy consumption and carbon footprint. • The indirect energy consumption was higher than the direct for all sectors. • The high-indirect-consumption sectors are at the end of industrial supply chains. • High-indirect-consumption sectors can improve upstream products energy efficiency

  7. Diet of dingoes and other wild dogs in peri-urban areas of north-eastern Australia

    Science.gov (United States)

    Allen, Benjamin L.; Carmelito, Erin; Amos, Matt; Goullet, Mark S.; Allen, Lee R.; Speed, James; Gentle, Matt; Leung, Luke K.-P.

    2016-03-01

    Knowledge of the resource requirements of urban predators can improve our understanding of their ecology and assist town planners and wildlife management agencies in developing management approaches that alleviate human-wildlife conflicts. Here we examine food and dietary items identified in scats of dingoes in peri-urban areas of north-eastern Australia to better understand their resource requirements and the potential for dingoes to threaten locally fragmented populations of native fauna. Our primary aim was to determine what peri-urban dingoes eat, and whether or not this differs between regions. We identified over 40 different food items in dingo scats, almost all of which were mammals. Individual species commonly observed in dingo scats included agile wallabies, northern brown bandicoots and swamp wallabies. Birds were relatively common in some areas but not others, as were invertebrates. Dingoes were identified as a significant potential threat to fragmented populations of koalas. Dietary overlap was typically very high or near-identical between regions, indicating that peri-urban dingoes ate the same types or sizes of prey in different areas. Future studies should seek to quantify actual and perceived impacts of, and human attitudes towards, peri-urban dingoes, and to develop management strategies with a greater chance of reducing human-wildlife conflicts.

  8. Technology choice and development in Brazil: An assessment of Brazil's alternative fuel program and the agriculture, manufacturing, energy, and service sectors

    Science.gov (United States)

    Nolan, Lucy A.

    Technology choice profoundly affects a country's development process because capital-intensive and labor-intensive technologies have different socioeconomic linkages within the economy. This research examines the impacts of technology choice through the use of a social accounting matrix (SAM) framework. SAM-based modeling determines the direct and indirect effects of technology choice on development, particularly poverty alleviation in Brazil. Brazil's alternative fuel program was analyzed as a special example of technology choice. Two ethanol production technologies and the gasoline sector were compared; to make the study more robust, labor and capital intensive technologies were evaluated in the production of agriculture, manufacturing, energy, and services. Growth in these economic sectors was examined to assess the effects on employment, factor and household income, energy intensity, and carbon dioxide costs. Poverty alleviation was a focus, so income to unskilled agriculture labor, unskilled non-agriculture labor, and income to rural and urban households in poverty was also analyzed. The major research finding is that overall, labor-intensive technologies generate more employment, factor and household income, environmental and energy benefits to Brazil's economy than capital-intensive technologies. In addition, labor-intensive technologies make a particular contribution to poverty alleviation. The results suggest that policies to encourage the adoption of these technologies, especially in the agriculture and renewable energy sectors, are important because of their intersectoral linkages within the economy. Many studies have shown that Brazil's fuel ethanol program has helped to realize multiple macroeconomic objectives. However, this is the first empirical study to quantify its household income effects. The ethanol industry generated the most household income of the energy sectors. The research confirms a key finding of the appropriate technology literature

  9. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can...

  10. Energy and urban innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This report outlines the energy-related challenges that cities, particularly large and 'mega-cities', will face during the coming decades. It analyses the technical and policy actions that must be taken to meet these challenges and the role the energy industry and business can play in designing and implementing efficient solutions. The report is the result of a bottom-up process in which World Energy Council members carried out case studies on a comprehensive set of large to 'mega' cities, both in the developed and emerging world. It is complemented by an extensive literature study.

  11. Methods for Analysis of Urban Energy Systems: A New York City Case Study

    Science.gov (United States)

    Howard, Bianca

    This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.

  12. Sustainable urban energy: Development of a mesoscale assessment model for solar reflective roof technologies

    International Nuclear Information System (INIS)

    Jo, J.H.; Carlson, J.; Golden, J.S.; Bryan, H.

    2010-01-01

    Buildings and other engineered structures that form cities are responsible for a significant portion of the global and local impacts of climate change. Consequently, the incorporation of building design strategies and materials such as the use of reflective roof materials, or 'cool' roofs, are being widely investigated. However, although their benefits for individual buildings have been studied, as yet there is little understanding of the potential benefits of urban scale implementation of such systems. Here we report the development of a new methodology for assessing the potential capacity and benefits of installing reflective roofs in an urbanized area. The new methodology combines remote sensing image data with a building energy computer simulation to quantify the current rooftop reflectivity and predict the potential benefits of albedo improvement. In addition to the direct electricity savings, cool roof systems reduce peak electrical demand in the month of August when the peak demand is at its highest in the case study area. Environmental benefits associated with lowering greenhouse-gas emissions are also substantial. The new methodology allows the calculation of payback periods to assist planners to evaluate the potential economic benefits of the widespread installation of cool roof systems. - Research highlights: →Integrated remote sensing technique into building energy simulation quantifies rooftop reflectivity and predicts the potential benefits of albedo improvement. →70% buildings can improve rooftop reflectivity. →Cool roof application can reduce the study area's electrical demand by 4.3%. →Payback period will be 7-11 years depending on low and high-end cool roof cost assumptions.

  13. Risoe energy report 5. Renewable energy for power and transport

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2006-11-15

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  14. Risoe energy report 5. Renewable energy for power and transport

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2006-11-01

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  15. Affordable, stable and assured supply of energy for poverty alleviation in Pakistan

    International Nuclear Information System (INIS)

    Alam, S.

    2011-01-01

    For people living in poverty, the most pressing priority is the satisfaction of basic human needs, which includes access to food, shelter, water supply and sanitation and other services that will improve their standard of living, such as health care, education, and better transport. Problems of poverty in all its dimensions can be addressed with the improved provision of energy services and it is significant that most of those without having access to modern energy services live in developing countries; like Pakistan and belong to the segment of the human population that lives in poverty. While assured and adequate energy supplies do not guarantee economic growth and employment generation, their absence typically limits growth. Although low energy consumption is not a cause of poverty, the lack of available energy services correlates closely with many poverty indicators. The link between poverty and energy should not, however, be construed simply in terms of ability of the poor to afford better energy services. Energy services constitute a sizeable share of total household expenditure in Pakistan. People living in poverty often pay a higher price per unit of energy services than do the rich. They also spend more time in obtaining these energy services and rely on resource-scarce and polluting ways of converting energy for services like cooking, drinking water, heating and lighting, all of which have associated health impacts. The production and use of energy have environmental consequences at local, regional and global levels. These impacts extend throughout the fuel cycle of an Energy Chain. Energy plays a substantial role in the everyday lives of humans. Poverty describes a condition of people who are denied the opportunities for sustainable existence. for social uplift of the people of Pakistan at large through affordable, stable, and assured supply of energy keeping in view the environmental constraints. (author)

  16. Measuring Thermal Characteristics of Urban Landscapes

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.

    1999-01-01

    The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.

  17. 283 Poverty Alleviation Programmes and Economic Development in ...

    African Journals Online (AJOL)

    Nekky Umera

    poverty alleviation on the inhabitants of Nigeria with special reference to. Asa and Ilorin West Local ... poverty is defined as a state of deprivation in terms of both economic and social indicators such as income ..... Source Book. The World Bank ...

  18. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control

    Directory of Open Access Journals (Sweden)

    Ying Bi

    2017-02-01

    Full Text Available An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton’s principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation (GLA control system is proposed. The gust load alleviation system employs classic proportional-integral-derivative (PID controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%.

  19. Alleviating Border Effects in Wavelet Transforms for Nonlinear Time-varying Signal Analysis

    Directory of Open Access Journals (Sweden)

    SU, H.

    2011-08-01

    Full Text Available Border effects are very common in many finite signals analysis and processing approaches using convolution operation. Alleviating the border effects that can occur in the processing of finite-length signals using wavelet transform is considered in this paper. Traditional methods for alleviating the border effects are suitable to compression or coding applications. We propose an algorithm based on Fourier series which is proved to be appropriate to the application of time-frequency analysis of nonlinear signals. Fourier series extension method preserves the time-varying characteristics of the signals. A modified signal duration expression for measuring the extent of border effects region is presented. The proposed algorithm is confirmed to be efficient to alleviate the border effects in comparison to the current methods through the numerical examples.

  20. Sustainability and Resilience in the Urban Environment

    Science.gov (United States)

    Urban systems are formed by a diversity of actors and activities, and consist of complex interactions involving financial, information, energy, ecological, and material stocks and flows that operate on different spatial and temporal scales. The urban systems that emerge from thes...

  1. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin; Fath, Brian D.

    2014-01-01

    Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, ‘urban ecosystem modeling (UEM)’ is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation. - Highlights: • Urban ecosystems modeling (UEM) is defined in an interdisciplinary context. • State-of-the-art models for UEM are critically reviewed and compared. • An integrated framework for explicit UEM is proposed under global change. - State-of-the-art models of urban ecosystem modeling (UEM) are reviewed for rational urban management and emissions mitigation

  2. Development of SMA Actuated Morphing Airfoil for Wind Turbine Load Alleviation

    Science.gov (United States)

    Karakalas, A.; Machairas, T.; Solomou, A.; Riziotis, V.; Saravanos, D.

    Wind turbine rotor upscaling has entered a range of rotor diameters where the blade structure cannot sustain the increased aerodynamic loads without novel load alleviation concepts. Research on load alleviation using morphing blade sections is presented. Antagonistic shape memory alloy (SMA) actuators are implemented to deflect the section trailing edge (TE) to target shapes and target time-series relating TE movement with changes in lift coefficient. Challenges encountered by the complex thermomechanical response of morphing section and the enhancement of SMA transient response to achieve frequencies meaningful for aerodynamic load alleviation are addressed. Using a recently developed finite element for SMA actuators [1], actuator configurations are considered for fast cooling and heating cycles. Numerical results quantify the attained ranges of TE angle movement, the moving time period and the developed stresses. Estimations of the attained variations of lift coefficient vs. time are also presented to assess the performance of the morphing section.

  3. Energy and urban innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This report outlines the energy-related challenges that cities, particularly large and 'mega-cities', will face during the coming decades. It analyses the technical and policy actions that must be taken to meet these challenges and the role the energy industry and business can play in designing and implementing efficient solutions. The report is the result of a bottom-up process in which World Energy Council members carried out case studies on a comprehensive set of large to 'mega' cities, both in the developed and emerging world. It is complemented by an extensive literature study.

  4. Governance of urban transitions: towards sustainable resource efficient urban infrastructures

    Science.gov (United States)

    Swilling, Mark; Hajer, Maarten

    2017-12-01

    The transition to sustainable resource efficient cities calls for new governance arrangements. The awareness that the doubling of the global urban population will result in unsustainable levels of demand for natural resources requires changes in the existing socio-technical systems. Domestic material consumption could go up from 40 billion tons in 2010, to 89 billion tons by 2050. While there are a number of socio-technical alternatives that could result in significant improvements in the resource efficiency of urban systems in developed and developing countries (specifically bus-rapid transit, district energy systems and green buildings), we need to rethink the urban governance arrangements to get to this alternative pathway. We note modes of urban governance have changed over the past century as economic and urban development paradigms have shifted at the national and global levels. This time round we identify cities as leading actors in the transition to more sustainable modes of production and consumption as articulated in the Sustainable Development Goals. This has resulted in a surge of urban experimentation across all world regions, both North and South. Building on this empirically observable trend we suggest this can also be seen as a building block of a new urban governance paradigm. An ‘entrepreneurial urban governance’ is proposed that envisages an active and goal-setting role for the state, but in ways that allows broader coalitions of urban ‘agents of change’ to emerge. This entrepreneurial urban governance fosters and promotes experimentation rather than suppressing the myriad of such initiatives across the globe, and connects to global city networks for systemic learning between cities. Experimentation needs to result in a contextually appropriate balance between economic, social, technological and sustainable development. A full and detailed elaboration of the arguments and sources for this article can be found in chapter 6 of Swilling M et

  5. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    Science.gov (United States)

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  6. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    Directory of Open Access Journals (Sweden)

    Stefano Casalegno

    Full Text Available Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation using different weighting schemes. Our conclusions are that (i there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production and dispersed services (including cultural services, energy production and floods mitigation; (ii more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to

  7. Do Economic Reforms Alleviate Subjective Well-Being Losses of Economic Crises?

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2014-01-01

    Major economic crises tend to be followed by crises in subjective well-being. Following the financial and debt crises, politicians and social scientists have engaged in heated discussions of ways to alleviate such losses. In particular, should governments intervene more or less? This paper explores...... whether liberalizing economic institutions, a type of reform favoured by some economists, is likely to alleviate such loses. Estimating the effects of crises across European states 1975–2011 suggest that countries with relatively easy market regulations suffered smaller well-being losses....

  8. Waste Biomass Based Energy Supply Chain Network Design

    Directory of Open Access Journals (Sweden)

    Hatice Güneş Yıldız

    2018-06-01

    Full Text Available Reducing dependence on fossil fuels, alleviating environmental impacts and ensuring sustainable economic growth are among the most promising aspects of utilizing renewable energy resources. Biomass is a major renewable energy resource that has the potential for creating sustainable energy systems that are critical in terms of social welfare. Utilization of biomass for bioenergy production is an efficient alternative for meeting rising energy demands, reducing greenhouse gas emissions and thus alleviating climate change. A supply chain for such an energy source is crucial for assisting deliverance of a competitive end product to end-user markets. Considering the existing constraints, a mixed integer linear programming (MILP model for waste biomass based supply chain was proposed in this study for economic performance optimization. Performance of the proposed modelling approach was demonstrated with a real life application study realized in İstanbul. Moreover, sensitivity analyses were conducted which would serve as a foresight for efficient management of the supply chain as a whole

  9. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  10. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears.

    Directory of Open Access Journals (Sweden)

    Linda J Gormezano

    Full Text Available Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28-48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1 prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet.

  11. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2015-01-01

    Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28-48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou) that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1) prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet.

  12. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S. [Finnish Meteorological Inst., Helsinki (Finland)

    1995-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  13. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  14. Renewable energy development in China: policies, practices and performance

    NARCIS (Netherlands)

    Han, Jingyi

    2009-01-01

    Energy demand in China has risen rapidly, driven by its massive economic growth. Meanwhile, the energy system in China heavily depends on fossil fuels, which causes serious problems of climate change and air pollution. China started to develop renewable energy about 30 years ago, aiming to alleviate

  15. Aqueous extract of Hibiscus sabdarrifa calyx alleviates anemia and ...

    African Journals Online (AJOL)

    Aqueous extract of Hibiscus sabdarrifa calyx alleviates anemia and organ damage in Trypanosoma brucei brucei infected rats. IA Umar, E Daikwo, NG Maryoms, A Gidado, LB Buratai, FS Saka, MA Ibrahim ...

  16. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    Science.gov (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  17. Energy and urban planning

    DEFF Research Database (Denmark)

    Fertner, Christian

    How can spatial planning reduce energy use in our cities? How do different geographical, regional, cultural or political contexts influence our options? How can we measure and monitor its effects? And where do we set the boundaries for the definition of action and goals? Findings from the interna......How can spatial planning reduce energy use in our cities? How do different geographical, regional, cultural or political contexts influence our options? How can we measure and monitor its effects? And where do we set the boundaries for the definition of action and goals? Findings from...... the international EU-FP7 project PLEEC (‘Planning for energy efficient cities’, 2013-2016) and spin-off projects list options and challenges....

  18. Public engagement with information on renewable energy developments: The case of single, semi-urban wind turbines.

    Science.gov (United States)

    Parks, J M; Theobald, K S

    2013-01-01

    This paper explores perceptions of public engagement with information on renewable energy developments. It draws on a case study of proposals by a major supermarket chain to construct single wind turbines in two semi-urban locations in the UK, analysing data from interviews with key actors in the planning process and focus groups with local residents. The paper concludes that key actors often had high expectations of how local people should engage with information, and sometimes implied that members of the public who were incapable of filtering or processing information in an organised or targeted fashion had no productive role to play in the planning process. It shows how the specific nature of the proposals (single wind turbines in semi-urban locations proposed by a commercial private sector developer) shaped local residents' information needs and concerns in a way that challenged key actors' expectations of how the public should engage with information.

  19. Combined Production and Conversion of Energy in an Urban Integrated System

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2016-10-01

    Full Text Available Within the framework of the European Combined Efficient Large Scale Integrated Urban Systems (CELSIUS project, the Genoa demonstrator involves the insertion of a turbo expander (TE to substitute the standard throttling process in a natural gas expansion station. In this way, the currently wasted mechanical energy will be recovered, while an internal combustion combined heat and power (CHP unit will be used to meet the heating requirements of the gas before the expansion and to serve a small district heating network (DHN. Both TE and CHP are capable of delivering electric power (EP up to 1 MW. In order to match the EP production vs demand is highly desirable to use the EP extra capacity for local EP final users, such as a nearby public school and a gas refueling station (RS. For limiting the school’s consumption of fossil fuel, it is possible to use the EP surplus generated by the demonstrator to feed a heat pump in parallel to the heating conventional system. With regard to the RS, the compressors are currently driven by electric motors, with a high-energy consumption. The integrated system gives the possibility of exploiting the surplus of electricity production and of recovering heat, which would be otherwise wasted, from the intercooling of compressed gas, thus powering the DHN through a preheating system. The result expected from this strategy is a relevant energy and emissions saving due to an integrated use of the electricity generated by the Genoese demonstrator for feeding the nearby school and RS.

  20. Review of Strategies for Thermal Efficiency in Landscape Planning of Cities for Conservation of Energy and Enhanced Climatic Resilience to Urban Warming

    Science.gov (United States)

    Imam, Aabshar U. K.; Banerjee, Uttam Kumar

    2017-09-01

    Thermal discomfort, increased energy consumption, and heat related stress are some of the most prominent consequences of urban warming. Instances of heat related deaths have been reported; the elderly and the poor remain especially vulnerable. Urban greening has often been cited as an economically efficient method for inducing ambient cooling. Consequently, increased impetus is given to provision of public green spaces. However, a general increase in urban green cover especially in the form of parks and green spaces may be inadequate to achieve desired results. This article serves to highlight the thermal heterogeneity of landcape elements and stresses on the need for strategic shade provision. The originality of this study lies in the fact that it provides a comparative review of energy conservation potential of public and private green spaces. It is found that large parks may not have substantial cooling effect on the indoor built environment. Moreover, people tend to spend more time indoors than outdoors. Thus the need for greening of private areas has become an undeniable climatic necessity. The potential of shade trees, green walls, and roof gardens for cooling of built environment are discussed with quantitative evidences of their thermal and economic benefits. Parameters incurring cost expenditure and weaknesses of the greening strategies are enumerated for enabling prudent selection/implementation of strategies. Proposals are generated to improve climatic resilience to urban warming and for diligent planning of cities.

  1. Studies on aerosol optical properties over urban and semi-urban environments of Hyderabad and Anantapur

    International Nuclear Information System (INIS)

    Lata, K.M.; Badarinath, K.V.S.; Rao, T.V. Ramakrishna; Reddy, R.R.; Ahammed, Y. Nazeer; Gopal, K. Rama; Azeem, P. Abdul

    2003-01-01

    Aerosols in the troposphere exert an important influence on global climate and the environment through scattering, transmission and absorption of radiation as well as acting as nuclei for cloud formation. Atmospheric aerosol particles influence the earth's radiation balance directly by scattering of infrared energy and indirectly by modifying the properties of clouds through microphysical processes. The present study addresses visibility, radiative forcing, size distribution and attenuation of aerosols over the period from January to May, 2001 for urban and semi-urban regions of Hyderabad and Anantapur. High aerosol loading has been observed over urban environment compared to semi-urban environment. Aerosol optical depth values increased from January to April and then decreased during May over both urban and semi-urban regions. Over urban region, visibility decreased from January to April and increased during May. Similar trend has been observed over semi-urban region with relatively higher values of visibility. Radiative forcing estimated using aerosol optical depth values increased from January to April and then decreased during the month of May over urban and semi-urban areas. High visibility and low radiative forcing has been noticed over semi-urban area due to less aerosol loading. Wavelength exponent and turbidity coefficient registered high values over urban environment compared to semi-urban environment. Attenuation coefficient showed high values over urban region compared to semi-urban region. It reveals that semi-urban environment receives high solar flux than urban environment. Using 10 channel quartz crystal microbalance, measurements of total mass concentration and mass size distribution of near surface aerosols has been made over semi-urban environment and compared with size distribution derived from inversion methods based on aerosol optical depth variation with wavelength. The sensitivity of constrained linear inversions for inferring columnar

  2. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    Science.gov (United States)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  3. Urban networks of tomorrow

    International Nuclear Information System (INIS)

    Bothe, D; Kaufmann, T.

    2016-01-01

    The requirements for urban utility grids are subject to a considerable change. The diversification of the energy supply and the changing feed-in structure (central -> decentral) also influence the operation of the existing networks considerably. Therefore, the focus of future studies will be on the flexibility of energy supply and the energy-carrier-wide network analysis or planning. These aspects are addressed, among other things, within the URBEM project, with a focus on a holistic, interdisciplinary approach. On the basis of separately performed thermal and electrical network calculations an optimization task is defined (for example, minimization of operating resources, minimization of CO2 emissions) and solved under technical conditions. The scenarios for the period 2030 and 2050 developed in the URBEM project serve as the basis for the optimization. The results of the calculations show current utilization or bottlenecks in the supply networks as well as optimum future supply structures for development areas in urban areas. (rössner) [de

  4. Elevatated CO2 alleviates heat stress tolerance in wheat

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Rosenqvist, Eva S. K.; Ottosen, Carl-Otto

    2014-01-01

    Title: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars Session: Plant response and adaptation to abiotic stress Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd...... Wollenweber4 1Department of Bioenergy, Tamilnadu Agricultural University, Coimbatore, India. 2Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark 3Institute of Agricultural Sciences and Ecology, University of Copenhagen, Hojbakkegaard Allé 9, 2630 Taastrup, Denmark 4......Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark *Presenting author This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different...

  5. Alleviating cancer patients' suffering: whose responsibility is it?

    Science.gov (United States)

    Grau, Jorge

    2009-07-01

    In medicine, we have historically been better at learning about the body and disease than we have at understanding the human beings who come to us with the ailments. We have acted to relieve pain, consoling patients and families as a complement, but done little to understand and alleviate suffering as a fundamental part of our practice. In fact, only in more recent decades has "suffering" been conceptualized as something apart from pain, associated with distress and its causes. It was Eric T. Cassell, in his ground-breaking work in the 1980s, who posed the need to consider alleviation of suffering and treatment of illness as twin-and equally important-obligations of the medical profession. Suffering is defined as a negative, complex emotional and cognitive state, characterized by feeling under constant threat and powerless to confront it, having drained the physical and psycho-social resources that might have made resistance possible. This unique depletion of personal resources is key to understanding suffering.

  6. Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance.

    Science.gov (United States)

    Lwalaba, Jonas Lwalaba Wa; Zvobgo, Gerald; Fu, Liangbo; Zhang, Xuelei; Mwamba, Theodore Mulembo; Muhammad, Noor; Mundende, Robert Prince Mukobo; Zhang, Guoping

    2017-05-01

    Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca) , as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Shared Urban Greywater Recycling Systems: Water Resource Savings and Economic Investment

    Directory of Open Access Journals (Sweden)

    Dexter V.L. Hunt

    2013-07-01

    Full Text Available The water industry is becoming increasingly aware of the risks associated with urban supplies not meeting demands by 2050. Greywater (GW recycling for non-potable uses (e.g., urinal and toilet flushing provides an urban water management strategy to help alleviate this risk by reducing main water demands. This paper proposes an innovative cross connected system that collects GW from residential buildings and recycles it for toilet/urinal flushing in both residential and office buildings. The capital cost (CAPEX, operational cost (OPEX and water saving potential are calculated for individual and shared residential and office buildings in an urban mixed-use regeneration area in the UK, assuming two different treatment processes; a membrane bioreactor (MBR and a vertical flow constructed wetland (VFCW. The Net Present Value (NPV method was used to compare the financial performance of each considered scenario, from where it was found that a shared GW recycling system (MBR was the most economically viable option. The sensitivity of this financial model was assessed, considering four parameters (i.e., water supply and sewerage charges, discount rate(s, service life and improved technological efficiency, e.g., low flush toilets, low shower heads, etc., from where it was found that shared GW systems performed best in the long-term.

  8. Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review.

    Science.gov (United States)

    Jones, Kathryn; Probst, Yasmine

    2017-08-01

    To review the evidence for the role of dietary modifications in alleviating chronic fatigue syndrome symptoms. A systematic literature review was guided by PRISMA and conducted using Scopus, CINAHL Plus, Web of Science and PsycINFO scientific databases (1994-2016) to identify relevant studies. Twenty-two studies met the inclusion criteria, the quality of each paper was assessed and data extracted into a standardised tabular format. Positive outcomes were highlighted in some included studies for polyphenol intakes in animal studies, D-ribose supplementation in humans and aspects of symptom alleviation for one of three polynutrient supplement studies. Omega three fatty acid blood levels and supplementation with an omega three fatty acid supplement also displayed positive outcomes in relation to chronic fatigue syndrome symptom alleviation. Limited dietary modifications were found useful in alleviating chronic fatigue syndrome symptoms, with overall evidence narrow and inconsistent across studies. Implications for public health: Due to the individual and community impairment chronic fatigue syndrome causes the population, it is vital that awareness and further focused research on this topic is undertaken to clarify and consolidate recommendations and ensure accurate, useful distribution of information at a population level. © 2017 The Authors.

  9. Sustainable urban growth

    International Nuclear Information System (INIS)

    Giraud, Pierre-Noel

    2011-01-01

    The principal messages from Energy and urban innovation are presented. This report by the World Energy Council has examined the challenges related to energy in big cities (in particular 'mega-cities'), the policies that are being or could be implemented, and the role of firms in this implementation. Considerable progress can be made by using existing techniques. The main difficulty has to do with diffusing them. There is a need for organizational and institutional innovations that will stimulate players, coordinate their actions and speed up the tempo of change

  10. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  11. First Swiss building and urban simulation conference. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zweifel, G.; Citherlet, S.; Afjei, T.; Pahud, D.; Robinson, D.; Schaelin, A.

    2010-07-01

    These contributions presented at a conference, held in 2009 in Horw, near Lucerne, Switzerland, deal with the simulation of building technical services. Three contribution blocks dealt with thermal and heating, ventilation and air-conditioning (HVAC) simulation, airflow and stochastic modelling and urban simulation. In the thermal and HVAC simulation session, the potential and limitations of building energy performance simulation is examined from an engineering perspective, a parametric study of an air heat exchanger for the cooling of buildings is presented and a comparison of measured and estimated electric energy use and the impact of assumed occupancy patterns is made. Contributions on standard solutions for energy efficient heating and cooling with heat pumps, the validation and certification of dynamic building simulation tools, standards and tools for the energy performance of buildings with a simple chiller model and the system-simulation of a central solar heating plant with seasonal duct storage in Geneva, Switzerland, are presented. In the airflow and stochastic modelling session, the optimisation of air flow in operating theatres is examined, and air-flow phenomena in flats are explained with illustrations of computational fluid dynamics (CFD). Also, the comparison of test reference years to stochastically generated time series and a comprehensive stochastic model of window usage are discussed. Contributions on the simulation of air-flow patterns and wind loads on facades and the choice of appropriate simulation techniques for the thermal analysis of double skin facades complete the session. In the final Urban Simulation session, a new CFD approach for urban flow and pollution dispersion simulation is presented, a comprehensive micro-simulation of resource flows for sustainable urban planning, multi-scale modelling of the urban climate and the optimisation of urban energy demands using an evolutionary algorithm are discussed.

  12. Reassessing the 'energy ladder': Household energy use in Maun, Botswana

    International Nuclear Information System (INIS)

    Hiemstra-van der Horst, Greg; Hovorka, Alice J.

    2008-01-01

    In the context of Sub-Saharan Africa's rapid urbanization, improved insight into urban energy use is increasingly important. Based on the predictions of 'energy transition' theory, a regional shift from biomass to 'modern' fuels has long been expected to occur in tandem with urban growth. However, trends observed in the region's towns and cities have often not followed such patterns and fuelwood continues to be important in most areas. This paper examines the practical relevance of transition theory using a recent case study, conducted by the authors in Maun, Botswana, and results previously reported in the literature. It finds that, despite the long-term link between socio-economic development and increased modern fuel consumption at the national scale, the notion of 'transition' does not accurately reflect ongoing energy-use patterns at lower levels of aggregation. This is chiefly because its model of household fuel switching largely dismisses the importance of active (and strategic) decision making by urban consumers and their responsiveness to structural factors such as relative fuel prices. As the Botswana case illustrates, this weakness can significantly distort expectations and policies around urban fuelwood use

  13. A decision-support system for sustainable urban metabolism in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Ainhoa, E-mail: ainhoag@yahoo.com [Trinity Centre for Biodiversity Research, School of Natural Sciences, Trinity College Dublin, College Green, Dublin 2 (Ireland); Donnelly, Alison, E-mail: donnelac@tcd.ie [Centre for the Environment, School of Natural Sciences, Trinity College Dublin (Ireland); Jones, Mike, E-mail: mike.jones@tcd.ie [Discipline of Botany, School of Natural Sciences, Trinity College Dublin (Ireland); Chrysoulakis, Nektarios, E-mail: zedd2@iacm.forth.gr [Foundation for Research and Technology-Hellas, Institute of Applied and Computational Mathematics (Greece); Lopes, Myriam, E-mail: myr@ua.pt [Departamento de Ambiente e Ordenamento and CESAM, University of Aveiro (Portugal)

    2013-01-15

    Urban metabolism components define the energy and material exchanges within a city and, therefore, can provide valuable information on the environmental quality of urban areas. Assessing the potential impact of urban planning alternatives on urban metabolism components (such as energy, water, carbon and pollutants fluxes) can provide a quantitative estimation of their sustainability performance. Urban metabolism impact assessment can, therefore, contribute to the identification of sustainable urban structures with regards, for example, to building types, materials and layout, as well as to location and capacity of transportation and infrastructural developments. In this way, it enables the formulation of planning and policy recommendations to promote efficient use of resources and enhance environmental quality in urban areas. The European FP7 project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) has developed a decision-support system (DSS) that systematically integrates urban metabolism components into impact assessment processes with the aim of accurately quantifying the potential effects of proposed planning interventions. The DSS enables integration of multiple spatial and non-spatial datasets (e.g. physical flows of energy and material with variables of social and economic change) in a systematic manner to obtain spatially defined assessment results and to thus inform planners and decision-makers. This multi-criteria approach also enables incorporation of stakeholders' perceptions in order to prioritise decisive assessment criteria. This paper describes the methodological framework used to develop the DSS and critically examines the results of its practical application in five European cities. - Highlights: Black-Right-Pointing-Pointer Urban metabolism in sustainability assessment of planning alternatives. Black-Right-Pointing-Pointer European FP7 project applied to 5 real life case studies across Europe. Black

  14. A decision-support system for sustainable urban metabolism in Europe

    International Nuclear Information System (INIS)

    González, Ainhoa; Donnelly, Alison; Jones, Mike; Chrysoulakis, Nektarios; Lopes, Myriam

    2013-01-01

    Urban metabolism components define the energy and material exchanges within a city and, therefore, can provide valuable information on the environmental quality of urban areas. Assessing the potential impact of urban planning alternatives on urban metabolism components (such as energy, water, carbon and pollutants fluxes) can provide a quantitative estimation of their sustainability performance. Urban metabolism impact assessment can, therefore, contribute to the identification of sustainable urban structures with regards, for example, to building types, materials and layout, as well as to location and capacity of transportation and infrastructural developments. In this way, it enables the formulation of planning and policy recommendations to promote efficient use of resources and enhance environmental quality in urban areas. The European FP7 project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) has developed a decision-support system (DSS) that systematically integrates urban metabolism components into impact assessment processes with the aim of accurately quantifying the potential effects of proposed planning interventions. The DSS enables integration of multiple spatial and non-spatial datasets (e.g. physical flows of energy and material with variables of social and economic change) in a systematic manner to obtain spatially defined assessment results and to thus inform planners and decision-makers. This multi-criteria approach also enables incorporation of stakeholders' perceptions in order to prioritise decisive assessment criteria. This paper describes the methodological framework used to develop the DSS and critically examines the results of its practical application in five European cities. - Highlights: ► Urban metabolism in sustainability assessment of planning alternatives. ► European FP7 project applied to 5 real life case studies across Europe. ► Decision support system enables incorporating scientific

  15. Productive urbanisms : From Runways to Greenways

    Energy Technology Data Exchange (ETDEWEB)

    White, M [Toronto Univ., ON (Canada). Faculty of Architecture Landscape and Design; Sheppard, L [Waterloo Univ., Cambridge, ON (Canada). School of Architecture

    2009-07-01

    This paper reported on an international competition for urban development in Reykjavik, Iceland in 2007. Known as the Runways to Greenways proposal, the prototype depends on a strategy that considers energy use, ecology and land use when integrating public amenities. While Iceland is advanced in terms of its vast geothermal reserves, it is a country that uses the most energy per capita. There are 5 major geothermal power plants in Iceland which produce about 26 per cent of the country's electricity. Geothermal heating also meets the heating and hot water needs for nearly 87 per cent of the nation's buildings. However, Reykjavik continues to rely heavily on imported fossil fuel primarily for fishing, transport and heavy industries. A recent masterplan for the expansion of Reykjavik calls for the densification of the city. The objective was to propose a city that is self-sufficient in terms of energy, agriculture and water while addressing the development potentials of biotechnology and ecotechnology enterprises in Reykjavik. The integrated infrastructure calls for a symbiotic relationship between urbanism and nature, and between energy consumption and production in an effort to pair infrastructure, landscape, public infrastructure and architecture in a culturally, economically and environmentally productive urban realm. 9 refs., 12 figs.

  16. Productive urbanisms : From Runways to Greenways

    Energy Technology Data Exchange (ETDEWEB)

    White, M. [Toronto Univ., ON (Canada). Faculty of Architecture Landscape and Design; Sheppard, L. [Waterloo Univ., Cambridge, ON (Canada). School of Architecture

    2009-07-01

    This paper reported on an international competition for urban development in Reykjavik, Iceland in 2007. Known as the Runways to Greenways proposal, the prototype depends on a strategy that considers energy use, ecology and land use when integrating public amenities. While Iceland is advanced in terms of its vast geothermal reserves, it is a country that uses the most energy per capita. There are 5 major geothermal power plants in Iceland which produce about 26 per cent of the country's electricity. Geothermal heating also meets the heating and hot water needs for nearly 87 per cent of the nation's buildings. However, Reykjavik continues to rely heavily on imported fossil fuel primarily for fishing, transport and heavy industries. A recent masterplan for the expansion of Reykjavik calls for the densification of the city. The objective was to propose a city that is self-sufficient in terms of energy, agriculture and water while addressing the development potentials of biotechnology and ecotechnology enterprises in Reykjavik. The integrated infrastructure calls for a symbiotic relationship between urbanism and nature, and between energy consumption and production in an effort to pair infrastructure, landscape, public infrastructure and architecture in a culturally, economically and environmentally productive urban realm. 9 refs., 12 figs.

  17. Does farmer entrepreneurship alleviate rural poverty in China? Evidence from Guangxi Province

    Science.gov (United States)

    Zhuang, Jincai

    2018-01-01

    In recent years, entrepreneurship has been gaining more prominence as a potential tool for solving poverty in developing countries. This paper mainly examines the relationship between farmer entrepreneurship and rural poverty alleviation in China by assessing the contribution of farm entrepreneurs towards overcoming poverty. Data were collected from 309 employees of farmer entrepreneurships in Guangxi Province through survey questionnaires. Structural equation modeling was used to conduct an analysis of the effects of three identified capabilities of farm entrepreneurs—economic, educational and knowledge, and socio-cultural capabilities—on attitude towards farmer entrepreneurship growth and the qualitative growth of farmer entrepreneurship and how these in turn affect rural poverty, using AMOS 21. The findings show that socio-cultural capability has the greatest influence on farmer entrepreneurship growth (β = 0.50, pentrepreneurship also more significantly impacts rural poverty (β = 0.69, pentrepreneurship growth. This study suggests that policy makers in China should involve more rural farmers in the targeted poverty alleviation strategies of the government by equipping rural farmers with entrepreneurial skills. This can serve as a sustainable, bottom-up approach to alleviating rural poverty in remote areas of the country. The study also extends the literature on the farmer entrepreneurship-rural poverty alleviation nexus in China, and this can serve as a lesson for other developing countries in the fight against rural poverty. PMID:29596517

  18. Does farmer entrepreneurship alleviate rural poverty in China? Evidence from Guangxi Province.

    Science.gov (United States)

    Naminse, Eric Yaw; Zhuang, Jincai

    2018-01-01

    In recent years, entrepreneurship has been gaining more prominence as a potential tool for solving poverty in developing countries. This paper mainly examines the relationship between farmer entrepreneurship and rural poverty alleviation in China by assessing the contribution of farm entrepreneurs towards overcoming poverty. Data were collected from 309 employees of farmer entrepreneurships in Guangxi Province through survey questionnaires. Structural equation modeling was used to conduct an analysis of the effects of three identified capabilities of farm entrepreneurs-economic, educational and knowledge, and socio-cultural capabilities-on attitude towards farmer entrepreneurship growth and the qualitative growth of farmer entrepreneurship and how these in turn affect rural poverty, using AMOS 21. The findings show that socio-cultural capability has the greatest influence on farmer entrepreneurship growth (β = 0.50, pentrepreneurship also more significantly impacts rural poverty (β = 0.69, pentrepreneurship growth. This study suggests that policy makers in China should involve more rural farmers in the targeted poverty alleviation strategies of the government by equipping rural farmers with entrepreneurial skills. This can serve as a sustainable, bottom-up approach to alleviating rural poverty in remote areas of the country. The study also extends the literature on the farmer entrepreneurship-rural poverty alleviation nexus in China, and this can serve as a lesson for other developing countries in the fight against rural poverty.

  19. Urban Heat Islands

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.

    2011-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. Research studies from many cities have documented these effects range from decreases in air quality, increased energy consumption and alteration of regional climate to direct effects on human health.

  20. Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work?

    International Nuclear Information System (INIS)

    Wang, Zhaohua; Wang, Xiaomeng; Guo, Dongxue

    2017-01-01

    Incentive policies are always used to sway purchase, retail stocking, and production decisions toward energy-efficient products by many countries or regions. So the effectiveness of such subsidies has been of much concern to scholars. This research focused on whether, or not, subsidy policies have guided people's intentions and behaviours. We investigated 436 urban residents from 22 provinces in China, covering the seven major geographic regions, and made an empirical analysis of the factors influencing Chinese urban residents’ purchasing intentions towards energy-efficient appliances based on the structural equation model. On theoretical aspect, we developed the theory of planned behaviour. Our results show that the variable “POLICY” is insignificant which indicates that policy environment and media propaganda in China do not have significant effect on Chinese residents’ willingness to pay for energy-efficient appliances. While, the residents’ environmental awareness, past purchasing experiences, social relationships, age, and level of education all exert a significant influence on Chinese residents’ purchasing intentions. Finally, based on the above research results, the corresponding policy suggestions which mainly focus on the time of subsidy, the object of subsidy and the method of subsidy are offered for policy makers. - Highlights: • We researched people’s behaviour combined with a policy implementation background. • We found that the subsidy policy didn’t change people’s purchase intentions. • Past purchasing experiences significantly influence consumers’ purchase intentions. • We proposed policy advices about the time, types and methods of incentive policies.